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A Comparison of Linking and Concurrent
Calibration Under Item Response Theory

Abstract

Applications of item response theory to practical testing problems including

equating, differential item functioning, and computerized adaptive testing,

require item parameter estimates be placed onto a common metric. In this

study, we compared three methods for developing a common metric under

item response theory: (1) linking separate calibrations using equating co-

efficients from the characteristic curve method, (2) concurrent calibration

via marginal maximum a posteriori estimation, and (3) concurrent calibra-

tion via marginal maximum likelihood estimation. Linking using the charac-

teristic curve method yielded smaller root mean square differences for both

item discrimination and difficulty parameters for smaller numbers of common

items. For the larger numbers of common items, the three methods yielded

essentially the same results.

Key words: BILOG, concurrent calibration, equating, linking, MULTILOG.
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Introduction

Studies of horizontal and vertical equating and studies of differential item

functioning under item response theory (IRT) require that item parameters

from two or more data sets be expressed on a common metric. For purposes

of this paper, we shall refer to linking as developing a common metric in

IRT by transforming a set of item parameter estimates from one metric onto

another, base metric. A common metric in IRT can also be constructed by

simultaneously calibrating a combined data set. In spite of the fact that the

metric of the 0 scale is important under IRT, however, results from linking

and concurrent calibration and the issue of the identification problem in these

contexts have not been studied. In this study, therefore, we compare linking

and concurrent calibration methods used for developing a common ability

metric.

The purpose of equating is to convert test scores obtained from one test

to the metric of another test. In horizontal equating, the tests to be equated

are at the same level of difficulty and the ability distributions of examinees

are comparable. Horizontal equating is required where multiple forms of a

test are needed. In vertical equating, the tests to be equated are at the

different levels of difficulty and the ability distributions of examinees are not

comparable. Vertical equating is required so that a single scale can be.used to

make comparisons of abilities of examinees at different levels (e.g., different

grades). Under IRT, equating may not be necessary, if item parameters from

two tests are on the same metric. Hence, in IRT the task of equating is

reduced to developing a common metric.

Both equating of test scores from various tests and linking of item

parameters can be carried out under several different designs (Vale, 1986).
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The focus in this paper is on the anchor test design in which two tests

contain a set of common items and the tests are administered to two groups

of exarhinees either with comparable or different ability levels.

When separate calibrations are used for dichotomously scored IRT

models, three classes of linking methods are available for obtaining the

linking or equating coefficients, A and B: characteristic curve methods

(Divgi, 1980; Haebara, 1980; Stocking & Lord, 1983), the minimum chi-

square method (Divgi, 1985), and mean and sigma methods (Linn, Levine,

Hasting, & Wardrop, 1981; Loyd & Hoover, 1980; Marco, 1977; Stocking &

Lord, 1983). The transformation coefficients, A and B, are obtained from

the item parameter estimates of the common items on the two tests. In

general, if there are two sets of item parameter estimates, one set from

the base group and the other from the target group, the task is to place

item and ability estimates of the target group onto the metric of the base

group. Item parameter estimates from the target group, including those

for the common items, are placed onto the metric of the base group via

these coefficients. After the metric transformation and in order to achieve

symmetry of transformation, the item parameter, estimates from the base

group and the transformed item parameter estimates from the target group

for the common items are averaged to obtain the final estimates (Hambleton

& Swaminathan, 1985).

Concurrent calibration is presently possible using two different estimation

procedures, joint maximum likelihood estimation (JMLE) and marginal

maximum likelihood estimation (MMLE). Bayes estimation can also be

employed in either JMLE or MMLE contexts. JMLE is implemented in

a number of computer programs including LOGIST (Wingersky, Barton, &

Lord, 1982) and MICROSCALE (Mediax Interactive Technologies, 1985).
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Concurrent calibration involves estimating item and ability parameters with

a single run, combining data from both or several groups and treating items

not taken by a particular group as not reached or missing (Lord, 1980). A

variation of this is also possible in which the parameter estimates of the

common items from the base group are set to be fixed and the remaining

item parameters are estimated using data from the target group.

In the context of MMLE, common item equating can be accomplished

via the computer program BILOG (Mislevy & Bock, 1990) as well as via

the computer program MULTILOG (Thissen, 1991). In case of concurrent

calibration of item parameter estimates using BILOG, the marginalization

assumes there is a population distribution which may be either Gaussian or

some arbitrary distribution jointly obtained with item parameter estimates

(Bock & Aitkin, 1981; Mislevy & Bock, 1990). The appropriate specification

of the population distribution has been shown to increase the accuracy

of estimation (Seong, 1990). When there are two groups of examinees,

MULTILOG default options calibrate items by constructing a unit normal

metric for ability parameters of the base group. The mean ability of the target

group is empirically obtained along with item parameters while fixing the

standard deviation at unity. MULTILOG default options can be overridden

so that the mean and the standard deviation of the target group also can be

differently specified.

One unresolved issue in the context of concurrent calibration under MMLE

is the form of the population ability distribution. (Note that the form of the

population ability distribution is not an issue for JMLE.) In addition, there

is a concern with appropriate specification of the target group population

parameters. In a horizontal equating situation, these specifications do not

normally cause serious problem as (1) the two distributions of abilities are
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generally comparable and (2) the difficulty level of a well-designed test is typ-

ically matched to the ability of the examinee groups. In vertical equating,

however, the specification becomes somewhat more complicated, particularly

if the two ability distributions differ not only in location but also in variabil-

ity.

Differences in simultaneous and concurrent calibration appear not to have

been reported in the literature. In the present study, therefore, we compare

linking and concurrent calibration. To illustrate the problems involved, in

the following section, we present an illustrative example using three methods

for developing a common metric: linking via a characteristic curve method

(Stocking & Lord, 1983); concurrent calibration using marginal maximum

a posteriori estimation as implemented in BILOG (Mislevy & Bock, 1990);

and concurrent calibration using marginal maximum likelihood estimation

as implemented in MULTILOG (Thissen, 1991). Following the example, we

present results from a larger simulation study to study these issues in more

detail.

