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Abstract

When individuals perform tasks, they differ from each other not only in their ability
to perform the tasks correctly, but alsOn their speed. Even though the traditional indicator
of test speededness, missing responses, dearly indicates a lack of time to respond (thereby
indicating the speededness of the test), it is inadequate for evaluating speededness in a
multiple-choice test scored as number correct and underestimates test speededness.
Conventional IRT parameter estimation ignores the mixture of random responses during
calibration; consequently, estimated parameters are biased.

The HYBRID model (Yamamoto, 1989) was extended (Yamamoto, 1990) to
characterize when each examinee switches from an ability-based response strategy to a
strategy of responding randomly. The model has allowed us to evaluate test speededness by
estimating the proportions of examinees who switch strategies at any possible point in the
test. The estimated IRT parameters based on the HYBRID model were more accurate than
the ordinary IRT-only analysis.

With the extended HYBRID model applied to the data taken from an experimental
form of TOEFL®, we found that 1) the test length had a small impact on the proportion of
the examinees affected by the speededness of the test, 2) a greater proportion of examinees
were affected by speededness of a test with a 50-minute time limit than a test with a 55- or
60-minute time limit, and 3) the difference in the proportions of examinees affected by
speededness of tests under 55- and 60-minute time limits was small. However, nearly 20
percent of the examinees were affected by speededness after completing 80 percent of the

test. In other words, the last 20 percent of the responses of 20 percent of the examinees did
not represent their true ability.
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The Test of English as a Foreign Language was developed in 1963 by the National Council on the
Testing of English as a Foreign Language. The Council was formed through the cooperative effort of
more than 30 public and private organizations concerned with testing the English proficiency of
nonnative speakers of the language applying for admission to institutions in the United States. In 1965,
Educational Testing Service (ETS) and the College Board assumed joinmsponsibility for the
program. In 1973,a cooperative arrangement for the operation of the program was entered into by ETS ,
the College Board, and the Graduate Record Examinations (GRE°) Board. The membership of the
College Board is composed of schools, colleges, school systems, and educational associations; GRE
Board members are associated with graduate education.

ETS administers the TOEFL program under the general direction of a Policy Council that was
established by, and is affiliated with, the sponsoring organizations. Members of the Policy Council
represent the College Board, the GRE Board, and such institutions and agencies as graduate schools
of business, junior and community colleges, nonprofit educational exchange agencies, and agencies
of the United States government.
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A continuing program of research related to the TOEFL test is carried out under the direction of the
TOEFL Research Committee. Its six members include representatives of the Policy Council, the
TOEFL Committee of Examiners, and distinguished English as a second language specialists from the
academic community. The Committee meets twice yearly to review and approve proposals for test-
related research and to set guidelines for the entire scope of the TOEFL research program. Members
of the Research Committee serve three-year terms at the invitation of the Policy Council; the chair of
the committee serves on the Policy Council.

Because the studies are specific to the test and the testing program, most of the actual research is
conducted by ETS staff rather than by outside researchers. Many projects require the cooperation of
other institutions, however, particularly those with programs in the teaching of English as a foreign
or second language. Representatives of such programs who are interested in participating in or
conducting TOEFL-related research are invited to contact the TOEFL program office. All TOEFL
research projects must undergo appropriate ETS review to ascertain that data confidentiality will be
protected.

Current (1994-95) members of the TOEFL Research Committee are:

Paul Angelis
James Dean Brown
Carol Chapelle
Joan Jamieson
Linda Schinke-Llano
John Upshur (Chair)

Southern Illinois University at Carbondale
University of Hawaii
Iowa State University
Northern Arizona University
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Introduction

The speed of performing a task is one of the more noticeable ways in which
individuals differ from each other, in addition to the ability to perform a task correctly.
However, traditional methods of assessing test speededness are limited to analyses of
distributions of missing responses. They tend to focus on consecutively missing responses
at the end of a test. Even though some missing responses clearly indicate a lack of time
to respond (thereby indicating the speededness of the test), more often it is not clear
why some examinees do not respond to the items. Moreover, analysis of missing
responses is inadequate in evaluating the speededness of a multiple-choice test in which
the result is summarized, particularly in terms of the total number of correct responses.
With such a test, the most sensible strategy for an examinee who is running out of time
would be to fill in any remaining responses hoping to increase the total number of
correct responses by chance. Disregarding such random responses made by more
informed (or test-wise) examinees surely underestimates the actual speededness of the
test. Therefore, in order to obtain a more accurate assessment of speededness, it is
necessary to evaluate not only missing responses, but also random responses. This study
was initiated to investigate the applicability of a new measurement model for TOEFL
data analysis, as well as to make a specific time limit recommendation.

Failure to model speededness directly can also result in biased ability estimates.
In the past, many ability measurement models such as IRT did not explicitly incorporate
spec dedness into the construct of ability. Hence, the construct of ability and the
parameters in the model are assumed to be unaffected by the variation of the test's time
limit. It is common, however, for the performance level to decline if not enough time is
allocated to the task. In such a case, analysis of missing responses alone is not adequate
to measure how an examinee performs within a time limit. In this paper, the notion of
speededness is extended to include deterioration of responses due to lack of time.

Two previous studies (Bejar, 1985; Secolsky, 1989) relate to the current paper.
Both concluded that current ETS criteria for evaluating test speededness, i.e., a test is
not speeded if virtually all examinees reach the first 75 percent of the items and at least
80 percent of the examinees complete the test, are not applicable for "rights only"
scored tests. Bejar based his study on the notion that on the difficult items, lower-ability
examinees would perform better than predicted due to random or patterned responding.
He proposed an index that compares the observed performance on the most difficult
items of the test to performance predicted by the Item Response Theory (IRT) model
for these items. For several ability levels, an index analogous to chi-square was
calculated based on the observed proportion correct and expected proportion correct for
the IRT model. However, the method is circular, as Bejar noted, because the IRT
parameters were estimated on the suspected speeded data. So, the estimated item
parameters are biased due to the speededness of the test. In addition, the index does
not differentiate between whether the misfit of the three parameter IRT model or the
speededness of the test increased the index. In fact, Bejar found misfit in both extreme



ability regions, very high and very low regions, where the IRT model parameters are
least accurately estimated. Because of the shortcomings noted earlier, Bejar's index was
unable to detect speededness in the most populous ability region.

