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Assessing the Dimensionality of item Response Matrices Using a Goodness-of-Fit Index

Based on Noncentrality

The use of item response theory (IR') models in the fields of educational and psychological

measurement has increased significantly over the past few decades. Common IRT models are

currently being employed to address a host of measurement issues such as the estimation of the

statistical chatacteristics of items (Mslevy & Bock, 1990), the detection of differentially functioning

items (Thissen, Steinberg, & Wainer, 1993) as well as the equating of scores obtained on alternate

forms of a test (Lord, 1977; 1980). However, several assumptions must be met in order to

legitimately use the majority of IRT models, one of which is unidimensionality of the latent ability

space (Hambleton & SWaminathan, 1985). Simply stated, most ERT models assume that the

probability of a correct response on a Oven item can me modeled as a function of a single underlying

proficiency or person parameter in addition to item parameters. For example, the three-parameter

logistic IRT function (Lord & Novick, 1968) given by,

e I -1 1Pi (x1=1Iai,b1, c1,0i) =c1+ (1-ci) (1)Da 03 -b)1+e

assumes that the probability of a correct response cn a given item (x---1) can be modeled as a function

of an item discrimination (a), difficulty (b) and lower asymptote (c) parameter as well as a latent trait

or proficiency (0) hypothesized to underlie the item response matrix. Clearly, this assumption of

unidimensionality is often violated in practical testing situations where the response to an item is

dependent upon several secondary proficiencies in addition to the hypothesized trait. This led

researchers to develop a host of descriptive and inferential statistics to assess dimensionality, or

perhaps more commonly, departure from the assumption of unidimensionality. At the present time, the

two most popular methods with regards to assessing the dimensionality of item response matrices

appear to be Stout's DIMTEST procedure as well as statistics based on nonlinear factor analysis

(NLFA).

Stout's DIMTEST nonparametric procedure is based on his notions of essential independence

and essential ciimensionaliV. Essential dimensionality corresponds to the number of latent traits that

are required to satisfy the assumption of essential independence given by,
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1 E icov(ui, vile) 1-o (2)N(N-1) lsiojsN

that is, a mean absolute residual covariance value that tends towards zero at fixed levels of the latent

trait as the number of items increases towards infinity. The terms in equation (2) can be defmed as

follows:

N = the number of test items;

= the response to item i for a randomly selected examinee;

= the response to item j for a randomly chosen examinee.

Stout (1987; 1990) and Nandakumar & Stout (1993) proposed several versions of the T statistic to test

for this assumption of unidimensionality. 12, the most powerful version of the statistic, is given by,

T -T
2

Readers should consult Nandakumar and Stout (1993) to obtain more information on the computational

steps associated with the 12 statistic. The 12 statistic is asymptotically distributed N(0,1) under the
null hypothesis of unidimensionality. In a series of studies canie4 out by Nandakumar & Stout

(1993), the 12 statistic was found to be quite accurate in correctly determiningessential

unidimensionality or departure from the assumption with multidimensional data sets except when the

test contained few items (less that 25) and the sample sizes were small (less than 750 examinees).

Roussos and Stout (1994) have also suggested using cluster analysis in order to select sets of

dimensionally distinct items that could subsequently be submitted to DIMTEST runs.

Another promising approach with regards to assessing the dimensionality of item response
matrices is the one that treats common IRT models as a special case of a more general NLFA model

(NLFA). Research undertaken by Bartholomew (1983), Goldstein and Wood (1989), McDonald

(1967) and Takane and De Leeuw (1987) has shown that common lIZT models and NLFA models are
mathematically equivalent. This led others to suggest that analyimg the residual correlation matrix

obtained after fitting an m-factor NLFA model to an item response matrix, where m is the number of
factors specified, might be a useful and informative way of assessing dimensionality (Hambleton &

Rovinelli, 1986; Hattie, 1985). For example, small residuals obtained after fitting a one-factor NLFA
model to an item response matrix would suggest that the data set is unidimensional. Several
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descriptive indices and hypothesis tests have been proposed for both limited-information and 111::

infoimation NLFA models (Hattie, 1984). The estimation of parameters in the former models is

restricted to the information contained in the lower-order marginals (e.g., the pairwise relationships

between items) whereas the information contained in the higher-order marginals (i.e., in the item

response vectors) is utilized to estimate the parameters of the latter models.

PRELIS2JLISREL8 (Joreskog & Sorbom, 1993) is a comprehensive covariance structure

modeling package that enables the user to fit, among other things, a variety of factor analytic models

via several estimation procedures. Irrespective of the estimation procedure employed, the parameters

of factor analytic models in LISREL8 are estimated so as to minimize the following general fit

function,

(4)

where,

= Sample item covariance matrix;

g = Population covariance matrix;

= A weight matrix referred to as the emeet_w_eigfiLmarix.

