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An investigation into a problem-solving strategy for indermite
integration and its effect on test scores of

General Calculus students

Linda G. Ka Ilam, M.S., and Michael Ka llam, Ph.D.
Fort Hays State University, Hays, KS

INTRODUCTION

In recent years, representatives from
business and education have expressed
concern for the lack of problem-solving
abilities among students. This presumed
lack of a mathematics-based skill on the part
of students at all levels of educational
instruction is relatively easy to prove by
simply glancing at the headlines and
editorial pages contained within the popular
press. Government agencies as well have
noted the decline in national test scores for
the past 20 years (National Commission on
Excellence in Education, 1983).

In response to this and other similar
education-based problems, the National
Council of Teachers of Mathematics pub-
lished its Curriculum and Evaluation
Standards for School Mathematics (1989).
Among the many topics contained within the
mathematics-based curriculum, problem-
solving is listed as one of the key elements
needing emphasis and change.

A Rationale for the Study
Problem-solving in mathematics

incorporates abstract thinking skills, number
logic sldlls, and a nearly endless list of other
factors. Generally, these skills may be
divided into technical skills, i.e. , the
mechanics of multiplication, drill-and-
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practice tasks, etc. and theoretical skills,
i.e., the higher order thought processes
involved in not only solving a problem, but
understanding why the problem is solved.

One problem-solving task required in
university-level mathematics courses is
integration. Schoenfeld (1978) stated that
indefinite integration, a specific concept in
a typical university-level calculus course,
seems to cause students a great deal more
difficulty than warranted by the topic.
Integration, sometimes represented as the
calculation of the area contained under a
curve, is based on technical skills rather
than theoretical knowledge, with the
expectation that students should be able to
calculate results when given ample instruc-
tion and practice. Test results show
otherwise.

A Review of Previous Studies
Could test scores be improved if

stndents were presented with a specific
strategy for choosing a particular technique
to solve indefinite integration problems?
Previous research does not clearly define a
specific outcome using general and/or
specific problem-solving strategies. Schoen-
feld's (1978) study with calculus students
suggests that an instructor's presentation of
a specific strategy can have a positive
impact on test scores when assessment is



conducted to determine whether a student
has "learned" that strategy. There appear to
be no previous studies dealing specifically
with integration strategies in general
calculus courses. Other research studies
have failed to provide defmitive results
regarding the value of teaching specific
strategies for mathematics instruction. This
study incorporates a specific strategy for
instruction within a general calculus course.

A Statement of the Research Problems
While reviewing the previous

research conducted upon this topic, several
questions arose that serve as the focus of
this study. They include:

1. Following presentation of a problem-
solving strategy to solve specific types of
integration problems, will mean test scores
differ signcantly between experimental and
control groups in a course of general
calculus?
2. Following presentation of a problem-
solving strategy to solve specific types of
integration problems in a general calculus
course, will gender prove signcant when
mean test scores for students given the
experimental treatment are compared with
those in the control group?
3. Following presentation of a problem-
solving strategy to solve specific types of
integrafion problems in a general calculus
course, will there be a significant difference
in long-term retention mean test scores for
the control group when compared to the
experimental group?

Operational Definitions
The following terms are used

throughout this study and are defined as
follows:
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General Calculus course: A college-level
course of instruction for the purpose of
introducing the student to calculus and linear
algebra concepts, particularly useful to the
study of economics and business
administration with special emphasis on
working problems. For the purposes of this
study a general calculus course is any
regularly taught university-level course in
this subject. College Algebra is the only
prerequisite to enrollment.

Integration: Integration is the process of
finding the general antiderivative of a
function. Given a function f defmed on
some interval, if F is another function such
that F'(x)=f(x) for all x in this interval, we
say that is an antiderivative of f. F(x) +c,
where c is an arbitrary constant, is the
general antiderivative of f (Schelin and
Bange, 1988). For the purposes of this
study, integration for the control group will
be the process of calculating an
antiderivative using the *properties of
integration." Integration for the experimen-
tal group will be the process of calculating
an antiderivative using the "properties of
integration" and the module, Integration.
Getting it all together (Schoenfeld, 1977).

Long-term retention: According to English
and English (1958), retention is the ability
of the organism to perform a certain learned
act after an interval in which the
performance has not taken place. According
to Gay (1992), long-term is any time
between 2 weeks and 2 months. For the
purposes of this stutly long-term retention
was the difference in the scores between
Posttest I and Posttest II.

Problem-solving strategy: English and
English (1958) stated that a problem-solving
strategy is a conscious or unconscious



scheme or method for determining the
answer to a problem selected from a number
of alternatives. For the purposes of this
study, problem-solving strategies are the
specific techniques listed in the module,
Integration: Getting it all together
(Schoenfeld, 1977).

Test scores. For the purposes of this study
a criterion-referenced assessment devised by
the researcher was used to determine
students' problem-solving ability for
integration problems. (See Appendices E
and F for Posttest I and Posttest
respectively.)

Summary
Problem-solving in mathematics has

been identified by business, government,
and education as a skill that has been found
to be deficient among many students. This
study chose to concentrate on one specific
problem-solving strategy, the choice of a
particular method for solving integration
problems. The question was whether
presentation of this strategy would have an
effect on test scores of students in a general
calculus course.

REVIEW OF RELATED LITERATURE

The literature on the topic of
problem-solving is generally divided into
one of two main areas of research: the
measurement of metacognitive behaviors
during problem-solving sessions and/or the
general and specific instructional strategies
used to teach problem-solving. The
research questions generated for this study
address only the second focus of the
research inquiries into this topic.

5

Instruction of problem-solving strategies

Polya (1945) was one of the first to
concentrate on problem-solving. His book,
How to solve it: A new aspect of
mathematical method , developed a strategy
for general problem-solving consisting of 4
steps:

1. Understand the problem.
2. Make a plan based on how various items are
connected.
3. Carry out the plan.
4. Look back at the completed solution. (Polya, 1945,

Polya's (1945) strategies are applicable to
almost all disciplines, but are particularly
useful in mathematics. Researchers who
have utilized his approach to problem-
solving strategies have produced varied
results.

Studies by Smith (1988) and Zitarelli
(1989) developed general problem-solving
courses with conflicting results. Smith's
(1988) 225 subjects were 8th-grade students
who showed improvement on the
Applications section of the Stanford
Diagnostic Mathematics Test after training
in problem-solving. Zitarelli's (1989) group
consisted of gifted 4th and 5th-grade
students who also received training in
problem-solving strategies. However his
findings, when the subjects were tested on
the Applications section of the Stanford
Diagnostic Mathematics Test, showed that
students did improve, but not significantly.

A study by Charles and Lester (1984)
involving 5th and 7th-grade students used
general problem-solving strategies developed
from Polya (1945). Results of their study
concluded that students who received the
process-oriented instructional program
scored significantly higher than the control
group on measures of ability to understand



the problem, plan solution strategies, and
get the correct results.

Starmack (1991) also used Polya's
(1945) work to develop problem-solving
strategies for a specific concept. Working
with gifted students at a community college,
he found that the effect of 21 hours of
formal instruction in the techniques of proof
improved students' abilities to solve complex
problems.

Jenkins (1988), using 338 middle
school students, compared their experience
with problems solved using the strategies
and direct instruction of strategies versus
experience with problems solved using
strategies and no direct instruction. He
concluded that neither strategy improved
problem-solving performance on the IPSP
Probiem Solving Test more than problem-
solving experiences alone.

Another important cornerstone in the
field of problem-solving are Schoenfeld's
studies (1977, 1978, 1985) which
investigated metacognitive behaviors and
instructional strategies in problem-solving.
His book, Mathematical problem solving
(1985), is a compilation of many of his
previous findings and has been the catalyst
for multiple studies he and others have
conducted in the use of problem-solving
strategies.

Schoenfeld (1978), using a particular
strategy for indefinite integration, was the
catalyst for this study. The subjects were 26
students in a second quarter calculus class.
Experimental and control groups were ran-
domly chosen with 11 students receiving
treatment (two students were absent when
materials were handed out). The materials
consisted of a workbook text, Integration:
Getting it all together (Schoenfeld, 1977),
and a solutions manual. No formal
inst iction on the strategy was provided.
Results showed that the experimental group
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outscored the control group on six of seven
questions, and by more than 10% on five of
them, with the expectation of better results
if the strategy was presented by the
instructor (Schoenfeld, 1978).

A natural extension of the use of
instructional strategies is the comparison of
male and female response to the use of such
aids. The research conducted into this
question shows equally conflicting evidence
that males and females require different
techniques to satisfactorily process
mathematical information.

Rosser (1989) examined test-taking
differences between the sexes on the
Scholastic Aptitude Test (SAT) in the area
of problem-solving styles. Her sam)le
consisted of 10 white and 10 black high
school juniors from two urban and two
suburban high -chools in the Seattle area.
The subjects were interviewed concerning
their solution processes, with the conclusion
that there were no major sex differences in
problem-solving styles. In other words,
males and females both use similar
techniques for problem-solving. However,
20 subjects would not be considered an
adequate sample by most research experts
(Gay, 1992).

A similar study by Caporrimo (1990)
investigated possible explanations for
gender-related differences in mathematical
abilities, i.e. , the fact that research repeated-
ly shows males more likely to excel in
mathematics than females. Analyses
examined the relationship of standardized
mathematics achievement scores, problem-
solving strategies, self-report scores, and
scores on Confidence in Learning
Mathematics, a survey. Subjects were 122
eighth-grade students, 70 females and 52
males. The analyses showed no gender
differences in any of the scores. A
comparison using the Confidence in



Learning Mathematics scores and average
scores on the problem-solving strategies
measure showed males exhibited a direct
relationship between problem-solving scores
and confidence scores, while females
showed an inverse relationship.

A study in high school geometry
supports the above finding. Battista (1990)
examined gender differences and the role of
spatial visualization in problem-solving.
Findings showed that, although males and
females were found to differ in spatial
visualization and performance, gender was
not significant in logical reasoning ability or
in the use of geometric problem-solving
strategies.

Engelhard (1990) looked at the
relationship between gender and
'performance on mathematical items varying
in cognitive complexity and content. The
sample consisted of 1,789 female and 1,951
male Thai students and 2,040 female and
1,884 male American students. Results
showed that gender affected performance in
both a:eas, though no ,:,)nclusions were
drawn regarding cultural vables.

A study conducted by Weiner and
Robinson (1983) attempted to determine
whether cognitive abilities and personality
factors were accurate predictors of
mathematical achievement. The subjects
were 139 gifted students, 77 males and 62
females. The only significant difference
found indicated that males have a higher
mathematical reasoning ability than females,
with this ability being the single-best
predictor of mathematical achievement for
males. Verbal achievement was shown to
be the best correlational predictor of
mathematical achievement for females.

Summary
The literature is divided. There is no
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clear-cut evidence that instruction in general
and/or specific problem-solving strategies
improves student performance in problem-
solving. Conflicting evidence regarding
gender and its effect on performance and
ability is also abundant.

This study investigates instructor
presentation of a specific problem-solving
strategy and whether it impacts upon student
performance in integration tasks. Gender
differences are also investigated. In
addition, the effect of problem-solving
strategy instruction upon long-term retention
for integration tasks is examined, a topic
that has not been investigated by previous
researchers.

METHODOLOGY

The research questions generated for
this study were:

I. Following presentation of a problem-
solving strategy to solve specc types of
integration problems, will mean test scores
differ significantly between experimental and
control groups in a course of general
calculus?
2. Following presentation of a problem-
solving strateo to solve specific types of
integration problems in a general calculus
course, will gender prove significant when
mean test scores for students given the
experimental treatment are compared with
those in the control group?
3. Following presentation of a problem-
solving strategy to solve specific types of
integration problems in a general calculus
course, will there be a significant difference
in long-term retention mean test scores for
the control group when compared to the
experimental group?



These questions were selected for
study due to differences found by previous
researchers in the effectiveness of problem-
solving strategies, and gender-based
differences. A dearth of research was found
on the effects of these problem-solving
strategies and the long-term retention of
material.

Subjects
The subjects utilized in this study

consisted of 110 students enrolled in six
sections of a General Calculus course taught
during the Fall, 1992, semester at Kansas
State University at Manhattan, Kansas. Due
to student attrition the final number of
subjects who completed all instruction and
testing was 95.

Based on a biographical data sheet
collected during the first week of the
semester it was determined that the typical
subject was 18-21 years of age, a major in
Business or a Business-related area, had
reached at least the Algebra II level in high
school, and had completed a College
Algebra course at the university level. The
age range of subjects was 18-30 years old.
Of the 95 subjects, 52 students received the
experimental treatment (26 males and 26
females), and 43 received the control
treatment (21 males and 22 females). The
majority of the students were residents of
Kansas.

An informed consent form was not
distributed. It was determined by the
Human Subjects Committee of Kansas State
University that this study was exempt under
Section 46.101(b)(ii) of the U.S. Code of
Federal Regulations 45CFR46. All subjects
were verbally informed that participation in
the study was not mandatory and would in
no way affect their grades.
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Instruments
The instruments used for

measurement were developed by the
researcher. These consisted of a pretest and
2 posttests. The pretest (see Appendix C)
and posttest I (see Appendix D) are
identical. The posttest II (see Appendix E)
is an equivalent form of the first two exams.