Secolsky (1989) examined two exploratory techniques based on regression analysis.
Both techniques are based on the idea that under unspeeded conditions scores in the
beginning portion and end portion of the test should be highly correlated, i.e., the score
in the beginning portion should predict the end portion score successfully. For a
speeded test, the relationship between the scores for these two portions should be
substantially weaker. He concluded that the test examined in the study was "slightly
speeded" since the observed scores of a few examinees on the last four to six items were
significantly different from the scores predicted from the first four to six items.
However, any regression method based on fops to six items is less than reliable. Since
neither technique he used isolated error of classification due to uncertainty, any
speededness found in the test may have been caused by lack of reliability alone. In
addition, both of Secolsky's techniques examined speededness at a particular (somewhat
arbitrary) point in a test; this restriction ignores individual differences in response speed.

The shared shortcomings in these earlier studies are: 1) they did not study the
performance of their procedures when the test was not speeded; 2) they examined the
speededness of the test at an arbitrary point in the test; 3) they were unconcerned with
the bias of the IRT model parameters due to the speededness of the test; and 4) they did
not assess the presence of differential speededness by subpopulations, whatever the
subpopulation definitions may be.

The effects of different time limits on essay questions were examined by Hale
(1992). He found that shorter time limits on an essay question affected all examinees at
various ability ranges almost uniformly, by lowering quality of writing. Hence, altering
time limits was inconsequential to the relative standing of examinees. However, his
study may not generalize to a test consisting of largely multiple-choice questions. The
Test of Written English (TWO') includes only one essay question, so every examinee
who is motivated can at least start the essay question. There is no variability in terms of
the number of essay items attempted by examinees; therefore, test speededness can only
be observed in terms of the quality of responses. Hale's study is irrelevant to a test
which includes a number of multiple-choice questions. In a typical multiple-choice test,
speededness can manifest itself in reduced quality of the performance as well as in
number of items attempted. Therefore, both speededness and biased parameter
estimation in scale linking are issues to be investigated.
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Almost all procedures that link scales over time are based on the commonality of
the items, the populations, or both. When the proportion of subpopulations in the total
population changes, as it did with the TOEFL test population, where the composition of
major language groups has changed in the last 10 years, the ccmmon population method
for linking scales over time cannot be used. Common-item linking requires that item
parameters be invariant over time, but it has been observed that the location of items in
the test strongly affects item parameter estimates in ways that are consistent with
speededness effects.

Recent developments in item-response modeling namely, the extended
HYBRID model (Yamamoto, 1990) for speededness of the test address these
problems. The HYBRID model changes the question concerning speededness from "Is a
test speeded?" to "How speeded is a test?" The HYBILm computer program was written
to estimate HYBRID model parameters; it estimates the proportion of examinees who
switch to a guessing strategy at each item sequentially in the test. When examinees
switch to a guessing strategy in the middle of a test, the probabilities of their making
correct responses on the following items no longer adhere to the IRT model. Such a
change in conditional probability is most noticeable among more able examinees. This
model expands the notion of the speededness of a test to include changes in conditional
probabilities in addition to the lack of responses. This model-based approach enables us
to examine the effects of speededness on the estimated item parameters as well. It is
particularly useful for a test based largely on the difficulty of items, from easy to difficult.

Background of the HYBRID Model

Traditional IRT (including unidimensional and multidimensional) and classical
test theories use a single model to describe the behavior of all examinees. There are
two relevant psychometric models that include multiple item-response models in a
limited way. The HYBRID model by Yamamoto (1989) describes the mixture of
examinees whose responses can be characterized by either an IRT-based (ordered
classes) or a latent class-based (unordered class) item-response model. The Mixed
Strategies model by Mislevy and Verhelst (1990) can be summarized as a
correspondence between the choice of a strategy employed by an examinee and sets of
IRT parameters that best describe response probabilities under each strategy. The
statistical characteristics of an item may differ greatly depending upon the strategy
employed. Both the HYBRID model and the Mixed Strategies model use multiple item-
response models to describe the behavior of all examinees, but still only one model per
examinee is posited for all of the items throughout the test.

Research into test-taking behavior, however, highlights the psychological
importance of how examinees employ and switch solution strategies (Kyllonen, Lohman,
and Snow, 1984.) Such behavior can be described by a mixture of several distinct item-
response models for each examinee. The HYBRID model proposes to incorporate
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cognitive structure into psychometric models. This model includes latent classes
(guessing classes) that represent unique cognitive processes, in addition to the IRT
model, which represents the proficiency of examinees in a continuum. Since a solution
strategy can be thought of as an example of a cognitive structure, the basic HYBRID
model hints at the possibility of different solution strategies, yet assumes that a given
examinee uses the same strategy throughout the test. The original HYBRID model has
been applied to real datasets by Mislevy and Verhelst (1990) and Gitomer and
Yamamoto (1989). Both applications exposed the cognitively relevant structure of the
data beyond the capability of the ordinary IRT model. The HYBRID model is extended
here to the case of strategy switching; i.e., a subset of an examinee's responses is best
described by a latent class, while IRT is most appropriate for the rest of the responses.

Developing psychometric models that incorporate strategy switching is important
for three reasons: 1) to characterize the examinees' strategy usage when it is salient,
2) to detect extraneous strategy influences in estimated model parameters, and
3) to provide an opportunity to incorporate partial knowledge of latent classes. The
modified HYBRID model attempts to provide a type of qualitative evaluation of the
knowledge that examinees possess, and it accomplishes the objective in a limited way by
relying more on the qualitative aspect of the examinee's cognitive characteristics-by-items
interaction. One specific interaction will be examined closely in this paper the
interaction of the test-taking speed of examinees with the location of items in the test.
This effect occurs in speeded tests in which the number right are scored. Specifically, it
occurs when examinees are running out of time and switch from a strategy of thoughtful
response to a strategy of patterned or random response. In other words, the propensity
to make a correct response for an item is conditional not only on ability but also on test-
taking speed. Standard IRT cannot handle this phenomenon and can yield misleading
inferences about the proficiencies of the examinees and the properties of the test items.'

