
DOCUMENT RESUME

ED 397 267 CE 072 106

AUTHOR Hadipriono,'Fabian C.; And Others
TITLE Safety in Construction Using Virtual Reality (SAVR):

A Model for Labor Safety. Working Paper Series
WP-022.

INSTITUTION Ohio State Univ., Columbus. Center for Labor
Research.

SPONS AGENCY Ohio Board of Regents, Columbus.
PUB DATE Jun 96
CONTRACT OSURF-730237
NOTE 81p.

PUB TYPE Reports Research/Technical (143)

EDRS PRICE MF01/PC04 Plus Postage.
DESCRIPTORS Building Trades; Computer Assisted Instruction;

*Computer Graphics; *Computer Simulation;
*Construction (Process); Models; *Occupational Safety
and Health; *On the Job Training; Postsecondary
Education; Risk Management; Safety Education; Safety
Equipment; Teaching Methods; *Virtual Reality

ABSTRACT
An interactive training model called SAVR (Safety in

Construction Using Virtual Reality) was developed to train
construction students, novice engineers, and construction workers to
prevent falls from scaffolding. The model was implemented in a
graphics supercomputer, the ONYX Reality Engine2. The SAVR model
provides trainees with an immersive, interactive virtual environment
to perform "on-the-job" safety training without physically being at a
real construction site. The model includes two major training
environments: erection, which teaches trainees the correct procedure
to erect a commonly used metal bracket form scaffolding; and
inspection, which introduces several hazardous conditions in an
existing platform and requires trainees to identify them visually.
The development of SAVR involved four major tasks: knowledge
acquisition, model development, model validation, and preparation of
reports and manuals. Several common potential causes of falls from
scaffolding platforms were chosen for the SAVR model, including
component problems and connection problems. The second task, model
development, included the construction of t. three-dimensional
graphical objects of the scaffolding components, the construction of .

the texture images for SAVR's interface panels, and the construction
of the SAVR program. Construction used a developmental approach that
included six steps: (1) defining the problem, (2) designing the;
solution, (3) refining the solution, (4) considering a testing
strategy, (5) coding, testing, and debugging the program, and (6)
documenting the program. SAVR demonstrates the potential of virtual
reality technology in safety training using a safe environment.
(Contains 45 references.) (KC)

Reproductions supplied by EDRS are the best that can be made
from the original document.

Working Paper
Series

t'c CL.R
Center for Labor Research

SAFETY IN CONSTRUCTION USING
MIRTUAL REALITY (SAVR): A MODEL

FOR LABOR SAFETY

Fabian C. Hadipriono,
Richard E. Larew, and

Ashraf S. Barsoum
Department of Civil and Environmental

Engineering and Geodetic Science
The Ohio State University

WP-022
June, 1996

..T
2i,V.450k44/4"40.4;t7it'.k

U S. DEPARTMENT OF EDUCATION
ma) Si Edircaliooal Resuarch and Improvoment

EDUCATIONAL RESOURCES INFORMATION ,

CENTER (ERIC)

Veceived from the person or organization
his document has been reproduced as

originating it 61-1
0 Minor changes have been made to

improve reproduction quality.

"PERMISSION TO REPRODUCE THIS

MATERIAL HAS BEEN GRANTED BY

Points ol view or opinions stated in this
document do not necessarily represent
officol OERI position or policy

TO THE EDUCATIONAL
RESOURCES

INFORMATION CENTER (ERIC)."

BEST COPY AVAILABLE 2

ACKNOWLEDGMENT

This project was supported by grant OSURF No. 730237 from the Ohio Board of
Regents through the Center for Labor Research at The Ohio State University. Dr. Charles
J. Slanicka, the Director of the Center for Labor Research, and Dr. Warren R. VanTine,
the Chair of the University Grants Committee, have been instrumental in providing this
support. The contents of this report are solely the responsibility of the authors and do not
necessarily represent the official views of the Center for Labor Research.

The authors wish to express their gratitude to the following professionals who
evaluated and tested SAVR: Mr. David Kennedy (Assistant Area Director) Mr. Charles
Sampsel (Compliance Safety and Health Officer), and Mr. Willie Robinson (Safety
Specialist) from the United States Department of LaborOccupational Safety and Health
Administration; Mr. Norm Hughes (Director Sales Manager) of Economy Forms
Company (EFCO), who supplied the drawings of the form scaffolding used in SAVR;
Ms. Meg Conlon (Director of Safety) and Ms. Stacy McAllister (Safety Program
Coordinate) from Builders Exchange of Central Ohio; Mr. Samuel C. Wright (Adult
Learning Coordinator) from Performance Site Management in Ohio; and Mr. Bobby
Reitter (Operations Manager) from Reiner Stucco Inc. Their comments and suggestions
were essential to the improvement of the SAVR model.

Further appreciation is due to all the members of the Construction Laboratory for
Automation and System Simulation (CLASS). Their comments and assistance throughout
this project development were very valuable. James Tsay, a graduate student, assisted the
authors in developing the VR environment. Finally, the authors wish to thank Mr. Bruce
W. Rogers for his editorial work during the writing of this report.

SAVR by Hadipriono ct al. i

TABLE OF CONTENTS

ACKNOWLEDGM'ENT

TABLE OF CONTENT ii

LIST OF FIGURES

EXECUTIVP. SUMMARY vi

CHAPTER PAGE

I. INTRODUCTION

1.1 Background of the Study 1

1.2 Objectives of the Study 3

1.3 Tasks to Develop SAVR 4
1.3.1 Knowledge Acquisition 5
1.3.2 Models Development 5
1.3.3 Models Validation 5
1.3.4 Reports Preparation 5

1.4 Scope and Limitation 5
1.5 Organization of the Study 6

II. LITERATURE REVIEW

2.1 Introduction 7
2.2 Preliminary Stadies of Construction Falls 7
2.3 Form Scaffoldin 1 Platforms 8

2.3.1 Causes of Falls from Form Scaffoldhgc 9
2.4 Virtual Reality 11

2.4.1 Types of Virtual Reality 12
2.4.2 Immersive Characteristics in Virtual Reality 13
2.4.3 Applications of Virtual Reality 14

III. SAVR CHARACTERISTICS

3.1 Introduction 115

3.2 The Training Environment 16

SAVR by Hadipriono et al. ii

1-1

SAVR by Hadipriono et al. iii

CHAPTER PAGE

3.3 Fall Causes in SAVR Scenarios 17
3.3.1 Component Problems 17
3.3.2 Connection Problems 17

3.3.3 Miscellaneous Problems 18
3.4 Interactive Training Scenarios in SAVR 18

IV. HARDWARE AND SOFTWARE FOR SAVR

4.1 Hardware 19
4.2 Software 19

4.2.1 World Tool Kit Development System 20
4.2.2 3D Studio 20
4.2.3 Microsoft VisLal Basic 20
4.2.4 Utility Programs 20

V. IMPORTANT FEATURES IN WORLD TOOL KIT

5.1 Application Development Using WTK 22
5.1.1 Graphical Objects Construction 23
5.1.2 Texture Images Construction 25

5.2 The WTK Development System 27
5.2.1 The Universe Class 27
5.2.2 The Graphical Objects Class 28
5.2.3 The Sensors Class 28
5.2.4 The Viewpoints Class 28

5.3 The Major Tasks in An Application Using WTK Functions 29
5.3.1 Initializing the Simulated Environment 29
5.3.2 Specifying the Interactive Scenarios During the Simulation 30
5.3.3 Starting the Simulation Loop and Performing the Simulation 30

5.4 Types of Simulated Graphical Objects 31

5.5 The Object Task Function 32

VI. THE CONSTRUCTION OF SAVR'S PROGRAM

6.1 Development Approach 34
6.1.1 Defining the Problem 34
6.1.2 Designing the Solution 34
6.1.3 Refining the Solution 35
6.1.4 Considering A Testing Strategy 36
6.1.5 Coding, Testing, and Debugging the Program 36
6.1.6 Documenting the Program 36

6.2 Programming Considerations 37
6.2.1 The Programming Environment . 37
6.2.2 The Structure of the Program 37

5

SAVR by Hadipriono et aL iv

CHAPTER PAGE

6.2.3 The Flow of the Program 38
6.2.4 The Graphical-User Interface 39
6.2.5 The Potential for Expanding the Application 42

6.3 The Design and Implementation of SAVR's Interactive Scenarios 42
6.3.1 The Design and Implementation of the Erection Interactive Scenarios 42

6.4 Techniques for Developing a User-Friendly Graphical-User Interface 43
6.4.1 Design and implementation of SAVR's Control Panels 43

6.4.1.1 Fixing the Projection of SAVR's Control Panels 44
6.4.1.2 Activating SAVR's Interface Buttons 46

6.4.2 Design and Implementation of SAVR's Scoring System 48
6.5 Model Transformation from Onyx to PC 49

VII. EVALUATION AND TESTING

7.1 Introduction 51

7.2 SAVR Evaluation and Testing 51

7.3 Formal Evaluation 52
7.4 Results of Formal Evaluation 52

VIII. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8.1 Summary 59
8.2 Conclusions 60
8.3 Recommendations 62

APPENDICES

A REFERENCES 63

B ABBREVIATIONS 68

SAVR by Hadipriono et al. v

LIST OF FIGURES

FIGURE PAGE

2-1 Metal bracket form scaffolding modeled after EFCO 9
2-2 Components used for a fault tree model of falls from form;affolding 10
2-3 Six degrees of freedom for position and orientation tracking 13

3-1 Scaffolding components as shown in a virtual environment 16
5-1 WTK application development process 22
5-2 A 3D Studio triangular representation of faces 24
5-3 A quad representation of faces 24
5-4 A graphical model of a steel bracket component modeled after EFCO 25
5-5 The image applied to the surface of the inspection interface panel 26
5-6 The default simulation loop 31
6-1 SAVR's main modules 35
6-2 The flow of the SAVR program 39
6-3 A snap-shot from SAVR's start module 40
6-4 A snap-shot from SAVR's erection module 41
6-5 A snap-shot from SAVR's inspection module 41
6-6 Fixing the projection of SAVR's control panels 45
6-7 The values used to calculate the mouse position relative to the WTK Window 48
6-8 An image captured from the PC environment 50
6-9 An imige captured from the PC environment 50
7-1 System evaluation form 54
7-2 Detail of graphical models 56
7-3 Appearance of graphical models 56
7-4 The system's user interface 57
7-5 The system's problem/solution representation 57
7-6 The system's applicability for training 58
7-7 The system's overall performance 58

EXECUTIVE SUMMARY

In this study, an interactive training model called SAVR was developed to train
construction students, novice engineers, and construction workers to prevent falls from form
scaffolding. The model was implemented in a graphics super computer, the ONYX Reality
Engine2. The SAVR model provides trainees with an immersive, interactive virtual
environment to perform "on the job" safety training without physically being in a real
construction site. This model includes two major training environments: erection, which
teaches trainees the correct procedure to erect a commonly used metal bracket form
scaffolding; and inspection, which introduces several hazardous conditions in an existing
platform and requires trainees to visually identify them.

The development of SAVR involved four major tasks: knowledge acquisition, model
development, model validation, and preparation of reports and manuals. Several common
potential causes of falls fr,:n form scaffolding platforms were chosen for the SAVR model,
including component problems and connection problems. The second task, model
development, included the construction of the 3D graphical objects of the scaffolding
components, the construction of the texture images for SAVR's interface panels, and the
construction of the SAVR program. In constructing the SAVR program we adapted a
developmental approach that included six steps: (1) defining the problem, (2) designing the
solution, (3) refining the solution, (4) considering a testing strategy, (5) coding, testing and
debugging the program, and (6) documenting the program.

SAVR demonstrates the potential of virtual reality technology in safety training
using a safe environment. We expect that the interactive visualization in the SAVR model
will enable trainees to visually memorize the erection and inspection patterns and
consequently, apply them in real-life situations.

The interactive visualization in SAVR called for an extensive use of graphics due to
the complexity of the 3D objects presenting the steel components of the scaffolding. While
these objects were constructed using a minimal number of polygons, they still involved
complex graphics which require advanced rendering capabilities. Accordingly, SAVR was
developed on a graphics super computer to facilitate a real time interaction.

The modular design for implementing the start, help, erect and inspect environments
in tte SAVR model enables future expansion of the model to include additional types of
scaffolding platforms, helped in avoiding a significant decrease of the frame rates, and
simplified the debugging process during application development. Furthermore, the
implementation of an interface panel in each module and the use of textures for panel
functions provided a user-friendly graphical-user interface.

SAVR by Hadipriono et al. vi

SAVR by Hadipriono et al. vii

Throughout the project period (12 months), SAVR was continuously tested and
evaluated by its developers (investigators and his student researcher), particularly for its
erection and inspection modules, Enthusiastic comments by experts indicate that SAVR can
become a self-contained training tool for entry level construction laborers. Thus, the SAVR
system is expected to contribute to the avoidance of construction falls, and subsequently, to
the reduction of injuries and fatalities of construction laborers during construction
operations.

Based on our experience in SAVR development, we recommend incorporating more
scaffolding types for worker training and enhancing the rendering speed of the super
computer.

CHAPTER I

INTRODUCTION

1.1 Background of the Study

The construction industry is one of the largest industries in the United States,
making up about 10% of the country's GNP. Construction laborers have established
themselves as one of the country's largest work forces. However, the worker injury rate
in the construction industry is 54% higher than the rate for all industries, making
construction one of the most ha7Ardous occupations [TBR 1990]. Construction worker
accidents have been reported in numerous articles [NIOSH 1988, NIOSH 1989a, OBWC
1989a]. Moreover, the statistical compilations of such accidents have been presented in
many reports [BLS 1986a, BLS 1986b, NSC 1987, OBWC 1989b]. Regulations and
codes to avoid these accidents have also been published [AGC 1990, CFR-29 1988,
OBWC 1989a].

Despite the above and the Occupational Safety and Health Administration's
(OSHA's) stricter rules and higher penalties for repeat offenders, there is no indication of
a reduction in labor-related construction accidents [Hadipriono and Diaz 1988]. In 1990,
OSHA identified the most common types of fatalities involving construction workers:
falls (33%), struck-by object (22%), caught-in-between objects (18%), electric-shock
(17%), and other (10%) [ENR 1991]. The study, which was based on 3,496 construction
fatalities recorded from 1985-1989, clearly shows that falls are the paramount cause of
these fatalities. Numerous studies [BLS 1986a, 1986b, and 1988; NIOSH 1989a and
1989b; NSC 1987; TBR 1989a, 1989b, 1990] have also suggested that falls constitute the
largest percentage of construction fatalities and injuries. The US Department of Labor
reveals that falls are "one of the leading causes of traumatic occupational death,
accounting for 8% of all occupational fatalities from trauma in 1986" [BLS 1988]. The
National Institute for Safety and Health (NIOSH) National Traumatic Occupational
Fatality (NTOF) data base shows that during 1980-1985, falls represented about 10% of
all traumatic occupational deaths [NIOSH 1989a and 1989b]. In its Accident Facts, the
National Safety Council [1987] reveals that by type of accident, falls represent 12% of all
deaths in work accidents, the second highest type after motor-vehicle accidents. In the
same report, a study about work injuries by type of accident in 1983 shows that
construction falls were one of the highest types, representing 21.4% of all construction
accidents.

From an international perspective, the Health and Safety Executive (HSE) of the
United Kingdom reported that about half of the fatalities in construction operations were

SAVR by Hadipriono et al. I

19

SAVR by Hadipriono et al. 2

attributed to falls from elevations [IC 1994]. In Korea, although the statistics of falls are
not available, in a recent study of construction accidents, the Korean Industrial Safety
Institution reported that these accidents are on the increase [Ann 1993]. Further, the
institution criticized the construction industry for not adequately stressing the importance
of protecting their workers from accidents. In Japan, the Nikkan Kensetsu Kougyou
Shinbun [1992] reported that in 1990 alone about 60,000 severe construction accidents
resulted in 1,075 labor deaths, representing nearly 40% of the fatalities of all industries
combined. It is no surprise that the Japanese nicknamed their construction industry as the
"3K industry," referring to kiken (dangerous), ldtanai (dirty), and kitsui (difficult).

Among these falls, scaffolding-related accidents have been found to be the most
frequent type of falls. In 1986, a study was conducted to investigate construction
accidents of 85 major construction accidents involving concrete structures that occurred
around the world o'ver the past 23 years [Hadipriono and Wang 1986]. Many of the
results reveal the significant role of scaffolding-related accidents. Bobick et al. [1990a,
1990b] from NIOSH's Division of Safety Research discussed numerous cases of fatal
falls from scaffoldings. To illustrate the negative impact of a scaffolding accident, in
1978, the top part of the West Virginia Cooling Tower fell from a height of 166 feet,
bringing down the scaffolding and workers and causing the deaths of 51 laborers. This
accident is considered the worst construction disaster in U.S. history. Millions of dollars
were lost, contractors went bankrupt, and the project was completed months behind
schedule [Hadipriono 1985].

