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Dealing with Uncertainty about Item Parameters:

Expected Response Functions

Abstract

It is a common practice in item response theory (IRT) to treat estimates of

item parameters, say B, as if they were the known, true quantities, B.

However, ignoring the uncertainty associated with item parameters canlead

to biases and over-confidence in subsequent inferences such as ability

estimation, especially when item-calibration samples are small. This paper

demonswates how to incorporate uncertainty about B with Lewis's

"expected response functions" (ERFs), pointwise expected vah.'s of item

response conditional on examinee proficiency averaged over posterior

distributions of item parameters. This paper presents ERFs, outlines

procedures for computing them and using them in practical work, and gives

an illustration with data from the National Assessment of Educational

Progress. Advantages of approximating ERFs response curves with

members of familiar parametric families of IRT curves are noted.

Key words: Bayesian estimation, expected response functions, item

response theory, multiple imputation, pseudolikelihood

estimadon



Introduction

Item response theory (IRT) models posit that an examinee's chances of correctly

answering test items depend on an unobservable parameter for that examinee (0) and for

each of the items (A, for j=1,...,n). It is common to estimate the item parameters from the

response of a "calibration sample" of examinees, then treat the estimates ñ = as

if they were true parameter values in subsequent inferences such as estimating examinees'

proficiency parameters. Tsutakawa and Johnson (1990) found that ignoring uncertainty

about 3-parameter logistic (3PL) item parameters from a calibration sample of 400 led to

biased posterior means for Os and understatement of posterior standard deviations by more

than 40-percent on the average.

Approaches that take uncertainty about B into account include a second-order

Taylor series expansion with an asymptotic normal approximation for p(B) (Tsutakawa &

Soltys, 1988; Tsutakawa & Johnson, 1990), numerical integration over a normal

approximation (Jones, Wainer, & Kaplan, 1984), multiple imputation (Mislevy & Yan,

1991), and Gibbs sampling (Albert, 1992). This paper presents approximations based on

Lewis's (1985) notion of "expected response functions" (ERFs), pointwise expected

values of item response conditional on 0 as averaged over posterior distributions of item

parameters. (See Mislevy, Sheehan, & Wingersky, 1993, on the use of ERFs in IRT test

equating when information about item parameters is limited.)

The following section describes the problem and reviews previous solutions. ERFs

and computing approximations are then given. Their use is illustrated with data from the

National Assessment of Educational Progress.

Background and Notation

Item Response Theory

This paper confines discusssion to scalar parametric IRT models for dichotomous

(right/wrong) test items, but the ideas can be extended to more complex models. Define

F(0), the item response function for Item], as follows:

Fi(0)= Prob(X1 = iie,p;), (1)
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where Xj is the response to Item j, 1 for right and 0 for wrong, 0 is the examinee

proficiency parameter, and /3j is the (possibly vector-valued) parameter for Item]. For

example, under the 3-parameter logistic (3PL) model,

F1(0)= c1 + (1 c1)1111.7a1(0 bi)],

where 1% is the logistic distribution ir(z)=[1+exp(-z)]-1 and Mr-.(afibj,cj) (Lord, 1980).

The density p(40,13;) is thus F(0) if xj=1 and 1- Fi (0) if xj=0. Under the usual IRT

assumption of conditional independence, the probability of a vector of responses

to n items is the product over items of terms based on (1):

p(xl 0,B) = p(x110431)
i=1

= 111F (0)x [1 F 1(0)]- z1 .

(2)

Equation 2 is the basis for estimating an examinee's a Suppose x and B were

known. For maximum likelihood estimation, one finds the value of 8 that maximizes (2),

namely, the MLE a. The asymptotic variance of the MLE is the inverse of the Fisher

information function, which is a sum of contributions over items:

[lijF;(0)1
Var-'(618,13) =

j(0)[1 F1(0)]. (3)

For Bayesian inference, if p(0) represents prior knowledge about an examinee's

proficiency before x is observed, then knowledge posterior to the observation is obtained

by Bayes theorem as

p(x1O,B) p(0)

p(xl 0,B) p(0) do'

The posterior mean and variance are, respectively,

and

(4)

E(01x,B)= Jo p(01x,B) .90 (5)
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Var(01x,B) = 502 p(01x,B) de --[f p(01x,B) (6)

Uncertainty About Item Parameters

Equations 2 through 6 are written as conditional on B. It is common to evaluate

such expressions using a point estimate of B, or 11, as obtained for example from the

responses Xcab = (x1,...,XN) of a calibration sample of N examinees. For example, the

Bayes modal estimate of B when p(6) is known maximizes the posterior distribution for B,

p(X.liblB)p(B).. fl5p(x110,B)p(0)dOp(B), (7)

where p(B) expresses prior knowledge about B (e.g., Mislevy, 1986, Tsutakawa,

1984)perhaps uninformative, perhaps based on items' content or skill requirements,

expert judgments, or experience with similar items (Mislevy, Sheehan, & Wingersky,

1993). In large samples, the posterior distribution can be approximated by a multivariate

normal distribution with mean 11 and variance

[

a2[1ogp(B1dp,.7c)}
cA3dB'

(8)

Values 11 and 1. for an approximation could be obtained, for example, as maximum

likelihood or Bayesian modal estimates and asymptotic covariance matrix from Mislevy &

Bock's (1983) BILOG program, as illustrated in the NAEP example below. In the sequel,

we simply use p(B) to stand for knowledge about B at a given point in time, regardless of

its source. Note that p(B) need not incorporate independence over items.

As Tsutakawa et a/. demonstrate, ignoring the uncertainty about B (by treating B as

B) can lead to biases and understated uncertainties in subsequent inferences about 6t.

Incorporating this kind of uncertainty into analyses is straightforward from a Bayesian

perspective: Marginalize with respect to partially-known quantities. For example, the so-

called "marginal likelihood function" takes uncertainty about B into account in the

likelihood function by integrating (2) with respect to p(B):
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p(x18)= EB[p(x18,B)]

= p(xl 0, B) p(B)

= 51211p(x110431)p(B)43B
i=1

= 111F1(0)zi [1 Fj(0)rx' p(B)dB,
1.1

(9)

effectively the average of (2) over all possible values of B, each weighted by its probability

given the information from the calibration sample. More generally, if G(B) is any

expression involving item parameters, then

Es[G(B)]= G(B)p(B)dB.

Alternative Approaches

(10)

Closed-form solutions of (10) are not generally forthcoming in IRT. Before

introducing expected response functions, we briefly review three alternatives: a second-

order analytic approximation, multiple imputation, and Gibbs sampling. The discussion of

multiple imputation is more detailed, because the ERF approximation shares intermediary

steps with multiple imputation and the NAEP example compares numerical results from the

two approaches.

