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ABSTRACT

Rubin's model for causal inference in experiments and observational studies

is enlarged to analyze the problem of "causes causing causes" and is compared to

path analysis and recursive structural equations models. A special quasi-

experimental design, the encouragement detsign, is used to give concreteness to

the discussion by focusing on the simplest problem that involves both direct and

indirect causation. Rubin's model is shown to extend easily to this situation

and to specify conditions under which the parameters of path analysis and recur-

sive structural equations models have causal interpretations.

Key words: Rubin's model, encouragement designs, experiments, randomization,

observational studies, causal models, quasi-experiments, self-

selection, self-administered treatments, simultaneous equations

models.
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1. INTRODUCTION

I believe that the perspective on causal inference developed extensively

by Rubin (1974, 1977, 1978, 1980) provides a solid basis for considering issues

of causal inference in complex cases and that it is the only one that is grounded

in the place where causal inferences are relatively uncontroversial -- experi-

mental science. In Holland (1986a,b), I described this perspective and dubbed it

"Rubin's model" as I will refer to it here, too, even though a more general

reference, such as "the experimental model" may be more appropriate. Robins

(1984, 1985, 1986) gives a closely related model in the context of epidemiologi-

cal studies. One goal of this paper L o extend Rubin's model to accommodate

a class of quasi- experimental procedures that are called "encouragement

designs," by Powers and Swinton (1984). These designs involve both ran-

domization and self-selection as well as both direct and indirect causation.

Encouragement designs provide a simple yet useful "laboratory" in which the

issues of direct and indirect causal relationships can be carefully examined. I

hope to clarify the relationship between the systematic structure of Rubin's

model and the less formal approaches of path analysis and structural equations

modeling. My own experience has been that any discussion of causation is

enriched by an analysis using Rubin's model -- for example, Holland and Rubin

(1987), Rosenbaum (1987) and Holland (1988).

Before proceeding I want to make a few general comments about causation to

set the stage for the subsequent discussion.

In my view, in most discussions of causation, all too little attention is

given to distinguishing the question of "What is the cause of a given effect?"

from that of "What is the effect of a given cause?" Since the time of

Aristotle, philosophers have tried to define what it means for A to be a cause

of B. This activity still continues (Lewis, 1987 and Marini and Singer, 1988).

BEST COPY AVAIIABLE
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Yet, the attribution of causation has been known to be fraught with difficulty

since, at least, Hume's analysis in the mid 1700's. A statement like "A is a

cause of B" is usually false in the sense that it is, at best, a tentative sum-

mary or theory of our current knowledge of the cause (or causes) of B. For

example, do bacteria cause disease? Well, yes...until we dig deeper and find

that it is the toxins the bacteria produce that really cause the disease. Yet

this is not quite correct either -- certain chemical reactions are the real

causes -- and so on, ad infinitum. Experiments, on the other hand, do not iden-

tify causes. Rather, an experiment results in the measurement of the effects of

given causes (i.e. the effects of the experimental manipulations). The results

of an experiment can be summarized by a statement of the form "an effect of A is

B", but not by one of the form "A is a cause of B" unless we mean by the latter

no more than the former. I would be surprised if most modern scientists would

be willing to equate theoretical statements like "A is a cause of B" with

empirical regularities like "the effect of A is B". Theories may come and go,

but old, replicable experiments never die; they are just reinterpreted.

The strength of Rubin's model is that it builds on the success of experi-

mentation and focuses on the measurement of the effects of causes rather than

attempting to identify the causes of effects. Statistics has made major contri-

'butions to issues of causal inference when it has addressed the problem of

measuring the effects of causes. It does less useful things, in my opinion,

when its methodology claims to identify the causes of effects. Rubin's model

focuses our attention on what can be done well rather than on what we might like

to do, however poorly.
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I do not mean to imply that the search for the causes of a phenomenon is a

useless endeavor: indeed, it is a driving force that motivates much of science.

Rather I mean that a logical analysis of the search for causes follows from an

analysis of the measurement of causal effects and it is not logically prior to

this more basic activity. Defensible inferences about the causes of an effect

are always made against a background of measured causal effects and relevant

theories.

I have tried to follow several goals in writing this paper. First, I

discuss population quantities rather than sample estimates of population quan-

tities. Thus, it is best to think of the populations that occur here as large

or infinite. I do not apologize for this, since such a view is implicit in most

discussions of path analysis. My aim is to define causal parameters, rather

than to discuss ways of estimating them. Second, I may, on occasion, appear

overly notational, and I apologize for that. My defense is that I wish to be

very clear about what I mean, and since causation is a subtle idea, an adequate

notation is essential to understanding it. Unfortunately, my notation is not

identical to that usually used in path analysis or structural equations models,

but it is only intended to be more explicit than these other schemes are.

Finally, my goal is to put the, to me, complex and intuitive models used in path

analysis into a framework that I find helpful in complex problems, and I hope

others find it useful, too.

Summary of Rest of Paper

In section 2, I define and give an example of an "encouragement design"

that is used in the rest of this paper to focus the discussion. I think these

designs are interesting in their own right because they attempt to measure the
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effects of self-selected treatments. Section 3 reviews, from my point of view,

three related topics that concern path analysis -- deterministic linear systems,

path analysis and recursive structural equations models. In section 4, I extend

Rubin's model to the case of encouragement designs to allow for both direct and

indirect causation. A short discussion ends the body of the paper. I also

include an appendix on Rubin's model applied to experiments and observational

studies in order to make the paper reasonably self-contained.

i 0
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2. ENCOURAGEMENT DESIGNS

While it is common to discuss path analysis and causal models in terms of

abstract systems of variables, I find it easier to discuss issues of causal

inference in the context of specific examples or classes of examples. For this

reason I will use a fairly concrete quasi-experimental design, the

"encouragement design," as the basis of my discussion of causal theories that

involve direct and indirect causation. I feel that the encouragement design is

a simple and relatively clear-cut type of study in which many of the issues of

direct and indirect causation arise.

I will introduce encouragement designs by giving an example that is used

throughout the rest of this paper. Suppose we are interested in the effects of

various amounts of study on the performance of students on a test. I will sup-

pose that there are two experimental treatments: one that encourages a student

to study for the test (t treatment) and one that does not (c control).

After exposure to one of these treatments, a student will then study for the

test for some amount of time, R. Subsequently, the student is tested and gets a

test score, Y. An example of an encouragement design, similar to the one just

described, is given in Powers and Swinton (1984). My first exposure to a formal

analysis of encouragement designs was in Swinton (1975).

The only experimental manipulation in an encouragement design is exposure

to the "encouragement conditions" -- which are just t or c here, but they could

involve more than two levels, of course. Hence, using standard methods one can

measure the effect of encouragement on the amount of study, i.e. R, as well as

on test performance, i.e. Y. However, we may also be interested in the effect

of studying on test performance. Thus, random assignment of encouragement con-

BEST COPY AVAIIABLE
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ditions might be possible, but the students will then self-select their own

exposure levels to the amount they study, R. This self-selection is a critical

feature of encouragement designs and it is why I have chosen to refer to them as

a type of "quasi-experimental" design, after Campbell and Stanley (1966). The

other critical feature of encouragement designs is the analyst's interest in

measuring the causal effect of the amount of study, R, on test performance. I

have chosen this example specifically because from an individual student's point

of view, the amount one studies is a self-imposed treatment that can be measured

and over which one can exercise control. However, from the analyst's point of

view, the amount a student studies is a response to the encouragement condition,

as is the student's test performance. In this very special type of situation,

"amount of study" plays both the role of a response and the role of a self-

imposed treatment; i.e., it is both an effect and a cause.

