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UNEQUAL CELL SIZE ANOVA AND THE MEANING OF THE INTERACTION

Ernest A. Rakow, The University of Memphis

Analysis of variance (ANOVA) is a frequently used statistical

procedure in education and the social sciences. Very often the use

of ANOVA involves situations with unequal cell sizes. When

confronted with data to analyze from an unbalanced design, the

researcher should very carefully select the method/option in the

statistical package for estimation of the sums of squares.

As pointed out by Halpin, Carwile & Halpin (1991) the

hypotheses being tested in unbalanced designs may not be precisely

as expected. In fact, as will be shown, conflicting results may

occur depending upon the options chosen in the analysis. The

problem of analyzing non-orthogonal designs has been recognized as

an issue since the 1950's when Scheffe published his book The

Analysis of Variance (1959).

In this paper the cell means shown below will be used as an

example to illustrate the points being made. Thus frequent

reference will be made to the example in which independent variame

A has two levels (two rows) and independent variable B has three

levels (three columns)

Cell Means for ANOVA Example

B 1 B 2 B 3 Marginal

A 1 51.0 41.5 48.5 47.0

A 2 59.0 54.5 45.5 53.0

Marginal 55.0 48.0 47.0 50.0

One approach presented in textbooks for doing ANOVA. is such

situations has been the use of unweighted means analysis. In this



apprcach each cell is given equal weight when calculating the

marginal means and thus the sums of squares for main effects. In

this case the marginal means in the example show are correct. The

"n" used in calculating the sums of squares for each main effect

and the interaction then is the harmonic mean of the cell

frequencies. (Kennedy & Bush, 1985; Keppel, 1991; Keppel & Zedeck,

1989; Scheffe, 1959).

When we assume that all three null hypotheses are correct, the

implication is that the grand mean, 50 in our example, can be

substituted for all means in the table and that all variation from

these means is random error. When the null hypotheses of equal

means is rejected only for variable A, the implication is that all

means in the first row have the same value, 47 in the example, the

means in the second row all have the same value of 53, and the

means in the marginal row are all the grand mean of 50. When the

null hypotheses of equal means is rejected only for variable B, the

implication is that all means in the first column have the same

value, 55 in the example, the means in the second column have the

same mean of 48, the means in the third row all have the same mean

of 47, and the means in the marginal column are all the grand mean

of 50. Rejection of the null h otheses for both main effect of A

and B (but not interaction) implies that the information from the

grand mean and all marginal means is sufficient to explain

variation in the data. In that case the implication is that the

cell means in the example would be estimated as being 52, 45, 44

for the first row and 58, 51, and 50 for the second row. This is

referred to as the additive model.

Interaction effects are defined as the difference between the

actual cell means and those from the additive model. Thus, in the

example, the interaction effects are -1.0, -3.5, and 4.5 for the
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first row and are +1.0, +3.5, and -4.5 for the second row. These

interaction effects are the unique combination effects of that

combination of the two independent variables on the dependent

variable. This is the non-additive model. As long as there are

equal numbers of observations contributing to each cell mean these

relationships hold and the estimation of sums of squares on the

dependent variable associated with the three sources are all

independent.

However, when the number of observations in the cells are not

all the same, the sources of variation discussed above become

correlated. The degree of effect on the analysis is determined by

the degree of inequality of the cell n's. "In non-orthogonal

designs, it is not possible to partition unambiguously the

proportion of variance accounted for, or the regression sum of

squares, into components attributable to each of the terms of the

design" (Pedhazur & Schmelkin, 1991, p.536) . Proponents of the

unweighted means analysis argue that it's use is appropriate when

the researcher can assume that in the population there should be

equal numbers in each cell. The inequality in this study only

occurs due to random factors which are not associated with any

variable under consideration. The estimates which are independent

can still be made. Otherwise a different approach should be

followed. Pedhazur, while advocating a different approach, claims

"all analytic solutions to the problem of unequal cell frequencies

are based on the assumption that subject attrition is random"

(Pedhazur & Schmelkin, 1991, p.536).