Tsutakawa's second-order expansion uses an approximation due to Lindley (1980):

EB[G(B)1.

where Grs is the r,sth element of d2[G(B)]/dBdB' and Ers is the r,sth element of EB, with

r and s indexing elements of B. When calculating an examinee's posterior mean (5), for

example, G(B) is Jo p(Otx,B) (36. Because such approximations would be exact if p(B)

were MVN(fi,EB), their performance in (10) depends on the accuracy of the asymptotic

normal approximation to p(B)which is often satisfactory in practice since even the usual

first-order approximation G( B ) suffices when the calibration sample is large and p(BIX)

is concentrated around 11 . An impediment to using (11) in practical work is that

derivatives must be calculated for each function 0 to which it is applied.
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Albert (1992) employed Gibbs sampling (Geifand & Smith, 1990) to obtain a

discrete approximation to the joint posterior distribution of B and the vector of examinee

abilities e under the 2-parameter normal (2PN) IRT modeL From vectors B(0 and 49(t)

that approximate B and e, one obtains a subsequent approximation by drawing B(t+l)

from p(BI = e('), X), then drawinge (t+l) from p(01B =13(1+1),X). From initial

approximations, repeated cycles achieve (under regularity conditions) a stochastic

convergence such that a (e,B) draw obtained in this manner is essentially a draw from the

correct posterior p(e,BIX). Widely spaced draws from a sequence which has attained

convergence (or, better still, from separate sequences initiated from different starting

points; see Gelman & Rubin, 1992) are essentially independent draws from p(0,BIX).

Evaluating any function G(0,B) of the parameters with respect to each of these draws

constitutes a discrete approximation of its posterior distribution. (This last idea will be

illustrated below with multiple imputation.) In particular, the discrete approximation of

p(B) can serve as a basis for calculating expected response functions. Gibbs sampling is

much more computationally intensive than the other approximations described in this paper.

Multiple imputation, introduced by Rubin (1987) to handle missing responses in

sample surveys, creates pseudo datasets with draws from the posterior distributions of

missing data, and combines the results of standard analyses of pseudo data sets so as to

incorporate the uncertainty that missingness engenders. B plays the role of missing data in

the problem of imperfect knowledge about item parameters (Mislevy & Yan, 1991).

Suppose that if B were known, we could calculate the posterior mean and variance of

G(B), say, U(B) and V(B). An example again would be the posterior mean and variance

for an examinee's O via (5) and (6). The steps for multiple-imputation approximations of

the posterior mean and variance that take uncertainty about B into account, say, E and V.

are outlined below. The reader is referred to Rubin (19R7) for theoretical justification.

1. Obtain the posterior distribution for B, p(B) (e.g., the multivariate normal

approximation MVN(B,ZB) used in the following NAEP example).

2. Draw K item parameter vectors from p(B), say Bk for k=1,...,K.

3. For each k, calculate the posterior mean and variance conditional on B=Bk, denoted

-6(13k) and V(Bk ).

4. The postcrior mean for G, accounting for uncertainty about B, is approximated by

the average of the K conditional posterior means:
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(12)

5. The posterior variance for G, accounting for uncertainty about B, is approximated

by the surn of two terms:

where the first,

r=U+VV, (13)

= IC-1117(B k),

approxinlates the variance that would exist even if B were known with certainty,

and the second,

V = (K l)' I[u(sk)-nr

quantifies additional uncertainty due to not knowing B.

Example: Data from NAEP

We shall use a running example with data from the National Assessment of

Educational Progress (NAEP): responses to 19 items from 100 8- and 13-year old students

who participatezt in the 1986 and 1988 mathematics trend assessment. Table 1 gives

descriptive statistics and Bayesian posterior modal estimates h. (a,) obtained with

Mislevy and Bock's (1983) BILOG computer program. Table 2 gives the accompanying

approximation of the posterior covariance matrix Es. Covariances among the three

parameters for the same item can be quite high, but relationships among parameters for

different items are uniformly much lower.

[[Tables 1 & 2 about here]]

A practical problem in applying multiple imputations is to determine the value of K

that provides the desired accuracy, which may differ with the target G. In the NAEP

example, Mislevy and Yan (1991) calculated examinees' posterior means and variances

with K=10, 100, and 1000. K=10 proved stable for estimating posterior means, but not

for posterior variances, which were stable with K=100. Results for K=100 and K=1000

were indistinguishable. We use the K=100 results below as a baseline comparison for
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corresponding estimates calculated with ERFs. The dotted lines in Figure 1 illustrate the

item response functions for four items from the NAPE' example that correspond to 100

draws of B. (The solid and dashed lines will be discussed below). These graphs depict

the nature and magnitude of uncertainty about item response functions, but not the mild co-

relationship among the curves induced by the nonzero inter-item covariances.

[[Figure 1 about here]]

Expected Response Functions

Definition

In dichotomous IRT models, the expected value of a correct response to Item j

given 0 and B is Fj(8)EP(xj=110,i3j). If Pj is only partially known, through p(B), the

probability of a correct response conditional on 0 but marginal with respect to B can be

written as

F;(e)-_,Epi [F1(0)]

= p(x, =110,i3j)p(B)dB

= lle, Cp(Cas1,

(14)

an "expected response function" that gives the probability of correct response conditional

on 0 taking into account uncertainty about B (Lewis, 1985).

Even though F; is the expected value of a correct response at each value of 0, it is

not the same as Fj(0) evaluated with the expected value of i3j. This can be seen in Figure

1, which shows expected response functions (dashed lines) for the four items from the

NAEP example, along with the curves that correspond to Fj(0) as evaluated with the point

estimate 13i (solid lines). In particular, the ERF is generally flatter.

The shape of F; depends on the shape of Fj and the character of p(Pj). In general,

F; and Fj will not be of the same functional form. Lewis (1985) shows that if Fj were

2PN and p(f3j)Ep(ai,k) were bivariate normal, then ri would be a 2-parameter ogive with

a Student's t shape. Its locition parameter, tc, would have the same value as the Bayes

mean estimate for b, or but its slope parameter, a; , would be attenuated from the
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Bayes mean estimate for aj. A simpler result is obtained if aj is known with certainty a

priori. If p(b) is N(bi ,aj), then F; is also 2PN, with b;= L1 and

*al. = a +ofl 4.

Approximation with ERFs

ERFs serve as a potential basis for taking uncertainty about B into account, by
replacing occurrences of Fis with F; s in functions of interest G(B). As examples,

consider the following:

Likelihood estimation of 9 proceeds by maximizing an ERF-based analogue of the

likelihood, namely

p* (x10) a 121F; [l
(15)

One way to justify maximizing p*(x1 0) is to view it as an approximation of the marginal

likelihood:

p(xl 0) = E8[p(x18,B)]

friFi(0)Xi {1 Fi(6)r p(B)aB

= Fi(e)xj[1 Fi(e)]l_X) p(J3i101_1,...,f31) (913i

= ...f F1(0)11 F1(c)r 661).9p,

=rIs...JF1(e)xJ[1_Fi(e)1l_xi p(13i)O13i
1=1

.1-1F; Or [1F i(0)

p.(xl 0).

