DOCUMENT RESUME ED 394 796 SE 058 156 AUTHOR Goodson-Espy, Tracy J. TITLE A Constructivist Explanation of the Transition from Arithmetic to Algebra: The Role of Reflective Abstraction. PUB DATE 95 NOTE 26p. PUL TYPE Reports - Research/Technical (143) EDRS PRICE MF01/PC02 Plus Postage. DESCRIPTORS *Algebra; Arithmetic; *Cognitive Processes; *College Students; Higher Education; *Inequality (Mathematics); Interviews; *Problem Solving #### **ABSTRACT** This paper reports a study that sought to explain student understanding of the concept of linear inequality as presented in a problem-solving setting. In the course of data analysis, the transition from arithmetic to algebra emerged as a critical issue. Therefore, the study examined the differences in the problem-solving activities of solvers who were able to make a transition from arithmetical methods to algebraic methods as opposed to those who could not. Thirteen college students participated in unstructured interviews in which they solved problems, but were not told that these problems involved linear inequality. Detailed analyses are given for two of the problem solvers. Results showed that, to make a successful transition to algebra, a solver needed to attain post-representational levels of reflective abstraction and that imagery is an inherent part of the transition from one level of reflective abstraction to the next. (MKR) ******************************* ^{*} Reproductions supplied by EDRS are the best that can be made # A Constructivist Explanation of the **Transistion from Arithmetic to** Algebra: The Role of Reflective **Abstraction** # by Tracy J. Goodson-Espy PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED EY TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) U & DEPARTMENT OF EDUCATION Office of Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) This document has been reproduce as received from the person or organization onginating it Minor changes have been made to improve reproduction quality Points of view or opinions stated in this docu-ment do not necessarily represent official OERI position or policy 75/850 ERIC **BEST COPY AVAILABLE** # A CONSTRUCTIVIST EXPLANATION OF THE TRANSITION FROM ARITHMETIC TO ALGEBRA: THE ROLE OF REFLECTIVE ABSTRACTION # INTRODUCTION A review of the literature pertaining to this study revealed that the concept of variable (Kuchemann, 1978, 1981; Matz, 1979; Wagner, 1981), the simplification of algebraic expressions (Eisenberg & Dreyfus, 1988; Greeno, 1980; Rachlin, 1981; Wenger, 1987), the solution of equations (Filloy & Rojano, 1984, 1985, 1989; Kieran, 1982), the concept of rational exponents (Confrey, 1991), and the notion of inequality (Fujii, 1988) all have been the focus of research on student conceptions in algebra, although the majority of this research has not been conducted from a constructivist perspective. A fundamental difference between the research perspectives is whether or not there is an objective mathematical reality that students must be made aware of and whether or not they can be expected to learn to recognize particular structures within that mathematical reality. This is a critical facet of a research perspective because it colors not only the methodology chosen and the subsequent analysis of the data but also dictates what kinds of research questions are deemed worthy of investigation and, indeed, what questions it is possible to investigate. As any mathematics teacher knows, there are many problems that may be solved by either arithmetic or algebraic methods. The learning tasks that were used in the present study (See Table 1) are representative of these types of problems. While expert problem solvers, familiar with algebra, might choose to write an algebraic equation or inequality to solve a problem, this path of solution is not so obvious to many novice problem solvers, including those who have had considerable exposure to algebra in school. Some solvers, who are able to construct an arithmetical solution to a problem, remain unable to develop an algebraic representation. The fundamental question that must be answered concerning the problem solving activity of such solvers is—Why can the solver formulate an arithmetical solution to the problem and yet be unable to think of the problem in algebraic terms? What is getting in the way? Based on thirteen interviews and the subsequent results of five case ## TASK 1: Horatio has decided that instead of purchasing a car, he wants to lease one. He is considering two cars. Horatio can lease a Mazda for two years for \$300 per month with no additional charge for mileage. He can lease a Toyota for the same period of time for \$200 per month, but there is a mileage charge of 20 cents per mile. How many miles would Horatio have to drive during the two years in order for the Mazda to be the best choice? # TASK 2: A minivan can be rented from Buford's car rental for \$ 255 per week with no extra charge for mileage. A comparable minivan can be rented from Alfonse for \$189 per week, plus 22 cents per mile. If the minivan is to be rented for one week, how many miles must be driven in order for Buford's rental fee to be the best buy? #### **TASK 3:** You can rent a 15 foot moving truck from I-Haul rental for \$100 per day plus 10 cents per mile or you can rent a comparable truck from Spyder rental for \$75 per day plus 20 cents per mile. How many miles would you have to drive the truck during one moving day for it to be cheaper to rent from I-Haul? # **TASK 4:** You can rent a car from "You Need Wheels" car rental for \$28 per day plus 10 cents per mile or you can rent a comparable vehicle from "It's Us or a Taxi" car rental for \$14 per day plus 16 cents per mile. How many miles would you have to drive the car during the one day for it to be cheaper to rent from "You Need Wheels" car rental? ## **TASK 5:** Two traveling businesswomen are comparing the compensation that they receive. Ann's sales performance averages 15% higher than Susan's on any given day. However, Susan receives a 12% higher commission per sale as compared to Ann's commission. When comparing the travel benefits that their companies provide them, Ann, who works for AT & Q, tells her friend that she receives \$100 per day to cover her lodging and food expenses and receives 30 cents per mile she drives. Susan, who works for Spint, replies that she receives \$125 per day for her lodging and food, but only 20 cents per mile driven. How many miles would Ann have to drive during one business day for her travel benefits to exceed Susan's? # **TASK 6:** Two traveling businessmen are comparing the travel benefits that their companies provide them. Bob, who works for a computer firm, IDN, tells his friend that he receives \$100 per day to cover his lodging and food expenses and receives 30 cents per mile he drives. Ralph, who works for another computer firm, Apricot, replies that he receives \$125 per day for his lodging and food, but only 20 cents per mile driven. On the business day of their conversation, which businessman received the best compensation? ### **TASK 7:** For it to be profitable to produce a compact economy car, the revenue raised by selling the car must exceed the costs associated with producing it. The selling price of each car is \$8500. The costs associated with producing the car are \$5300 per car in facilities costs (plant upkeep, electricity, etc.), \$3200 per car in employee costs, and there are \$500,000 of initial costs to begin production. How many cars will have to be sold in order for this product to become profitable? # Table 1: LEARNING TASKS (continued) TASK 8: Review The Previous Tasks And Write Formal Symbolic Representations For Those Problems That Were Solved Using Intuitive Methods TASK 9: Make Up And Solve A Problem Similar To The Tasks studies (Goodson-Espy, 1994a, 1994b, 1995), this paper offers an explanation for the difficulties encountered as students attempt to make a transition from arithmetic to algebra. Filloy and Rojano (1984, 1989) have discussed one of the difficulties students encounter in their transition from arithmetic to algebra. They defined the notion of the didactical cut to express how students' arithmetic experiences can interfere with their transition to algebra. Their term refers to the transition that occurs as students attempt to solve equations such as Ax + B = Cx + D. While students may be successful solving equations such as Ax + B = C, they are successful because such an equation may "be solved by merely undoing, one by one, the operations given in the left hand sequence, starting with the number C. We shall call this type of equation, arithmetical" (1989, p. 19). While Filloy and Rojano explained the difference between arithmetical and nonarithmetical equations, they did not precisely describe what prevents students from developing an understanding of the nonarithmetical equations. It is important to answer this question in order to form an better notion of what actually occurs as students attempt a transition to algebra. Nonarithmetical equations such as Ax + B = Cx + D require students to move beyond an arithmetical understanding of an equation. In order to solve such equations, students must construct an understanding of an equation as two quantities that are the same. This view is necessary for understanding the properties used to solve the equation. This leads one to consider Sfard (1991) and Sfard and Linchevksi's (1994) theory of reification and their description of the process/object duality. In the theory of reification, Sfard (1991) and Sfard and Linchevski (1994) suggested an explanation for the problems students encounter as they attempt to develop mathematical concepts. They defined interiorization, condensation, and reification as stages in students' concept development. Interiorization was described as the stage where the learner performs operations on
lower-level mathematical objects and is focused on the processes that he or she is involved with. The process is said to have been interiorized when the learner no longer has to perform the operation in order to think about the process. Condensation was described as the stage where a complicated process is condensed into a form that becomes easier to use and think about. It is not until the phase of reification that a student becomes able to conceive of a mathematical process as an object and becomes able to use this abstract object as an input for higher order processes. In their theory of reification, Sfard and Linchevski (1994) described the process-object duality. They referred to the fact that an algebraic expression such as 3(x + 5) + 1 may be interpreted in several different ways. They illustrated how, depending upon the context in which such an expression is encountered, the expression could be interpreted as (a) a computational process; (b) the result of computation and thus, a quantity; (c) a function; or (d) a family of functions (p. 191-192). The point of their observations is that mathematical concepts may be interpreted either operationally or structurally and that, "mathematical objects are an outcome of reification—of our mind's eye's ability to envision the result of processes as permanent entities in their own right" (p. 194). Sfard and Linchevski's theory of reification and their description of the process-object duality seem to have immediate application with regard to nonarithmetical equations as described by Filloy and Rojano. Students are unsuccessful with this type of equation because they view Ax + B and Cx + D as arithmetic processes only and do not consider them as quantities that are equivalent. Since they are often unable to view them as equivalent quantities, the methods taught for solving such equations can be meaningless symbolic maneuvers for the students. In order to examine the relationship of Sfard and Linchevski's theory of reification to students' transitions from arithmetic to algebra, one must think about what allows the shifts from interiorization to condensation to reification to occur. Cifarelli's (1988) levels of reflective abstraction are very useful in specifying the details of the theory of reification. In a study that examined the role of reflective abstraction as a learning process, Cifarelli described several levels of reflective abstraction. These levels of reflective abstraction include: (a) recognition, (b) re-presentation, (c) structural abstraction and, (d) structural awareness. In relation to the present study, the level of recognition can be thought of as the ability to recognize that one can solve the current problem by doing again what one has done before.. Solvers operating at this level would not be able to anticipate sources of difficulty. Solvers who are able to mentally run-through a solution and who can anticipate sources of difficulty when using previously developed methods are referred to as operating at the level of representation. The next level, structural abstraction, is said to occur when a solver becomes able to mentally run-through a procedure and can reflect on potential, as well as prior activity. The highest level of reflective abstraction is structural awareness. At this level, the problem structure created by the solver has become an object of reflection. The solver would not have to conduct mental run-throughs of solution methods in order to make judgements concerning the solution of the problem. Sfard and Linchevski's (1994) theory and Cifarelli's (1988) levels are closely related in several respects. Cifarelli's (1988) levels of reflective abstraction may specify how a solver progresses from through the stages of interiorization, condensation, and reification. It is suggested that the levels of reflective abstraction that Cifarelli referred to as recognition and re-presentation precisely describe the cognitive activities that are required to progress through the stage of interiorization. The level of reflective abstraction referred to as structural abstraction provides the bridge from the stage of condensation to the stage of reification. Structural awareness is the level that allows the solver to attain reification. In the present study, the levels of reflective abstraction defined by Cifarelli (1988) provided a means of illustrating the theory of reification in action as solvers attempt to make their transition from arithmetic to algebra. This theoretical framework provides a basis for analyzing the activity of solvers who make a transition to algebra as well as those who are unable to do so. # **PERSPECTIVE** The choice of a radical constructivist perspective permitted the study to focus on the students' development of conceptual knowledge. This discussion provides a rationale for the terms and constructs used to analyze the data generated by the study and provides a context in which the results of the study can be examined. It is necessary to