Encouragement designs can arise in any study of human subjects in which the

treatments or causes of interest must be voluntarily applied by the subjects to

themselves. Other potential examples are medical studies that encourage

voluntary healthful activities among patients or economic studies that attempt

to alter people's spending behavior by various inducements. The analysis of

surgical trials may involve randomization of the "intention to treat" to

patients, but because of clinical intervention, the actual treatment patients

get may not be the one to which they were randomly assigned. This is similar to

an encouragement design, but the models discussed in this paper may not be

appropriate to that case, since I treat "amount of study" as a continuous

variable. The general ideas are the same, however.

1'3
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I suspect that encouragement designs are quite widespread but may not

always be recognized. On the other hand, the special nature of these designs

cannot be overemphasized, in my opinion. While it is plausible that "amount

of study" is both an effect and a cause, this dual role is not always a

plausible assumption, and ignoring this fact can lead to some rather curious

causal statements. It is critical, in the analysis developed here, that those

things that play the.role of causes or treatments have levels that are, in prin-

ciple, alterable. The statement "I could have studied but I didn't" has this

flavor, but "I might have scored higher on the test but I didn't" does not. See

Holland (1986b Section 7, and 1988) for more emphasis on this very important

point.

The basic elements of an "encouragement design" are, thus, (a) an experi-

mental manipulation of "degrees" of encouragement (here, just t and c) to per-

form some activity, (b) measurement of the subsequent amount of the encouraged

activity, (c) measurement of a final outcome or response variable and (d) an

interest in measuring the causal effect of the encouraged activity on the

response variable. Encouragement designs are more often applied to human popu-

lations than to other types of experimental units because of the self-selected

or voluntary nature of much of human activity.
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3. DETERMINISTIC LINEAR SYSTEMS, PATH ANALYSIS, AND RECURSIVE STRUCTURAL
EQUATIONS MODELS

There are three related topics reviewed in this section -- deterministic

linear systems, path analysis and structural equations models. All three will

arise in my discussion of encouragement designs in section 4. I frame this

review in terms of the structure of encouragement designs.

Extended discussions of path analysis and structural equations models may

be found in many places, for example, Blalock (1964, 1971), Duncan (1966, 1975),

Freedman (1987), Goldberger (1964), Goldberger and Duncan (1973), Heise (1975),

Kenny (1979), Saris and Stronkhorst (1984), Tukey (1954), and Wright (1934). I

follow Tukey (1954) in not standardizing the variables to have zero mean and

unit standard deviation and in emphasizing regression coefficients rather than

standardized regression coefficients.

3.1 Deterministic Linear Systems

Suppose there are two linear functions, f and g, of two variables s and r,

of the form

and

f(s) a s + d, (1)

g(s,r) .bs+cr+ d', (2)

where a, b, and c are the important slcpe parameters and d and d" are constants

that play no essential role in this theory. We introduce a third variable, y,

into this system via the definition

y g(s,r), (3)

and we assume that r and s are related by the functional relationship

r f(s). (4)

14
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Such a system captures the idea that r is functionally dependent on s and y is

functionally dependent on s and r. Since f and g are linear, changes in y and

r are determined by the slope parameters, a, b, and c. This system may be

represented by the "path" diagram in Figure 1.

/ r

b
s Y

c

Figure 1

The coefficients a, b, and c are the "path" coefficients, or the "direct

effects"; i.e., a is the direct effect of s on r, c is the direct effect of r on

y, and b is the direct effect of s on y.

The "total effect" of s on y is found by substituting the equation for r

into that for y. This yields

y = g(s, f(s)) . bs + c(a s + d) + d',

= (b + ca) s + (cd + d'),

so that

y . (b + ac) s + d''. (5)

Hence, the total effect of s on y is b + ac, which may also be calculated as the

sum of the products of all the direct effects along all the paths connecting s

and y in the path diagram in Figure 1; i.e., s to y yields b, and s to r to y

yields ac, so the sum is b + ac.
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I use the phrase "deterministic linear system" to refer to a path

diagram that arises from a set of nonstochastic linear equations like the ones

just described.

Viewed simply as a visual representation of a deterministic linear system,

path diagrams are easy to understand and can help keep track of the bookkeeping

that is associated with the total effects of one variable on another. The real

appeal of path diagrams arises in systems that involve more than three

variables, but the basic ideas are already present in systems with three.

The path diagram in Figure 1 is not the only one we could draw using three

variables, but it is relevant to encouragement design in the following way. If

s = 1 or 0 as there is encouragement or not and if r denotes the resulting

amount of study and y denotes the subsequent test score, then the parameters

a, b, and c have the following interpretation. The change in amount of study

due to encouragement to study is a, and b ac is the change in test scores

due to encouragement to study. The change in test scores due to a unit change

in the Amount of study within each level of the encouragement condition, s, is c.

When one of the coefficients a, b, or c is zero, it is customary to delete

the corresponding arrow from the path diagram. For example, if b-0, we have the

diagram in Figure 2.

16
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Figure 2

In the encouragement design example, the path diagram in Figure 2 would be

interpreted as displaying no effect of encouragement on test scores except

through its effect on studying. We will return to this idea later in section

4.

Deterministic linear systems not only motivate the nondeterministic linear

models of path analysis and structural equations models but also play a role in

what I call the ALICE "causal model" in section 4.2.

3.2 Path Analysis

Deterministic linear systems do not really describe data, except in certain

special circumstances, usually in the physical sciences. Suppose instead that

there is a population U of "units" and that for each unit u in U we can obtain

measurements on three numerical variables, S(u), R(u), and Y(u). In our applica-

tion, the units are students; S(u) 1 if u is encouraged to study, and S(u) 0

if otherwise; R(u) is the amount that u studies; and Y(u) is u's test score.

As u varies over U, (S(u), R(u), Y(u)) forms a trivariate distribution.

This distribution can be used to define quantities sucl, as the conditional

expectation of R given S, E(R1S.$). This conditional expectation is the average

value of R for those units in U for which S(u).s. The conditional expectation,

i "1
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E(Y1R.r, Ss), has a similar definition in terms of averages over U. The

expected value E(YIRr, S.$) is the "true" regression function of Y on R and S

in the sense that it is what one is trying to estimate by a least squares

regression fit of Y regressed on R and S. However, in general, E(YIR=r, S=s)

need not be linear in r and s.

In the example of an encouragement design, there is a natural "causal order"

to the variables S, R, and Y. S comes first, then R, and then Y. A path analysis

uses a causal ordering to focus on certain regression functions; in the encoura-

gement design, they are the two described above: E(R1S.$) and E(YIS-s, R.r).

Suppose, for simplicity, that they are both linear, i.e., that

E(R1S.$) f(s) . as + d (6)

and

E(Y1S.s, R=r) = g(s,r) br + cs + d". (7)

This defines a deterministic linear system, as described above, when we identify

y with g(s,r) and equate r and f(s). We may associate the path diagram in

Figure 1 with this system, but because we are dealing with the measurements S,

R, and Y rather than the abstract variable s, r, and y, we relabel the nodes of

the graph with S, R, and Y, as in Figure 3.

Figure 3

IS
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The path coefficients in Figure 3 are just the (population) linear regression

coefficients that may be estimated by a (linear) regression of R on S, and of Y

on S and R. The same terminology is used as before for the direct effects --

the regression coefficients are the direct effects. The "total effect" of S on

Y, i.e. b + ac, has the nice interpretation of being the coefficient of S in the

regression of Y on S alone, i.e.