All measures include items to assess
the student's ability to select the simplest
technique for integrating a problem and
implement the technique in the calc_iation of
the integral. The instruments are criterion-
referenced, being drawn from similar
problems demonstrated within the classwork
and assignments of students enrolled in a
General Calculus course of study at Kansas
State University.

Internal consistency measures of
reliability were computed prior to using
either of the posttest assessment instruments.
Using the Kuder-Richardson formula (r) ,
split-half internal consistency, one measure
of reliability was computed using a
randomly drawn sample of 25 pretests.
Comparing odd answers to the even answers
a reliability coefficient of .96 was
determined after application of the
Spearman-Brown prophecy formula (Gay,
1992), which was felt to be of adequate
integrity for the purposes of this study.

Content and construct validity were
established by gaining consensus of senior
faculty members dra'.vn from the
Mathematics Department at Kansas State
University based on their experiences in this
field.

Research Design
The implied hypotheses generated for

this study suggest the use of a quasi-
experimental design, the nonequivalent



control-group design (Campbell and Stanley,
1963). This design utilizes a pretest-
multiple posttest format and will allow for
the use of an arbitrary number of self-
selected groups (classes). Sources of
potential error in this particular design
include possible regression toward the mean,
though this aspect of "learning" is being
assessed within the scope of this study by
using a second posttest as an indication of
exactly that aspect of learning. Gay (1992)
states that other possible problems associated
with this model include the interaction of
subjects between selection, which is not
considered to be of major importance within
this study since the nature of education is
often interactive, and variables such as the
maturation of the students, who are
generally of the same age, the history of the
subjects, which is largely unknown and
cannot be controlled for outside of the
general characteristics common to all
participants noted above, and the effects of
testing, which have been incorporated within
the parameters of this study as a variable of
interest.

Treatment
Six different General Calculus classes

scheduled during the Fall semester, 1992,
were selected to participate in this study.
Six different instructors with similar
teaching experience were used, none of
whom had previously taught this particular
course. From the four morning classes, two
classes with their assigned instructors were
randomly selected to receive the
experimental treatment with the remaining
two classes and their instructors selected to
receive the control treatment of standard
instruction. From the two afternoon classes,
one class was randomly chosen to receive
the experimental treatment, while the other
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afternoon class received the control
treatment of standard instruction. While it
was not known from any previous studies
whether the variable of "time of day for
instruction" might account for some of the
difference within between the groups, it was
decided to incorporate it within the
treatment assignment process.

The control group followed a
traditional approach to the teaching of
integration, based on the introduction of
basic rules, with drill-and-practice used as
the basis for choice of technique.
Instructors used standardized lesson plans
prepared by the researcher (see Appendix B)
with problem examples drawn from the
classroom textbook, Mathematical analysis
for business and economics, 2nd ed.
(Schelin and Bange, 1988), that was utilized
with all groups, both experimental and
control.

The experimental group used a
specific strategy approach based on the
module, Integration: Getting it all together
(Schoenfeld, 1977), together with the
classroom textbook, Mathematical analysis
for business and economics, 2nd ed.
(Schelin and Bange, 1988). The module
was specifically adapted by the researcher
using the original module, removing topics
not covered in the general calculus course,
and replacing problems with those more
appropriate for this particular course (see
Appendix G). Instructors used standardized
lesson plans prepared by the researcher (see
Appendix C) with the same examples from
the text as those used in the control group.

Data Collection Techniques
A pretest was administered by the

instructors at about the same time prior to
the introduction of the topic of integration in
the experimental and control group General



Calculus classes. Each instructor
administered the pretest in a like and similar
fashion. The pretest was done to eliminate
from the study any subjects having a high
level of pre-existing knowledge of the topic,
and to compensate for presumed differences
in the history of the subjects, a possible
source of bias according to Gay (1992).
Generally, a student is considered to be
functioning at an independent educational
level that is capable of internalizing
correctly a task, when he/she has an
accuracy level of 80% or higher (Walker
and Shea, 1991). No subjects scored at or
above an 80% level as determined by the
researcher.

Posttest I was given at the conclusion
of the sections on integration at about the
same time for both the experimental and
control group classes. The instructors
administered the posttest in a similar
fashion, with results scored by the
researcher.

Posttest II was administered four
weeks later by the instructors of the control
and experimental classes and was given to
assess long-term retention of the subject
matter. According to Gay (1992), long-term
effects are best assessed at any time between
two weeks and two months. Prior to two
weeks, the effects of the pretest may
influence scores. After two months, the
effects of maturation may be an influence.
One month (four weeks) was selected as an
appropriate time span to minimize both
effects.

Scoring on the tests was consistent
and was performed as follows for each
problem:

Part I
2 points for choosing the simplest technique
3 points for choosing a correct "u
substitution" where required
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1 point for the correct "dv" if using
integration by parts

Part II
1 point for a correct start on the problem
2 points for correct completion

Thus the total number of points per problem
was as follows:

#1 2 + 3 + 1 + 2 = 8
#2 2 + 3 + 1 + 2 = 8
#3 2 + 3 + 1 + 1 + 2 = 9
#4 2 + 3 + 1 + 2 = 8
#5 2 + 1 + 2 = 5

A range of 0 to 9 points was possible
depending on the problem, with a possible
maximum of 38 points per test.

Analysis of Data
The technique of multiple analysis of

variance (MANOVA) was used to test each
of the implied hypotheses suggested by the
research questions. The statistical
manipulation of the data was accomplished
through the use of SAS (SAS, 1985), a
statistical analysis program for mainframe
computers.

According to Gay (1992), MANOVA
is a useful statistical test of significance
when analyzing the differences between
groups. An adjusted mean was used to
compensate for unequal group size.
Interactions between all varables were
assessed to allow greater confidence in
generalization of findings. As the analysis
progressed, the variable "instructor" was
found to be confounding, forcing the
inclusion of a separate analysis of this
factor. A .05 alpha level (a) was set for
rejecting each of the implied null
h ypotheses.



Summary
Due to a lack of information from

previous studies, it was decided to test three
questions:

1. Following presentation of a problem-
solving strategy to solve specific types of
integration problems, will mean test scores
differ sigmficantly between experimental and
control groups in a course of general
calculus?
2. Following presentation of a problem-
solving strategy to solve specific types of
integration problems in a general calculus
course, will gender prove significant wizen
mean test scores for students given the
experimental treatment are compared with
those in the control group?
3. Following presentation of a problem-
solving strategy to solve specific types of
integration problems in a general calculus
course, will there be a sigmficant difference
in long-term retention mean test scores for
the control group when compared to the
experimental group?

The subjects were students in six
sections of a General Calculus course at
Kansas State University, with three sections
receiving traditional instruction (control),
and three sections receiving the experimenial
treatment of problem-solving instruction
with traditional instruction. Instruments
used to assess differences in the dependent
variables consisted of a pretest and two
posttests, all designed by the researcher.
The nonequivalent control-group design
(Campbell and Stanley, 1963) was used in
this study. The statistical test of
significance used was analysis of variance as
computed by $ AS (SAS, 1985).
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RESULTS

Introduction
The purpose of this study was to

investigate the effects of instruction in a
problem-solving strategy for integration
problems. Using university-level students
enrolled in different sections of a General
Calculus course, results of the data
concerning overall effectiveness,
effectiveness by gender, and retention over
time, the three research questions, are
included in this chapter. A .05 alpha (a)
level was used for rejecting each of the
implied null hypotheses.

Results
The first research question was:

Following presentation of a problem-solving
strategy to solve specific types of integration
problems, will mean test scores differ
significantly between experimental and
control groups in a course of general
calculus?

This question sought to compare test
scores from Posttest I for the experimental
and control groups, with an implied null
hypothesis stating that there would be no
statistically significant difference between
mean test scores. The adjusted means were
9.4198 for the control group (treatment 1),
and 14.3676 for the experimental group
(treatment 2). (See Appendix G.) The
standard deviation was 6.2907, with
treatment proving significant at the .0003
alpha (a) level (see Appendix G). Thus the
null hypothesis is rejected, and, using the
adjusted mean for each group, the
conclusion may be drawn that the
presentation of the problem-solving strategy
for an integration task increased the mean



test scores significantly for the experimental
group.

The second research question was:

Following presentation of a problem-solving
strategy to solve specific types of integration
problems in a general calculus course, will
gender prove significant when mean test
scw.es for students given the experimental
treatment are compared with those in the
control group?

The null hypothesis states that mean
test scores for males and females will not
differ based on treatment. The means for
male test scores were 8.4762 for the control
group and 11.2308 for the experimental
group with a standard deviation of 4.8334
for the control group and a standard
deviation of 6.5624 for the experimental
group (see Appendix G). The means for
females were 10.8636 for the control group
and 17.8846 for the experimental group with
standard deviations of 6.0498 and 6.8896
respectively (see Appendix (3). The analysis
of variance proved gender significant at the
.0004 alpha level (see Appendix (3). The
implied null hypothesis associated with this
research question is thus rejected with the
assumption that the variable of gender
affected mean test scores between
experimental and control groups. Based on
mean scores for each gender, females
accounted for more of the significant
difference between groups than did males.

The third research question was:

Following presentation of a problem-solving
strategy to solve specific types of integration
problems in a general calculus course, will
there be a signcant difference in long-tertn
retention mean test scores for the control
group when compared to the experimental
group?
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The implied hypothesis assessed
long-term retention using a second posttest
administered four weeks after the first
posttest. The implied null hypothesis states
that there will be no statistically significant
difference between the long-term retention
rates for integration tasks between the
experimental and control groups. A
variable, difference, was defined as Posttest

minus Posttest II, with all analyses made
using this variable. The adjusted means
were 4.1588 for the control group and
2.1254 for the experimental group with a
standard deviation of 6.3373 (see Appendix
(3). Although means showed that the
control group scores declined more than the
experimental group, the difference between
the two was not enough to prove statistical
significance at the .05 level. Thus the null
hypothesis is not rejected, with the
conclusion that presentation of the problem-
solving strategy had no significant effect on
long-term retention for integration tasks.

Although not specifically listed as a
hypothesis, all tests run on Posttest I were
also performed on Posttest EL Comparison
of mean test scores for experimental versus
control groups (Hypothesis 1) was
significant at the .0002 alpha level (see
Appendix G). The variable of gender
(Hypothesis 2) appeared to be insignificant
at the .05 alpha level (see Appendix G), but
after post hoc analyses of the interactions
(see Appendix G) and removal of another
confounding variable, "time," gender proved
to be significant at the .0001 alpha level (see
Appendix G). Comparing male and female
means showed that females again accounted
for most of the significant difference
between groups (see Appendix (3).

Interactions between all variables
were assessed on Posttest I, Posttest II, and
the difference between posttests. Posttest I
showed interactions between gender and



treatment significant at the .0001 alpha
level, which would be expected based on
previous analysis (see Appendix G).
Posttest 11 also showed interactions between
gender and treatment significant at the .0001
alpha level (see Appendix G). Posttest I
versus Posttest ll showed no statistical
significance for any of the interactions
tested.

Though not specifically presented as
a research question, an analysis of the
variable "instructor" was conducted in the
partitioning of the data. The assumption
made by the researcher was that there might
be some statistically significant differences
among the various interactions tested for
within the three research questions that
might be attributable to certain instructor
characteristics. This variable proved to be
confounding, and a separate analysis was
performed. Experimental and control
treatments were investigated for each of the
posttests in addition to the difference
between posttests. In each instance, the
choice of instructor was irrelevant -- there
was no statistical significance found based
on treatment or test (see Appendix G).

Summary
Each of the three research questions

was evaluated based on results from data
analysis. The first question investigated
mean test scores for experimental versus
control groups. A significant difference was
found with the conclusion that presentation
of the strategy positively affected test
scores. The second question examined
differences between males and females in
experimental and control groups. Females
in the experimental group tended to be more
positively affected by the experimental
treatment than were males. The third
question tested long-term retention through
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the calculation of differences between
Posttest I and Posttest LI for each group.
No significant difference was found at the
.05 alpha level.

All tests were also performed on
Posttest rl, with results nearly identical to
those from Posttest I. Interactions between
gender and treatment were significant;
choice of instructor was not significant at
the .05 alpha level.

SUMMARY AND CONCLUSIONS

Summary of the Study Findings
The following research questions

were generated as the focus of this study:

1. Following presentation of a problem-
solving strategy to solve specific types of
integration problems, will mean test scores
differ sigmficamly between experimental and
control groups in a course of general
calculus?
2. Following presentation of a problem-
solving strategy to solve specific types of
integration problems in a general cakulus
course, will gender prove sigmficant when
mean test scores for students given the
experimental treatment are compared with
those in the control group?
3. Following presentation of a problem-
solving strategy to solve specific types of
integration problems in a general calculus
course, will there be a significant difference
in long-term retention mean test scores for
the control group when compared to the
experimental group?

These questions were generated due,
in part, to the inconclusive and contradictory
findings on the part of those few researchers
who have investigated aspects of this topic.
Research question 3 was generated because



it seemed to be a logical progression of the
previous two questions and because no other
research could be found that had
investigated this area.