define the term <u>conception</u> from the constructivist perspective because there are many definitions of students' conceptions based on different theoretical constructs. The student's understanding of the problem is viewed as a conception, but not as a misconception. The reason for this bias against the term misconception is that it directs attention away from the student's thought processes and toward an objective structure that the student's conception is being measured against. (Note the individual's understanding is meant from the standpoint of the observer's understanding of what the individual understood, because it is impossible to gain access to the mind of the subject in a direct way.) The philosophic framework of research also affects the definition of problem solving that is accepted. Lester (1978) suggested the following definition of problem solving: A "problem is a situation in which an individual or group is called upon to perform a task for which there is no readily accessible algorithm which determines completely the methods of solution" (p. 54). The important distinction of Lester's definition is that he emphasizes the problem from the solver's perspective while other definitions of problem solving do not acknowledge the possibility that the solver and the researcher may not be considering the same problem. For example, studies that have manipulated algebra word problems from a structural standpoint have not considered the possibility that the solvers were not concerned with the underlying structure that an expert would be aware of but instead had focused on other characteristics of the problems. Placing the emphasis on the individual's viewpoint provides for research to be conducted that examines more than an individual's ability to solve a problem. It provides a justification for studying the problem-solving activity of the individual and for studying the constructs that students develop through this activity. Because this study deals with algebraic problems, it is particularly important that the notion of structure operating in the study be clarified. Based on constructivist learning principles, Cifarelli (1988) described structure as an organization of the activity that the learner performs on objects (p. 38). Structure is unobservable in the sense that the learner may not state a formal mathematical property to justify his or her activity but knowledge of such a property may be illustrated through observance of the learner's activity. The importance of structure to this study is that one can expect to see evidence of the learner's awareness of properties regarding linear inequality through the activities that he or she conducts while attempting to solve the problems. One would also expect to gather information regarding the solver's transition from arithmetic to algebra by closely monitoring his or her solution activity. In this way, the levels of conceptual knowledge that the subject has are expressed in the structure of his or her problem-solving activity. Structure in this study then refers to the organization of the learner's activity and not to a classification of the mathematical problem itself. This study does not a priori impose structures on the problems that are then looked for in the students' responses. This would be inconsistent with a constructivist perspective because the students decide not only how they will construct the mathematical concepts but what mathematical concepts will be constructed (Cobb & Steffe, 1983, p. 88). Representation theory has played an important role in the research on problem solving. While there are several definitions of representation and its relationship to problem solving, the one of interest is that referred to by Yackel (1984, cited in Cifarelli, 1988). Representation is the initial structure the solver gives to a problem. As Cifarelli pointed out, Yackel recognized that this definition supports the notion that "a solver's construction of a problem representation indicates that conceptualization activity has occurred" (Cifarelli, 1988, p. 32). Thus the representation provides the subject with an initial structure that, through the process of reflective abstraction, is modified to create more abstract structures. For the purposes of this study, representations are referred to as initial interpretations so as to distinguish them from other definitions of representation. These initial interpretations establish the structure that will provide data concerning the conceptual knowledge that students have and develop during the transition from arithmetic to algebra. Such initial structures will also clarify our understanding of students' interpretations of linear inequality embedded in a problem-solving setting. It is crucial in this section to define the differences between initial interpretations and representations. In this study as well as in Cifarelli's (1988), it is necessary to explain the initial interpretations
in terms of the actions that they are coordinated with. Thompson (1985) referred to representation as a means of accomplishing this. Cifarelli (1988) explained that re-presentation refers to the learner's ability to rely upon structures of activity that allow the learner to "call-up" these structures and use them to mentally model the process of solving a problem. He pointed to Mandler's (1983) work that implied individuals are not only able to develop structures of activity, they may also become able to operate on the activity in thought. The ability of the subject to operate on these representations as one would operate using an object is consistent with the Piagetian notion of reflective abstraction in a problem solving setting. It is also consistent with von Glasersfeld's (1982) work that suggested that a subject would be able to use a re-presentation as a substitute for "actual sensory motor execution" (quoted in Cifarelli, 1988, p. 35). When re-presentation is described in the analysis, it means that the solver is able to mentally "run-through" a previously used or potential activity. At early stages re-presentation involves the ability to imagine oneself performing the activity and analyzing the results, in the later stages of abstract development however, one may think of the results of an activity without having to visualize running through the activity itself. The initial conceptual structure that the subject exhibits concerning the problem and the concept of linear inequality is referred to as the <u>initial interpretation</u>. A <u>re-presentation</u> is cited when there is evidence that a subject relied on the prior mental structure (initial interpretation) to use in subsequent attempts on the problem or later related problems. The re-presentation provides for an opportunity to witness the development of more complex levels of conceptual knowledge. von Glaserfeld's (1982) work supports this contention because he held that re-presentation is a major process in the development of abstract structures from representations or, as they are referred to in this study, initial interpretations (cited in Cifarelli, 1988, p. 44). # **OBJECTIVES** The study sought to provide an explanation of student understanding of the concept of linear inequality as presented in a problem-solving setting (Goodson-Espy, 1994a). In the course of the analysis of the data, the transition from arithmetic to algebra emerged as a critical issue. Therefore, the study examines the