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Abstract

Data reduction techniques seek to combine variables that account for patterns of

variation in observed dependent variables in such a way that a simpler model is available

for analysis. Factor analysis is a data reduction technique that attempts to model or

explain a set of variables in terms of their associations. To understand why this technique .

yields an accurate analysis, an examination of the mathematical models underlying the

procedure is necessary. Execution of factor analysis by SAS and SPSS will then not be a

"black box". Mathematical models underlying true factor analysis and principal

components analysis are presented and discussed. An explanation of terms and basic

differences is given in terms of the mathematical models. A small, heuristic example to

illustrate the concepts and matrix algebra procedures involved in the factor analysis data

reduction technique is included.
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Data Reduction Techniques

Data reduction techniques discussed in this paper are generalized regression-like

techniques. In regression, the decision to keep regressors in the model is based on finding

the "smallest-largest" subset of regressorssmallest in the sense that costs associated with

a large number of variables should be minimized; largest in the sense that enough variables

need to be retained for reliable predictions to maximize variance accounted for by the

variables. There is no om statistical procedure to find this best subset of variables and

personal judgment is required, as it is in all statistical analysis (Seber, 1977). To illustrate

the magnitude of the number of possible regressions for a given situation, suppose that

there are k possible regressors. Since each regressor is either in the equation or not,

there are 2k possible such regressions. If k is large, 2" becomes extremely large,

quickly, e.g., 2" = 32,768.

Methods for Selection of Subsets

The type of method used to select a regression subset or reduce the data varies

based on the type of analysis performed. Specific methods discussed in the present paper'

are common (principal) factor analysis, principal components analysis and principal

components factor analysis. Figure 1 shows the relationship between these methods and

other common methods such as confirmatory factor analysis, exploratlry factor analysis

and maximum-likelihood factor analysis. Principal components factor analysis is a

combination of the two primary methods, principal components analysis and common

factor analysis. The other three methods, confirmatory factor analysis, exploratory factor

analysis and maximum-likelihood factor analysis are considered types of true factor

analysis. Maximum-likelihood analysis is frequently employed within both confirmatory

and exploratory factor analysis.

Differences between principal components analysis and common factor analysis are

illustrated here during a general explanation of factor analysis and a small, heuristic

example of principal factor analysis is presented. Procedures involving the factor analysis



model as a basis have been more widely used and are generally better developed (Velicer

& Jackson, 1990).

All generalized regression, data reduction techniques estimate parameters of

regression-like linear models. Indeed, since canonical correlation analysis subsumes all

parametric statistic methods (e.g., ANOVA, /-tests, discriminant analysis) as special cases

(Knapp, 1978), and since canonical correlation analysis invokes a principal components

analysis as part of its mathematics (Thompson, 1984), therefore all parametric methods

implicitly invoke some ldnd of factor analytic logic.

Factor analytic techniques are multivatiable, like the reality being modeled, and can

be understood through the mathematics of matrix algebra. Each seeks a way to combine

variables that accounts for patterns of variation in the observed dependent variables. This

yields a simpler model, making finther analysis less complicated. The following discussion

is an introduction to factor analysis with similarities and differences to principal

components analysis highlighted.

Principal (Convnon) Factor Analysis versus Principal Components Analysis

Factor analysis, like principal components analysis, regresses standardized

observed variables on a set of unobserved factors. Factors are the underlying components

or dimensions for which estimates of values are obtained. Factor analysis is a statistical

model that includes unique, uncorrelated error terms, whereas principal components

analysis is simply a mathematical transformation of data (Hamilton, 1992). Factor

analysis attempts to model each of k standardized observed variables zk as a linear

combination of j unobserved factors Fi , where j < k, along with an error term for each

observed variable, tik . The factors Fi are common factors, since each of the observed

variables zk is written in terms of these factors. The error term tsk is called the unique

factor, as each observed variable has it's own uniquely determined residual. In general, the

linear fitnction for each zk has appearance
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(1) Zk = 41 Fl + Ik2F2+...+1k jFj + Uk .