The step in which the approximation occurs replaces each p(011/31_1,...,p,) with

p(131). Thus, if the information about items is independentthat is, p(B)=II p(f3j)the

result is exact. Likelihood and Bayesian inferences about 8 that take uncertainty about B

1 4
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into account exhibit in this case the same conditional independence form as when item

parameters are known. In particular, applying standard procedures for known item
response fUnctions to obtain MLEs and asymptotic variances (3), but with F; s in place of

Fis, gives the correct results. Independent posteriors for items can be assured or closely

approximated by coupling special item-calibration sampling designs and test construction

designs; the idea is for the items appearing in a test, the sets of examinees in the calibration

sample responding to each of them were completely or nearly disjoint. For example,

randomly equivalent calibration samples of examinees can be administered disjoint blocks

of items, and operational test forms can be built with items from different blocks.

A second justification applies even if p(B) is not independent over items. Although

the dependencies among items are ignored, (15) is an example of what Arnold and Strauss
(1991) call a "pseudo-likelihood" (see Appendix); under regularity conditions on the F; s,

its maximum is a consistent estimator of 0. Thus likelihood point estimates of 0 based on

(15) tend to have the correct central tendency. Applying the standard MLE variance
formula (3) with F; s tends to give too optimistic of an impression of the uncertainty about

Os, however. But if the dependencies among items are smalland they tend toward zero

in long tests (Mislevy & Sheehan, 1989)the degree to which this value understates

uncertainty will also be small.

Bayesian inference about 0 can employ the above approximation p*(x10) for

likelihoods. The posterior distribution for 0 is thus approximated as

and the posterior

Ol P.(xl 0) p(0)
p* ( x)

mean and variance are approximated

E(01x)= ff

p* (x I o)poso ae

as

O p(Olx,B) dOdB

Jo 1(O1 x) de
(16)

and

Var(Olx) = p(Olx,B) 0 p(Olx,B) aeraB.1.102

= $132 ps (01x) delf p.(01x) dor .

(17)
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Again the approximations are exact if p(B) is independent over items, and indicators of

uncertainty tend to be optimistic to the extent that dependencies among items are

nonnegligible. Some numerical results on this point appear in the NAEP example.

The test characteristic function is the expected number-correct score on a test of n

items as a function of a Mislevy, Sheehan, & Wingersky (1993) obtained test

characteristic functions with ERFs, in order to equate tests with sparse item-calibration

data. IRT true-score equating determines number-right (or formula) scores on different

tests that correspond to the same values of 0 (Lord, 1980). The expected number-right

score on Test A for an examinee with proficiency 0 is obtained as

(60)= p(x = 118,,61). 1,F1(8),
jeTA jeTA

(18)

where TA is the set of indices of items that appear in Test A. The expected score on Test
B, zi3(0), is defined analogously. A score on Test A and a score on Test B are "true-score

equated" if they are the respective expected scores of the same value of 0.

When knowledge about B is imperfect, one must equate scores that are expectations

conditional on 0 but marginal with respect to p(B), rather than expected scores conditional

on 8 and B. The expected true score on Test A given 8 under these circumstances is thus

T.*A (0) = EBR(8)]= p(x = 110,i3,)p(f3,)dPi = F;(0). (19)
TA jeTA

This is simply the sum of the probabilities of correct response item by item, whether or not

p(B) is independent over items. A score on Test A and a score on Test B are "expected

true-score equated" if they are the respective expected scores of the same value of 0, as

defined by (19). Because only expected scores are needed for this equating method, the

expected test characteristic curves obtained in (19) are correct whether or not the posteriors

for individual items are independent.

Computing Approximations

As noted above, closed-form solutions for F; are not generally available. This

section describes how to use multiple-imputations or Gibbs-sampler discrete estimates of
p(4) to estimate F; point by point across a grid of 8 values foi each item. Because only

p(pj) is involved for Item j, not the posteriors for other items, this process can be carried
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out independently over items. Subsequent inferences about 0 can be drawn using these

points in a discrete approximation of the 9 distribution and the response curve, or a smooth

curve can be fit to the probabilities thus obtained.

There are operational advantages to using the closest curve from a familiar family to

approximate rifor example, the closest 3PL curve in applications based on the 3PL

model, or the closest 2PL model in applications based on the 1PL or 2PL. Let F7 denote

such an approximation. This expedient makes it possible to use standard off-the-shelf

software designed for popular parametric IRT models to estimate examinee scores,

construct tests, or draw equating lines. If additional information about item parameters

becomes available over time, as might occur as examinee responses are acquired over time

in operational testing, it can be incorporated into the system by merely updatingitem

parameter values under the same model. If the IRT model were correct and the response

function were stable over time, the sequence of expected response curves would converge

toward the closest member of the family to the true curveto the true curve itself, if it were

a member of the family.

We now describe the operational procedures we have used for applied work with
ERFs. The expected response function for a particular item, is approximated as

follows:

1. Obtain an estimate of the posterior distribution p( Si). As noted above, this is

usually based on a calibration sample of examinee responsessay, MVN(A,Z,i)

with parameter estimates from BlLOG but it may also be based partly or wholly

on collateral information about items such as content specifications and cognitive

processing requirements (Mislevy, Sheehan, & Wingersky, 1993).

2. Specify a grid of M theta values across the ability range of interest. Let O. denote

the mth grid point.

3. Draw K item parameter vectors from p( p). Let fir be the kth such draw.

4. For each of the K sets of item parameters, determine P, the probability of a

correct response to Item j at O., where P(ik,) = p(x =110 =
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5. Compute the expectation at each point 8. by averaging the probabilities obtained in

Step 4:

F; (e.)
k=1

We refer to the collection of points {(e F;(49)): m=1,...,M) as the

"nonparametric" expected response function because it does not assume any particular

parametric form.

For applied work, it may be convenient to approximate the nonparametric ERF with
a continuous approximation F, say a spline or a close-fitting 2PL or 3PL curve. The use

of a 3PL will be illustrated below. Maximum likelihood estimates for the 3PL item

parameters /37 = (a;*,b7,c;') that best approximate F; are found by maximizing

F*(e
flIF7(8.43;')F;(ell - F7(e.437)}1- ' (20)
ms=1

over the M-point theta grid, where Wm is a weight that specifies the relative importance of
fitting F** at 0.. For example, weights may be selected to simulate a rectangular

distribution of examinees or a normal distribution of examinees. The maximum may be

obtained iteratively by using Newton's method to obtain successive corrections to the

parameter estimates. We refer to the solution as a "fitted" expected response function.