A chi-square goodness-of-fit statistic, based on Browne's (1982; 1984) research, is provided in

LISREL8 to aid in assessing model fit and is given by,

X2= (N-1) * Min(F) , (5)

where, corresponds to the number of examinees in the sample and Min_OD is the minimum value of
the fit function given in (4) for a specific model. This statistic is distributed asymptotically as a chi-

square distribution with degrees of freedom equal to,

.5(p)*(p + 1) - t,

where p is equal to the number of items and / is the number of independent parameters estimated in
the model.

TESTFACT (Wilson, Wood, & Gibbons, 1991) is a full-information factor analysis package

that uses the marginal maximum likelihood (M1V1L) procedure proposed by Bock and Aitkin (1981) to

estimate parameters via the EM algorithm of Dempster, Laird and Rubin (1977). The thresholds and
factor loadings are estimated so as to maximize the following multinomial probability function,
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where, rs is the frequency of response pattern a and F, is the marginal probability of the response

pattern based on the item parameter estimates. The function outlined in (6) is commonly referred to as

full-information item factor analysis (Bock, Gibbons, & M...traki, 1988). A likelihood-ratio chi-square

statistic is provided to help in assessing the fit of a given model as well as a G2 difference test to aid

in determining the adequacy of competing models. The likelihood-ratio chi-square statistic can be

defmed as,

zn
G2 =2E ,

1 NP1
(7)

where ri is the frequency of response vector 1 and F., is the probability ofresponse vector 1. The

degrees of freedom for this statistic are equal to,

2"(m + 1) + m(m-1)/2,

where n is the number of items and m, the number of factors. However, this G2 statistic often poorly

approximates the chi-square distribution given the large number of empty cells typically encountered

with actual data sets (the number of unique response vectors is equal to ). For that reason,

Haberman (1977) suggests using a likelihood-ratio chi-square difference test to assess the fit of

alternative models. Research undertaken by Berger and Knol (1990) showed that the likelihood ratio

chi-square difference test was generally unable to correctly identify the number ofdimensions

underlying an item response matrix. However, these results should be interpreted cautiously given the

small number of replications (10) performed in the study.

Although useful and informative for the assessment of dimensionality, hypothesis tests possess

one important shortcoming: they are inherently sensitive to sample size effects. McDonald (1994)

underscored this limitation of all hypothesis tests when he stated:

"A problem with tests of significance - and this holds equally for asymptotic
chi square tests- is that we know a priori that any hypothesis of restricted
dimensionality is false, and will be rejected at a sufficiently large sample
size" (p.76).
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Mac Callum (1990) and McDonald (1989) also cautioned against the use of hypothesis tests to

assess the fit of an m-factor model given that they are inherently biased with large sample sizes and

are dependent upon distributional asstunptions. Finally, Kaplan (1990) suggests that the interaction of

sample size, violation of distributional assumptions and misspecification of the model all contribute to

inflated Type I error rates with chi-square distributed fit statistics.

As an alternative to hypothesis tests, McDonald and Mok (1995) suggest using fit indices,

originally proposed within the structural equation modeling (SEM) literature, to assess the

dimensionality of item response matrices. McDonald and Mok (1995) argue that the indices proposed

within the field of SEM cany over to the assessment of fit, i.e., dimensionality, in IRT models.

Indeed, the assessment of uniklimensionality can be viewed as an SEM fitting problem, i.e., the extent

to which a one-factor model accounts for the item response probabilities estimated on a given test

form. The presentation of these fit indices is beyond the scope of the present paper. However, readers

interested in obtaining an overview of these statistics should consult Gerbing and Anderson (1993),

McDonald and Marsh (1990), Marsh, Balla and McDonald (1988), Mulaik, James, Van Alstine,

Bennett, Lind, & Stillwell, (1989) and Tanaka (1993) for thorough reviews.

Tanaka (1993) proposed a taxonomy that allows the practitioner to differentiate fit indices

suggested thus far in the SEM literature along six dimensions. In addition, the taxonomy enables the

user to be more aware of the respective sirengths and limitations of each statistic. Tanaka (1993) states

that fit indices can vary as a function of being:

(1) Population or sample based Population based fit indices estimate a known population

parameter whereas sample based statistics describe model fit for the sample at hand.
(2) Simple or complex. Fit indices are considered to be simple if they penalize

overparameterization whereas they are complex if they do not employ such a correction.
(3) Nonned or nonnonned. Normed fit indices are approximately restricted to lie within a (0,1)

range while nonnormed indices are not.

