DOCUMENT RESUME

ED 396 680 IR 017 856

AUTHOR Holt, Richard C.

TITLE Object-Oriented Programming in High Schools the
Turing Way.

PUB DATE 94

NOTE 9p.; In: Recreating the Revolution. Proceedings of

the Annual National Educational Computing Conference
(15th, Boston, Massachusetts, June 13-15, 1994); see

IR 017 841.

Pu. TYPE Guides - Classroom Use - Teaching Guides (For
Teacher) (052) -- Reports - Descriptive (141) --
Speeches/Conference Papers (150)

EDRS PRICE MFO01/PCO1 Plus Postage.

DESCRIPTORS *Computer Science Education; *Educational Objectives;

Foreign Countries; High Schools; Instructional
Materials; *Learning Modules; Programming;
*Programming Languages

IDENTIFIERS *Object Oriented Programming

ABSTRACT

This paper proposes an approach to introducing
object-oriented concepts to high school computer science students
using the Object-Oriented Turing (0OT) language. Students can learn
about basic object-oriented (00) principles such as classes and
inheritance by using and expanding a collection of classes that draw
pictures like circles and happy faces. Materials are outlined for a
two-week teaching unit which support this approach. The units cover:
(1) three foundational 00 concepts: objects, classes and inheritance;
(2) diagrams and relations; (3) software development environments;
(4) the OOT language and environment; (5) OOT in an undergraduate
curriculum; and (6) OOT at the high school level. (Contains 17
references.) (Author/BEW)

e ste st oo o S o' ofe Yoot ¥ 3 o Yo 3k o Yo o't o6 e 3 v sk o oo o' o o oo ol o S ot o e o e oo vt e o o e e v oo o e e e ol de e st dle e s de e e de dedie sl o

* Reproductions supplied by EDRS are the best that can be made

from the original document.
Jege oo v oo o oo v e o v vt v ¥ v v o' ¥e v e ok e o v e e e ¥t Yo ot o' 3 v ot e de ool o oo o ot e oo gl e de ol de gl dle v dle e ol e e e e e e e e edledle dle ek

¥

(=)
[e¢]
O
O
N
on
Q
m
U8 DEPARTMENT OF B0 e
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

0O This document has peen reproduced as
recewed from the person of organization
ongmnating 1t

0O Mmor changes have been made 10
improve reproduction quanty

® points of view or opinIoNs stated in this
document do not necessanly represent
official OERI position of pohicy

“PERMISSiON TO REPRODUCE THIS

MATERIAL HAS BEEN GRANTED BY

__Donella Inghall
/__—/
1O THE EDUCATlONAL RESOURCES
lNFORMATlON GCENTER (ERICY.”
Paper (T4-201A)
Object-Oriented Pro ing i
. aramming in High $
Turing Way . gh Scheols the
Richard C. Hol!
Department of Computer Science
University of Toronto
8 King's College Road
Toronto Canada M55 144 L
(416) 978-8726
Fax: (416) 978-4765
_ bolt@csri.toronto.edu
S Key words: teachin i
' g g programiming, object-oriented i
. 3 ~ pro rammin
‘ \ Y2, science education, inheritance, teaching unit, Tur?n g g, computer
Xy
.
(Q
X 200 -
National Educational Computing Conference 1994, Bosion, MA

| 'KTC BEST COPY "‘"\“/A”:ABLE

Abstract

This paper proposes an approach to introduce object-oriented concepts to high school students using the Object-
Oriented Turing language. The students learn about the concepts of objects, classes and inheritance by using and expanding a
collection of classes that draw pictures such as circles and happy faces. Materials for a two-week teaching unit have been
developed to support this approach.

Introduction

There Is a race to develop new software to meet the ever increasing capacity of hardware. Hardware capacity, in terms
of both speed and memory, continues to double approximately every two years. Those individuals and countries with the
expertise to develop such software have the potential to realize great technological and economic gains.

