
DOCUMENT RESUME

ED 396 691 IR 017 867

AUTHOR Cordes, David; And Others
TITLE Breadth-Oriented Outcomes Assessment in Computer

Science.

PUB DATE 94

NOTE 9p.; In: Recreating the Revolution. Proceedings of
the Annual National Educational Computing Conference
(15th, Boston, Massachuseits, June 13-15, 1994); see
IR 017 841.

,JB TYPE Reports Research/Technical (143)
Speeches/Conference l'apers (150)

EDRS PRICE MF01/PC01 Plus Postage.

DESCRIPTORS College Graduates; *College Seniors; *Computer
Science; *Educational Assessment; *Evaluation
Methods; Higher Education; Introductory Courses;
*Knowledge Level; Pilot Projects; *Program
Evaluation; Undergraduate Students

IDENTIFIERS University of Alabama

ABSTRACT
Little work has been done regarding the overall

assessment of quality of computer science graduates at the
undergraduate level. This paper reports on a pilot study at the
University of Alabama of a prototype computer science outcomes
assessment designed to evaluate the breadth of knowledge of computer
science seniors. The instrument evaluated two areas: technical
knowledge and knowledge of computing history and culture. The exam,
which was presented to students unannounced during a regularly
scheduled class meeting, consisted of 100 questions that covered the
basic areas of the discipline. Results indicated: (1) graduating
seniors have a degree of breadth knowledge roughly consistent with
what one would expect; (2) the introductory breadth course does not
provide breadth knowledge equivalent to what seniors obtain after
taking several advanced depth courses, although a substantial amount
of breadth material is covered in that course; and (3) students have
little knowled6e of computing history and culture at all levels of
the curriculum. (Contains 10 references.) (Author/AEF)

Reproductions supplied by EDRS are the best that can be made *

from the original document.
**

tir

S DEPARTMENT OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION
CENTER 'ERIC,

O TN, document .-as beer reproduced ar
tecened Iron, 00t100 or 019.101/dt, n
ottpulattnp

o Mtnot changes bzwe been made to
t-bure.te rebroductton quably

PoRsts of view or 0p1710115 10,1100 In 111,,
d00.01,0r1I 00 not necet;SO.ily fefoosern
oIrmtAI OE RI postline rt, poky

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Donella Ingham

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

Paper (W3-201A)

Breadth-Oriented Outcomes Assessment in Computer
Science

David Cordes
Department of Computer Science
The University ofAlabama
Tuscaloosa, Al 35487
cordes@cs.ua.edu

Susan Vrbsky
Department of Computer Science
The University ofAlabama
Tuscaloosa, Al 35487
vrbsky@cs.ua.edu

Allen Parrish
Department of Computer Science
The University of Alabama
Tuscaloosa, AL 35487

parrisb@csua.edu

Key words: computer science, computing literacy, outcomes assessment

Abstract
Given the immaturity of computer science as a discipline, curriculum planning and organization remains a subject of

much debate. Moreover, little work has been done regarding the overall assessment of quality of computer science graduates

at the baccalaureate level. In this paper, we report on an initial prototype of an assessment instrument designed to evaluate

the breadth of knowledge of computer science seniors. The instrument seeks to evaluate two areas: technical knowledge and

knowledge of computing history and culture. Our results indicate that ourcurriculum does appear to contribute to students'

technical knowledge; however, students are emerging with very little knowledge of the history and culture of computing. As a

result of this apparent lack of knowledge, we are currently adding a new capstone course to our curriculum. This paper

discusses the design and rationale for this course.

BEST COPY AVAILABLE
National Educational CoVuting Conference 1994, Boston, XI

2

Introduction
To date, little work exists regarding the overall assessment of the quality of undergraduate computer science students.

Such quality assessment (often called outcomes assessment) is becoming a topic of increasing interest in other disciplines

(Light, 1992).

A number of techniques exist for performing outcomes assessment of computer science majors. Given that much of

computer science is oriented toward design and problem solving, an examination devoted to such activities is intuitively

appealing. However, one can excel at design and problem solving activities and yet fail to have a basic knowledge regarding

many fundamental computer science concepts. We believe that a successful computer science program should not only instill

design and problem solving skills, but should also provide the student with tae knowledge of basic, fundamental concepts

from across the breadth of the discipline. Moreover, the student should pos;ess the ability to recall, understand and utilize

such concepts. At the very least, a successful student should be able to converse on any of these concepts, even if the student

has not "mentally referenced" the concept for a long period of time. In this paper, we refer to the basic knowledge of a wide

variety of fundamental concepts about a discipline as breadth-oriented knowledge.

