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Assessing the Dimensionality of Item Response Matrices with Small Sample Sizes and
Short Test Lengths

The many advantages of item response theory ORD models, namely that "sample-free" item
parameter estimates and "test-free" ability estimates can be obtained, have contributed to their
increased use in Education and Psychology to address a multitude of measurement-related issues.
Recer , IRT models have also been popular and quite useful with respect to the development of
computerized-adaptive tests (CAT; Hambleton, 7nal, & Peters, 1993; Wainer, Dorans, Flaugher, Green.,
Mslevy, Steinberg, & Thissen, 1990). 1RT models are currently employed to estimate the statistical
characteristics of test items, equate scores obtained on alternate forms of a test as well as to assemble
new forms, to name a few of its uses. However, in order to legitimately use common IRT models,
several strict assumptions must be met, one of which is unidimensionality of the latent ability space.
It is assumed, when using most IRT models, that the probability of a correct response on a given item
requires a single underlying latent trait, often interpreted as a proficiency or ability being measured by
the test. For example, the probability of a correct response on a given item using the three-parameter
logistic IRT function (Lord & Novick, 1968) is given by,

e Da i j- b
P(xi=liai,b1,c1,0)=c1(1-ci) (1)

1+e Da
i

(0 b i)

that is, the probability of correctly answering item I (denoted by 4=1) is assumed to be dependent
upon an item discrimination (a), difficulty (12,) and lower asymptote (e) parameter as well as the latent
trait or proficiency (A) postulated to underlie the item responses. It is clear that the assumption of
unidimensionality is often violated with actual achievement data sets where the response to an item is
dependent upon not only the hypothesized proficiency but also several other secondary abilities. For
example, the dependencies that exist between reading comprehension item sets in various tests such as
the Law School Admission Test (LSAT) and the Graduate Records Examination (GRE) General Test
due to the presence of common passages, contribute in increasing their dimensional complexity to
include factors other than the proficiency hypothesized to underlie the item responses (i.e., reading
ability). This led researchers to propose a multitude of descriptive statistics to assess dimensionality,
or more commonly, departure from the assumption of unidimensionality. Table I presents some of the
procedures reported thus far in the literature along with their respective contributors.



Dimensionality with small samples and short tests

3

Insert Table 1 about here

At the present time, Stout's DIMTEST procedure and Lndices as well as statistics based on
nonlinear factor analysis (NLFA) appear to be the two most popular and promising procedures for
assessing the dimensionality of a set of item responses.

Stout proposed a nonparametric procedure (the I statistic) that is based on his concepts of
essential independence and essential dimensionality (Nandakumar, 1991; Nandakumar & Stout, 1993;
Stout, 1987; 1990). Stout, Junker, Nandakumar, Clang, and Steidinger (1991) developed the computer
program DIMTEST to estimate the value of the I statistic for any given data set. Essential
dimensionality can be defined as the number of latent traits that are needed to satisfy the assumption
of essmtial independence given by,

1
E icov(u2., U1103) Ho n-03n (n-1) isisjsn (2)

that is, a mean absolute residual covariance value, that tends towards zero at fixed latent trait levels as
the number of items increases towards infinity. The tenns shown in equation (2) can be defined as
follows:

n = the number of items;

11, = the response to item i for a randomly selected examinee;

= the response to item j for a randomly chosen examinee;

Several versions of the T statistic have been proposed by Stout (1987; 1990) and Nandakumar
to test the assumption of essential unidimensionality (cle) given by,

Ho: = 1

Ha: de > 1
where corresponds to the number of dimensions required to satisfy the assumption of essential
independence. The first step involved in computing the I statistic entails dividing a set of items into
two distinct subsets, labelled ATL and AI2, and a partitioning test or PI The ATI items are selected
as the unidimensional Subset, generally based on the factor loadings estimated after fitting a linear
factor analytic model to the tetrachoric item correlation matrix. The Al2 items are chosen to correct
for bias which results from matching examinees based on their number-right score on the remaining
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items, that is, the EC test. Nandakumar and Stout (1993) recommend using the I version of the
statistic in most instances given its demonstrated low Type I error and high power. The 12 statistic can
be defined as follows,

where,

T
=

TL,2Tb
2

TL,2 =
( xk

K1/2 x=1 4

(3)

(4)

and,

K = the number of subgroups based on the ET item subscore;

ki = the id, subgroup of test takers based on the EE item subscore;

= the standard error of the 12 statistic.

Note that the I, statistic is identical to the 11,2 with the exception that it is computed for AT2 items.
Readers interested in obtaining more information regarding the computation of the statistic should
consult Nandakumar & Stout (1993). The 12 statistic is asymptotically normally distributed with a
mean and standard deviation respectively equal to zero and one, under the null hypothesis of

unidirnensionality. Nandakumar & Stout (1993) showed, in a series of Monte Carlo studies, that the
12 statistic was generally accurate in correctly determining essential unidimensionality or violation of
the assumption with multidimensional data sets except when the test contained few items (less than 25)
and the sample sizes were small (less than 750 test takers). Consequently, the procedure cannot be
used in many instances, e.g., with CAT forms, where short test lengths and small sample sizes are a
common occurrence due in part to the assembly algorithms used and the "on-demand" nature of the
scheduling.