The /Ai are equivalent to standardized regression coefficients and are called factor

loadings. If there is only one factor or if the factors are all orthogonal (uncorrelated), the

factor loadings are equivalent to the correlation between that factor and the observed

variable. The matrix notation for this model is

(1)' Z=FL'+U,

where L' represents the transpose of the matrix containing the factor loadings.

Principal components analysis is a mathematical transformation of the data on the

k observed variables represented by k principal components or factors. There is no

unique factor or error term since k principal components will exactly explain all the

variance of k observed variables (Hamilton, 1992). Principal components analysis is

simpler mathematically than factor analysis and is a mathematical maximization procedure

that uses uncorrelated linear functions. The linear funt,tion for principal components

analysis is:

(2) Zk = Ik1F1+1k2F2+''+111*Fk

Model (2) is similar to model (1) without the Uk term and j = k. The matrix equation

(2)' will look like (1)' without the U matrix.

(2)' Z=FL'.

Principal components factor analysis is a combination of true factor analysis and

principal components analysis in that if less than k factors explain a large amount of the

variance of the observed variables, those factors will be used and an error term Vk will be

introduced to represent the shared residual for each linear combination of factors. The

difference between the Vk error terms and the Uk error terms for the true factor analysis
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model is that the vk are not unique, i.e., have nonzero correlation. Principal components

factor analysis yields a principal components factor model that resembles the true factor

analysis model and is

(3) Zk = 41F1 42F2+...+14Fj yk,

where vk = j+IFj+1 + lk j+2FJ+2+...+1k,kFk. The vk linear function shows that

these residuals cannot be uncorrelated as in the true factor analysis model (Hamilton,

1992). For the remainder of this paper, the term principal components analysis will refer

to model (3), since most researchers combine true factor analysis and principal

components analysis into this mndel. The controversy regarding the similarities and

differences between these three techniques is a lengthy issue. This paper will address only

obvious differences in the representations of the mathematical models. For more extensive

discussions of Component Analysis versus Common Factor Analysis see the January

(1990) issue of the Journal of the Society of Multivariate Experimental Psychology,

Multivariate Behavioral Research.

Factor analysis centers on attempting to explain a set of observed wriables in

terms of their correlations. Principal components analysis centers on attempting to explain

a set of observed variables in terms of their variance. The decision as to which of the

methods to use in an analysis in not clear-cut especially as these methods produce similar

results when applied to strongly correlated data. Confusion with terminology and

computer packages further complicate the choices, as principal components is typically

listed as an option within a factor analysis computer package. Principal components

analysis is the default method for extraction in SPSS. If true factor analysis is desired, the

researcher must indicate another method of extraction, e.g., principal axis factoring

(Pedhazur & Smelkin, 1991). Component analysis will typically involve less computer

processing time.
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"Principal components appeals more to a 'data analysis' perspective, whereas

factor analysis fits better with a 'model building' approach," as Hamilton (1992, P. 252)

noted. The goal of both types of analytes is to find subsets of variables that are both

highly correlated and weakly (or not at all) correlated with each other. Patterns for how

the variables cluster are determined.

The goal of data reduction examines output in terms of which factors to retain in

the model. Each factor will have an associated eigenvalue, denoted A. (lambda), to help

in determining retention. Mathematically, eigenvalues are the roots of the characteristic

polynomial associated with a given matrix. In the data reduction techniques, eigenvalues

represent the variances of the original components. In principal components analysis,

since k components explain k standardized variables, the sum of the eigenvalues will

equal the number of variables. A component that has an eigenvalue of less than one will

account for less than a single variables' variation since each standardized variable has

variance of one. Thus, for principal components analysis, components with ?. 1 are

retained in the model. For true factor analysis, eigenvalues are typically smaller and the

eigenvalue greater than one criterion is inappropriate and not as useful (Pedhazur &

Smelkin, 1991).