The Model

When tests are speeded, and when the scoring is based on the number of correct
responses as is true with the GRE General Test and the TOEFL test, patterned
responses are observed frequently at the end of the test, e.g., option one may be selected
for the last few items. This occurs when slow test takers run out of time near the end of
the test and start responding randomly to the remaining items. Unless the algorithm of
the patterned responses is obvious, such as in the previous example, it is quite difficult to
determine whether a segment of responses is patterned.

Waller (1976) modeled guessing behavior by having two types of function for different
ranges of ability, namely, one-parameter IRT and a flat ICC if conditional probability given
ability is less than a critical value.

4
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Built into the modified HYBRID model are the assumptions that:

1) under a patterned response strategy, the conditional probability of a correct response
is independent of one's ability

2) each examinee'S response to an item can be characterized either by an IRT model of
a particular form or a patterned response model

3) conditional independence holds, given item parameter and an examinee's ability and
strategy

Currently, the model limits the strategy switch to occur once, from a strategy that can be
approximated by an IRT model, to a patterned response strategy. In many large-scale
assessments and achievement tests, the great majority of =Wed responses are found at
the end of the tests, so the model is designed to be most responsive to capturing such a
case. However, this switch-only-once assumption is not very rigid, because when one
uses a probabilistic model, minor deviation from this modeling structure can be
tolerated, especially when the switch occurs earlier in the test. As noted earlier, the
model is probabilistic and considers probabilities of all possible switching points for every
examinee; hence, deviation from the assumption has a minimal effect on the overall
probability structure. For example, if an examinee skips the fourth of five passages and
goes on to the fifth (and perhaps most difficult) passage, the model would find nearly
equal probability of switching anywhere between the fourth passage and the end of the
test if the examinee had low ability. In other words, it would not provide a precise point
of switching to random responses. This is largely due to the fact that the conditional
probability based on ability is nearly identical to the probability of randomly selecting
correct responses for the low-ability examinees. However, if the examinee had high
ability and skipped the fourth passage, but correctly answered questions in the fifth
passage, the model would find two main probable switching locations one at the
beginning of the fourth passage and the other at the end of the exam. The following
function expresses the propensity of correct response on an item i based on the above
assumptions. The notation k indicates the last item answered under the IRT model and
1.7 is most often used for D. Where m = -1 when i k and m = 0 when i > k, x; is a
dichotomous response (0 = wrong, 1 = right) on item i, Oi represents item parameters
(a, b), 0 is ability, ci is the expected proportion correct under patterned response strategy.

P(x, = 110, k) = (1 + exp(-Da1(0 bi)))"' cr`l (1)

The above function can be understood as: the 2PL IRT model holds until switch point,
and then a constant conditional probability for random responses holds for the
remainder of the items.

5



Parameter Estimation

Equation 1 gives the conditional probability of the response xi given 0, item
parameters fii, and strategy switch point k. Equation 2 gives the likelihood of observing a
response vector x; given 0; for a subject j who switched the strategy at item ki.

P(xii0j, B, ki) = P(0i, Q(0i, 13 ci (1 )1"x*
« 1

(2)

(Notice that for those examinees who did not switch the response strategy, the likelihood
is identical to the IRT-only model.)

The marginal probability of observing xf given model parameters B is,

P (xiIB) = E J P 110, B, k)f (01k) d0f(k)
k

where f(0Ik) is the conditional probability of 0 given a switch point k, and f(k) is the
marginal distribution of the strategy-switching population.

(3)

The joint likelihood of parameters given the observed response matrix X = (x1, x2,..., x)
from a total of J examinees is,

L(BIX) =fl P(x1IB)
-1

(4)

The IRT item parameters can be estimated to maximize the above marginalized
likelihood function using an iterative method such as the Newton-Raphson (N-R)

method. The N-R method can be described as Pn = 132-1 * Di, where Pn * I is a
vector of parameters updated from P" by a certain amount designated by the function D2
(matrix of second derivatives) and DI (vector of first derivatives). However, D2 can be
quite large and the diagonals need not be zero. Consequently, straight application of the
N-R method would be too great a computational burden. Bock and Aitkin (1981)
advanced the idea of using the EM algorithm developed by Dempster, Laird, and Rubin
(1977) with probit analysis inner cycles in the area of IRT parameter estimation by
replacing continuous theta with discrete theta points, chosen as convenient quadrature
points for the integration. With respect to u, a model parameter including either an item
parameter or a population density, the first derivative of the log-likelihood of the above
function can be expressed as,

6



J I
a ln L (B I X) aP 4;10 , B f (0 Ik) f(k)

au k I aU P (x;1 B)
8

Followed by the application of the empirical Bayes method and approximation of
integration by summation denoted by q-quadrature points and A (0 41k) as defined as

conditional weights approximating f (0 k) , the above equation for an item parameter ui
can be written as,

(5)

a in L E A(0 g1k) a Pik(O ) _ p j(0g)] filo p (0 4,1 k)
auiaui

(6)

The right side of the above equation can be rewritten as follows, since ; can be either 1
or 0.

where

and

aPth(Of) f(k) igk Pa (Oq) Niqk)
Pik(0q) (4(0 aUi

R = E P(x i10g, B, k) A (0 g1k)
xy

P(x , B)

P(x .10 , B , k) A (0 gik)
Niqk = E q

P(x , B)

P. (0 )
D(Og bi) Pik(0g)Qik(Oq)

a a

aPik(Od
Das Pa d Qa(04)

7

(7)



The matrix of second derivatives can be expressed as follows,

821n L = D2 E E f(k) (8q - bi)2 NiekPa(Bg)Qik(Oq)
aa12 k q

82 in L = -b 2 E E ai2 NigkP (Oq) Qik(04,)
abi2 k q

82 in L

&Jim,
=D2E E ai (Oq bi)2 Niqk Pik(Oq)Q,k(Og)

k q

Once item parameters are estimated, estimation of an examinee's proficiency can be
carried out using several existing methods, such as the maximum likelihood method
(MLE), Bayes modal estimates (MAP), and expected a posteriori (EAP). The MLE of
ability is described by Lord (1980) and MAP and EAP are both described by Bock and
Aitkin (1980). I will describe EAP for the typical model. The EAP estimator for O; is