E(YIS) . E(E(YIS,R)IS)

. E(b S + c R + d'IS)

.bS+cE(R1S) + d"

. b S + c(a S + d) + d"

. (b + a c) S + dc + d"". (8)

I will use the phrase "empirical path diagram" to refer to any path diagram

constructed from a causal ordering and the implied set of linear regression

functions. An empirical path diagram is, therefore, simply the result of com-

puting certain regression coefficients and arranging them in the appropriate

places in the diagram.

In path analysis, the causal order is given, often rather vaguely, by some

sort of theory. One nice feature of encouragement designs is that the causal

order of "S before R before Y" is consistent with the way the data might be

collected and with our intuition about study and test performance. Once given,

the causal order tells us which (linear) regression functions to estimate from

the data. In the estimated regression functions, the coefficient of each inde-

pendent variable is interpreted as the "effect" of that independent variable on

the dependent variable. Thus, in (7), b is the "effect" of studying on test
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performance. This usage is typical of the casual causal talk (lamented by

Rogosa, 1987) that often accompanies regression analyses. In section 4, I will

show how causal effects can be precisely defined within Rubin's model and how

specific assumptions are needed to conclude that regression coefficients are

equal to causal effects.

In my view, a causal ordering is not sufficient to justify interpreting a

regression coefficient as a causal effect. A causal ordering only tells the

analyst which regression functions to estimate.

3.3 Structural Equations Models

In some areas of applied statistics -- notably econometrics but also parts

of sociology, psychometrics and even political science -- it has become the

standard practice to use a framework that is, in a sense, more general than the

conditional expectations and regression functions of path analysis, just

described. These are called both structural equations models and simultaneous

equations models. Instead of formulating a causal ordering or causal model for

the encouragement design in terms of the regression functions, E(RIS-s) and

E(YIS.s, R.r), a structural equations model for such a design would be expressed

as the following system of 2 equations,

R(u) d + a S(u) + El(u), (9)

and

Y(u) d" + b R(u) + c S(u) + E2(u). (10)

In (9) and (10), S, R, and Y are as before'but El(u) and E2(u) are new variables

defined for all u's in U, so that equations (9) and (10) hold exactly for each

u. The CI and £2 are called "error" or "disturbance" terms and they take up the

slack in the empirical relationship between R and S and between Y and R and S.

20



15

The system (9) and (10) is "recursive", in the language of structural equations,

because Y(u) does not occur on the right-hand side of equation (9) -- Goldberger

(1964). The disturbance terms differ from the variables Y, R and S in that they

are unobservable. The three-variable system (S(u), R(u), Y(u)) is thus

enlarged to a five-variable system (S(u), R(u), Y(u), El(u), C2(u)), which de-

fines a five-dimensional, multivariate distribution as u varies over U. This is

what is meant by saying that S, R, Y, CI and C2 are "random variables". The

causal interpretation of structural equations models, such as (9) and (10), is

based on the following extension of the notion of "effect" in regression

discussed earlier. For example, in equation (9) a is the "effect" of S on R

while CI is that part c) R that is determined by all other relevant causes that

are not measured (see G.Adberger (1964) for an explicit statement along these

lines). Thus, the eq:Lation R d + aS + CI is a tidy totaling of the effects

of all causes, both measured (i.e. S) and unmeasured (i.e. CI), on R. The point

of view that underlies such an interpretation of equation (9) is that the value

of R(u) is "caused" in some sense by numerous factors including S(u). I find

this sense of causation quite unclear because it makes rather vague references

to the "causes" of the value of a variable, i.e. of R(u), rather than to

measuring the effect of the experimental manipulation described by S(u). In

section 4.4, I show how Rubin's model can be used to give causal interpretation

of the parameters of models like (9) and (10) in some situations.

It is easy to show that without further assumptions on the joint distribu-

tion of the disturbance terms, CI and C2, with R and S, equations, (9) and

(10), cannot necessarily be interpreted as conditional expectations. This is

often discussed in econometrics as the condition under which ordinary least

BEST COPY AVAILABLE
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squares estimates give unbiased estimates of structural parameters, e.g.,

Goldberger (1964). For example, if we assume equation (9) and compute E(RIS.$),

we get

E(RIS=s) E(d + aS + EIIS.$)

d + as + E(E1IS=s).

Thus, in order for E(RIS=s) as + d, we need the joint distribution of el and S

over U to satisfy

E(E1IS.$) 0, for s.0,1. (11)

A sufficient condition for this is the independence of El and S and the usual

zero-expected-value-condition, E(E1) . 0, for el. Similarly, in order for

E(YIS.s, R.r) d + br + cs (12)

we need the following condition satisfied:

E(EIIS.s, R=r) . 0 for all s and r.

Structural equations models like (9) and (10) may be regarded as more

general than the regression functions (6) and (7) precisely because we may

impose assumptions on the distribution of the disturbance terms, E and E2, that

do not necessarily result in a correspondence between the equations (9) and (10)

and the regression functions (6) and (7). Unfortunately, since El and E2 are

unobservable, it is not always evident how to verify assumptions made about

them. For examble, why should El be independent of S over U when by definition

El = R - aS - d, i.e., when the very definition of El involves S7 Such assump-

tions must be justified by considerations that go beyond the empirical data.

In my opinion, structural equations models do little more to justify the

causal interpretation of their coefficients than do the causal orderings of path

22
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analysis. In both approaches, such causal interpretations are established by

fiat rather than by deduction from more basic assumptions. Rubin's model, as I

will show in the next section, allows one to formally state assumptions about

unit-level causal effects that imply causal interpretations of regression coef-

ficients and structural parameters, if these assumptions are met.
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4. A CAUSAL MODEL FOR ENCOURAGEMENT DESIGNS

The appendix gives an overview of Rubin's model as applied to randomized

experiments and observational studies. In this section, I will extend that

model to accommodate the added complexity of encouragement designs, with two

levels of encouragement, t and c. I have tried to write this extension of

Rubin's model so that the reader does not need to refer to the appendix in order

to understand it, except for amplification of a few points.

4.1 The General Model

The key property of encouragement designs is that there is one cause --

i.e. encouragement (indicated, as before, by S(u) = 1 or 0 as u is either

exposed to t or c) -- that affects another cause -- i.e. amount of study

(indicated by R) -- and that these two causes, in turn, can affect the response

of interest -- i.e. test performance (indicated by Y). However, the mathemati-

cal structure of R and Y is really quite different from that used in section 3

-- where R and Y were both simply regarded as functions of u alone, R(u) and

Y(u).

To begin, the amount that u studies depends, potentially, on u and on which

encouragement condition to which u is exposed, so that R is really a function of

u and s, where s = t or c, i.e. R(u,$). Thus we have,

R(u,t) = amount u studies if encouraged to study
(13)

R(u,c) = amount u studies if not encouraged to study.

Let K {t,c}: then K is the set of encouragement conditions and R is a real

valued function on U x K.

What about Y? The test performance of u depends, potentially, on u, on

whether u is encouraged to study or not (s), and on the amount of time u stu-

dies (r). Hence, Y is a function of u, s, and r (Y(u,s,r)). Thus, we have

24



Y(u,t,r) = test score for u if u is encouraged to study
and u studies for r hours,

(14)

19

Y(u,c,r) = test score for u if u is not encouraged to study
and u studies for r hours.