This continuing demand for software requires new methods of development that help solve the central problem of
software creation. The basis of the problem lies in the inherently complex nature of software. What is needed are methods
that help us betier understand and control the software being developed. The advent of structured programming some years
ago was a large step in the direction of controlling this complexity. Object oriented (00) programming now promises similar
gains, because it divides software into distinct parts, called “objects” which communicate only in rigidly specified ways.

Alter reviewing the key principles of object oriented programiming that our students should learn, this paper discusses
the Object-Oriented Turing system, which was developed to support the teaching of programming and software engineering.
Next comes a discussion of the use of this system In teaching 00 ideas across a university cucriculum. Finally, the paper

presents experience using of the system with high school students and suggests how the system may be useful in high school
Computer Science courses.

Principles of 00 that We Should Teach

In this section, we will cover the key OO principles [Cox 87, Booch 91, Budd 91, Meyer 88] that a student should learn.
Tt should be emphasized that the ideas of object orientation reach weli beyond computer programming. Indeed, we should
think of the 00 approach as 2 method of problem solving {Yoder 1993}, which applies well to programming.

Three Foundational OO0 Concepts: Objects, Classes and Inheritance
Objects

The first and most important concept in 00 is called information hiding. Long before 00 became popular, this concept
was recognized as the “black box” principle. A black box is an item, such as a radio, that is understood in terms of its inputs
and outputs and ot by its internal construction. For the radio, its buttons and knobs characterize its input and the sound it
produces characterizes its output. In 00 terminology we refer to a black box as an “object”. In terms of software, the essence
of an object or black box Is that we hide data (and other internal implementation details) in a “box" and all that we can
manipulate or observe from the outside is the externally visible interface, mainly the exported subprograms (these are called
methods). 00 languages pruvide syntactic mechanisms to enforce this hiding.

Classes

The second foundational concept in 00 is the idea of 2 “class". A "ctass™ of objects is a set of obiects all of which are
the same, or sufficienty the same for our purposes. From a programming point of view, a class is 2 template from which we
can instantiate or replicate objects. Using our previous example, a class can be thought of as the design of a radio, from
which we can make many individual radios. In large software systems, we make constant use of soltware ok jects, such us files
and windows, which are (or are essentially) instances of classes. To make the concept of classes clear to the student, we
need exercises that use many objects. The book An Introduction to Object-Oriented Programming [Budd 91] gives a good
example of the use of objects, namely, a program that supports the game of solitaire using a class of playing cards and a class
of stacks of card .

Inheritance

The third key 00 concept Is called "inheritance”. Class D énberits from class C if class D contains all the items of
interest that C contains. For example, consider a nes radio design D, that is just like an old design C, except D adds a new
knob that activates a new external plug for ear phones. In this case, we say D inherits from C. We zay D is a C, meaning that
we can use a radio of design D for all the same purposes for which we can use a radio of design C.

There are actually two ways in which an inheriting class D can be different from its parent class C. First, it can extend or
add 1o the parent class. For example, 2 new subprogram or data field can be added. Second, it can change or arerride
certain kinds of items in the parent. The power button on the radio might be changed (overridden) to turn on a light on the
radio, as well as wrning on the internal circuits.

“Recreating the Revolution”

o 201

- .~ T T T T e e . 4 m e d4a s B o%oae c%a o ox
e b i i R TN et FomiR Anmvmdles mm tm s ek ar b cn et bimee e T e e
qw-l_a-;.w.-J-««u--..d_.’s‘.uua-m..—-‘-s.a.\-:-m.u&.-.:‘...._b.r....._---.-i PO SUNDE -. a
'

3 '

Overriding allows us to create similar but significantly different objects. For example, all objects that are Macintosh files
have much in common, but the effect of opening a particular file depends on the kind of file we open. For example, opening 2
HyperCard file is quite different from opening a Word Perfect file. This is because the open operation has been effectively

overridden for the various kinds of files. We say that Macintosh files are polymorphic because they react in varying ways to
the same operations. :

These are the three basic concepts of 00 (objects, classes and inheritance). In this discussion we have used the
metaphor of a radio and its design. We now turn to diagrammatic conventions for representing 00 concepts.