= t(Oilx j)
E E OqP (X10 q) A (Ogik)f(k)

k q

E E P(x3 10q) A (0q1k)f(k)
q

The variance of the EAP estimator is approximately

E E (0q ed2 P(xj10 q) A (0q1k)f(k)
Var(8) k qE E P(xj 0q) A (0 qi k) f (k)

k q

The posterior joint distribution of proficiency and switching population can be calculated
as

and

P(OIX, B, k) P(X1O, B, k) P(X1O, B, k)
E P(X1Og, B, k) P(X1B, k)

E P(X10q, B, k)
P(k1X, B) qE E P(X19q, B, k)

k q

1 8
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The notion of prior distributions on the item parameters, proficiency distributions,
and switch population distribution can be used during the maximization phase. For
example, item parameters can be thought of as drawn from a particular distribution, and,
therefore, updating parameters would be constrained to meet that particular distribution.
Likewise, the proficiency distribution may be assumed as a normal distribution at each
switching point including the last item. In addition E(Olk) may be constrained to have a
specific functional form in relation to the value of k.

An index to evaluate the fit of the model is always desired. For the ideal
condition, G2 can be used; however, use of this chi-square test on data when there is a
sparse response pattern distribution is not appropriate. For more general cases, the
evaluation of fit of even the IRT-only model remains elusive. In light of this, we should
seek convergent evidence, such as a chi-square test and Akaike's an information
coefficient (AIC). Although the chi-square distribution may not be exactly appropriate,
the likelihood ratio of nested models is available to examine the model fit. For example,
comparison of the fit of two models, such as a 1PL IRT versus a 2PL IRT model, can be
made by examining the improvement in the log-likelihood, taking into account the
number of degrees of freedom expended. When the competing modes are not nested,
the aforementioned log-likelihood test is even less appropriate. In such a case,
in place of the log-likelihood test, AIC can be used. The AIC is defined as
-2*log-likelihood + 2*df.

Method

The parameters of the current HYBRID model are IRT parameters for items and
examinees' abilities, in addition to the parameters that define the distribution of the
subjects who switched strategies. The original HYBRID model estimated IRT
parameters and latent class parameters simultaneously, i.e., the distribution of subjects in
the latent classes and the conditional probabilities of a correct response given a latent
class. In the extended model, the proportion of subjects who switch strategies on an item
is estimated along with the IRT parameters, while fixing the conditional probabilities of
a correct response ci for the patterned response. The marginal maximum likelihood
method to estimate MT parameters developed by Bock and Aitkin (1981) is used to
estimate model parameters. This paper most often uses a non-informative prior
distribution for the bivariate distribution of switching behavior and ability f(O, k), except
when k = I, f(01k = I) has a standard normal distribution. It is feasible to incorporate
more constrained distributional forms that probably lead to more stable results. One
reasonable distribution may be that each f(01k) is normal, and the marginal distribution
of K divided by the number of items has a beta distribution. The model assumes that all
tests are speeded to various degrees, in a range of hardly speeded to very speeded; these
extremes could be represented by beta distribution for K.

9

(74



Results

Simulation Study

Thirty pairs of item parameters a and b were generated. The a parameters were
drawn from a normal distribution with a mean of 1.0 and a standard deviation of 0.4,
with only values greater than 0.3 retained. The b parameters were drawn from a normal
distribution with a mean of 0.0 and a standard deviation of 0.8. The relationship
between a and b parameters was not built into the design, so any correlation between
them is coincidental.

Together with these item parameters and 1,000 ability parameters generated from
the standard normal distribution, 1,000-by-30 dichotomous responses were generated. In
addition to the 1,000 IRT-only cases, 300-by-10 responses with a fixed conditional
probability of correct responses of 0.2 were generated to simulate random responses.
The responses of the 701st to 1,000th simulees on items 21 through 30 of the dataset
(1000 IRT) were replaced with the 300-by-10 constant conditional probability responses,
which we will call dataset (300-switch).

The next dataset, which we will call 300-omit, contained 300-by-10 omitted
responses (coded as 3 not presented) in place of 300-by-10 random responses. The
responses of the first 700 cases and responses on the first 20 items on the last 300 cases
are identical to the (300-switch) dataset. This dataset contained identical information
with regard to the IRT model without any contaminating responses. The rationale for
having such a dataset is that unlike codes of 0 (incorrect) or 1 (correct), the response
code of 3 (not presented) causes such responses to be ignored during model parameter
estimation. When the IRT parameters are estimated using this dataset, the IRT item
parameter estimation is based only on the portion of the data that corresponds to the
IRT tnodel; hence, the estimation error is minimized. Comparison of estimated IRT
item parameters based on the competing models would be made against the estimates on
this data instead of the original IRT parameters. The deviation of estimated parameters
from the true parameters can be attributed to two factors: the error inherent in the
simulation of the data and the usage of the wrong measurement model. For given data
without replication, the best way to evaluate the appropriateness of a particular model is
to compare the estimated parameters under two conditions: with a correct model and
with a model to be tested. Evaluation of estimated parameters against the true
parameters may not be optimal for many cases.

Three sets of model parameters were estimated: 1) ordinary 2PL IRT parameters
on the 300-omit data (60 parameters to be estimated); 2) ordinary 2PL IRT parameters
on the 300-switch data (60 parameters); and 3) HYBRID model parameters on the 300-
switch data (60+40+ 19=119 parameters). Estimated item parameters and the values of
-2*log-likelihood to indicate the fits of the model are presented in Table 1 with the true
item parameters. The -2*log-likelihood for the IRT model on the omit data is not
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comparable due to the fact that 300-by-10 responses were never included in calculating
the likelihood; hence, it was not reported here. Two sets of estimated item parameters,
one with the IRT-only model and the other with the HYBRID model, are plotted against
the estimated parameters on the 300-omit data (Figures 1, 2, 3, and 4.) It is quite clear
that HYBILm successfully eliminated the influence of the patterned response
subpopulation on the estimated item parameters. The estimated item parameters of the
last 10 items are clearly set apart from the rest of the item parameters based on a
comparison among the results from the IRT-only estimation. The RMSDs for the last 10
items presented in Table 2 clearly indicate the inaccuracy of parameter estimates when
random responses are ignored.