Another promising approach, with respect to assessing the dimensionality of an item response
matrix, is the one that treats common liRT models as a special case of a more general NLFA model.
Bartholomew (1983), Goldstein and Wood (1989), McDonald (1967) and Takane and De Leeuw
(1987), to name a few, have shown that common 1RT models and NLFA models are mathematically
equivalent. This led other researchers to suggest that a useful way of assessing the dimensionality of a
set of item responses might entail analy7tng the residual correlation or covariance matrix obtained after
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fining an m-factor model to an item response matrix, where m corresponds to the number of factors or

dimensions. The rationale underlying this approach is as follows: zero residual correlations obtained

after fitting a unidimensional (i.e., one-factor) model to an item response matrix would be indicative of

unidimensionality. A host of descriptive indices and hypothesis tests have been proposed to assess

dimensionality based on both limited-information -.,nd full-information NLFA models (see Hattie, 1984;

1985 for a review of earlier indices). The estiraation of parameters in limited-information NLFA

models is restricted to the information contairied in the lower-order marginals (e.g., the pairwise

relationships between items) whereas the information included in all higher-order relationships (i.e., in

the item response vxtors) is utilized to estimate the parameters of full-information NLFA models.

Gessaroli and De Champlain (in press) investigated the usefulness ofan approximate chi-

square statistic for the assessment of dimensionality that is based on the estimation of parameters for a

limited-information m-factor model using the polynomial approximation to a normal ogive model

(McDonald, 1967), as implemented in the computer program NOHARM (Fraser & McDonald, 1988).

This approximate chi-square statistic, originally proposed by Bartlett (1950) and outlined in Steiger

(1980a; 1980b), tests the null hypothesis that the off-diagonal elements ofa residual correlation matrix

are equal to zero after fitting an m-factor NLFA model and can be defined as,

k
X2= (N-3 E E Z2. !Ll1.7 1i=lj=1

(5)

where Z2(r) is the square of the Fisher Z corresponding to the residual correlation between items / and
j. (ii = k) and N is the number of examinees. Under the null hypothesis of unidimensionality,
this statistic is distributed approximately as a central chi-square with sif = .5k (k-1) t, where k is the
number of items and / is the total number of parameters estimated in the NLFA model. Although the

approximate x2 statistic is based on unweighted least-squares estimation (ULS), and hence is weak in

its theoretical foundation, Browne (1977; 1986) has indicated that the latter statistic is often equivalent
to a x2 obtained from generalized least-squares estimation (GLS). Browne states that, in most

instances, x2 statistics based on ULS and GLS tend to differ only slightly. Therefore, the approximate

x2 statistic outlined in equation (5) has the potential of being a useful practical tool for the assessment
of dimensionality. Simulation and real data studies (De Champlain, in press; (iessaroli & De

Champlain, in press) have shown that the Type I error rate for the approximate chi-square statistic

tends to be at or below nominal alpha levels. With multidimensional data sets, rejection rates were
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generally high, even in some instances with data sets containing as few as 15 items and 500 examinees

which was not the case for the I statistic (Ce Champlain, 1992; Gessaroli & De Champlain, in press).

PRELIS2/LISREL8 (Joreskog & SOrbom, 1993) is an extetsive covariance structure modeling

package that enables the user to fit a wide range of factor analytic models using several estimation

procedures. The parameters of the factor analytic models in LISREL8 are estimated so as to minimize

the following general fit function,

F=(s-cr)I (s-a) (6)

where,

a = Sample item covariance matrix;

= Population covariance matrbc

W-1 = A weight nu trix referred to as the correct weight matrix.

A chi-square goodness-of-fit statistic, based on Browne's (1982; 1984) research, is proviotd in

LISRELS to aid in assessing model fit. This chi-square statistic is given by,

x2= (N-1) * Min (F) , (7)

where, N. corresponds to the number of examinees in the sample and gilifjEl is the minimum value of

the fit function given in (6) fu, a specific model. This statistic is distributed asymptotically as a chi-

square distribution with degrees of freedom equal to,

.5(p)*(p + 1) - t,

where 12 is equal to the number of items and is the number of independent parameters estimated in

the model.

The computer program TESTFACT (Wilson, Wood, & Gibbons, 1991) allows the practitioner,

among other things, to estimate the parameters and the fit of various full-information factor analytic
models using the marginal maximum likelihood (MML) procedure outlined by Bock and Aitkin (1981)

via the EM algorithm of Dempster, Laird and Rubin (1977). The thresholds and factor loading
included in the model are estimated so as to maximize the following multinomial probability function,

N!Lm=P (X) r r1.! 2 ! " rs i ( 8 )

where, rs is the frequency of response pattern a and Ps is the marginal probability of the response
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pattern based on the-item parameter estimates. The function given in equation (8) is customarily

referred to as full-information item factor analysis (Bock, Gibbons, & Muraki, 1988). The user can

also assess the fit of a given full-information factor analytic model using a likelihood-ratio chi-square

statistic that is provided in TESTFACT. This statistic can be defmed as,

2"

(9)
N:15,

where is is the frequency of response vector a and I's is the probability of response vector s. The

degrees of freedom for this statistic are equal to,

2"(m + 1) +

where n is the number of items and m, the number of factors. However, Ivfis levy (1986) has indicated

that this G2 statistic often poorly apprdximates the chi-square distribution given the large number of

empty cells typically encountered with actual data sets (the number of unique response vectors is equal

to 2" ). Hmce, Haberman (1977) recommends using a likelihood-ratio chi-square difference test to

assess the fit of alternative models. The G2 difference test is computed in the following fashion,

ff=G12-F (1.0)

where G21.F is the value of the likelihood-ratio chi-square statistic obtained after fitting a one-factor

model (c.f. equation (9)) and G22.F. is the value of the likelihood-ratio chi-square statistic obtained after

fitting a two-factor model. The degees of freedom for the difference test are also computed by

subtracting those associated with the one- and two-factor model fit statistics.