Example

Data

We illustrate linking and concurrent calibration using data obtained from

a standardized, multiple-choice university mathematics placement test.

Examinees were entering freshmen at a large midwestern university who

had not taken a college-level mathematics course. Originally there were

three sections, A, B, and C, in the test. Examinees were told to take

section B (intermediate and advanced algebra) and either section A (basic

arithmetic, elementary algebra, and plane geometry) or section C (analytic

5

7



geometry and trigonometry) depending on their high school mathematics

preparation. Examinees were advised to take section C if they had at least

two-and-one-half years of high school mathematics (not including business

mathematics). Otherwise, they were advised to take sections A and B.

Consequently, students who took sections of B and C were better prepared

in terms of their mathematics ability.

Two test data sets, set AB and set BC, were assembled using 10 items

from each section. Form-AB consisted of 500 examinees' responses for the 20

items of sections A and B. Form-BC consisted of 500 examinees' responses

for the 20 items of sections B and C. For purposes of this example, we refer to

those who took Form-AB as the target group and those who took Form-BC

as the base group. The task is to place the target groups examinees and item

parameters onto the metric of the base group. The 10 items from section B

were common to both tests.

Classical Item Statistics

Classical item difficulties, pj, and biserial correlations between item score and

item-excluded total score, ri, are given in Table 1. Summary statistics for

the separate Forms A, B, and C are presented in Table 2. For the common

items, that is, Form B, note that the target group has a mean score of 3.182

whereas for the base group, the mean was 7.930. Clearly the common items

were relatively easier for examinees in the base group.

Insert Tables 1 and 2 about here
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Separate Calibrations Results

Both a two- and a three-parameter logistic model were fitted to the two data

sets. The results, presented in Table 3, afford a comparison of the two models

and indicate that addition of the asymptotic parameter did not significantly

improve the fit of the model to the data. We therefore selected the simpler,

two-parameter logistic model.

Insert Table 3 about here

Default options were used for the BILOG computer runs along with LOG,

FRE, IDI=3, and RSC=3 options. The LOG option is used to place item and

ability parameter estimates on the logistic metric (i.e., the scaling constant

D = 1.7). The FRE option is used to estimate the population parameters of

the underlying ability distribution jointly along with item parameters. The

IDI=3 option uses the empirical prior from the item parameter estimation

phase to estimate the examinee ability with the expected a posteriori (EAP)

method. The RSC=3 option places the item parameter estimates from the

target group onto the N(0,1) ability estimates metric of the target group.

Item parameter estimates for both groups are reported in Table 4. The

item parameter estimates of the base group were likewise expressed on the

normalized estimated ability metric of the base group. It is important to

note that the default estimation procedure of BILOG for the two-parameter

model employs a lognormal prior for item discrimination. The estimation

of item parameters, therefore, is marginal maximum a posteriori estimation

(MMAPE).
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Insert Table 4 about here

Item difficulty estimates of the target group were larger than those of the

base group and suggest that the base group has higher ability. Unfortunately,

such comparisons are premature as the items are not yet on a common metric.

Insert Tables 5 and 6 about here

In order to place item parameter estimates of the target group onto the

metric of the base group, the test characteristic method of Stocking and

Lord (1983) was used as implemented in the computer program EQUATE

(Baker, 1993). The resulting linking coefficients, A = .610 and B = 2.482,

were used to transform item parameter estimates of the target group to the

metric of the base group (see Table 5). Note that parameter estimates of

the common items, even after linking transformation, are not generally the

same in the target and base groups. Hambleton and Swaminathan (1985)

recommend averaging these estimates. One problem with averaging in this

way is that, when the item parameter estimates are changed, the subsequent

ability distribution of the base group may no longer be N(0,1). Summary

statistics for linked item parameter estimates are given in Table 6: Using

these same A and B coefficients, we can also express the ability estimates of

the target group on the 9 metric of the base group.

Concurrent Calibration Results Using BILOG

BILOG concurrent calibration results are reported in Table 7. For concurrent

calibration, the 10 common items were treated as taken by both groups of
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examinees. Items specific to the target or base group were treated as taken

only by that group. Default options were again used for the BILOG runs

with LOG, FRE, IDI=3, and RSC=3 options. Estimates of all 30 item

parameters are placed by BILOG onto the N(0,1) estimated ability metric.

BILOG estimates the underlying population ability distribution jointly along

with item parameters.

Insert Tables 7 and 8 about here

As the concurrent standardization was based on the whole group of

examinees, it is not yet appropriate to compare these item parameter
estimates to those from the linked separate calibrations. We may use

the characteristic curve method or the following procedure to make such

comparison. First, we need to transform the concurrent calibration ability

estimates of the base group to a N(0,1) metric. We next need to transform

the item parameter estimates. The base group examinees had the mean of

.758 of the ability estimates and the standard deviation of .783. We then

make a transformation of the target group ability estimates to N(0,1). In

this case we linearly reexpress the estimates onto the arbitrary metric of

the standard normal of the ability estimates of the base group. The item

parameter estimates of the resealed group are also reported in Table 7.

Table 8 contains summary statistics of the item parameter estimates from the

BILOG concurrent calibration. It is clear that there are differences between

the summary statistics from this concurrent calibration case and the linked

separate calibrations case.

As noted earlier, one problem with concurrent calibration under MMLE

is that of specifying the underlying ability distribution. In terms of
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MMLE/MMAPE, the joint likelihood/posterior is marginalized under the

assumption that a population distribution exists. In this example, even if

we obtain this population distribution jointly along with the item parameter

estimates, it is quite plausible to assume there might actually be two different

forms of underlying ability distributions. If the target group population

distribution of ability is truly different from that of the base group, then

marginalization of the likelihood function under the assumption of a single

ability distribution may not be the correct specification. There are two

concerns in this regard. First, how and when can we be sure that there

exists only one underlying distribution? Second, what is the effect on the

subsequent metric of a misspecification of the ability distribution?