3 Diagrams and Relations

There are a number of important relationships among objects and classes, and these are best understood using
diagrammatic conventions. At the level of objects (instances), the two key relations are bas a and uses. Figure 1 gives a
diagram of an Account Manager object and a Check Book object. The arrow from the Account Manager to the Check Book
indicates that the Account Manager “uses” (calls) the Check Book. The Check Book object “has a" (contains) internal
variables (a tedger, which is an array of records that keep track of checks and withdrawals) and two externally visible
subprograms (Write Check and Make Withdrawal). The protrusion of Write Check and Make Wit drawal from Check Book

indicates that they are visible outside of Check Book. To keep the diagram simple, we do no. show the jtems contained in the
Account Manager.

Account Manager Check Book
uses
S \
‘ Ledger containing
records of checks and
withdrawals

[write Check J
1

Make Withdrawal

Figure 1. Example of diagrammatic conventions for objects,
showing the “uses” relation and the “has a” relation.

Among classes, the most important relation Is “lnherits", as illustrated in Figure 2, which shows that radio design D

inherits from radio design C. Another essential refation is “Instance of". For example, a particular radio object R, might be an
instance ¢! radio class D.

Semov eren g AVIAGE AT
REST O0RY AYAILASLE

202 - National Educational Computing Conferentce 1994, Bosion, MA i

e

B =hi yer

argev gk

E:ﬁic design of radio

~2

“ inherits
‘ D instance of R

: Extended design of A particular radio
' radio

Figure 2. Diagrammatic convention for classes and objects, showing the “Inherits” and “instance of" relations.
Rectangular boxes are objects. Rounded boxes are classes.

Students will understand 00 ideas much better when they have mastered these diagrammatic technicques. (There are
many diagrammatic conventions; the details of the one used for teaching are not important.) A student should be able to
visualize a given program’s structure in terms of these diagrams and conversely, be able to create a program that has been
designed using these diagranss.

The reason these diagrams are so useful for learning, is that they use our visual sensibilities to represent a rich set of
ideas. These ideas include the relations of “has 2", “uses”, “is 2", and “instance of* among objects and classes. These
diagrams concentrate on the software’s structure, allowing us to suppress implementaton detail 1o better understand
program design.

Software Development Environments

One of the most important ideas emerging from the Smalhialk language is that a programming emvironment, based on
appropriate principles, can significanty improve the way we program. A Smallalk environment includes on-line librarics. We
can browse through these tibraries of re-usable classes and experiment with them with great facility. Largely because of this.
Smallalk encourages rapid prototyping to a degree that has not been approached in most languages. Turbo (Bortund) -
environments for Pascal and C++ provide integrated environments that expedite the edit-compile-link-debug cycte.

Compared with these ersironments, the Smatlalk environment has the advantage of supporting larger scale programuiing, in
which off-the-shelf components can be assemnbled into new programs.

Missing {rom both Smalliatk and Turbo environments are tools that are commonly called CASE (Computer Aided
Software Engincering) facilities, These tools provide machine assistance for the diagrammatic approach that we have just
discussed. The student's learning can be greatly advanced if these tools are available in an integrated emvironment, which
ideally can generatte diagrars from software, can generate skeletal software from diagrams, and can check that the diagrams
and software are consistent. The 00T environment, which is described below, provides both diagrammuic capability and on-
line re-use librarfes,

Software development environments (SDEs), as exemplified by Smallalk, support a method of software creadon thi is
inherently faster and beteer than is possible using older paradigms. Those paradigms were limited t coliections of tools such
as editors, compilers, linkers, and debuggers.