However, preliminary research has shown that the likelihood ratio chi-square difference test is

generally unable to correctly identify the number of dimensions underlying an item response matrix

(Berger & Knol, 1990). However, the small number of replications (10) performed in the latter study
limits the extent to which these results can be generalized to other conditions.

Although these fit statistics have been shown to be useful and informative for the assessment

ef dimensionality, few studies have examined their behavior with small sample sizes and short test
lenths. This type of study seems imperative given the current emphasis placed on CAT by several
natioral testing programs (e.g., GRE General Test, Graduate Management Admission Test (GMAT)
and several certification examinations). Dimensionality assessment is especially critical within a CAT
environment where several test 1 , i ins are "tailored" to different examinees according to their ability
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level. These CAT forms should be comparable with respect to their dimensional structure in order to

ensure valid score-based inferences for all examinees, irrespective of the set of items administered.

The assessment of dimensionality is also critical within a computerized-mastery testing (CMT) setting

where a small set of items is typically administered to all test takers in the first stage of testing in

order to determine whether test takers can be clearly categorized as masters/nonmasters or whether

further sets of items need to be given before making any fmal decision as to their status. The first

subset of items administered within this multistage or sequential design often contains very few items.

Hence, it is critical to ascertain whether the dimensional structure of this initial test is consistent with

that of subsequent subtests in order to ensure that the design is fair for all examinees, regardless of
their ability level.

A study examining the behavior of dimensionality assessment procedures with small sample

sizes and short test lengths might also yield beneficial information not only for CAT and CMT

programs but also for small volume tests as well as pretest sections on current paper-and-pencil

measures. For example, several of the GRE Subject Tests have volumes that typically do not exceed
500 examinees (Briel, O'Neill, & Scheuneman, 1993). Also, pretest items, whether they be embedded

throughout a form or placed in a separate variable section, are often administered to a relatively small

number of examinees given the large amount of new test questions that often must be tried out at each

administration of a form. Little research has been undertaken to indicate the extent to which

practitioners can confidently use common procedures to assess the dimensionality of item response

matrices in these less than ideal circumstances with regards to sample size and test length.

Th41:120-Q

The purpose of this study is two-fold:

(1) To examine the empirical Type I error rates calculated for the approximate chi-square

statistic, the LISREL8 chi-square statistic and the likelihood-ratio chi-square difference

test with unidimensional data sets simulated to vary according to test length and

sample size.

(2) To examine the rejection rates obtained for the approximate chi-square statistic, the

LISREL8 chi-square statistic and the likelihood-ratio chi-square difference test with

two-dimensional item response matrices generated to vary as a function of sample size,

test length and degree of correlation between the latent traits.
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Methods

Uni&mensional daa set simulations

Dichotomous unidimensional item response vectors were simulated according to the three-

parameter logistic IRT function outlined in equation (1) in the first part of this study. Data sets were

generated to vary according to two different test lengths (20 and 40 items) as well as three sample sizes

(250, 500 and 1000 examinees). Note that the simulated 40-item data setswere composed of two 20-item

tests, that is, the item parameters utilized to simulate responses to items 21-40 were ide-tical to those

selected to generate responses to items 1-20. In order to simulate itemresponses that are typical of those

encountered at the Law School Admission Council (LSAC), 20 IRT item parameters were randomly

selected from one form of the LSAT and used in the item response generation process. The item

parameters that were chosen to simulate unidimensional item response vectors are shown in Table 2.

Insert Table 2 about here

Latent trait values were also simulated according to a N(0,1) distribution. Each cell of this 2 (test

length) x 3 (sample size) design was replicated 100 times for a total of 600 unidimensional data sets.

The fit of a unidimensional model was then ascertained for each of the 600 unidimensional data

sets using MSTFACT (Wilson, Wood, & Gibbons, 1991), PRELIS2/LISREL8 (Joreskog & Sorbom,

1993) as well as NOHARM (Fraser & McDonald, 1988).

More precisely, one- and two-factor models were fit to each simulated unidimensional data set

with TESTFACT using all default values. As mentioned previously, the likelihood-ratio chi-square

difference test was selected as the fit statistic for all unidimensional data sets given that it follows a chi-

square distribution even in the presence of sparse frequency tables (Haberman, 1977). Again, the G2

difference test is obtained by simply subtracting the G2 value obtained after fitting a two-factor model

from that computed after fitting a unidimensional model.