(4) Absolute or pekitive. Relative fit indices are defined with respect to a comparison model

whereas absolute fit indices do not make use of such a reference point.
(5) Estimation fire or specific. Estimation free fit indices provide, information that is unrelated to

the estimation procedure used while specific indices yield different fit summaries across
different estimation methods.
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(6) Sample size independent or dependent. Sample size-dependent fit indices vary as a function of

sample size whereas sample size independent are not influenced by this factor.

McDonald (1989; 1994) proposed a goodness-of-fit index which appears to be promising vvith

respect to assessing the dimensionality of item response matrices. The index, labelled mk, can be

defined as,

where,

[- (1/2) dk]Mk= e (8)

dk=(x2-df)/11 (9)

that is, an estimate of the noncentrality parameter of the noncentral chi-square distribution. The

degrees of freedom associated with the chi-square statistic are symbolized by sif in equation (9)

wi)ereas N corresponds to the sample size. McDonald and Mok (1995) suggest that a value of .9 is

indicative of "acceptable" fit. However, the authors stress that the latter cutoff is a convenient "rule of

thumb" and that model selection should also entail judgment on the part of the researcher, a point

previously made by Browne and Cudeck (1993).

According to Steiger and Lind (1980), La Du (1986), and Tanaka (1993), the mk index

possesses several desirable properties:

It is grounded in a firm statistical framework (chi-square distribution);

a penalizes overparameterization by subtracting the degrees of freedom from the chi-

square value and hence favors a simpler model;

It is normed to lie in a (0,1) interval which greatly facilitates interpretation for naive

users. Nonetheless, the value of the mk index can exceed unity due to sampling error.

It is an absolute index and hence does not depend upon a comparison model for

interpretation. It is important to point out, however, that Tanaka (1993) has argued

tha the mk index is in actuality a relative index in that its value attains unity at the

saturated model. Tanaka (1993) states that the one-to-one correspondence noted

between the saturated model and the observed data would indicate that ink is a relative
fit index.

It is estimation method independent and hence the practitioner can feel free to utilize

either limited- or full-information faAor analytic models to assess the dimensionality of
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an item response matrix.

Its value does not vary as a function of sample size.

Preliminary research undertaken by McDonald (1989), McDonald and Marsh (1990) and

McDonald and Mok (1995) shows that, as hypothesized, the mk index does not vary systematically

with sample size nor as a innction of estimation procedure. It is important to point out, however, that

the analyses undertaken by these authors were quite limited in scope. First, the anplyses were based

on actual data sets where the true number of dimensions underlying item respom,..s was unknowa.

Second, a small number of data sets were analyzed in each of the above mentioned studies (at most

12) which considerably limits the extent to which one can generalize their findings to other conditions.

Hence, more research needs to be undertaken to systematically examine, in controlled conditions, the

extent to which the Ink index value is affected by different sample sizes, estimation procedures and

other pertinent factors. In addition, the appropriateness of the suggested cutoff value (.9) should also

be carefully examined in a host of conditions.

Purpose

The purpose of this simulation study is three-fold:

1. To determine the extent to which the value of the mk index varies as a function of

sample size, test length and estimation procedure with simulated unidimensional data

sets.

2. To ascertain the extent to which the value of the mk index varies as a function of

sample size, test length, latent trait correlation and estimation procedure with simulated

two-dimensional data sets.

3. To determine whether the suggested cutoff value of .9 is appropriate for the

unidimensional and multidimensional data sets generated in this study.

Methods

Unidirnensional daa set simulations

In the first part of the study, unidimensional item response vectors were simulated based on

the three-parameter logistic IRT model outlined in equation (1). In addition, data sets were generated

to vary as a function of two test lengths (20 and 40 items) as well as two sample sizes (2500 and 5000
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examinees). The 40-item data sets were comprised of two 20-item tests (i.e., the item parameters for

items 21-40 were the same as those for items 1-20). In order to simulate item responses that reflected

those typically encountered with actual achievement test data, 20 IRT item parameters were randomly

selected from one form of the Law School Admission Test (LSAT) and used in the data generation

process. The item parameters that were selected are shown in Table 1.

Insert Table 1 about here

Fach cell of this 2 (sample size) x 2 (test length) design was replicated 100 times for a total of

400 unidimensional data sets.

Each of the 400 tmidimensional data sets was then analyzed using both TESTFACT (Wilson,

Wood, & Gibbons, 1991) as well as PRELIS2/LISREL8 (Joreskog & Sorborn, 1993).