In part, concurrent calibration can potentially remove some equating

errors which arise in the case of separate calibrations. It could possibly

also remove some of the arbitrariness of the decisions made in linking. It

should be noted, however, that the concurrent calibration may not always

be either possible or economical. For example, item parameter estimates

obtained on earlier forms of a test will generally differ to some extent from

current estimates. Subsequent combination of existing data with new data

just to achieve concurrent calibration results may also incur different equating

errors.

Concurrent Calibration Results Using MULTILOG

MULTILOG employs a similar marginalization process to that used in

the BILOG computer program. The main difference between BILOG and

MULTILOG is that MULTILOG permits specification of different population

ability parameters. This is particularly valuable if we have two or more

groups of examinees. When two (or more) groups are calibrated, MULTILOG

10
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assumes the base group's ability to be N(0,1) and the target group's ability

to be N(A,1), whereµ is the estimated mean ability of the target group.

The mean ability of the target group can be obtained jointly by MULTILOG

along with item parameters.

Default options were used for estimation of item parameters. Under

these conditions, MULTILOG provides MMLE estimates of item parameters.

Concurrent calibration results using MULTILOG are reported in Table 9.

For this estimation, the 10 common items were constrained to have the

same estimates for both the target and base groups. Note that the item

parameter estimates of the base group were placed on a N(0,1) metric. The

target group's ability was estimated as N(-1.790,1). All item parameter

were expressed on the base group's metric of N(0,1). Summary statistics are

given in Table 10.

Insert Tables 9 and 10 about here

One problem with using concurrent calibration via MULTILOG concerns

the specification of the distribution of ability used for marginalization. In this

example, we used the program default options to obtain the mean ability of

the target group jointly with item parameter estimates. If the target group

population distribution of ability is different from that of the base group,

then marginalization of the likelihood function under the assumption that

there are two different ability distributions is more appropriate.

Comparison of Results

Correlations between the item difficulty parameters estimated separately and

concurrently were relatively high (see Table 11): The correlation between
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linking and concurrent calibration via BILOG was .966 and that between

linking and concurrent calibration via MULTILOG was .985. Similarly, the

correlation between the BILOG and MULTILOG calibration results was .988.

High correlations indicate strong linear relationships between the various

item difficulty estimates.

Insert Table 11 about here

The correlations between linking and concurrent item discrimination

estimates were not as high: The correlation between linking and BILOG

estimates was .763; that between linking and MULTILOG estimates was

.632. The correlation between the two concurrent calibration results was

somewhat higher (r = .879).

Test characteristic curves (TCCs) from the separate calibrations are

plotted in Figure 1 along with the TCCs from concurrent calibration via

BILOG and TCCs from concurrent calibration via MULTILOG. If the three

different procedures of obtaining common metrics were without errors, all

three TCC plots should be identical. Generally, the three patterns appear to

be quite similar.

Insert Figures 1 and 2 about here

Figure 2 presents the line of relationship between observed scores under

the three different methods. Again, if the three were without error, all curves

should be identical. It is clear that there are differences due to the three

methods. The discrepancies, in fact, arise from differences between the sets

of item parameter estimates.
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The example is informative and serves to illustrate common item linking

and concurrent calibrations. It does not provide clear information, however,

regarding the comparable quality of the linking and concurrent calibrations.

This is because we do not know the true parameters and, consequently, the

form of the true relationship between the different metrics and the tests.

When dealing with real data, there is no satisfactory way to evaluate methods

of constructing a common metric as no criterion yet exists against which

to check the accuracy of the results obtained. We can only make such

judgements when we know what the proper relationship is between the two

sets of item parameters. Such a criterion is available, however, if we use

generated data sets. In the next section, we present results from a simulation

study.

Simulation Study

Data Generation

In this section we compare the three methods of obtaining a common metric

under IRT in the context of a recovery study design in order to more closely

examine the effects of each of the methods with respect to known item and

ability parameters. Data for the simulation study were generated for 50 items

and 500 examinees using the computer program GENIRV (Baker, 1988). The

two-parameter model was employed to generate item response vectors. The

50 sets of item parameters (see Table 12) were originally reported by Lord

(1968) for the three-parameter model. Subsequently, the estimates have been

used by both McLaughlin and Drasgow (1987) and Cohen and Kim (1993)

in the context of the two-parameter model.
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Insert Table 12 about here

The simulation study consisted of a single base group of examinees with

an ability distribution generated N(0,1). Two different target groups were

also generated with ability distributions N(0,1) and N(1,1), respectively. A

total of 150 data sets each with 50 items and 500 examinees were generated

by changing the random number seed. This included 50 base group data

sets, 50 target group data sets for N(0,1), and 50 target group data sets for

N(1,1).

Number of Common Items and Item Parameter Estimation

For each combination of a target group and the base group, four different

lengths of common items sets were used: 5, 10, 25, and 50 items. For the

5-common item condition, items 1-5 in of Table 12 were used. For the

10-common item condition, items 1-10 of Table 12 were used. For the 25-

common item condition, items 1-25 were assumed to be common items. The

50 common item condition simulated a typical differential item functioning

detection situation in which all of the items need to be placed onto the same

metric before comparisons could be made. The summary statistics of the

item parameters of the four sets of the common items are reported in Table

13.