The fit of a unidimensional model was then assessed using PRELIS2/LISREL8. First, the
asymptotic covariances were computed for the estimated tetrachoric correlations of the items contained

in each simulated unidimensional data set using PRELIS2. Then, the parameters of the unidimensional

model were estimated with a generally weighted least-squares(WLS) procedure, minimizing the following

fit function,
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where,

a = Sample estimates of the threshold and tetrachoric correlation values;

a = Population threshold and tetrachoric correlation values;

VV-1 = A consistent estimator of the asymptotic covariances ofs. Unfortunately, it was only possible to

fit a unidimensional model and compute the fit statistic outlined in (7) for data sets generated to contain

20 items and 1000 examinees due to restrictions imposed in PRELIS2/LISREL8.

The fit of a unidimensional model (i.e., a one-factor model) was also ascertained using NOHARM

The approximate x2 statistic was then computed for each data set using the computer program CHIDIM

(De Champlain & Tang, in press).

Two-dimensional data set simuktions

In the second part of the study, dichotomous two-dimensional item response vectors were

simulated based on a multidimensional extension of the three-parameter logistic IRT model (M3PL;

Reckase, 1985) outlined in equation (1). The probability ofa correct response to item j (denoted by 2y---1),

based on this compensatory M3PL model is given by,

a.(11.44.1 )e 3Pi(x1=1.I. i, di, =c1 (1-c 1) (12)

where,

= a vector of discrimination parameters for item i;

= a scalar parameter related to the difficulty of item j;

= a latent trait vector for examinee j.

Reckase (1985) states that a multidimensional item discrimination parameter (MDISC) can be
estimated using the following equation,

marSci =NI alk
k=1

(13)

where Ak is the discrimination parameter of item i on dimension k (k = 1 n). In a similar fashion,
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the multidimensional item difficulty (MUT) for item I can also be computed using the following

formula,

-d,
MDIFi=

aTk
k=1

11

(14)

It should be noted that Reckase (1985) recommends providing direction cosines in addition to

the distance outlined in (14) when describing the MDIF value of an item. However, he does suggest

that the distance parameter can be interpretee much like a 12 parameter would be for a unidimensional

logistic IRT model.

Past research undertaken to assess the dimensionality of the LSAT has shown that a two-factor

model appears to adequately account for the item ivsponse probabilities estimated on several forms of

the test (Ackerman, 1994; Camilli, Wang, & Fesq, 1595; De Champlain, inpress; Roussos & Stout,
1994). The first dimension, categorized as deductive masoning, loads on Analytical Reasoning (AR)

ite is while the second factor, which loads on Logical Reasoning (LR) and Reading Comprehension

(RC) items, has been labelled as rodineinfainctromaing. Approximately 25% of the items on any

given form of the LSAT measure this deductive reasoning skill whereas the remaining 75% of the

items require reading/informal reasoning. As was the ust: with unidimensional data sets, an item

parameter structure that resembles that found on a typical form of the LSAT was selected in order

generate more "authentic" item responses. More precisely, the first dimension (factor) was constrained

to load on 25% of the items while the probability of a correct response on the remaining 75% of the

items was solely a function of the second latent trait. As well, (unidimensional) item discrimination

parameters were randomly selected from actually administered LSAT AR + LR/RC items and used to
simulate the first and second dimensions in this study. The unidimensional item difficulty parameter

estimates for these items were treated as NOW values in the simulations. The item parameters utilized

in the two-dimensional simulations are shown in Table 3.

Insert Table 3 about here

In addition, the two-dimensional data sets were generated to vary as a function of the same
two test lengths (20 and 40 items) and three sample sizes (250, 500, and 1000 examinees) previously
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outlined in the unidimensional conditions. The 40-item data sets were also composed of two 20-item

tests. Also, past research has shown that the correlation between reading/informal reasoning and

deductive reasoning proficiencies on a large number of LSAT forms is at or near 0.70 (Camilli, Wang,

& Fesq, 1995; Be Champlain, in press). Hence, the correlation between both latent traits was set at

either 0.00 or 0.70 in the two-dimensional simulations. Finally, each cell of this 2 (test length) x 3

(sample size) x 2 (latent trait correlation) design was replicated 100 times for a total of 1200 two-

dimensional data sets.

Also, the fit of a one- versus a two-factor full-information factor analytic model was assessed

using the likelihoodlatio chi-square difference test provided in 1ESTFACT. Additionall), `ere fit of a

one-factor LISREL8 model was ascertained using the chi-square fit statistic for only two cKiitions,

that is, data sets containing 20 items and 1000 examinees (again, due to program restrictions). Finally,

the fit of a unidimensional model was assessed with the approximate x2 statistic, compuced after fitting

a one-factor model to each two-dimensional item response matrix with the program NOHARM (Fraser
& McDonald, 1988).