An analyst must bear in mind that these are simply recommendations and a large

amount of subjectivity and thought are required when making these complex decisions.

Substantive issues must be considered in the specific context of each particular research

situation.

Screeplots can be helpful to get an overview of the data. A screeplot is a plot of

eigenvalues in descending order plotted against the factor number. As the slope of the

lines between points becomes less steep or smaller, a leveling off becomes apparent. A

clear break in the slopes, i.e., where they begin to approach a horizontal line, will help a

researcher determine a useful or natural cut-off for contributing factors.

5



Since true factor analysis centers on correlations between the original observed

variables, a correlation matrix R must be obtained. The original observed variables are

first standardized and placed in a data matrix Z. To form the original correlation matrix

R, the vectors (columns) of Z must be normalized by taking the product A =

Z . This scalar multiple takes out the IF:71. factor introduced by the standard

deviation in the computation of the z-scores. The correlation matrix is the product of the

matrix A and it's transpose A' . Thus, R x, A 'A and has ones on its major diagonal.

Factor analysis uses a modified correlation matrix, R*, which has estimates of the

proportion of a variables explained variance on the major diagonal instead of ones, like the

original R. Principal components analysis does not involve this reduction of the variance

on the diagonal elements. The reduced variance terms are referred to as communality and

are denoted hI. These values represent the proportion of varianct ,txplained by the

extracted factors. The predictor is taken as the dependent variable and the factors are

taken as the independent variables. One approach to estimating these values uses the

coefficient of determination R. These values would appear on the major diagonal of

R* as the initial estimates of hl . Each Ri2 , 1Si sk, is determined by regressing the

th standardized observed variable zi on the remaining standardized observed variables

Matrix algebra allows this computation by first forming R-1 ,

the inverse of the correlation matrix R. Take the diagonal entries of R-1 , invert them

and subtract them from I. The resulting values become the initial estimates of the

communalities h and are riaced on the diagonal of R*. Thus, for a kxk correlation

matrix R, the initial R* is given by

R* R- I +[diag(R-1)1-1 where I is the k x k identity matrix.

6
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The initial modified correlation matrix has the form

r12

[R?Pi= 141 .1?1

rkl 42

Mi

I??

It follows that R = R* + Q where Q is the diagonal matrix containing the error terms

u on the major diagonal and zeros everywhere else.
n

The initial factor loadings are derived by extracting the principal eigenvalues and

forming the corresponding eigenvectors el, ...,ef , 15jk, each having norm (length)

i
one. Set a. = E ein2, n = 1,...,k . Then each a, will be the sum of squares of the nth

a...a

entries in each of the eigenvectors and hi! = 1 fin = a. .

Once the initial factor loadings are derived, the new R* is given by

R* = R - I +

(ai
0
.
:

,0

0

a2

0

-

0

..
0

0\
i

0

ak,

the new estimates for the communalities on the main diagonal. Iterations are performed

until the communality estimates are stable.

Principal components first determines the factor loadings /id to compute the

communalities directly. The residual is then found by vk =1-4. Principal components

analysis performs no iterations of any kind and does not begin with estimates. Some

researchers are uncomfortable with the estimation involved in the true factor analysis

procedure (Stevens, 1992), along with other objections with respect to multicollinearities

(Hawkins, 1973).



Each factor can now be expressed in terms of the original variables. During the

process of attempting to combine variables, composites called factor scores are formed.

These scores derive from the coefficients found by the regression of factors on the

observed variables. Factor scores are estimates of the factors and can be found by first

computing the eigenvalues and corresponding eigenvectors for the last R*. The first

factor F1 will be a linear combination of the original variables that explains the most

variance. Ms will be the factor that has the largest eigenvalue. The second factor F2

will have the second largest eigenvalue, and so on. Each factor can be expressed as

(4) F;=enlz1 + +enkzk' n=1,...,j,
e

where = 1. In matrix notation F. = Zen, 1 n j where inen= 1 and

i=1

ejem= 0, for all j < m, since each component is uncorrelated with every other

component (Hamilton, 1992).