The difficulty created by unequal n's can be illustrated in

the example by using cell frequencies of 12, 10, and 8 for the

ficst row and 5, 10, and 16 for the second row. When cell means
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are weighted by the cell n's, the marginal row means become 47.17

and 50.58, which clearly are not centered around the original grand

mean of 50 (assuming equal cell n's). The column marginal means

are also changed, becoming 53.35, 48.00, and 46.50, with the new

grand mean of 48.90. The interaction effects are still the

variation in the cell means not explained by the grand mean and

marginal means, but this is no longer easily estimated. Thus, what

precisely are the hypotheses being tested when the n's are unequal

(Halpin, Carwile, & Halpin, 1991)?

Those authors most clearly e.xplaining the alternatives for

analyzing designs with unequal n's do so by emphasizing comparisons

of models via the use of sums of squared errors for competing

models also tend to use regression methodology to explicate the

various models for non-orthogonal designs. (Bogartz 1994; Kirk,

1982; Maxwell & Delaney, 1990; Winer, Brown & Michels, 1991, and

Woodward, Bonett, & Brecht, 1990) . Several of their points will be

made in the remainder of this paper via example. Others even

suggest the use of exploratory data analysis to further understand

the findings from ANOVA (Hoaglin, Mosteller, & Tukey, 1985 and

1991), although their approach is not illustrated here.

Table 1 shows the design layout for the examples used in the

remainder of this paper. The same cell means are continued to be

used in the five cases of various patterns of cell frequencies.

For each case, the required number of scores were generated within

each cell to produce the desired cell means and a mean square error

of nearly 100.00. This table also shows the weighted marginal means

associated with these n's. Case 1 uses equal frequencies of 10 per

cell. Notice that the more unequal the cell n's the greater the

impact on the weighted marginal means.

The data for each case was analyzed via SPSS using the ANOVA
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procedure using in sequence the options for hierarchical,

experimental, and unique. The same data was analyzed via SAS using

the options for type I, type II, type III, and type IV. In all

cases SAS type I and SPSS hierarchical produced the same results.

SAS type II and SPSS experimental produced the same results. SAS

type III, SAS type IV and SPSS unique

Table 2 presents the results for

situation. The different options all

Table 3 presents the results for Case

situation.

produced the same results.

Case 1, the equal n's

produced the same results.

2, the proportional n's

Here the SAS type I and type II and SPSS experimental

and hierarchical options produced the same results. The SAS type

III and IV and SPSS unique solutions were equivalent and were

different from the other analyses for this case only for source A.

Table 4 presents the results for Case 3, an unequal n's

situation. In this situation SAS type I and SPSS hierarchical

options produced the same results. SAS type II and SPSS

experimental options produced thr same results, which for this case

differed from SAS type I only with respect to source A. SAS type

III and SPSS unique options produced the same results which agree

with the other analyses only for the interaction effects. In this

case the interaction is not significant even though the cell means

are the same as the other cases.

Table 5 presents the results for Case 4, an unequal n's

situation. In this situation SAS type I and SPSS hierarchical

options produced the same results. SAS type II and SPSS

experimental options produced the same results, which for this case

differed from SAS type I only with respect to source A. SAS type

III and SPSS unique options produced the same results which agree

with the other analyses only for the interaction. In this case

also the interaction is not significant. In fact, the interaction
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mean square is the same for Case 4 as it was in Case 3.

Table 6 presents the results for Case 5, an unequal n's

situation. In this situation SAS type I and SPSS hierarchical

options produced the same results. SAS type II and SPSS

experimental options produced the same results, which for this case

differed from SAS type I only with respect to source A. Source A

was not significant for Type I but was for Type II. SAS type III

and SPSS unique options produced the same results which agree with

the other analyses only for the interaction.

Why do these different options produce different solutions?

The answer is in the approaches for dealing with the lack of

independence. Table 7 shows the coded vectors which could be used

to analyze these data via regression analyses (which were done, but

are not shown in tables in this paper). Typically one type of

coding would be used. For factorial ANOVA effect coding or

orthogonal coding are preferred over dummy coding. EsFentially

each row in a coding matrix is repeated for each observation within

a cell. When orthogonal codes are used with equal n's the

correlations among the vectors are all zero as shown in Table 8 for

Case 1. For Case 2 (proportional n's) the codes for main effect A

correlate zero with those for main effect B; however there are some

small correlations between the main effect codes and the

interaction codes. This pattern of correlations is why SAS type I

and type I solutions were the same and are different from SAS type

III and IV.