A nalyses

In order to investigate the effects of the independent variables on the empirical Type I error
rates and rejection rates, separate logit-liner..7 analyses were performed for the approximate X2 and the

likelihood-ratio chi-square difference test for each of the unidimensional and multidimensional

conditions. Specifically, logit-linear analyses were performed with the objective of fitting the most

parsimonious model to the response frequencies. With respect to unidimensional data sets, the

independent variables were test length and sample size while the dependent variable was the number

of acceptances and rejections of the null hypothesis. This variable was labelled "rejection decision".
The logit-linear analysis was done in a forward hierarchical manner, that is, starting with the simplest

main effect and then fitting incrementally more complex models while adhering to the principle that

lower-order effects are also included in the model. The likelihood-ratio t was employed as the fit
statistic. A model was deemed to be acceptable if the corresponding n-value was equal to or greater
than 0.15. Any individual effect was considered to be significant if the size of the absolute z-value

was gyeater than 2.0. With regards to simulated two-dimensional data sets, the independent variables
were test length, sample size and latent trait correlation whereas the dependent variable was rejection
decision. Results are presented for the simulated unidimensional and multidimensional data sets

ii
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separately. It should be noted that, for the sake of simplicity, associations will be presented with

respect to the impact of the ir 4ependent variable(s) only. For example, if the test length by rejection

decision association was signLicant, it would be referred to as the effect of test length. As was

previously mentioned, it was not possible to model the effects of the independent variables with

respect to empirical Type I error rates and rejection rates based obtained with the chi-square statistic

provided in LISRM due to the limited number of analyses.

&mita

Unidimensional daa set analyses

The number of false rejections of the assumption of unidimensionality based on the 100 data

sets for each of the simulated conditions are shown in Table 4.

Insert Table 4 about here

Approximate .x2 statistic empirical Type I enor raes (NOIIARIVO

The empirical Type I error rates tended to be below or near the nominal co level (.05). In fact,

the maximum number of rejections of the assumption of unidimensionally in any given condition was

7/100 for data sets simulated to contain 40 items and 1000 exarninees. Logit-linear analysis results

show that a model including sample size as the sole independent variable was sufficient in adequately

accounting for the frequency of rejections (and acceptances) of the assumption of unidimensionality,
If (4) = 1.75, 12.782.

The effect of sample size was quite clear. There was only one false rejection (.005) of the

assumption of unidimenzionality for data sets simulated to include 250 examinees and none for item

response matrices generated to contain 500 test takers. However, the assumption of unidimensionality

was incorrectly rejected for 12 (.06) data sets simulated to contain 1000 examinees.

staistic empirical Type I ermr raes (LISREL8)

As shown in Table 4 the empirical Type I error rate based en the LISREL8 chi-square statistic

is severely inflated (.68) for data sets generated to contain 20 items and 1000 examinees.
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Approximate G2 difference test empirical Type I error rates (TESTFACT)

The number of incorrect rejections of the assumption of unidimensionality was quite large in

all simulated conditions when based on the likelihood-ratio chi-square difference test provided in

USTFACT. Empirical Type I error rates ranged from 0.17 (for data sets that included 20 items and

1000 examinees) to .79 (for data sets that contained 40 items and 250 exarninees). These results are

clearly indicative of a severe inflated Type I error rate problem when using the G2 difference test to

determine whether an item response matrix is unidimensional or not, at least with data sets similar to

those simulated in the present study. The results obtained from the logit-linear analysis indicate that a

fully-saturated model, including the main effects of test length and sample size as well as the

interaction of both variables, is required to adequately explain the frequencies of rejection and

acceptance rates, L2 (0) = 0.00. 1-1.00. All of these effects had absolute z-values greater than or

equal to 2.0.

As is traditionally the case, the effects of the independent variables found in the higher-order

interaction will first be explained. Results show that the number of false acceptances of the

assumption of unidimensionality decreased sharply for 20-item data sets from 58/100 rejections for

item response matrices simulated to contain 250 examinees to 41/100 rejections for 500 examinee data

sets and finally, 17/100 rejections for data sets simulated to include 1000 test takers. However, this

drop in empirical Type I error rates was absent for the 40-item data sets. For the latter data sets,

empirical Type I error rates remained quite constant arzoss the three sample sizes. The empirical Type

I error rates were equal to .79, .77 and .77 for 40-item data sets simulated to respectively contain 250,

500 and 1000 examinees.

Multidimensional data set catalyses

The number of rejections of the assumption of unidimensionality based on the 100 data sets
for each of the simulated two-dimensional conditions are shown in Table 5.

Insert Table 5 about here

Approximcte statistic wjection rates (NOHARM)

Results clearly show that the approximate x2 statistic was able to consistently identify the

(true) multidimensional nature of the simulated data sets. The assumption of unidimensionality was

1 5
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rejected for 1199/1200 (99.9%) simulated data sets. Not sutprisingly, the logit-linear analysis results

indicate that a model including only the dependent variable rejection decision vvas sufficient to explain

the observed frequencies, L2 (11) = 4.97, 120.932. Neither test length, sample size nor latent trait

correlation had a significant effect on the probability of rejecting the assumption of unidimensionality

when based upon the approximate x2 statistic.

2e, statistic rejection rates (LISREL8)

Results based on the LISREL8 chi-square statistic show that the assumption of

unidimensionality was rejected for all two-dimensional data sets simulated to contain 20 items and

1000 examinees.