Several of the above studies have revealed that inadequate training--which in turn
lead to on-site ignorance and negligence--is an underlying cause of these accidents.
Walker [1981] and Shaw [1981] from the Institution of Structural Engineers in the United
Kingdom were among the first to conduct an extensive survey of the underlying causes of
hundreds of construction and structural accidents. The survey reveals a close relation
between these accidents and the inadequate training of young engineers and construction
laborers, which, in turn, led to ignorance and negligence. Young engineers, who have
never worked at a job site are often insufficiently aware of the constant danger
construction laborers face during a construction operation, and they often ignore and
neglect the safety of their workers.

Later studies [Hadipriono 1992b, Hadipriono and Larew 1991] have confirmed
such findings. Furthermore, they have indicated that, unlike other industries, construction
is unique in that its operations are site-oriented, complex, multi-faceted, and often
unprecedented. Therefore, most construction engineers and workers need to spend many
years in the field in order to assimilate an adequate knowledge about actual construction
operations. Yet, because of the development of new materials, equipment, and
construction approaches, they must have a more scientific background and achieve
sufficient training skill at an accelerated pace. Engineers and workers alike need to know
more than ever and in less time than ever--they cannot rely on years of field experience
anymore. Traditional construction training alone is insufficient to w irrant the reduction of
on-site ignorance and negligence.

ii

SAVR by Hadipriono et al. 3

Both private and public sectors have recognized the urgent need to improve labor
training. Innc vative substitutions for traditional field experience have been introduced to
improve the nation's labor training system. Despite these efforts, on-site ignorance and
negligence remain, leading to construction accidents and, subsequently, causing time
delays, cost overruns and, very often, bankruptcy of companies. Indeed, the construction
industry has the highest bankruptcy rate of all industries [Hadipriono and Larew 1985].

1.2 Objectives of the Study

. To effectively overcome the above problem, the proposers have developed SAfety
in construction using Virtual Reality (SAVR). SAVR is expected to fulfill two
complementary goals: (1) to pioneer research using a new technology that will be
available in the near future, and (2) to use revolutionary computer development to
accelerate safety training for construction laborers.

In this project, SAVR models were developed to incorporate the most common
construction accidents, construction falls, i.e., unintentional falls during construction
from higher elevations. The working platform considered here is limited to form
scaffolding, a temporary structure attached to the frame of a formwork through the use of
brackets. In structuring SAVR's algorithm, we maintained a flexible structure to allow
future expansions to include other scaffolding platforms, which will be treated separately
and become an extension of SAVR. The form scaffolding models were developed in a
workstation (UNIX-based).

Specifically, SAVR provides construction trainees with the following:

A tool for "on the job" training on simulated construction platforms, one of the most
hazardous workplaces in all industries. SAVR trains construction laborers through the
repetitive fact-finding process, virtual reality (VR) models are used for teaching
domain-dependent facts derived from the heuristic and experiential judgments of
safety experts. Here, trainees act as construction workers inspecting hazArdous
platforms, detecting each hazardous condition, and eliminating the condition, without
actually being there. The repetitive "on-the-job" learning experience is expected to
narrow the experiential gap between a novice and an expert. Hence, SAVR models
created new intuitive understanding about the dangers in construction operations.

(2) A tool to develop the ability to think creatively, solve problems accurately, and learn
analytically at an accelerated pace. SAVR's immersive nature allows trainees to
explore and establish relationships among symbolic elements in a first-person
environment. Consequently, SAVR accelerates trainees' skill to perform safe
construction operations and to obtain the practicality and feel for engineered
construction, engineering judgment, and understanding of underlying causes of
accidents. This, in turn, leads to the reduction of potential ignorance and negligence
on construction sites.

(1)

14%

SAVR by Hadipriono et al. 4

In addition, SAVR is expected to expose users to concepts and/or techniques that
were not previously possible. More specifically, the anticipated significance of SAVR
can be explained as follows:

(1) SAVR multisensory learning attributes allow users to enter a symbolic space and
immerse themselves in symbolic elements, thereby providing them with the "feeling"
of being present at a construction site. Trainees virtually "participate" in on-site safety
inspt ion through exploratory and navigational attributes. Exploration reveals
expectua and unexpected alternatives and allows trainees to identify construction and
safety-related information and information-complexes. Navigation allows trainees to
return to regions known to have desired information. With these attributes, the SAVR
learning process is anticipated to remove cognitive barriers to variables that are
continuous and dynamic in nature, and that are especially valuable in providing or
augmenting cognitive access to complex information (e.g., data/knowledge regarding
unprecedented and/or multi-faceted construction operations).

(2) SAVR provides an example of both short and long term solutions to many
construction problems. In the short term, SAVR is a safe and cost-effective means to
create a self-contained interactive training environment, and is expected to
revolutionize the concept of learning, cognition, and problem-solving with respect to
safe and practicable construction operations. In the long run, SAVR implementation
and dissemination will minimize on-site ignorance and negligence and contribute to a
safer construction environment. In turn, this will result in the saving of costs, time,
and lives.

It is expected that users (trainees) can use SAVR as means to quickly expand
learning capacity, enhance reasoning abilities, and compensate for user limitations, so as
to minimize ignorance and negligence on constuction sites.

To meet the above expectations, SAVR furnishes trainees with the experience
provided by a cognitive model of the dynamic change process, such as that offered by VR
technology [Hadipriono 1992a]. Fisher [1991] describes the VR technique as an
"innovative way to represent first-person or direct experience through the development of
multi-sensory media environments in which viewers can interact with the information
presented as they would in encountering the original scene." Despite the recent
proliferation of VR applications in numerous fields, neither R&D nor applications of VR
techniques are currently taking place in construction, not even in an effort, first, to train
laborers and young engineers to perform construction work safely and then, eventually, to
save cost, time, and human lives. Hence, the development of SAVR as a training tool is
particularly timely.

1.3 Tasks to Develop SAVR

In order to develop SAVR, four tasks were carried out: (1) knowledge acquisition,
(2) model development, (3), model validation, and (4) reports preparation.

13

SAVR by Hadipriono et aL 5

1.3.1 Task-1: Knowledge Acquisition

This task included gathering information from experts, literature, OSHA codes,
OBWC codes, major scaffolding companies, and related research. In recent research,
Hadipriono et al. [1995b] compiled and represented the knowledge required to develop an
expert system (Safety First) to investigate construction accidents. The results of th:.
research are discussed Chapter II of this report. This knowledge includes significant
causes of construction falls from form scaffolding.

1.3.2 Task-2: Model Development

Among all of the tasks involved in SAVR development, this task consumed the
greatest amount of time and effort. Two models were developed for (1) inspection and
(2) erection of the form scaffolding. The inspection model allows users to inspect the
problem associated with the laborer's safety when working on the scaffolding, while the
erection model permits users to train themselves by using the VR instrument to erect the
form scaffolding. Model development included the construction of the 3D graphical
objects and sound files which are used in the simulation, and the development of an
algorithm for SAVR to immerse trainees in an interactive simulation using the VR
instrument. Implementation of this task is described in Chapters III, IV, V, and VI.

1.3.3 Task-3: Model Validation

Testing and evaluation of SAVR by the system developers (the investigators and
their research assistants) were performed throughout the development of the models.
When the inspection model was completed, it was validated through a formal testing
process by eight construction safety professionals. The validation process and results are
presented in Chapter VII.

1.3.4 Task-4: Reports Preparation

The reports for this study consist of one progress report and this final report.

1.4 Scope and Limitations

SAVR was developed to train novice engineers and construction workers to detect
hazardous conditions that may lead to construction falls from form scaffolding platforms.
It immerses trainees into an interactive simulated environment of a construction site in
which there is a concrete wall under construction bounded by a frame of formwork. A
commonly used form scaffolding platform is attached to this frame of formwork.
Trainees can visually inspect the form scaffolding platform to find the potential causes of
falls. SAVR also provides a visual simulation to show the proper erection procedure. In
addition, sound files were developed to teach new users how to use the program and
assist them during the simulation. These sound files enhance SAVR's immersive
capability.

The potential causes of falls in SAVR were limited to those which can be visually
detected, such as a missing guardrail component from the guardrail system. Causes which
cannot be visually detected, such as erroneous design of scaffolding sections, were not

14

SAVR by Hadipriono et al. 6

included. Furthermore, only high frequency visually detectable causes were ncluded.
Other causes may become an extension of SAVR in the future.

1.5 Organization of the Study

This study consists of seven chapters and two appendices. Chapter I includes the
background of the study, objectives, tasks, benefits, and scope and limitations. Chapter II,
the literature review, discusses construction falls from form scaffolding. It also provides
background information related to virtual reality and some of its applications. In Chapter
III, fall characteristics in SAVR are explained in detail. The hardware and software which
were used to develop SAVR are described in Chapter IV. Chapter V introduces the
important features of the major software in SAVR development, World Tool Kit (WTK)
development system. Chapter VI explains the development of SAVR's program. This
includes the developmental approach, programming considerations, and techniques for
developing SAVR's graphical-user interface. The testing and evaluation of SAVR are
elaborated in Chapter VII. Finally, Chapter VIII includes the summary, conclusions, and
recommendations.

Li

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

In addition to the knowledge gathered from experts and literature, information
from previous research conducted at the Construction Laboratory for Automation and
System Simulation (CLASS) was used for developing SAVR. This previous work
(Section 2.2) involved several studies on construction falls which provided a solid
background for this study. Furthermore, our past experience in developing VR
applications (Sub-Section 2.4.3) accelerated the research process and consequently,
allowed more time for refinement and fine tuning of the final product.

2.2 Preliminary Studies of Construction Falls

In 1986, a study was conducted to investigate 85 major construction accidents of
concrete structures that occurred around the world over the past 23 years [Hadipriono and
Wang 1986]. Many of the results reveal the significant role of construction falls in
scaffolding failures. In another study sponsored by the Center for Labor Research at The
Ohio State University (CLR-OSU), Hadipriono [1992b] performed a survey of the
internal and external causes of falls. Also, the feasibility of integrating a fault tree system
and an expert system to improve labor safety was established. A modified fault tree
system was used in this study. The knowledge used to determine the causes of falls and
information leading to these causes was obtained from research literature and
interviewing experts. The study was limited to unintentional construction falls from
elevated floor openings.

The results of the study confirm an earlier prognosis of using fault tree diagrams
to best represent the structure of expert knowledge. These fault tree models describe
casual relationships and determine the minimum number of combinations of causes
(minimum cut set) of construction falls. Hence, the fault trees can be used as a "road
map" of the expert knowledge when diagnosing the cause(s) of a fall. In addition, these
fault trees were used as a guide in developing the user interface (consultation modes) in a
simple and logical way. The expert system has the capability to simulate the heuristic
reasoning process of an expert. The knowledge acquired based on experts' heuristic
judgment was incorporated into the system. Through its interface mechanism, the expert
system matched evidence with the knowledge compiled in the knowledge base in order to
obtain the solution. As a result of the study, a report was published and presented to the

SAVR by Hadipriono et al.

lb

SAVR by Hadipriono et al. 8

Ohio Board of Regents [Hadipriono 1992b] and two papers were published in the
American Society of Civil Engineering (ASCE) journal [Hadipriono 1992c, Hadipriono
1992d].

The CLR-OSU sponsored study has led to a three-year grant from the National
Institute of Safety and Health (NIOSH). In this study, a more refined expert system of
construction falls was developed [Hadipriono et al. 1995c]. The construction falls were
classified as a1is from higher elevation, falls from same elevation, and slips (without
falling). The platforms from which falls could occur were categorized into floor openings,
roofs, steel beams, top of walls, and ladders. A separate study was conducted for falls
from scaffolding. We considered the worker and the platform as components of a system.
We analyzed all possible events that could cause the fall. The general causes of falls were
classified into enabling (internal problems), triggering (external active), and loss of
supporting components (external passive). In this study, the fault tree expert system was
extended to include graphics components. At this stage, this ongoing project has resulted
in two master theses [Vargas 1993, Yoo 19941 and a paper published in the Associated
Schools of Construction (ASC) conference proceedings [Vargas and Hadipriono 1995].

2.3 Form Scaffolding Platforms

A form scaffolding is a temporary structure attached to a frame of formwork
through the use of brackets. This structure provides a working platform to inspect the
concrete form and re-bars, and to support workers during casting the concrete. The
OBWC [1979] identifies three major types of form scaffoldings: wooden and metal
brackets. In this study we only consider the metal bracket, which is commonly used in
construction sites.

The metal bracket form scaffolding (Figure 2-1) consists of steel brackets, planks,
and a guardrail system. The brackets are used to attach the platform to the main formwork
and to support the planks. The planks are the working surface that will support the
workers. The guardrail system is used to protect the worker from falling from the
platform. The guardrail system consists of vertical posts that are attached to the brackets.
These posts support three horizontal members: a handrail, an intermediate rail, and a toe
board. All components of the form scaffolding should be designed and erected to support
a minimum of four times the maximum rated load without failure [OBWC 1979].

The bracket section typicaily consists of three steel members: a ledger, diagonal,
and vertical. These members are usually welded or bolted to assemble the bracket section.
The ledger transfers the loads from the planks to the diagonal and the vertical members.
The vertical member transfers the loads from the diagonal and ledger to the main
formwork through a stringer or a waler. The maximum allowable spacing between the
brackets is 8 feet (2.4 m) measured from the center of one bracket to the center of
another. Bracket attachments to the main formwork are usually done using bolted
connections; however, welded connections are also allowed [OBWC 1979].

As for the connection between the bracket and the main formwork, the post can be
bolted or welded to the bracket section. The maximum spacing between the posts should

SAVR by Hadipriono et al. 9

not exceed 8 feet (2.4 m). The horizontal guardrail members should be bolted to the post.
The planks can be bolted to the ledgers or overlap the ledgers by a minimum of 6 inches
(152 mm) each way at the intermediate ledgers and a maximum of 12 inches (305 mm) at
the end ledger [OBWC 1979]. The planks must be scaffold grade wood planks of a
minimum cross section 2x9 inches (51x229 mm). The minimum cross sections of the
handrail, intermediate rail, and toe board are 2x4 inches (51x102 mm), 1 x6 inches
(25x152 mm), and 1x4 inches (25x102 mm) respectively. The handrail should be
installed at 42 inches (1100 mm) above the working surface with a tolerance of plus or
minus 3 inches (76 mm). The intermediate rail should be installed in the center of the
vertical distance between the handrail and the toe board. The causes of falls from form
scaffolding platforms are discussed below.

Figure 2-1. Metal bracket form scaffolding modeled after EFCO

2.3.1 Causes of Falls from Form Scaffoldings

Form scaffoldings are elevated platforms and falls from them are classified by
OBWC [1979] as falls from higher elevations. However, workers may slip or fall on the

BEST COPY AVAILABLE

SAVR by Hadipriono et al. 10

platform, which is classified as slips and falls from the same elevation. In this study, we
included only the falls from higher elevations. The causes of such falls can be numerous
and are dependent on many variables and conditions [Hadipriono et aL 1995b].

In the earlier study by Yoo [1994], fault tree models were developed to identify
the possible causes of falls from form scaffolding. This study focused on causes that are
attributed to the components of scaffolding sections; however, the causes that are related
to the worker were not analyzed. Recently, Hadipriono et al. [1995b] included the
potential causes that are attributed to the workers. In both studies, developing the fault
tree models was based on the assumption that the worker and the components of the
scaffolding platform form an integrated system (Figure 2-2) and then, the possible causes
of its failure were analyzed. The first component of the system is the worker who is
supported by the planks. The planks are supported by the brackets, which in turn, are
supported by the main formwork.

IWorker I

Brackets

Formwork

Figure 2-2. Components used for a fault tree model of falls from form scaffolding
[Hadipriono et al. 1995b]

In the above system it is assumed that the worker falls due to any failure of any
supporting component, such as the planks, brackets, or main formwork. The failure of
any component of the system was attributed to three type of causes: enabling, triggering,
support-related. In addition, the worker may fall due to problems with the safety devices,
which were considered as safety conditioning causes. The following sub-sections
generally discuss the enabling, triggering, support-related, and safety conditioning causes
based on the work done by Hadipriono et al. [1995b]. (Section 3.3 provides detailed
information on the fall causes which are considered in SAVR.)