For Case 3, Case 4, and Case 5 there are correlations among

all of the vectors. The patterns of correlations lead to the

various solutions shown above. Notice that for Case 3 and Case 4

the degree of relationship is the same for each corresponding pair

of vectors but the signs of several correlations have changed.



This was caused by simply alternating the pattezn of n's within the

rows between these cases. Also, this is why the ANOVA solution for

Case 3 and Case 4 via SPSS unique was the same. For Case 5 the

magnitude of correlation for the A and B1 of -.30 is the reason the

ANOVA results for the A variable were so different between the SAS

type I and type I solutions.

Conclusions

1. The various ANOVA options all lead to the same solution for

interaction.

2. For SAS type I and SPSS hierarchical options the solution for

the first main effect variable is the same as it that variable were

the only one in the model (i.e. the same as regression in which the

vectors for that source are entered first) . This sum of squares

and mean square would be the same as computed in a one factor

ANOVA.

3. For SAS type I and SPSS hierarchical and for SAS type II and

SPSS experimental options the sums of squares, means squares, and

F's are the same for the second factor. This solution can be

thought of as the sum of squares explained by both main effects

controlling for the sum of squares explained by the first factor

(i.e. SS main effects minus SS(A)) . For SAS type II and for SPSS

experimental options the sum of squares for the first factor can be

thought of as the sum of squares explained by both main effects

controlling for the sum of 3quares explained by the second factor

(i.e. SS main effects minus SS(B)).

4. SAS type III & IV and SPSS unique options extract sum of

squares for the first factor which is the same as if the unweighted

means analysis were done. Although several authors encourage this

approach under appropriate conditions, this does not seem

appropriate because the sums of squares for a main effect is
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computed after controlling for the other main effect and the

interaction. Given the definition of interaction above, it is not

logical to enter a main effect in a sequence following the

interaction. Although, if the interaction is significant, the

primary focus should be on the cell means, ignoring the marginal

means.

5. It appears that in most situations the SPSS experimental & SAS

Type II would be preferred. Primary interest in specific

hypotheses might justify the other approaches, but this author then

recommends comparison of such results with those from the

experimental approach.
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Table 1. Cell Frequencies and Means and Marginal Means

CASE
Cells 1 2 3 4 5

A B Mean n n n n n

1 1 51.0 10 8 8 12 12
1 2 41.5 10 10 10 10 10
1 3 48.5 10 10 10 8 8

2 1 59.0 10 8 12 10 5

2 2 54.5 10 10 10 10 10
2 3 45.5 10 10 8 10 16

Weighted Marginal Means

Al 47.0 46.7 46.7 47.2 47.2
A2 53.0 52.6 53.9 52.6 50.6

B, 55.0 55.0 55.8 54.2 53.3

B2 48.0 48.0 48.0 48.0 48.0
33 47.0 47.0 47.2 46.8 46.5

Grand Mean 50.0 49.6 50.4 49.8 48.9



Table 2. ANOVA Results, Case 1

Equal Cell Freauencies: 10, 10, 10, 10, 10, 10

Source Mean Sq F Pr>F
A 540.00 5.40 0.024
B 380.00 3.80 0.029
A*B 335.00 3.35 0.043
Error 100.00

Saale results for SAS (all 4 types) and SPSS (3 options)

Table 3. ANOVA Results, Case 2

Cell Frequencies: 8, 10, 10, 8, 10, 10

SAS Type I & Type II and SPSS Experimental and Hierarchical
Source Mean Sq F Pr>F
A 480.29 4.80 0.033
B 326.43 3.26 0.047
A*B 332.86 3.33 0.044
Error 100.04

SAS Type III & IV and SPSS Unique
Source Mean Sq F Pr>F
A 498.46 4.98 0.030
B 326.43 3.26 0.047
A*B 332.86 3.33 0.044
Error 100.04



Table 4. ANOVA Results, Case 3

Cell Frequencies: 8, 10, 10, 12, 10, 8

SAS Type I and SPSS Hierarchical
Source Mean Sq F Pr>F
A 747.81 7.48 0.009
B 354.10 3.54 0.036
A*B 311.36 3.11 0.053
Error 100.03

SAS Type II and SPSS Experimental
Source Mean Sq F Pr>F
A 569.49 5.69 0.021
El 354.10 3.54 0.036
A*B 311.36 3.11 0.053
Error 100.03