Based on the.se concerns, we have developed a prototype computer science outcomes assessment that tests for breadth-

oriented knowledge in computer science. In a recent pilot study, we administered this assessment to several distinct groups

of computer science students at The University of Alabama. This paper reports on the results of this pilot study. In this study,

we attempted to address three general areas: 7'-

1. Are our students graduating with breadth-oriented knowledge that spans the computer science discipline?

Do our students have an appropriate foundation of computer science concepts (in addition to whatever

problem solving skills they might have)?

2. Our computer science curriculum is desigred to be breadth-first, in the sense that it contains a breadth-

oriented introductory course (Cordes, 1992; Denning et al., 1989). Breadth-first curriculum design in

computer science has been a subject of considerable discussion and controversy (Baldwin, 1990;
Locklair, 1991; Motil, 1991; Pratt, 1990). What is the value of such a course in building a breadth of

knowledge about the discipline? How do students who have just finished a course coveringthe breadth of

the discipline compare (in terms of breadth knowledge) to advanced students who have primarily been

taking specialized courses for the past two years?

3. Are our students graduating with an appreciation of the history and culture of computing? As an example,

are students able to recognize the contributions of major figures in the computing field?

While (3) may be secondary in importance to technical knowledge, weconsider it ironic that students that are not

computer science majors may actually have a better exposure to these issues than our majors. Issues related to (3) are often

covered in computer literacy courses for non-majors. However, such issues often receive little coverage in majors courses

where there is often too little time to properly cover technical topics.

In the remainder of this paper, we report on the results of our pilot study. In Section 2, we address the general design of

our study, as well as the design of our assessment instrument. In Section 3, we address the above three sets of questions.

Section 4 SIIMMarizeS our conclusions and recommends several areas for future research.

Design of the Study
The pilot study took place during the Spring 1993 semester at the University of Alabama. The students involved in this

study ranged from second-semester freshman to graduating seniors. The test was given during a regular class meeting. None

of the students involved in the study knew of the_exam prior to that day, and thus had no preparation time. Specifics of the

organimtion and administration of the exam are provided in the following sections.

Exam Organization and Structure
The basic exam consisted of 100 questions. These questions covered the basic areas of the discipline (algorithms,

architecture, data structures, operating systems, programming languages, software engineering, history and cultural issues,

and basic computer literacy). The questions were divided into four basic categories, as shown below:

Basic definitions using multiple choice answers (25 questions)

Deeper questions, ones that required some analysis beyond simply kitowing the basic definitions, also

incorporating multiple choice answers (25 questions)

"Recreating the Revolution"

BEST COPY AVAILABLE

299

A second set of 'deep' questions, similar to the previous section only having True or False answers (20

questions)

More definitions, heavy on the history and culture of the discipline, using matching answers (30

questions)

The questions in these four sections attempted to provide a broad, uniform covering of the discipline of computing.The

first section of the exam consisted of basic definitions and terms that students within the discipline should know. The majority
of questions in this section were 'iteracy-based, 'that Is, the questions in it were general literacy questions. Sample questions

included items such as:

I. ASCII
a. American System for Coding Idioms and Icons

b. Applied Structured Coding with Intelligent Interfaces

c. 'American Standard Code for Information Interchange

d. Automated System Certification version II

2. Semiconductor
a. a compound with a limited ability to conduct an electrical charge

b. pure silicon, a tightly crystalline structure

c. the term used to refer collectively to a collector, base and emitter

d. a group of transistors connected by aluminum strips

The next two sections consisted of 'deeper' questions that required some actual thought on the paq of the student in
order to solve the problem. These questions were both multiple choice and true/false questions. Sample questions of each

category are shown below:

I. A depth-first search operates as follows:
a. start at a node, visit its neighbors, then visit Its neighbor's neighbors, etc.,

b. start at a node, visit one neighbor, then visit one of the neighbor's neighbors,etc., stopping when you

reach the depth of the graph

c. search a graph from one end to the other (graph depth) as quickly as possible

d. start at a node, visit one neighbor, then visit one of the neighbor's neighbors, etc., backtracking and trying

other unvisited neighbors until all nodes are visited

2. 'Frit; maximum number of items stored in a binary tree of height 4 is:

(a) 15 (b) 16 (c) 31 (d) 32

T/F A stack is simply a list where insertion and deletion are ensured to take place In FIFO (first-in-first-out)

order.

T/F Most compilers for high-level languages can detect infinite loops at compile time.