Itis clear that the fund:umental concepts of 00 are closely related 1o ideas such as diagrammatic conventions, sofiware
development environments and software re-use. We will now discuss 00T, which is a language and environmient suitable for
teaching 00 ideas.

The OOT Language and Environment

The C++ and Smalltalk languages are perhaps the niost commonly mentioned languages for supporting the teaching of
J 00 concepts. Other tanguages which are good candidates for teaching 00 concepts include Objective ¢, Turbo Pascal with
. 00 extensions, Eiffel, Modula 3, and GLOS. We will not discuss these languages in any detail, but refer the reader to
' discussions of 00 tanguages appearing in the literature [Budd 91, Booch 911, In this section we will give an overview of the
Object-Oriented Turing language and software developmient system,

“Recreating the Rerolution” N 08

LRIC

The OOT software development environment was designed for use in teaching. It has evolved from the Turing language
(1ol 88] which is a Pascal-like languiage that is very easy to learn. Turing is now used In 30 universities and in half of the
high schools (about 400 schoots) in the Province of Ontario, where it is used on PCs and Macintoshes. The Turing
implementation used in high schools provides an integrated edit-compile-run system. QOT extends the basic Turing system by
providing more advanced programming features, including 0O features, and a sophisticated software development
environment. The 00T environment, up 10 now, has been used on Unix systems including SUNs, SGIs and IBM RS-6000's. A
version that runs on PCs under MS-Windows is expected to be available in Summer 1994. The OOT language and its SDE have
been described elsewhere [Mancoridis 92, Holt 92], so we shall only give an overview here. (See the Appendix for the way to
access the FTP on-line Unix demonstration of 0OT.)

With the advent of windowing systems, such as MicroSoft Windows for PCs, our students should be aware of the wiys in
which windowing facilitates programming. In the case of the 0OT SDE, individual windows encapsulate the distinct ideas that
the programmer deals with. For example, each source program object, such as the Account Manager in Figure 1, is displayed
in its own window. There are also windows to show the program’s output and to show ecror messages.

Perhaps O0T's most striking use of windows is the Landscape Window. This windew displays a diagram (called the
Landscape) with boxes representing the objects and classes in the program. For example, 4 Landscape view might show a
picture much like Figure 1 for the corresponding program. There is a “hot link” that allows the user to immediately access
the source code that corresponds to each box in the diagram.

Another window gives the Process Dump, which is a stack trace of called procedures that can be used to locate the
current line of execution. There are also windows, cailed Interface Views, that give the interfaces for objects such as the
Account Manager object (Figure 1). These Interface Views, which are automatcally created from the source programs, allow
the programmier to inspect the entry points (methods) of an object along with corresponding parameter types and comments.
Double clicking on the name of 2 method in an Interface ¥iew causes the corresponding source code to pop up in a window.

00T displays the current directory in a window, much as does a Macintosh. Double clicking on a name in this Viewer
causes a fresh window to be popped up. This new window shows the file's contents. The Direclory Yiewer serves as a browser
for inspecting objects and classes, as well as for the on-line language reference manual and for re-use librarfes.

Our purpose here is not to describe QOT in any detail [Holt 92] but rather clarify how much its faciliies may be of help
in teaching programming and Comguter Science conceplts.

00T in an Undergraduate Curriculum

This section discusses the use of 0T [Holt 1993] to introduce object-oriented concepts across the undergraduate
curriculum [Temte 91, Reid 92). The following section will focus on use of OGT with high school students.

At the University of Toronto, 00T is used in many courses, including courses on data structures, courses on coinpilers
and courses on operating systems, We will concentrate here on those courses which have used QOT explicity for teaching
object-oriented concepts. In particular, we will discuss our use of QOT for teaching these « sncepts in (1) an introduclory
programming course, (2) a course on programming paradigms and (3) a course on software engineering,

Since Fall 1992, the OOT software development environment has heen used in the University of Toronto introductory
classes in the Faculty of Applied Science and Engineering. These classes have followed a fairly traditional approach to
introductory computing at the university level, with emphasis on general computing concepts such as data structuring,
operating systems and networks as well as programming proper. For the first tme, in Fall 1993, a unit in one of these clr ses
is concentrating on object-orientation, with the goal of making students aware of the concepts of objects, classes and
inheritance. The students are required to complete a graphics-based assignment (much Lilie the one described below for the
use in high schools).