Enabling causes include the internal conditions which may lead to a fall accident.
This type of causes can be related to each component of the system. For example, the
bracket enabling causes include inadequate design, inadequate erection, and defective

9

SAVR by Haclipriono et aL 11

bracket section. Other enabling causes can be related to the worker, such as a worker's
health problem or negative attitude towards safety rules. An enabling cause may lead to a
fall either by itself or combined with another cause(s), such as a triggering cause.

Triggering causes are external conditions which also may trigger a fall accident,
such as an external impact caused by equipment. These types of causes can also be
related to each component of the system, such as the worker, planks, and brackets. For
example, bad weather conditions such as strong winds may affect the worker's balance
and cause the worker to fall. Such an accident is usually contingent upon the failure of the
guardrail system to prevent the fall. Another example is the failure of the brackets due to
equipment impact, which would lead to failure of the planks supporting the worker, and
subsequently, causing the worker to fall. The failure of planks in this case is considered a
support-related cause.

Support-related causes are the most common causes of falls from scaffolding
platforms [Hadipriono et al. 1995b]. These causes are only related to the supporting
components in the system (planks, brackets, and formwork). The failure of any
supporting component is expected to ultimately cause the worker to fall. This failure may
be due to the enabling and/or triggering causes discussed above.

Safety conditioning causes are related to the safety devises which are required to
prevent the worker from falling. In the case of the form scaffolding platform, the mily
requirement is the guardrail system. Failure of the guardrail components is attributed to
the related enabling and/or triggering causes.

2.4 Virtual Reality

Virtual reality (VR) has been defined from different perspectives and using
different terminology. Pimental and Teixeira [1993] defined VR as "...a tool for
revealing new ways of looking at information. VR gives users an efficient and effortless
flow of data, details, and information in the most natural format possible--vision, sound
and sensations presented as an environment, part of the natural media of human
experience and thought." Another definition of VR is "...a way for humans to visualize,
manipulate, and interact with computers and extremely complex data." [Aukstakalnis and
Blamer 1992]. Simply put, VR is a sophisticated computer-human interface that employs
advanced technology such as computer graphics and data communications to generate a
simple and efficient way for interaction.

The use of VR technologies for simulation is explained by Heilig [1962], the
inventor of what is considered a pioneering VR model, the Sensorama Simulator:

"The present invention, generally, relates to simulator apparatus and, more
particularly, to apparatus to stimulate the senses of an individual to
simulate an actual experience realistically. . . . There are increasing
demands today for ways and means to teach and train individuals without
actually subjecting the individuals to the hazards of particular simulations.
. . . Accordingly, it is an object of the present invention to provide an

SAVR by Hadipriono et al. 12

apparatus to simulate a desired experience by developing sensations in a
plurality of the senses."

In his recent book Virtual Reality, Rheingold [1991] asserts that humans do best
in cognitive simulation through VR model-making. He further states that computation
and display technology converge on hyperreal simulation capability; computer
simulations will become so realistic that people will not be able to differentiate them
from non-simulated reality.

2.4.1 Types of Virtual Reality

In VR applications, humans interact with a computer-generated environment
(known as a virtual environment or virtual world) which exists in the computer memory.
The environment is presented (projected) to the user through one or more output devices
that the user interacts with through input device(s). However, not all VR environments
are interactive; the level of interaction in VR environments can be grouped into three
basic types: passive, exploratory, and interactive [Aukstakalnis and Blather 1992].

In the passive type, a user cannot change the virtual environment. An example of
passive VR is watching a 3D animation, in which 3D graphics models are animated using
a specific scenario to show a particular behavior. In such an animation, the projection of
the virtual environment depends on a predetermined position and orientation of the user
(viewer). A viewer can neither change any behavior of the graphics models nor the
projection of the environment.

The second type of VR interaction is the exploratory one, in which a user can
explore the virtual environment, but cannot change the behavior of its components
(building blocks). Exploring the virtual environmt. nt is done by allowing the users to
walk through the virtual environment, which change.: their position and orientation, and
consequently, changes the projection of the environment. For example, a user can walk
through a virtual location representing a construction site and explore the building blocks
of the scene, such as the blocks of the structural elements under construction, formwork
structures, and scaffolding platforms. However, these building blocks cannot be
manipulated.

The most advanced and powerful type is the interactive environment. In this type,
the user can explore the building blocks of the environment and manipulate them as well.
For example, in the previous case of the construction site, the user can explore the
scaffolding sections in the site, detect a defective element, and replace it. That would
involve allowing the user to walk-through the scene, choose a defective element, remove
it from the environment, and add the proper element to the environment. Generally, such
a manipulation process depends on the features of the application that are implemented
by the programmer(s) during application development. Interactive VR may also be
immersive, which adds more power to its user-machine interface.

21

SAVR by Hadipriono et al. 13

2.4.2 Immersive Characteristics in Virtual Reality

Immersive characteristics in VR were explained by Aukstakalnis and Blather
[1992]. In their daily life, humans are immersed in real 3D space, but in VR the space is
computer-generated 3D space, i.e. virtual space. VR uses special technology to simulate
the state of life-like immersion as closely as possible. In VR applications, immersion
includes three main elements: depth perception, position and orientation, and interaction.

The feeling of space depth is accomplished by using natural senses as we do in
our daily life. In VR, this sensation is gained through seeing, hearing, and feeling using
special peripherals. For example, in using special goggles such as a head-mounted display
(HMD), we only see the surrounding virtual 3D space generated by the computer; we are
not able to cee the real surrounding space. We can partially feel the 3D space and identify
the objects in that space, i.e. their color, and the position in which they are located. By
adding another peripheral such as a 3D sound system we can identify the sounds and their
locations and thus be more immersed in the virtual space. In order to explore the space,
we change our position and orientation.

The second immersion element is related to the position and orientation of a
person (viewer) immersed in the virtual environment. As in real life, people expect to see
an object closer if they move towards it, they expect the same while immersed in the
virtual environment. The computer tracks the position and orientation of the viewer and
updates the 3D space accordingly. Position and orientation tracking use a total of six
degrees of freedom; three degrees represent the movement relative to the x, y, and z
coordinates and the other three represent the rotational directions roll, pitch, and yaw.
(Figure 2-3 shows the six degrees of freedom that are used for position/orientation and
tracking.)

X, Y, and Z movements

CJI
Roll Pitch

LI LI

EIN

401,0
LI

Figure 2-3. Six degrees of freedom for position and orientation tracking
{Aukstakainis and Blather 19921

21z

SAVR by Hadipriono et al. 14

The third immersion element is interaction. In the previous two elements we could
feel the depth of the space and walk through it. In the third element we can interact with
objects in the virtual environment as we do in the real world. For example, we should be
able to pick up and move objects and feel their texture.

Immersion in VR environments allows users to interact with computers in a
simple way; they can explore many spaces and manipulate many objects without having
to memorize and write a special code for each task. However, programmers have to do
more work to develop VR applications. They have to keep up with the rapidly advancing
technology used ir the VR industry. The industry is still growing fast and many
significant applications have just been developed in the last few years covering different
research and application areas.

2.4.3 Applications of Virtual Reality

VR techniques have been used in numerous domains, such as landscape and
architecture [Goldman and Zdepski 1991], and education [McCluskey 1991, Dowding
1991], and entertainment [Glenn 1991, Pimentel and Teixeira 1993, Jacobson 19941.
Engineering applications of VR models include a project by NASA to visualize
computational fluid dynamic data in a virtual wind tunnel [Aukstakalnis 1993], research
by the U. S. Army Corps of Engineers, at Vicksburg, Mississippi, to simulate water flow
through a rip rap test channel [Aukstakalnis 1993], and a study by the Fokker aerospace
company in Europe to simulate the remote manipulator arm of the Hermes space shuttle
[Coull 1991].

In health and medicine, VR is used for training medical students about human
anatomy and for surgical procedure practice. In education, flight simulators have been
frequently used for training pilots. New pilots are trained to overcome critical weather
and other dangerous conditions. Also, military pilots can experience using new airplane
models and fighting techniques using sophisticated simulators in a safe environment and
with a training cost that is much lower than traditional methods [Aukstakalnis and Blather
1992] .

For the past three years, we have been using VR techniques in our research
projects. The first project, involving accident response, was sponsored by The Ohio State
University Center for Intelligent Transportation Research (OSU CITR). A traffic accident
often results in a simultaneous response from various units, such as highway patrol,
paramedic, and/or firefighter units, which in turn, leads to traffic congestion, or an
erroneous response may lead to a delay in rescuing the victim(s). The INtelligent TRaffic
Evaluator for Prompt Incident Diagnosis in a Virtual Reality environnymt (INTREPID-
VR) was developed furnishes users with a way to experience "being ,Iresent" at the
accident scene, and thereby avoiding inadequate accident verification and erroneous
assessment. The results of the study were presented in the Fourth International
Conference on the Application of High Performance Computers in Engineering
[Hadipriono et al. 1995a] and published in the proceedings of the second International
Conference on Visualization and Intelligent Design in Engineering and Architecture

SAVR by Hadipriono et al. 15

[Hadipriono et al. 1995b]. A demonstration of the system at the Intelligent Transportation
System Ohio Annual Meeting Survey [Barsoum et al. 1995] won a second place.

An unfunded research project concerning construction falls was conducted as a
master thesis [Soedarmono 1994]. The knowledge about construction falls from our
earlier studies was used to develop a 3D model of a four-story building under
construction. The model displays a concrete frame ofa building with several platforms,
such as floor openings, floor edges, wall openings, unfinished walls, roofs, and ladders.
These models were successfully constructed. They have been evaluated by a safety expert
from a major construction company on a limited basis with satisfactory results. Despite
the benefits of this study, scaffolding-related falls have not been thoroughly explored.
Ah;o, our experience shows that more superior hardware speed, performance, and
capacity ze generally needed to develop a VR model. The National Research Council
(NRC) Committee on the R&D on Virtual Reality [Durlach and Mayor 1995]
recommended the use of Onyx Reality Engine2 (Onyx RE2) graphics workstation for
building VR models. This has been the reason for us to acquire and use Onyx RE2 in our
ongoing project--Construction Operations using Virtual Reality (COVR). The three-year
project, partially funded by the National Science Foundation (NSF) for undergraduate
education, calls for the development of construction operation models. This machine was
also used to develop the virtual environment of SAVR.

CHAPTER III

SAVR CHARACTERISTICS

3.1 Introduction

In this chapter, the specific characteristics of SAVR training scenarios are
introduced, which include the description of the training environment, the specific causes
of falls, and the interactive training scenarios in SAVR.

3.2 The Training Environment

The training environment in SAVR is a virtual construction site for constructing
reinforced concrete walls. The concrete walls are assumed to be constructed and formed
using plate girder form, which supports the form scaffolding platform. Both the plate
girder and form scaffolding are manufactured by the Economy Forms Co. (EFCO). The
form scaffolding provides the working platform to inspect the concrete form and re-bars,
and to pour the concrete. Figure 3-1 shows the scaffolding components in a virtual
environment.

Figure 3-1. Scaffolding components as shown in a virtual environment.

J
SAVR by Hadipriono et al.

BEST COPY AVAILABLE

SAVR by Hadipriono et al. 17

The scene includes several roads and green areas to provide the feeling of depth
(3D space) to trainees while being immersed in the environment. Since these
surroundings are only used as a background, they were modeled using less deta than the
scaffolding components, which were modeled carefully to present all the required detail
for training workers, such as the position of bolts and nuts connecting the scaffolding
components. These details enable the representation of fall causes in scenarios using
SAVR.

3.3 Fall Causes in SAVR Scenarios

As mentioned in Section 2.3 fall causes can be of four major types: enabling,
triggering, support-related, and conditioning, which can be related to the worker and/or
the supporting platform including safety devices. In SAVR we emphasized the
importance of the support-related and conditioning causes through the visual
representation of several causes, such as missing and defective components. Causes that
are related to each scaffolding component were then grouped into three major problem
types: component problems, connection problems, and other miscellaneous problems.

3.3.1 Component Problems

Each of these types of causes was related to a problem with a single scaffolding
component which affects the integrity of the platform and may lead to a fall accident.
These problems include the following:

-(1) A damaged (bent) bracket.

(2) A Missing plank.

(3) A cracked plank.

(4) A bent post to support the guardrail system.

(5) A Missing top rail, mid rail, or toeboard from the guardrail system.

3.3.2 Connection Problems

Concerning connection problems, causes were related to the bolts and nuts
connecting the scaffolding components, which may be missing from the connection
between any two components. These problems consideree connections between:

(1) The formwork and the bracket.

(2) The bracket and the plank.

(3) The bracket and the post.

(4) The post and the top rail, mid rail, or the toeboard.

2

SAVR by Hadipriono et al. 18

3.33 Miscellaneous Problems

Additional causes of falls include:

(1) Excessive spacing between the brackets (exceeding the maximum allowable).

(2) Insufficient plank overlap.

(3) Overloading planks with excessive construction load.

The visual representation of the causes of falls in these problem groups was
created in interactive training modes as described below.

3.4 Interactive Training Scenarios in SAVR

The training scenarios in SAVR were based on two major tasks in using the form
scaffolding platform: erecting the platform and inspecting an existing platform. These
two tasks were implemented in SAVR using two moduks: the erection and inspection
modules. In the erection module, trainees participate in the virtual environment by
installing each of the platform components through the proper installation sequence, and
the appropriate position and connection. An interface panel including erection
instructions is provided to install users which components need to be installed. Trainees
can install each component using a special interface device--a cyberglove--while
immersed in the environment using the HMD.

In the inspection module, the scaffolding section is already erected and includes
problems explained earlier in Section 3.3. Trainees are allowed to explore the scaffolding
and identify each problem correctly. An interface panel is provided for them first to
choose the problem type, find its location, and select it using the mouse. Once both the
problem type and location are selected correctly, trainees earn a score which is also
included in the interface panel. In addition, the program shows the correction of that
problem.

An example of the inspection scenario is selecting from the interface panel the
connection problem between the bracket and formwork. Trainees have to find this
particular problem to earn their score. If they select the wrong location, their score will
not change. The inspection module is also supported by c.ound files that describe each
problem.

While both modules are supported with sound files to simplify their use, a help
module is developed separately to teach users how to interface with SAVR. The help
module mainly uses graphics and sound files, which are expected to be more effective
than traditional help functions that only use text files. The help module is also provided
with an interface panel to select among several help topics. The interface panels in all
modules can be switched between two modes: visible and invisible. While the visible
mode enables users to enter their selections, the invisible one provides a more immersive
environment which only contain form scaffolding components in the virtual site.

27

CHAPTER IV

HARDWARE AND SOFTWARE FOR SAVR

4.1 Hardware

The hardware in this project included two platforms: a PC and a graphics
workstation. The PC platform was a Pentium P5-60 with 16 MB of RAM, a keyboard, a
mouse, and a SVGA monitor. The use of a PC here coincides with the availability ofour
software that was acquired for use in a PC environment.

A graphics workstation was also used to develop SAVR's virtual environment.
The main reason for using a graphics workstation was our future plans to expand the
scope of SAVR to include more training scenarios for several scaffolding platforms,
which will require sophisticated hardware. The hardware used was an Onyx Reality
Engine 2 (Onyx RE2), a high performance graphics system from Silicon Graphics Inc.
(SGI).

The Onyx RE2 has many special features as a graphics system. Among these
features is an advanced rendering capability. The system currently has one Reality
Engine2 which can render 1.6 million triangles per second [SGI 1994]. The texture
mapping memory is 4MB, which can be extended up to 16MB. Additionally, the system
provides 128 MB of RAM, which can be expanded up to 16 GB. These are only a few of
Onyx RE2's features, it has many other advanced graphics and computational
capabilities. The Onyx RE2 configuration is much more sophisticated compared to any
other available PC configuration. In fact, Onyx RE2 was designated as one of the best
platforms for developing VR models by the National Research Council National
Research Council Committee on Virtual Reality Research and Development [Durlach and
Mayor 1995].

Two special interface peripherals are employed for users to interface with SAVR.
Both peripherals, which allow users to have immersive interaction, are connected to the
Onyx RE2 through a tracker Polhemus 3D Space FASTRAK which tracks a user position
and orientation. The first peripheral is an Eyegen3 head-mounted display (HMD) from
Virtual Research Co. and the second peripheral is a cyberglove from Virtual
Technologies Inc.

4.2 Software

In developing SAVR, the following software was used:

26 SAVR by Hadipriono et al. 19

SAVR by Hadipriono et al. 20

(1) World Tool Kit (WTK) Development System Version 110 for SGI and Version 2.02
for Windows from Sense 8 Co.,

(2) 3D Studio Version 3.00 from Autodesk Co.,

(3) Microsoft Visual Basic Version 3.0, and

(4) Utility programs including Windows Screen Printer "Snag It 2.0.07", and LVIEW for
Windows Version 3.1, Win Sock File Transfer Protocol (WS JTP), and tri_quad from
WTK Users' Group.