Insert Table 13 about here

For the separate calibrations, the computer program BILOG was used to

estimate item parameters using default options along with FRE, IDI=3, and
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RSC=3 options. First, base group item parameters were estimated and then

target group item parameters were estimated. A total of 150 sets of item

parameter estimates were obtained in this way from the total of 150 BILOG

calibrations. Since we had four different linking situations corresponding to

the four lengths of common item sets, for each combination of the base group

and the target group, four EQUATE runs were performed. In case of the

5-common item condition, the EQUATE run produced linking coefficients

A and B based on these 5 items. Then using A and B, item parameter

estimates from the target group were placed onto the metric of the base

group. Finally, the item parameter estimates from the common items were

averaged to obtain the linked item parameter estimates. For the 5-common

item condition, this resulted in estimates of item parameters for 95 items

after the linking. A total of 400 EQUATE runs were performed, that is, 50

replications for the four EQUATE runs of the base group and the N(0,1)

target group as well as for the four EQUATE runs of the base group and the

target group of the N(1,1) target group.

For the concurrent calibrations, both BILOG and MULTILOG were used.

First, 100 combined data sets were formed of the base group and each of

the two target groups. Note that only two groups were analyzed on each

concurrent run: the base group and the N(0,1) target group or the base

group and the N(1,1) target group. A single combined data set was analyzed

four times using BILOG and another four times using MULTILOG. The

four computer runs were performed for each of four common item conditions.

Altogether, 400 BILOG runs were performed and 400 MULTILOG runs were

performed.

For the BILOG runs, default options were employed along with FRE,

IDI=3, and RSC=3 options resulting in MMAPE estimation. The final item
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and ability estimates were expressed on the N(0,1) metric of the estimated

ability parameters. For the MULTILOG runs, all default options were used

and the item parameter estimation was MMLE.

Equating and Evaluation Criteria

The final estimates for item and ability parameters from the separate

calibrations used for the linking simulations were all expressed on the N(0,1)

metric of the base group ability estimates.

Estimates of item and ability parameters used for the concurrent calibra-

tions were placed by BILOG onto the metric of combined ability estimates.

For the base and target group combination with the same N(0,1) ability

distributions, the final estimates were placed on the same metric of the gen-

erating parameters. In case of the combination of the base group of N(0,1)

and the target group of N(1,1), the resulting metric was based on the stan-

dardized metric of the combined ability parameter estimates. The metrics

from the concurrent calibrations using MULTILOG was based only on the

base group metric of N(0,1).

These final estimates from separate linking calibrations and concurrent

calibrations are not directly comparable. In order to make comparisons of

the estimates, additional EQUATE runs were performed to place all item

parameter estimates onto the metric of generating item parameters. In case

of the 5-common item condition, 95 sets of common items were equated to

the metric of generated item parameters. In case of the 10 common item

condition, 90 sets of common items were equated back to the metric of the

generated item parameters. All together, 1,200 EQUATE runs were required

to place final estimates onto a common metric.

One means of evaluating results from the different methods of obtaining
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a common metric is to compare equating coefficients to expected values. A

more definitive description is possible, however, in a recovery study. Root

mean square differences (RMSDs) between the estimates and the generating

parameters provide a good indication of the quality of the recovery and,

thereby, an indication of the quality of linking and concurrent calibrations.

The smaller the RMSDs, the better the methods of obtaining a common

metric. RMSDs were calculated separately for each parameter, once for

item discrimination and once for item difficulty. The RMSD for item
discrimination is defined as

E(ai a23) 7n
(1)

where n is the total number of items. Recall that the total number of
items were 95, 90, 75, and 50 for each common item condition of 5, 10,

75, and 50 items, respectively. Note that the item parameter estimates for

both separate and concurrent calibrations were linked back to the metric

of the generating item parameters before calculating the RMSDs. For item

difficulty, the RMSD is defined as

1
n

E(bi 0i)2.
j =1

(2)

Since it is possible that a method of obtaining a common metric may

function better at recovery of one type of item parameter than at recovery

of the other, it is also useful to consider a single index which could describe

simultaneously the quality of the recovery for both parameters. The mean

Euclidean distance (MED) provides such an index. The MED is the average

of the square roots of the sum of the squared differences between the

discrimination and difficulty parameter estimates and their generating values.
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The MED is defined as

E I ( e)V e)n (3)

where = (as, bs)' and ei = MEDs were calculated between the

underlying parameters and their estimates. One caveat in using the MED, of

course, is that item discrimination and difficulty parameters are not expressed

in comparable and interchangeable metrics. Even so, the MED does provide

a potentially useful descriptive index.

Results

Root Mean Square Differences

Recovery of the underlying parameters was first evaluated with RMSDs

between the transformed estimates and the generating parameters for each

method for obtaining a common metric. The results for item discrimination,

summarized in Table 14, indicate that the separate calibrations condition

yielded generally smaller RMSDs for item discrimination (see also Figure

3). For the N(1,1) target group case, both separate calibrations and the

concurrent calibration via BILOG yielded similar results except for the

5-common items condition. The concurrent calibration via MULTILOG

yielded larger RMSDs of item discrimination across all conditions.

Insert Table 14 and Figure 3 about here

RMSDs for item discrimination for the cases in which the N(1,1) target

group was used were smaller than cases in which the N(0,1) target group was

used. As can be seen in Table 14, there is a clear tendency for the sizes of

18
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the RMSDs for item discrimination to decrease as the number of common

items increased.

RMSDs for item difficulty are also reported in Table 14. Concurrent

calibration via BILOG yielded smaller RMSDs for the N(1,0) target group

condition. As the number of common items increased under the N(1,0) target

group condition, all three methods yielded essentially the same results. For

the N(1,1) target group condition, the separate calibrations yielded slightly

smaller RMSDs except for the 50-common item case. Concurrent calibration

via BILOG yielded somewhat larger RMSDs for both the 5- and 10-common

item conditions. There did not appear to be any systematic relationship

between the distribution of the target group's ability and the size of the

item difficulty RMSDs. For both groups, as the number of common items

increased, the size of the RMSDs of item difficulty decreased.

Mean Euclidean Distances

Trends for MEDs between item parameter estimates and underlying parame-

ters were similar to those reported for RMSDs. Table 15 and Figure 4 present

the MED results. Linking yielded smaller MEDs for all conditions except

the N(1,1) target group with 50 common items. Concurrent calibration via

MULTILOG yielded larger MEDs under the N(0,1) target ability condition.