One- and two-factor models were fit to each simulated unidimensional data set with

TESTFACT using all default values. Given that the likelihood ratio chi-square difference test follows

a chi-square distribution even in the presence of sparse frequency tables (Haberman, 1977), the latter

was selected as the fit statistic for all unidimensional data set analyses. The G2 difference test was

computed in the following fashion,

ff= G12_F G22_F, (10)

where G21.F is the value of the likelihood-ratio chi-square statistic obtained after fitting a one-factor

model and G22.F is the value of the likelihood-ratio chi-square statistic obtained after fitting a two-

factor model. The degrees of freedom for the difference test are also computed by subtracting those

associated with the one- and two-factor model fit statistics.

Once the fit statistics were obtained, McDonald's (1989) mk index was computed for all data

sets using equation (8). The likelihood-ratio chi-square difference test statistic was substituted in
equation (9).

The fit of a unidimensional model (i.e., one-factor model) was then ascertained using

LISREL8. Initially, the asymptotic covariance matrix was computed for the estimated tetrachoric

correlations of the items in each simulated unidimensional data set using PRELIS2. Then, the
parameters of the unidimensional model were estimated using a generally weiOted least-squares

(WLS) procedure which minimizes the following fit function

3 0
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F=(s-(3)1 W-1(s-o) ,

where,

= Sgmple estimates of the threshold and tetrachoric correlation values;

= Population threshold and tetrachoric correlation values;

W' = A consistent estimate.: of the asymptotic covariance matrix of a, referred to as the correct

weight matrix.

The chi-square statistic value given in (5) was computed for all unidimensional data sets after

fitting a one-factor model with LISREL8. Then, the mk index value was calculated for each

unidimensional data set using equation (8). Also, the chi-square statistic values computed using

equation (5) were substituted in equation (9).

In summary, each of the 400 unidimensional data sets had two mk index values computed, that

is, one using the likelihood-ratio chi-square difference test provided by TESerACT and another based

on the chi-square fit statistic estimated using LISREL8. M,, index values exceeding 1.0 due to

sampling error were fixed at 1.0 in all subsequent analyses.

Two-dimensional data set simuktions

In the second part of the study, two-dimensional item response vectors were simulated based

on a multidimensional extension of the three-parameter logistic MT model (Reckase,1985) outlined in

equation (1). The probability of a correct response on an item based on this multidimensional three-

parameter logistic compensatory model (M3PL) is given by,

(-I
1

11 +d )e IPi (x1=11ai, di, ci,Di) -ci (1-c1) (12)
sa.(11 +di)

1 + e 2

where,

A a vector of discrimination parameters for item i;

= a scalar parameter related to the difficulty of item i;

A = a latent trait vector.

Reckase (1985) states that the multidimensional item discrimination parameter (MDISC) can
be estimated using the following equation,
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MDISC1--Ya11-Ea12,

where gik is the discrimination parameter of item i on dimension k (k=1,2, ..., 1). Similarly, the

multidimensional analogue of item difficulty (MDIF) can also be computed using the following

formula,

MDIF1-

k=1

11

(13)

(14)

Although Reckase (1985) recommends providing direction cosines in addition to the distance

outlined in (14) when describing the MDIF value of an item, he does suggest that the distance

parameter can be interpreted much like a h parameter would be for a unidimensional iRT model.

Past research has shown that a two-factor model appears to underlie the item response probabilities

estimated on several forms of the LSAT (Ackerman, 1994; Camilli, Wang, & Fesq, 1995; De

Champlain, i press; Roussos & Stout, 1994). More precisely, the first dimension corresponds to

deductive reasoning and loads on Analytical Reasoning (AR) items whereas the second factor, which

loads on Logical Reasoning (LR) and Reading Comprehension (RC) items, has been labelled as

reading/informal reasoning. About 25% of the items on an LSAT fc4-ri measure deductive reasoning

whereas the remaining 75% of the items measure reading/informal reasoning. In an effort to simulate

"realistic" two-dimensional data sets, an item parameter structure that resembles that found on a typical

form of the LSAT was selected. More precisely, the first dimension (factor) was constrained to load

on 25% of the items while the probability of a correct response on the remaining 75% of the items

require knowledge of the second latent trait. In addition, the item discrimination parameter values for

the first and second dimensions utilized in the simulations were respectively randomly selected from

actual LSAT AR and LR/RC items. The unidimensional item difficulty parameter estimates for the

selected items were treated as MDIF values in these simulations. The chosen item parameters arc
shown in Table 2.