T/F For an ordered tree, the results of printing the tree in prefix and postfix order are identical.

The final section of questions consisted of additional basic definitions and terms, similar to the first section but using

matching. This section also placed a heavy emphasis on the historical and cultural Issues of ourdiscipline. A subset of

questions from the matching section is shown below:

1. big-endian A. designs sums-of-products from truth tables

2. bandwidth B. promoted structured programming constructs

3. brnaugh map C. the range of frequencies on a carrier signal

7

300 National Educational Conputing Conference 1991, Boston, AM

4

. . . .

t...:;:.,.:Ar.....:;,2;0::-4.,;1..1.:1,1-IIV

4. LL parsers

5. VonNeumann

6. Dijkstra

7. Kay

8. McCarthy

D. developed language SMALLTALK

E. orders bytes from left-to-right

F. top-down, recursive descent or table driven

G. developed language LISP

H. developed framework for modern-day computers

The exam, as it was originally designed, was intended to assess the knowledge of our students (at various stagcs within

their careers) regarding the technical information within the discipline. Thus, the majority of the examinati.ln emphasized the

technical issues associated with computing. However, a significant number (approximately 15% of the exam) focused on the

history and cultural issues associated with computer science. As this study was an Initial pilot project, it is anticipated that the

exam administered next Spring will focus more strongly on these cultural and historical issues.

Exam Administration
As mentioned previously, the exam was presented to the students (unannounced) during a regularly scheduled class

meeting towards the end of the Spring semester. The exam was administered to threedifferent classes, including a second-

semester freshman-level course, a sophomore/juniOr-level course, and a course consisting primarily of graduating seniors.

The three courses involved were:

CS 124: Introduction to Computer Science: This course is a second-semester freshman course. It assumes

as its pre-requisite CS 114 (Introduction to Computer Programming). Thus, all of the students within the

course are familiar with the concepts of programming and software development. It then develops a

breadth-first introduction to the discipline of computing as a whole. As the students are familiar with

programming issues, it is possible for them to implement prototypes andexamples of the various issues

the students are exploring (operating systems, compilers, complexity, etc.). Course content includes

algorithms, data structures, basic architecture, fundamentals of complexity and computability,and the

foundations of operating systems and programming languages.

CS 325: Software Development and Systems: This course is part of the 'middle tier of the major at the

University of Alabama. After students complete the first year of thediscipline, they must complete four

additional CS courses (data structures, assembler, discrete math, and this course) prior to moving on to

the upper-level courses in the discipline. Most of the students in this course have been in the major for

approximately one and a half years, and are ready to start taking senior-level courses thefollowing

semester. This course Is designed as a scaling course (Cordes & Parrish, 1993a; Cordes & Parrish,

1993b), migrating the student from a small-scale, single-person development environment to a large r-

scale software development environment.

CS 426: Introduction to Operating Systems: This is one of four required senior-level courses within the

major. All students must take this course prior to graduation, and the majority of the students in this

course were in their last semester at the University of Alabama when this exam was administered.

Each instructor involved in the study announced the test at the start of the period. After this, the remaining students N ere

given the exam and allowed 75 minutes in which to complete the exam. The exams were then accumulated and graded. An

analysis of the results (and their Implications) is presented in the following section.

Analysis of Results
In this section, we examine the results of our pilot study by looking at the three questions outlined in the introduction:

I. Do our graduating seniors (i.e., CS 426 students) possess adequate technical knowledge spanning the

breadth of the discipline?

2. Does the introductory breadth course ((5 124) contribute to breadth knowledge?

3. Do our students have adequate exposure to historical and cultural issues in computing?

These questions are addressed separately in the subsections below.

'Recreafing me Rezvhdion"
3) 1

-.1,.. . ,k- ..4.

Issue (1): Breadth of Technical Knowledge
To address this question, we wish to consider the performance of our seniors on technical questions. The results for all

three groups (based on the 88 technical questions) are given In Table 1 below.

Group I Mean Std. DO'. N

CS 124 40.8780 (45%) 9.3011 41

CS 325 50.2683 (57%) 10.2250 41

CS 426 60.0345 (68%) 8.4282 29

Table 1

Of course, the question of whether 68% is "good enough" is a subjective one. licwever, the mean GPA for the seniors

taking the exam is 2.88, indicating an overall C average for the group. Based on the typical procedure used here for exam
evaluation, a 68 Is a borderline C. So the technical score is roughly consistent with the quality of students taking the exam.