differences in the problem-solving activities of solvers who were able to make a transition from arithmetical methods to algebraic methods as opposed to those solvers who were unable to make such a transition. # METHODOLOGY # Subjects The subjects selected were students from a small southern university. A total of thirteen students participated in the study. A student was eliminated from becoming a subject if that student had very recently studied the topic of linear inequalities since it was believed that very recent exposure to the material would interfere with a subject's ability to react spontaneously to the tasks. # **Use of Interviewing Methodology** Unstructured interviews were utilized because this methodology allowed me to collect data concerning the constructive behavior of subjects as they attempted to solve challenging situations that could be solved using either arithmetical or algebraic methods. I was able to ask the subjects to elaborate on their activities and strategies and made judgments concerning the students' internal problem solving processes (Opper, 1975). A key factor in enabling me to make inferences about the subjects' cognitive processes was the careful selection of the problems to be used as tasks in the interview. Lincoln and Guba (1985) stated that "the unstructured interview is the mode of choice when the interviewer does not know what he or she doesn't know and must therefore rely on the respondent to tell him or her" (p. 269). An unstructured interview allows a researcher to have a general plan of questions or problems to be considered but the researcher is free to change the direction of the interview based on the responses of the subject. This provides for a broader opportunity to collect relevant data. One of the most critical benefits of the unstructured interview approach has been explained by Cobb (1986) as the process of "negotiating meaning." This indicates that the researcher is able to ask the subject to clarify or explain his or her activity or verbalizations, whenever there is a question as to the purpose of an activity or comment. Although there is more intervention, the intervention acts as a means of clarifying the subject's responses not as a means of directing them per se. The analysis of the data also accounts for the intervention by considering the data in light of a dialogue between the researcher and the subject. The analysis of the data must take into account 9 questions concerning the validity of the data. Critics of the "think aloud" approach to problem solving such as Ericsson and Simon (1980) contended that if subjects are asked to verbalize information that they otherwise would not during the process of problem solving, that this intervention would alter their problem-solving behavior and thus the data collected in this manner would be invalid. This criticism, while probably at least partially true, does not take into account the alternatives of the "think aloud" approach. If one cannot depend on the subjects' verbalizations concerning what they are doing, then one must resort to written evidence as the only source of what occurs during problem solving. Because many students write very cryptic statements while they are engaged in problem solving, it is unlikely that much could be learned through this process alone. In addition, the researcher must then attempt to interpret what the solver was doing, a task itself subject to serious questions concerning validity. From an expert viewpoint, the nine learning tasks all involve the concept of linear inequality. One would not expect that all students would have this viewpoint. Instead, it was theorized that some students might approach the problems by developing an arithmetical approach based on a situation-specific imagery. Because the tasks deal with familiar situations, such as car rentals and comparisons of employee benefits, it was expected that the solver might approach the problem from a real-world perspective, interpreting the situation described in the task based on a situation that he or she had experienced. The learning tasks must require the subject to become "task-involved" (Cobb, 1986) during the interview process. This means that the problems must be true challenges for the student, not predictable sorts of tasks that they regard as exercises to be solved via the use of some rule that they have memorized previously. # **Data Generation** During individual interviews, the students were allowed an unlimited amount of time to solve the problems and were not told that the problems involved linear inequality. They were told that the study concerned how students solve mathematics problems. The interview typically lasted two hours and was videotaped. The data included the videotapes, transcripts of the tapes, and the written work of the students. The need for videotaping has been established in previous research (Krutetskii, 1976; Larkin, 1985; Schoenfeld, 1985). Videotaping preserves many qualitative, nonverbal cues that written protocols alone would miss. In addition, the videotaped record maintains the timing and sequencing of problem solving activity. Another benefit provided by videotaping is that it allows the interviewer to become an observer and reevaluate the interview from this less involved perspective. This is extremely useful because the repeated viewing of the tape during analysis allows the interviewer turned observer to continually search the data for important information and to alter the model to more accurately depict the data. The written protocols are also extremely important. The written protocols include the transcripts of the videotapes and the paper records made by the subjects as they solved the problems during the interview. The written transcripts are numbered so that the subjects' activity may be easily referred to during the analysis of the data (Goodson-Espy, 1994a). The records made by the subjects themselves are, of course, very valuable because these data provide clarification for some comments and actions noted on the tape. For example, some of the solvers referred to charts and it is crucial to have those data available. # **Analysis of Data** The written and video protocols for each subject were analyzed and the results presented in case studies. An explanation of students' transitions from arithmetic to algebra was described based on these results. The tasks were selected with the intention of providing a genuine challenge for the subject with the hope that cognitive conflict would occur and allow for the development of conceptual knowledge. I observed and recorded, through written and videotaped protocols, the ways that reflective abstraction affected the development of conceptual knowledge during the transition from arithmetic to algebra. The case studies were prepared initially by a narrative concerning each subject's activity while solving each task. An important aspect of this stage was defining the meaning that the subject intended as he or she attempted to solve the problem. The narrative organized both cognitive and metacognitive data concerning each subject. The collection of metacognitive data occurred as the subject and I negotiated meaning about the subject's activities and responses. Data revealing qualitative aspects of the student's behavior were recorded on videotape. After the initial narrative was prepared for a solver, a summary of the solver's constructive activity was developed.