Insert Table 2 about here

12
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In addition, as was the case with unidimensional data sets, two-dimensional item response

matrices were generated to vary as a function of the same two test lengths (20 and 40 items) and two

sample sizes (2500 and 5000 examinees). The 40-item data sets were also comprised of two 20-item

tests. In addition, the correlation between the two latent traits was set at either 0.00 or 0.70. Past

research has shown that the correlation between reading/informal reasoning and deductive reasoning

proficiencies on most LSAT forms is near 0.70, which accounts for the selection of this particular

value (Camilli, Wang, & Fesq, 1995; De Champlain, in press). Each cell of this 2 (sample size) x 2
(test length) x 2 (latent trait correlation) design was replicated 100 times for a total of 800 two-

dimensional data sets.

Also, the fit of a one- versus a two-factor TESTFACT full-information factor analytic model

was ascertained with the likelihood-ratio chi-square difference test. The mk index was then computed

for all multidimensional data sets. Finally, the fit of a unidimensional model to the simulated two-

dimensional item response matrices was ascertained using LISREL8 (WLS estimation) after estimating

the asymptotic covariance matrix for the estimated tetrachoric correlations of the items in each data set

using PRELIS2. Again, the fit of each unidimensional model was assessed using the chi-square test

statistic provided in the LISREL8 output. The mk index was then calculated for all simulated two-

dimensional data sets. As was previously the case with the unidimensional data sets, each two-

dimensional item response matrix had two mk ine,..x values: one calculated using the TESTFACT fit

statistic and the other, computed with the LISREL8 chi-square test statistic. Once more, mk index

values exceeding 1.0 due to sampling error were set at 1.0 in all subsequent analyses.

Analyses: Effects of test length sanple size, latent trait correlation and estimation pmcedure

For unidimensional data sets, the main effects and interactions of test length, sample size as

well as estimation procedure with respect to mean mk index values wcre assessed using a 2 x 2 x 2
ANOVA with repeated measures on the last factor. Regarding muitidimensional data sets, the main

effects and interactions of test length, sample size, latent trait correlation as well as estimation

procedure on the mean a index value was ascertained using a2x2x2x2 ANOVA with repeated

measures on the last factor. However, it is important to point out that the relatively large sample sizes
or in this instance, data sets simulated (400 unidimensional data sets and 800 two-dimensional data
sets) would more than likely yield many significant effects due to the large amount of power.

However, these significant effects might bear little practical import for the user. In other words,

BEST COPY AVAILABLE
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several small "practically" insignificant effects might turn out to be "statistically" significant. Since

the purpose of this paper is to inves late whether "meaningful" fluctuations in mean mk index values

are obtained across different sample sizes, test lengths, latent trait correlation levels and estimation

procedures, the emphasis will be placed on "practically" significant differences rather than statistical

ones. In order to assess the "practical" significance of the main effects and interactions on meana
index values, a measure of effect size (ES; Cohen, 1992) was used in the present study. The ES index

that was employed is defmed for squared multiple correlations (R2) and given by,

f2_,R2* (l-R2)

where,

(15)

= SSeffed (SSeffed SSeffor).

In other words, 1.2 is indicative of the amount of sums of squares explained by a given effect (SSeffect)

relative to the unexplained sums of squares in the model (SSeff + SS). Cohen suggests that a

small ES corresponds to an f2 value of .02, whereas f2 values of .15, and equal to or geater than .35,

are indicative of moderate and large ES values, respectively. Only moderate and large ESs were

flagged in the current study.

Analyses: Appropriateness of the .9 mh index value "rule-of-thurnb" for xceptable model fit

As previously stated, McDonald and Mok (1995) have suggested that using an mk., index value

of .9 might be useful as a "rough" indicator of model fit. Hence, in the present study, one would

expect to obtain significantly larger a index values for the simulated unidimensional data sets given
that the correct (unidimensional) model vvas fit to the item response matrices. In order to verify this

hypothesis, an independent-gcoups I-test was calculated comparing mean mk index values for simulated

unidimensional and two-dimensional data sets. However, as was the case with the previous ANOVA

analyses, a large amount of power is likely to result in a significant / statistic value due to the large

sample sizes examined rather than any "practical" difference in mean rak index values. In order to
circumvent this situation, an ES measure will also be computed. The ES used was d (Cohen, 1992)
given by,

d_ mA b
a

14

(16)
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where,

= mean mk index value computed for the unidirnensional data sets;

= mean mk index value computed for the two-dimensional data sets;

= the standard deviation of mk index values for all data sets.