As an additional metric, we examined the total number of questions "mastered" by the three groups. We say that a

question Is 'mastered at level N' if at least A% of the students answered the question correctly. Table 2 below indicates the

number of technical questions mastered at the 66% (two-thirds) and 80% (four-fifths) levels by the three groups:

Group 66% 80%

CS 124 22 10

CS 325 32 19

CS 426 55 38

Table 2

Thus, at least two-thirds of the senior students mastered 55 questions (62% of total). While this number is not as high
as we would like, it does seem to represent mastery of a substantial percentage of the material, and provides a baseline

against which to compare in future studies.

Issue (2): Value of the Introductory Breadth Course
As discussed earlier, the inclusion of breadth-oriented introductory courses in cc -iputer science curricula has been the

source of some controversy. Much of the controversy has been centered on the contribution of the course in terms of

providing a foundation with respect to the overall discipline. The idea of having a breadth-oriented introductory course was
formalized In the well-bown Curriculum '89 report (Denning, et. al., 1989). However, others have suggested that computer
science curricula should adhere to a model where the foundation of the program should be based on depth-oriented courses
in design and problem solving, rather than exposure to material covering the entire breadth of the discipline (Baldwin, 1990;

Motil, 1991; Pratt, 1990).

One way to assess the contribution of breadth-oriented courses in providing a foundation for the remainder of the

curriculum, is to separately consider two questions:

1. Does a breadth-oriented introdliCtory course really contribute to breadth knowledge?

2. Does breadth knowledge provide a foundation for the remainder of the curriculum?

By administering a breadth-oriented exam to students completing CS 124, this study begins to address question (1). In

particular, consider Table 2 in Section 3.1 above. Two observations (one negative, one positive) are evident from this table:

Students completing CS 124 have only mastered (at the two-thirds level) about 25 of the material covered

on this exam. Thus, three-fourths of the questions were inaccessible to most of these students.
Consequently, there is 1 definite limitation to the degree of breadth students are able to obtain from a one-

semester COU roe.

BEST COPY AVAILABLE

302 NationalEatralional Coputing Coliferolce 1994, BostonVA

6

e

Students completing CS 124 mastered approximately 40 of the material mastered by the graduating

seniors. This is significant when considering that these students have only completed 8 hours in the

computer science curriculum (versus 45 hours for the seniors).

Thus, while students taking an introductory course ha.ve not mastered general questions spanning the entire breadth of

the discipline, thei have mastered a substantial percentage of what they likely will ultimately acquire.

Thus, while our introductory breadth course does not result in complete command of the breadth of the discipline, it

clearly contributes substantially to the breadth of knowledge that students ultimately obtain. Further research is needed to

determine whether an initial breadth course provides a good foundation for the rest of the curriculum.

Issue (3): History and Cultural Knowledge
As obsened earlier, there were 12 questions on the exam devoted to primarily "historical and cultural" Issues. All but

one of these questions required the identification of major contributors to computing and related disciplines. One additional

question required students to identify the meaning of the acronym "ACM" (Le., Association for Computing Machinery). The

list of major figures that students were required to identify Is as follows:

Dijkstra

Chomsky

Knuth

Babbage

McCarthy

Backus

Roussel

KaY

DeMorgan

VonNeurnann

Hoare

All of the questions related to this area are found in the matching section of the exam in the Appendix (Questions 71-

100).

As Tables 4 and 5 illustrate, student performance on this area of the exam was universally poor. Table 4 shows student

mean subscores on these 12 questions, while Table 5 shows the percentage of students from each class getting each que,tion

correct.

Group Mean Std. Dev. N

Cc 124 2.0488 (17%)

,

1.8021 41

CS 325 2.6098 (22%) 1.3206 41

CS 426 3.8966 (32%) 1.9151 29

Table 4

Question CS 121% CS 32;% CS 426%
,

Dijkstra 4.9 11.6 17.2

Roussel 11.6 2:1 27.6

Choms4 2.4 7.3 20.7

Kay 7.3 0.0 3..1

Kil u th 12.2 1-.1 2-.6

DeMoryn 7.3 26.8 31.5

Babbage 39.0 15.8 65.c

"Recreating Ibe Retviulion"

1

3

VonNeumann 17.1 34.1 44.8

McCarthy 17.1 2.4 17.2

Hoare 9.8 0.0 17.2

Backus 12.2 12.2 13.8

AGM 61.0 95.0 100.0

Table 5

Although this Is a small sample of questions, most students were unable to identify any of the major contributors to the
computing field. This is particularly problematic, given that computer literacy courses for non-mafors routinely cover many
of these contributors to the computing discipline. We suspect that although many of these individuals are mentioned from
time to time, students are never placed in a position of having to assimilate and organize information about all of them for
long-term recall. Consequently, our response to these results has been to deielop a new capstone course whose primary
purpose is to present a retrospective ewr a variety of non-technical issues in computing. This required course, entitled
"Ethical and Societal Issues in Computing," covers a variety of legal, ethical, historical and cultural issues. Its outline appears
as follows.