BILOG concurrent calibration produced larger MEDs for the N(1,1) target

ability condition with 5 common items. The size of the average MEDs de-

creased as the number of common items increased. Also differences among

methods of obtaining a common metric decreased as the sizes of common

items increased.
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Insert Table 15 and Figure 4 about here

Linking Coefficients and Population Parameter Estimates

As noted above, transformation of item parameter estimates from the target

group onto the base group metric was accomplished using A and B equating

coefficients. In terms of separate calibration, therefore, it was of interest to

look at the values of these coefficients as we know apriori the theoretically

expected values. The theoretically expected values of A and B for placing

the target group ability of N(0,1) onto the base group ability of N(0,1) are

1 and 0, respectively. For placing the N(1,1) target group onto the N(1,0)

base group metric, the values of A and B are 1 and 1, respectively. Summary

statistics of the equating coefficients from the separate calibrations for two

different target group ability distributions and four numbers of common items

are reported in Table 16.

Insert Table 16 about here

Differences in equating coefficients from expected values were generally

small for all simulated conditions. For the N(0,1) target group, the A and

B were essentially 1 and 0 for all common item conditions. Likewise,' for the

N(1,1) target group, the A and B were essentially 1 and 1 for all common

item conditions.

In case of the concurrent calibration via MULTILOG, the base group

ability metric was set to N(0,1). The mean ability of the target group (i.e.,

population parameter or hyperparameter) was jointly estimated along with

the item parameters. Standard deviations of ability for the base group and
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the target group were both fixed at 1. For the N(0,1) target group, the

expected population mean was 0 and for the N(1,1) target group it was 1.

Insert Table 17 about here

Table 17 contains means and standard deviations of the population

parameter estimates over fifty replications for both target group ability

conditions and for the 4 common item conditions. The hyperparameter of

the target group N(0,1) (i.e., the posterior population mean) was not close

to the expected value. All values were smaller than the expected value of 0.

As the number of common items increased, the mean of the hyperparameters

approached but did not reach the theoretically expected value. The mean

hyperparameter for the N(1,1) target group was also less than the expected

value of 1. As was seen for the N(0,1) target group case, as the number of

common items increased, the mean hyperparameters tended to approach a

value of 1.

Summary and Discussion

The comparability of IRT item parameter estimates across different tests

measuring the same underlying ability is an important matter for test

developers and researchers since all decisions about examinees are derived

from these estimates. A number of different methods are available for

developing common metrics, not all of which yield the same ability estimates.

Which method to choose to develop a common metric is often a matter

of uncertainty and concern. In this paper, we have presented examples

and simulation study results using three different, commonly used methods

for obtaining a common metric in IRT. The three methods were linking
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of separately calibrated metrics using linear equating coefficients A and B

obtained from the test characteristic curve method, concurrent calibration

via MMAPE, and concurrent calibration via MMLE.

In the recovery study section of this paper, comparisons were made of the

similarities between generating parameters and item parameter estimates

obtained after transformation of the results from each of the methods to

the underlying metric. The simulation results indicated that recovery for

linking of separate calibrations was generally better than recovery from

either of the concurrent calibrations. The finding of greatest interest was

that, when the ability of the base group was not well-matched to the ability

of the target group and when small numbers of common items were used,

concurrent calibration via BILOG resulted in somewhat larger RMSDs and

IVIEDs. In addition, for concurrent calibration via MULTILOG with the

N(0,1) target group, both RMSDs and MEDs were somewhat larger. As the

number of common items increased, however, all three methods tended to

yield similar results. Comparisons of the three methods in terms of item

parameter estimation and ability estimation are presented in Table 18.

Insert Table 18 about here

Differences among the methods compared in this study were ptimarily

ones inherent to the indeterminacy of the IRT ability metric. It is well-

known that the ability metric in IRT is unique up to a linear transformation.

Both linking and concurrent calibration are closely related to the problem of

the metric indeterminacy.

Computer programs for estimating item and ability parameters under

IRT resolve the problem of the linear indeterminacy of the metric problem in
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different ways. LOGIST, for example, resolves this problem by standardizing

the estimates of ability so that the estimates have a mean of 0 and a
standard deviation of 1. In BILOG and MULTILOG, the ability parameters

are not estimated with item parameters. Consequently, when comparing

the results from the BILOG and MULTILOG programs, care needs to be

exercised to deal within the frame of reference of the metric of the item

and ability estimates. With respect to BILOG, at the end of the item
parameter estimation phase, the estimated posterior ability distribution is

used to establish the metric of item parameter estimates. Mislevy and Bock

(1990, p. 1-19) also recommend use of the FRE option for common item

equating. The resulting estimated posterior ability distribution is based

on the discrete distribution over a finite number of points (Mislevy, 1984).

BILOG ability parameters in this study were estimated and normalized.

Mislevy and Stocking (1989) recommend use of the expected a posteriori

(EAP) for estimation with the empirical examinee ability distribution during

the item parameter estimation phase. Therefore, for BILOG runs in the

present study, the EAP method was used to estimate ability parameters.

Again, the empirical prior distribution estimated during the item parameter

estimation phase (i.e., phase 2 of BILOG) was used as the designated type

of prior distribution for scale scores. (IDI=3). With the RSC=3 option, the

ability estimates were transformed onto a standard normal metric, that is,

N(0,1). Item parameter estimates were then expressed on this metric.

For MULTILOG runs in this study, ability parameters were not estimated.

The normalized posterior of the base group latent ability distribution
provides the underlying metric in MULTILOG. When comparing linking

results (i.e., for separate calibrations), the MULTILOG item parameter

estimates, therefore, cannot be viewed in the same manner as BILOG

23

25

BEST COPY AVAILABLE



results. The differences in the metrics of BILOG and MULTILOG results

rest fundamentally on the fact that the posterior ability distribution from

the item parameter estimation phase under MMLE is not the same as the

empirical distribution of the estimates of ability. Mislevy (1984) has shown

that the estimated distribution of ability is not the same as the empirical

distribution of ability estimates.