When these students are first introduced to 00T, they use only simple features, including a window containing their
program, an output window and the Directory Viewer.

0OT has been designed to be very easy for the novice to use [Milbrandt 1951]. The student begins, with little explicit
instruction, by using OOT's mouse-based Macintosh-like interface. The Turing language’s simple input/output and graphics
staternents allow students 10 begin writing programs immediately. For example, here is a complete program that outpuis
“Hello world™ and draws a green box on the screen with opposite corner coordinates at (10, 15) and (100, 120).

put *“Hello world”
drawbox (10, 15, 100, 120, Green)

204 - National Educational Computing Conference 1994, Boston, MA -

BEST COPY AVAILABLE

il b A el laead “aumae b Sutietenad

A AR o eI B Y

Wm0

N . 1a
n odaesonfe e Y,

L.

e

Fely s

- -

o Bpldaiplie

SR 4

.

o
|
|
i
1
|
l
i
;
|
|
!
|

;
%

The OOT system has a pay-as-you-play philosophy that allows students to learn more of the system as they master more
concepts. Only after the fundamentals of programming, including loops, arrays and subprograms, have been taught, are 00
concepts introduced.

Like many Computer Science departments, ours offers a course on programming paradigns, which is given in the third
year. Our course is actually titled Principles of Programming “anguages, but its real purpose is o acquaint students with
paradigms such as logic programming (PROLOG), functional programming (LISP), concurrency, and so on.

In a 4-week unit in this course, we use OOT 1o teach the 00 paradigm. This unit has as its goal o teach design
implications of 0O, at a much deeper level than is possible in an introductory course. By the time our students reach this
course, they have had considerable experience with Turing, though not generally its OO features, so little time is wasted
instructing them about syntactic issues of QOT. Although other languages, such as C++, are mentioned in the unit, only 00T
s covered In any depth. The students’ assignments are based on an existing class-intensive program called Star, which reads
00T programs and automatically creates diagrams on the screen for them that are analogous to Figure 2. The students are
required to enhance this program in various ways, for example, so it outputs PROLOG facts corresponding to the relations
among the 00T program's classes. This work exposes students to many issues of importance to software engineering,

including aviomatic program diagramming, program maintenance, and multple views of a program, 21l within an 00
context.

A fourth year University of Toronto course provides a standard coverage of software engjneering concepts [Sommenille
92}. This course uses an 00 approach in the following way. At the beginning of the course, the students are given a set of
rilestones representing the phases in the life cycle of 2 software “product” that teams of three students in the course are
required 1o create. The product last year was a Graphical User Interface (GUT) libraty written in QOT targeted for use by
other undergraduates. Ideally, the product would be used by other classes of students to allow them 1o incorporate GUI
support (menus, buttons, etc.) as a part of their programs.

The hardest part of the project was the design phase, namely, deciding upon the class hierarchy for user interface
objects. The goal was to provide an interesting exercise in software design, something that is 100 often missing in
undergraduate education. This project was intended to teach many software engineering concepts including the software life
cycle, tearn work, delivery of re-usable software, etc., all in 2 modern 0O environment, namely 00T,

This short discussion of use of OOT at the Unlversity of Toronto has been intended to illustrate how the teaching of 30
concepts is being introduced at the university level. We now turn to the question of teaching these concepts in high schaols
[McGregor 1992, Stephenson 1992, Funkhouser 1993].