Finally, the solver's performance was examined for unique activity that revealed how the solver thought during the transition from arithmetic to algebra (if such a transition took place). Cifarelli's (1988) levels of reflective abstraction were used as a guide to classifying the problem-solving activity of the subject. This reliance on reflective abstraction and the processes of representation can be justified through the research of von Glasersfeld (1982, cited in Cifarelli, 1988), who found that these processes were significant in the development of structural knowledge. The analysis and classification of the problem-solving activity yielded valuable information about the subjects' levels of conceptual knowledge during the transition from arithmetic to algebra. The analysis also provided a means for characterizing the solvers' understandings of the concept of linear inequality embedded in a problem-solving setting. Based on the data, an explanation of students' transitions from arithmetic to algebra is described and supported through the citation of examples of subject activity contained in the case studies. # **FINDINGS** The solvers' solution activity concerning Task 1 led to the development of a conceptual structure referred to as the initial interpretation. Based on their beliefs that a problem was similar to one that they had solved before, the solvers used or modified this initial interpretation. The solvers made decisions concerning the appropriateness of prior solution methods as well as potential methods. Solvers operating at higher levels of reflective abstraction were able to reflect on prior and potential solution activity and make anticipations concerning the results without having to physically carry out the procedures. The analysis of the case studies fell into three categories: (a) students who used purely arithmetical methods that were not based on situation-specific imagery, (b) students who utilized charting methods that were based on situation-specific imagery and, (c) students who used formal algebraic methods. The following discussion will include episodes from two significant case studies— one who was unable to complete a transition to algebra and another who successfully negotiated such a transition. While Solver #6 was able to use some algebraic symbolism, nevertheless, she was unable to complete a transition from arithmetic to algebra. Solver #6's interview lasted 110 minutes. She found answers to all of the tasks by using arithmetical methods and by making charts that were grounded in situation-specific imagery. During her work on Task 8, she was able to use a variable to represent the unknown mileage on Task 1 and other tasks but she was unable to complete a transition from arithmetic to algebra. The following episode illustrates the arithmetic method Solver #6 used to solve the first task. This arithmetic method served as the solver's initial interpretation. S: There are 12 months in a year and 12 times 2 is 24. 24 • 300 = \$7,200 and 24 • 200 = \$4,800 so we have to find out, let's see, 7,200 - 4,800 = 2,400. O.K. and .20 will go into 2400. 12,000. The solver operated at the level of recognition and used the same method to solve the second task. She tried to use the method to solve the third task but ran into trouble because she couldn't decide what to do with the additional mileage charge. On the fourth task, the solver developed a chart to help her solve the problem. ``` S: I'll just start with 100. (uses calculator) 28 + 10 = 38 100 \cdot .10 = 10 100 \cdot .10 = 16 14 + 16 = 30 It's getting closer, it should be, it had to be. Let's try 200 miles, I know there's some algebraic form for this but I don't know. Let's see, (uses calculator) 200 \cdot .10 = 20 28 + 20 = 48 14 + 32 = 46 200 \cdot 16 = 32 I'm getting closer. Let's try 250 miles. (use calculator) 250 \cdot .10 = 25 28 + 25 = 53 14 + 40 = 64 250 \cdot .16 = 40 Aha! I don't have to hope. O.K. I'll try one more time at 225 and see if that's it, a little bit closer. 28 = 22.50 = 50.50 225 \cdot .10 = 22.50 225 \cdot .16 = 36 14 + 36 = 50 ``` 13 Whew, I guess, I bet he has to drive 226, no 227, no 226. This better be the right one. 226 • 10 = 22.60 226 • .16 = 36.16 226 • .16 = 50.16 No, well, 230 miles. This is taking way too long. 230 • .10 = 23.00 230 • .16 = What's the difference? Pretty big difference. It's only a difference of \$2.00. (re-reads the task) How many miles does he have to drive the car during one day for it to be cheaper to rent from "You Need Wheels"? O.K. Somewhere between 250 and 225. The solver worked at the level of recognition and used her charting method to find a solution for task 5 and decided to redo task 3 using her new method. The solver attained the level of re-presentation with respect to Task 6 since she could mentally run-through what would happen if she tried to use a chart. She provided algebraic representations, with difficulty, when she was asked to do so on Task 8. On this task she worked at the level of recognition with respect to the algebraic representations of the tasks she had previously solved using an arithmetic or charting method. She wrote, $x = [(300 \cdot 24) - (200 \cdot 24)] \div .20$, as her symbolic representation for her work concerning the first task, referring to it as, "my algebraic!". In her representation for the second task which follows, she altered her use of the letter x, allowing it to represent the number of miles to be traveled. S: x = Now I can't write an algebraic equation for this one. . . maybe. . . (x • .22). Well, maybe I can. (x • .22) . . . No, I can't, wait, no. . . (x • .22) + 189 =, O.K. there's my algebraic equation. Equals? Um, I don't know, I can't do that one. While the solver used charts to solve some of the problems, because she was operating at lower levels of reflective abstraction, she was unable to think of the processes used to create the charts as abstract objects. The following episodes illustrate this: # Task 3 - S: I'm comparing the two [costs for renting the vehicles] and I don't see how I could write an algebraic equation to compare them. Cause I mean, I'm sure I could write down the algebraic equation easily like, (X .20) + 75 and then (X .10) + 100, but then I would have to compare them. - I: Well, what was the comparison? What was the question asking? What are you doing at each stage of the chart? - S: I have to compare and I don't know. Task 4 S: $(x \cdot .10) + 28$ and $(x \cdot .16) + 14$, I can write it, I just can't use it! These examples illustrate that for Solver #6, a phrase such as $(x \cdot .10) + 28$, exists only as an arithmetic process. She was unable to think of it as the total cost of renting a truck and, lacking the ability to view this phrase as an abstract object, she literally had no thing that she could compare to something else. While she referred to $(x \cdot .20) + 75$ and $(x \cdot .10) + 100$ as an equation, she never wrote an equals symbol between them and her comments reveal that she did not consider doing so. Solver #6 could not complete a transition to algebra because she was working with a statement such as (X • .20) + 75 as a process only. She was unable to conceive of it as a quantity that could be compared to another quantity. This incapacity to cope with the process/object duality as described by Sfard (1991) was a result of Solver #6 being unable to attain levels of reflective abstraction higher than re-presentation. In terms of Sfard's (1991) constructs, the solver remained at the level of interiorization. The level of structural abstraction was required to enter the phase of condensation and the solver was unable to reach this level. The solver needed to pass through the phases of condensation and reification in