Evaluation of estimated IRT parameters on the omitted data and switched data
reveals that the amount of bias is positively related to the value of the slope as expected,
since the slope is a ratio scale. This can be understood as the weighted sum of two item-
response functions, one of the IRT and the otIler with flat fixed conditional probability
sufficiently different from 0.5. It is clear that the impact on the resultant conditional
probabilities is greater when the slope is steeper and also in one direction, assuming that
the flat conditional probability is greater or less than 0.5. The RMSD for the last 10
items was .212. Deviations were all in one direction, namely, underestimation. Bias in
the location parameter estimates based on the omitted data is nearly uniformly
overestimated as expected, since the scale is not a ratio scale. The RMSD for the last 10
items was .558. Even though the chi-square fit statistic was not as small compared to the
chi-square fit statistic of the IRT estimate on the omit dataset, the chi-square fit statistic
for each item was fairly small, indicating a decent fit. The point is that the conventional
model fit statistics cannot detect the presence of random responses in the dataset due to
the speededness of the test. Even though the overall accuracy of the estimated item
parameters was markedly improved using the HYBRID model, some biases remained.
For example, both item parameters for the last item were less accurately estimated
compared to the rest of items, partly due to the fact that there was 30 percent less
information available in the data to estimate IRT parameters compared with the other
20 items. However, such a notion, the reduced amount of the IRT information resulting
in greater error of estimation, applies to all of the last 10 items. Nonetheless, the biases
are still much less than estimation based on the IRT model alone.

Accuracy of the ability parameter estimation is an equally important aspect of the
application of IRT, especially if the test results are to be used to evaluate applicants
using such tests as (iRE and TOEFL. In Figure 5, ability estimates based on the IRT
model are plotted against the estimates based on the IRT model of the 300-omit data.
The IRT-only model indicates two systematic biases: 1) abilities of the first 700 simulees
that did not contain any random responses are overestimated, and 2) abilities of the last
300 simulees with random responses were underestimated. Both biases were larger for
those with higher ability. In Figure 6, the ability estimates based on the HYBRID model
are plotted against the estimates based on the IRT model on the 300-omit data. There
is no clear sign of bias for either group of simulees. The RMSDs of HYBRID model
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estimates are presented in Table 2 with the IRT model estimates. It shows that the
RMSD is nearly twice as large without using the HYBRID model for the last 300
simulees. It was 50 percent greater for the first 700 simulees with the IRT model.

The posterior bivariate distribution of ability and switching point based on the
HYBRID estimate is plotted in Figure 7. The bivariate distributions show that the mode
of switch population is very well identified at the 20th item.

The second simulation study dealt with different switching-population
distributions. While the dataset for the IRT portion (1,000 IRT) was kept unchanged,
the location of switching and the proportions of switching to patterned responses were
changed. It was set at three groups of 100 subjects each, and each group switched after
the 15th item, 20th item, or 25th item. This left the first 700 responses unchanged. For
this study, only the bivariate posterior distribution was plotted in Figure 8. All other
model parameters were very similar to the first simulation study. The results showed
that the modes of three spike-shaped switching distributions were captured well in the
posterior distribution, yet the shape of spike-like distribution was not detected accurately.
Consequently, the estimated distribution was much smoother than the original
distribution. This was expected due to the presence of uncorrelated measurement errors.
Exact representation of spike-like distribution was only captured under no measurement-
error conditions. Whenever strategy switching occurs, the location of the switching point
is always more accurately estimated for higher-ability simulees than for those with lower
abilities. The effect of switching strategy to the patterned responses is more drastic for
those with higher abilities than for those with lower abilities, i.e., without the HYBRID
model, underestimation of abilities would result for those who were affected by
speededness. A more accurate estimation for those with higher abilities is an advantage
of the model. It is also true that because estimated item parameters are biased when
switching populations are included in the IRT-only model parameter estimation,
estimates of the abilities of able simulees among those who do not switch to random
responses have a positive bias.

The distribution of the switched population is fairly accurately estimated for those
who switched near the middle of the simulated test. However, near the end of the test
(the last few items), the cumulative distribution shows some overestimation of the
proportion of the switched population. Consider, for example, the situation where the
IRT ability is high because many responses on the earlier items are correct, but an error
was made on the last item. Because of the difference between the expected probability
of correct response and the actual response on the last item, the estimated posterior
distribution of this response pattern would more likely be classified as switching to a
strategy of random response at the end of the test. In order to investigate such
overestimation of the proportion of a switching population, the following simulation
study was performed. Using the original IRT dataset that does not include either not-
reached responses or random responses, the HYBRID model parameters were
estimated. The estimated switched distribution was solely due to errors. The estimated
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cumulative switched proportion was 0.05, wh.creas if the model had estimated the
proportion perfectly, it should have been 0. This type of estimation error depends upon
the difficulty of items at the end as well.

TOEFL Data

In 1992, a direct assessment was conducted on the speededness of an
experimental section of TOEFL. The study was described in Schedl, Thomas, and Way
(1995). Tests with different numbers of items were randomly assigned to examinees
during each administration of the experimental section. For reasons of operational
feasibility, random assignment of test centers was used instead of random assignment of
examinees [see Wild and Durso (1979), and Evans (1980)]. Each test booklet had six
passages and either 48, 54, or 60 items, and there were three time limits, 50, 55, and 60
minutes, following a 3 x 3 factorial design. Three different numbers of items were
constructed by first creating a 60-item test, 10 items for each of the six passages; one or
two items were deleted from each passage to arrive at either 48 or 54 items.