It is possible to use MULTILOG to compute maximum likelihood or

maximum a posteriori estimates of ability. If this had been done, then it

would also have been possible to calculate the mean of ability estimates

for the target group and the base group separately. The ability estimates

of the base group could then be normalized followed by an additional

transformation of the ability estimates of the target group to the metric

of the base group in order to permit comparisons between the underlying

population mean and the mean of the transformed estimates of the target

group.

One of the factors playing a role in determining the metric for both

BILOG and MULTILOG is the form of the prior distribution imposed

on the item discrimination parameters. Under the two-parameter model,

BILOG default options place a lognormal prior distribution on the item

discrimination parameter. The estimation in this study provided by BILOG

was MMAPE whereas that by MULTILOG was MMLE.

As the results of this study indicate, the scales resulting from the three

different methods were not the same. Therefore, it was necessary to perform

an additional linking of the linked item parameter estimates from the separate

calibrations and of the concurrent calibration results from both BILOG and

MULTILOG to the underlying metric before RMSDs and MEDs could be

obtained. A linear transformation, such as that due to Stocking and Lord
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(1983) and the one used in this study, puts item parameter estimates onto the

metric of underlying parameters. Remaining differences between estimates

and parameters can be attributed to estimation errors.

It is well-known that estimation of the pseudo-guessing parameter in the

three-parameter model can be problematic under some circumstances (e.g.,

small samples). One solution in this regard is to fix these parameters to

some value before estimating item and ability parameters. In terms of the

recovery study, the pseudo-guessing can always be fixed to the generating

values. We have no such luxury, however, for real data. For purposes of either

linking or equating, the final estimate of the pseudo-guessing parameter used

for an item should be equal for both groups of examinees. A number of

ways exist to obtain these values. One way is to use the average values

from the initial calibrations. This may be less desirable if there are marked

differences in ability distributions between groups. In such cases, it may be

more appropriate to use estimates from the group with the lower ability,

particularly as this might afford greater information for estimating the

pseudo-guessing parameters. It is also possible to use external information

to fix all the pseudo-guessing parameters. One approach is to set the value

based on the chance probability of a correct response given the number of

alternatives. Empirical Bayes estimation may also be useful, particularly in

those cases for which sufficient information is not available at the lower end

of the ability distribution. When using BILOG, once the pseudo-guessing

estimates have been obtained from the respective target and base groups,

it is then possible to perform additional calibrations to obtain the item

parameter estimates while fixing the pseudo-guessing parameters. For such

cases, however, it is often necessary to use relatively strong priors.
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Results from the present study suggest that, in general, when the number

of common items is small, linking of separate calibrations may be preferable

to concurrent calibration. Further, when the number of common items

is large, both types of procedures appear to function similarly. When

estimation algorithms such as MMAPE or MMLE are used, care needs to

be taken in the proper specification of the population ability distributions

involved. Further studies are needed of methods for obtaining a common

metric under IRT and of the impact of prior assumptions on the resulting

metric.
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Table 1
Classical Item Statistics from Target Group and Base Group

Target Group Base Group
Item p; rJ p; r Form

1 .784 .254 A
2 .828 .221 A
3 .670 .346 A
4 .664 .454 A
5 .624 .353 A
6 .658 .299 A
7 .728 .518 A
8 .652 .306 A
9 .382 .302 A

10 .830 .428 A
11 .254 .288 .870 .473
12 .402 .200 .888 .513
13 .318 .170 .852 .356
14 .166 .222 .806 .672
15 .496 .352 .870 .353
16 .500 .282 .838 .155
17 .374 .173 .748 .476
18 .192 .428 .610 .439
19 .338 .291 .790 .514
20 .142 .150 .658 .426
21 .718 .426
22 .850 .475
23 .592 .504
24 .664 .481
25 .358 .453
26 .666 .459
27 .638 .428
28 .688 .441
29 .890 .573
30 .440 .521

= 500 N =500
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Table 2
Summary Statistics for Forms A, B, and C

Target Group Base Group
ItemForm Mean SD Alpha' Mean SD Alpha

A 6.820 2.011
B 3.182 1.765
C

.556

.389 7.930
6.504

1.811
2.250

.581

.663

1-10
11-20
21-30

aCronbach's Alpha.
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Table 3
Difference of the Marginal Log Likelihoods

Model
Target Group Base Group Number of Item

Parameters2 Log Likelihood 2 Log Likelihood
3PM
2PM

11394.0079
11409.6836

9929.8318
9946.8785

60
40

Difference 15.6757 17.0467 20
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Table 4
Item Parameter Estimates of the Two-Parameter Logistic Model

Item
Target Group Base Group

a3 bj a3 bj

1 .675 -2.087
2 .607 -2.776
3 .792 -1.018
4 1.115 -.768
5 .850 -.694
6 .704 -1.034
7 1.518 -.916
8 .705 -.991
9 .717 .739

10 1.252 -1.607
11 .762 1.574 1.176 -1.978
12 .504 .828 1.367 -1.939
13 .501 1.602 .855 -2.314
14 .614 2.814 2.074 -1.127
15 .852 .013 .786 -2.678
16 .690 -.007 .498 -3.459
17 .459 1.170 1.162 -1.185
18 1.067 1.621 1.014 -.553
19 .695 1.060 1.337 -1.308
20 .498 3.776 .970 -.820
21 1.007 -1.126
22 1.138 -1.859
23 1.157 -.432
24 1.184 -.753
25 1.042 .670
26 1.093 -.799
27 .974 -.712
28 1.011 -.957
29 1.636 -1.761
30 1.316 .215

()Target N(0,1) 9Base ti N(0,1)
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Table 5
Linked Item Parameter Estimates of the Two-Parameter Logistic Model