order to develop the ability to consider her arithmetic processes as objects. Furthermore, because the solver remained at the stage of interiorization, she held process-oriented conceptions of variable and equality. It is interesting at this point to offer some explanations for why Solver #6 could develop some algebraic symbolism while other solvers (such as Solver #4) who used similar charting methods remained unable to develop any algebraic symbolism. Solver #4 was not aware of the use of variable that was present in her charts. While she used the charts to organize her arithmetic activity, and while she allowed the mileage to change in her charts, she never viewed this changing mileage as a variable quantity. She was unable to express this idea in words and was unable to use a variable to express the process used to create the charts. Solver #6, on the other hand, was a aware of the process that she was using and was able to think of the changing mileage as a variable. She was able to verbally and symbolically express this relationship. She was unable, however, to think of the results of that process and thus the process itself as a quantity or object. The other case study that is emphasized in this paper is that of Solver #12, a subject who successfully completed a transition from arithmetic to algebra. Solver #12 completed the tasks in an interview that lasted 80 minutes. Solver #12 was able to solve the first two tasks by using an arithmetical method that was based on situation-specific imagery. Like the other solvers, he solved this task by finding the difference between the lease charges, \$2,400 and dividing this difference by the mileage charge, .20. This arithmetical method was based on his initial interpretation of Task 1 and he operated at the level of recognition with respect to his activity concerning Task 2. After reading over Task 3 briefly, the solver exclaimed, "It's something different!" He read the task aloud and then stated the charges associated with both of the moving trucks and noted that the I-Haul truck was to be the best deal. At this stage he began to search for a method to solve the problem. He began trying to use the arithmetical method that he
had constructed during his solution of Tasks 1 and 2 but he was puzzled concerning what he should do with the extra mileage charge. The solver finally decided to compute the difference between the rental charges (100 - 75 = 25) and then computed the difference between the mileage charges (.20 -.10 =.10). He then multiplied these numbers together. He was unhappy with the answer he obtained (2.5) however, and began to look for another method. This episode is significant because it illustrates how the solver made decisions based on what was reasonable in the context of the situation. He tried to solve this problem by adapting the method that he had used successfully on the previous tasks. It is very significant that the solver was able to adapt the method he had used on the previous tasks. This indicates greater flexibility in his thinking and is an indicator that he is operating at the level of re-presentation. He chose to reject this method when it produced what he regarded as unreasonable results but he seemed unsure of what had gone wrong. His inability to anticipate what had gone wrong indicates that he was not operating at the level of structural abstraction. He did not seem to reflect upon this arithmetical method and favored discarding it altogether. His ability to relate his computational results to his imagery regarding the problem caused him to consider an alternative solution method. His reliance on situation-specific imagery was very significant because he had more confidence in his imagery of what should happen than in the computation procedure he had devised. He used the arithmetical method as a tool and was willing to discard it when its results no longer made sense to him. Once the solver had determined that his method was producing unacceptable results, he decided to try another way, "You could just draw a chart and compare so if you just went \$100 for the I-Haul and \$75 for the Spyder and for the I-Haul everything is 10 cents a mile and for the Spyder, it's 20 cents a mile." He constructed the chart shown in Figure 2, using 50 miles as his first guess about the mileage. | | 50
miles | 100
miles | 150
miles | 200
miles | 225
miles | 230
miles | 250
miles | |--------------------------------|-------------|--------------|--------------|--------------|-----------------|--------------|--------------| | I-Haul
\$100
10 cents/mi | 5
105 | 10
110 | 15
115 | 20
120 | 22.50
122.50 | 23
123 | 25
125 | | Spyder
\$75
20 cents/mi | 16
85 | 20
95 | 30
105 | 40
115 | 45
120 | 46
121 | 50
125 | Figure 1. Task 3 chart. The solver's statement regarding the answer to this task is consistent with his behavior concerning the other answers. Once he determined the mileage at which the charges were equal, in this case at 250 miles, he used this figure to help him declare the answer of 251 miles. The solver initially worked on this task at the level of re-presentation. He was operating at least at the level of re-presentation on this task because he knew he would have to adapt what he had done on the previous tasks. He was able to anticipate having to adapt his method but was unable to anticipate the results of the adaptation. He was also unable to determine what had caused his first attempt to fail. The solver resorted to using the chart method following this failure. It is probable that he was capable of using a chart method on any of the first three tasks but did not seem to think of a charting method as being a very efficient way to solve the problem. His statement, "You could just draw a chart," suggests that he does regard this a legitimate way of proceeding, however. Solver #12 was able to solve Task 4 very rapidly. He was working at least at the level of recognition because his activity closely resembled what he had done on Task 3. In addition, there is some evidence that learning was taking place because his initial guess about the mileage on Task 4 was much closer than it was on Task 3. The solver was beginning to anticipate the results of his computations. The solver reached the level of re-presentation concerning Tasks 5 and 6 because he was able to mentally run-through what would occur in his solution method and anticipate the results. During his work on Task 8, the solver developed algebraic representations for problems that he had solved earlier by using arithmetic or charting methods. For the first task, the solver wrote, 300 = 200 + (.20)X. He wrote, 255 = 189 + (.22)X to represent the second task. Solver #12 carefully analyzed what he had done in the chart to solve Task 3 before he wrote his algebraic representation. S: Um, I think you could do it like, um, put the 100 per day, add that to your 10 cents on the mile, times x, and x is your number of miles, and that's going to have to equal your 75 per day plus 20 cents also times X. [Writes] 100 + (.10)x = 75 + (.20)x x = miles While the solver wrote, x = miles, his verbalizations indicate that he is thinking of it as representing the number of miles. This demonstrates that a more robust understanding of the concept of variable is developing out of the solver's activity. After working the problem to check his solution, he decided that he wanted to change the equation to an inequality. In the two case studies where a transition to algebra occurred, the solvers first represented their work with an equality and only later translated it into an inequality. This results supports Sfard and Linchevski's (1994) observation that equality precedes inequality in conceptual development. Solver #12 changed the representation