The variable S(u) depends only on u, as it did in section 3, since S(u)

indicates whether u is exposed to t or to c. I will engage in a slight abuse of

notation and use S(u) = t or c to index the encouragement condition to which u

is exposed and S(u) 1 or 0 to indicate the same thing when I need S(u) to be a

treatment indicator or "dummy" variable in a regression function, as in section

3.

In summary, the model for an encouragement design is a quintuple

(U,K,S,R,Y), where U and K are sets, S maps U to K, R is a real-valued function

of (u,$), and Y is a real-valued function of (u,s,r).

A subscript notation is useful, and we let

Rs(u) = R(u,$), (15)

and

Ysr(u) = Y(u,s,r). (16)

Some people find such an explicit notation -- i.e. R(u,$) and Y(u,s,r) --

loathsome, but I do not see how one can precisely define the elusive concepts

that underlie causal inference without them. R(u,$) and Y(u,s,r) are not

directly observable for all combinations of u, s, and r. This is the main

reason why causal inference is difficult and involves something more than merely

the study of associations. In section 3, I used R(u) and Y(u) to denote the

values of R and Y that are observed for unit u. This standard notation is

actually misleading because it does not reveal the causal structure of the
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problem. In terms of S(u), R(u,$) and Y(u, s, 0, the observed values of R and

Y are properly defined as follows:

Rs(u) = R(u, S(u)) . the observed R-response, (17)

and

YSRs(11) Y(u, S(u), R(u, S(u))) = the observed Y-response. (18)

The use of "multiple versions" of the dependent variable -- e.g. Rt, and Rc,

Ytr and Ycr -- goes back to Neyman (1935) in the experimental design literature

and is often implicit in the early work of Fisher (1926). See Holland (1986b,

section 6) for more on the history of this notation.

The dependence of R(u,$) and Y(u,s,r) on the unit, u, is the way that

Rubin's model accommodates individual variation in response to causes. This

individual variation is just another way of conceptualizing the idea that the

value of a response, say Y, depends both on causes that are measured, like s and

r, and on other factors that affect u's responses in various ways.

The data obtained from any unit u in an encouragement design is the triple

(S(u), Rs(u), YSRs(11)). (19)

In an encouragement design, the values of S(u) are under experimental

control, so that the value of S(u) for each u can be determined by randomization.

When U is infinite, randomization implies that S(u) is statistically independent

of Rs(u) and Ysr(u) over U for any choices of s and r. When U is finite and

large, randomization tnplies that the independence of S and Rs and of S and Ysr

over U holds approximately. This is discussed in more detail in the appendix.

An important difference between the variables Rs and Rs and between Ysr and

YSRs is that, except in very special circumstances, randomization does not imply

that the observed variables Rs or YsRs are statistically independent of S over U

even though Rs and Ysr are. For example,
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P(Rs rls t) P(Rt rIS t) P(Rt r),

and unless P(Rt r) P(Rc 0, it follows that P(Rs rIS = P(Rs r).

(The "probabilities" [P(Rs riS . P(Rt . etc.] are to be interpreted

simply as proportions of unit in U, (see the appendix). Thus, randomization may

be used to justify the assumption that S and [Rs, Ysrf for all s, r} are inde-

pendent but not that S and the observed values, Rs and V-SRst are independent.

There are four types of unit-level causal effects in this system: three

different effects of encouragement (0 and one effect of studying (R). Thus, t

can affect both R and Y, and two of the t-effects are defined as follows:

Rt(u) - Rc(u) . the causal effect of t on R, (20)

YtRt(u)(u) YcRc(u)(u) the causal effect of t on Y. (21)

The definition in (20) is interpreted as the increment in the amount that unit u

would study if encouraged to study over how much u would study if not

encouraged. The definition in (21) is similar in that it is the increment in

the test score that u would obtain if u were encouraged to study (and studied

for Rt(u) hours) over the test score that u would obtain if u were not

encouraged to study (and studied for R(u) hours).

In addition to (20) and (21), in order to specify the ALICE model in the

next section, we need to define the effect of t on Y for fixed r, i.e., the

effect of t on Y(*, *, r). This is

Ytr(11) Ycr(u) ' the causal effect of t on Y(0, 0, r). (22)

Definition (22) is the "pure" effect of encouragement on test scores because it

is the increment in u's test score when u studies r hours and is encouraged to

study, compared to u's test score when u studies r hours but is not encouraged

to study. Definition (22) is an explicit statement of the idea that the amount

27
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u studies is a self-selected treatment that can differ from what actually

occurrs i.e., from the particular values Rt(u) and Rc(u) that appear in defini-

tion (21). The idea behind (22) is, in my opinion, quite subtle and central to

the notion of indirect causation. In the studying example used throughout this

paper, it may be plausible to suppose that causal effects defined in (22) are

all zero, but I shall not make that assumption at this stage of the development

in order to allow the model to apply to other cases in which these causal

effects might not be zero.

The amount of study, R, can affect only Y, and the effect of R is defined as

follows:

Ysr(u) Ysr'(u) the effect of R.r relative to 16.r' on Y(*, s, *). (23)

Definition (23) is also an explicit statement of the idea that amount of study is

a self-selected treatment and can differ from the amount the student did study;

i.e., r could have taken on values other than Rt(u) and Rc(u). In (23), the

encouragement condition is fixed, s, and the causal effect of R is the change in

test score that results when u studies r versus r' hours.

These four types of causal effects, i.e.

Rt(u) - Rc(u), YtRt(u) (u) licRc(u)(u), Ytr(u) Ycr(u) and Ysr(u) Ysr'(u),

are all defined on each unit and express the effect of encouragement and of

studying on the behavior of individual students.

The key feature of Rubin's model is its use of unit-level causal effects as

the basic building blocks for defining all other causal parameters. (Rogosa

(1987) also emphasizes the importance of models that start at the level of indi-

vidual tinits and build up.) Unit-level causal effects are never directly obser-

vable because of what I call the Fundamental Problem of Causal Inference (see

the appendix), but they may be used to define causal parameters that can be
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estimated or measured with data.

Averaging each of the four types of unit-level causal effects over U

results in the important causal parameters called average causal effects, or

ACEs. The four ACEs are

and

ACEtc(R) E(Rt - Rc),

ACEtc(Y) E(YtRt YcRc

ACEtc(Y(*, *, r)) " E(Ytr

ACErr-(Y(*, s, .)) ' E(Ysr

(24)

(25)

(26)

(27)

In (24) - (27) and below, we use E( ) to denote expectation or average over U.

The ACEs are typically the only causal parameters that can be estimated with

data. Under some conditions, such as those defined by the ALICE model discussed

in section 4.2, an ACE may be interpreted as a unit-level causal effect, but in

general it is not.

The ACEs must be distinguished from the prima facie average causal effects,

or FACEs, which are defined in terms of the observables S(u), Rs(u), and

The four FACEs are the following differences in regression functions.

FACEtc(R) E(Rs1S t) - E(Rs1S c), (28)

FACEtc(Y) ' E(ISRsIS t) E(ISRsIS c), (29)

FACEtc(Y(*, 6, r)) a E(ISRsIS ' t, RS r) E(ISRSIS " c, RB r), (30)

FACErr'(Y(*, s, .)) E(ISRsIS ' s, RS ' r) E(ISRsIS a s, Rs r"). (31)

Because the are based on the observables, the FACEs are associational para-

meters rather than causal parameters. They are prima facie ACEs rather than

ACEs because they may or may not equal their corresponding ACEs, depending on

. tether certain assumptions are met. Causal inference in Rubin's model means

inference about causal parameters, such as the ACEs. Such inferences must be

YsRs(u).
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made from observable data and hence the FACEs play an important role. For

example, consider FACEtc(R). Since S is independent of Rt and Rc by assumption

(a consequence of the random assignment of the encouragement conditions), we

have

FACEtc(R) E(RsIS - E(RsIS c)

E(RtIS t) - E(RcIS = c)

E(Rt) - E(R)

ACEtc(R).