Using 110 students enrolled in six
different sections of a General Calculus
course at Kansas State University,
Manhattan, Kansas, the researcher randomly
assigned the classes to either control group
or experimental group status. The control
group received traditional instruction in
integration tasks. The experimental group
received the same traditional instruction
along with a specific problem-solving strate-
gy approach based on Integration: Getting it
all together (Schoenfeld, 1977), and specif-
ically adapted for the general calculus class
by the researcher. The instructors for the
six classes received instructions and
followed standardized lesson plans. Both
the control and the experimental groups took
a pretest to determine pre-existing
knowledge levels of the subjects for the task
of integration. After the presentation of the
instructional unit the subjects were
administered Posttest I. Four weeks later
the subjects were administered Posttest H.

Analyses of the posttests of the 95
subjects who remained at the conclusion of
the research using multiple analysis of
variance as the statistical test of significance
showed that students presented with a
specific strategy for integration tended to
have higher mean test scores than those not
exposed to the strategy approach. Test
scores were extremely low, possibly due to
time constraints, and the fact that students
were not informed of the impending exam.
In addition, it was found that gender was
significant in a comparison between the
experimental and control groups. Specifi-
cally, it was found that females benefitted
more from the experimental treatment than
did male students. Tests also indicated that
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the presentation of the problem-solving
strategy did not affect long-term retention at
a statistically significant level.

Conclusions
Based on the results of this study, the

following conclusions may be made:

1. Instruction in a problem-solving strategy
for integration tasks benefitted those subjects
receiving this type of instruction when it
was paired with traditional instruction as
opposed to those subjects who received
traditional instruction only.
2. Females tended to benefit more than
males from instruction in problem-solving
strategies. Ths would tend to support the
ongoing research (Schwartz and Reisberg,
1991) that has cautiously stated that females,
due to an earlier onset of puberty and the
associated maturational differences within
the cerebral cortex, may benefit aore from
a language-based or left-brain approach to
mathematics instruction.
3. The findings of this study showed that
long-term retention of integration tasks was
no better among those who received
problem-solving strategy instruction with
traditional instruction than for those subjects
who received only traditional instruction.

Limitations of the study
There are potential limitations to this

study. Among the potential limitations are
the use of self-selection, i.e. , students
selected the class of General Calculus based
on factors such as personal schedule,
availability, etc., and while unavoidable,
complete randomization did not occur and is
a limiting factor in terms of the
generalizability of the results. While there
were no noticeable differences between the



classes, as a compensation the classes were
randomly assigned to either treatment or
control status. The pretest, analysis of
variance, and analysis of biographical data
reduced, but did not eliminate differences.

The pretest itself may be a limiting
factor in that it may be a sen6itizing
element, agahi reducing generalizability.
However, in an educational setting where a
standard form of assessment is the paper-
and-pencil test, it is expected that students,
the subjects used within this investigation,
will be less sensitive to the stimuli of a
pretest.

Maturation, mortality, and interaction
between groups may be additional threats to
the validity of the study, but not exceedingly
so. The subjects were adults and the effect
of maturation is minimized more among this
group according to Gay (1992). Mortality
was a factor within this study. The original
sample of 110 was reduced to 95 due to
attrition and subjects who were not available
for all testing sessions. The interaction
between groups, which could not be
controlled in a real-life situation, is also
unknown and a potential threat to the
validity of the study.

The selection of instructors may also
be a limitation. Although analyses showed
the choice of instructors to be irrelevant,
other factors not immediately available to
the researcher may impact the study, i.e.,
hidden biases.

The test instrument is another
possible limitation within this study. Having
been developed by the researchers, the tests
may contain a bias toward the desired
outcome. Content and construct validity
were established by expert opinion derived
from the consensus of the faculty at Kansas
State University only, possibly, but not
probably, compromising the overall validity
of the instrument.
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The most important limiting factor in
this study is the subjects. Any study dealing
with human behaviors is likely to be suspect
due to the very nature of human subjects.
Factors such as intelligence, study habits,
motivation, etc. were unknown factors in
this study and could have contributed to the
results.

Questions for future research
The results of this study support the

finding that instructor presentation of a
problem-solving strategy for integration
tasks does increase test scores of General
Calculus students. Additional research
questions that evolve from this finding
include the use of other problem-solving
strategies in other areas of mathematics. Do
problem-solving strategies facilitate learning
in geometry or matrix analyses? Do
problem-solving strategies benefit complex
mathematics more than simple mathematics,
or is it beneficial to all forms?

The issue of gender differences is
significant in this study and definitely
warrants further investigation. Are there
actual differences between males and
females in the way that mathematical
concepts are best learned? Are there actual
differences between males and females in the
conceptualization of mathematics? Attempts
could also be made to measure attitudes
metacognitive behaviors in this area. Are
problem-solving strategies more useful that
other pedagogical methods of instruction?
Additional research is advised so that we as
educators might become aware of the most
successful methods for student instruction.

C
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INSTRUCTIONS FOR CONTROL GROUP INSTRUCTORS

Give Pretest Exam before starting Section 6.1 in Mathematical Analysis for Business and
Economics (Schein and Bange, 1988) - students are allowed 15 minutes, but most will know
nothing about integration so it will not take them long. On Part I, ask, if they specify
substitution or integration by parts, that they also indicate what substitutions they will make.

In general, all examples need to be covered.
Posttest Exam I will be handed out later - it will be administered following completion

of Section 7.2 in the text. histtest Exam II will also be handed out later it will be
administered approximately one to two weeks before the end of the semester.

All exams will be graded by the researcher. If you wish to use one of the Posttest exams
as a quiz, the scoring system could be adapted for such use.
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SECTION 6.1 ANTIDERIVATIVE (CONTROL GROUP)

Objectives:

The student should be able to:
1. Give the definition of and notation for the antiderivative.
2. Calculate antiderivatives using the "Basic Rules of huegration.
3. Calculate antiderivatives dealing with sums and simple rational functions.
4. Solve an application problem involving integrals.

Lesson Plan

Def. 6.1 Let f be a function defined on some interval. If F is another function such that

F'(x) = f(x)

for all x in this interval, we say that F is an antiderivative of f.
If F is an antiderivative of f, than F + c, where c is a constant, is also an antiderivative

of f. It is also true that any antiderivative G of f can be written as G(x) = F(x) + c. We call
F(x) + c the general antiderivative of f.

If F is a differentiable function, then the differential of F(x) + c is

that is,

Then

dF = F'(x) dx.

Introduce the symbol f (integral sign), which represents the inverse of the differential,

dF = F(x) + c.

ff(x) dx = F(x) + C.

So ff(x) dx notes all antiderivatives of function f (provided f has an antiderivative).
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Basic Rules of Integration

1. f kdx = kx + c, for any constant k.

1 +12.f x" dx + c, for n* -1.
n+1

3.fx-Idx = f 1 dx = x + c.

4. f exdr =ex +c

5. f kf(x)dx = k f f(x)dx, for constant k.

6. f [f(x) + g(x)]dx = f j(x) dx + f g(x) dr.

Examples

2
1 -2 +1

5EX.1 (n0.5) rd. CIX X + C

2 + 1
5

7
5 3= x + c
7

21



3

Ex.2 (no.6) f z dz 4
Z + C

3-- +1
4
1

=4z1se + c

Ex.3 (no.9) f (5x2 3x + 4)dx = f 5x2 dx f 3xdx + f 4dx

= AX3 3 X2 + 4x + c
3 2

Ex.4 (no.11) f (x+3)(2x-1)dx = f (2x2 +5x -3) dx

= f2x2dx + f 5xdx f 3 dx

= 2 x3 + 5 x2 - 3x + c
3 2

Ex.5 (no.22) f x+5 dx = f + dx
x x

f 1dx f 5 dx

=x+ 51nx +c

3 1

Ex.6 (n0.24) f czx =fx-idx f 3x dx

+ 6x + c
5

MC(q) = 18,000 -50q .06q 2,0 sq s150
Ex.7 (no.32) fixed costs $850 (this is the constant),

what is total cost?

22



C(q) = f MC(q)dq = f (18000 -50q -.06q2)dq

= f 18000 dq f (50q)dq f (.06q2) dq

= 18000q 25q2 .02q3 + 850
C(30) = 18000(30) 25 (30)2 - .02 (30)3 + 850

= $517,810.
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SECTION 6.2 - THE DEFINITE INTEGRAL (CONTROL GROUP)

Objectives:

The student should be able to:
1. Recognize a definite integral using the definition.
2. Calculate a definite integral using formula 6.6 and theorem 6.1.
3. Solve an application problem with a definite integral.

Lesson Plan:

Def. 6.2 - If f is a continuous function and F is an antiderivative of f, then the change in F,
when the independent variable changes from x=a to x=b. is denoted by

f f(X) dx
a

and called the definite integral of f from a to b. The values a and b are called limits of
integration. Let F(x)t denote this difference so that

f fix) = F(x)11 = F(b) F(a)
aa

24
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Examples

E.1 (no.3) f (2x -1) dx = f(2x) dr f(1) dx
2 2 2

10 10

= 2 f (x) dr f(1)dr
2 2

10 10

= 2[-- x1+1] [x°+1]
1+1 2 0+1 2

10 10

2[±X2] [x]
2 2 2

= 2[50 -2] [10 -2]
= 96 8
= 88

3 3 3 3

Ex.2 (no.9) f(y2 -6y +4) dy = f(y2)cly 6 f (y)dy + 4 f(1)dy

2 13 3 3
=

1 1
+1 + 4[Y]

2+1 0 1+1 o o

1 3 2
3 3

= [-y
3

] 4[Y]
3 o 2 o o

= 9 27 + 12
= -6

25
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Theorem 6,1 Properties of the Definite Integral:

a

1. ffix)dX = 0
a

a b

2. ffix)dx = - fftx)dx
b a

b c b

3. fftx)dx = fflx)dx + ff(x)dx , for any c with a< c < b.
a a C

Examples

5 5

Ex.3 (no.15) f1 dx = f x-2dx [ 1 x -2145

l x2 1 -2+1 1

5

= [-x-1]
1

15
= [---1xi

.
H= [-IA

4_
5

26
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isx2,:+3 d 1 3x = (5++--)dx
-.12 X2 -2 X X2

= sfdx + fx-Idx + 3 fx-2dx

=5[x] +[1nx I +3[x-h]

= 5(-1+2) + (1n1 -,1n2) + 3(1-1)
2

= 5 + (0 .693) + 1.5
= 5.807

25 25 1

x2+33:-.1 ax f(x2+3x-1)(x 2)dx
1

25 3 1 _1

=f(xi 3X2 2)dx
1

25 3 25 1 25 1

= fx dx + 3 fx-2 dx
1 1 1

51g 3,4c 125
2 2=x 1 1 + 3[x 1-[2x2]
5 1 3 1

= 1250 2 + 250 2 10 + 2
5

= 1489.6

Ex.6 (no.33) MC = 300 1.44 - 64, 50sqs 120
2.1oo

f 300 -1.4q = [300q .7q 2 4q 2
9

90
0

= 30000 7000 4000 27000 + 5670 + 3415.26
= $ 1085.26



SECTION 6.3 AREA (CONTROL GROUP)

Objectives.

The student should be able to:
1. Find the area of a bounded, single function region using the definite integral.
2. Find the area of a region bounded by two functions using the definite integral.

Lesson Plan

Theorem 6.2 - If f is positive and continuous on [a,b], then the area of the region bounded by
y = f(x), x=a, x=b, and the x-axis is given by the definite integral

f f(X) dX

a

28



Exampleq

Ex.1 (no.3) f(x) = 1 +31X; a = 1, b =4

4 34
f( +3Vi)dx = [x +2x 2]

1

= [4 +2(8)] [1 +2(1)]
= 20 - 3
= 17

Ex.2 (no.5) f(x) = x2 4x + 5; a =1, b =4

b
=

-( -4)
2a 2(1)

ft2) = 4 -8 +5 = 1
vertex = (2,1)

4
4

f (x2 -4x + 5)dx = [x3 -2x2 + 5x]
3

1

= [(1)(4)3 -(2)(4)2+5(4)] - [(1)(1)3 -2(1)2 +5(1)]
3 3

64
= -32 +20 --1 +2 -5

3 3
= 6

2 4

Theorem 6.3 - If f and g are continuous functions on [a,b], and if f(x) g(x) for all x in [a,b],
then the area of the region bounded above by y = f(x), below by y = g(x), and between x=a
and x=b is given by the definite integral

f[f(x)g(x)]dx.
a

29
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Examples

Ex.3 (no.11) f(x) = x2- x +5; g(x) = = 1, b =4
f(1) = 5, g(1) =1, so f(1)g(1)
f(4) =17 , g(4) =2, so f(4) g(4)

4 34
fRX2 -X + 5) (A] = 3 _ ix2 + 5x ±x
1

3 2 3

64
=

3 3 3 2 3
143

6

Ex.4 (no.21) f(x) = 1,g(x) = 5 1
x

4 4
Set f(x) = g(x) for intersection points

1 = 5 x_
x 4 4

4 = 5x x2
x2 5x + 4 = 0
(x -4)(x-1) 0
x = 4 x = 1

4 4

-[.5-x-lx2-1nx]4 4 x 4 8 1

= [(1)(4)-(1)(4)2-1n4] [(1)(1) --(1)(1)2-1n 1]
4 8 4 8

= 5 2 In4 + 1 + 0
4 8

15
= ln4

8

30

:; 1



SECTION 6.4 - THE METHOD OF SUBSTITUTION (CONTROL GROUP)

Objectives:

The student should be able to:

1. Calculate an indefinite integral using the method of substitution.
2. Calculate a definite integral using the method of substitution.