The 48 common items administered to all examinees were used to evaluate the
speededness of the test under several conditions. One item out of the 48 items exhibited
a negative point biserial correlation; it was excluded from the analysis. Two separate
calibrations for the model parameters were carried out, one using the IRT model alone
and the other using the HYBRID model for the speededness of the test. The sample
sizes and mean total number correct for each cell of the 3 x 3 design on the common 47
items are presented in Table 3. It is clear that time limits have a greater impact on the
performance in terms of the total score than does the number of items It should be
noted that the constraint of the time limit was carried out site by site, while booklets
with different numbers of items were spiraled within a test site, thus attaining a more
random assignment for the booklets than for the time limits.

Before the model-based analyses were carried out, differences among the
proportion correct of nine subpopulations for each item were examined. Figure 9
presents the results summarized by time limit, and Figure 10 presents the results
summarized by number of items. If speededness affected performance on the items and
if the subpopulations were equal in ability, all three lines should be nearly identical in
the beginning, and the differences should increase near the end of the test. We would
expect to see that examinees who had 50 minutes to complete the test would perform
worse than those who had 60 minutes, and examinees with 55 minutes would perform
somewhere in the middle. We would expect also that the performance deterioration
would be greater when more items were in the test. Figure 9 shows that the 50-minute
condition resulted in a nearly uniformly lower proportion correct than the other two time
limits across all items from the beginning to the end. Neither Figure 9 nor 10 shows any
notable sign of an interaction of performance and location of passages. This uniformity
of performance may result from the following: 1) the three subpopulations not being
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equal in ability; 2) some portion of the responses not being related to ability, hence
reducing the proportion of correct responses; or 3) subjects responding differently from
the outset of the test, depending upon the time limit given.

Average point biserial correlations within each of the six passages were .404, .462,
.558, .447, .485, and 349. The last passage had the lowest average biserial correlation,
indicating that the responses on the last passage related least to the responses for the
other passages.

The 2PL model was used to estimate the IRT parameters. The number of
quadrature points was 20 and the standard normal distribution was used as the prior
distribution, i.e., only item parameters were estimated, two per every item. Fit of the
model was evaluated using a chi-square statistic for each item while G2 and AIC were
used to assess the fit for the entire set of items. The item level chi-square statistic
indicated poorer fit for the last 10 items. The average chi-square was 13.1. The number
of parameters estimated for this calibration run was 94. The statistics for G2 and AIC
were 71,672 and 71,860, respectively.

HYBRID model parameters were estimated using specifications similar to the
IRT-only parameter estimation: 20 quadrature points and the standard normal
distribution for the IRT portion of subpopulation. A subpopulation that switched to
random responses was assumed to have a normal distribution for each switching point
with a different mean and standard deviation, and they were estimated simultaneously
with the IRT parameters.

Fit of the item parameters indicated a far better fit than the IRT-only model,
especially for the last 10 items. The average chi-square was 3.7. In fact, chi-square fit
statistics for the last 10 items were similar to those of any other items. However, the G2
and AIC were 71,515 and 71,821, respectively, only a slightly better fit than the IRT-only
model. This is quite unusual from our experience with similar data in that commonly,
we see a substantial increase in the fit statistics using the HYBRID model.

Figures 11 and 12 present the estimates of slope and location parameters for the
two models. Comparisons of estimated item parameters revealed that both sets of
estimates of slope and location parameters were nearly identically related, except for the
last six items. The similarity of estimated item parameters indicates that essentially
identical information can be obtained using either model. The ability estimates of the
two models revealed similar results, plotted in Figure 13. Only about 15 percent had two
ability estimates that differed by more than .20, about the size of the SD of average
posterior distribution.

It is quite clear that with regard to the IRT parameter estimates on these
particular TOEFL data, the two models can produce very similar res1 ilts in terms of the
order of slopes and difficulties. However, the precise effects of the last six items on
scale linking still need to be investigated.
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Even though the IRT parameters can be very similar, the distribution of a portionof the subpopulation that switched to random responses can be different under different
time limits and lengths of tests. Cumulative distributions of subjects who switched torandom responses are presented in Table 4 and sununarized results by time limits and
number of items are plotted in Figures 14 and 15. It was found that with shorter time
limits a greater number of examinees appear to have switched to random responses thanwith longer time limits. However, the number of items does not seem to increase thesize of the switching population. Exactly 10 percent of the sample switched to random
responses at or before the 36th item (about 75 percent of the total items), and 25percent of the sample switched to random responses at or before the 42nd item (about90 percent of the total items).

The apparent insensitivity of speededness of the test to the number of items maybe due to the fact that this study used a fixed number of passages. Judging from past
experience, the speededness of a test can be sensitive to the number of passages; had thenumber of passages been varied in this study, the results might be quite different. Aswell, the interaction between number of items and the time limits could not be examined
due to the small sample size. The effect of differences in time limits was evaluated byaveraging over the three different levels of items. Under this analysis, it is clear that the
50-minute time limit is inadequate for the test because nearly a quarter of the examinees
indicated that their performance was affected by speededn of the test; i.e., their
responses were indistinguishable from the random responses for the questions associatedwith the last passage. However, the difference between the 55-minute and the 60-minute
time limits is less clear. The HYBRID analysis found a small difference between thetwo time limits.

With the extended HYBRID model applied to the data taken from an
experimental form of TOEFL, we found that 1) the test length had a small impact on theproportion of the examinees affected by the speededness of the test, 2) a greater
proportion of examinees are affected by speededness of the test with a 50-minute time
limit than by tests with 55- or 60-minute time limits, and 3) the difference in proportions
of examinees affected by speededness under 55- and 60-minute time limits is small.

Discussion

The HYBRID model accomplished the objective that was set, namely, to account
for a certain type of speededness. Clearly the model is limited to a specific type of
speededness, and the reality may prove to be quite different. For example, examinees
may randomly respond to the items in the first part of the test because of an unfamiliar
content area. The current model cannot isolate such an event, and its occurrence wouldbe reflected by incorrectly estimated item parameters. Taking the estimates of a
switched subpopulation at face value may be misleading for the following reasons. Ifitems located in the latter part of a test are more difficult tests are often designed that
way many of the examinees' responses on such items may not be very different from
random responses. Because of the similarity of the two probabilities of correct
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responses, the model would classify such examinees with nearly equal probability to be

either among those who switched to random responses or those who are very poor

performers best characterized by lower proficiency values. Such a subpopulation,

however, should not be interpreted as answering incorrectly solely because of the

speededness of the test. Further evaluation of the bivariate posterior distribution of

ability and switch point based on each individual response pattern would lend support to

the above conclusion by exhibiting a very uninformative distribution with regard to the

switching point.