Thus, because of random assignment, the causal parameter, ACEtc(R) and the

associational parameters, FACEtc(R), are equal. Similarly, one may show that

(32)

FACEtc(Y) = ACEtc(Y), (33)

also because of the random assignment of encouragement.

The other two FACEs involve Rs, whose distribution is not under experimental

control. First consider FACEtc(Y(.,

E(YSRsIS t, Rs r) E(YSRSIS = c, Rs = r)

E(YtrIS t, Rt - E(YcrIS = c, Rc r)

E(YtrIRt ' E(YcrIRc r). (34)

In general, this does not equal E(Ytr) E(Ycr). Therefore, we cannot use

FACEtc(Y(., *, r)) for ACEtc(Y(*, r)) without additional assumptions.

Next consider FACErr..(Y(*, s, *))

E(YSRsIS s, RS r) E(YSRsIS s, Rs . r")

E(YsrIS ' s, Rs ' r) E(Ysr"IS ' so Rs ' re)

. E(YsrIRs ' r) E(YsrdRs ' re). ,1,, (35)
r

i Again, in general this does not equal the corresponding ACE, i.e. E (Ysr)

I
I E(Ysr"), which is the average causal effect of studying on test performance that

I

interests us in an encouragement design.
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What can we conclude so far? First, assuming random assignment of the

encouragement conditions to units, the FACEs based on the conditional expec-

tations of Rs and of YsRs given S are equal to their corresponding ACEs and thus

have causal interpretations as ACEs. These FACEs would be estimated, in prac-

tice, by treatment-control mean differences for Rs and YsRs, respectively. This

result is not surprising, and related material is discussed in the appendix.

Second, the other two FACEs, those based on the conditional expectation of

YSRs given both S and Rs, do not equal their corresponding ACEs, in general, and

in particular, without further assumptions it is not true that the "effect of

studying" on test performance that one would obtain from a regression analysis

of YsRs on S and Rs can be interpreted as an average causal effect over U.

4.2 The ALICE model

In Rubin's model, a causal theory specifies, or partially specifies, values

for R(u,$) and Y(u,s,r). An important causal theory that I find helpful in

understanding the relationship between this extension of Rubin's model and path

analysis and structural equations models is what I call the "additive, linear,

constant-effect" or ALICE model. It is given by three equations that involve

unit-level causal effects:

Rt(u) - Rc(u) = p

Ytr(u) Ircr(u) = T

Ysr(u) Ysr'(1) = 0(r-r').

(36)

(37)

(38)

In this model, the effects of t and r on Y for a given unit, u, are additive, the

effect of r on Y enter linearly, and the causal effects of t on R and Y and of
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r on Y are constant, not depending on the unit, i.e., this is a causal theory

with constant effects (see the a-ependix for more on constant effects).

Equations (36) - (38) involve 3 of the 4 unit-level causal effects in (20) -

(23). The fourth one, i.e. (21), can be expressed in terms of the other three:

YtRt(u) - YcRc(u) + p0. (38a)

In (36), p is the (constant) number of hours that encouragement increases

each student's amount of study. In (38a), t + 0 is the (constant) improvement in

test scores due to encouragement to study. In (37), T is the (constant) amount

that encouragement increases the test scores of a student who always studies r.

In (38), 0 is the (constant) amount that studying one hour more increases a stu-

dent's test scores.

The ALICE model in (36) - (38) is equivalent to these two functional rela-

tions of the variables s and r for each fixed unit, u:

Rs(u) = R(u) + p s, (39)

Ysr(u) = Yco(u) + T s + Or. (40)

On the right-hand sides of (39) and (40), s is a 0/1 variable. Yco(u) is the

test performance of u if u is not encouraged to study and doesn't study, and

R(u) is the amount u studies if not encouraged to study. The values of Yco(u)

and Rc(u) will vary from student to student and are the vehicle for introducing

unit heterogeneity into this model -- see the appendix on unit homogeneity.

For a fixed unit, (39) and (40) are a deterministic linear system involving

the functions Ysr(u) and Rs(u) of the variables s and r. If we equate r and

Rs(u), then we have a deterministic linear system, and as in section 3, we may

associate the path diagram of Figure 4 with it.
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Figure 4

I have left off the subscripts for R and Y in Figure 4 to emphasize that it does

not describe empirical relationships in data; i.e., it is not an empirical path

diagram. Rather, it is a theory about the values of Y(u,s,r) and R(u,$);

i.e., it is a causal model or a causal theory.

The ALICE model may appear to be an extremely strong model, yet we shall

see presently that it is not strong enough to ensure that the regression coef-

ficients of path analysis have the desired causal interpretations.

The parameters of the ALICE model (p, 0, and T), may be used to express the

four ACE's of the model. These are

ACitc(R) = p, (41)

ACEtc(Y) I + Op, (42)

ACEtc(Y(*, *, = T, (43)

ACErr"(Y(e, s, 0)) = 0(r - re). (44)

The ALICE causal model is an example of a "constant effect" model (see the

appendix). Consequently, in the ALICE model, the ACEs are interpretable as

unit-level causal effects. This is seen by comparing (41) - (44) with (36) -

(38a).
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We see that the "total effect" of S on Y in Figure 4 (i.e. T + Op) is an

ACE. In addition, for the ALICE model, p, T, and 0 can be interpreted as ACEs.

What about the FACEs? From the results of the previous subsection we know that

because of randomization,

FACEtc(R) . ACEtc(R) . p, (45)

and

FACEtc(Y) . ACEtc(Y) . I + Op. (46)

The other two FACEs are more complicated. They may be shown to be given by the

following formulas:

and

where

FACEtc(Y(*, *, r)) . T + pc(r - p) -

FACEtc(Y(*, s, *)) . 0(r - r') + ps(r) -

Ps(r) - E(Ircoks - r) for s . t, c.

(47)

(48)

(49)

Thus, the two remaining FACEs both equal their corresponding ACEs plus

biases that involve the regression of YcO wl Rs, i.e. ps(r).

The value of pc(r) is the average value of test scores for students when

they are not encouraged to study and they do not study, for all those students

who would study an amount r when they are not encouraged to study. Thus, p(r)

is a "counterfactual" regression because Yco and Rs can never be simultaneously

observed except when R5.0. Hence, pc(r) is inherently unobservable, and assump-

tions made about it have no empirical consequences that can be directly tested.

The function pc(r) is a complicated quantity and one that is not easily thought

about. Suppose, for simplicity, that it is linear, i.e., that

pc(r) . y + Sr. (50)
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A positive 8 means that the more a student would study when not encouraged, the

higher he or she would score on the test without studying and without encourage-

ment. A negative 8 means that the more a student would study when not

encouraged, the lower he or she would score without studying and without

encouragement.

The quantities computed in path analysis are the conditional expectations

E(RsIS) E(Rc) + p S (51)

and

R(YsRsIs, Rs) - Pc(Rs ps) +TS+011s, (52)

in which S is a 1/0 indicator variable. If we make the untestable assumption

that pc(r) is linear, e.g. (50), then (52) becomes

E(ISRsIS, Rs) y + (T - 6p) s + (0 + 6) Rs. (53)

Equations (51) and (53) are both linear and may be combined into the empirical

path diagram in Figure 5.