Lesson Plan

Definition Making a substitution in the integrand to aid in finding an antiderivative is called
the method of substitution.

Examples

Ex.1 (no.3) f (2.x+5)3dx

letu =2x+5,du =2dx

f(2x+5)3dx = f(2x4-5)3(-1)(2)dx

= fu 3 du
2

= + c
2 4
1_(2x+5)4
8
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Ex.2 (no.8) fs3(4 -3s6)ds

ktu = -3s6, du = -18s5ds

f s5(4 -3s6)ds = f 4(-18)s5(4-3s6)ds

=-Lfudu

=
1 1

+ C
18 2

=
1

(4-3s6)2 + C
36

Ex.3 (no.27) f 6rdr
r2+4

let!, = r2 + 4,du = 2r dr
r62rdr 1 )(6r)dr

r +4 r2+4

f(-1---)(3)(460 drr2+4 3

= 3f-1 du

=31nu +C
= 31n r2+4 + C

Ex.4 (no .36) f 1-4 dx

kt u = lnx, du =1 dx

x x

3

= -2u + C
3

3

= anxii + C
3

32





Objectives:

SECTION 6.5 APPLICATIONS OF THE DEFINITE INTEGRAL
(CONTROL GROUP)

The student should be able to:
1. Find increased cost given marginal cost.
2. Find increased revenue given marginal revenue.
3. Find the equilibrium point, producer's surplus, and consumer's surplus given supply and
demand functions.
4. Find the mean value of a function over a given interval.

Lesson Plan

Increased Cost - area of a region bounded by marginal cost function.

IfE(q)

c10

(Figure 6.9)
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Example

Ex.1 (no.4) MC = 10 -.08q +.006q2, Osqs150
increase q ,100 - 120,find increased cost.

120 120

.1. MC(q) = f (10 -.08q +.006q2)dq
wo 100

120

= [ioq .04q 2 +.00243 ]
100

= 4080 - 2600
= $1480

Consumer's Surplus - area of region below demand function but above horizontal line p=p0,
representing money not spent by consumers who would have been willing to pay a price higher
than Po for the product.

go

(Figure 6.10)

lkoducer's Surplus - area of region above supply curve and below horizontal line p=po,

35



q.

CS = f -poldq

where po Ls selling price, (lois demand level,

p =.1(q) is demand function.

representing money that suppliers would not have received if demand had been less than go.

p producer's
surplus

supply

revenue

go

PS = f [po-flq)]dq

where p =f(q) is supply function,
qo is demand level.

(Figure 6.11)
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Ex.2 (no .7) Supply. p =2.8 + .5q .002q 2

Demand: p = 25 .36q +.0024 2
sqs90

Find equilibrium point (where supply = demand),
Consumer Is Surplus, Producer's Surplus.

2.8 + .5q - .002q 2 = 25 -.36q + .002q 2
0 .004q2 .86q +22.2

-( -.86) ±1/( -.86)2-4(.004)(22.2)
q

(2)(004)
.86± /7396 -.3552

.008
.86± .62

.008
q = 185, q = 30, but Osqs90 so q = 30.

for q = 30,
p(30) = 2.8 + .5(30) .002(30)2 = 16 = p

30

PS = f [16 -(2.8 +.5q -.002q2)] dq
0

30

f (13.2 -.5q+.002q2)dq

002 3°= [13.2q-.25q2+ q3]
3 o

= (189 -0)
= $ 189

30

Cs = f [(25 -.36q +.002q2) -161 dq
0

30

= f (.00242-36(1+9)dg
0

30

[ .002q 3-.18q 2 +9q]
3

= $ 126

37



Ex.4 (no.27) V = 50,000e -.1%0 ts10

MV 1 f 50,000e-itdt
10-0

1= --[(50,000)(e
10 -.3 o
1

10

= [-166666.7 e
10

=
1(-8297.85 +166666:r

10
= $ 15836.89
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Mean Value - the height of a rectangle whose area equals that of the region bounded above by
y = f(x) between x=a and x=b.

mean
value
of f
cn

,b]

Examples

Ex.3 (no.17) g(x) = x3 on [-1,1]

MV
1 fx3dx

-(-1)
1

lfx3dx
2

1[1= x4
2 4 -1

1 1 1
= -2-(71 -7-1)

= o

f
b-a a

y=--f (x)

38
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SECTION 7.1 - RIEMANN SUMS AND NUMERICAL INTEGRATION
(CONTROL GROUP)

Objectives:

The student should be able to:
1. Evaluate the Riemann sum for a function over some interval given values of N.
2. Estimate the value of a given definite integral using the midpoint rule.
3. Use the trapezoidal rule to estimate the value of a given integral.
4. Use the trapezoidal rule to estimate a definite integral given a set of tabular data.

Lesson Plan

Fundamental Theorem of Calculus

f fix) = F(b) F(a)
a

when f is continuous on [a,b] and F is an antiderivative of f.

Riemann Sum approximates the area under a curve by partitioning the interval into
subintervals, replacing the graph of the function with an approximating horizontal segment over
each subinterval, and summing the areas of the resulting rectangles. To construct N subdivisions
of equal width Ax given

b-a
f f(x) dr, take Ax

N
.

a

For the height of each rectangle use f(c) for some c in the subinterval. The area of the rectangle
is then f(c) Ax. If c1 is selected in the first subinterval, c,2 in the second, and so on, the sum
of these areas

S = j(C1)AX f(c2)Ax + + f(CN)INX

is an approximation for ff(x)dx. See figure 7.2.
a

40
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Exampleq

Ex.1 (no.3) f(x) = 3x2 + 1 on [0,41; N =5,
c1= 0, c2 =1, c3 =2, c4 =3, cs =3.8.

4

(estimate f (3x 2 +1)dx).

5
= f(0) = 1; Ac2) = ft1) = 4

Ac3) =1(2) = 13;f(c4) =f(3) = 28
f(cs) =1(3.8) = 44.3

S = (1)(.8) + (4)(.8) + (13)(.8) + (28)(.8) + (44.3)(.8)
= 72.24

4 4

P3X2+1)CIX = [X3 +X]

0 0

= [(4)3 +4] 0
= 68
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Ex.2 (no.7) f(x) on [1,4]; N =3,
x2+1

c1 = 1.1, c2 =2.5, c3 =3.6

4-1
Ax = 1

3
f(c1) = .4977; f(c2) = .3448;f(c3) = .2579

S = [.4977 +.3448 + .2579](1) = 1.1
4

x2+1

let u =x2 +1, du =2xdx
4 4_0( 2x
J -21 2 x2+1

4

= x2+1 ]
2

= 1[1n 17 1n2]
2

= 1 17

2 2

=
1

2

Midpoint Rule - specialized Riemann sum used to approximate definite integrals. Each ci is
selected as the midpoint of the subinterval.
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Example

3

Ex.3 (no.13) f dx,N =5

3-1 2

5 5
subintervals are

[1,1.4], [1.4,1.8],[1.8,2.2], [2.2,2
c1= 1.2, c2 = 1.6, c3 = 2.0, c4 = 2.

1
= -1 -1 1

1.2 1.6 2 2.4
= (2.7321)(.4)
= 1.0929

.6], [2.6,3.0]
4, c5 = 2.8

1

2.8

Trapezoidal Rule - approximates a definite integral using the sum of areas of trapezoids rather
than rectangles. (See figure 7.5.)

Use right endpoint values to form

SR = [AC1) + f(c2) + + ACN.4) + f(b)]Ax

Use left endpoint values to form

= [f(a) +f(c1) +f(c2) +

Then the Trapezoidal Rule is:

S
L

+ S
T

2
R

=
2x[f(a)+2(J(c1)+f(c2)+...+ficN_l))+flb)]

43
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Examples

2

Ex.4 (no.19) fir+?dx for N=5

AaX = - - = A

5 5
subintervalsare

[0,.4], [.4,.8], [.8,1.2], [1.2,1.6], [1.6,2.0]
t5 = .2(1 +2(1.03 +1.23 +1.65 +2.26) +3)

= 3.268

for N = 10, Ax = 24) 1 = .2
10 5

subintervals are
[0,.2], [.2,.4], [.4,.6], [.6,.8], [.8,1.0],

[1.0,1.2], [1.2,1.4], [1.4,1.6], [1.6,1.8], [1.8,2.0]
Tio = .1(1+2(1+1.03+1.1+1.23+1.4+1.7+1.9+2.3+2.6)+3)

= .1(1 +2(14.26) +3)
= 3.252

ico

Ex.5 (no.21) R(100) R(50) = fMR(q)dq
so

q = 10, N = 5
loo

f MR(q)dq = 10 [MR(50) + 2(MR(60) +MR(70) + MR(80) + MR(90)) + MR(100)]
2

= 5[20 +2(15 +12 +8 +4) +2]
= 5(20 +78 +2)
= 500



SECTION 7.2 - INTEGRATION TECHNIQUES (CONTROL GROUP)

Objectives:

The student will be able to:
1. Find an antiderivative using integration by parts.
2. Use Table 7.1 to find antiderivative.

Lesson Plan

Integration by parts - based on the product rule for derivatives.

fudv = uv f vdu

Use the above formula if it is possible to find a function v whose differential is dv and if fv du
is simpler than the original antiderivative.

Examples

Ex.1 (no.8) f Vilnxdx

letu=lnx,dv=1;cdx
3

then du =1dx,v-
3

f filnxdx =
3

=

3

3

3

3
1

f xi ch
3 3

3 3

= 2(-2)x +C
3 3 3

3 3

= +C
3 9
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Ex.2 (no.9) fx(2x+1)4dx

let u=x,dv=(2x+1)4dx

then du = dx,v = f (zx1)4dx- ('21)5(1)
5 2

fx(2x+1)4dx =x[(-1) (2x1)5] r(1(2,x+1)5) dx

2 5 J 10

=
1
-x(2x+1) 5

1
[

(2x+1)6 1()] + C
610 10 2

=
1x(2x+1)5 1 (2x+1)6 + c

12010

Introduce List of Antiderivatives - Table 7.1, p. 271.
It is usually necessary to make a substitution or a change of variable to put the given integrand
into one of the forms found in the table.

Examples

Ex.3 (no.17) f x246'3dx

use no. 4, f bucks = 1-1," + C
lnb

let u =6 -x3, du = -3x2dx

f x2463 dx = f 46'3(-1)(-3x2dx)
3

= --1 f 4"du
3

1 1 _ 3
= (-i)[---- (4 x + C
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Ex.4 (no.18) f dx f dx25x 2-9 (5x)2 -(3)2

use no.14, f u-adu 1
In +

u`-az 2a u+a
let u = 5x, du = 5cbc, a = 3

r dx r (1)( 5dx

25x2-9 5 (5x)2- (3)2
1 1= 1-- I 5x-3n I + C
5 2(3) 5x+3
1

i, n
5x-3

= +
30 5x +3

2

Ex.5 (no.27) fxe2dx

use no.5, fuedu =ueu-eu+C

let u =
1x, du = 1dx
2 2

2 x 2 x

fxe2dx = f (2)(!x)e -5(2)(-1 dr)
2 2

= f 4u e "du

= 4f uedu
=4[ue"-el

x x2
= 4[Ae2 -e 2-1

2
2 2 1 1

2= 4[( e
2

(- 1
e

2
-e

= 4(2. e
2

1

= 6e 2
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APPENDIX B

LFSSON PLANS (EXPERIMENTAL GROUP)
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INSTRUCTIONS FOR EXPERIMENTAL GROUP INSTRUCTORS

Give Pretest Exam before starting Section 6.1 in Mathematical Analysis for Business and
Economics (Schelin and Bange, 1988) - students are allowed 15 minutes but most will know
nothing about integration so it will not take them long. On Part I, ask that they indicate what
substitutions they will make when using substitution or integration by parts.

In general, all examples need to be covered. Exercises are included at the end of
Chapters 1 and 2 in the module. They may be assigned as homework or used as quiz material.
Students should read the module and understand the examples. Refer to Outline for Integration
included in the module:

Section 6.1 covers I-A-1 and 2.
Section 6.4 covers I-B-1 and 2, II-A.
Section 7.2 covers II-B.
The flowchart included in the module should be used with all examples, as appropriate.

I want students to have the flowchart in their head as they work problems and tests.
Posttest Exam I will be handed 'out later - it will be administered following completion

of Section 7.2 in the text. Posttest Exam II will alsc be handed out later it will be
administered approximately one to two weeks before the end of the semester.

All exams will be graded by the researcher. If you wish to use one of the Posttest exams
as a quiz, the scoring system could be adapted for such use.
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SECTION 6.1 ANTIDERIVATIVE (EXPERTMENTAL GROUP)

Objectives:

The student should be able to:
1. Give the notation for and the definition of the antiderivative.
2. Calculate antiderivatives using the "Basic Rules of Integration. "
3. Solve an application problem involving integrals.
4. Recognize that an integral can be simplified by breaking it up into sums, and then solving
it.
5. Recognize that an integral in the form of a rational function can sometimes be simplified by
division first.

Lesson Plan

Def. 6 1 Let f be a function defined on some interval. If F is another function such that

F'(x) = f(x)

for all x in this interval, we say that F is an antiderivative of f.
If F is an antiderivative of f, than F + c, where c is a constant, is also an antiderivative

of f. It is also true that any antiderivative G of f can be written as G(x) = F(x) + c. We call
F(x) + c the general antiderivative of f.