Example (continued)

The BILOG calibration of the 19 previously-described NAEP items with 100

examinees provided the posterior mode estimates (i11,1,ej) and the corresponding large-

sample approximation of the covariance matrix discussed above. Due to range restrictions

on the a's and c's, we worked with a multivariate normal (MVN) appoximation for the
posterior of I3 = (log(aj),k,logit(cj)), where 1ogit(cj)=log[c/(1-cj)]. p( /3j) was thus

approximated as MVN with mean vector 13i = (log(ttj),Splogit(a1)) and covariance matrix

E obtained through the delta method from the covariance matrix for the untransformed

parameters. Nonparametric and fitted 3PL ERFs were calculated for each item. Figure 2

presents results for the four items which previously appeared in Figure 1. The
nonparameric ERFs were obtained using 100 draws from p(P1) and a grid of 31 evenly-

spaced e values ranging from -3 to +3 in steps of .2. The fitted curves employed a

IS
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standard normal weighting function over the same range. The item response functions that

correspond to Fj(0) evaluated with the point estimate P; are also plotted for comparison.

These curves are noticeably steeper than the two expected response curves. Thus, one

effect of ignoring uncertainty about item parameters is a tendency to inflate belief about the

discriminating power of an item.

[[Figure 2 about here]]

For most of the 19 items, the 3PL approximation captured the nonparametric

approximation quite well. The only discrepancies encountered were for items with fairly

high a's, such as Item 19. For these highly discriminating items, the fitted curves tended to

be slightly flatter than the nonparametric curves. The discrepancies were slightly more

pronounced when the ERFs were recalculated with a rectangular weighting function,

indicating that they are related to the inability of the 3PL form to capture the pattern of

curvature in the tails of the theta range.

Figure 3 presents a comparison of results regarding Bayesian inference about 0 for

a sample of 100 students. The plots show posterior means and associated posterior

standard deviations (PSDs) calculated using point estimates of the item parameters,

nonparametric ERFs, and fitted ERFs. In each case, the multiple imputation solution

(Equations 12 and 13) is employed as a standard of evaluation, as it is nonparametric and

accounts for dependencies among the parameters of different items. As can be seen, the

various methods for handling uncertainty about p; have had negligible effect on the

calculation of posterior means. However, the effect on the associated PSDs is quite

pronounced. As would be expected, the practice of using point estimates of item parameters

as if they were known true values seriously understates the uncertainty associated with

examinees' 0s. This effect is less pronounced when ERFs are used. Table 3 presents

average PSDs calculated for the multiple imputation approach, the nonparametric and fitted

ERFs, and the point estimates. In this example, the PSD of a typical examinee's 0, when

calculated using point estimates of the item parameters, was understated by abolt 10%.

This can be attributed to ignoring uncertainty about B altogether. For the nonparametric

and fitted ERFs the understatement was only 3.6% and 3.9% respectively. This is

obtained by incorporating uncertainty about B item by item, but ignoring dependencies

across items. In terms of variance, about 60% of the typically-ignored variance was

accounted for in this example through the use of ERFs.
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[[Figure 3 about here]]

[[Table 3 about here]]

Conclusion

As increasingly ambitious applications push item response theory closer to the

boundaries of its applicability, increasingly strenuous efforts are required to deal with

issues of uncertainty, both as to model fit and knowledge of parameters within the model.

This paper addresses a problem of the latter type, namely, dealing with uncertainty about

item parameters. Fortunately, statisticians' recent interest in numerical and Bayesian

approaches to such problems provide a variety of tools, each with their own strengths and

weaknesses to be matched with the purposes and characteristics of applications. Expected

response functions (ERFs) account for uncertainty that is usually ignored in a way that

allow us to employ familiar formulas for known item response functionseven to apply

the same formulas but with attenuated parameter estimates. This would be especially

convenient in item-banking and adaptive-testing applications, in which tests are assembled

from collections of pre-calibrated items. Uncertainty about item parameters (under the

assumed model!) would be implicit in the parameter estimates available at a given point in

time, no additional steps would be required at the point of calculating scores for individual

examinees, and improved knowledge about item parameters would merely require updating

a file of ERF parameters.



Expected response functions

Page 15

References

Albert, J.H. (1992). Bayesian estimation of normal ogive item response curves using

Gibbs sampling. Journal of Educational Statistics, 17, 251-269.

Arnold, B. C. and Strauss, D. (1991) Pseudolikelihood estimation: Some examples.

Sankhya B, 53, 233-243.

Gelfand, A.E., & Smith, A.F.M. (1990). Sampling-based approaches to calculating

marginal densities. Journal of the American Statistical Association, 85, 398-409.

Gelman, A., & Rubin, D.B. (1992). Inference from iterative simulation using multiple

sequences. Statistical Science, 4, 457-511.

Jones, D.H., Wainer, H., & Kaplan, B. (1984). Estimating ability with three item

response models when the models are wrong and their parameters are inaccurate.

ETS Research Report RR-84-26. Princeton, NJ: Educational Testing Service.

Lewis, C. (1985). Estimating individual abilities with imperfectly known item response

functions. Paper presented at the Annual Meeting of the Psychometric Society,

Nashville TN, June, 1985.

Lindley, D.V. (1980). Approximate Bayesian methods. Trabajos Estadistica, 31, 223-237.

Lord, F.M. (1980). Applications of item response theory to practical testing problems.

Hillsdale, NJ: Erlbaum.

Mislevy, R.J. (1986). Bayes modal estimation in item response models. Psychometrika,

51, 177-196.

Mislevy, R.J., & Bock, R.D. (1983). BILOG: Item analysis and test scoring with binary

logistic models [computer program]. Mooresville, IN: Scientific Software, Inc.

Mislevy, R.I., & Sheehan, K.M. (1989). Information matrices in latent-variable models.

Journal of Educational Statistics, 14, 335-350.

Mislevy, R.J., Sheehan, K.M., & Wingersky, M.S. (1993). How to equate tests with

little or no data. Journal of Educational Measurement, 30, 55-78.



Expected response functions

Page 16

Mislevy, R.J., & Yan, D. (1991, June). Dealing with uncertainty about item parameters:

Multiple imputations and SIR. Presented at the annual meeting of the Psychometric

Society, Princeton, NJ.

Rubin, D.B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.

Tsutakawa, R.K. (1984). Estimafion of two-parameter logistic item response curves.

Journal of Educational Statistics, 9, 263-276.

Tsutakawa, R.K., & Johnson, J. (1990). The effect of uncertainty of item parameter

estimation on ability estimates. Psychometrika, 55, 371-390.

Tsutakawa,R.K., & Soltys, M.J. (1988). Approximation for Bayesian ability estimation.

Journal of Educational Statistics, 13, 117-130.

Sheehan, K.M., & Mislevy, R.J. (1988). Some consequences of the uncertainty in IRT

linking procedures. Research Report 88-38-0NR. Princeton, NJ: Educational

Testing Service.