to 100 + .10X > 75 + .20X. The reader will observe that the inequality symbol is reversed. In the transcript of the solver's charting, it was apparent that the solver was using the notion of finding a critical point and adding one. Thus, during his algebraic representation he bases the direction of the inequality on his prior activity. While this error is interesting, it does not detract from the solver's ability to make a transition to algebra. On Task 8, the solver was able to develop algebraic representations for the tasks by mathematizing what he had done to create the charts. Through his activity, he became able to think of an arithmetic process, such as $100 + (X \cdot .30)$, as an abstract object, such as the total cost of renting a truck, that could be symbolically compared to another abstract object. Developing this capability allowed the solver to write equations and inequalities to symbolize the comparisons he had made while using his charts. The problem-solving activity of Solver #12 was very similar to the activity of Solver #6 until Task 8. It was on Task 8 that Solver #12 began to exhibit characteristics that suggested that he was operating at levels of reflective abstraction higher than re-presentation. Whereas Solver #6 had been able to symbolically represent parts of the tasks algebraically [i.e. (x • .10) + 28 and (x • .16) + 14] she had been unable to finish the sentences by placing a relational symbol between the two phrases. Solver #12 was able to produce complete algebraic representations on Task 8. Solver #12's activity indicates that during the course of solving the learning tasks through charting, he had become able to think of his arithmetic processes as abstract objects that could be manipulated. Thus, he was not only able to write algebraic phrases to represent what he had done to create the charts, he was able to write complete algebraic sentences to compare the quantities he had created. While working on Task 8, the solver was operating at the level of structural abstraction regarding algebra. He used the algebraic structure he had constructed to write algebraic equations or inequalities for all of the tasks, except for those with insufficient information or contradictions. Solver #12 was able to complete a transition to algebra because he was able to attain the levels of structural abstraction and structural awareness as he solved the problems. The solver was able to realize higher levels of reflective abstraction by mathematizing his earlier activity. Achieving the level of structural abstraction allowed the solver to think of his arithmetical statements in terms of what they meant to him in the context of the situation-specific imagery he had used to solve the problems. This activity permitted his conceptions to undergo the condensation phase. Attaining the level of structural awareness allowed the solver to complete this phase and to think of these arithmetic processes as abstract objects that could be manipulated. This activity illustrated reification in action. # **DISCUSSION AND CONCLUSION** This study revealed the levels of conceptual knowledge that the solvers used as they attempted to resolve problematic situations. These levels were exhibited through the solvers' problem solving activities. Detailed analysis permitted the solvers' activities to be characterized in terms of Cifarelli's (1988) levels of reflective abstraction. Transitions between levels were identified by observing episodes where novel behavior occurred, an indication of constructive activity. While this paper highlights the results of only two of the case studies, the results of all five case studies revealed that if a solver was to make a successful transition to algebra they needed to attain post-re-presentational levels of reflective abstraction. In addition, the results indicate that imagery is an inherent part of the development from one level of reflective abstraction to the next. This means that the kinds of imagery that a solver is capable of using evolves and this imagery is significant in determining the levels of reflective abstraction that the solver can attain. Highly flexible thinking is indicated when solvers are able to rely on various forms of imagery. By this I refer to the process-object duality and underscore the fact that imagery pertains
not only to processes that describe problem situations but also to the objects that evolve from those processes. The first three solvers were unable to complete a transition from arithmetic to algebra. These solvers, who operated at the levels of recognition and re-presentation, typically held weak conceptions of variable and equality. A letter simply served to name a value they were looking for or it served to name an arithmetical process that they were describing. Solvers operating at these levels did not use equality sentences at all or used the equals symbol in an arithmetic sense— to announce the answer to a computation. These solvers were unable to conceive of arithmetic processes as objects and thus their transition to algebraic methods was blocked. The solver of the third case study, Solver #6, made some progress through the use of charting and became able to use a letter to represent a varying quantity, such as the number of miles traveled. She was able to describe the arithmetic process that she had used to create her charts by using algebraic symbolism, such as (X • .16) + 14, but this phrase still represented a process to her. While the first three solvers worked the majority of the tasks at the level of recognition, their activity cannot be solely described in this manner because there is a great deal of variation in the ways that the solvers approached the tasks. It is believed that the effects of beliefs, expectations, and situation-specific imagery can account for some of these differences. The solvers of the last two case studies (Solver #12 & Solver #8) were able to attain the levels of structural abstraction or structural awareness. These solvers held or were able to develop robust conceptions of variable and equality. Significantly, the attainment of the level of structural awareness 22 allowed the solver to view mathematical statements such as $(X \cdot .10) + 25$ as both a process and an object. Being able to cope with the process/object duality (Sfard & Linchevski, 1994) made a transition to algebra possible for these solvers. Thus, it is apparent that it is desirable for learners to attain high levels of reflective abstraction according to Cifarelli's constructs and to attain reification. In this regard, Sfard (1991) pointed out that while mathematical concepts can be conceived of operationally and structurally, and while, in many cases, an operational understanding will be satisfactory for one's purposes, operational concepts are limiting because they force one to think in terms of processes, which are detail oriented. This is a distinct disadvantage if one is working on a very complex problem. It is precisely under such circumstances that a structural viewpoint is useful. By being able to grasp complicated processes as static objects or quantities that can be manipulated and compared, one greatly reduces the cognitive strain induced by a purely operational approach. Sfard's observation is born out in Cifarelli's constructs because solvers who can attain the higher levels of reflective abstraction become progressively more flexible in their thinking and are thus able to confront a wider array of problems. It seems that solvers must attain higher levels of reflective abstraction of they are to become able to think of processes as objects. This is why it is so crucial for students to be engaged in meaningful activities in the classroom. Next, one must