OOT at the High School Level

Each swumer the Department of Computer Sclence at the University of Toronto teaches a short summer course to
selected high school students on principles of Computer Science. Last summer 02 students participated in this intensive 3-
week course,

For the last two summers, these students have been introduced to OO concepts, in a unit in this summer course, in the
fotlowing way. First the students practice the fundamentals of programming: loops, IFs, subprograms and simple data
structures, as well as simple graphics. Then, they are exposed to OO concepts (objects, classes, and inheritance) by means of
an assignment based on a simple class library for drawing Gigures. This library (see Figure 3) consists of a tree of classes.

“Recreating the Revolution"”

- 205 -

RS CRP R TOUNPLUIN: ST I RIS TEI 1O R SRPTIr S D IRIP I SN TV D PN IRPRAL YRSV IR 4L S L ekl etk e 2 mdwar sl sl e
“1

Circle |

Sad Face

®©

Figure 3. A class hierarchy used for Introducing students to 00 concepts.
The arrows show inheritance.

The root of the class tree called Figure. It represents objects that can, in principle, be drawn on the screen and later
erased. The actual bodies for the draw and erase procedures of the Figure class are omitted. In other words, Figure is an
“abstract” (or “virtual") class that represents all objects that can be drawn and erased, but does not represent any particular
figure. Classes such as Rectangle and Circle, which descend from (inherit from) the Figure class, provide actual code to draw

and erase particular figures. (In the actual assignment, there is also code to set the color, size and position of figures, but
these details will be ignored in this paper.)

The students are provided with a library that implements the hierarchy showt in Figure 3, but without the HappyFace
and SadFace classes. The students are required to enhance the library with the missing classes and 10 have their program
draw an interesting scene on the screen using these classes.

Since the assignment is so graphical, 1t is easily explained to students. They are clearly pleased with the results of their
work, which displays a picture on the screen. The objective of this exercise s to give introductory students a good feel for 00
concepts, including use of libraries and SDEs.

This experience with high school students suggests that teaching object-orientation at the high school level, using
software support such as that provided by 0OT, is straightforward and can be quite rewarding to the students. The approach
assumes an initial introduction to fundamental programming ideas and follows immediately with 00 ideas. The emphasis on
graphics makes the work exciting to the students and makes the ideas much easier to grasp.

Using the experience from these courses, the author has developed a two-week 0O teaching unit for use in high schools.
The urit is supported by a 19 page hand out for the students, which includes exercises. Each concept is first introduced at the
“everyday level”, that is, in terms of familiar objects such as radios. Then the students are introduced to the corresponding
00 concept at the level of programming. The students use a collection of classes, similar to the collection described here, to
gain experience with actual 00 programming, using the Object-Oriented Turing system. The student should have experience
with a programming language such as Pascal, C or Basic and a familiarity with procedures before covering this unit. The
Appendix tells how to access this teaching material and software.

The state of the art in computer software Is constantly changing [Stephenson 1990]. We should not be surprised that
there are new ideas, such as 0O concepts, that need to be Introduced Into our schools. The design of Computer Science
curricula for high schools [Merrit 1993) is 2 never ending job, repeatedly introducing new concepts when they are seen to
be intellectually Interesting and industrially justified. It seems clear that OO concepts have now reached this stage, and itis
only a queston of how, not whether to introduce these ideas Into our schools. The good news is that 00 concepts can be
nicely integrated with high school Computer Science teaching without a great deal of change in the approaches we have
already been using.

National Edvcational Computing Conference 1994, Boston, MA

BEST COPY AVAILABLE

B

R e e it taae N

ROV SRt e Sk Aa e o

.

Tt a%e N T A 1 del KIS A aei A e e AL 2w T REB T VI P e SHLL ST B ot L T et e T ek i RAY S K S L e

Conclusions

This paper suggests that, given an appropriate software development environment such as 00T, sophisticated 00 ideas
can and should be taught at the high .chool level. A radical change Is not required in teaching programming fundamentals.
Instead, once the fundamentals are introduced, a new direction, the QO direction, {s followed in a natural and rewarding way.