If F is a differentiable function, then the differential of F(x) + c is

that is,

Then

dF = F'(x) dx.

Introduce the symbol f (integral sign), which represents the inverse of the differential,

dF = F(x) + C.

ff(x) dx = F(x) + c.

So f f(x) dx denotes all antiderivatives of function f (provided f has an antiderivative).

SO



Basic Rules of Integration

1.f kdx = kx + c, for any constant k.

2.fx dx + c, for n* -1.
n+1

3.f dx = f = In x + c.

4. f exeir = ex + c.

5. f kf(x)dx = k f f(x)dx, for constant k.

6. f jf(x) + g(x)]dx = f f(x)dx + f g(x) dx.

Introduce Chapter 1 in the module, "Simplib,."

General Rule - Always check for easy alternatives before beginning any complicated cr time-
consuming operations.
First, check for "easy algebraic manipulations."
1. Break integrals into sums.
2. Reduce rational functions to proper fractions by division.
A rational function is a proper fraction if the degree of the numerator is less than the degree of
the denominator.

Examples

2 2-+1
EX.1 (no.5) f x5 dx x + c

2 +1
5

75 3= x + c
7
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3 3

Ex.2 (no.6) fz dz z + c

4
1

= 4z-4- + c

Ex.3 (no .9) f (5x 2 3X + 4) dx
Simplify? Yes

Rational Fct? No
Break into sums.

f (5x2 -3x +4)dx =f5x2dx -faxdx + f4dx

=
5x3

3 x2 + 4x + c
3 2

Ex.4 (no.11) f (x +3)(2x -1) dr
Simplify by multiplying together, then split into sums.

f (x+3)(2x-1)dx = f (2x2+5x -3) dx

= f2x2dx f5xdr f 3 dx

=
2 x3 +AX2 -3X +C
3 2

Ex.5 (no.22) f .LL5-dx

Simplify? Yes
Rational Fct? No

Break into sums, simplify.
x+5 r 5)dx

x x x

=f1dx+fAdr
=x+5Inx +c
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2.3
Ex.6 (no.24) f dx

1,6
Simplify? Yes

Rational Fct? Yes
Is degree of numerator s degree of denominator? No

Improper fraction so divide (simplify).
Break into sums.

x2 +3dx r (x2 3

j
= f [x2 ;I 3x-2]dx

3 _1

f[x 2 + 3x 2] dx
3 _1

= fx2dX + f 3x 2 dx
5 1

2= x 2 + 6x 2 + c
5

Ex.7 (no.32) MC(q) = 18,000 - 50q - .06q2, 0 sq s150
fixed costs $850 (this is the constant), what is total cost?

Simplify? Yes
Rational Fct? No
Break into sums.

C(q) = f MC(q)dq = f (18000 -50q -.06q 2)dg

= f 18000 dq f (50q) dq f (.06q2) dq
= 18000q 25q2 .02q3 + 850

C(30) = 18000 (30) 25 (30)2 .02 (30)3 + 850
= $517,810.



SECTION 6.2 - THE DEFINITE INTEGRAL (E)TERIMENTAL GROUP)

Objectives:

The student should be able to:
1. Recognize a definite integral using the definition
2. Calculate a definite integral using formula 6.6 and theorem 6.1.
3. Solve an application problem with a definite integral.

Lesson Plan

Def. 6.2 - If f is a continuous function and F is an antiderivative of f, then the change in F,
when the independent variable changes from x =a to x =b. is denoted by

ff(x) dx
a

and called the definite integral of f from a to b. The values a and b are called limits of
integration.
Let F(x)}b denote this difference so that

ff(x)dx = F(x)] = F(b) F(a)
aa
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Examples

Ex.1 (no.3) f (2x pdx
2

Simplify? Yes
Rational Fct? No
Break into sums.

f (2x-1) dx = f (2x) dx - f (1) dx
2 2 2

10 10

=2 f (x)dx f (1) dx
2 2

10 10

=2[---x11]- [ x0+1]
1+1 2 0+1 2

10 10

=2[x2] [x]
2 2 2

= 2[50 -2] [10 -2]
= 96 8
= 88

3

Ex.2 (no.9) f(y 2 6y + 4) dy

Simplify? Yes
Rational Fct? No
Break into sums.

3 3 3 3

f(y2-6y +4)61y = f(y2)4y 6 f(y)dy + 4 f(1)dy

1 3 3 3[-V2.1] y 1+1+ 4[y]
2+1 0 1+1 o o

3 2
3 3

=
1. 3

4[Y]
3 0 2 o o

1 1 1 1
= [(-- 3)(2 (-

3
)(0)] 6[(-2)(9) (-

2
)(0)] 4- 4[3 -0]

= 9 27 + 12
= -6
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Theorem 6.1 Properties of the Definite Integral:

a

1. ffix)CIX = 0
a

4 b

2. ff(x)dx = -ff(x)dx
b a

b e b

3. fAx)dx = f fix) dx + f j(x) dx ,for any c with a< c < b.
4 a e

Examples

5

Ex.3 (no.15) f.1. dx
1 x2

Solution immediate if rewrite
as negative exponent.

s 5f1dx f x-2 dx _ [ 1 x-2.1
1 x2 -2+1 it

5

= [-x 1
1

5
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Ex.4 (no.26)
5x2+x+3dx

-2 X 2

Simplify? Yes
Rational Fct? Yes

Proper Fraction? Yes
Divide, Break into sums.

-1 -1
r 5x2x3 r (51+1)dx

..1-2

X
2

-2i x x2

-1 -1 -1

=5 fdx fx-ldx 3 fx -2dx
-2 -2 -2

1 -1 -1

=5[x] +[Inx I +3[-x-1]
2 -2 -2

= 5(-1+2) + (lnl -1n2) + 3(1--1)
2

= 5 + (0 .693) + 1.5
= 5.807



2$

Ex.5 (no.30)
x2+3x-1 dx

Simplify? Yes
Rational Fct? Yes

Proper fraction? Yes
Reduce, go A.
Simplify? Yes

Rational Fct? No
Break into sums.

25 25 1i2 --x f(x2+3x-1)(x 2)cix

25 3 1 _1

= f (x2 3x2 -x 2)dx

25 3 25 1 25 1

= fx CIX + 3 f dr fx 2 dx
1 1 1

2
525 125

2

5 1 3 1 1

2= ()(3125) -(-2)(1) + (2)(125)
5 5

-2(1) -2(5) +2(1)

= 1250 2 + 250 2 10 + 2
5

= 1489.6

loo

Ex.6 (no.33) f (300-1.4g-614 dq
90

Simplify? Yes
Rational Fct? No
Break into sums.

MC = 300 I.4q 64, 50sqs120
100 1100f 300 -1.4q -61qdq = [300q .7q 2 -4q 2

9
90

0

= 30000 7000 4000 27000 + 5670 + 3415.26
= $1085.26
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SECTION 6.3 AREA (EXPERIMENTAL GROUP)

Objectives:
The student should be able to:
1. Find the area of a bounded, single function region using the definite integral.
2. Find the area of a region bounded by two ianctions using the definite integral.

Lesson Plan

Theorem 6.2 - If f is positive and continuous on [a.,b], then the area of the region bounded by
y = f(x), x=a, x=b, and the x-axis is given by the definite integral

f f(X) dX

a
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Examples

Ex.1 (no.3) f(x) = 1 + 3 a =1, b =4
Simplify? Yes

Rational Fct? No
Break into sums.

4
_34

+3i.i)dX = [x + 2x 2]
1

1

= [4 +2(8)] - [1 +2(1)]
= 20 3
= 17

Ex.2 (no.5) f(x) = x2 4x + 5; a = 1, b =4
Simp46? Yes

Rational Fct? No
Break into sums.

b -(-4)
2

24 2(1)
f(2) = 4 -8 +5 = 1

vertex = (2,1)

4 4
f (x2 4x + 5)41x = [1x3 -2x2 +5x]

3
1

= [(1)(4)3 (2)(4)2+5(4)] 1(1)W -2(1)2+5(1)]
3 3

64 1
= -32 +20 --+2 -5

3 3

= 6
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Theorem 6.3 - If f and g are continuous functions on [a,N, and if f(x) g(x) for all x in [a,b],
then the area of the region bounded above by y = f(x), below by y = g(x), and between x=a
and x=b is given by the definite integral

f [f(x) - g(x)] dx.

61

ID
)



Examplea

E.3 (no.11) f(x) = x2 - x +5;g(x)= (;a =1,b =4
Simphft? Yes

Rational Fct? No
Break into sums.

f(1) =5, g(1) =1, so f(1)4,(1)
f(4) = 17 , g(4) =2, so f(4)g(4)

3 2 3

64
= - 8 + 20 - 16 1 1

3 3 3 2
143

6

Ex.4 (no.21) f(x) =1,g(x) = 5 --1x
4 4

Set fix) = g(x) for intersection points
1 5 x
x 4 4

4 = 5x x2
x2 5x + 4 =
(x-4)(x-1) 0
x = 4 x = 1

62
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4

1] dX
4 4 x

1

Simphfy? Yes
Rational Fct? No
Break into sums.

4

f[-1X-1]
CIX =[-5-X-1X2 -111X4 4 x 4 8 1

5 5 1
= [(-

4
)(4)-(1 -8)(4)2-1114] [(-AXI) -(10(1)2 -In 1]

= 5 2 -1n4 5 + + 0
4 8

15
= -1n4

8
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SECTION 6.4 - THE METHOD OF SUBSTITUTION
(EXPERLMENTAL GROUP)

Objectives:

The student should be able to:
1. Recognize an integral with a function of a function and, substituting for the "inside" function,
solve a definite or indefinite integral.
2. Recognize when to substitute for a denominator or complicated function and, using the
method of substitution, solve a definite or indefinite integral.

Lesson Plan

Definition - Making a substitution in the integrand to aid in finding an antiderivative is called
the method of substitution.

Guidelines to use in looking for substitutions:
1. Does the integrand contain a function of a function?
2. Does the integrand contain a complicated function, particularly in the denominator of a
fraction?
Note: In general, a substitution u = f(x) will only help if you can find the term du = f'(x) dx
somewhere in the integral.

Obvious substitutions:
1. 'Inside" functions.
2. "Complicated" terms and denominators.
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Examples

Ex.1 (no.3) f (2x+5)3 dx
Simplify? Yes

Rational Fct? No
Break into sums? No

Does integral contain fct. offct.? Yes
Inside fct so

letu 2x +5, du = 2 dx

f(2x+5)3dx =f(2x+5)3(-1)(2)dx

=1.fu3chs
2

= 1(-1 u + C
2 4
1 4

8

Ex.2 (no.8) f s5 (4 -3s6)ds
Simplify? Yes

Rational Fct? No
Break into sums? No

Fct. of Fct.? Yes
Inside function so

let u = 4 -3s6, du = -18s5c/s

f s5(4 -3s6)ds = f (--4)(-18)s5 (4 -3s6)ds

=
18

= (1 u 2) + C
18 2

=
1

(4 -3s + C
36
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Ex.4 (no.36) f dx

Simplify? Yes
Rational Fct? Yes

Degreenum. degree denom.? Yes
Break into sums? No

Fct. of Fct.? Yes
Inside function so

1
let u = lnx, du

Ex.5 (
1n4(3

no .37) dX
3-x
Simplify? Yes

Rational Fct? Yes
Degree num. s degree denom.? Yes

Break into sums? No
Fct. of Fct.? Yes

Inside function so
1let u = ln (3-x), du dx

3-x
r 1n4(3 dx f u4 du

3-x

= 1 u 5
+ C

5

=
5(3 -x) + C

5
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Ex.6 (no.40) f ex -e-x dx
e x+e

Simplify? Yes
Rational Fct.? Yes

Degree num. s degree denom.? Yes
Break into sums? No

Fct. of Fct.? No
Complicatedfct. for denom. so

letu=e' + e-x,du =ex -e'dx
r -e-x d x = r du

ex+e-x is

=11-4h4

=ln u + C
=lnex+e-x +C

2

Ex.7 (no.49) dx
o 8x+1

Simplify? No
Classify? Yec

Rational Fct? Yes

Form so
ax+b

let u =8x +1, du = 8dx
2 2

f fc 1 X 1)(8)thc
8x+1 8x+1 8

1 r
u

8
2

-Iiin8x+1]
8

= [1n17 -hal]
8

= 1
8
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A basic rational function is a proper function of the form

ax+b' ax2+bxc

The first two are easy to integrate (let u = ax+b); the third form will not be discussed in this
course.
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SECTION 6.5 - APPLICATIONS OF THE DEFINITE INMGRAL
(EXPERIMENTAL GROUP)

Obj ectives:

The student should be able to:
1. Find increased cost given marginal cost.
2. Find increased revenue given marginal revenue.
3. Find the equilibrium point, producer's surplus, and consumer's surplus given supply and
demand functions.
4. Find the mean value of a function over a given interval.

Lesson Plan

Increased Cost area of a region bounded by marginal cost function.

(Figure 6.9)
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Example

Ex. (no.4) MC = 10 .08q + .006q2, ()sq. s150
increase q ,100 - 120,find increased cost.

Simplify? yes
Rational Fct? No
Break into sums.