Factor scores replace the original observed scorw and can be analyzed or

interpreted like any other variable through regression, etc., as a subsequent analysis. If the

same number of factors are retained from both factor analysis and principal components

analysis, and when the factors are well-defined, highly similar results are expected from

the two methods. Veneer and Jackson (1990) report a correlation of .99 or better

between alternative types of scores in this situation. Even when loadings were low and

factors were poorly defined with few variables per factor, correlations were .9 or more.

"Improvements in the quality of the data increased the degree of similarity" (Velicer &

Jackson, 1990, p. 6). Some of the observed differences between the two methods are

thought to be the result of overextraction of the number of components by the Kaiser rule;

the default in many computer programs that employ principal components analysis.

Maximum-likelihood factor analysis done with large sample sizes can also cause problems



with overextraction (Tucker & Lewis, 1973). This test assumes a multivariate normal

distribution. Zwick and Velicer (1986) provide more on this topic.

A rotation of the factor loadings is sometimes required to simplify the factor

structure and make the factors more interpretable. If only one factor is retained in the

model, then rotation is ignored. Mathematically, rotation is a transformation or a rotating

of the axes represented by the fsctors about the origin that enables variables to load more

strongly or polarize on a single factor. Orthogonal rotation holds the factor axes

perpendicular, i.e., keeps them uncorrelated during rotation. The factor loading matrix L,

having columns 4,--t; is multiplied by an orthogonal transformation matrix

M, to obtain a new factor loading matrix LA, where LA LM. Then a least squares-

like procedure is invoked. See Gorsuch (1983) for a discussion of various rotations.

Oblique rotation permits acute angles (correlation) between the factor axes. This

type of rotation permits further polarization and involves a nonorthogonal matrix

transformation represented by the matrix equation L*A = LAP, where L** is the matrix

of new factor loadings and P is the nonorthogonal transformation matrix. Oblique

rotation is more complex than orthogonal rotation and somewhat arbitrary, but since the

loadings are further polarized, it provides easier interpretation. An analyst should use

different rotation methods and examine the results. If different methods reach the same

results, conclusions can be considered stable (Hamilton, 1992). The two types of rotation

"reflect different frames of reference in viewing phenomena" (Pedhazur & Smelkin, p.

615). Communalities are not affected by rotation or type of rotation.

Eumole

Suppose a survey of 5 questions concerning treatment by peers was given to 10

lecturers in a certain department at a large university. The questions are listed in Table 1.

Insert Table 1 about here
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The responses are recorded in a raw data matrix X, where a negative response is coded

as 0 and a positive response is coded as 1.
-0 0 1 0 1-
0 0 1 1 1

0 1 0 0 0
1 1 1 1 1

X :=
0 0
0 1

1

0
0
1

1

1

1 1 0 1 1

0 1 1 1 1

0 0 1 1 1

1_0 0 1 1 1_

The matrix is entered into a MAPLE session (a computer algebra system), after loading

the linear algebra package and setting the digits to 6. The statistics package is also

loaded. The exact MAPLE commands for this example are listed in appendix A.

A matrix of z-scores needs to be computed. The mean and standard deviation of

each column of X is listed in Table 2. Exact arithmetic was used throughout all

computations and then converted to 6 decimal places as each of the matrices needed to

be examined. Only the decimal representations of the matrices are given in this paper, but

the MAPLE commands for both the exaCt arithmetiC matriCes and the decimal

representations are listed in appendix A.