4.2.1 World Tool Kit Development System

World Tool Kit (WTK) was the main software for developing SAVR. Two WTK
versions were used in this study. The SGI version was used in the Onyx RE2 platform
and the Windows version was used for the PC platform. In both versions, the package
included a library of C functions [WTK 1995]. The library functions in both versions
were almost the same; however, there were some compatibility limitations, particularly in
hardware cl-zpendent functions. In both versions, the functions were grouped into different
classes providing a tool for developing interactive virtual worlds using the object-oriented
programming feature. The important features in WTK are introduced in detail in Chapter
V.

4.2.2 3D Studio

The 3D Studio package was used in the PC platform to construct the 3D graphical
objects that are used in SAVR, such as the 3D model of the scaffolding. It was also used
to create several image files which were used for texture mapping. The use of 3D Studio
to construct 3D graphical objects is described in a previous study by Barsoum [1995].
New modeling techniques in constructing SAVR models are discussed in Sub-Section
5.1.1.

4.2.3 Microsoft Visual Basic

The Visual Basic (VB) package was used in the PC platform to construct the
graphics for the interface panels in SAVR modules. Each panel, including its buttons,
was developed to give the panel a professional appearance similar to the appearance of
the Windows-based interface panels.

4.2.4 Utility Programs

One utility program used was the Windows Screm Printer "SnagIt 2.0.07". This
program was used in the PC platform to capture the images of the interface panels created
by VB. Using SnagIt, the captured images were stored in "Htmap" file format--the only
available format in this program. The LVIEW for Windows package was used to convert

29

SAVR by Hadipriono et al. 21

the image 'Irmat from "bitmap (BMP)" to "targa (TGA)" and scale the image size using
the standard size for "targa" images.

The WinSoc File Transfer Protocol was used to transfer the image and 31) data
files from the PC platform to the Onyx RE2. Afterwards, image files were converted from
the "targa" format to the "RGB" format, which was the only readable format in WTK for
the SGI version. This conversion was done using the "fromtarga" SGI utility Nogram
which converts "targa" files to "RGB" files. The 3D data files which were created using
the 3D Studio package were also converted using the utility program tri_quad, which
takes a 3D file in 3D Studio file format (3DS) format or the WTK Neutral File format
(NFF) and outputs a 3D file in the NFF format [McClarnon, 1995]. The program is a
public shareware for WTK users and was downloaded from the WTK Users' Group site
(SIG-WTK).

CHAPTER V

IMPORTANT FEATURES IN WORLD TOOL KIT

5.1 Application development Using World Tool Kit

The basic operations to develop an interactive virtual world using WTK are
shown in Figure 5-1. These operations include the construction of the 3D graphical
objects, the preparation of texture maps (images), and writing the code using the WTK C
library functions [WTK 1995]. The construction of the 3D objects can be done using
WTK or other external graphics packages, such as AutoCAD or 3D Studio. To give the
3D objects a more realistic representatioa texture maps are usually applied to their
surfaces. These maps can be photographed or video captured from real objects and
converted to 2D images, or they can be created using paint programs. In order to
complete the construction of the interactive virtual world, the WTK C library functions
are used to represent the appearance and behavior of the 3D objects and to allow users to
interact with these objects in the virtual world.

Cate images

Embedded
WTK library calls
in C source code

Run WTIZ:compile
virtual world

and test applicatior

Figure 5-1. WTK application development process [WTK 1995].

SAVR by Hadipriono et al. 22

SAVR by Hadipriono et al. 23

A WTK virtual world is presented to the users as a computergenerated 3D space
that includes all objects and is called the universe. An application can use different
universes; however, only one universe can be active at a time. Graphical objects can be
added to or removed from a universe. Several universes are used in the SAVR virtual
world and all of them contain several 3D graphical objects. The following Sub-sections
5.1.1 and 5.1.2 describe the construction of the 3D graphical objects and the preparation
of texture images that were applied to their surfaces.

5.1.1 Graphical Objects Construction

In constructing graphical objects for a virtual environment, the rendering
capability of the hardware is of a great concern. While these objects can be detailed to
look similar to real-life objects, to render objects having complex detail during the
simulation requires extensive hardware computations. In such a case, the number of
frames rendered per second (fps) may be reduced and a real-time rendering may not be
achieved. Accordingly, hardware limitation is the governing factor in deciding the degree
of complexity for the objects.

In constructing the graphical object3 for SAVR, we considered the limitations of
the platform. We maintained all the required detail for training, such as the detail of
several scaffolding components, and eliminated the unnecessary detail, such as the detail
of the surroundings. This procedure furnishes users with a real-time interaction on the
workstation platform and a clear representation of the key details for training.

According to their degree of detail, the graphical objects in SAVR were one of
two types: simple or complex objects. Simple graphical objects were those objects
constructed using few surfaces (polygons) for graphical presentation. The most simple
graphical object was constructed using a single polygon. For example, each control panel
included in SAVR was constructed using a single polygon. However, a texture image was
applied to the panel. Single polygon objects were constructed using separate WTK NFF
files. Each object was defined as a quad (quadrilateral) shape by using four vertices that
define the X, Y, and Z coordinates of each of its corners. The name of the object and its
accompanied texture were also specified inside the NFF file.

Besides single polyg3a 3.Ljects, other simple objects were constructed using a
number of polygons, such as the surrounding green areas and the wooden components of
the scaffolding. For example, the graphical object represented the plank component was
constructed using 3D Studio, which was easier to use than the WTK NFF for constructing
3D objects. The 3D Studio represents object faces using triangular polygon, which
required the use of 12 polygons to represent the plank. The tri _quad program was used to
convert the 3D Studio triangular representation (Figure 5-2) into a quad representation
(Figure 5-3), which reduced the number of polygons by 50%. The final quad
representation was stored using the NFF format, in which a texture image of wood was
applied to the plank surfaces to provide a more realistic appearance than only colored
surfaces. Generally, the construction of simple graphical objects was an easy task

SAVR by Hadipriono et al. 24

compared to the construction of the complex graphical objects, such as the steel
components of the scaffolding.

Figure 5-2. A 3D Studio triangular representation of faces

Figure 5-3. A quad representation of faces

All complex objects in SAVR were constructed using 3D Studio. The method of
constructing complex objects was presented in an earlier study by Barsoum [1995]. An
example of these objects in SAVR is the graphical object represented the bracket (Figure
5-4). This object was assembled from steel angles and each angle included the required
holes to connect the bracket with other scaffolding components, such as the formwork or
the post. Representing these details in each steel member increased the required number
of polygons to present the object. To illustrate, the number of polygons representing one
bracket was 3565. Complex objects were also converted to the NFF format using the
tri_quad program to reduce the number of their polygons by 50%. Since these objects
consist of a higher number of polygons compared with simple objects, texture images
were not applied to these polygons--only color was used to represent their material.

33

SAVR by Hadipriono et al. 25

ag21111m1,..

Figure 5-4. A graphical model of a steel bracket component modeled after EFCO

5.1.2 Texture Images Construction

The application of texture maps on several object surfaces in SAVR provides
these objects with a more realistic appearance than the application of one color. For
example, the wooden texture applied to plank surfaces represents the plank surface better
than using one color only. Images were also used to construct the user-interface panels in
SAVR which increases its user-friendliness.

Texture images were constructed using several file formats including: the bitmap,
targa, and RGB formats. While the bitmap format was used as a transition format, the
targa and RGB formats were the two final storage formats for each image included in
SAVR. This was because the WTK for PC couid only process the targa format and the
WTK for SGI could only process the RGB format, which required converting all other
image formats to the targa and RGB formats. To illustrate, the construction of the image
(Figure 5-5) applied to the surface of the control panel in the inspection module was done
in the following manner:

34

SAVR by Hadipriono et al. 26

Figure 5-5. The image applied to the surface of the inspection interface panel

(1) Using the Visual Basic (VB) package to construct the panel frame and buttons, whichalso included assigning a label to describe the function of each button.(2) Using the Windows Screen Printer, Snaglt, to capture the image of the inspectionpanel from the VB window. The captured image was stored using the bitmap format,which was the only available format for capturing an image using Snaglt.

3) BEST COPY AVAILABLE

SAVA by Hadipriono et al. 27

(3) Using the LVIEW program to convert the bitmap format to the targa format. The
dimensions of the resulting image were 233 pixels wide by 624 pixels high; however,
WTK requires that the dimensions be in multiples of four, such as 320 pixels and 480
pixels, to enable processing of an image. Accordingly, the image was re-scaled using
LVIEW to a width of 240 pixels and a height of 640 pixels. At this stage the image
was ready to be used by the WTK in the PC platform, in which all images were stored
using SAVR's image library.

(4) In order to use the image in the Onyx RE2 platform, the WinSoc FTP was used to
transfer the image to the platform. This image was then converted to the RGB format
using the SGI "fromtarga" utility. Finally, the image was also stored in SAVR's
image library in the Onyx RE2 platform.

The above procedure was followed to construct all texture images in SAVR.
Although using this procedure consumed a substantial amount of time, it provides
SAVR's interface panels with a professional appearance.

The construction of the graphical objects and texture images was an essential task
for SAVR development; however, these objects had no dynamic or interactive feature;
they were required as objects to be incorporated into the virtual world. Various dynamic
behavior and interactive characteristics were assigned to several of these objects using the
WTK classes and functions, which is introduced in Section 5.2. Further, Section 5.3
describes the major tasks performed for an application developed using WTK. Both
sections provide the necessary background information to clarify the use of WTK to
develop SAVR.

5.2 The World Tool Kit Development System

As mentioned earlier in Sub-Section 4.2.1, both WTK versions (for PC and SGI)
included hardware dependent functions which can only be used for a particular platform.
In order to have a portable code for both platforms, the hardware dependency limitations
were overruled by implementing conditional statements to check the hardware
components and, consequently, choosing the appropriate functions to execute.

In both versions, the functions were grouped into several classes using object-
oriented naming conventions, which point to these classes [WTK 1995]. For example, the
function WTobject_ delete belongs to a class of graphical objects and is used to delete an
object. All functions in this class start with the convention of WTobject_ and are
followed by the function name. WTK classes include the universe, graphical objects,
viewpoints, lights, sensors, and other classes. In the following sections, a few WTK
classes are presented.

5.2.1 The Universe Class

In WTK terminology, the simulated environment is referred to as the universe,
which is a computer-generated 3D space that contains all WTK simulated objects, such as

3

SAVR by Hadipriono et al. 28

graphical, view point, light, and sensor objects. In an application, several universes can be
simulated; however, only one universe can be simulated at a time. The universe class
contains high level functions that can interface with any simulated objects at any time
during program execution.

All of these functions in the universe start with the convention WTuniverse and
are followed by the function name. These functions are sub-grouped according to their
use, for example, there were subgroups for universe construction and destruction, loading
and saving, simulation management, viewpoints, geometrical properties, graphical
objects and polygons, intersection testing, and performance statistics [WTK 19951.
Several of the universe class functions are introduced throughout this chapter according
to their use in SAVR's development.

5.2.2 The Graphical Objects Class

To provide a computer-user interface, VR applications mainly rely on the
graphical objects. This class includes the functions that are needed to interface with the
state of a graphical object. Similar to the universe class, the functions are sub-grouped
according to their use. For example, the subgroup for object management includes the
functions that are used to load a graphical object from a data file into the universe, delete
an object from the universe, copy the object, or save an instance of the graphical object to
a new data file. Other subgroups include object rendering, position, orientation,
intersections, tasks, and hierarchies [WTK 19951.

5.2.3 The Sensors Class

Sensors are the input devices that allow users to be immersed in the simulated
environment and interact with its graphical objects. There are differeu types of sensors,
such as a mouse, a spaceball, or a head tracker. More than one sensor can be used in an
application and be attached to graphical, light, or viewpoint objects [WTK 1995]. For
example, a mouse sensor can be attached to the viewpoint to represent the viewer position
and orientation in the universe at any instance.

This class includes the function subgroups which interface with the common
sensor types. All of these functions start with the convention WTsensor_ and are followed
by the function name. Two sensor types were used in SAVR: the standard mouse and the
Polhemus FASTRAK. The standard mouse was used to manipulate the graphical objects
and to define the viewer's position and orientation. The Polhemus FASTRAK was
connected to the HMD to detect the viewer orientation, and the cyberglove to detect its
position, orientation, and pre-defined user-actions, such as specific gestures.

5.2.4 The Viewpoints Class

The viewpoint parameters define how the simulated environment is projected to
the display device [WTK 1995]. The simulated environment can be projected to several

3'i

SAVR by Hadipriono et al. 29

windows using several viewpoints; however, only one viewpoint can be used for each
projection to a window. Even though only one viewpoint can be used for any window
projection, in the case of using only one window, different projections can be generated
when switching to different viewpoints.

The WTK SGI viewpoints class facilitates generating a monoscopic or a
stereoscopic view. When using the monoscopic view, both eyes can see the same
rendered view. On the other hand, a stereoscopic view generates two different views: a
left and a right eye rendered view. While the stereo view can be more realistic than the
monoscopic view, it is not supported on PC platforms. Since we expect that in the future,
SAVR may be implemented on PCs, the monoscopic view was used.

In general, the viewpoint class includes the functions that are needed for
viewpoint management. These functions start with the convention WTviewpoint_ and are
followed by the function name.

5.3 The Major Tasks in An Application Using WTK Functions

The Major tasks in an application using WTK functions include:

(1) Initializing the simulated environment.

(2) Specifying the interactive scenarios during the simulation.

(3) Entering the simulation loop and performing the simulation.

5.3.1 Initializing the Simulated Environment

Initializing the simulated environment involves creating the universe, including its
objects, such as graphical, light, and sensor objects. However, these different object types
may be changed, deleted, or replaced during the simulation. Generally, initializing the
simulated environment includes:

(1) Initializing the display size and position.

(2) Loading the required 3D graphical objects to build the virtual world. Graphical
objects may be loaded in the forms of either stationary or dynamic objects, according
to their use in the application (stationary and dynamic objects are described in more
detail in Section 5.4).

(3) Assigning the required task to each dynamic object.

(4) Initializing the position and orientation of the viewpoint, which represents the initial
position and orientation of the viewer (user).

(5) Loading the lights data file.

(6) Creating the sensors which enable the user to interact with the environment.

After initializing the simulated environment, the interactive scenarios during the
simulation must be specified.

SAVR by Hadipriono et al. 30

5.3.2 Specifying the Interactive Scenarios During the Simulation

The interactive scenarios during the simulation are pre-defined by the developer
and depend on the nature of ate application. These scenarios are always based on defming
special events of interest (actions) and Cle accompanying required reactions to each
action. An action may be a single event or a group of events and similarly, an interaction
may require performing a single task or a group of tasks.

The implementation of these scenarios in WTK applications is done using a
function called the universe action function. This function controls the flow of the
simulation scenario and is executed at every simulation loop to detect any of the specified
actions and consequently, execute the reactions. For example, the erection module allows
users to walk through the site indifferent directions, such as moving up down, right, and
left using the cyberglove. Each direction can be selected using a unique hand gesture.
This simple scenario required pre-defining the movement in each direction and its
accompanied gesture (conditions), detecting gestures (actions), and matching both
conditions and actions to check if both of them are true.

The universe action function facilitates the, definition of any number of events to
control the simulation scenario; however, programmers must consider optimizing its
performance to minimize the execution time, otherwise every simulation loop may take a
relatively long time, which may reduce the frame rate of the application. This is explained
in more detail below.

5.3.3 Starting the Simulation Loop and Performing the Simulation

The simulation loop is considered the heart of any WTK application [WTK 1995].
Once the simulation loop is entered, the universe is brought to life, including all of its
objects. The simulation loop is entered when the function WTuniverse _go is called, which
is typically only once during the program execution. The loop is iterated
continuously until the function WTuniverse_stop is called, which is also typically called
only once. The simulation loop (Figure 5-6) performs the following tasks:

(1) Reading all sensors, which includes reading the data from all active input devices,
such as a mouse, a head tracker, or a cyberglove. The keyboard input is also read at
this stage; however, WTK handles the keyboard differently from sensor objects.

(2) Calling the universe action function and checking sensor input with the pre-defined
events in the function to execute the required actions, if any. The universe action
function usually includes at least one event that causes the calling of
WTuniverse _stop in its pre-defined events, which ends the simulation.

(3) Updating objects according to sensor inputs. The universe objects need to be updated
relative to the viewer's new position and orientation after every action. In addition,
sensors may also be used to move or rotate a particular dynamic object, which
requires updating that object.

SAVR by Hadipriono et al. 31

(4) Allowing dynamic objects to perform their tasks. For example, if an object's task is to
spin around a particular axis, this task will be performed in every simulation loop.