Page 17

Table 1

Statistics and Point Estimates of Item Parameters ci,6,0
for 19 NAEP Mathematics Items

Item Correct r-bis 6

1 .78 .35 .39 -1.59 .20

2 .92 .63 .90 -1.98 .20

3 .78 .45 .55 -1.23 .19

4 .85 .45 .77 -1.45 .20

5 .79 .45 .63 -1.17 .20

6 .91 .47 .54 -2.60 .20

7 .65 .65 1.20 -.26 .17

8 .86 .64 .99 -1.37 .18

9 .72 .62 1.22 -.50 .19

10 .67 .61 1.27 -.26 .20

11 .48 .56 1.96 .53 .23

12 .77 .44 .60 -1.06 .20

13 .85 .59 .95 -1.30 .19

14 .51 .69 1.89 .20 .15

15 .55 .49 .86 .19 .18

16 .43 .41 .65 .81 .16

17 .30 .56 1.10 1.04 .12

18 .53 .44 2.59 .56 .30

19 .21 .63 3.03 1.09 .10
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Table 2

Variances and Covariances of Item Parameter Estimates
for 19 NAEP Mathematics Items

Item Var(a) Cov(a,b) Var(b) Cov(a,c) Cov(b,c) Var(c)

1 .059 .233 1.212 .001 .027 .008

2 .435 .632 1.086 .003 .012 .008

3 .069 .141 .509 .002 .019 .008

4 .264 .320 .536 .004 .016 .008

5 .119 .174 .401 .004 .020 .008

6 .078 .325 1.673 .001 .017 .008

7 .300 .055 .073 .011 .010 .006

8 .208 .179 .251 .003 .011 .007

9 .259 .094 .108 .010 .012 .007

10 .339 .074 .077 .016 .012 .007

11 2.513 .056 .058 .053 .008 .006

12 .114 .181 .527 .004 .021 .008

13 .280 .261 .354 .004 .012 .007

14 1.519 .073 .041 .034 .007 .004

15 .203 .037 .132 .011 .015 .007

16 .118 -.043 .201 .009 .014 .006

17 .366 -.075 .104 .012 .005 .003

18 10.944 .232 .058 .129 .009 .008

19 11.626 -.210 .051 .042 .002 .002
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Table 3

Average Posterior Variances and Standard Deviations
for a Sample of 100 Examinees

Average
Posterior

Average
Posterior

Estimation / thod Variance S.D. Decrease

Multiple Imputation 0.2151 .4585

Nonparametric ERF 0.1995 .4418 3.6

Fitted ERF 0.1977 .4406 3.9

Point Estimates 0.1743 .4113 10.3
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Figure Captions

Figure 1. 100 Draws from Item Parameter Posterior Distributions for Four Items.

Figure 2. Item Response Functions for the Four Items.

figure 3. Scatterplots of Posterior Means and Standard Deviations for 100 Examinees.
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Appendix A

Pseudo likelihood Estimation of 6 from Marginalized Likelihoods

The first section below paraphrases Arnold and Strauss's (1991; denoted AS

below) framework and results on pseudolikelihood estimation. The reader is referred to

AS for regularity conditions, proofs, and examples. The second section shows how this

framework accommodates likelihood estimation of 6 using the product of expected

response curves.

Pseudolikelihood Estimation

Let (X1,...,XN) represent N iid n-dimensional observations with common joint

density f(x,.0) where 0 is an element of a p-dimensional parameter domain 0. Denote by S

the set of all n-dimensional vectors consisting of O's and 1 's, with at least one 1. For a

particular s in S. the random vector Xi(s) contains the coordinates Xij of Xi for which

sj:=1. For example, if Xi =(X11, X2, Xi3) and s=(1,0,1), then Xi(s)--.(Xii, Xi3). The
density of Xi(s) will be denoted fs(xn 0), although it may depend on only some of the

components of O. Let 8 = 18,:s e S} be a vector of 2n-1 real numbers, not all zero,

corresponding to the elements of S. The pseudolikelihood PL(8,0) of the data is defined

by

PL(5, 0) = n[rif s(e);0)]. (Al)
seS i=1

Equivalently, in terms of logarithms,

log PL(5, 0) = 8. log f,(e), 0).
seS i=1

A pseudolikelihood(b) estimate of 0 is a value of 0 that maximizes (Al). Under

regularity conditions, (Al) can be maximized by solving the pseudolikelihood equations,

obtained by differentiating the log of the pseudolikelihood with respect to the elements of 0

and setting them to zero; that is,

a ft(e);e)
dek

log PL(3, 0) = °.L f Er(5); 0)
0 for k = p. (A2)

dO,
i=1 s '

30
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If regularity conditions given in AS for f :..nd the fr's are satisfied, then with

probability tending to 1 as N 00 the pseudolikelihood equation (A2) has a root ON such

that eN -N-4 00, the true parameter value; i.e., the pseudolikelihood estimator is

consistent. (The regularity conditions ensure, among other things, that the choice of 6 does

not omit any elements of a multidimensional 0 from PL(5,0).) Moreover, the

pseudolikelihood estimator is asymptotically normal. AS give an expression for its large-

sample variance, which depends on the choice of dand is bounded from below by the

large-sample variance of the MLE In the univariate case, any consistent sequence

ON = 8N(X1,...,XN) Of roots of (A2) satisfies

where

and

-Nik-CeN _ 00)_J__)N(0, K6(0)

aK6(0) = I 8. EeRT
0

logfs(P);
s,s' eS

log fe (X('1.); 0)1]

432

J5 (0)= kEEe{-71ogf s(P);61)}.
:Es de

Application to Expected Response Curves

(A3)

The above results can be applied to the estimation of examinee ability under an IRT

model. Let X=(Xj, Xn) represent a response vector from an examinee to n items,

governed by the IRT model Fi (0) E P(Xi = 110,/3i) with

P(X = xl 0, B) = fl [Fj( 0)]x [1 - Fj(0)]l_x,.
i=1

Let knowledge about B be expressed as p(B). The marginalized likelihood function for

maximum likelihood estimation of 0 is

P(X = x10). (ft[F1(0)]" [l - Fi(0)]' )p(B)dB.
iI
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For pseudolikelihood estimation, define 5 as a selector for the subspace of S

consisting of vectors that isolate a single item response; i.e.,

1 if
8s=

0 otherwise

The pseudolikelihood PL(5,0) corresponding to one observed response vector (i.e., N=1)

is obtained by specializing (Al) as follows:

PL(5, 6) = af,(x(s);9)}88
seS

= 111)(X j;
1=1

=121[F;(0)] 1{1- Fj(0) ,

1=1

where F;(0) is the expected response curve for Item j.