One may choose a definition of test speededness in terms of the effects on the

performances of the examinee who falls in a restricted ability range, e.g., above average,

above passing score, and so on. As a result, monitoring and controlling for the

speededness of a test is important in order to minimize the effects of speededness on

ability estimates, especially for those who are capable but slow, by reducing the absolute

number of non-responses. The analyses presented earlier indicate the ability of the

HYBRID model to do exactly that.

The estimates of ability and the switch point are calculated for each examinee

using the current model. However, unless the speed of taking a test is irrelevant, the

ability estimates from this model should not be considered equivalent to ordinary IRT

estimates of ability. It is quite important now to define our view on the familiar notions

of power and speed of the test. In the past, the traditional IRT model did not identify

the impact of test-taking speed on ability estimation. Most often, test-taking speed was

ignored, and ability estimation was carried out as if all responses were made under

unlimited time conditions. This assumption may be true for most but not all examinees.

The new model offers an option to separate two factors, test-taking speed and propensity

to make correct responses. If the main goal of a test is to assess an examinee's accuracy

of performance rather than how quickly he or she makes correct responses, we may need

to eliminate the impact of test speededness on the ability estimates of all exarMnees.

Application of the current model may not be limited to traditional testing

conditions. Without much further modification, the model could be iised for the

sequential administration of tests by computers. With some modification, the model

could be applied to a more general mixture of IRT and latent-class models.

It was remarked earlier that the application of the HYBRID model for the

speededness of the test is only one of many possible extensions to accommodate

qualitative interaction between categorical characteristics of examinees and items. This

particular extension incorporated the information dealing with the location of items.

However, the model is quite flexible to incorporate opportunity to learn information as

well. For example, let us suppose that a mathematics test including geometry items was

administered to two different kinds of examinees, those who have taken geometry classes

and those who have not. Although the examinees may perform equally well on the items

not related to geometry, most likely their performance on the geometry items would

differ drastically. The uniqueness of this use of the measurement model lies in applying

two distinct models, continuous and discrete, to an individual's responses.
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The dataset used for the study did not allow us to investigate the stability of item
parameter estimates from a single administration. Future study is needed to investigate
the feasibility of using the HYBRID model to gain more useful information about items
during field study. It is my conjecture that the well-known phenomenon of the item
parameter instability between the field test and the real test is partly due to the
speededness of the test, and such instability can be corrected by using the HYBRID
model.

Evaluating the fit of a measurement model is a crucial aspect of the process of
modeling test-taking behavior, yet the standard has not been set, because such a
well-established measurement model as the IRT itself still awaits a standard method to
evaluate model fit. The HYBRID model also has not established a standard method for
model selection and testing. In the meantime, an information criterion AIC by Akaike
(1985, 1987) or the direct likelihood method by Aitkin (1989) may be used to evaluate
the fit of multiple non-nested measurement models.

There are three aspects of the potential contribution that the model can make in
the field of testing. First, the model estimates IRT parameters with less bias, thus
minimizing the impact of the speededness of the test. Second, the model provides a
measure that can be used to set test length. Finally, the model reduces bias of the
ability estimation for subpopulations when the proportion affected by speededness is

different among subpopulations.

The conditions that affect the appropriateness and accuracy of modeling response
data with the HYBRID model are as follows: 1) the number of items; and 2) the
difficulty of items in the latter portion of the test. Forty or more items per examinee are
recommended to use the model. If a majority of items at the end of the test are very
difficult, bivariate posterior distribution of switching points by ability indicates that the
posterior variance is quite large near the end of the test.

One major concern remains regarding the speededness of the test. Even under
the best conditions for minimizing speededness, 48 items within 60 minutes, it seems that
the proportion of exarninees affected by the speededness of the test is large. Nearly 20
percent of the examinees switched to the strategy of responding randomly before 80
percent of the test was completed. Is this too large a proportion? How much is too
much? Decisions regarding test length and testing time limits should be made by the
program administrator. Data analysis based on the model can enable program direction
to select from the competing options. Routine monitoring of the speededness of the test
should be in place. It is clear that just monitoring missing responses is no longer
adequate.
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Table 1. Original and Estimated Item Parameters in the Simulated Dataset2

IRT-only model estimates HYBRID model

True 300-omit 300-switch 300-switch

Item a b a b a b a

1 .32 -.99 1.11 -1.11 1.14 -1.09 1.15 -1.08

2 .74 -.60 .96 -.72 .98 -.72 .97 -.71

3 .56 -.09 .61 -.11 .60 -.11 .62 -.10
4 .72 .72 .56 .55 .54 .57 .57 .56

5 .84 -.44 .85 -.31 .83 -.31 .85 -.30
6 .74 -1.13 .85 -1.13 .81 -1.16 .82 -1.14

7 .42 .20 .29 .40 .28 .42 .29 .41

8 .56 .02 .38 -.03 .36 -.04 .38 -.02

9 .69 .68 .64 .95 .60 .98 .63 .96

10 .83 1.08 .88 1.26 .82 1.31 .88 1.28

11 .52 -1.15 .52 -1.03 .50 -1.05 .53 -1.01

12 .59 -.25 .47 -.34 .43 -.36 .47 -.33

13 .97 -.03 .83 .06 .80 .06 .83 .06

14 .62 -.76 .43 -1.08 .40 -1.14 .41 -1.11

15 .94 -.20 .84 -.16 .78 -.16 .86 -.16

16 .85 .10 .83 .22 .80 .22 .83 .21

17 .58 .48 .58 .32 .53 .34 .59 .32

18 .90 1.49 .72 1.72 .69 1.75 .74 1.67

19 .37 .36 .29 -.06 .30 -.06 .30 -.09

20 .33 -1.20 .38 -.83 .38 -.83 .40 -.88

21 .87 .32 1.07 34 .83 .66 1.13 .36

22 .44 .78 .33 .99 .30 1.36 .32 .98

23 .80 -.51 .59 -.59 .48 .12 .65 -.45

24 1.21 -.22 1.33 -.14 .84 .33 1.49 -.11

25 .59 .90 .67 1.07 .50 1.50 .72 1.09

26 .51 -.77 .45 -.87 .38 -.09 .51 -.87

27 .47 .26 .34 .35 .30 .97 .33 .17

28 .44 .75 .39 .76 .37 1.19 .43 .53

29 .53 -.50 .39 -.70 .29 .06 .42 -.95

30 1.25 .69 .96 .91 .65 1.33 1.20 .79

-2*1og-1ikelihood 34,698.7 34,350.9
No. of Parameters 60 119
AIC 34,818.7 34,468.9