(5) Rendering the universe, which is the last task in every iteration and which results in
one frame.

WTuniverse_go
Enter the simulation loop

Exit the simulation loop

Read sensors

Call the Action Function

WTuniverse_stop

1.

Update objects
V

Objects perform tasks
V

Render universe

Figure 5-6. The default simulation loop [WTK 1995].

The order of tasks I to 5 is the WTK default order for the simulation loop;
however, the order of tasks 2, 3, and 4 can be changed, if required, as long as Tasks 1 and
5 remain in the same order.

Obviously, the faster the simulation loop. the higher the frame rate of an
application. While both reading the sensors ;Ind rendering the universe mainly depend on
the hardware, the total time required for one iteration can be minimized through
optimizing the universe action function, object tasks, and the number and complexity of
the graphical objects that are rendered every iteration.

In a WTK simulated environment, a graphical object can be one of two types:
stationary or dynamic. The following section describes both types.

5.4 Types of Simulated Grarhical Objects

The type of a graphical object during the simulation depends on how the object is
loaded into the universe [WTK 1995]. If an object does not have to perform any task

LY

SAVR by Hadipriono et al. 32

during the simulation, it should be loaded as a stationary object. Examples of stationary
objects in SAVR are the surroundings, such as the roads and green areas which were
considered background objects which require no changes during the simulation.
Conversely, the scaffolding objects in SAVR change during the simulation and /inform
specific tasks, such as checking intersections with other objects to detect collisions every
simulation loop. Such objects, which were required to do tasks, were loaded in the form
of dynamic objects. There were two functions for loading objects, one for each object
type.

The first function was WTuniverse load and was used to load a stationary_
graphical object into the universe using a graphics data file, such as an NFF or a 3DS. A
universe may either contain no stationary object or only one stationary object as a
background. However, if multiple stationary objects are needed, these objects can be
grouped in one graphics data file and loaded as one stationary object. The position,
orientation, and geometry of a stationary object cannot be changed during the simulation;
however, its color and texture can be changed. A stationary object cannot have a behavior
or be attached to a sensor.

The second function was WTobject_new, which was used to load a dynamic
graphical object. Many dynamic objects can be included in a universe. WTK provides
several functions to manage any dynamic object within the simulation. This includes
changing the position, orientation, color, texture, and geometry of the object.

A dynamic object can be loaded or deleted during the simulation. Creating a new
object during the simulation may affect the frame rate, particularly when loading a
complex graphical object. In such a case, the object can be created before starting the
simulation loop and be added to the universe when required, which is done by using the
functions WTobject_remove and WTobject_add. If an object will not be required in the
simulation anymore, the function WTobject_delete is used to delete that object. The
behavior of a dynamic object during the simulation can be implemented by using the
object's task function.

5.5 The Object Task Function

The object task function is a user-defined function which specifies the behaviat o;
a dynamic object during the simulation [WTK 1995]. Similar to the action function, the
object task function is called to execute the behavior of the dynamic objects every
simulation loop. Dynamic objects may perform different tasks during the simulation;
however, each object can perform only one task. A task can be assigned to a dynamic
object by passing the names of the object and its task function to the function
WTobject_settask. An object task can be updated during the simulation by re-passing the
new name of the task function to the same function. Furthermore, an object task can be
deleted when passing the object name to the function WTobject_deletetask

The task function allows developers to control the behavior of each dynamic
object during the simulation. This function can be as simple as spinning an object around
a specific axis, which can be implemented using a single instruction. On the other hand, it

4

SAVR by Hadipriono et al. 33

can be very complex and include sub-function calls inside its body. Since the task
function is executed during every simulation loop, programmers should consider not
defining tasks that may require a relatively long time to execute, which may reduce the
frame rate.

The above sections introduced background information for using WTK. Based on
this background, the development of SAVR is discussed next.

CHAPTER VI

THE CONSTRUCTION OF THE SAVR PROGRAM

6.1 Development Approach

In developing SAVR, a six-step problem solving approach following Adams et al.
[1988] was reviewed: (1) defining the problem, (2) designing the solution, (3) refming the
solution, (4) considering a testing strategy, (5) coding, testing, and debugging the
program, and (6) documenting the program. This approach provided the general
conceptual framework for problem solving using a computer which was adapted for
SAVR development. In this section, each of the six steps is described in detail.

6.1.1 Defining the Problem

From a programming perspective, the problem in developing SAVR was to
produce an application for training construction workers to erect and inspect a form
scaffolding structure in order to maintain a safe scaffolding platform. The previous
general description was divided into two sub-problems: erection and inspection. Each
sub-problem in turn was divided into several smaller sub-problems, and so on.

One of the most important issues in SAVR's problem definition was defining the
input and output scenarios to solve the problem. The input was defined as the user's
action(s) in the virtual environment while erecting or inspecting the scaffolding. For
example, to erect the bracket component, the input was defined as the user actions to
bring the component into the environment, to pick it up using the cyberglove, and to
move it to its correct position. The output in this case was the visual simulation of the
bracket movement to the new position. Thus, the solution was designed based on the
problem definition, the possible input from users, and the desired output scenarios.

6.1.2 Designing the Solution

The solution to the above problem was to design an algorithm to develop the
simulated environment, which facilitates the training process. This global picture of the
solution was divided into two main environments; one for erection and the other for
inspection. However, a third environment was also needed to provide the user with the
necessary help instructions for using the program. Moreover, a start environment was also
required to allow the user to choose among these -nvironments.

SAVR by Hadipriono et al. 34

43

SAVR by Hadipriono et al. 35

Each environment was implemented in the SAVR program using a separate
module, which included only its related scenarios. For example, the inspection module
included only the inspection scenarios in which defective and missing scaffolding
components were presented, and the user was required to detect each of them. This
modular design was essential for developing a well-structured application. After the main
modules were defined, which represents the major tasks for the application (Figure 6-1),
the solution was refined into more detailed tasks.

Eta rt Rai-n(11.ga

11111.11111P1Ema d u Fa

r\-4141111 11111°PW-
DT mart Win (Tufa

Figure 6-1. SAVR's main modules.

6.1.3 Refining the Solution

The tasks in every module of SAVR were outlined using a pseudocode solution,
which is a representation of the solution procedure for that module using simple
statements without any special programming syntax [Adams et al. 1988]. For example,
the pseudocode solution for the inspection module was primarily represented through the
following steps:

(1) Loading the scaffolding components to be inspected.

(2) Loading other graphical objects required in this module, such as the user-interface
panel and the surroundings.

(3) Positioning the viewer in the inspection environment using an initial position and
orientation.

(4) Starting the simulation loop and reading the sensors to detect the user's action(s):

If the user identifies a problem correctly, call the scoring function to increase
the score and display the solution to this problem.

SAVR by Hadipriono et al. 36

If the user chooses to exit the simulation, end the program execution.

If the user chooses the erect module, call the erect module.

If the user chooses the help module, call the help module.

If the user did not choose any of the above actions, redo Step (4) (the user
decision is still undecided, loop until a decision is made).

These Steps were further refined using the step-wise refinement technique, which calls for
dividing a sub-task into more detailed sub-tasks. For example, Step (1), which called for
loading the scaffolding components for inspection, was refmed to specify the name of
each scaffolding component to be loaded.

The step-wise refinement of the pseudocode solution enabled us to represent the
logic using simple steps, which simplified the coding of the application using the C
language. Before starting the coding stage, a very important task to consider was a testing
strategy to debug the code.

6.1.4 Considering a Testing Strategy

The visually oriented output from SAVR provides a simple tool (visualization) to
test the program performance during the simulation; however, it does not provide the
cause(s) of an error (bug) if one occurs. Accordingly, we considered a strategy to check if
the program correctly detects user inputs and appropriately responds to them. Our
strategy was to break the code down into small portions and test the performance of each
portion during the program execution. This was done by implementing print statements to
show which portion of the code is executed and the data manipulated in that portion, such
as changing the position of a graphical object or replacing it during the simulation. The
use of these print statements helped to limit errors in the small portions of the code,
which in turn simplified the debugging process.

6.1.5 Coding, Testing, and Debugging the Program

As mentioned earlier (Sub-Section 6.1.3), coding the SAVR program was
simplified by using stcp-wise refinement to represent the application algorithm. The code
was mainly constructed using the C programming functions included in the WTK library.
However, several user-defined functions were also constructed using the C standard
functions combined with WTK functions, such as the scoring function, which was
constructed using a combination of WTK and standard C functions to update the user
score while using the inspection module. During the coding stage the program was tested
frequently to detect any bug, find its location and cause, and correct the code.

6.1.6 Documenting the Program

SAVR was documented during its development to include every modification.
This practice not only simplified the final documentation, but also simplified the testing

SAVR by Hadipriono et al. 37

and debugging operations. Even though the documentation was a time-consuming task, it
would have been impractical to maintain and expand the code (over 1300 lines) without
good documentation practice.

The development steps in this section were overlapped and/or repeated several
times to optimize the application performance and to suit other programm!ng
considerations, which are described next.

6.2 Programming Considerations

Othei specific programming considerations were of major concern in SAVR's
development. These include the following: (1) the programming environment, (2) the
structure of the program, (3) the flow of the program, (4) the Graphical-User Interface
(GUI), and (5) the potential for expanding the application.

6.2.1 The Programming Environment

The C language, in which the code has to be compiled to object files, was the
programming environment used for SAVR development. These object files must be
linked to other object files from different libraries in order to produce the application
executable file. In order to generate the SAVR executable file, two libraries were
required, the standard C library and the WTK library. A WTK makefile, which was
modified for SAVR development, was used to specify the compilation and linking
instructions, and to point to the locations of the required libraries.

Since SAVR uses graphical object and texture data files during its execution, an
environment variable was set to point to the location of these files, as was instructed in
the WTK manual [WTK 1995]. Both environment variables are set to point to the
locations of the libraries, including SAVR's models and textures respectively, as follows:

WTMODELS=lhome-directory/savr-models

WTIMAGES=/home-directorylsavr-images

Other data files such as lights and sounds are stored in SAVR's main directory, /home-
directory/savr, in which no environment variable needed to be set.

6.2.2 The Structure of the Program

SAVR was structured according to the general rules for C programming and was
assembled from the WTK functions and other user-defined functions. Similar to all C
programs, SAVR has a main function, which is executed first to call other functions.
Each of these functions returns to the main function after performing its task(s). The last
call at the end of the main function is to terminate the application.

In the SAVR structure, some functions were developed to perform a specific task
for a particular module, such as the ScoringTask function, which is only called by the

4 6

SAVR by Hadipriono et al. 38

inspection module. Other functions were designed to be used with more than one module,
such as the AlignTask function, which is called by each module in SAVR to re-align the
user-interface panel relative to the viewer position. Besides these functions, the SAVR
structure included four major function groups. Each of these groups consisted of two
functions that were related to one, and only one, of the SAVR modules. The first function
in each group was designed to initialize the simulation in a particular module and the
second function was to control the simulation in that particular module. These four
groups are as follows:

(1) LoadMainScreen and MainScreenActions, which are used for the start module,

(2) HelpModule and HelpActions, which are used for the help module,

(3) ErectModule and ErectActions, which are used for the erection module, and

(4) InspectModule and InspectActions, which are used for the inspection module.

All of these functions, which were built using WTK and other C functions, are
only a sampling of SAVR's user-defined functions. Using each of the above function
groups is essential for clarifying the flow of the SAVR program, which is introduced
below.

6.2.3 Plow of the Program

The flow of the SAVR program (Figure 6-2) is mainly controlled by the main
function. This function initializes the universe and calls the LoadMainScreen function in
order to load the graphical objects for the start module environment. After loading these
objects, the control returns to main, which assigns the Start Actions function for the
simulation and subsequently calls the WTuniverse_go to enter the start module simulation
loop (the simulation loop is described in Sub-Section 5.3.3). Once the loop is entered, the
flow of the program is temporarily controlled by the StartActions function.

The StartActions contains four pre-defined conditions to allow users to select
among the erect, inspect, or help module, or to terminate the program. When any of the
previous conditions is true, the StartActions calls the function Wruniverse_stop to end
the simulation of this module after assigning a numeric value to a global val:Lable called
ChooseModule. This value, which is used by main to detect the user's choice, can ix one
of four integer values: 1, 2, 3, or 10. The first three values are associated with choosing
the help, erect, and inspect modules respectively (values from 4 to 9 are reserved values
for new modules in SAVR that may be needed for its future expansion). The fourth
defined value (10) is a special one for program termination--when this value is detected
by the main, the function WTuniverse _delete is called to terminate the program. Similar
to StartActions, all other action functions in SAVR have pre-defined conditions for
assigning different values to ChooseModule, which are also used by main in the same
manner.

In this flow design, when the user chooses any of the SAVR modules, the current
universe is deleted and a new universe is loaded, which only contains the graphical

47

SAVR by Hadipriono et al. 39

objects pertaining to the chosen module. In addition, every action function includes only
the scenarios pertaining to the chosen module and thereby, no unnecessary checks are
performed for actions related to other modules during the simulation. Even though
switching modules requires a few seconds before loading a new universe, the simulation
loop within any universe was optimized, which minimized rendering time. While
considering the flow design for SAVR, its graphical-user interface (GUI) was also taken
into account to provide a user-friendly interface.

Main Function
WTuniverse_go (Start Module) I

choose
the new

universe
and go

A special returned value to end

V
Wruniverse delete

Return a value to choose a new module, or to exit

Wruniverse stop

StartActions

A

11

V

WTuniverse stop

ErectActions

Erect Module

A
11

WTuniverse stop

InspectActions

Inspect Module

Wraniverse stop

HelpActions

I Help Module

V

Figure 6-2. The flow of the SAVR program.

6.2.4 The Graphical-User Interface

SAVR was developed for users with different levels of computer expertise, such
as novice engineers, students, or construction workers. The GUI was designed to provide
a user-friendly interface which requires a minimum amount of skill to use. For example,
users only need to click a mouse button to interact with the graphical objects in a virtual
environment. Furthermore, users can pick an object using a cyberglove, which does not
require them to type any command. The keyboard option was also included, however,
when using the HMD, the keyboard is not likely to be practical.

4 8
BEST COPY AVAILABLE

SAVR by Fladipriono et al. 40

The GUI in SAVR provides users with an interface panel for each module. Every
module panel includes a unique set of interface buttons used to perform the specific tasks
in that particular module. The implementation of these panels was done using several 2D
graphical objects, which were textured to defme the function of each button. These
control panels simplify the training process; however, they required more effort to design
the button functions and code the application. The WTK classes do not include any
special function to create interface panels or buttons.

In addition to the control panel, users can use the help module for further
explanation. The help module control panel includes several help buttons to play audio
files in order to explain how to use the program. The appearance of SAVR's GUI is
shown through snap-shots of different modules. Figure 6-3 shows a snap-shot of SAVR's
start module, including its control panel. Figure 6-4 shows the erection module display.
The control panel in this module includes several buttons to load different scaffolding
components in order to erect the scaffolding platform, such as the hand rail, bracket, and
plank components. Figure 6-5 shows a snap-shot of the inspection module and its
interface panel. It also shows a missing plank from the platform, which has to be installed
to maintain a safe platform. The programming techniques for developing a user-friendly
GUI are discussed in more detail in Section 6.4.

Figure 6-3. A snap-shot from SAVR's start module.

BEST COPY AVAILABLE
49

M.77`:11aliria/iW47^.1

emk.aus«.0"----7 I

SAVR by Hadipriono et al. 41

a

lista The
Following

Conponents to
Erect The Plagorm

P.04;`,V4TsTA'="

04AtcstV&.

to;,,,,y4t*Ter,

r1:7(74,A,,Thr7:2F.7
TopRiik4 /Ai

1*'7,1113;.:142id

E "t av 14;

Figure 6-4. A snap-shot from SAVR's erection module.

i Select and Find
; [

[

by1212:11 TtiTlf.:41

I CONI.11/1 ?RUINS

[

C.F,rifailSoiliteVCV

,-"
-777FiliWiQ7*-1*"

Figure 6-5. A snap-shot from SAVR's inspection module.

BEST COPY AVAILABLE

It=MIAMI1=1

r a

;.?

SAVR by Hadipriono et al. 42

6.2.5 The Potential for Expanding the Application

The implementation of several modules and action functions in SAVR allows the
application to be expanded to include other types of scaffoldings and training scenarios.
In addition, a new module and its new action function can be incorporated with minor
changes in the code. Furthermore, such new modules can be developed and checked
separately and be added to the application with minor effort.