Appmximate G2 difference test rejection rates (TESTFACT)

There was a considerably greater degree of variability in rejection rates based on the full-

information factor analyses. Rejection rates ranged from 77/100 (20-iteni data sets simulated to

contain 250 examinees and reflect a correlation of .70 between latent traits) to 100/100 (all conditions

that specified zero correlation between the two latent traits). Logit-linear analysis results yielded a

model that included the main effects of test length, sample size as well as latent trait correlation, L2

(11) = 0.087,

With respect to the main effect of test length, results indicate that the number of failures to

reject unidimensionality decreased significantly from the 20 item data sets (50/600 or 0.083 false

acceptances of unidimensionality) to the 40 item data sets (8/600 or .013 false acceptances of

unidimensionality). Regarding the main effect of sample size, results show that the number of false

acceptances of the assumption of unidimensionality remained fairly stable for the 250 and 500
examinee data sets (respectively, 27/400 or 0.067 false acceptances and 24/400 or 0.06 false

acceptances of unidimensionality) but dropped noticeably for data sets that contained 1000 examinees

(7/400 or 0.017 false acceptances of unidimensionality). Finally, with respect to the latent trait

correlation main effect, findings indicate that the number of false acceptances of the assumption of

unidimensionality incrensed drastically from 0/600 for data sets simulated to have zero correlation

between both proficiencies to 58/600 (0.097) for item response matrices generated to reflect a
correlation of 0.7 between both latent traits.
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Discussion

The use of indices and statistics based on NLFA has become increasingly popular as a means

of assessing the dimensionality of an item response matrix Indices and statistics based on both

limited- and full-information factor analytic models are currently available to the practitioner interested

in determining the number of dimensions underlying a set of item responses. Although these indices

have been shown to be useful and accurate in many testing conditions, few studies have investigated

the behavior of these procedures with small sample sizes and short tests, that is, conditions that are

typically encountered within CAT and ClkAT frameworks. Therefore, the purpose of this investigation

was to compare the empirical Type I error rates and rejection rates obtained using two NLFA fit

statistics with conditions simulated to contain short tests and small sample sizes. More precisely, the

behavior of an approximate x2 statistic (Gessaroli & De Champlain, in press) based on McDonald's

(1967) limited-information NLFA model, a chi-square distributed statistic based on a LISREL8

(Joreskog & Sorbom, 1993) model as well as a likelihood-ratio G2 difference test based on Bock,

Gibbons, and Muraki's (1988) full-information item factor analytic model, were examined.

With respect to empirical Type I error rates, results show that the G2 difference test suffers

from a severe inflated Type I error rate problem, in all conditions simulated. In addition, the

interaction of both independent variables manipulated (i.e., sample size and test length) appears to be

related to the probability of correctly accepting or incorrectly rejecting the assumption of
unidimensionality. This severe inflated Type I error rate was also noted when using the LISREL8 chi-

square statistic with the 20-item, 1000 exarninee data sets. The approximate X2 statistic, on the other

hand, had empirical Type I error rates that were below or near the nominal oo level (.05) in all

conditions. However, it is important to point out that the probability ofaccepting or rejecting the

assumption of unidimensionality, when based upon the latter statistic, was dependent upon sample size.

This result is not surprising given that the probability of rejecting a model of restricted dimensionality

is often dependent upon sample size with chi-square distributed statistics (Marsh, Balla, & McDonald,
1988).

Regarding rejection rates with (true) two-dimensional data sets, findings again show that all

independent variables manipulated, that is, test length, sample size and latent trait correlation, had a

significant effect on the probability of rejecting the assumption of unidimensionality based on the G2

difference test. Although rejection rates were generally acceptable (varying from 77/100 to 100/100

data sets), it is important to point out that this high level of power is more than likely attributable to

17
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the inflated Type I error rates previously reported with the simulated unidimensional data sets.

Similarly, the hi01 degree of power obtained with the LISREGS chi-square statistic is more than likely

related to the inflated Type I error rate noted with the unidimensional data sets. On the other hand,

the approximate x2 statistic, based on a NOFIARM analysis, was able to correctly reject the assumption

of unidimensionality for all but one of the two-dimensional simulated data sets. In addition, none of

the independent variables had an effect on the probability of correctly rejecting (or incorrectly

accepting) the assumption of unidimensionality.

Mood, Graybill, and Boes (1974) state that a statistical test which displays a small Type error I

rate (ideally 0) as well as a high probability of rejecting a false null hypothesis (ideally unity) is

worthy of merit. The results obtained in this study would seem to suggest that the approximate t

statistic possesses these desirable qualities, at least for the conditions simulated. Also, Roznowski.

Tucker, and Humphreys (1991) suggest that pnetitioners should strive to select dimensionality

assessment indices that are "robust to changes in levels of parameters and lack substantial interaction

among parameters" (n.124). Although the empirical Type I error rates obtained with the approximate

t statistic were affected by sample size, none of the manipulated variables significantly impacted

upon its rejection rates with two-dimensional data sets. On the other hand, both empirical Type I error

rates and rejection rates computed for the (32 difference test were highly dependent upon test length,

sample size and latent trait correlation (with two-dimensional data sets).

In summary, the preliminary findings reported with respect to the approximate x2 statistic were

encouraging for the following reasons:

the procedure appears to have low Type I error rate (below or near the nominal level);

rejection rates were very high with two-dimensional data sets;

the statistic was relatively unaffected by the sample sizes, test lengths and latent trait
correlation levels simulated.

However, it is important to emphasize that these fmdings are preliminary and that caution

should be exercised when interpreting, and especially, generalizing results to other conditions.

Therefore, it is important to underscore the limitations associated with this investigation as well as
offer suggestions for future research in this area.