If knowledge about items is independenti.e., p(B)=Ilp(131)then the asymptotic

variance of the pseudolikelihood estimate (A3) simplifies to the usual inverse of the sum

i-isher information over items, as calculated with expected response curves.

The AS consistency results imply the asymptotic equivalence of maximizing values

of the full marginal likelihood, which does take dependencies among parameters from

different items into account, and the product of the expected response curves, which does

not, for large samples of response vectors for the same a Since we typically observe only

one response vector per examinee in practical work, small-sample behavior remains to be

examined.



Appendix B

Program Documentation

This appendix provides detailed documentation for two computer programs: EXPRESFN
and PLOTIRF. The EXPRESFN program computes EXPected RESponse FuNctions, both
nonparametric and fitted, for a set of items, given a set of multivariate normal item parameter
posterior distributions specified in terms of a set of mean vectors and an associated set of
independent variance-covariance matrices. The PLOTIRF program provides plots of all

estimated curves.

The EXPRESFN Program

The EXPRESFN program assumes that item responses may be modeled using a 2PL or a
3PL IRT model. Both nonparametric and fitted expected response functions are estimated for
all items. The procedures used to estimate the fitted expected response functions are very
similar to the procedures employed in LOGIST. The program also computes EAP ability
estimates and standard errors for a set of examinees using the nonparametric and fitted
expected response functions as well as the point estimates of the item parameter means.

The program has the following options:

1. The user may specify either a 2PL or a 3PL model.

2. The input point estimates of the item parameter means and variance-covariance
matrices may be specified on the (a,b,c) scale or on the transformed (log(a),b,logit(c)) scale.

3. The range of the 0 grid and the total number of grid points may be specified.

4. In computing the fitted expected response function, the weighting distribution may be
either normal or rectangular and the sum of the weights, ie. the total number of pseudo-
examinees, may be specified.

5. In estimating the item parameters for the fitted expected response functions, the

iterative procedure requires initial item parameter estimates. The program supplies default
values for these initial estimates. However, the user may set all initial a's to a given value,
all initial c's to a specified value or may supply the initial values.

6. To control the problem of estimating c's when the fitted expected response function
becomes asymptotic below the minimum ability of interest, one may fix the c's at a common

c for items where the estimated b-2/a is less than some criterion, fix all c's at a common c,
put a beta prior on the c's and estimate the mean of the prior, or put a beta prior on the c's
fixing the mean at a value specified by the user. The common c may be fixed or estimated.

7. Abilities may be estimated for an existing set of item responses or for a set of

responses generated by the program for a random sample of examinees drawn from either a

BEST COPY AVAILABLE

33



Page B-2

normal or rectangular distribution. The generated data can be used to assess the differences
between the abilities estimated using the three item response functions.

Nonparametric Expected Response Function

The nonparametric expected response function estimation procedure requires point
estimates of the item parameters and associated variance-covariance matrices expressed on a
transformed scale. If the input data has not already been transformed, then the following
transformations will be applied:

ati = log(a1)

bt; = bi

ctj = log( 9/(l-ci))

var(4) = var(a)/(aja;)

cov(aA) = cov(apb)/a;

cov(atpcti) = cov(49)/(ap3(1-ci))

var(b) = var(b)

cov(bX) = covkc)/(c(l-9))

var(cti) = var(9)/(ci(l-9))2

A grid of M 0 values are specified from 0m to EL. Then a random sample of K parameter
values are drawn from the multivariate normal distribution with means a,tj bt,j ej and with the
transformed variance-covariance matrix, rov. If the point estimate of cj is 0, the 9 is held
fixed and only log aj and bi sampled. The 9 for this item will also not be estimated for the
fitted ERF. If the point estimate for 9 is less than or equal to .001, the mean for 9 used for
the multivariate normal is set to the standard error of c. F*1(43.) is computed for each of the
M values of 0 for each of the K IRF's. F"j is the average of the rj(0,)'s.
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Fitted Expected Response Function

The nonparametric ERF is the input for estimating the parameters of the fitted
expected response function. The abilities are fixed at the O. values in the grid. A sample of
pseudo-examinees is generated to weight the grid values according to a weighting distribution
specified by the user. The distribution may be either normal or rectangular. If normal the
user may specify the mean and standard deviation. The user specifies the number of
examinees for the sample. Newton's method is used to solve for the corrections to the
estimated parameters by solving the likelihood equations. Since there are no omits, this
procedure uses the expected values of the second derivatives which removes any possibilities
of nonpositive defmite matrices. If an item has a zero determinant, the item is removed from
further estimation and the parameters are set to the values before the zero determinant.

The iteration procedure requires initial values for the item parameters. The default
value for a is one. The default value for c is 1/(# choices) -.05. The default value for b is a
function of the proportion correct. The formulas to compute the default values of b are:

1 +a
b -h

ai
where h; is given by the following equations

and

pf--1fe-i di
hj

E virx(e.,)
nal

and N is the number of pseudo-examinees.

The procedure estimates the parameters for one item at a time until the relative change
in a is less than .001 if a is being estimated. If a is fixed, the procedure iterates until the
change in b is less than .001. One pass through all of the items constitutes a stage. In the
first stage the c's are held fixed. In the second and following stages the c's are estimated
unless a two parameter model is requested. If all c's are being estimated, or there is a prior

on the c's, stages are repeated until the change in the likelihood is less than .02% between
stages.

If no prior is imposed on the c's and the poorly estimated c's are restricted to a
common c value, the following procedure is used:

In the second and third stages the c's for all items are estimated.
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At the end of the third stage, the c's for items with b-2/a less than the criterion for
fixing the c, (CRITF1XC), are fixed at a common c value. If all c's are to be
fixed at a common c value, they are set to the common c value at this point.

The common c value is then estimated once per stage until the change in the common
c is less than the standard error of the common c estimate for two successive
stages. Only the items with c fixed at the common c are estimated in these
stages.

The common c is then fixed and all items are again estimated until the criterion
function increases by less than .02%

If a prior on c is requested and the mean is estimated, the mean is computedas the
average of the c's at the end of each stage. Note: the beta prior is included in the
computation of the likelihood and since the mean isn't actually a maximum likelihood
estimate of the mean, the likelihood may not increase uniformly. To prevent premature
stopping of the estimation procedure in this situation, the procedure will continue until the
maximum difference between IRF's between stages is less than .001. The APerence is
computed for 5 abilities from -2 to 2 at intervals of 1.

The a parameter is restricted to a range of .01 to 99, c to a range of 0. to .99. The
maximum amount that a parameter may change in any iteration is restricted. The amount for
a is .1 times the previous value for a plus .2, b is .1 times previous value of b plus .4, and c
is .06.

Input
The input to the program consists of a sysin file containing file names for the input

and output files and parameters for conaolling the procedure and a file containing the point
estimates for the parameters and the variance-covariance of these estimates. If abilities are to
be estimated for a group of examinees, the file of their responses is also read.