Rs

0+6

T-Sp
YSRs

Figure 5

Comparing Figures 5 and 4, we see that even if the ALICE model holds and

P(r) is linear, the estimated path coefficients are biased estimates of the

causal effects T and 0 unless p(r) does not depend on r (i.e. 6 - 0).
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Furthermore, these problems stem from the-inhomogeneity of the units with

respect to the values of Rc(u) and Yco(u). This inhomogeneity is, I believe,

the proper way to view the "disturbance terms" of the structural equations

model (9) and (10) in section 3, (see section 4.4). One nice thing is that

while the direct effects are not tht same in Figures 5 and 4, the total effects

are: both equal T +

4.3 Two Different Ways to Estimate the Causal Effect of the Encouraged Activity

The message of the previous subsection is that the effect of study on test

performance cannot be estimated by the usual regression methods of path analy-

sis without making untestable assumptions about the counterfactual regression

function, pc(r). If we assume that pc(r) is constant, then the biases shown in

Figure 5 vanish and the usual path coefficients may be interpreted as causal

effects, i.e. as ACEs. However, because pc(r) is so difficu:t to think about,

there is little reason to believe that it is constant. Nor can 6 be easily

assessed as either positive or negative since, in this example, there are

reasons why it might be either: If students who study a lot tend to be those who

do well even when they don't study, then 6 is positive; but if those who study a

lot are those who need to study, then 6 is negative.

An alternative approach is to suppose that encouragement, of and by itself,

has no effect on Y. In the studying example, this might be a plausible assump-

tion. This corresponds to the restriction that

O. (54)

Now the empirical path diagram becomes that in Figure 6,
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Figure 5

YSR5

and the path diagram for the causal theory becomes that in Figure 7.

Figure 7

The total effect of S on YsRs is now pis, whereas the total effect of S on Rs is

p. Hence,

0 .
p total effect of S on Rs

total effect of S on Y
SRs (55)

This is also easily seen from the definitions of the ACEs and the FACEs. Under

the assumption that T 0,
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ACEtc(Y) = FACEtc(Y) = Op, (56)

(regardless of whether or not pc(r) is linear) and hence

0 = ACEtc(R) FACEtc(R)

ACEtc(Y) FACEtc(Y) (57)

The two FACEs in (57) may be estimated simply by the treatment-control mean

difference in YsRs and Rs as mentioned earlier, so that (57) provides an alter-

native way to estimate 0 that does not assume that pc(r) is constant. In Powers

and Swinton (1984), (57) was used to estimate 0.

4.4 Deriving a Structural Equations Model

The ALICE model may be used to derive the structural equations model given

in (9) and (10). If we substitute S(u) for s in (39) and S(u) for s and R(u) for

r in (40) we get the following pair of equations that involve the observables,

S, Rs,

and

Now let

and

YSRs:

and then define

Rs(u) Rc(u) + p S(u)

YsRs(1.1) = Yco(u) + t S(u) + 0 Rs(u).

ni(u) Rc(u) - E(Rc),

n2(u) ' Irc0(u) E(Yc0),

a . E(Rc), a' E(fc0).

(58)

(59)

The following equations, which parallel the structural equations model of (9)

and (10), follow immediately:

Rs(u) a + p S(u) + n1(u) (60)

YSRs(u) a' + t S(u) + 0 Rs(u) + n2(u). (61)
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It is easy to see from the definition of ni and n2 that by the independence

assumption (justified by randomization), S is independent of ni and n2 over U.

But Rs is not independent of n2 in general. In fact, the condition that

equation (61) be interpretable as a conditional expectation is exactly that pc(r)

be constant. It follows from the standard theory of structural equations models

that ordinary least squares estimates of 0 are biased in general, so that a

simple regression analysis of (61) would not lead to an estimate of the causal

effect of studying on test scores. Substituting (60) for Rs in (61) yields

YSRs(u) a' + Oa + (T + s(u) + Oni(u) + n2(1)

. a" + (T + p8) s(u) + n3(u). (62)

Equations (60) and (62) constitute the so-called "reduced form" of the

system (60) and (61). Since S is independent of ni and n2, s is also indepen-

dent of n3 on1 n2 in (62). Thus, (60) and (62) can be interpreted as

regression functions; therefore, in the language of structural equations models,

(60) can be used to estimate p and (62) can be used to estimate T + p0.

Assuming T 0 now leads to the second estimate of 0 discussed in section 4.3.

In closing this section, I wish to point out that the ALICE model leads to

the structural equations system (60) and (61); but the ALICE model could be

wrong, in various, often testable, ways. Freedman (1987) has argued that

models like (60) and (61) should be tested before they are used Rubin's model

gives us a framework for doing that testing. But an assumption like I 0 is

not testable with the data in hand and must be justified on other grounds.
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5. DISCUSSION

One purpose of this paper is to show that path analysis and its general-

ization, structural equations models, do not justify causal interpretations of

regression coefficients. Instead, these models simply define certain regression

coefficients as causal effects by fiat, using the loose causal terminology of

regression analysis. Rubin's model, on the other hand, precisely defines unit-

level causal effects, and these, in turn, may be used to deduce causal interpre-

tations of some regression coefficients under some assumptions. By explicitly

separating the causal theory, R(u,$) and Y(u,s,r), from the observed data,

(S(u), Rs(u), and YsRs(u)), Rubin's model provides analysts with a set of tools

that engender careful thought about causal theories and their relationship to

data.

One example of such "careful thought" is the care that must be exercised in

identifying variables in complex path models that can truly play the role of

both effect and cause. Such variables must measure the amount of exposure of

units to a cause and be themselves influenced by another cause. I used the

encouragement design to focus my, analysis precisely because it is a clearly

interpretable example of indirect causation in this sense. Many causal models

in the literature are not careful about this point; and at best, they merely

measure the association between variables rather than produce estimates of

causal effects.

I am a little reluctant to place as much emphasis as I have on the ALICE

model of section 4, because I do not wish to appear to endorse it as the only

way to analyze data from encouragement designs. (For example, it would be

inappropriate if "studying" were measured simply as a studied/didn't study

dichotomy.) I simply put the ALICE model forward as a basic case from which
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deductions are easily made and which has interesting consequences for path ana-

lysis models. It is a model that captures some of the complexity of encourage-

ment designs and self-selected treatments. Heterogeneity, nonlinearity and

non-additivity can be added to the ALICE model in various ways to add complexity

when that is necessary for proper analyses.

The two alternative ways to estimate the effect of studying on test scores

given in section 4.3 were discussed simply to illustrate how the causal model

must be used to produce estimates of causal effects. In my opinion, in the

studying example, at least, the untestable assumption that T .., 0 is more

believable (and understandable) then the untestable assumption that leads to the

usual path analytic estimate of the causal effect, i.e. 6 . 0. Furthermore,

though the structural equations model of (60) and (61) can be used to obtain the

ratio estimate of 0 in section 4.3, there is no way to justify these equations

except through the ALICE model, or its generalizations.