120 120

MC(q) = f (10-.084.006q2)4
ioo

120

= -.04/2 +.0024 3
100

= 4080 2600
= $1480

Consumer's Surplus - area of region below demand function but above horizontal line p=p0,
representing money not spent by consumers who would have been willing to pay a price higher
than Po for the product.

clo

(Figure 6.10)

go

CS = f [f(q) po]dq

where po is selling price, qo is demand level,
p =fiq) is demand function.

70
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Producer's Surplus - area of region above supply curve and below horizontal line p=po,
representing money that suppliers would not have received if demand had been less than go.

p producer ' s
surplus

supply

revenue

4--")

PS = f rpofmck

where p =f(q) is supply function,
eio is demand level.

Ex piples
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Consumer Is Surplus, Producer's Surplus.
2.8 +.5q .00242 = 25 .36q + .002q2

0 = .004q2 .86q +22.2

-( -.86) ±V( -.86)2-4(.004)(22.2)
q

(2)(.004)

.86±V.7396 -.3552
.008

.86±.62
.008

q = 185, q = 30, but 0 sqs90 so q = 30.
for q = 30,

p(30) = 2.8 + .5(30) .002(30)2 = 16 = p
30

PS = f [16 -(2.8 +.5q-.002q2)] dq

Simplify? Yes
Rational Fct? No
Break into sums.

30

PS = f [16 -(2.8+.5q-.002q2)]dq
0
30

= f (13.2 -.5q +.002q2)dq

30

= [13.24 -.25q 2 +
.002q

3
]

3 o

= (189 -0)
= $189

30

CS = f [(25 -.36q+.002q 2) -16] dq

Simplify? Yes
Rational Fct? No
Break into sums.

30

CS = f [(25 -.36q+.002q2) -16] dq
0
30

= f (.002.72-36q+9)4
0

30

[.002q 3 .18q 2 +9q]
3

= $ 126
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Mean Value - the height of a rectangle whose area equals that of the region bounded above by
y = f(x) between x=a and x =b.

mean
value
of f
on
[a ,

Examples

Ex.3 (no.17) g(x) = x3 on [-LI]
Solution immediate.

MV
1 fx 3 dx

1 -(-1)

= If x3dx
2_1

= 1[1.0
2 4 -1

=
1 1 1

= o

y=f (x)

MV--!--fflx)dx ,

b-a
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Ex.4 (no.27) V = 50,000e Osts10
Solution immediate.

to

MV- 1
50,000e".mdt

10-00

=
1 [(50,000)(e_ii)(-1

)
1
]°

10 -.3 o
1

10

= [-1666663 e '31
10

=
1 (-8297.85 +166666.7)

10
= $15836.89
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SECTION 7.1 RIEMANN SUMS AND NUMERICAL INTEGRATION
(EXPERIMENTAL GROUP)

Objectives:

The student should be able to:
1. Evaluate the Riemann sum for a function over some interval given values of N.
2. Estimate the value of a given definite integral using the midpoint rule.
3. Use the trapezoidal rule to estimate the value of a given integral.
4. Use the trapezoidal rule to estimate a definite integral given a set of tabular data.

Lesson Plan

Fundamental Theorem of Calculus

ff(x)dx = F(b) F(a)
a

when f is continuous on [a,t:0] and F is an antiderivative of f.

Riemann Sum - approximates the area under a curve by partitioning the interval into
subintervals, replacing the graph of the function with an approximating horizontal segment over
each subinterval, and summing the areas of the resulting rectangles. To construct N subdivisions
of equal width A.

given

ff(x)dx, take tix
a

For the height of each rectangle use f(c) for some c in the subinterval. The area of the rectangle
is then f(c) Ax. If c1 is selected in the first subinterval, c2 in the second, and so on, the sum
of these areas

75



S = j(c1)Ax + f(c2)tix + +flcdAX

is an approximation for ff(x)dx. See figure 7.2.
a

Examples

Ex.1 (no.3) f(x) = 3x2 + 1 on [0,4]; N =5,
c1= 0, c2 = 1, c3 = 2, c4 =3, c5 =3.8.

4

(estimate f (3x 2 +1)dx).
0

5
f(c1) =AO) = 1;f(c2) =f(1) =4

f(c3) =fl2) = 13;f(c4) =f(3) = 28
itc5) =1(3.8) =44.3

S = (1)(.8) +(4)(.8) +(13)(.8) +(28)(.8) + (44.3)(8)
= 72.24

4

P3x2+1)dx

Simplify? Yes
Rational Fct? No
Break into sums.

4 4

f(3x2+1)dx = [x3 + x]

= [(4)3+4] 0
= 68

Midpoint Rule - specialized Riemann sum used to approximate definite integrals. Each ci is
selected as the midpoint of the subinterval.
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Ex.2 (no.7) f(x) x on [1,4]; N =3,
x2 +1

c =1 ,1 c =2 5 c =3 6
1 - 2 ' 3

A 4-1 ,
Lix = .I.

3
f(c 1) = .4977; f(c 2) = .3448;f(c3) = .2579

S = [.4977 +.3448 +.2579](1) = 1.1
4f X

1 x2+1
Simplift? Yes

Rational Fct? Yes
Proper fraction? Yes
Break into sums? No

Fct of a Fct? Yes
Complicated fct for denom. so

fet u = x2 + 1, du =2xdx
4 4

f
x r 1( 2x

I x2+1 i 2 x2+1

2-I u

= Illn u]
2

1
4

_nnx2+1]
2 1

1= [1n17 ln2]
2

=
1 ln 17

2 2

= 11n8.5
2
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Example

3

Ex.3 (no.13) f dx,N =5
1

A 3-1 2 A
Lax =

5 5
subiraervals are

[1,1.4], [1.4,1.8],[1.8,2.2], [2.2,2.6], [2.6,3.0]
ci = 1.2, c2 = 1.6, c3 = 2.0, c4 = 2.4, c5 = 2.8

1 1 1 1 1

1.2 1.6 2 2.4 2.8
= (2.7321)(.4)
= 1.0929

Trapezoidal Rule - approximates a definite integral using the sum of areas of trapezoids rather
than rectangles (see figure 7.5). Use right endpoint values to form

SR= UKC1) + AC2) + fiCN_1) + fib)]Ax

Use left endpoint values to form

SL= Ka) +ftc1) +fic2) + +f(cN_l)]Ax.

Then the Trapezoidal Rule is:

T
L+ S

2
A x

2
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Examples

2

Ex.4 (no.19) f 4--7-7-x3 dx for N =5
o

5 5
subintervals are

[0,.4], [.4,.8], [.8,1.21, [1.2,1.6], [1.6,2.0]
ts .---; .2(1 +2(1.03 +1.23 +1.65 +2.26) +3)

= 3.268

for N = 10, Ax = 2-° 1 = .2
10 5

subintervalsare
[0,.2],[.2,.4],[.4,.6],[.6,.8],[.8,1.0],

[1.0,1.2],[1.2,1.4],[1.4,1.6],[1.6,1.8], [1.8,2.0]
T10 = .1(1+2(1+1.03+1.1+1.23+1.4 +1.7+1.9 +2.3+2.6)+3)

= .1(1 +2(14.26) +3)
= 3.252

loo

Ex.5 (no.21) R(100) R(50) = f MR(q)dq
so

Aq =10,N =5
Imo

f MR(q)dq = 122[MR(50)+2(MR(60) + MR(70) + MR(80) + MR(90)) +MR(100)]
2

so

= 5[20 +2(15 +12 +8 +4) +2]
= 5(20 +78 +2)
= 500



SECTION 7.2 - INTEGRATION TECHNIQUES
(EXPERIMENTAL GROUP)

Objectives:

The student will be able to:
1. Recognize that a product suggests use of integration by parts.
2. Find an antiderivative using integration by parts.
3. Use Table 7.1 to find antiderivative.

Lesson Plan

Integration by parts based on the product rule for derivatives.

fu dv = uv f vdu

This is useful if the integrand is a product, especially a product of dissimilar functions. We
separate the integral into two parts and call one "u" and the other "dv." The goal is to choose
"u" and "dv" such that the term fv du is easier to solve than the original problem.
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Examples

Ex.1 (no.8) f Vilnxdx

letu =lnx, dv =
3

then du = dx, v = f dx = 2
3

3 3

I/jinx& _2_x 2 inx Ix 2x -1 dx
3 J3

3 1

= dx

3 3

Inx 3-(1)x + C
3 3 3

3 3

lnx 4x
+ C

3 9

Ex.2 (no.9) fx(2x + 1)44*

let u =x, dv =(2,t+1)4 dx

then du = dx, v = f (2x1)4 dx (2x+1)5( I)
5 2

fx(2x+1)4dx = xu 1) (2x+1)53
2 5

=
1

x(2x+1)5
10

=
1 x(2x+n5

10

f(-Lax+1)5)dx
10

1 (2x+1)6 1

10
[

6
(2)] + C

+1)6

120

Introduce List of Antiderivatives Table 7.1.
It is usually necessary to make a substitution or a change of variable to put the given integrand
into one of the forms found in the table.
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Examples

E.3 (n0.17) f x246-x5dx

use no. 4, f b"du = -1-b" C
lnb

let u -x3, du = -3x2dx

fx246-x3dx = f46-x3(-1)(-3x2ax)

=
3

(__13 11114(46-x3)] c

Ex.4 (no.18) f (Ix f
dx

25x2-9 (5x)2-(3)2
, u-a

use no.14, r du 1

u2-a 2 2a u+a
let u = 5x, dli = 5dx, a = 3
dx 5dx

25x2-9 5 (5x)2-(3)2
1 1 5x-3= [ ] + C
5 2(3) 5x +3

1 5x-3
=

30 in 5x+3
+ C

82





APPENDIX C

PRETEST
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INSTRUCTIONS FOR ADMINISTERING PRETEST

Please write on the board and read to your students the following instructions:

Time Limit: 15 minutes exactly
Part I: (Do this first). State the technique you will use. If substitution, indicate your

choice for u; if integration by parts, indicate choices for u and dv.
Part II: Evaluate the integral using the technique chosen. If you decide to use a different

technique, cross through the original and add the new one. DO NOT ERASE.
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NAME

PRETEST EXAM - INDEFINITE INTEGRATION

You will have 15 minutes to complete this test.

Part I:
State the technique you will use to solve each integral (substitution, integration by parts,

etc.). Once you have chosen a technique for each problem, go to Part H.

1.
3 dz

(2z-1)3

2. r in2(x +4) dx
x +4

3. f (X lnx

x

-e
-x

4. fe dx
ex+e-x

fx2+3

sir;

Part II: Evaluate each integral using the techniques chosen above. If, in evaluating the integral,
you decide to use a different technique, cross through the original and add the new technique.
DO NOT ERASE.

1.
3(2z-1)3

dz
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APPENDIX D

POSTTEST I
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INSTRUCTIONS FOR ADMINISTERING POSTTEST I

It is crucial to the success of my study that students understand and follow instructions
for this posttest. Explain that I am more interested in the technique chosen and substitutions
used than the actual computation or solution to .the problem. The majority of points will be
given in Part I, with Part II a secondary source. Do not advise students of the exam prior to
gng_ it.

Please write on the board and read to your students the following instructions:

Time Limit: 15 minutes exactly
Part I: (Do this first). State the technique you will use. If substitution, indicate your

choice for u; if integration by parts, indicate choices for u and dv.
Part II: Evaluate the integral using the technique chosen. If you decide to use a different

technique, cross through the original and add the new one. DO NOT ERASE.
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NAME

POSTTEST EXAM I - INDEFINITE INTEGRATION
You IA ill have 15 minutes to complete this test.
12agi: State the technique you will use to solve each integral (substitution, integration by parts,
etc.). Once you have chosen a technique for each problem, go to Part H.

1.
3 dz(2z-1)3

2. 1112(x+4)dx
x +4

3. f ri lnx dx

x -x
4. re -e dx

ex+e'

5.
fx2+3 dx

Part II: Evaluate each integral using the techniques chosen above. If, in evaluating the integral,
you decide to use a different technique, cross through the original and add the new technique.
DO NOT ERASE.

1. f 3 dz
(2z-1)3
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2.
A \

;I 't
+.4

rex-e-x dx

5.
f x2+3

eix

vI
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APPENDIX E

POSTTEST II
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INSTRUCTIONS FOR ADMINISTERING POSTTEST II

Again, it is crucial that students understand and follow instructions for this test. I am
more interested in the technique chosen and substitutions used than the actual computation or
solution to the problem. The majority of points will again by given in Part I, with Part It a
secondAry source.

Please give this posttest before you start your review. Do not advise students of the
exam prior to giving it. I want to measure long-term retention with no preparation.

Time Limit: 15 minutes exactly
Par.. I: Do this first. State the technique you will use. If substitution, indicate your

choice for ir, if integration by parts, indicate choices for u and dv.
Part EL Evaluate the integral using the technique chosen. If you decide to use a different

technique, cross through the original and add the new one. DO NOT ERASE.



NAME

POSTTEST EXAM II - INDEFINITE INTEGRATION

You will have 15 minutes to complete this test.

Pgal: State the technique you will use to solve eacu integral (substitution, integration by parts,
etc.). Once you have chosen a technique for each problem, go to Part

1. f 3 dr
(5 -x)2

2. r 1113(2x-1) dx
2x-1

3. fsii lnx dr

-x x
4.

e -e
dx

ex+ex

5.
13x3-2x

dx

Part H: Evaluate each integral using the technique chosen above. If, in evaluating the integral,
you decide to use a different technique, cross through the original and add the new technique.
DO NOT ERASE.