References

[Budd 1991) Budd, T. An Introduction to Obfect-Oriented Programming. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1991.

[Booch 1991] Booch, G. Obfect-Oriented Design with Applications. Benjamin/Cummings, Redwood City, Calif, 1991.

[Cox 1987] Object-Oriented Programming: An Evolutionary Approach. Addison-Wesley Publishing Company, Reading,
Massachusetss.

[Funkhouser 1993] Funkhouser, C. OOPS? Iis Basic, Journal of Computer Science Education, Summer 1993, pp. 21-27.

[Holt 1988] Holt, R. . and Cordy, J.R. The Turing Programming Language. Comm. ACM 31, 12 (Dec. 1988), 1410-1i23.

[Holt 1992] Holt, R. C. Turing Reference Manual, Third Edition, Holt Software Associates Inc., March 1990, 301 pages,
Toronto.

[Holt 1993] Holt, R. C. Introducing Undergraduates to Object Orientation Using the Turing Language, Department of
Computer Science, University of Toronto, July 1993 (unpublished).

[Mancoridis 1993] Mancoridis, S., Holt, R., and Penny, D. A “Curriculum-Cycle” Environment for Teaching Programniing.
24th SIGCSE Technical Symposfum, Assoc. for Computing Machinery, Feb. 18-19, Indianapolis, Indiana, SIGCSE
Bulletin 25, 1 (Mar. 1993).

[McGregor 1992] The Role of Object-Oriented Development Techniques in Computer Science Education. John McGregor,
Moderator, Proceedings NECC 92, Dallas, pg. 40.

[Merrit 1993] Merrit, S. ACM Mode! High School Curriculum, Session in Proceeding of NECC 93, Orando. June 1993.

[Meyer 1988] Meyer, B. Object-Oriented Software Construction. Prentice-Hall Intemational, London, 1988.

[Milbrandt 1991] Milbrandt, G. Comparison of BASIC, Turing, Pascal and C for Computer Studies Courses, Journal of
Computer Science Education, Summer 1991, pp. 11-14. :

[Stephenson 1990] Stephenson, C. Changing Trends in High School Programming, Journal of Computer Science Education,
Winter 1990, pp. 6-11.

[Reid 1992] Reid, R. The Object-Oriented Paradigm in CS1. 24th SIGCSE Technical Symposium, Assoc. for Computing
Machinery, Feb. 1819, Indianapolis, Indiana, SIGCSE Bulletin 25, 1 (Mar. 1993), pp. 265-269.

[Sommenville 1992] Sommenrville, 1an, Soffuare Engineering, Fourth Edition. Addison-Wesley, 649 pp., 1992.

[Temte 91] Temte, M.c2. Let's Begin Introducing the Object-Oriented Paradigm. SIGSCE Bulletin 23, 1 (March 19911, 73-7".

[Yoder 1993] Yoder, S. and Moirsund, D. Do Teachers Need to Know About Programming? Journal of Computing in Teacler
Education, Vol. 9, No. 3, Spririg 1993, pp. 21-26.

Appendix: Access to Teaching Unit and OOT Software

A copy of the two-week unit for teaching 0O concepts is availble from the author. A demonstration version of the
Object-Oriented Turing system for MicroSoft Windows can also be requested. This version comes with the collection of
classes used in the teaching unit.

For those people with access to Unix, there is an on-line demonstration version of Unix OOT {rom the University of
Toronto that can be accessed by anonymous FTP (File Transfer Protocol). The OOT environment has been implemented on
various Unix platforms, such as Sun/4’s, R$/6000 and SGI. If you have access to the Internet and Unix, you can get
instructions 1o access the demo by these commands on Unix:

$ftp 128.100.1.192
ftp> cd pub

ftp> get ootDistrib
ftp> quit

The ootDistrib file in your directory will now contain details on getting the demo.

“Recreating the Rerolution”

J

-