The Svsin File.

Record Set 1:

The first set of records in the sysin file defme the input and output files.
The set contains one record for each file to be defined. The last record in this set must be
blank. The format for the file definition card is:

col 1
col 3 - 4 Unit number
col 6 - 45 File name, with all qualifiers



The files to be specified are:
Input files:

Unit 5
Unit 10

Unit 11

Output files:
Unit 6
Unit 7

Unit 12

Unit 13

Unit 14

Unit 15
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File containing the sysin dataset.
File containing, for each item, the point estimates and the
variance-covariance matrix. They may be either on the a,b,c
scale or on the log a, b, logit c scale but both the point estimates
and the variance-covariance matrix must be on the same scale.
Input file containing the examinee responses if abilities are to be
estimated for an existing item response file.

Printed output file
Item parameter output in LOGIST7 format. The abilities written
are the pseudo-abilities used to estimate the fitted ERF's.
Binary scratch output file, used to temporarily store the
nonparametric ERF's and then the examinee responses.
Output file containing the point estimate item parameters, the
fitted ERF, and the nonparametric ERF for each item.
Output file containing the sample of item response functions, if
it was requested that the sample be saved.
Output file containing ability estimates, standard errors, and item

responses, if abilities are estimated.

Record Set 2.
In record set 2, the options for running the procedure are specified. Only those

options where the default says "Required" must be specified. The required parameters are the

title, the number of items, the number of choices per item, and the format for reading the
point estimates file. Defaults are supplied for all of the other parameters. The parameters are
specified by entering the parameter name in positions 1 through 11 of the record and the
value in positions 13 through 20. Formats are entered in positions 13 - 80. Right justify all

integer values. The last record in this set must be blank.

Parameter input:

Parameter

TITLE

#ITEMS

SEED

DEBUG

ITEMIDEN

Description / Options

Title for the run

Number of items. (Maximum 800)

Random number seed. Integer between 0 and
1048576.

Debugging printout?

Read in 8-character item identification codes?

Default

required

required

275927

NO

NO



Parameter

GENFIXC

IFIRANS

FMTVAR

#S AMPIRF

MINTHETA

MAXTHETA

#ABMGRP

WEIGHTFN

WEIGHTMN

WEIGHTSD

#ERFEXAM

SAVESAMP

READA

READB

READC

Description / Options Default

Is c fixed in var/cov i.e. var/cov for c are 0? If so c NO
will be fixed in fitting the ERF.

Are the input point estimates and var/cov matrix on NO
the log a, b, logit c scale?

Format for reading point estimates and var/cov Required
matrix. The values are read in following order:
item number, a, b, c, var(a), cov(a,b), cov(a,c),
var(b), cov(b,c), var(c). If abilities are to be
estimated for a group of examinees, the item
number must be the sequence number of the item in
the record of item responses.

Number of item parameter values to sample 100
(Maximum=1,000)

Minimum ability for 0 grid -3.

Maximum ability for 0 grid 3.

Number of points in 0 grid. (Maximum 201) 31

Weighting distribution for fitting ERF. Enter NORMAL
RECTANGULAR or NORMAL

If weighting distribution NORMAL, specify mean 0.

If weighting distribution NORMAL, specify 1.

standard deviation.

Number of pseudo examinees for estimating the 3100
fitted ERF's. These will be apportioned by the
weighting distribution to the M 9 grid points and
adjusted so that there is an integral number of
examinees at each grid point.

Save the sample of item response functions to a NO
file?

Read in initial a's? NO

Read in initial b's? NO

Read in initial c's? NO
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Parameter Description / Options Default

PRIORC prior on c? 0
0 - no, estimate all c's, don't fix any at the common
c value.
1 - no, fix c's at a common c (COMCx) if

b-2/a<CRITFIXC. Estimate COMCx.
2 - no, fix all items at a common c. Estimate
COMCx.
3 - yes, estimate the mean of prior.
4 - yes, fix the mean of prior.

CRITFIXC Criterion for fixing c, if no prior requested and -2.5

PRIORC = 1.

AlNIT Initial a value, if READA is NO. 1.

AMAX Maximum a. 99.0

PARMCODE What parameters are to be estimated 3

-1 - read in parmcode for each item
Otherwise set parameter code for all items to the
specified code. The definitions of the codes are:

code parameters
estimated

2 a,b
3 a,b,c

CHOICESx Number of choices per item. x indicates a sequence Requited
number for different item types. Specify a different
CHOICESx for each item type. For example, if a
test has 4 and 5 choice items, set CHOICES1 to 4
and CHOICES2 ta 5. x must be between 0 and 98.

CINITx Initial c for the CHOICESx items. 1/CHOICESx -.05

COMCx If no prior on c , common c value for the 1/CHOICESx -.05

CHOICESx items.
If prior on c, mean c of prior for the CHOICESx
items.



Parameter

N-INFx

CHIx

ESTABIL

#EXAMINEE

PRIORMN

PRIORSD

GENRESP

DISTAB1L

DISTMN

DISTSD

RECTMIN

RECTMAX

FMTRESP
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Description / Options Default

This is only used if there is a prior on c. It is the
weight for the prior on c in terms of the number in
a hypothetical group of examinees at minus infinity.
It controls the variance of the beta prior. A
separate N-1NFx must be specified for every
CHOICESx alternatives.

Maximum c

Estimate abilities?

Number of examinees for which abilities are to be
estimated if ESTABIL=YES. (Maximum 10,000)

Prior mean of p(e)

Prior standard deviation of p(e)

Generate artificial data, abilities and item responses.

If generating artificial data, specify type of ability
distribution to generate, either 'RECTANGULAR'
or 'NORMAL'.

If DISTAB1L is 'NORMAL', specify the mean of
the distxibution.

If DISTABIL is 'NORMAL', specify the standard
deviation of the distribution.

If DISTAB1L is 'RECTANGULAR', specify
minimum ability for distribution.

If DISTABIL is 'RECTANGULAR', specify
maximum ability for distribution.

If reading in examinee responses, specify format for
reading the item responses. They will be selected
as specified by item number read from the point
estimates file. They are read in integer format. As
many integer fields must be specified as the
maximum item number read from the point
estimates. For example, if the item numbers read
from the point estimates are 1,5, and 10. The
format must specify reading in 10 integer fields.

20

.99

NO

20

0.

1.

YES

RECTANGULAR

0.

1.

-3.

3.

Required if
ESTAB1L=YES
and
GENRESP=NO.
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Additional input:
If PARMCODE = -1, read in a parameter code for each item with Record set 3.
If more than one CHOICESx read, specify the items for each number of choices in

Record set 4.
If ITEMIDEN requested, read in item identification in Record set 5.