SAS Type III & IV and SPSS Unique
Sour-e Mean Sq F Pr>F
A 511.49 5.11 0.028
B 359.94 3.60 0.034
A*B 311.35 3.11 0.053
Error 100.03

Table 5. ANOVA Results, Case 4

Cell Frequencies: 12, 10, 8, 8, 10, 10

SAS Type I and SPSS Hierarchical
Source Mean Scr F Pr>F
A 423.06 4.23 0.045

378.40 3.78 0.029
A*B 311.36 3.11 0.053
Error 100.03

SAS Type II and SPSS Experimental
Source Mean Sq F Pr>F
A 569.49 5.69 0.021
B 378.40 3.78 0.029
A*B 311.36 3.11 0.053
Error 100.03

SAS Type III & IV and SPSS Unique
Source Mean Sq F Pr>F
A 511.58 5.11 0.028
B 359.94 360 0.034
A*B 311.35 3.11 0.053
Error 100.03
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Table 6. ANOVA Results, Case 5

Cell Frequencies: 12, 10, 8, 5, 10, 16

SAS Type I and SPSS Hierarchical
Source Mean Sq F Pr>F
A 177.69 1.78 0.188
B 372.07 3.72 0.030
A*B 344.28 3.44 0.039
Error 100.05

SAS Type II and SPSS Experimental
Source Mean Sq F Pr>F
A 430.31 4.30 0.042
B 372.0 3.72 0.030
A*B 344.29 3.44 0.039
Error 100.05

SAS Type III & IV and SPSS Unique
Source Mean Sq F Pr>F
A 482.98 4.83 0.032
B 302.40 3.02 0.056
A*B 344.29 3.44 0.039
Error 100.05



Table

A

7.

B

Coded Vectors

X

for doing

Dummy Codes

ANOVA via Regression

B2 AB, AB2A B,

1 1 51.0 0 1 0 0 0

1 2 41.5 0 0 1 0 0

1 3 48.5 0 0 0 0 0

2 1 59.0 1 1 0 1 0

2 2 54.5 1 0 1 0 1

2 3 45.5 1 0 0 0 0

Effect Codes
A A B1 B2 AB1 AB2

1 1 51.0 -1 1 0 -1 0

1 2 41.5 -1 0 1 0 -1
1 3 48.5 -1 -1 -1 1 1

2 1 59.0 1 1 0 1 0

2 2 54.5 1 0 1 0 1

2 3 45.5 1 -1 -1 -1 -1

Orthogonal
A B X A B, B2 AB1 AB2

1 1 51.0 -1 1 1 -:1 -1

1 2 41.5 -a 0 -2 0 3

1 3 48.5 -I -1 1 1 -1

2 1 59.0 1 1 1 1 1

2 2 54.5 1 0 -2 0 -2
? 3 45.5 1 -1 1 -1 1



Table

Case

A
B,

82
AXB1
AXB2

Case

A
Bl
B2
AxB1
AxB2

Case

A
B,

B2
AxB,
AxB2

Case

A
B,

B2
AxB,
AxB2

Case

A
13,

37
Ax13,

AxB,

8. Correlations Among Orthogonal Coded Vectors

1. Equal N's: 10, 10, 10, 10, 10, 10

A B1 B2 AxB1 AxB2
1.00
.00 1.00
.00 .00 1.00
.00 .00 .00 1.00
.00 .00 .00 .00 1.00

2. Proportional N's: 8, 10, 10, 8, 10, 10

A B1 B2 AXB2
1.00
.00 1.00
.00 -.06 1.00

-.09 .00 .00 1.00
-.05 .00 .00 -.06 1.00

3. Unequal N's: 8, 10, 10, 12, 10, 8

A B1 B2 AXB1 AXB2
1.00
.13 1.00
.03 .03 1.00
.04 .05 .09 1.00

-.03 .09 .02 .03 1.00

4. Unequal N's: 12, 10, 8, 8, 10, 10

A B, B2 AxB, AxB2
1.00
-.13 1.00
-.03 .03 1.00
.04 -.05 -.09 1.00

-.03 -.09 -.02 .03 1.00

5 Unequal N's: 12, 10, 8, 8, 10, 10

A B, B2 AxB, Ax132

1.00
-.30 1.00
.01 -.10 1.00

-.14 -.02 -.22 1.00
.01 -.21 -.01 -.10 1.00