The matrix Z of standardized

Insert Table 2 about here

variables is
--.474342 -.948684 .621059 -1.44914 .316228-
-.474342 -.948684 .621059 .621059 .316228
-.474342 .948684 -1.44914 -1.44914 -2.84605
1.89737 .948684 .621059 .621059 .316228

Z :=
-.474342 -.948684
-.474342 .948684

.621059
-1.44914

-1.44914
.621059

.316228

.316228
1.89737 .948684 -1.44914 .621059 .316228
-.474342 .948684 .621059 .621059 .316228
-.474342 -.948684 .621059 .621059 .316228
-.474342 -.948684 .621059 .621059 .316228

10
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Each column in Z must be normalized (given length 1) so that the correlation

matrix R can be computed. This normalized data is fisted in a matrix A.

-.158114 -.316228 .207020
-.158114 -.316228 .207020
-.158114 .316228 -.483046

A :=

.632456
-.158114
-.158114
.632456
-.158114
-.158114
-.158114

To obtain R, find A'

[1.00000
.500000

R:= -.218219
.327326
.166666

.316228 .207020
-.316228 .207020

. 316228 -.483046

. 316228 -.483046

.316228 .207020
-.316228 .207020
-.316228 .207020

-.483046
.207020
-.483046
.207020
-.483046
.207020
.207020
.207020
.207020
.207020

.105409
.105409
-.948684
.105409
.105409
.105409
.105409
.105409
.105409
.105409_

(A transpose) and form the matrix product R = A'A .
.500000 -.218219 .327326 .166666
1.00000 -.654658 .218221 -.333334

-.654658 .999999 .0476189 .509178
.218221 .0476189 .999998 .509177
-.333334 .509178 .509177 1.00000

To obtain the initial estimates of the communalities or shared variances, R-1 (the

inverse of R) is computed.

1.60000 -1.

[

0 0 -.6000001
-1. 2.70833 1.14565 -.763767 .875000

Rim. -I 0 1.14565 2.10000 0 -.687389
0 -.763767 0 1.75000 -1.14565

-.600000 .875000 -.687389 -1.14565 2.32500

The diagonal entries are inverted and subtracted from 1. The resulting values become the

new entries along the diagonal of R*.

[

.375000 .500000 -.218219 .327326 .166666
.500000 .630769 -.654658 .218221 -.333334

Rstar = -.218219 -.654658 .523809 .0476189 .509178
.327326 .218221 .0476189 .428569 .509177
.166666 -.333334 .509178 .509177 .569892

To start the iterative process, the eigenvalues of R* are found.

-.237107, -.138579, -.427933 10-6, 1.21591, 1.68782

11
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Two of the eigenvakes are positive and three are negative. The eigenvectors

corresponding to the positive eigenvalues are found. MAPLE will return these

eigenvectors already scaled to have norm 1.

e I :=[.477755 .238664 .0775400 .630349 .558054]

e2 -.282451 -.629440 .590471 .009117 .418665 ]

The next R* is formed by taking the sums of squares of the corresponding entries

in these two eigenvectors and placing them on the diagonal as new estimates of the

communalities.

[.308029

.500000 -.218219 .327326 .166666
.500000 .453156 -.654658 .218221 -.333334

newRstar 7--- -.218219 -.654658 .354667 .0476189 .509178
.327326 .218221 .0476189 .397421 .509177
.166666 -.333334 .509178 .509177 .486704

This process will be repeated until the R* matrix converges. Convergence can be

checked by looking at the difference in the last two consecutive R* matrices.

The next iteration yields the eigenvalues

-.352971, -.275860, -.0627888,

and new R* matrix

1.15194, 1.53967

.500000 -.218219 .327326 .166666
.500000 .435714 -.654658 .218221 -.333334

{.316082

-.218219 -.654658 .344568 .0476189 .509178
.327326 .218221 .0476189 .417134 .509177
.166666 -.333334 .509178 .509177 .496483

Four more iterations are given
.500000 -.218219 .327326 .166666

.500000 .431027 -.654658 .218221 -.333334
{.317330

-.218219 -.654658 .343960 .0476189 .509178
.327326 .218221 .0476189 .423766 .509177
.166666 -.333334 .509178 .509177 .483915