1. dx
(5 3-x)2
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APPENDIX F

INTEGRATION MODULE
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An adaptation of
Alan H. Schoenfeld's

INTEGRATION:
Getting It All Together

(Originally published in him. 1977. by UMAP, Newton, MA.)

Adapted by Linda Kallam
1992
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INTRODUCTION

This booklet provides students with a general procedure for solving problems in integration. Based on

observations of "experts' working on integrals, the procedure has three steps: SIMPLIFY, CLASSIFY, and

MODIFY.

In step 1, SIMPLIFY, we try to reduce a problem to one which can be solved by a formula or can be done

easily. If this fails to solve the problem we proceed to step 2, CLASSIFY. Here we use the form of the integrand

to decide which special technique, i.e., integration by parts, substitution, etc., to use on the problem. If we are

unable to CLASSIFY the integrand, go to step 3, MODIFY. There we try to manipulate the integrand into a more

familiar or manageable form. We always check for simple alternatives before beginning complicated calculations,

and start the process over with step 1 whenever we have succeeded in transforming the integral to something easier.
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OUTLINE FOR INTEGRATION

I. Simplify

A. Easy Algebraic Manipulations

1. Break into sums.

2. Reduce rational functions to proper fractions by division.

B. Obvious Substitutions

1. "Inside functions

2. "Nasty" or complicated terms and denominators.

II. Classify

A. Rational Functions - If denominator is (ax + b) or (ax + by', substitute u = ax + b.

B. Products - Use integration by parts.

III. Modify

A. Problem Similarities

B. Special Manipulations

C. Needs Analysis
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CHAPTER 1

SIMPLEFY !

There is one general rule that you should keep in mind whenever you are solving problems:

ALWAYS CHECK FOR EASY ALTERNATIVES BEFORE BEGINNING ANY

COMPLICATED OR TIME-CONSUMING OPERATIONS.

As the sample problems below illustrate, it is worth taking a few moments to look for a quick or easy

solution to a problem before jumping into a complicated procedure. This is especially true in integration, where

a timely observation can save tremendous amounts of work. The two types of SIMPLIFYing operations we will

discuss are summarized below.

Step /: SIMPLIFY

Easy Algebraic
Manipulations

Obvious
Substitutions

EASY ALGEBRAIC MANIPULATIONS

Some algebraic manipulations are easy enough to use that it's worth considering them automatically before

going on to anything else. For example, we almost always break the integral of a sum into a sum of integrals and

then integrate term by term. Before doing this, however, we should look for other alternatives. An operation which

is more complicated but also worth considering is simplifying rational functions by long division.

We call a rational function (the quotient of two polynomials) a 'proper fraction" if the degree of the numerator

is less than the degree of the denominator. Proper fractions are usually easier to manipulate than others. In sum,
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we have:

EASY ALGEBRAIC MANIPULATIONS

(1) Break integrals into sums
(2) Reduce rational functions to

Proper Fractions by division.

SAMPLE PROBLEMS

This sample problem can be SEMPLIFIED by an easy algebraic manipulation. Try to solve it before you

read the solution, and then compare your method with the solution.

f x3+1dxx2

SOLUTION

The integrand in this problem is an "improper fraction," so we should perform a division. The division

gives us a quotient of (x) and a remainder of (11x2), so we obtain

f x3+1 ,

j ax j
2

If we break the integrand into sums, the above becomes

fxdx+f-1 dx = fxdx fx-2dx = lx2-1 c
x2 2 x

"OBVIOUS" SUBSTITUTIONS

Using substitution is one of the most powerful tools we have for SIMPLIFYing and solving integrals.

Always look for substitu-tions bzfore trying more complex procedures. There are two guidelines to use in looking
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for substitutions:

(1) Does the integrand contain a function of a function?

If it does, try a substitution with u as the *inside* function. Consider the integral

f x+ ln(x2 +3)dr.

The term In (x2 + 3) has x2 + 3 as an inside function. Try the substitution u = x2 + 3.

(2) Does the integrand contain a complicated or "nasty" function, particularly in the

denominator of a fraction?

If so, try a substitution with u as the 'nasty function. Consider

r
J 2 -

X 9

The denominator isn't particularly "nasty, " but it's worth trying the substitution u = x2 - 9. Then du = 2x dx, and

the integral is

r 1 rdu ___l_inu+C.linx2_9
2-1 x2-9 2-1 u 2 2

NOTE: If the problem were fx2 - 9 dx, the substitution u = x2 - 9 would not have helped. In general, a

substitution u = f(x) will only help if you can find the term du = f(x)dx somewhere in the integral. If you try

a substitution and it looks like you're getting involved in a complicated procedure, stop to consider other

alternatives. The procedures of chapter 1 are designed to help SIMPLIFY and solve an integral rapidly. You

should explore all simple alternatives before trying anything complicated. If need be, you can always return to a

complicated substitution later.
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OBVIOUS SUBSTITUTIONS

(1) "Inside' functions

(2) "Nagy' terms and denominators

SAMPLE PROBLEMS

x -xre + e
dx

J ex -e -x

2. One of the following two integrals is much easier to solve than the other. Decide which it is, and solve it.

(a) f x3 (1 + x4)5 dx (b) f (1 + x4)5 dx
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SOLUTIONS

rex +e'
J ex -e-x

We will work this problem using all the methods of this chapter, to illustrate how you would think about

this problem if you didn't know where it came from.

As a first step, look for algebraic simplifications. The numerator is a sum, so you might consider breaking

the integral up into

ex edx+I dz.
x -x ex -e-xe -e

This doesn't seem to help, so look for substitutions. You might be tempted to try the substitution u = ex at first,

since all the terms in the integral are expressed in terms of ex. But du = dx, which is not in the integral. For

that reason, there is no need to explore the substitution further now. If necessary, you can return to it later.

Finally, you might try a substitution for the denominator, u = (ex - e). This gives du = (ex + e)

dx, which does appear in the integral. From here on the problem is easy. We have

f 1 [(ex +e-x)dx] fl du -lnu +C-ln e +e C.
x -x

ex-e-x ex-e-x

2. One of the following two integrals is much easier to solve than the other. Decide which it is, and solve it.

BEST COPY AVAILABLE
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(a) fx3(1x4)5dx (b) f(1+x4)5dx

As always, start working on a problem by looking for algebraic simplifications. In both parts (a) and (b)

of this problem, you can multiply (1 + x4 ) by itself five times, and then integrate term by term. But, that seems

too complicated, so look for other alternatives.

Notice that (1 + x4 )5 appears in both parts of the prillem so the term (1 + x4) is an "inside" function.

Try u = 1 + x4 , then du = 4x3 dx. Since the term (x3 dx) appears in part (a), that integral will be easy to

solve. It becomes

fx3(1x4)5dx = I +x4)5(4x3dx) = u sdu

= (1.)(-Iu 6) c =
24

x4)6 + C.
4 6
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* * * WARNING * * *

The sample problems you've worked through in this chapter may have seemed veiy easy, because you were

on guard for simple solutions. The moral of this chapter is:

When you start working on a problem, always check for an easy algebraic
manipulation or obvious substitution. Only when you're sure the problem
cannot be S1MPL1F1EO should you try anything else.
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EXERCISES FOR CHAPTER 1

In each of the following exercises, one problem can be done easily. Use the techniques of easy algebraic

manipulations and obvious substitutions to determine which it is, and solve it.

1. (a)
r x+1

dx
x3+x2+1

(b) dx
x+1

2. (a) fln(e x)dx (b) fln(x)dx

3. (a) f 1dr (b) f 1 dr
(1+ ) s

4. (a) f (b) f e 5' 1
d.x

r x-2
5. (a) 1 dx (b) dx

x2-4x+3 x2-4x+3
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CHAPTER2

CLASSIFY !

As noted in the introduction, experts generally follow a 3-step procedure when solving integrals. The first

step consists of looking for simplifications or easy solutions to a problem. The second step, if necessary, consists

of choosing and applying the technique most likely to solve a problem.

This choice of technique is usually based on the FORM ot the integrand. The solution to a problem

follows routinely once the right technique has been chosen.

In this chapter we will CLASSIFY integrals into 2 basic categories, and discuss the techniques most often

effective in dealing with them. Our classification is summarized by the second box in the General Procedure:

Step 2: CLASSIFY

Rational
Functions

Products

Your goal in working through this section should be to classify integrands by form and recall the techniques

appropriate to them. If you systematically use the simplifications of Chapter 1 and the classification scheme of this

section, you should be able to solve most of the problems at the end of your text's chapter on integration.

RATIONAL FUNCTIONS

A rational function is the quotient of two polynomials. The procedure for integrating rational functions

is straightforward, although it may sometimes be long and involved. A large part of that procedure is purely

algebraic, and consists of "brealdng up" complicated rational functions into sums of simpler ones. We will begin

by examining the simple or "basic" rational functions, and then discuss how to break up the more complicated ones.
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BASIC RATIONAL FUNCTIONS

A Basic Rational Function is a "proper fraction" of the form

ax+b
rx+s

(ax+b)' ax2+144+c

Basic rational functions of the first two types are *easy to integrate. If the denominator is (ax + b) or

(ax + br , the substitution u = (ax + b) will solve the problem.

SAMPLE PROBLEMS

The solutions to these problems illustrate the technique described above. Try to solve them before you read

the solutions. If they cause you a great deal of difficulty, you should probably practice on some similar problems

from your textbook.

I. f 4
5x+7

dx

x+2
dx

x2 4x+13

5
2. eix

(4x3)6
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SOLUTIONS

There is no algebraic simplification possible. Since the denominator is (Sx + 7), we make the substitutions

u = 5x + 7; du = 5 dx

The integral then becomes

4 5 dx

5x+7 SJ u 5

= 4 ln 5x+7 + C.
5

2.
dxf5 (4x +3)6

Again, there is no algebraic simplification. Since the decominator is (4x + 3)6 , the substitutions

are called for. The integral then becomes:

r x +2
dx

x2 +4x+ 13

u = 4x + 3; du = 4 dx

5 r 4dx 5 r du _ 5 ru-6du . ICI__ -5) + C
4 J Kx+3)6 4 i u 6 4 J 4 -5

1. 1() + C 1
+ C.

4 U 5 4(4x +3)5

1 1 1

1 1 I



As always, begin work on this problem by looking for easy algebraic manipulations. The integral can be

broken into a sum of two integrals, but this does not look especially promising. This is already a "proper fraaion,

so look for obvious substitutions next.

The "nasty" term is the denominator, so consider the substitution

u x2 + 4x + 13.

This would give

du = (2x + 4) dx,

which is double the numerator in this problem! The rest is easy. The integral is

1 f (2x+4)dx 1 rdu 1 Inu + C =1ln x2+4x+13 + C.
x2+4x+13 2 u 2 2

PRODUCTS

If the integrand is a product, and especially if the integrand is a product of dissimilar functions, you should

consider using integration by parts to solve the problem. The formula is derived from the formula for the

differential of a product,

Integrating each term, we obtain

Rearranging this gives

d(uv) = u dv + v du

uv = u dv + fv du.

u dv = uv - f v du.

To apply this formula, we separate the integrand into two parts. We call one u and the other dv. We differentiate

u to obtain du, and integrate dv to obtain v. If we can then integrate the term P., du, the problem is solved. The

goal of this procedure, then, is to choose u and dv such that the term v du is easier to solve than the original

problem. As the sample problems illustrate, this usually happens when u is simplified by differentiation. These
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comments are summarized in the following chart.

INTEGRATING PRODUCTS

Consider integration by parts. The formula is

u dv = uv - fv du.

and your choice of u and dv should be governed by two things:

(1) You must be able to integrate the term you call dv.

(2) You want fv du to be easier than the original integral. This often happens when u is
simplified by differentiation.

NOTE: This formula also has special application to the integration of single terms that we can't integrate otherwise.

Since f f(x)dx can be written as f [f(z)][1 dx], we can think of that integrand as a product and try integration by parts

with u = f(x) and dv =

SAMPLE PROBLEMS

As usual, try these problems before you read the solutions. Pay particular attention to the reasoning used

in making the choices of u and dv in each problem.

1. fxe3xdr 2. (Inx)2 dx
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SOLUTIONS

There are two possible choices of u and dv in this problem.

I u = x
1

I i
OR

I dv = e3x dx I

Determining du and v in each we get

du = dx
I

1

v = 1/3 e3x I
I

du = 3e. dx I
I

v = 1/2 x3 I

for the first, and

for the second.

u = e3x

dv = x dx

Clearly, f v du is easier to solve in the first case, so we make the substitutions u = x, dv = e31 dx. Then

f (x)(e 3x dx) = (x)(1, e3x) f (1 e3x)cir = lx e3x 1e3x + C.
3 3 3 9

2. f (lnx)2cbc

This problem can be done by parts if we write it as
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With

we obtain

u = (ln x)2 I

I AND
dv = 1 dx

ftanx)21[1dx]

I du = 2/x ln x dx

I v = x

f(Inx)2(ldx) = (Inx)2(x) f(x)(.3-1nxdx) = x(Inx)2 2 flux dr.

We haven't solved the problem, but we've simplified it. We now havato integrate fln x dx instead off(ln x)2 dx.