Item
Target Group' Base Group Linked Group

aj bj a b; a3 I);

1 1.105 -3.756 1.105 -3.756
2 .994 -4.177 .994 -4.177
3 1.297 -3.103 1.297 -3.103
4 1.827 -2.951 1.827 -2.951
5 1.392 -2.906 1.392 -2.906
6 1.153 -3.113 1.153 -3.113
7 2.487 -3.041 2.487 -3.041
8 1.156 -3.087 1.156 -3.087
9 1.174 -2.031 1.174 -2.031

10 2.051 -3.463 2.051 -3.463
11 1.249 -1.521 1.176 -1.978 1.213 -1.749
12 .826 -1.977 1.367 -1.939 1.096 -1.958
13 .821 -1.504 .855 -2.314 .838 -1.909
14 1.006 -.764 2.074 -1.127 1.540 -.946
15 1.396 -2.474 .786 -2.678 1.091 -2.576
16 1.130 -2.486 .498 -3.459 .814 -2.972
17 .752 -1.767 1.162 -1.185 .957 -1.476
18 1.747 -1.492 1.014 -.553 1.381 -1.023
19 1.139 -1.835 1.337 -1.308 1.238 -1.571
20 .816 -.177 .970 -.820 .893 -.498
21 1.007 -1.126 1.007 -1.126
22 1.138 -1.859 1.138 -1.859
23 '1.157 -.432 1.157 -.432
24 1.184 -.753 1.184 -.753
25 1.042 .670 1.042 .670
26 1.093 -.799 1.093 -.799
27 .974 -.712 .974 -.712
28 1.011 -.957 1.011 -.957
29 1.636 -1.761 1.636 -1.761
30 1.316 .215 1.316 .215

'Linking coefficients are A = .610 and B = -2.482.
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Table 6
Summary Statistics of Linked Item Parameter Estimates

Item

Linked Group
a3 b3

Mean SD Mean SD
1-10

11-20
21-30

1.464
1.106
1.156

.492

.240

.197

3.163
1.668
.751

.567

.747

.781
Total 1.242 .362 1.861 1.218
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Table 7
Item Parameter Estimates from Concurrent Calibration via BILOG

Item
Combined Group' Rescaled Group

a3 bj a b3

1 .994 -2.090 .778 -3.635
2 .918 -2.510 .719 -4.172
3 1.328 -1.310 1.041 -2.640
4 1.924 -1.153 1.507 -2.440
5 1.474 -1.110 1.155 -2.384
6 1.126 -1.345 .882 -2.685
7 2.501 -1.249 1.959 -2.562
8 1.086 -1.339 .851 -2.677
9 1.096 -.239 .859 -1.273

10 2.006 -1.672 1.571 -3.102
11 2.068 -.273 1.620 -1.316
12 1.643 -.585 1.287 -1.715
13 1.505 -.370 1.179 -1.439
14 2.418 -.029 1.894 -1.004
15 1.422 -.776 1.114 -1.959
16 1.042 -.845 .817 -2.046
17 1.175 -.297 .920 -1.347
18 1.456 .356 1.141 -.513
19 1.571 -.286 1.231 -1.333
20 1.537 .347 1.204 -.525
21 1.126 -.256 .882 -1.295
22 1.236 -.942 .969 -2.171
23 1.341 .371 1.050 -.495
24 1.278 .065 1.001 -.885
25 1.222 1.304 .957 .697
26 1.228 .038 .962 -.919
27 1.074 .104 .841 -.835
28 1.115 -.114 .873 -1.113
29 1.701 -.886 1.332 -2.099
30 1.547 .925 1.212 .213

°Combined N(0,1)
'The base group is N(.758, .7832).
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Table 8
Summary Statistics of Item Parameter Estimates from BILOG

Item

Combined Group Rescaled Group
a b3 a3 b3

Mean SD Mean SD Mean SD Mean SD
1-10

11-20
21-30

1.445
1.584
1.287

.528

.401

.198

-1.402
-.276

.061

.607

.412

.701

1.132
1.241
1.008

.413

.314

.155

-2.757
-1.320
-.890

.774

.526

.895
Total 1.439 .405 -.539 .851 1.127 .317 -1.656 1.086
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Table 9
Item Parameter Estimates from Concurrent Calibration via MULTILOG

Target Group Base Group
Item a3 a b3

1 .824 -3.470
2 .770 -3.950
3 1.010 -2.570
4 1.260 -2.430
5 1.050 -2.330
6 .876 -2.600
7 1.640 -2.570
8 .853 -2.590
9 .826 -1.150

10 1.390 -3.170
11 1.530 -1.060 1.530 -1.060
12 1.190 -1.510 1.190 -1.510
13 1.140 -1.200 1.140 -1.200
14 1.720 -.706 1.720 -.706
15 1.010 -1.790 1.010 -1.790
16 .782 -1.850 .782 -1.850
17 .845 -1.120 .845 -1.120
18 1.080 -.217 1.080 -.217
19 1.120 -1.090 1.120 -1.090
20 1.190 -.236 1.190 -.236
21 1.070 -.715
22 1.200 -1.420
23 1.250 -.058
24 1.210 -.381
25 1.170 .935
26 1.160 -.409
27 1.040 -.328
28 1.060 -.565
29 1.490 -1.480
30 1.410 .543

9Target N(-1.79, 1) °Base ti N(0,1)
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Table 10
Summary Statistics of Item Parameter Estimates from MULTILOG

Item

MULTILOG
a bi

Mean SD Mean SD
1-10

11-20
21-30

1.050
1.161
1.206

.290

.284

.147

2.683
1.078
.388

.748

.567

.755
Total 1.139 .250 1.383 1.186
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Table 11
Correlations of Item Parameter Estimates