CS 440: Ethical and Societal Issues in Computing

V, .21(Topics

1-2

_

History and Culture of Computing
Defining the discipline of computer science
Major contributors to computing
ACM, IEEE, Turing Award

3-4 Ethics in Computing
Principles of Ethical Behavior/Case Studies
ACM Code of Professional Conduct

5-6 Computer Crime
Computer hackers, viruses and worms
Case studies of criminal activity

7-8 Computing Risks
Causes of computing failures/case studies
Safety-control techniques (software/hardware)

9-11 Legal Issues
Product liability
Software patents and copyrights
Intellectual Property Rights

12-15 Student Paper Presentations and Debates

This three (semester) hour course will be offered for the first time during the academic year 1994-95. Our objective in
offering this course is to ensure that students have a background in social and cultural issues that is (at the very least)
comparable to the tickgrounds of students emerging from non-major computer literacy courses. We also wanted to provide
a course that gives students an appropriate background in ethical and legal issues, Own the current interest in this subject
(Weiss, 1990). This course has the potential to combine both of these areas In a cost-effective fashion, and has the potential
to provide an opportunity for students to place many of these issues into perspective at the close of their undergraduate

experience.

BEST COPY AVAILAGLE

7111M1111.

304 National Educational Computing Conference 1994, Boston, MI

Conclusion
In this paper, we haw discussed _ results of a pilot study to conduct an outcomes assessment in a medium-scale state

university computer science program. Our assessment instrument was breadth-oriented, meaning that we were attempting to
assess student knowledge of facts spanning the breadth of the computer science discipline. Our results are threefold:

Graduating seniors have a degree of breadth knowledge roughly consistent with what one would expect,
given the quality of students surveyed.

The introductory breadth course does not provide breadth knowledge equivalent to what seniors obtain
after taking several advanced depth courses; however, a substantial amount of breadth material is covered
in that course.

Students have little knowledge of computing history and culture at all levels of the curriculum.

Much future work in this area is needed. In particular, dimensions of quality need to be identified and new assessment
instruments need to be developed to measure quality along these different dimensions. We believe that one of these
dimensions is knowledge of computing history and culture; a more det instrument should be developed measuring this
dimension. More studies need to be done to measure the value of breadM-first versus depth-first Introductory courses and
sequences. Finally, at our institution, we will continue this type of evaluation, and will give particular emphasis to evaluating
the success of our senior capstone course in computing history and culture.

References
Baldwin, D. (1990). Teaching introductory computer science as the science of algorithms. Proceedings of tbe Twenty -First

SIGCSE Technical Symposium on Computer Science Education (pp. 58-62).

Cordes, D. (1992). Introducing computer science to undergraduates. Proceedings of the National Educational Computing
Conference (pp. 280-283).

Cordes, D. and Parrish, A. (1993a). An incremental approach to software engineering in a science-based computing
curriculum. Proceedings of tbe 2l st Annual Computer Science Conference (pp. 182-188).

Cordes, D. and Parrish, A. (1993b). Ada as part of an incremental approach to software engineering. Proceedings of the
Seventh Annual ASSET Symposium (pp. 139-146).

Denning P., Corner, D., Gries, D., Mulder, M., Tucker, A., Turner, J. and Young, P. (1989). Computing as a discipline.
Communications of the ACV, 32 (1), 9-23.

Light, R. (1992). Explorations with Students and Faculty about Teaching, Learning and Student Life. In The Harvard
Assessment Seminars (pp. 1-50). Cambridge: Harvard University Press.

Locklair, G.H. (1991). The introductory computer science course. Proceedings of the Tuenty-Second SIGCSE Technical
Symposium on Computer Science Education (pp. 235-239).

Motif, J. (1991). Begin-BIG: An approach to the introductory computing course. Proceedings of the Twenly-Second SIGCSE
Technical Symposium on Computer Science Education (pp. 226-230).

Pratt, T.W. (1990). Upgrading CS1: An alternative to the proposed COCS survey course. Proceedings of the Twenty-First
SIGCSE Technical Symposium on Computer Science Education, (pp. 68-71).

Weiss, E. (1990). Self-Assessment VOL Communications of the ACM, 33 (11), 110-132.

a