Cohen has suggested that d values of .2 are indicative of small ES while values of .5 and .8

respectively suggest moderate and large ESs.

Rault

The results will be presented according to the three research purposes. First, fmdings

pertaining to the effects of test length, sample size and estimation procedure on mean ink index values

for simulated unidimensional data sets will be presented. Second, the effects of test length, sample

size, latent trait correlation and estimation procedure will be described for the two-dimensional data set

analyses. Finally, findings relating to the appropriateness of the mk index cutoff value of .9 will be
outlined.

The effects of test length, sample size and estimation pmcedure on mean m.,4 index values for

simulated unidimensional data sets

Mean mk index values for the various test lengths, sample sizes and estimation procedures

examined are shown in Table 3.

Insert Table 3 thout here

The range of ink index values was quite small (.009) and suggests that none of the factors had

much of an impact on the mean value of the statistic. The results of the 2 x 2 x 2 ANOVA with

rer.v.:ated measures on the estimation procedure factor are shown in Table 4.

Insert Table 4 about here

As expected, all main effects and interactions were statistically significant due to the large
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amount of power attributable to the large sample size (400). Since the purpose of these analyses was

to focus on the "practical" effects rather than the statistical ones, the ESs were computed for each main

effect and interaction of the model and are presented in Table 5.

Insert Table 5 about here

According to the criteria set forth by Cohen (1992), none of the terms in the model would be

flagged as showing either moderate or large ESs. The largest f2 index value (.134), estimated for the

main effect of sample size, was below the cutoff value deemed to be indicative of a moderate ES

(.15). Hence, neither test length, nor sample size, nor estimation procedure had a "practice effect on
the mean Ea index value.

The effects of test length, sample size, latent oat correlation andestimaion procedure on mean

index values for simulated two-dimensional data sets

Mean n index values for the various test lengths, sample sizes, latent trait correlations and

estimation procedures examined are shown in Table 6.

Insert Table 6 about here

The range of roi, index values was again very small (.073). The largest discrepancy in toi,

index values occurred between data sets that were analyzed using LISREL8 and simulated to contain

20 items, 5000 examinees as well as no correlation between the latent traits (Mean mk index = 0.926)
and those analyzed with TESTFACT and generated to contain 40 items, 5000 examinees, and a
correlation of .70 between the latent traits (Mean n index = 1.00). The results of the 2 x 2 x 2 x 2
ANOVA with repeated measures on the estimation procedure factor are shown in Table 7.

Insert Table 7 about here

Again, 12/15 effects were statistically significant due to the large amount power attributable to
the large sample size (800 data sets) used in the analysis. The ESs were once more computed for each
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main effect and interaction of the model and are presented in Table 8.

Insert Table 8 about here

Using Cohen's (1992) criteria, none of the terms in the model would be flagged as a large ES.

However, the r index value (.241) estimated for the "test length x latent trait correlation" interaction

would be classified as a moderate ES. The main effect f2 index values computed for latent trait

correlation (.248) and test length (.205) factors are ignored given that they are contained in the two-

way interaction term. A plot of the mean mk index values by test length and latent trait correlation
level is shown in Figure 1.

Insert Figure 1 about here

Findings plotted in Figure 1 show that the mean ink index value was very stable for the 40-

item data sets across both levels of latent trait correlation. The mean in index value was equal to
.9735 with data sets simulated to have zero correlation between latent traits while it was equal to
.9759 when the latent trait correlation was set at 0.70. However, this was not the case with the 20-
item data sets where the mean IA index value increased from .9301 (row, = 0.00) to .9817

(rem, = 0.70).

Appropriateness of the ".9" m,, index value rule-of-thumb for ceceptable model fit

As was previously stated, McDonald and Mok (1995) proposed using an mk value of .9 as a
"rule-of-thumb" to indicate model fit. The results obtained in this study would seem to suggest that
this cutoff value is quite helpful for the simulated unidimensional data sets but ineffective for the two-
dimensional data sets. With respect to unidimensional data sets, none of the mk index values
computed were below .9 (none were less than .99) which would lead one to conclude that a single
latent trait appears to be needed to account for the estimated item response probabilities. However, the
mk values were still large for simulated two-dimensional data sets (none were below .92) and would,
according to McDonald and Mok's (1995) proposed rule-of-thumb, suggest that the item response
matrices are unidimensional in nature which is clearly not the case, especially for structures generated
to have zero correlation between latent traits. It is important to point out that the mean Mk index value

computed for simulated unidimensional data sets (M = 0.9969) was significantly geater than that
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calculated for the two-dimensional item response matrices (M = 0.9653) from both a statistical

(t(1811.1) = 43.47, 12<.0001) as well as a practical standpoint (d = 1.15). Nonetheless, all a index
values exceeded the recommended cutoff value of .9.