.500000 -.218219 .327326 .166666
.500000 .429600 -.654658 .218221 -.333334

{.317135

-.218219 -.654658 .344579 .0476189 .509178
.327326 .218221 .0476189 .426671 .509177
.166666 -.333334 .509178 .509177 .482011



.500000 -.218219 .327326 .166666
.500000 .429128 -.654658 .218221 -.333334

[.316738

-.218219 -.654658 .345089 .0476189 .509178
.327326 .218221 .0476189 .428192 .509177
.166666 -.333334 .509178 .509177 .480855

.316402 .500000 -.218219 .327326 .166666

.500000 .428960 -.654658 .218221 -.333334
-.218219 -.654658 .345384 .0476189 .509178
.327326 .218221 .0476189 .429057 .509177
.166666 -.333334 .509178 .509177 .480177

and then a check for convergence:
-.000336 0 0 0 0

0 -.000168 0 0 0
0 0 .000295 0 0
0 0 0 .000865 0
0 0 0 0 -.000678

Two more iterations
.316173 .500000 -.218219 .327326 .166666
.500000 .428907 -.654658 .218221 -.333334
-.218219 -.654658 .345551 .0476189 .509178
.327326 .218221 .0476189 .429576 .509177
.166666 -.333334 .509178 .509177 .479794

.500000 -.218219 .327326 .166666
.500000 .428888 -.654658 .218221 -.333334

[.316016

-.218219 -.654658 .345646 .0476189 .509178
.327326 .218221 .0476189 .429888 .509177
.166666 -.333334 .509178 .509177 .479573

and a check for convergence:
-.000157 0 0 0 0

0 -.000019 0 0 0
0 0 .000095 0 0
0 0 0 .000312 0
0 0 0 0 -.000221

Two more iterations
.500000 -.218219 .327326 .166666

.500000 .428879 -.654658 .218221 -.333334
[.315913

-.218219 -.654658 .345685 .0476189 .509178
.327326 .218221 .0476189 .430062 .509177
.166666 -.333334 .509178 .509177 .479427



.500000 -.218219 .327326 .166666
.500000 .428876 -.654658 .218221 -.33333.1

[.315847

-.218219 -.654658 .345713 .0476189 .509178
.327326 .218221 .0476189 .430176 .509177
.166666 -.333334 .509178 .509177 .479350

and another check for convergence:
-.000066 0 0 0 0

0 -.3 10-5 0 0 0

0 0 .000028 0 0

0 0 0 .000114 0
0 0 0 0 -.000077_

That is close enough.

To obtain estimates of the principal factors, find the eigenvalues and eigenvectors

of the last R*. The principal factors are the product of Z and these eigenvectors, and

are given by

Fl := [4.19815 .158920 -2.54522 1.74197 -1.19815 .490422 1.63098
.601408 .158920 .158920]

F2 .-=[ 1.18905 1.23712 -2.58979 -.613639 1.18905 -1.13620 -1.82583
.0759950 1.23712 1.23712]

A screeplot of the eigenvalues from the last iteration is given in figure 2.

Insert Figure 2 about here

Conclusion

Factor analysis is a regression-like data reduction technique that involves a

generalized least squares procedure. As with all data reduction techniques, factor analysis

seeks to combine variables into common, underlying factors that can be further analyzed.

Matrix algebra helps illustrate the dynamic involved in the procedure. A computer algebra

system such as MAPLE makes the matrix algebra bearable. An examination of factor

analysis in this manner makes clear the processes that SAS and SPSS execute and do not

allow them to be a black box.
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Table 1

Five questions asked to lecturers

X 1: Do you feel you have input in departmental decisions?

X2: Do you feel the professional faculty consider you as an integral part of the program?

X3: Are there procedures or events that cause you to feel unnecessarily separated from

the rest of the faculty?

X4: Does your Department Head or a designated supervisor discuss your evaluation with

you each year?