First and foremost, the conditions that were simulated in the present study reflect some of the
data set features that might be encountered within a CAT and CMT framework. Obviously, there are

a multitude of factors, in addition to small item sets and small samples, that contribute to making CAT
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and CMT forms so uniquely distinct from their paper-and-pencil counterparts. For example, context

effects, attributable to the large number of "tailored" forms administered at any given time, are

prevalent in CAT and CMT forms. The inclusion of this factor in future studies examining the

behavior of dimensionality assessment procedures should be of the utmost importance.

Second, it is important to point out that NOHARM does not estimate latent trait values but

rather assumes that they are distributed - N(0,1). TESTFACT, on the other hand, does estimate

proficiency scores for all examinees. Given that the latent trait values in this study were simulated

according to a standard normal distribution (i.e., that conform exactly to the NOHARM assumption),

this could have advantaged the approximate t- and partially account for its superior performance over

the G2 difference test provided in TESTFACT. Nonetheless, preliminary findings showed that the

empirical Type I error rates computed for the approximate x2 were not severely affected with certain

nonnormal latent trait distributions (De Champlain & Tang, 1993). However, more research needs to

be undertaken to assess the performance of the approximate x2 statistic. in a larger number of

conditions, including under various proficiency distributions, before making any defmite conclusions

as to its usefulness in assessing dimensionality with data sets containing few items and small samples.

Third, it is important to point out that the fit of a simple (unidimensional) model was

examined for all simulated data sets. The fit of more complex models (e.g., two-, three-dimensional

models) should also be part of any future investigations so as to determine whether the approximate x2

statistic and the G2 difference test are able to identify the (true) number of dimensions underlying item

response matrices.

Fourth, the data sets simulated in this study reflect a typical LSAT form. Hence, the findings
obtained might not generalize to other test structures, e.g., the GRE General Test or the GMAT. In

fact, approximate x2 statistic results reported by Gessaroli and De Champlain (in press) with data sets

simulated to reflect other tests (e.g, SAT-V and ACT-M) differed somewhat from those presented in

this investigation. More research needs to be undertaken to assess the performance of the approximate
x2 statistic in a larger number of conditions before making any definite conclusions as to its usefulness
in assessing dimensionality with data sets containing few items and small samples.

Finally, it is important to mention that only two procedures were examined in this study.
Given the large number of indices and statistics proposed for the assessment of dimensionality (c.f.

Table 1), it would seem imperative to undertake a comparative study that would allow the respective

strengths and weaknesses of each approach to be highlighted.
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Hopefully, the results presented in this study will offer some information to practitioners

interested in using either the approximate x2 statistic, the LISREL8 x2 statistic or the G2 difference test

for assessing the dimensionality of data sets that contain few items and small samples. Also, it is

hoped that these findings will foster future research in this area and eventually lead to helpful

guidelines with respect to the assessment of dimensionality within CAT and frameworks.
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Table 1
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Procedures References

Indices based on linear factor analysis/principal component
analysis

I3erger & Knol (1990)
Collins, Cliff; McCormick, & Zatkin (1986)
De Ayala & Hertzog (1989)
Hambleton & Rovinelli (1986)
Hattie (1984: 1985)
Nandakumar (1994)
Reckase (1979)
Zwick & Velicer (1986)

Nonmetric multidimensional scaling De Ayala & Hertzog (1989)
Koch (1983)
Jones, Sabers, & Trosset (1987)
Jones (1988)
Reckase (1981)

Tucker's procedure for assessing dimensionality Roznowski, Tucker, & Humphreys (1991)

Humphrey's procedure for assessing dimensionality Roznowski, Tucker, & Humphreys (1991)

Modified parallel analysis Ben-Simon & Cohen (1990)
Budescu, Cohen, & Ben-Simon (1994)
Drasgow & Lissak (1983)
Hu lin, Drasgow, & Parsons (1983)

Bejar's dimensionality assessment procedure Bejar (1980; 1988)
Hambleton & Rovinelli (1986)
Kingsburj (1985)
Liou (1988)

The Holland-Rosenbaum procedure Ben-Simon & Cohen (1990)
Holland (1981)
Holland & Rosenbaum (1986)
Nandakumar (1994)
Rosenbaum (1984)
Zwick (1987)

Stout's essential dimensionality procedure De Champlain & Tang (1993)
De Champlain (1992)
Gessaroli & De Champlain (in press)
Junker & Stout (1994)
Nandakumar (1987; 1991; 1994)
Nandakumar & Stout (1993)
Stout (1987, 1990)

Indicts and statistics based on full-information nonlinear factor
analysis

Berger & Knol (1990)
Bock, Gibbons, & Muraki (1988)
Dorans & Lawrence (1988)
Kingston (1986)
Kingston & McKinley (1988)
Morgan (1989)
Muraki & Engelhard (1985)

Indices and statistics basoi on limited-information nonlinear
factor analysis

Berger & Knol (1990)
De Cltairplain (1992)
De Champlain & Gessaroli (1991)
De Champlain & Tang (1993)
Gessaroli & De Champlain (in press)
Hambleton & Rovinelli (1986)
Hattie (1984; 1985) .