2The switched data set had two groups, 700 simulees out of 1000 did not switch strategy, and 300 simulees
switched to random response of p=0.2 after the 20th item. Omitted data replaced random responses with 300 x
10 3s, indicating not reached.
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Table 2. Root Mean Square Deviations3 of Estimates of Model Parameters Among Two
IRT-Only Calibrations and HYBRID

RMSD of slope parameter estimates for the last 10 items

Estimates using IRT-only

the 300-omit data the 300-switch data
HYBRID on the
300-switch data

True parameters

Estimates (IRT-only)
on 300-omit

.16

.o

.27 .16

.21 .10

RMSD of location parameter estimates for the last 10 items

Estimates using IRT-only

the 300-omit data
HYBRID on the

the 300-switch data 300-switch data

True parameters

Estimates (IRT-only)
on 300-omit

.14

.o

.59 .19

.56 .13

MD and RMSD of ability estimates against estimates on the omit data

Estimates (IRT-only)
on the 300-omit data

Estimates (IRT-only)
on the 300-switch data

HYBRID on the
300-switch data

MD RMSD MD RMSD

first 700 cases -.10 .12 -.05 .09

last 300 cases .23 .37 -.01 .19

total 1000 cases -.00 .23 -.00 .13

3 Deviation was calculated using the following formula for every item: deviation = row estimate-column
estimate. The RMSD was calculated using the above values.
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Table 3. Sample Sizes and Mean Total Score for the 3 x 3 Design Cells

Time Limits (min)

Number of items

60 54 48 Total

60 N 174 180 173 527

Mean (of 47) 28.8 27.6 27.9 28.1

55 N 123 120 123 366

Mean (of 47) 28.0 28.2 26.4 27.5

50 N 143 149 138 430

Mean (of 47) 24.5 26.7 24.3 25.21

Total N 440 449 434

Mean (of 47) 27.2 27.5 26.4
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Table 4. Cumulative Distributions of Switched Population by Subgroups

Item
No.

Time Limits

60

Time Limits

55

Time Limits

50

Total60 54 48 60 54 48 60 54 48

28 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

29 .01 .02 .02 .02 .02 .02 .02 .02 .03 .02

30 .03 .05 .05 .04 .05 .05 .06 .05 .07 .05

31 .04 .06 .06 .05 .06 .06 .07 .06 .08 .06

32 .04 .06 .06 .05 .06 .07 .08 .07 .08 .06

33 .05 .07 .07 .06 .07 .08 .09 .07 .09 .07

34 .05 .09 .08 .07 .08 .09 .11 .09 .11 .09

35 .06 .10 .09 .08 .09 .10 .12 .10 .12 .10

36 .07 .12 .11 .10 .11 .12 .14 .11 .14 .11

37 .10 .15 .14 .13 .14 .16 .20 .15 .20 .15

38 .12 .17 .16 .15 .17 .18 .23 .17 .22 .17

39 .16 .21 .19 .18 .20 .22 .26 .20 .26 .21

40 .18 .22 .20 .20 .21 .23 .28 .22 .27 .22

41 .22 .26 .23 .23 .25 .27 .32 .25 .32 .26

42 .24 .29 .25 .26 .27 .29 .35 .28 .34 .28

43 .30 .34 .30 .31 .33 .34 .41 .33 .40 .34

44 .31 .35 .31 .33 .35 .35 .42 .34 .40 .35

45 .32 .37 .33 .34 .37 .37 .44 .36 .42 .37

46 .34 .39 .35 .37 .39 .38 .45 .37 .43 .38

47 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

tt
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Figure 1

Item Slope Parameter Estimates by IRT-only Model
on 300-switch and 300-omit Data

0.2 0.4 0.6 0.8

IRT on 300-omit data

2 4

3

1.2 1.4 1.6



1.6

1.4

1.2

Le.

0 8
O.%

>-
0.6

0.4

0.2

Figure 2

.Item Slope Parameter Estimates by HYBRID and IRT Models
on 300-switch Data
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Figure 3

Item Location Parameter Estimates by TRT-only Model
on 300-switch and 300-omit Data
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Figure 4

Item Location Parameter Estimates by HYBRID and IRT Model
on 300-switch Data
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Figure 5

Ability Parameter Estimates by IRT-only Model
on 300-switch and 300-omit Data
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Figure 6

Ability Parameter Estimates by HYBRID and IRT Model
on 300-switch Data
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Figure 7

Estimated Posterior Distribution of Switched Population
of 300-switch Data
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Figure 8

Estimated Posterior Distribution of Switched Population
of 300-step Data
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Figure 9

Residual Item Proportion Correct of Three Time Limits Against the Mean
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Figure 10

Residual hem Proportion Correct of Three Test Lengths Against the Mean
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Figure 11

Slope Parameter Estimates by IRT-only Model
Against HYBRID Model
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Figure 12

Location Parameter Estimates by IRT-only Model
Against HYBRID Model
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Figure 13

Ability Parameter Estimates by MT-only Model
Against HYBRID Model
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Figure 14

Cumulative Distributions of Examinees Affected by the Speededness of the Test
Under Three Time Limits
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Figure 15

Cumulative Distributions of Examinees Affected by the Speededness of the Test
Under Three Different Lengths of Test
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Figure 16

Estimated Posterior Distribution of Switched Population
of TOEFL Experimental Data
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