consider what types of activities will encourage the transition from arithmetic to algebra to occur? Solvers need to work on problems that can be solved reasonably by arithmetic methods as well as algebraic methods. The results of the present study indicated that charting was a potentially productive means of encouraging the reflective abstraction that is necessary for the transition to occur. In the case studies, the use of situation-specific imagery often led students to abandon purely arithmetic methods in favor of organizing their activity with a chart. Charts helped students to develop their understanding of variable and provided students with an opportunity to symbolize what they had done to create the chart. Getting students to reflect back on their own activity is crucial. The solvers constructed a transition from arithmetic to algebra by mathematizing their activity. This mathematization often occurred in layers--first, the solver attempted an arithmetic solution, next, the solver used a chart, and finally, the solver became 21 able to symbolize the activity that created the chart. While the use of charts did not guarantee that a solver would successfully complete a transition to algebra, the appearance of charting served as evidence that meaningful activity was occurring. Further work on problems of this type would allow solvers to reflect on what was done and would provide them with the opportunity to reorganize their conceptual knowledge. Problem solving of this type, while time consuming, helps students to develop understandings of mathematical concepts that will be useful to them in the classroom and beyond. # REFERENCES - Cifarelli, V. V. (1988). The role of abstraction as a learning process in mathematical problem solving. Unpublished doctoral dissertation, Purdue University, Indiana. - Cobb, P. (1986). Clinical interviewing in the context of research programs. In G. Lappan & R. Even (Eds.), <u>Proceedings of the eight annual meeting of PME-NA: Plenary speeches and symposium</u> (pp. 20-26). East Lansing: Michigan State University. - Cobb, P., & Steffe, L. P. (1983). The constructivist researcher as teacher and model builder. <u>Journal for Research in Mathematics Education</u>, 14(2), 83-94. - Confrey, J. (1991). Learning to listen: A student's understanding of powers of ten. In E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 111-138). Dordrecht, The Netherlands: Kluwer Academic Pub. - Eisenberg, T., & Dreyfus, T. (1988). Polynomials in the school curriculum. In A. F. Coxford (Ed.), The ideas of algebra, K-12 (1988 Yearbook, pp. 112-118). Reston, VA: National Council of Teachers of Mathematics. - Ericsson, K. A. & Simon, H. A. (1980). Verbal reports as data. <u>Psychological Review</u>, <u>87</u>, 215-251. - Filloy, E., & Rojano, T. (1984). From an arithmetic to an algebraic thought: A clinical study with 12-13 year olds. In J. M. Moser (Ed.), <u>Proceedings of the Sixth Annual Conference for the Psychology of Mathematics Education, North American Chapter</u> (pp. 51-56). Madison: University of Wisconsin. - Filloy E., & Rojano, T. (1985). Obstructions to the acquisition of elemental algebraic concepts and teaching strategies. In L. Streefland, (Ed.), <u>Proceedings of the Ninth International Conference for the Psychology of Mathematics Education</u> (pp. 154-158). Utrecht, The Netherlands: State University of Utrecht. - Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the Learning of Mathematics, 9(2), 19-25. - Fujii, T. (1988). The meaning of 'X' in linear equation and inequality: Preliminary survey using cognitive conflict problems. In A. Borbás, (Ed.), <u>Proceedings of the Twelfth International Conference for the Psychology of Mathematics Education</u> (pp.334-341). Veszprém, Hungary: OOK Printing House. - Greeno, J. G. (1980). Trends in the theory of knowledge for problem solving. In D. T. Tuma & F. Reif (Eds.), <u>Problem solving and education: Issues in teaching and research</u> (pp.9-23). Hillsdale, NJ: Lawrence Erlbaum. - Goodson-Espy, T. J. (1994a). A constructivist model of the transition from arithmetic to algebra: Problem solving in the context of linear inequality (Doctoral dissertation, Vanderbilt University, 1994). Dissertation Abstracts International - Goodson-Espy, T. J. (1994b). A constructivist explanation of the transition from arithmetic to algebra: problem solving in the context of linear inequality. In D. Kirshner (Ed.), <u>Proceedings of the Sixteenth Annual Conference for the Psychology of Mathematics Education, North American Chapter</u>, (pp.166-172). Baton Rouge: Louisiana State University. - Goodson-Espy, T. J. (1995, April) <u>Understanding students' transitions from arithmetic to algebra: A constructivist explanation</u>. Paper presented at the annual meeting of the American Educational Research Association, San Francisco. - Kieran, C. (1982, March). The learning of algebra: A teaching experiment. Paper presented at the Annual Meeting of the American Educational Research Association, New York, NY. (ERIC Document Reproduction Service No. ED 216 884) - Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. (J. Teller, Trans., J. Kilpatrick & I. Wirszup, Eds.). Chicago: University of Chicago Press. (Original work published 1968) - Küchemann, D. (1978). Children's understanding of numerical variables. <u>Mathematics in School</u>, <u>7</u>(4), 23-26. - Küchemann, D. (1981). Algebra. In K. M. Hart (Ed.), Children's understanding of mathematics: 11-16 (pp. 102-119). London: John Murray. - Larkin, J. (1985). Understanding, problem representations, and skill in physics. In S. F. Chipman, J. W. Segal, & R. G. Glaser (Eds.), <u>Thinking and learning skills</u>, vol. 2: Research and open questions (pp. 141-159). Hillsdale, NJ: Lawrence Erlbaum Assoc. - Lester, F. K., Jr. (1978). Mathematical problem solving in the elementary school: Some educational and psychological considerations. In L. L. Hatfield & D. A. Bradbard (Eds.), <u>Mathematical problem solving: Papers from a research workshop</u> (pp. 60-92). Columbus, OH: ERIC/SMEAC. (ERIC Document Reproduction Service No. ED 156 446) - Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage Publications. - Mandler, J. (1983). Representation. In P. H. Mussen (Ed.), <u>Handbook of child psychology: Vol. III.</u> Cognitive development (pp. 420-494). New York: Wiley. - Matz, M. (1979). Towards a process model for high
school algebra errors (Working Paper 1811). Cambridge: Massachusetts Institute of Technology, Artificial Intelligence Laboratory. - Opper, S. (1975). Piaget's clinical method. <u>Journal of Children's Mathematical Behavior</u>, 1(3), 29-37. - Rachlin, S. L. (1981). <u>Processes used by college students in understanding basic algebra</u>. Unpublished doctoral dissertation, University of Georgia, Athens. - Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press. - Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. <u>Educational Studies in Mathematics</u>, 22, 1-36. - Sfard, A., & Linchevski, L. (1994). The gains and pitfalls of reification-The case of algebra. Educational Studies in Mathematics, 26, 191-228. - Thompson, P. W. (1985). Experience, problem solving, and learning mathematics: Considerations in developing mathematics curricula. In E. Silver (Ed.), <u>Teaching and learning mathematical problem solving: Multiple research perspectives</u> (pp. 189-236). Hillsdale, NJ: Lawrence Erlbaum Assoc. - Wagner, S. (1981). Conservation of equation and function under transformations of variable. <u>Journal for Research in Mathematics Education</u>, 12(2), 107-118. - Wenger, R. H. (1987). Cognitive science and algebra learning. In A H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 217-251). Hillsdale, NJ: Lawrence Erlbaum. K. (.)