6.3 The Design and Implementation of SAVR's Interactive Scenarios

The interactive scenarios can be described as sets of pre-defined actions and
interactions. The set of pre-defined actions includes the pre-defmed user inputs during the
simulation. These predefined inputs can be detected through reading the data from the
input devices and sensors at every simulation loop. The set of pre-defined interactions
includes the program response to each of the pre-defined actions. The interactive
scenarios of SAVR's modules are implemented within the action function controlling the
simulation in that particular module. For example, the interactive scenarios for the
erection module are implemented within the ErectActions function, which controls the
interactive scenarios in the erection module. The design and implementation of the
interactive scenarios in the erection module are described below.

6.3.1 The Design and Implementation of the Erection Interactive Scenarios

In order to design the interactive scenarios for erecting the form scaffolding in
SAVR's virtual environment, the erection process in the real environment was carefully
considered and accordingly, the major erection tasks were identified. These tasks are
performed in the following order:

(1) Connecting the brackets to the plate girder. The plate girder at this stage is
horizontally positioned on the ground.

(2) Connecting the posts to the brackets.

(3) Connecting the toeboards to the posts.

(4) Installing file plafiks on the brackets.

(5) Moving all of the above components to the position where the concrete wall is to be
formed. At this stage the plate girder is vertically positioned to form one side of the
concrete wall.

(6) Installing the diagonal braces to support the plate girder in the vertical position.

(7) Connecting the intermediate rail to the posts.

(8) Connecting the top rail to posts.

Since these tasks are sequentially performed in the real surroundings, the interactive
scenarios in the virtual environment must be performed in the same order. These
interactive scenarios are implemented within the ErectActions function.

5t

SAVR by Hadipriono et al. 43

At the beginning of the simulation, the Erect Actions function allows the user to
perform Task (1). It allows the user to pick one of the three brackets, which must first be
installed on the plate girder. The ErectActions function checks every simulation loop to
determine which bracket was chosen. When the user picks one of the brackets, the
ErectActions executes a sub-function called ErectBrackets, which allows the user to
install the selected bracket on the plate girder, This is done through checking the
intersection of this bracket and any of the pre-defined appropriate positions for bracket
installation. When the intersection is detected, the program frees this bracket from the
virtual hand and installs it in the appropriate position. The user can then pick up the
second and third brackets, one at a time, and install them using the same procedure. Once
all three brackets are installed, the ErectActions function disables the ErectBrackets sub-
function and allows the user to perform Task (2) in the erection procedure.

Similar to Task (1), Task (2) involves picking one of three posts and installing it
at the appropriate location. The ErectActions function executes a sub-function named
ErectPosts to facilitate the installation process using the same technique described in
Task (1). For the erection Tasks (3) through (8), the ErectActions function executes a
particular sub-function for each Task. Each of the previous Tasks allows the user to pick
and install one of the scaffolding components.

The picking and installation are done in the erection module using the cyberglove.
SAVR users are enabled to use the cyberglove and pre-define specific hand gestures to
pick scaffolding components and walk through the erection environment. These gestures
are stored using a data file named SAVRgestures. SAVR pre-defined gestures include:
Forward, Backward, Up, Down, Right, Left, Stop, and Pick gestures. During the
simulation the ErectActions function checks if the user's hand gesture matches any of the
pre-defined gestures to facilitate the interaction. For example, if the user gesture matches
the Forward pre-defined gesture, ErectActions moves the user forward through the
environment. While the use of the cyberglove in SAVR was an important feature to
develop a user-friendly graphical-user interface (GUI), other techniques were also used to
enhance SAVR's user-friendliness.

6.4 Techniques for Developing a User-Friendly Graphical-User Interface

SAVR's GUI provides users with a control panel at every module to choose
among several options. It also includes a scoring system to evaluate user performance
during their training for erection and/or inspection. The implementation of SAVR's
control panels and scoring system is discussed below in Sub-Sections 6.3.1 and 6.3.2
respectively.

6.4.1 Design and Implementation of SAVR's Control Panels

As mentioned earlier, WTK does not provide a special class for creating control
panels or buttons; however, they were created in a form of 2D graphical objects and
implemented using a user-defined task to perform their required tasks during the

5`z

SAVR by Hadipriono et al. 44

simulation. The control panels in SAVR modules were of two types. The first type was a
single 2D graphical object which used one texture map applied on its face to represent all
of the buttons and their functions. This type was used when many buttons were required
for user interface, such as in the case of the inspection module, in which 18 buttons were
represented. The employment of a single object optimizes the use of the texture memory,
since only one texture map was needed to represent all the buttons. However, this type
required more programming effort to detect each of these buttons.

The user-defined tasks in SAVR's control panels involved two major tasks. The
first was developing an algorithm for aligning a panel, including its objects, to a fixed
projection on the WTK window during the simulation. The second task was to activate
the buttons when chosen by the user.

6.4.1.1 Fixing the Projection of SAVR's Control Panels

The graphical objects in SAVR, including those of the control panel, are projected
to the screen relative to the viewer position and orientation during rendering time. Since
SAVR allows the user to walk through the simulated environment, the user position and
orientation (the universe viewpoint) is expected to change at any time during the
simulation, which in turn changes the projection of the graphical objects. In order to
overcome this projection change of the control panel and maintain the same projection
during the simulation, a WTK object hierarchies linkage and the function AlignTask were
used. The logic used for fixing the projection of SAVR's control panels is presented
using the flow chart in Figure 6-6.

In using the WTK object hierarchy, an object can be attached to another whose
movement is identical to the first [WTK 1995]. In such a case, the first object is called the
parent object, while the second is called the child object. The parent object can have more
than one child. Object hierarchies can be of different levels; however, in SAVR only one
level was used, with one or several child objects attached to one parent object.

The parent object in SAVR was a dummy object which was only used to control
the movement of its children. This dummy object was a graphical object to be loaded into
the universe at the same position and orientation of the universe viewpoint to represent
the viewer at the beginning of any simulation loop. The size of the dummy object was
designed so that the object is always invisible to the user. The child objects were the
graphical object(s) which presented a control panel at a particular module. For example,
when activating the start module, the dummy object was loaded first t the same position
and orientation of the universe viewpoint. Then, the graphical objects of the control panel
were loaded and each one was attached to the dummy object. These attachments caused
panel objects to follow the dummy object during the simulation. The following two lines
of code were used to attach the background panel and the Exit button objects to the
dummy before entering the simulation loop:

WTobject_attach(DummyObj, Panel);

WTobject_attach(DummyObj, ExitBution);

SAVR by Hadipriono et al. 45

Main function calls new module

New module loads its dummy object
into the universe using the same position and

orientation of the universe viewpoint

New module loads its control panel objects
and attaches them to the dummy object

Read sensors

Execute The Actions Function

Get the current universe viewpoint
(position and orientation)

Call the AlignTas

Align the dummy object
to the universe viewpoint.

(Panel objects follow
the dummy object)

Yes if
WTuniverse_stop();

called
No

Update objects

Render universe

1111111 .
Figure 6-6. Fixing the projection of SAVR's control panels.

Since the position and orientation of the universe viewpoint changes during the
simulation, the position and orientation of the dummy, followed by its children, must also

5 ei

SAVR by Hadipriono et al. 46

change the same values. The function AlignTask performs these changes in SAVR by
getting the values of the position and orientation of the universe viewpoint and assigning
the same values to the dummy object.

Align Task is a user-defined function which was implemented in SAVR as a
general (global) function to be called by all SAVR's action functions. AlignTask is called
every simulation loop, regardless of the active module. The function must be called after
reading the sensors and before rendering the universe, in order to update the position and
orientation of the dummy object. Once the dummy object is updated its children are also
updated, which maintains the same projection of the control panel within the active WTK
window.

6.4.1.2 Activating SAVR's Interface Buttons

In SAVR, an interface button can be selected by placing the mouse cursor on that
button and clicking the middle mouse button at the same time. The reason for using the
middle mouse button for selection, rather than the left or the right one, was that the
middle button does not cause any change in the viewer's position or orientation, and
thereby the environment projection (the scene) does not change.

In order to activate the interface buttons, the program must first detect which
button was clicked, and consequently perform the button function. In SAVR, two
methods were used for detection through accessing the data of the mouse during the
simulation loop. The first method was used when each button was presented using a
unique graphical olject, such as the start module buttons, in which four graphical objects
were used to represent the buttons. The second method was used when only one graphical
object represented all the buttons, such as the case of the inspection module where one
graphical object represented all buttons through the use of texture.

The first detection method was coded based on the following steps, which are
executed by the action function every simulation loop:

(1) Get the data from the mouse sensor and store it in a temporary location.

(2) If the middle mouse button is not presaed go back to Step 1, otherwise:

Pick the nearest graphical object, on which the mouse cursor overlays any of
its visible polygons.

Get the name of the selected object

If no object was picked, redo Steps 1 and 2

When an object is picked, its name is stored in a temporary string variable called
ButtonName (A string variable is a variable which can be used to store an array of
characters). The action function compares the value of this variable with its pre-defined
conditions, which are also implemented using different strings. For example, the
following conditional statement is used to check if the Exit button is selected by
comparing two strings

SAVR by Hadipriono et al. 47

if (stremp(ButtonName , "b-exit") == 0)

The "b-exit" string is the pre-defined string in the action function and the ButtonName is
the other string for comparison. Once a user clicks the Exit button, the value of the
variable ButtonName is updated. The updated value is the name of the object that was
clicked, "b-exit", which is read from the NFF file containing the object. Accordingly, the
conditional statement becomes true and the instructions inside its body, which represent
the function of the Exit button, are executed. The pre-defmed events of choosing any of
the interface buttons in SAVR are also defmed using string values. An important step in
using this method for activating a buttoii is to check if the name of the object in the NFF
file is identical to the pre-defined string, otherwise, the button would not be activated.

In the second detection method, we used the same procedure described above to
detect whether the user clicked the interface panel; however, since only one object
included all the buttons, an algorithm was used to identify the selected button. This
algorithm calculates the position of the mouse sensor relative to the interface panel when
the middle button is clicked. This relative position can be compared with the relative
position of each of the interface buttons to check if the mouse sensor has overlaid any of
them, which would identify the chosen button. The values used to calculate the mouse
position relative to the WTK window are shown in Figure 6-7.

The values XO and YO specify the x and y positions of the lower left corner of the
WTK. window relative to the computer display, which may be changed at any time during
the simulation if the user moves or maximizes the window. The values W and H identify
the width and height of the WTK window, which may also be changed if the window is
maximized or re-sized. The XO, YO, W, and H values can be accessed using the WTK
functions WTwindow_getposition as shown in the following statement:

WTwindow_getposition(Tuniverse_getwindows0, &xo, &yo, &W, &H);
The values Xm and Ym indicate the mouse x and y positions relative to the computer
screen, which depend on the position of the mouse cursor when clicking the interface
panel. Since all of the previous values can be changed during the simulation, they must be
updated before being used in any calculation, which is only performed when the middle
mouse button is clicked while overlaying the interface panel. The following two
equations are used to obtain the Xr and Yr values, which present the x and y positions of
the mouse cursor relative io the WTK window:

Xr = (Xm-Xo)/W
Yr = (Ym-Yo)/H

Since the Xr and Yr values are x and y ratios (dimensionless), they do not depend
on the size or location of the WTK window. Each button in the interface panel can be
identified using similar ratios to present its x and y coordinates relative to the WTK
window. This required identifying the lower left comer (Xmin, Ymin) and the upper right
corner rados (Xmax, Ymax) for each interface button to identify its range. These ratios
were obtained using the same method for calculating Xr and Yr; however they are fixed
ratios for each button and do not change during the simulation because the projection of
the panel is already fixed relative to the WTK window. During the simulation, the values

SAVR by Hadipriono et al. 48

Xr and Yr are compared with the X and Y ranges of each button to check which button is
clicked, if any.

An Interface Button

Computer Display

Xm

The Inspection
Interface Panel

XO
YO

The WTK Window for

SAVR's Inspection Module

V

Ym

Figure 6-7. The values used to calculate the mouse position relative to the WTK
Window.

6.4.2 Design and Implementation of SAVR's Scoring System

The purpose for having a scoring system in SAVR was to evaluate users' ability to
identify hazardous conditions and eliminate them from the scaffoiding platZorm. These
hazardous conditions were predetermined in the program and can be visually identified
when using SAVR's inspection module. The removal of each hazard requires the user to
click the hazard and identify its type. For example, the removal of a hazard due to the
existence of a broken guardrail requires the user to find this broken guard rail, choose it
using the mouse, and choose the Top Rail button from the Component Problems group.
This case is presented in the InspectActions function using a conditional statement to
match the selected component and the problem definition. If the conditional statement
becomes true during the simulation, which means that the user has found the hazard and
correctly classified it, the user earns a partial score.

The score ranges from 0% to 100%. It is implemented using 5% increments. The
score is displayed inside a box within the inspection interface panel using a texture map.

51

SAVR by Hadiptiono et al. 49

Since only one texture map is used for this panel, this texture is replaced with another
every time the user earns a partial score. Textures are stored in the directory using file
names that indicate their contents. For example, the texture files Panel-00 and Pane1-25
include the textures of (0%) and (25%) scores respectively.

The code for implementing the scoring system consists of two separate parts. The
first part, which is implemented in the InspectActions function, is to check the removal of
the hazardous conditions. The second part is a user-defined function, ScoreTask, which
when called by InspectActions, checks the last score and increments it to update the
user's score. In order to check the last score during the simulation, ScoreTask checks the
name of the texture placed on the interface panel. This scoring system adds another
dimension to the SAVR training system, through which trainees can improve their skill
by repeatedly running the sessions.

6.5 Model Transformation from Onyx to PC

Two WTK versions were used in this study. The SGI version was employed for the Onyx
RE2 platform and the Windows version was used for the PC platform. In both versions,
the package included a library of C functions. The library functions in both versions were
nearly identical; they were grouped into different classes providing a tool for developing
interactive virtual worlds using the object-oriented programming feature. Both WTK
versions also included hardware independent functions. An efficient way to achieve
platform portability was to plan ahead, so transformation of SAVR models should be
done relatively easily at any point in time. Hence, transformation was planned
particularly at the early stages of developing SAVR models.

The plan to transform SAVR from one platform to another relied on the use of the
hardware independent functions to develop most of the application code. The SAVR
mc 'lel was first developed in the Unix environment using the WTK SGI version. While
most functions in the SAVR structure were selected to be executable on the PC platform,
few UNIX-based functions were used to optimize the rendering process on the Onyx
RE2. To create a transformable model to the PC platform, the use of UNIX-based
hardware dependent functions were avoided in the program. This was a simple
modification for using the code in the PC platform otherwise a considerable amount of
time would have been requilcd for the transformation. Another simple modification was
made by changing the format of textured images used in Onyx RE2 from the RGB
format, to the TGA format that can be used in the PC platform. This was done using an
image utility program, namely ImageMagick. Note that other utility programs, such as
PhotoShop and Adobe could also be used for this purpose. Then, all SAVR's data files
(3D objects and textured images) were transferred to a PC using a file transfer program,
File Transfer Protocol (FTP). The source code files were recompiled on the PC resulting
in a working PC version of the model. Figures 6-8 and 6-9 show examples of images of
the form scaffolding and control panel captured from the PC environment. The PC we
used was a Pentium 60 with 16 MB RAM without a graphic accelerator. We expect the
model performance to improve considerably when used in an enhanced PC environment.

5 6

77"-Liaip."-=

SAVR by Hadipriono et al. SO

Soiled and Rad

MaiMIS

1 Miiirmillrellentiff*

,,, .,_ 7:-...
;4134:47,SVZ-W:''." "4 _401e44-..

:661

I

Figure 6-8. An image captured from the PC environment.

Sikh-a it-id-Ft:IC

trv-1011V-71

rrwIt

,

V Ar

Figure 6-9. An image captured from the PC environment.

BEST COPY AVAILABLE

1

CHAPTER VII

EVALUATION AND TESTING

7.1 Introduction

To ensure that SAVR achieves its intended purposes, we evaluated, updated, and
upgraded the system continuously throughout the developmental stages. This continuous
evaluation has made major modifications less likely, particularly at the later stages of the
development process. Furthermore, we tested and evaluated the system to detect
weaknesses, such as features that did not perform their intended function, logic of
operations, conditions that were not previously considered by the system, and additional
features required as suggested by the experts. Finally, evaluation and testing of the
system by independent experts was conducted upon completion.

7.2 SAVR Evaluation and Testing

The evaluation and testing of SAVR by the developers was performed in two
stages: 'first, during the knowledge acquisition stages, a confirmation is required to use
VR technology and to determine whether VR was the most appropriate technology to
handle the given problem as opposed to other more traditional training tools. This
confirmation came from an evolutionary process in performing research in construction
safety using simulation tools. Results of our previous studies suggest that interactive
simulation tools alone (e.g., expert system, multi-media, etc.) may not be sufficient to
impress the danger involved in construction operations on trainees. Hence, an immersive
environment that can only be achieved through the use of VR technology is a natural step
to enhance our previous system. Such a confirmation was supported by the experts during
the knowledge acquisition process performed in our previous studies as well as in this
study.