Record set 3.
This record set is only required if PARMCODE is set to -1 to read in a parameter

code for each item.
col 1 - 8 "PARMCODE"
col 9-10 Sequence number for this PARMCODE record.
col 11-80 Parameter codes for the items in 3512 format.
Repeat for as many records as necessary, increasing the sequence number for each
record. For example, for items 36-40, the sequence number must be 2.

Record set 4.
This record set is only necessary if more than one CHOICESx is specified. It is used

to specify the number of choices for each item.
col 1 - 8 "CHOICESx" where x corresponds to the CHOICESx specified on the

parameter records.
col 9 -10 Sequence number for this CHOICESx record.
col 11 - 80 Item numbers of the items, that have the number of choices specified by

CHOICESx, read in (10I5) format. A sequence of items can be
specified by specifying the first number in the sequence followed by
the negative of the last number in the sequence.

Enter as many CHOICESx records as necessary, increasing the sequence number for
each record. Do no split a sequence across two records. If the beginning of a
sequence would be the last field of a record, leave the last field blank and start
the sequence on the next record.

Record set 5.
If ITEMIDEN is "YES", this set is required to read in the 8-character item

identification for each item.
col 1 - 8 "MN:DEN"
col 9 - 10 Sequence number
col 11 - 18 Item identification for the first item. Left justify the identification in the

field.
col 19 - 10 Blank
col 21 - 28 Item identification for the second item.
col 29 - 30 Blank
etc. etc.

Enter 7 item identifications per record, repeat for as many records as necessary,
increasing the sequence number for each record. For example, record with
sequence number 2 will contain the identifications for items 8 through 14.
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Detailed description of output:

Unit 6 Printed output file
The printout contains:

Check on input parameters and defaults.
For the nonparametric ERF, the point estimates, the input var/cov matrix, the

var/cov for the sampled TRF's for both the a,b,c scale and the
transformed scale, and the nonparametric ERF for a spaced sample of
the 9 grid points are printed.

For the estimation of the parameters for the fitted ERF, the likelihood is
printed for each stage as well as the maximum derivatives for the three
parameters, the maximum change in an iteration, and the maximum
change over all iterations for each type of parameter. If the common c
is being computed, information on the computation of the common c
values is printed.

For each item there is a parameter code that indicates which item parameters
are being estimated. The values for the codes are defined in the input
description. In addition, a 20 is added to the code if the c for an item
is held fixed at the common c. If an item is removed because the
expected matrix of second derivatives had a zero determinant, the
parameter code is set to 996.

The fmal item parameter estimates are printed as well as the standard errors of
the estimates.

If abilities are estimated, the EAP ability estimates and the standard errors are
printed for the point estimate IRF, the nonparametric ERF and the fitted
ERF. Only the first and last 10 are printed.

Unit 7

Unit 13

Item parameter output in LOGIST7 format. The abilities written are the
pseudo-abilities used to estimate the fitted ERF's. A subroutine to read this
file is included with the program. The subroutine contains comment statements
that describe the calling arguments. Output includes the title, the number of
items, the number of pseudo-examinees, the estimated item parameters, the
pseudo-abilities, variables used in the estimation of c, and parameter code
indicator for number of parameters estimated.

File containing the nonparametric item response functions for plotting with the
plot program. The first record contains the title of the run. The second record
contains the number of items (15). The third record contains the M abilities for
the 9 grid in the format (5X,10F8.4). The remaining records contain the item
sequence number, the item number, the item identification, the a,b,c point
estimates, a,b,c estimates for the fitted ERF, the parameter code,and the
nonparametric proportion correct for the M abilities in the format
(215,A8,1X,3F12.6,1X,3F12.6,14/(10F12.6))



Unit 14

Unit 15
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Output file containing the sample of item response functions, if it was
requested that it be saved. For each item, the item number and the three
parameters for each sampled IRF are written in the format
(I4,12F12.6/(4X,12F12.6)).
Record 1: col 1 - 4: Item number

col 5 - 16: a for first item sampled
col 17 -28: b for first item sampled
col 29 - 40: c for first item sampled
col 41 - 52: a for second item sampled
etc. etc.

Output file containing ability estimates and standard errors, and item responses,

if abilities are estimated.
For each examinee a record is written in the format (I5,7F12.6,600I1)

containing:
col 1 - 5: examinee sequence number
col 6 - 17 - true ability, (if responses are read, this is set to 999999.)
col 18 - 29 - EAP ability computed using point estimate IRF
col 30 - 41 - EAP ability computed using fitted ERF
col 42 - 53 - EAP ability computed using nonparametric ERF
col 54 - 65 - Standard error of ability computed using point estimate

TRF
col 66 - 77 - Standard error of ability computed using the fitted ERF
col 78 - 89 - Standard error of ability computed using nonparametric

ERF
col 90 + Item responses in Il format, items 1 to #ITEMS.

The PLOTIRF Program

A plot program was also developed that plots the three item response functions for
comparison of the three curves. This program produces plots on the screen, a laser printer, or

a postscript printer. Input to the program consists of a sysin file with the control parameters
and the file written on the unit 13 by the EXPRESFN program. One, four or eight plots per

page are possible.

Input
The sysin file consists of a set of records defining the input and output files and a few

control parameters.

Record set defming files.
The set contains one record for each file to be defmed.
The last record in this set must be blank.



The format for the file definition card is:

col 1
col 3 - 4 Unit number
col 6 - 45 File name, with all qualifiers

The files to be specified are:

Input files:
Unit 5
Unit 13

Output file:
Unit 9
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Sysin file containing file defmitions and parameters.
File written on unit 13 in EXPRESFN containing the nonparametric

item response functions.

Plot output if requested that the plots be saved for printing later.

Record set specifying control parameters.
The last record in this set must be a blank record.

Parameter Description/options

TITLE Title for plots.

IFSELIT Select items from items in
EXPRESFN run.

Default

Title from
EXPRESFN.

NO

PLOTDEV Plotting device: LASER
POSTSCRIPT
LASER - HP laser printer
SCREEN - only display on screen.

#PLOTPAGE Number of plots per page. Options are 8
1, 4, or 8.

SAVEPLOT Plot now or write plots to file? NO
NO - print plots now
YES - save plots to a file for

printing later.
Record set 3.

If IFSELIT is YES to select items from the EXPRESFN run, specify the items to
select with this record set.



The format of record set 3 is as follows:

col 1 - 8
col 9 -10
col 11 - 15
col 16 - 20
etc.
col 76 - 80

'IFSELIT'
Sequence number for this IFSELIT record.
Item number of first item to be selected.
Item number of second item to be selected.

etc.
Item number of 14th item to be selected.
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Indicate a sequence of item numbers by entering the first in the sequence and the negative of

the last in the sequence. Repeat for as many cards as necessary. Increase the sequence
number for each card. Do not split a sequence across two records. If the beginning of a

sequence would be the last field of a record, leave the last field blank and start the sequence

on the next record.
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