Method Estimate
Linking

Concurrent Calibration
BILOG MULTILOG

ai bi a; bi a3 b3

Linking a3 1.000
b3 .273 1.000

BILOG a3 .763 .003 1.000
bi .264 .966 .037 1.000

MULTILOG a .632 .337 .879 .292 1.000
b3 .308 .985 .015 .988 .289 1.000
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Table 12
Item Parameters

Item aj Qj
1 1.1 -.7
2 .7 -.6
3 1.4 .1
4 .9 .9
5 1.2 .7
6 1.6 1.1
7 1.6 1.1
8 1.6 -.1
9 1.2 .5

10 2.0 1.6
11 1.0 1.6
12 1.5 1.7
13 1.0 .7
14 1.1 2.0
15 1.1 2.4
16 2.0 1.4
17 1.7 1.3
18 .5 -.6
19 .9 1.6
20 1.3 .4
21 1.1 1.2
22 1.2 1.1
23 1.3 .2
24 1.3 .2
25 .5 -.8
26 .7 .5
27 .7 .5
28 .4 -.4
29 .4 -.4
30 1.2 -.5
31 .7 -1.0
32 .7 -.2
33 .7 -.2
34 .5 .0
35 .9 .5
36 1.1 1.4
37 1.2 -.6
38 1.2 -.6
39 .6 -.5
40 1.6 .3
41 1.1 .0
42 1.5 2.0
43 1.9 1.9
44 .9 -.5
45 .7 -.5
46 1.4 1.6
47 1.4 1.6
48 1.0 1.7
49 1.2 1.1
50 1.2 1.1
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Table 13
Summary Statistics of Item Parameters of Common Items

Item
a

Mean SD Range Mean SD Range
1-5 1.060 .270 [.7, 1.4] .080 .729 [.7, .9]

1-10 1.330 .386 (.7, 2.0] .460 .766 [.7, 1.6]
1-25 1.232 .391 [.5, 2.0] .760 .884 [.8, 2.4]
1-50 1.114 .405 [.4, 2.0] .556 .923 [-1.0, 2.4]
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Table 14
Mean and Standard Deviation of Root Mean Square Differences over Fifty Replications

Target
Abilitya nb

Separate Calibrations Concurrent BILOG Concurrent MULTILOG
Discrimination Difficulty Discrimination Difficulty Discrimination Difficulty
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

N(0,1)

N(1,1)

5

10
25
50

5
10
25
50

.154

.145

.130

.108

.145

.135

.121

.096

.022

.023

.023

.018

.019

.019

.018

.012

.110

.104

.094

.073

.111

.108

.101

.074

.012

.009

.009

.008

.011

.011

.012

.010

.164

.160

.151

.115

.153

.132

.122

.092

.021

.023
.024
.019
.015
.015
.017
.013

.102

.102

.094

.073

.251

.128

.104
.066

.008

.009

.009

.009

.015

.014

.013

.008

.211

.197

.180

.144

.173

.162

.145

.102

.053

.038

.035

.025

.033

.025

.025

.015

.127

.112

.098

.075

.123

.113

.103

.066

.015

.010

.010

.009

.017

.015

.016

.009
'Base ability is N(0,1).
bNumber of Common Items
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Table 15
Mean and Standard Deviation of Mean Euclidean Distances over Fifty Replications

Target
Ability' ncb

Separate Calibrations Concurrent BILOG Concurrent MULTILOG
Mean SD Mean SD Mean SD

N(0,1)

N(1,1)

5

10
25
50

5

10
25
50

.152

.143
.129
.105
.149
.141
.129
.102

.013

.010

.010
.010
.012
.011
.010
.009

.151

.149

.139

.107
.269
.154
.130
.095

.011

.011

.012

.011

.015

.011

.009

.008

.186

.169

.152

.123

.168
.153
.137
.099

.017

.014

.013

.013

.012

.012

.011

.009
'Base ability is N(0,1).
bNumber of Common Items
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Table 16
Mean and Standard Deviation of Equating Coefficients over Fifty Replications

Target
Ability' nbc

Coefficient A Coefficient B
Mean SD Mean SD

N(0,1)

N(1,1)

5

10
25
50

5

10
25
50

.987
.994

1.000
.997

1.038
1.026
1.010
1.014

.064

.042

.035

.025

.065

.042

.040

.029

.000

.007

.005

.007
1.048
1.052
1.041
1.037

.050
.041
.032
.022
.062
.036
.028
.026

'Base ability is N(0,1).
bNumber of Common Items
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Table 17
Mean and Standard Deviation of A from MULTILOG over Fifty Replications

Target
Abilitya 71 cb

Population Parameter A
Mean SD

N(0,1)

N(1,1)

5

10
25
50

5

10

25
50

.452

.417

.400

.385
.524
.554
.566
.573

.030

.023

.020
.016
.031
.027
.025
.025

aBase ability is N(0,1).
bNumber of Common Items
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Table 18
Comparison of the Methods of Developing a Common Metric

Method
Separate Calibrations

and Linking
Concurrent Calibration

via BILOG via MULTILOGGroup Analyzed Target Base Combined CombinedComputer Program BILOG BILOG BILOG MULTILOGItem Parameter Estimation MMAPE MMAPE MMAPE MMLELatent Ability Distribution Empirical Empirical Empirical ()Target N(A,1), °BasePrior on Item Parameter log aj ^ N(0,.52) log aj N(0,.52) log aj e- N(0,.52) NoneAbility Estimation EAP EAP EAP NAPrior on Ability Empirical Empirical Empirical NAMetric harget "-' N(0,1) °Base N(0,1) dCombinedoz: N(0,1) hese ^ N(0,1)Linking Method TCC via EQUATE None NoneFinal Metric dBase ^ N(0,1) dCombined ^' N(0,1) ()Base ^ N(0,1)Linking to Underlying Parameter TCC TCC TCC
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Figure Captions

Figure 1. Test characteristic curves.

Figure 2. Line of relationship between two forms.

Figure 3. Root mean square differences results.

Figure . Mean Euclidean distance results.
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Line of Relationship Between Two Forms
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