X5: Are you interested in long term employment at this university?

Table 2

Mean and standard deviation of the columns of X

Mean Standard Deviation

X1 .2 .421636

X2 .5 .527048

X3 .7 .483046

X4 .7 .483046

X5 .9 .316228
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Figure 1

The relationship among some data reduction techniques

PRINCIPAL COMPONENTS ANALYSIS COMMON FACTOR ANALYSIS

1 1
Confirmatory Exploratory

MIximum-likelihoed

(LISREL)

PRINCIPAL COMPONENTS FACTOR ANALYSIS

Figure 2

Screeplot of eigenvalues

17 2 0



Appendix A

Maple Commands -- Note: Calls to eig jnfo and f below are session dependent.
> Digits:=6:
> with(linalg):
> with(stats);
> with(describe);
> with(transform);
> X:=matrix(10,5,[0,0,1,0,1,0,0,1,1,1,0,1,0,0,0,1,1,1,1,1,0,0,1,0,1,0,1,0,1,1,1,1,0,1,1,0,1,
> barlist:=NULL: for i from 1 to 5 do barlist=barlistmean(convert(col(X,I),Iist)): od:
> Xbar=vector(5,[barlist1);
> devlist:=NULL: for I from 1 to 5 do
> devlist=devlist,standarddeviation[1](convert(col(X,O,(ist)): od:
> Xdev:=vector(5,[devlist]);
> for i from 1 to 5 do evalf(Xdev[0); od;
> matlist:=NULL: for i from 1 to 5 do
> matlist=matliststandardscore[11(convert(col(X,I),Iist)): od:
> Zstar=transpose(matrixamadist]));
> Z:=map(evalf,Zstar);
> Astar=evalm(Zstark113);
> A:=map(evalf,Astar);
> Rt=multiply(transpose(Astar),Astar);
> R:=multiply(transpose(A),A);
> R1inv:=Inverse(111);
> RInv:=map(evalf,R1Inv);
> diaglist:=NULL: for I from 1 to 5 do diaglIstmdlaglist,IIRInvp,I]: od:
> Rstarwevalm(R-diag(diaglist));
> eigenvals(Rstar);
> elg_infomeigenvects(Rstar);
> etzeig_Info[1][31[1]; amelginfo[4][3][11;
> comlist:=NULL: for I from 1 to 5 do comlistmcomIlste1[1]"2+02[1]"2: od:
> newRstarmevalm(R-diag(1,111,1,1)+dlag(comIlst));
> eigenvals(newRstar);
> eig_infomeigenvects(newRstar);

> t=proc(m,n)
> local comlist, I, v1, v2:
> global newRstar:

v1:=eig_info[m][3][1]: v2:=eiginfo[n][3][1]:
> comlist:=NULL:
> for i from 1 to 5 do

comlist=comlist,v1[1]"2+v2[1]"2:
> od:
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> newRstar=evalm(R-diag(1,1,1,1,1)+diag(comlist));
> end;

> f(3,5);
> eig_info:=eigenvects(newRstar);
> f(3,5);
> eig_info:=eigenvects(newRstar);
>
> eig_info:=eigenvects(newRstar);
> f(1,2);
> eig_info:=eigenvects(newRstar);
> f(1,2);
> evalm("-");
> eig_info:=eigenvects(newRstar);
> f(2,3);
> eig_info:=eigenvects(newRstar);
> f(3,5);
>
> eig_info:=eigenvects(newRstar);
> f(2,3);
> eig_info:=eigenvects(newRstar);
> f(1,3);
>
> eig_infoweigenvects(newRstar);
> et=elginforljp1[11; e2:icelginfo(3j[31[11,
> mmultIply(Ztel); F2mmultiply(4.2);
> order1Ist:=1,3,1,4,5,2]: plistveNULL: for I from 1 to 5 do

> plistmpHst,IleIg_InfotorderlIstpM1]: od:
> plotapIist],style=llne);