In the second stage, evaluation and testing on the four environments (erection,
inspection, start, and help) were continuously performed to ascertain the correctness and
completeness of the erection and inspection modules. In the erection module, the
sequence of erecting the form scaffolding components in a safe procedure is of particular
importance. In the inspection module, adequacy in establishing visually common
problems in form scaffolding components is essential. Also, logic in establishing and
solving such problems is checked. The start and help environments are evaluated for their
professionality and user-friendliness.

SAVR by Hadipriono et al. 51

G

SAVR by Hadipriono et al. 52

7.3 Formal Evaluation

A formal testing and evaluation was conducted for the inspection module by eight
experts from construction industry and safety institutions. The evaluation criteria as well
as the questions used are shown in Figure 7-1. The following expressions were used as
evaluation criteria for the graphical representation and system performance:

Excellent: no improvement is required
Very good: little or no improvement is required
Good: some improvement is required but no major mistakes are detected.
Fair: some problems are detected but performance is satisfactory.
Poor: major changes are required.
Very poor: redevelopment is required.

7.4 Results of Formal Evaluation

To see if our model is realistic, the graphical representation of the model was
assessed by experts on two issues, i.e., detail (dimension and size) and appearance
(closeness to real-life appearance). Figure 7-2 shows their assessment regarding the detail
of the scaffolding components. The average of the experts' assessment suggests that the
components detail is very good. The appearance of the model was judged to be slightly
better than very good, as can be seen in Figure 7-3.

SAVR's performance was evaluated based on the following issues: user interface,
problem/solution representation, applicability for training, and overall performance. The
majority of experts judged the user interface as between very good and excellent (Figure
7-4). The result seems to suggest that SAVR can be used comfortably by the end-users
without difficulty. Experts assessed the representation of the problems and solutions
designed for SAVR as a little better than good (Figure 7-5). This "rather low" assessment
(compared with other issues) from the experts is to be expected since problems and
solutions were designed for entry level construction employees. Figure 7-6 shows
experts' opinion on SAVR's applicability as a training tool which indicates an average
assessment of between good and very good. Finally the overall performance of SAVR
was judged by the experts as close to very good, as illustrated in Figure 7-7.

Besides their assessments tr.. SAVR, the experts were also asked to comment en
their interest in using SAVR, the benefits of the system, potential impact, critical needs
for safety training, and the role of academic community in addressing their needs in
improving safety (Figure 7-1). Six out of the eight experts indicate that they are "very
interested" in using SAVR for training their construction workers. One suggests that "It's
probably the 'training choice' of the future."

With regards to the potential benefits of SAVR as the experts see it, the following
is a selection of their comments:

"The SAVR would allow the individual to explore at their own level."
"An easier way to build and detect hazards without exposing any employees to any
hamrds. With the SAVR program employees can be trained in classroom anytime
throughout the work shift also it can be a refresher course."

6 1

SAVR by Hadipriono et al. 53

"The formwork & scaffolding was modeled after my company's equipment. My
company could use this in training my sales and field service people."
"Graphical image of true to life problems encountered on construction sites."

Some comments on the potential impact of SAVR follow:

"In the future I could see the systems such as the SAVR being the basis for most of
construction safety and health training. The system obviously has far reaching
implication."
"This is a good way to show mock-ups of typical problems in construction and other
industries."
"The program could serve as "competent person" training and perhaps qualify those
workers who 'pass' the tests as 'OSHA-qualified' competent persons. SAVR can
provide a great way to learn about the safety without being physically exposed to real
risks."
"When used in applications such as building construction, ditching, pipe laying, etc. I
see it as a tremendously valuable tool."

On the critical needs for safety training in the next five years, their comments
include:

"Fall protection, electrical, trenching."
"Trenching, scaffolds, general industry 'safety of workplaces,' tunneling in the
Columbus area, roofing."
"Roofing contractors and fall protection, trenches protect workers from cave-ins,
etc."
"(1) Falls, (2) electrical, (3) struck by hazards, (4) caught by hazards, (5) waste
handling and clean up (nuclear), (6) emergency response to spills, explosions, fires,
(7) violence in work place."
"You name it, we need it! Starting with fall protection and scaffolding, you're on the
right track. New kinds of trainingthrough computers etc.is the way to go... the
traditional lecture classes are not as effective for people who by nature, are "hands
on" (like people in construction)."

On the role of academic community in addressing the above critical needs, the
experts have these comments:

"Use of modern technology to aid in the training of construction workers."
"Keep up the R&D work, with assistance from "real life" construction companies
who can work with you on practical knowledge vs. theory. I'd like to see this program
expanded to include other types of scaffolds."
Educating students prior to them joining the work force will be good."
"(1) Engineering and marketing need to know the hazards of the products and systems
they will design and sell. (2) Safety of humans should be designed into all systems
this must be taught. (3) The proper assembly, use and limitation of systems should be
clearly incorporated into all system design. . . . Where possible all systems should be
standardized to reduce the need for new unexpected problems or hazards."

SAVR by Hadipriono et al. 54

SAVR EVALUATION FORM

Evaluator:

Position: No. of years of experience:

Affiliation:

Address:

Phone: Fax: E-mail:

Graphical Representation of Models

Evaluation Criteria
Issue Excellent Very Good Good Fair Poor Very Poor
Detail

-

Appearance
.

Detail: Degree of detail of scaffolding components (e.g. dimension and size).
Appearance: Appearance of scaffolding components compared to a real-life appearance.

System Performance

Evaluation Criteria
Issue Excellent Very Good Good Fair Poor Very Poor

User Interface
Problem/Solutio
n Representation

.

Applicability for
Training

.

Overall
Performance I 1

User Interface: User friendliness of system environment.
Problem/Solution Representation: Clarity and correctness of scaffolding problems and
solutions.
Applicability for Training: Usefulness and practicality of the system.

Figure 7-1. System evaluation form.

63

SAVR by Hadipriono et al. 55

(1) How interested are you in using SAVR for training construction workers or other
safety-related personnel? Please circle/underline your answer

Very interested Interested Neutral Not so interested Not at all

(2) What benefits (if any) can SAVR bring to your company/organization (e.g. teaching
new workers how to detect a hainrd in a scaffolding platform)?

(3) Could you furnish your opinion regarding the potential impact of using SAVR in the
construction industry.

(4) Based on your experience, could you list the critical needs for safety training for the
next five years.

(5) What role should we (the academic community) play in addressing these needs?

Figure 7-1. System evaluation form (continued).

64

SAVR by Hadipriono et al. 56

No. of 3
Evaluators

2

1

o

No. of 3
Evaluators

2

1

o

E VG G F P VP

Figure7-2. Detail of graphical models.

E VG G F P VP

Figure 7-3. Appearance of graphical models.

65

Criterion

Criterion

SAVR by Hadipriono et al. 57

No. of 3
Evaluators

2

No. of 5
Evaluators

4

3

2

0
E VG G

E VG G F P VP

Figure 7-4. The system's User Interface.

F P VP

Criterion

Criterion

Figure 7-5. The system's problem/solution representation.

66 BEST COPY AVAILABLE

SAVR by Hadipriono et al. 58

No. of 4
Evaluators

3

2

1

o
E VG G F P VP Criterion

Figure 7-6. The system's applicability for training.

No. of 4
Evaluators

3

2

1

o
E VG G F P VP

Figure 7-7. The system's Overall Performance.

6V

Criterion

BEST COPY AVAILABLE

CHAPTER VIII

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8.1 Summary

Construction falls result in numerous injuries and fatalities which usually lead to
major losses in terms of lives, money, and time. Construction falls can be grouped into
several types, such as falls from floor edges, falls from floor openings, and falls from
scaffolding. In order to prevent falls, the development of an effective training tool to
maintain a safe working environment is essential.

In this study, an interactive training model called SAVR was developed to train
construction students, novice engineers, and construction workers to prevent falls from
form scaffolding. The model was implemented in a graphics super computer, the ONYX
Reality Engine2. The SAVR model provides trainees with an immersive virtual
enviromnent to perform "on the job" safety training without physically being in a real
construction site. They can use a head-mounted display (HMD) and a cyberglove or a
mouse to interact with the computer-generated environment.

The SAVR model includes two major training environments: erection and
inspection. The erection environment is used to teach trainees the correct procedure to
erect a commonly used metal bracket form scaffolding. In this environment, while
trainees are immersed using the HMD, they use the cyberglove to pick and move the
scaffolding components to erect the platform. An interface panel is used in this
environment to provide users with erection instructions through a step-by-step procedure.
After the users learn the correct erection procedure, the inspection environment
introduces several hazardous conditions in an existing platform and requires trainees to
visually identify them. Trainees are immersed in this environment using the HMD.
Trainees have to detect each hazard using a mouse and then define its type by selecting a
button from an interface panel, which includes descriptions of all existing hazards When
a hazArd is correctly identified, trainees earn a score which is displayed on the interface
panel.

Besides the erection and inspection environments, the SAVR model provides two
supplementary environments: start and help. The start environment enables users to select
among the help, erection, and inspection environments. The help environment provides
users with the necessary information on how to use the program. Each environment in
SAVR was implemented using a unique module and supported by several sound files.

The development of SAVR encompassed four major tasks: knowledge
acquisition, model development, model validation, and repor.:: preparation. The

SAVR by Hadipriono et al. 59

SAVR by Hadipriono et al. 60

knowledge was acquired from literature, previous research, experts, and safety codes.
Based on the knowledge acquisition, several common potential causes of falls from form
scaffolding platforms were chosen for the SAVR model, focusing on the causes which
could be visually presented. These causes included three major gmups of scaffolding
problems: component problems, connection problems, and other miscellaneous problems.
Each group included several problems related to one or more scaffolding components.

The second task, model development, included the construction of the 3D
graphical objects of the scaffolding components, the construction of the texture images
for SAVR's interface panels, and the construction of the SAVR program. In constructing
the 3D objects for the scaffolding components, two major factors were considered: an
object's degree of complexity, and the representation of its faces. While maintaining a
realistic appearance, the graphical objects in SAVR were constructed using a minimal
number of polygons to reduce their complexity. Object faces can be presented using
triangular or quadrilateral polygons. In SAVR, object faces were presented using
quadrilateral polygons, which reduced the total number of polygons in each object by
50%.

In constructing the SAVR program we adapted a developmental approach that
included six steps: (1) defining the problem, (2) designing the solution, (3) refining the
solution, (4) considering a testing strategy, (5) coding, testing and debugging the
program, and (6) documenting the program. In using this approach, our programming
considerations involved the programming environment, the structure of the program, the
flow of the program, the graphical user interface, and the expansion of the application.
During every developmental stage, we gave high priority to developing a user-friendly
graphical-user interface.

8.2 Conclusions

This study has resulted in the SAVR prototype, an interactive and immersive
training tool which utilizes virtual reality technology for safety training. SAVR
demonstrates the potential of virtual reality technology in safety training. To illustrate,
SAVR can be used to teach trainees hcw to properly erect a metal bracket of a form
scaffolding. In addition, SAVR can test their ability to identify many potential fall causes
related to this scaffolding type. Furthermore, SAVR provides a safe environment for
worker training.

We expect that the interactive visualization in the SAVR model will enable
trainees to visually memorize the erection and inspection patterns and consequently,
apply them in real-life situations. Even though SAVR demonstrates potential fall causes
for a particular scaffolding platform, most of these potential fall causes are applicable to
other types of scaffolding. For example, the component problems presented in SAVR for
the guardrail system, which involve missing and defective components, are typical
problems of guardrail system in other types of scaffolding platforms. When such typical
problems are found in other scaffolding platforms., trainees can identify and Aminate
them.

beJ

SAVR by Hadipriono et al. 61

The interactive visualization in SAVR called for an extensive use of graphics due
to the complexity of the 3D objects presenting the steel components of the scaffolding.
While these objects were constructed using a minimal number of polygons, they still
involved complex graphics which require advanced rendering capabilities. Accordingly,
SAVR was developed on a graphics super computer to facilitate a real time interaction.
This real-time interaction is achieved in most cases during the simulation, where the
frame rates exceed 25 frames per second and can even reach 58 frames per second.
However, in some cases the frame rates are less than 25 frames per second. This is due to
the complexity of the graphics in some particular scenes which could not be further
simplified without ignoring necessary geometrical detail.

The modular design for implementing the start, help, erect and inspect
environments in the SAVR model enables future expansion of the model to include
additional types of scaffolding platforms. In addition, this modular design helped in
avoiding a significant decrease of the frame rates, which would occur if all environments
(help, start, erection, and inspection) were included in one module. Moreover, this
modular design simplified the debugging process during application development.

The implementation of an interface panel in each module and the use of textures
for panel functions provided a user-friendly graphical-user interface. The use of the head-
mounted display and the cyberglove for user interaction with the SAVR program

, enhanced the program interactiveness and immersiveness. While using the cyberglove
simplifies the training process, its implementation was time consuming. This is due to the
complexity of coding the interface scenarios, which required the program to detect user
gestures and consequently respond to each one during the simulation.

In developing SAVR, we have been successfully translated the model from Onyx
RE2 to a PC platform. The PC we used was a Pentium 60 with 16 MB RAM. While it is
still acceptable, understandably, the performance of the model cannot be compared with
that when it were run on the Onyx RE2. The performance of the model is expected to
improve considerably if we used the model in an enhanced PC environment (e.g., with
Pentium Pro 200, 32 MB RAM, and a powerful graphics accelerator). Note also that the
capacity of PCs doubles every 18 months, hence, in not too distant future a much
enhanced PC will narrow the VR application gap between Windows and Unix-based
operating s:,,Ftnills.

Throughout the project period (12 months), SAVR was continuously tested and
evaluated by its developers (investigators and his student researcher), particularly for its
erection and inspection modules. After its completion, SAVR's inspection module was
formally tested by eight experts from various companies and safety organizations. The
experts' assessment of model detail and appearance suggests that, in their eyes, the model
seems to be sufficiently realistic. Further, the mddel's overall performance as a training
tool was judged clme to very good. Based on the results of the experts' evaluation we
conclude that this study has reached its objectives.

Comments from experts further indicate that when SAVR is implemented it can
become a self-contained training tool for entry level construction laborers. The usefulness

79

SAVR by Hadipriono et al. 62

of SAVR as a training tool can be extended to include construction students. In the near
future, the system is expected to contribute to the avoidance of construction falls, and
subsequently, to the reduction of injuries and fatalities of construction laborers during
construction operations.

8.3 Recommendations

Based on our experience in SAVR development, we recommend incorporating
other types of ha7Ardous construction platforms (roofs, floor holes/openings, floor edges,
wall openings, tops of walls, ladders, steel beams, and other types of scaffoldings) for
worker training. This expansion is currently feasible due to the modular structure of the
SAVR program. Each type of ha7Ardous platforms can be incorporated into the SAVR
structure using a separate module. Also, other types of scaffolding, such as tube and
coupler, suspended, wood pole, tubular welded, and mobile scaffoldings are potential
extension modules of SAVR. The knowledge base required to incorporate these types has
already been acquired through the research done by Hadipriono et al. [1995c].

7 .1_

APPENDIX A

REFERENCES

Adams, J. M., Philippe, J. G., and Barry L. K. (1988). "An Introduction to Computer
Science with Modula 2.," D. C. Heath and Company.

AGC (1990). "AGC Guide for A Basic Company Safety Program." Published by The
Associated General Contractors of America, Wathington, D.C.

Ann, H.S. (1993). "Safety Consciousness of Construction Manager," A Report presented
to the Korean Industrial Safety Institution, Inchon, Korea.

Aukstakalnis, S. and Blather, D. [1992]. "Silicon Mirage: The Art and Science of Virtual
Reality." edited by Roth, S.F., Peachpit Press, Inc., Berkeley, California.

Aukstakalnis, S. (1993). "Go with the Flow." Computer-Aided Design, CADalyst,
August, p. 56.

Barsoum, A. S. (1995) "The Construction of the 3D Graphical Models for the Intelligent
Traffic Evaluator for Prompt Incident diagnoses in a virtual reality environment." A
Thesis Presented in Partial Fulfillment of the Requirements for the Degree on Master of
Science in the Graduate School of The Ohio State University.

BLS (1986a). "Injuries to Construction Laborers." Bulletin 2252. Prepared by US
Department of Labor -- Bureau of Labor Statistics, Washington D.C. 20402.

BLS (1986b). "Injuries Resulting From Falls From Elevations." Bulletin 2195. Prepared
by US Department of Labor -- Bureau of Labor Statistics, Washington D.C. 20402.