Discussion

The purpose of this study was to investigate the usefulness of a goodness-of-fit index proposed

by McDonald (1989) with regards to assessing the dimensionality of item response matrices. The mi.

index, which is based on an estimate of the noncentrality parameter of the noncentral chi-square

distribution, possesses several advantages over traditional tests of hypothesis as well as other

descriptive fit indices. Among its strengths, it is purported to be population-based, sample size

independent as well as estimation method free. However, little research has be undertaken to assess

the behavior of the index in controlled, i.e., simulatee., mnditions as well as the the extent to vvhich its

claimed strengths actually hold across different test lengths, sample sizes, dimensional structures and

other factors. Finally, the appropriateness of a recommended model fit cutoff value (.9) also needs to

be examined.

The results obtained in this study would seem to suggest that the ink index cutoff value (0.9)

recommended by McDonald and Mok (1995) as being indicative of model fit is too high for the data

sets simulated. Although mk index values were, as expected, significantly greater for unidimensional

data sets than for two-dimensional item response matrices, the overall mean value for the latter data

sets substantially exceeded the "rule-of-thumb" proposed by McDonald and Mok (.9).

With respect to simulated unidimensional data sets, results show that none of the manipulated

factors had any piactical effect on mean ro, index values. That is, neither sample size, test length,

estimation procedure nor any interaction of these effects had any noticeable impact upon mean mk

index values. Hence, these fmdings would tend to substantiate previous claims made to the effect that

the index is sample size and estimation method independent. With regards to simulated two-

dimensional item response matrices, findings indicate that the interaction of test length and latent trait

correlation had a moderate impact on the mean mic index value. More precisely, increasing the

correlation between the latent traits seems to yield high a index values solely for 40-item data sets.

What are the implications of these results for researchers and practitioners interested in using
the n34,, index as one of several tools for assessing the dimensionality of an item response matrix?

First, IA index values appear to be intrinsically linked to the item parameter values and

is
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structure of a given data set. In other words, the mk index values obtained in this investigation are

probably indicative of what one might expect with a LSAT type structure. However, these values

could vary substantially for other types of tests or assessments. Hence, it seems advisable to develop

model fit cutoff values that are specific to the test or data set of interest. In other words, empirical

results derived from simulation studies would seem to be a useful and practical way of setting a

index cutoff values. Second, the mk index appears to be, as alleged, sample size independent which

makes it an attractive alternative to hypothesis tests and other fit indices (e.g., AIC criterion, Akaike,

1987) for the assessment of dimensionality. Third, fmdings show that the mk index is estimation

method free which provides a greater deal of flexibility to the practitioner with regards to selecting a

given factor-analytic approach. Using limited-information factor analytic models might yield mk index

values, and subsequently model fit decisions, which are essentially equivalent to those derived from

full-information factor analytic models. Finally, the effect of varying the correlation between latent

traits appears to have an impact on mean mk index values solely for tests that contain over 20 items.

Hence, the impact of correlated latent traits with regards to mean mk index values might be somewhat

irrelevant with pretest and other test sections that contain few items.

Although the results obtained in this preliminary study are informative, it is important to point

out some of the limitations of this investigation and offer suggestions for future research.

First and foremost, the data sets in the present study were simulated to reflect typical LSAT

forms. Therefore, the reader should not generalize the fmdings obtained in this study to other testing

programs without further research. Future research should focus upon examining the extent to which

mk index values vary as a function of item parameters and latent trait structures. Second, it is

important to point out that the fit of a simple (unidimensional) model was examined for all simulated

data sets. Obviously, the fit of more complex models (two-, three factor models, etc.) should be

examined in future investigations in order to determine whether the mk index value does indeed

penalize for overparameterization, as claimed. Third, the IA index values were computed based solely

on two factor analytic estimation procedures (full-information factor analysis using MAIL estimation
and LISREL8 using WLS estimation). It would be interesting to compute index values using other
estimation procedures and factor analytic models to examine whether the mk index value fluctuates

noticeably. Also, the behavior of the mk index value was assessed according to only two test lengths

and sample sizes. Future investigations should focus on examining the index with a larger rumber of
sample sizes and test lengths. Finally, given the vast number of SEM goodness-of-fit statistics

1 5
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reported in the literature over the past few decades, it would be informative to undertake a

comparative study emphasizing the strengths and weaknesses of each approach with simulated and real

data sets.