The assumption of random assignment of the encouragement condition is an

important starting place, but there may be applications in which this is

impossible or implausible, and we need to consider the corresponding obser-

vational study in which S is not independent of {120 and [Ysrl. An interesting

generalization is to replace randomization by a strong ignorability type of con-

dition given a covariate, X(u) (see the appendix). For example, suppose that

there is a covariate X such that given X, S is conditionally independent of [110

and [Ysr). Now, all the equations of section 4 will hold conditionally given X,

and the calculation of the FACEs is replaced by the corresponding covariate

ad usted FACEs, i.e., the C-FACEs (see the appendix). How might we wish to

represent such a system in terms of path diagrams? In Holland (1986b), I
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suggested that an arrow connect two variables only if one indicated a cause

(like S or Rs) and the other measured a response (like Rs or YsRs) A covariate

does not have the status of a causal indicator or of a response, so it ought not

be involved with the arrows, according to such a view. Hence, the four-variable

system of (X(u), S(u), Rs(u), v-SRs(u)) could be represented as in Figure 8,

/
Figure 8

in which X precedes S and R, to indicate that it is not affected by either causal

variable. However, it might be useful to indicate the conditional independence

of S and all of the variables {Rs} and Vlsr } given X. This should be done, not

in an empirical path diagram like Figure 8, but in a path diagram for a causal

theory, like Figure 4. Conditional independence also plays an important role in

structural equations models with latent variables, but that is a subject worthy

of another paper. The importance of conditional independence suggests the use

of two types of arrows in path diagrams: e.g., solid arrows to indicate causal

relations and something like dashed arrows to indicate conditional independence.

In the complex causal models of the current literature, such distinctions are

not made and all arrows indicate causality. This is a mistake in my opinion and

leads to careless and casual causal talk. I hope that my illustration of how

Rubin's model can be used to give precision to causal modeling will stimulate

similar analyses of more complex causal models.
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APPENDIX: A BRIEF REVIEW OF RUBIN'S MODEL FOR EXPERIMENTS AND OBSERVATIONAL
STUDIES

Discussions of Rubin's model similar to the one here may be found in

Holland (1986a,b). Uses of the model in a variety of significant applications

appear in Rubin (1974, 1977, 1978), Holland and Rubin (1983, 1987), Rosenbaum

and Rubin (1983a,b, 1984a,b, 1985a,b), Rosenbaum (1984a,b,c, 1987) and Holland

(1988). In the simplest case, the logical elements of Rubin's model form a

quadruple (U,K,S,Y) where

U is a population of units,

K is a set of causes or treatments to which

each one of the units in U may be exposed.

S(u) s if s is the cause in K to which u is actually

exposed, and

Y(u,$) the value of the response that would be observed

if unit uEU were exposed to cause sEK.

The meaning of Y(u,$) needs some explanation. The response variable, Y,

depends both on the unit and on the cause or treatment to which the unit is

exposed. The idea is that if u were exposed to telt, then we would observe the

response value Y(u,t); but if u were exposed to cEK, then we would observe the

response value Y(u,c). The requirement that Y be a function on pairs (u,$)

means that. Y(u,$) represents the measurement of some property of u after u is

exposed to cause sEK. This has the important consequence of forcing the things

that are called "causes" in K to be potentially exposable to any unit in U.

This restriction on the notion of cause is of fundamental importance because it

prevents us from interpreting a variety of associations as causal: e.g.,

43
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associations between sex and income or between race and crime. This is

discussed more extensively in Holland, (1986b, section 7) and in Holland (1988).

The function Y is called the response, function.

In the references cited at the beginning of this section, a subscript nota-

tion is used for Y(u,$), i.e.,

Ys(u) Y(u,$).

The subscript notation is convenient, and I will use it when appropriate.

The mapping, S, is the causal indicator or assignment rule because S indicates

the cause to which each unit is exposed.

The elements of the quadruple (U,K,S,Y) are the primitives of Rubin's model,

and they serve as the undefined terms. All other concepts are defined in terms

of these primitives.

The most basic quantity in need of definition is the observed response on

each unit uEU. This is given by

Ys(u) Y(u, S(u)).

The value Ys(u) is the value of Y that is actually observed for unit u. The

observed data for unit u, in the simplest case, is the pair

(S(u), Ys(u)),

where S(u) is the cause or treatment in K to which u is actually exposed and

YS(u)

Ys(u)

is the observed value of the response, Y. It is important to distinguish

from Y(u,$): Ys(u) is the response that is actually observed on unit u,

and Y(u,$) is a potentially observed value that is actually observed only if

S(u) S.

Note that in the subscript notation, the observed response, Ys(u), is

YS(u)(11), so that in the usual probabilistic sense, Ys has a "fixed" subscript

and Ys has a "random" subscript.

4 4
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In Rubin's model, causes are taken as undefined elements of the theory,

and effects are defined in terms of the elements of the model.

Definition. The unit-level causal effect of cause teK relative to cause ceK (as

measured la Y) is the difference,

Y(u,t) - Y(u,c) ' Ttc(u).

Hence, the causal effect, Ttc(u), is the increase in the value of Y(u,t) (which

is what would be observed if u were exposed to 0 over that of Y(u,c) (which is

what would be observed if u were exposed to c). Glymour (1986) points out that

in Rubin's model, effects are defined counterfactually; i.e., their definitions

include sentences of the form "if A were the case then B would be the case"

in which A could be false. It should also be noted that Ttc(u) is defined rela-

tively (i.e., the effect of one cause or treatment is always relative to another

cause) and is defined at the level of individual units.

The Fundamental Problem of Causal Inference. The most vexing problem in causal

inference is that it is impossible to simultaneously observe both Y(u,t) and

Y(u,c) for two distinct causes t and c; therefore the causal effect, Ttc(u), is

never directly observable. Rubin's model makes this explicit by separating the

observed data (S, Ye) from the function Y. A causal model or a causal theory

is a specification or partial specification of the values of the function Y.

Causal inference consists of combining (a) a causal theory, (b) assumptions

about data collection, and (c) the observed data to draw conclusions about

causal parameters. Many techniques of experimental science are aimed at overcoming

the Fundamental Problem of Causal Inference by assuming plausible causal

theories and then combining them appropriately with data. Some examples of such

causal theories are given in the next several paragraphs.

4 5
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Unit homogeneity. In a scientific laboratory, care is exercised to prepare homo-

geneous samples of material for study. Such care is often taken to make the

following partial specification of Y plausible:

Y(u,$) Y(v,$) for all u,vEU and all sEK.

This means that the responses of all units to cause s are the same, i.e., that

the units respond homogeneously to each cause. In Holland (1986a), I called

this the assumption of unit homogeneity. It is a partial specification of Y

because it restricts the values that Y can take on but it does not specify them

completely. If one assumes unit homogeneity, then the causal effect, Ttc(u), is

easily seen to be given by

Ttc(u) Yt(u)

for any two distinct units u and v in U. In this case, the effect of t

(relative to c) is constant and does not depend on the unit under consideration

-- a case I call "constant effect" (see below). Unit homogeneity solves the

Fundamental Problem of Causal Inference by letting us use the data from two

units to measure the causal effect on any single unit.

Fisher's null hypothesis. An assumption about Y that has a long history in sta-

tistics and that is formally similar to unit homogeneity is Fisher's null

hypothesis:

Y(u,$) Y(u,s') for all uEU and all s,s"Ek.

This means that the response of each unit is unaffected by the cause or treat-

ment to which it is exposed. This is also a partial specification of Y and is

a causal theory. Fisher's null hypothesis addresses the Fundamental Problem of

Causal Inference by assuming that once we observe the value of Y for the pair



(u,$), we know the value of Y for the pair (u,s') for any other value of s'61(.