Knol &, Berger (1991)
Nandakumar (1994)
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Table 2

IniumidimgnsioaLite,m_paramf.taa

Item a
1 0.622132 -1.710310 0.119606

2 0.779642 0.470174 0.079124

3 0.806952 0.161454 0.162809

4 0.842712 0.081694 0.140943

5 1.152409 1.679257 0.153869

6 0.558630 -1.387155 0.119606

7 0.341596 -0.599501 0.119606

8 0.878353 1.081976 0.058036

9 0.957605 0.916684 0.196364

10 1.086517 0.693614 0.042316

11 0.751002 -0.696663 0.119606

12 0.551905 -0.315874 0.119606

13 0.630988 1.696784 0.223633

14 0.552291 -1.294931 0.119606

15 0.785618 -0.285280 0.095973

16 0.730466 -0.402966 0.119606

17 0.845300 0.004327 0.188632

18 0.792140 1.138772 0.155819

19 0.822973 1.540107 0.073885

20 0.601753 1.358651 0.111348
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Table 3

True two-dimensional item parameters

Item al a, MDIF c

1 0.622132 0.000000 -1.710310 0.119606

2 0.806592 0.000000 0.161454 0.162809

3 0.842712 0.000000 0.081694 0.140943

4 0.882054 0.000000 0.854201 0.184434

5 0.904691 0.000000 1.371124 0.242642

6 0.000000 0.644494 -0.892373 0.119606

7 0.000000 0.878353 1.081976 0.058036

8 0.000000 0.957605 0.916684 0.196364

9 0.000000 0.946642 1.520134 0.224578

10 0.000000 0.803943 -1.139963 0.119606

11 0.000000 0.751002 -0.696663 0.119606

12 0.000000 0.551905 -0.315874 0.119606

13 0.000000 0.688839 0.632910 0.145847

14 0.000000 0.808383 0.554415 0.208314

15 0.000000 0.567085 -0.087459 0.119606

16 0.000000 0.783265 0.256477 0.206116

17 0.000000 0.694929 -1.357711 0.119606

18 0.000000 0.543069 -0.608002 0.119606

19 0.000000 0.792140 1.138772 0.155819

20 0.000000 0.773915 0.280484 0.246003



D
im

en
si

on
al

ity
 w

ith
 s

m
al

l s
am

pl
es

 a
nd

 s
ho

rt
 te

st
s

29

T
ab

le
 4

R
ej

ec
tio

ns
 o

f 
un

id
im

en
si

on
al

ity
 p

er
 1

00
 tr

ia
ls

 f
or

 u
ni

di
m

en
si

on
al

 d
at

a 
se

ts
(n

om
in

al
 c

o=
0.

05
)

Fi
t s

ta
tis

tic

A
pp

ro
xi

m
at

e 
x2

 (
N

O
H

A
R

M
)

;(
2 

(L
IS

R
E

L
8)

G
2 

di
ff

er
en

ce
 te

st
 (

T
E

ST
FA

C
I)

T
es

t l
en

gt
h

20
 it

em
s

40
 it

em
s

20
 it

em
s

40
 it

em
s

20
 it

em
s

40
 it

em
s

Sa
m

pl
e 

si
ze

25
0

50
0

10
00

0 0 5

1 0 7

'
58 41 17

79 77 77
68

'D
ue

 to
 L

IS
R

E
L

8
pr

og
ra

m
 r

es
tr

ic
tio

ns
, i

t w
as

 n
ot

 p
os

ib
le

 to
 c

om
pu

te
 th

e 
x2

 f
or

 th
es

e 
da

ta
 s

et
s.

30
31



D
im

en
si

on
al

ity
 w

ith
 s

m
al

l s
am

pl
es

 a
nd

 s
ho

rt
 te

st
s 30

T
ab

le
 5

R
ej

ec
tio

ns
 o

f 
un

id
im

en
si

on
al

ity
 p

er
 1

00
 tr

ia
ls

 f
or

 tw
o-

di
m

en
si

on
al

 d
at

a
se

ts
 (

no
m

in
al

 0
0=

0.
05

)

Fi
t s

ta
tis

tic

A
pp

ro
xi

m
at

e 
t (

N
O

H
A

R
M

)
t (

L
IS

R
E

L
8)

G
2 

di
ff

er
en

ce
 te

st
 (

T
E

ST
FA

C
I)

L
at

en
t t

ra
it

co
rr

el
at

io
n

T
es

t l
en

gt
h

20
 it

em
s

40
 it

em
s

20
 it

em
s

40
 it

em
s

20
 it

em
s

40
 it

em
s

Sa
m

pl
e 

si
ze

r(
01

,0
2-

00
25

0
10

0
10

0
2

10
0

10
0

50
0

10
0

10
0

10
0

10
0

10
00

10
0

10
0

_ 10
0

10
0

10
0

r(
01

,0
2)

0.
70

25
0

99
10

0
77

96

50
0

10
0

10
0

79
97

10
00

10
0

10
0

10
0

94
99

2 
D

ue
 to

 L
IS

R
E

L
8 

pr
og

ra
m

 r
es

tr
ic

tio
ns

, i
t w

as
 n

ot
 p

os
ib

le
 to

 c
om

pu
te

 th
e 

X
2 

fo
r 

th
es

e 
da

ta
se

ts
.

32
33