Although preliminary, it is hoped that the findings reported in the current study will offer

some guidelines to the practitioner interested in using the mk index to assess the dimensionality of an

item response matrix as well as offer some indication of the limitations to be considered when utilizing

the procedure with data that resemble typical LSAT item responses. In addition, it is hoped that these

initial results will foster future research that will bridge the areas of IRT and SEM with respect to not

only goodness-of-fit but other issues of common interest that would benefit from a greater

collaboration between both fields.

2 iJ
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Table 1

True unidimensional item parameters

Item a b c

1 0.622132 -1.710310 0.119606

2 0.779642 0.470174 0.079124

3 0.806952 0.161454 0.162809

4 0.842712 0.081694 0.140943

5 1.152409 1.679257 0.153869

6 0.558630 -1.387155 0.119606

7 0.3415% -0.599501 0.119606

8 0.878353 1.081976 0.058036

9 0.957605 0.916684 0.196364

10 1.086517 0.693614 0.042316

11 0.751002 -0.696663 0.119606

12 0.551905 -0.315874 0.119606

13 0.630988 1.696784 0.223633

14 0.552291 -1.294931 0.119606

15 0.785618 -0.285280 0.095973

16 0.730466 -0.402966 0.119606

17 0.845300 0.004327 0.188632

18 0.792140 1.138772 0.155819

19 0.822973 1.540107 0.073885

20 0.601753 1.358651 0.111348
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Table 2

True two-dimensional item parameters

Item a, a, MDIF

0.622132 0.000000 -1.710310 0.119606

2 0.806592 0.000000 0.161454 0.162809

3 0.842712 0.000000 0.081694 0.140943

4 0.882054 0.000000 0.854201 0.184434

5 0.904691 0.000000 1.371124 0.242642

6 0.000000 0.644494 -0.892373 0.119606

7 0.000000 0.878353 1.081976 0.058036

8 0.000000 0.957605 0.916684 0.196364

9 0.000000 0.946642 1.520134 0.224578

10 0.000000 0.803943 -1.139963 0.119606

11 0.000000 0.751002 -0.696663 0.119606

12 0.000000 0.551905 -0.315874 0.119606

13 0.000000 0.688839 0.632910 0.145847

14 0.000000 0.808383 0.554415 0.208314

15 0.000000 0.567085 -0.087459 0.119606

16 0.000000 0.783265 0.256477 0.206116

17 0.000000 0.694929 -1.357711 0.119606

18 0.000000 0.543069 -0.608002 0.119606

19 0.000000 0.792140 1.138772 0.155819

20 0.000000 0.773915 0.280484 0.246003
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Table 3

Megan:1k index values for simulated unidimensional data sets by test length, sample size

and estimation procedure

Estimation procedure

LISREL8 TESTFACT

Test length N-2500 N=5000 N=2500 N=5000

20 items

40 items

0.99999 1.00000

0.99708 '1.00000

0.99661

0.99491

0.99617

0.99060
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Table 5

Effect sizes for unidimensional data sets

Source Effect size

Test length 0.10533

Sample size 0.13374

Estimation procedure 0.12348

Test length x sample size 0.12363

Test length x estimation procedure 0.06625

Sample size x estimation procedure 0.10864

Test length x sample size x estimation procedure 0.08558
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Table 8

Effect sizes for two-dimensional data sets

Source Effect size

Test length 0.20493

Sample size 0.00611

Latent trait correlation 0.24791

Estimation procedure 0.00001

Test length x sample size 0.00031

Test length x latent trait correlation 0.24151

Sample size x latent trait correlation 0.00004

Test length x estimation procedure 0000001

Sample size x estimation procedure 0.00005

Latent trait correlation x estimation procedure 0.00001

Test length x sample size by latent trait correlation 0.00001

Test length x s2mple size x estimation procedure 0.00001

Test length x latent trait correlation x estimation procedure 0.00001

Sample size x latent trait correlation x estimation procedure 0.00001

Test length x sample size x latent trait correlation x estimation

procedure

0.00003
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Figure Captions

Figure 1. Test length by latent trait correlation interaction for simulated two-dimensional data sets



1.
00

0.
99

0.
98

M
0.

97

2
0.

96

0.
95

0.
94

1
0.

93

0.
92

0.
91

0.
90

'1
st

 L
en

gt
h 

by
 L

at
en

t T
ra

it 
C

or
re

la
tio

n 
In

to
ra

ct
io

n

0.
0

L
at

en
t T

ra
it 

C
or

re
la

tio
n

T
bs

t L
en

gt
h

+
+

4 
20

 It
em

s
*-

**
 4

0 
Ite

m
s

0.
7

38