Under Fisher's null hypothesis,

Ttc(u) " 0 for all u6U and all t,cElt.
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So far, I have not given any examples in which assumptions about the data

collection process matter. At the population level, "data collection" is

contained in the causal indicator variable, S, since S describes the cause to

which each unit U is exposed. Suppose we now consider the joint distribution of

S with [Ys:sEK1 as u varies over all of U. By using the term "joint distribu-

tion" I do not mean to imply that S or the [Ys) are stochastic. However, we can

use the language of probability to describe this joint distribution. For

example, P(S.$) is the proportion of units for which S(u) s and E(YsIS.t)

is the average value of Ys for all those units for which S(u) t. This use of

probability notation allows us to discuss other, more statistical, approaches to

solving the Fundamental Problem of Causal Inference in a convenient manner.

The Average Causal Effect. We may define an important causal parameter, the

average causal effect or the ACE, as the average value of Ttc(u) over U, or

A

ACEtc E(Ttc).

In this notation, E(Ttc) denotes the average value of Ttc(u) over all u E U.

But by definition of Ttc(u), this is equivalent to the difference

ACEtc(Y) E(Yt) - E(Yc).

The ACE is a useful summary of the unit-level causal effects, Ttc(u), when

Ttc(u) varies little as u ranges over U. In some cases, we are interested in

average behavior over the population of units, and in such a case, the ACE is

useful regardless of how much Ttc(u) varies with u.
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When we look at data, we can only observe S(u) and Y(u) over U; hence, we

can observe data only from the joint distribution of S and Ys (as opposed to S

and [Ys:sEK}). For example, the average value of the observed response Ys

among all those units exposed to cause t is

E(YsIS-t) E(YtIS.t),

and the average value of the observed response among all those units exposed to

cause c is

E(YsIS.c) E(Y01S.c).

The difference in average responses between those units exposed to t and those

units exposed to c is the prima facie average causal effect -- the FACE -- and

is given by

FACEtc(Y) E(YsIS.t) - E(YsIS.c)

E(YtIS.t) - E(YcIS.c).

I use FACE and ACE to draw attention to the fact that we can always compute the

FACE from data but that it does not necessarily equal the quantity about which

we wish to make an inference, i.e., the ACE. The difference between the FACE

and the ACE resides in the difference between

E(Yt) and E(YtIS.t)

and between

E(Yc) and E(YcIS.c).

E(Yt) is the average of Yt over all of U, whereas E(Yt1S.t) is the average of

over only those units that are actually exposed to t. The same is true for

E(Yc) and E(Y01S.c).

Independence. It is now time to show the effect of randomization on Rubin's

model. Suppose S is independent of {Ys:seK}. When independence holds we have

Yt
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E(YtIS=t) E(Yt)

and

E(YcIS.c) E(Yc).

Hence, if S is independent of [Ys:sEK), the FACE and the ACE are equal, i.e.,

FACEtc(Y) E(YtIS.t) - E(YcIS.c)

E(Yt) E(Ic)

ACEtc(Y).

Thus, independence is important because it relates a causal parameter, i.e. the

ACE, to an associational parameter, i.e. the FACE, that can be computed or esti-

mated from the observed data, S and Ys.

Randomization is related to independence in the following way.

Independence is an assumption about the data collection process, i.e. about the

relationship between S and Y over the population U. Randomization is a physical

process that gives plausibility to the independence assumption in some important

cases. For example, if U were infinite, then the strong law of large numbers

coupled with randomization implies that almost every realization of S would be

independent of [I's]. Randomization does not always make independence plausible;

the best example of this is the case of a small population of units. If U con-

tains only two units, then the physical act of randomization does not make the

independence assumption plausible, even though it may still be useful in forming

the basis of a test of Fisher's null hypothesis.

Constant effect. An important causal theory is the constant effect assumption.

Constant effect holds when Ttc(u) does not depend on u, i.e., when Ttc(u)

for all u. This is equivalent to

BEST COPY AVAILABLE
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Yt(u) m Yc(u) ttc.

Thus, constant effect is the same as "additivity" in the ANOVA sense. I prefer

constant effect since it is more descriptive of the causal theory being

assumed.

When constant effect holds, it is easy to see that 'Etc equals the ACEtc(Y):

ACEtc(Y) = E(Ttc) Itc

What about the FACE?

FACEtc(Y) E(YtIS=t) - E(YcIS=c)

E(Ye + Tt.cIS=t) - E(YcIS=c)

- E(YcIS=c)).w ttc [E(YcIS"t)

Hence, under the constant effect assumption,

FACEtc(Y) = ACEtc(Y) + BIAS

where BIAS = E(YcIS=t) E(Ycl S=c). The term BIAS involves the "counterfactual

conditional expectation," E(YciSsit), which cannot be computed from data because

it is the average value of Yc among all those units that were exposed to t (and

for which only the value of Yt is known). Under independence, BIAS = 0, and as

before, the FACE and the ACE are equal.

Introducing Other Variables Into Rubin's Model. So far, I have discussed the

simplest form of Rubin's model, in which there is only one variable measured on

the units -- aside from the causal indicator, S. Now suppose there is a second

variable, X. In Rubin's model, X is introduced as a second real-valued function

on UxK, X(u,$). The fact that X is real-valued is not important; it could be

vector-valued. What is important is that we allow for the fact that, in
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general, X could depend on both u and s. A special class of variables are the

covariates.

Definition. X is a covariate if X(u,$) does not depend on s for au LIEU.

In Holland (1986a), I used the term attributes to refer to covariates, but I

think the latter term is preferable and because it corresponds to normal experi-

mental usage. Variables measured on units prior to their exposure to treatments

are always covariates. Rosenbaum (1984c) discusses post-treatment concomitants

and their use in statistical adjustments. A post-treatment concomitant is a

variable measured after the exposure of a unit to the causes in K. For a post-

treatment concomitant, the possibility that X(u,$) does depend on s cannot be

ignored and must be decided. If X(u,$) does depend on s then X is not a

covariate in the sense used here.

Observational Studies. When the active experimenter is replaced by a passive

observer who cannot arrange the values of S(u) to achieve independence, we enter

the realm of observational studies. In such st.tdies we are also interested in

measuring causal effects; i.e., Rubin's model still applies, but now S is not

automatically independent of {110. In an observational study, we typically have

a covariate, X, and we may check the distribution of X in each exposure group by

comparing the values of

P(X=x1S.$)

across the values of sEK. If there is evidence that P(X=xIS=s) depends on s,

then, depending on the nature of X and Y, we may not believe that the indepen-

dence assumption holds in an observational study. However, we might be willing

to entertain a weaker conditional independence assumption of the form, given the

covariate, X, the variables S, and {Ys:sEK} are conditionally independent.
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Combined with the assumption that P(S=s IX0) > 0, the conditional independence

assumption is called strong ignorability by Rosenbaum and Rubin (1983a).

Strong ignorability is the basis for all covariate-adjusted causal effects

in observational studies. Covariate adjustments are based on the conditional

expectations or regression functions E (YSI S.s, X.x) which are used to form the

covariate-adjusted FACE, i.e., the C-FACE, given by

C-FACEtc(Y) E[E(Ys1S.t, X) - E(YsIS.c, X)1.

The C-FACE is like the FACE in that it is generally not equal to the ACE, but

under conditional independence it is:

C-FACEtc(Y) E[E(YtiS.t, X) - E(YcIS.c, X)1

EN(YtlX) - E(YclX)/

E(Yt) - E(Yc)

ACEtc(Y).

Rubin's model was really developed to address the problem of causal

inference in observational studies, and thorough discussions of its application

to these types.of studies can be found in Rubin (1974, 1977), Holland and Rubin

(1983), Rosenbaum and Rubin (1983a,b, 1984b, 1985a,b), and Rosenbaum (1984a,b,c;

1987).
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