BLS (1988). 'Occupational Injuries and Illnesses in the United States by Industry,"
Bureau of Labor Statistics, Bulletin 2195, Prepared by US Department of Labor Bureau
of Labor Statistics, Washington D.C. 20402.

Bobick, T.G., Schnitzer, P.G., and Stanevich, R.L (1990a). "Investigation of Selected
Occupational Fatalities Caused by Falls from Elevations," Advances in Industrial
Ergonomics and Safety II, Edited by Biman Das, Taylor and Francis, pp. 527-534.

Bobick, T.G., Bell, C.A., Stanevich, R.L., Smith, D.L., and Stout, N.A. (1990b).
"Analysis of Selected Scaffold-Related Fatal Falls," Proc. Human Factors Society 34th
Annual Meeting, pp. 1072-1076.

CFR-29 (1988). Code of Federal Regulations 29, Labor, Part 1926, published by the
Office of the Federal Register National Archives and Records Administration.

SAVR by Hadipriono et al. 63

SAVR by Hadipriono et al. 64

Coull, T. B. (1991). "Texture-based VR on a Desktop Computer Using World Tool Kit."
Proceedings of VR. The 2nd Annual Conference on Virtual Reality, Artificial Reality, and
Cyberspace. Edited by Helsel, S. K., Meckler Publisher, London, pp. 37-42.

Dowding, T. J. (1991). "A Self-Contained Interactive Motorskill Trainer." In Virtual
Reality Theory, Practice, and Promise. Edited by Helsel, S. K. and Roth, J. P. Meckler
Publisher, London, pp. 44-50.

ENR (1991). "Construction Injuries Climb." Engineering News-Record, December 16, p.
23.

Fisher, S. S. (1991). "Virtual Environments: Personal Simulation and Telepresence." In
Virtual Reality Theory, Practice, and Promise, Edited by Helsel, S. K. and Roth, J. P.
Meckler Publisher, London, pp. 101-110.

Glen, S. (1991). "Real Fun, Virtually." Proceedings of VR, The 2nd Annual Conference
on Virtual Reality, Artificial Reality, and Cyberspace. Ed. by Helsel, S. K., Meckler
Publisher, London, pp. 62-69.

Goldman, G. and Zdepski, M. S. (1991). "Reality and Virtual Reality." Publisher:
Association for Computer Aided Design in Architecture (ACADIA), School of
Architecture, New Jersey Institute of Technology, University Heights, Newark, New
Jersey.

Hadipriono, F. C. (1985). "Analysis of Events in Recr;nt Structural Failures." ASCE--
Journal of Structural Engineering, Vol. 111, No. 7, pp. 1468-1481.

Hadipriono, F.C. (1992a). "Construction Visualization and Automation." A Construction
Forecast, Builders Exchange.

Hadipriono, F.C. (1992b). "FTES-FALL: A Fault Tree Expert System for Labor Safety
During Construction," Center for Labor Research Second Annual Symposium, The Ohio
State University, Columbus, Ohio, p. 1 .

Hadipriono, F.C. (1992c). "A Fault Tree Expert System Model for Construction Safety
Part One: Fault Tree Models," ASCE Journal of Performance of Constructed Facilities,
Vol. 6, No. 4, pp. 246-260.

Hadipriono, F.C. (1992d). "A Fault Tree Expert System Model for Construction Safety
Part Two: Fault Tree Models," ASCE Journal of Performance of Constructed Facilities,
Vol. 6, No. 4, pp. 261-274.

Hadipriono, F.C. and Diaz C.F. (1988). "Trends in Recent Construction and Structural
Failures," Journal of Forensic Engineering, Vol. 1., No. 4, pp. 227-232.

Hadipriono, F. C. and Larew, R. E. (1985). "Simulation Laboratory Designed to Prevent
Construction-related Failures," Engineering Education, Vol. 76, No. 3, pp. 168-170.

Hadipriono, F. C. and Larew, R. E. (1991). "Construction Research and Practice," Annual
Conference for Engineers cmd Architects, The Ohio State University, April, 1991.

SAVR by Hadipriono et al. 65

Hadipriono, F.C. and Wang, H.K. (1986). "Analysis of Causes of Falsework Failures in
Concrete Structures," ASCE--Journal of Construction Engineering and Management,
Vol. 112, No. 1, pp. 112-121.

Hadipriono, F.C., Barsoum, A.S., Tsay, T.C. (1995a) "3-D Schematic Visualization for
Intelligent Traffic Evaluator for Prompt Incident Diagnosis in A Virtual Reality
Environment," Invited Presentation in the fourth Conference on the Application of High
Performance Computers in Engineering, Milan, Italy, June 1995.

Hadipriono, F.C., Barsoum, A.S., Tsay, T.C., Nemeth, Z.A., and Larew, R.E. (1995b)
"Visualization and Graphics in INTREPID-VR," Proceedings of the second International
Conference on Visualization and Intelligent Design in Engineering and Architecture
(VIDEA 95), La Coruna, Spain, pp. 107-113.

Hadipriono, F. C., Vargas, C. F., and Yoo, W. (1995b). "Safety First: A Fault Tree Expert
System for Construction Falls, Vol. 1: ICnowledge Acquisition," A report submitted to the
National Institute for Safety and Health (NIOSH), Centers for Disease Control and
Prevention, Atlanta, GA.

Heilig, M. (1962). "Sensorama Simulator." US Patent No. 3,050,870, August 28.

IC (1994). "Safety Record," International Construction Vol. 33, No. 5, p. 24.

Jacobson, L. (1994). "Garage Virtual Reality, The Affordable Way to Explore Virtual
World," First Edition, Sams Publishing, A Division of Prentice Hall Publishing,
Indianapolis, IN 46290.

McClarnon, D. (1995). "tri-quad.txt." A text file downloaded from the WTK Users'
Group (SIG-WTK).

McCluskey, J. (1991). "Educational Applications of Virtual Reality: Medium or Myth?"
Proceedings of VR, The 2nd Annual Conference on VR, Arttlicial Reality, and
Cyberspace. Edited by S. K. Helsel, San Francisco, Meckler Publisher, London, pp. 148-
153.

Nikkan Kensetsu Kougyou Shinbun (1992). "Appeals From Construction Sites in Charge
of 70 Trillion Yen," a newspaper article in Japanese, March 20.

NIOSH (1988). "Fatal accident circumstances and epidemiology (FACE): Sheet metal
helper falls to his death through a skylight opening in South Carolina." FACE Report 88-
18, Published by US Department of Health and Human Services, Public Health Service,
Centers for Disease Control, National Institute for Occupational Safety and Health,
Division of Safety Research, Morgantown, WV.

NIOSH (1989a). "National Traumatic Occupational Fatality (NTOF) Data Bast',"
Cincinnati, Ohio: U.S. Department of Health and Human Services, Public Health Service,
Centers for Disease Control, National Institute for Occupational Safety and Health,
Division of Safety Research, Morgantown, WV.

NIOSH (1989b). "NIOSH Alert: Request for Assistance in Preventing Worker Deaths
and Itijuries from Falls Trough Skylights and Roof Openings." Published by US
Department of Health and Human Services, Public Health Service, Centers for Disease

7 4

SAVR by Hadipriono et M. 66

Control, National Institute for Occupational Safety and Health, Division of Safety
Research, Morgantown, WV.

NSC (1987). "Accident Facts." Published by National Safety Council, Chicago, Illinois.

OBWC (1979). "Specific Safety Requirements of the Ohio Bureau of Workers'
Compensation relating to Construction," Ohio Bureau of Workers' Compensation,
Division of Safety and Hygiene, Columbus, Ohio.

OBWC (1989a). "Specific Safety Requirements of the Ohio Bureau of Worker's
Compensation relating to Construction." Published by the Ohio Bureau of Worker's
Compensation, Division of Safety and Hygiene, Columbus, Ohio.

OBWC (1989b). "Ohio Falls and Slips (Type 4, 5, 10)," Construction Industry and
Occupation (Public and Private Sector) 1989 Injury/Illness Statistics. Prepared by The
Occupational Health and Safety Research Section, Ohio Bureau of Worker's
Compensation, Division of Sdety and Hygiene, Columbus, Ohio.

Pimentel, K. and Teixeira, K. (1993). "Virtual Reality, Through the New Looking Glass,"
First Edition, Windcrest Book Publishing, A Division of McGraw-Hill Inc., New York,
NY.

Rheingold, H. (1991). Virtual Reality. Summit Books Publisher, New York, New York
10020.

SGI. (1994). "Onyx and Power Onyx Product Guide." Silicon Graphics Inc., Mountain
View, California.

.1

Shaw, R. (1981). "Educational Requirements for Avoidance of Structural Adequacy," In
Structural Failures in Buildings, The Institution of Structural Engineers, London.

TBR. (1989a). "Model for A Constructor Safety Process," Construction Industry Safety
Excellence Award Program, The Business Roundtable, New York, NY, 10166.

TBR. (1989b). "Model for An Owner Safety Process," Construction Industry Safety
Excellence Award Program," The Business Roundtable, New York, NY, 10166.

TBR. (1990). "Improving Construction Safety Performance," A Construction Industry
Cost Effectiveness Project Report, The Business Roundtable, Report A-3 1990, New
Yol, NY, 10166.

Vargas, C.A. (1993). "Construction Falls: Knowledge Acquisition and Fault Tree
Development," a thesis presented in partial fulfillment of the requirements for the degree
of Master of Sc ience in the graduate school of the Ohio State university.

Vargas, C.A. and Hadipriono, F.C. (1995). "Knowledge Acquisition and Knowledge
Structure for SAFETY FIRST System," Proceedings for the ASC National Conference,
Phoenix, Arizona, May 1995, pp. 227-235.

Walker, A. C. (1981). "Study and Analysis of the First 120 Failure Cases." In Structural
Failures in Buildings, The Institution of Structural Engineers, London.

WTK. (1995). "World Tool Kit for SGI Version 2.1 Manual." Sense 8, Inc., California.

75

SAVR by Hadipriono et al. 67

Yoo, W.H. (1994). "Fault Tree Modeling of Construction Falls from Scaffolding," a
thesis presented in partial fulfillment of the requirements for the degree of Master of
Science in the graduate school of the Ohio State University.

7b

2D

3D

3DS

ASCE

APPENDIX B

LIST OF ABBREVIATIONS

Two-Dimensional

Three-Dimensional

The default file-name extension for 3D Studio files

American Society of Civil Engineering

BMP The file-name extension for Bitmap files

CLASS Construction Laboratory for Automation and System Simulation

CLR-OSU Center for Labor Research at the Ohio State University

COVR Construction Operations Using Virtual Reality

EFCO Economy Fonns Co.

HMD Head Mounted Display

INTREPID-VR INtelligent TRaffic Evaluator for Prompt Incident Diagnosis in
a Virtual Reality environment

NFF Neutral File Format

NIOSH National Institute for Safety and Health

NTOF National Traumatic Occupational Fatality

NSF National Science Foundation

OBWC Ohio Bureau of Workers' Compensation

Onyx RE2 Onyx Reality Engine 2

OSHA Occupational Safety and Health Administration

OSU-CITR The Ohio State University Center of Intelligent Transportation
Research

PC Personal Computer

R&D Research and Development

RGB The SGI default file-name extension for image files

SAVR Safety in Construction Using Virtual Reality

SAVR by Hadipriono et al. 68
7

SAVR by Hadipriono et al. 69

SGI Silicon Graphics Inc.

TGA The file-name extension for Targa image files

TXT The file-name extension for Text files

VB Visual Basic

VR Virtual Reality

WS-FTP Windows' Socket File Transfer Protocol

WTK World Tool Kit

78

CENTEli FOR LABOR RESEARCH
THE OHIO STATE UNIVERSITY

WORKING PAPER SERIES

Wp-ooi The Workers' Contribution to the Workers' Compensation Quid
Pro Quo: Broad or Narrow? Professor Deborah A. Ba liam, Faculty of
Finance (December, 1991)

WP-002 Economic Interest Groups and Elections to the Ohio Supreme
Court, 1986 and 1988 Professor Lawrence Baum and Ms. Marie
Hojnacki, Department of Political Science (December, 1991)

WP-003 Employment-Based Training in Japanese Firms in Japan and in
the United States: Experiences of Automobile Manufacturers
Professor Masanori Hashimoto, Department of Economics (February, 1992)

WP-004 Organized Labor and Political Action, Attitudes, and Behavior
Professor Herbert B. Asher, Professor Randall B. Ripley, and Ms. Karen C.
Snyder, Department of Political Science (October, 1992)

WP-005 Organizational Pay Systems: The Union's Role in Promoting
Justice, Satisfaction, and Commitment to the Union Professor
Marcia P. Miceli, Professor Susan L. Josephs, and Mr. Matthew C. Lane,
College of Business; and Mr. Paul W. Mulvey, University of Connecticut
(Oitober, 1992)

WP-006 Challenging the Roadblocks to Equality: Race Relations and Civil
Rights in the CIO 1935-1955 Professor Marshall F. Stevenson, Jr.,
Department of History (December, 1992)

WP-007 The Economic impact of Development: Honda in Ohio Professor
Mary K. Marvel and Professor William J. Shkurti, School of Public Policy
and Management (December, 1992)

WP-008 Union-Management Cooperation: A Process for Increasing
Worker Autonomy and improving Work Group Effectiveness?
Professor Philip R. Kroll, Agricultural Technical Institute; Professor
Stephen J. Havlovic and Professor Gervase Bushe, Simon Fraser University
(December, 1992)

WP-009 A Cross-Disciplinary Integrative Summary of Research on
Workplace Substance Abuse Professor David A. Smith, Department of
Psychology (December, 1992)

WP-010 A History of Labor in Columbus, Ohio 1812-1992 Professor
Warren R. Van Tine, Department History (December, 1993)

WP-011 Labor and the Mass Media: A Case Study and Survey of Secondary
Literature Elizabeth A. Daley, Department of Communication (June,
1 9 9 4)

WP-012 Benefits, Unions and Work-Family Time wnflict Professor Toby
L. Parcel, Department of Sociology (October, 1994)

WP-013 Workplace Innovation and Local Unions in the Building Trades:
Theory, Application and Membership Reactions Professor Marcus
Hart Sandver and Mr. Jeffrey A. Miles, Department of Management and Human
Resources (October, 1994)

WP-014 Public Sector Collective Bargaining In Ohio, 1984-1993: A
Statitstical Overview Mr. Daniel E. Ashyk, Center for Labor Research
(February, 1995)

WP-015 Local Economic Development, Tax Abatement, and the Role of
Self-Government in Large U.S. Cities Professor Charles F. Adams
and Mr. lm-Gon Cho, School of Public Policy and Management (February,
1 9 95)

WP-016 Youth, Taxes and Pension Coverage Professor Patricia A. Reagan,
Department of Economics, and Mr. John A.Turner, U.S. Department of Labor
(April, 1995)

WP-ot 7 Davis-Bacon Compliance and Enforcement Programs Professor
Marcus Hart Sandver, Department of Management and Human Resources
(April, 1995)

WP-018 The Metropolitan Contingency of the Male Youth Central-City
Employment Disadvantage Professor Steven R. Holloway, Department
of Geography (AuguLt, 1995)

W P-019 The Influence of Organized Labor on U.S. Policy Toward Israel,
1945-1967 Professor Peter L. Hahn, Department of History (February,
1 9 9 6)

wP-020 Labor Market Performance of Non-College-Bound Youths
Professors Masanori Hashimoto and Ross A. Miller, Department of Economics
(February, 1996)

WP-021 Judicial Attitudes Toward Sexual Harassment In the Workplace
Professor L. Camille Hebert, College of Law (February, 1996)

WP-022 SAfety in Construction Using Virtual Reality (SAVR): A Model
for Labor Safety Professor Fabian C. Hadipriono, Professor Richard E.
Larew, and Ashraf S. Barsoum, Department of Civil and Environmental
Engineering and Geodetic Science (June, 1996)

30

University Grants Committee

Warren R. Van Tine, Chair
John T. Demel
Johanna S. De Stefano
Richard J. First
Stephen F. Loebs
Stephen L. Mangum
Toby L. Parcel
Edward J. Ray
RanOall B. Ripley
Nancy A. Rogers
Ray D. Ryan, Jr.

Statutory Advisory Committee

William A. Burga, Chair
Donald K. Day
Dan Winslow
Jeffrey A. Rechenbach
Paul J. Wife

Administration

Edward F. Hayes
Vice President for Research

C.J. Slanicka,
Director

Sandra L. Jordan,
Assistant Director

CLR
Center for Labor Research

1314 Kinnear Road, Room 204
Columbus, Ohio 43212-1194

Phone 614 292-4440
RAW'

81
BEST COPY AVAILABLE