A second integration by parts with U = ln x, dV = 1 dx gives

x(1nx)2 2f (nx)( ldx) = x(lnx)2 2[(lnx)(x) f(x)(1dx)]

= 2 (In x)2 2x(lnx) a 4- c.

NOTE: Like many problems in integration, this can be done in more than one way. The substitution w = ln x

(or ew = x) transforms f(In x)2 dx to fv2 e`v dw , which is done by parts (twice).
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CHAPTER 3

MODIFY !

Chapters 1 and 2 of this booklet contain the basic techniques necessary for solving most business calculus

integration problems. Once we can SIMPLIFY or CLASSIFY an integrand, its solution is a routine (although not

necessarily easy) matter.

We encounter the most difficulty with problems of unfamiliar form, those which resist classification by the

methods of Chapter 2. With such problems our goal is to MODIFY the integrand, manipulating it until it is in a

more convenient or recognizable form. Once this has been done, we return to the SIMPLIFY and CLASSIFY

steps of the General Procedure to finish the problem.

Problems of this type are generally not encountered in a typical Business Calculus course. Only the basic

ideas are presented in this chapter, with additional information, examples, and problems available in the original

module.

The three sections of this chapter are:

(1) Problem Similarities: looking for and exploiting resemblances between the problem we are working
on and problems we know how to integrate

(2) Special Manipulations: techniques for expressing complicated integrands in more convenient form
(3) Needs Analysis: looking to see what additional terms might help solve a problem, and modifying the

integrand to include them.

Together, these form the third step of the General Procedure:

Step 3: MODIFY

Problem
Similarities

Special
Manipulations

Needs
Analysis
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PROBLEM SIMILARITIES

Some integrals can be classified easily, but look so complicated that the standard procedures for solving

them promise to be very messy. Other integrals may not fit into the classification scheme of Chapter 2, and we

may not know an appropriate way to solve them. One way to approach such problems is to look for ....:milarities

between them and problems we know how to do. If the form of a difficult problem resembles that of a 'standard'

problem, there are two possibilities. We might be able to reduce the difficult problem to that "standard' form.

Or, the techniques we would use on the easier problem might help us solve the more difficult one.

Warning: There are integration problems that appear very similar to a manageable one, but on

closer scrutiny, are impossible to solve using the techniques preserqd in this module. Additional information

will be necessary to solve these types of problems.

PROBLEM SIMILARITIES

(1) Look for easy problems similar to the one you are working on.
(2) Try to reduce the difficult problem to the form of the easy similar problem.
(3) Try the techniques you would use on the similar problem.

SPECIAL MANIPULATIONS

In this section we discuss four techniques designed to express complicated integrands in more convenient

form for integration. They are:

SPECIAL MANIPULATIONS

1. Rat mializing denominators of quotients

2. Spet use of trigonometric identities

3. "Common denominator" substitutions

4. "Desperation' substitutions
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These techniques often involve complex manipulations. It may not be clear that they are helping to solve

a problem until we have done some complicated calculations. For that reason these techniques differ from the

simplifications of Chapter 1.

When we first examine an integral, we look for fast and easy ways to solve it. If that fails, we try to

classify it and use standard techniques. Only if that fails, or if the standard techniques look very complicated, do

we look for alternatives such as these. With practice you will discover which approaches to integrals you can

examine rapidly, and which are time-consuming. This knowledge should govern the order in which you apply them.

NEEDS ANALYSIS

The technique of needs analysis has been implicit in much of our work so far, and we now state it formally

as an integration technique. It consists of asking what might enable us to solve a problem, and then either adding

it (and compensating for it) or changing something in the problem to it. For an integrand involving ex , we might

seek to introduce (ex dx). [This is done automatically by the substitutions u = ex ; du = ex dx; dx = 1/u du.]

If the integrand involves e , we can look for a way to introduce [nxt" dx]. As usual, we summarize in table form.

NEEDS ANALYSIS

(1) Look for a term, or a form of the integral, that would enable you to solve it.

(2) Try to modify the integral to produce the term or form you need.

(3) Try to introduce the term yoa need, and compensate for it.
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=MO MOD ISAII 

-s 

EXPERIMENTAL VS. CONTROL, TREATMENT 

General Linear Models 

ANO GENUER - POSTTEST 

Procedure 

I 

Dependent VariaDle: TESTI 

Source OF Sum ct Squares ream Square F value Pr ) F 

moael 3 109C.69874500 263.56624833 5.15 0.0001 
Error 91 3601.13283394 29.57288829 

Corrected Total 94 4691.83157895 

R-Sauere C.V. Root MSE TESTI Moan 
0.232468 50.90429 6.29069855 12.35789474 

Source OF Type I SS Moan Square F Valui Pr > F 

GENDER 1 517.16491228 517.16491228 13.07 0.0005 THE 1 C.30143301 0.30143301 0.01 0.9305 TRTMENT 1 572.23239971 573.23239971 14.45 0.6003 
Source OF T}pe III SS rean fiquare F vz1ue Pr ) F 

uENDER 1 532.69435157 523.69435157 13.49 0.0004 THE 1 5.03909403 5.03909403 0.12 0.7220 TRTMOIT I 572.23239971 573.23239471 14.4,, 0.000i 

EXPERIAENTAL VS. CONTROL, TREATMENT AND GENDER - POSTTEST I 

Geroral Linear Models Froceaura 
Least Squares Means 

TRTMENT TESTS 
LSPEAN 

1 9.4197818 
2 14.3676054 



INTERACTIONS - PCSTTEST I

Gereral Linear Models Proceaura

Dependent YErlatia: TESTI

Source DF Sum cr. Squares mean Square F value Pr F

rooel 7 1402.85065203 200.55009313 5.31 0.0001

Error 87 3287.98092692 37.79288422

Corrected Total 94 4691.83157895

R-Square C.V. Root MSE TESTI Mean

0.299212 49.74627 6.14759174 12.35789474

Source OF Type I SS mean Square F Value Pr > F

GENDER 1 517.16491228 517.16491228 13.68 0.0004
TIAE C.30143301 0.30143301 0.01 0.9290
GENDER*TIME 5C.67341437 50.67341437 1.34 0.2501
TRTMENT 53C.91408580 530.91408580 14.05 0.0003
GENDEReIRTAENT 1 106.96486884 108.96486384 2.88 0.0531
TIME4T7ZIMENT C.04547686 0.04547686 G.00 0.9724
GENDE1,41 IME41RTmENT 193.78646088 195.78646088 5.18 0.0253

Sour:a OF Type III SS Mean Square. F Velu2 Pr > F

GENDER 27.39920621 27.39920621 0.72 0.3S6S
TIME 1 48.84235633 45.84235633 1.21 0.2738
GENDER;7INE 88.99560385 88.99560385 2.35 0.1285
TRTmENT 7C.35099516 70.35099516 1.86 0.1750
GENOER;ORTMENT 1 302.03108914 302.03108914 7.95 0.0058
TImEsTRTMENT 1 32-13276698 32.13276698 ,dt. u.35E9
.,INDER4TIML*Ti:TmENT 1 198.78646085 155.78646088 5.1b u.023
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INTERACTIONS 8ETwE:N

Gerera1 Linear

GENCER

moaels

ANO TREATMENT

Froceaure
Cooenaent Variaulr: TESTI

Sourci D5 Sum cf Squares
mean Squar/ F valua Pr > Fmucel

3

rt Or 91

1192.7334.585

3495.05S2-3310

397.57778128

38.451623/1

10.j4 0.0001

Cvrrect,u Total '74 4091.83157895

k-Square
C.V. Root mSE

TESTI mean
O.Z54215 50.17795 6.200/3775

12.3578/474
4ource JF Type 1 SS mean Square P Value Pr > FGEN0ER,..:TRTmEtIT 3 1192.73334385 397.57778128 10.34 0.0001Source OF

Type II1. SS Nean Square F Value Pr > FGENOR,.ciRI.AEliT 3 1192.73334385 397.5777d123 I3.34 0.0)J1



INSTRUCTOR 0IFFERENCES -

IRTMENT=1

Gareral Linaar Models

POSTTEST I

frocedure
Oependent Variable: TESTI

Source
OF Sum cf Squares

Mean Square F Value Pr > Fmodel
5 387.30587855 77.46117571 3.15 0.0181Error

37 905.76388889
24.58821321

Corrected Total 42
1297.06976744

R-Square
C.V. Root MSE

TESTI Mean0.258t-01
51.13237

4.96865034
5.69767442

Source
OF

Type I SS Mean Square F Value Pr F1NSTRCTR
2

103.89417220 51.94708610 2.11 0.1353

uENOER
1

52.04278895
52.04278895 2.12 0.1541

1NSTF,C777%.CtNuER 2
241.368q1740

115.68445870 .4.70 0.01515ource UF
Type III SS Mean Square F Value Pr > F

INSTRCTR
2

151.15650685
75.57825345 3.07

bENOER
1

11.05586055
11.05586055 0.45

IN5TRCTRGONUER 2
231.36991740

115.68445370 4.70

0.0592
0.5067
0.0151



INSTRUCTOR UIFFERENCES -

TRTMENT=2

Gereral Linear Models

POSTTEST I

Froceoure

Oeperdent Varlable: 18511

Source OF Sum cf Squares Mean Square F Value Pr ) F

model 5 758.86477411 151.77295482 3.36 0.0115

crror 46 2074.96214896 45.21656846

Corrected Total 51 2838.82692308

R-Squere C.V. Root MSE TESTI Mean

0.267216 46.19088 6.72432662 14.55769231

Source OF Type I SS Mean Square F Value Pr ) F

1NSTRCTR 2 138.04326923 67.52163462 1.49 0.2253
uENOcR 1 604.08488559 604.08988559 13.36 0.0007
1NSTRCTR*GE4OER 2 15.73161925 9.d6580965 0.22 0.8048

-
Source OF Type III S$ Mean Square F Value Pr ) F

INSTACTR 2 164.74491043 82.34745522 1.82 0.1731
NDLR 1 594.52055925 554.52055925 13.15 0.0007

1NSTACTR,JGENUER 2 15.73161929 9.065d0965 0.22 0.13048

1_ ')
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EXPERIMENTAL VS. CONTROL, TREATMENT ANO CENOER POSTTEST T1

Gereral Linear Modals Procedure

Dependent varSable:-TES72

Source DF Sum cf Squares mean Square
model 3 708.61194008 236.20358003
arror 91 3365.11437571 27.02323490
Corrected Total 94 4077.72631579

C.V. Root MSE

60.15024 6.08467213

\

R-Squtro

0.173776

Source OF

GENOER
1

TIm2
1

72TmENT
1

Source OP

GENOER
1

TIME
1

TRTmENT
1

Type I SS oean So:Jere

12C.26842572 120.2684257Z
14.58939747 14.58839747

572 .75511689 371.75511689

Typo III SS mean Square

132.54702140 132.54702140
3C.33571093 20.33571093

572.75511685 573.75511689

F Valuo Pr F

6.39 0.0005

7E572 mean

10.11573547

F value Pr 7 F

2.25 0.0749
0.35 0.5319
15.50 0.0002

EXP:MIMENTAL VS. CONTROL, TREATMENT ANO GENUER POSTIEsT IL

Cameral Linear Modals Froceouro
Least Squares Means

TRTMENT

1

2

TES T 2

.L.SP (AN

6.6912193
11.64.7993

F value

3.51
0.82
15.50

Pr 7 F

.3.3678
u.v002



INTERACTIONS

General Linear

- PCSTTEST II

(4odels Proceoure
Depenaent Variaole: TEST2

5ource OF Sum ct Squares
Mean Square F value Pr ) Fmooel

7 945.07738531 140.72534076 3.98 0.0008Error 87 3092.64893048 35.54768886
Corrected Total v4 4077.72631579

R-Squere C.V. Root MSE
7E572 mean0.241575 58.93943 5.96218826

10.11578947
Source OF Type I SS Mean Square F value Pr FuENDER

1 120.26842572 120.26842574 3.35 0.0593
TI..1

1 14.58839747 14.58834747 0.41 u.5235
uENDER.TIME

1 46.80145231 46.80145231 1.32 0.2544
TRiMEN1

1 532.74824964 533.74824964 15.01 0.0002
uENDERKOKTMEMT 1 141.82349778 141.82349778 3.95 0.0489
71,sE#TRTMENT

1 37.19797170 37.19797170 1.05 0.3042
UENDETWIIMETRTMENT 1 90.64939070 90.64939070 4.55 0.1139Source OF Type III SS mean Square F value Pr > FGEq0ER

1 5.25474531 5.25474531
0.15 0.7016

TImE
1 0.20212918 0.20212918 0.01 0.9401

UENDERaTImc
1 27.63132991 27.63132991 0.78 0.3404

TRTMLNI
1 201.79637322 207.79637322 5.115 0.0177

UENDERvIRTMENT
1 201.43633211 201.43633211 5.57 C.0115

1Ii.24TR1MEN7
1

2.56496016 3.56496018 0.10 0.7522
UEN0ER411mE47R7mENT 1 9C.64939070 50.64939070 4.55 0.1134
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INTERACTIONS BETWEEN GENOE'R ANO TREATMENT

uepenoant variaole: TEST2

'.7,erera1 LLnear Models Proceoure

Source OF Sum of Squares Mean Square F Value Pr ) F

nodei 3 861.42311499 277.14103966 7.77 0.0001

Error 91 3246.30319680 35.67366150

Corrected Total 94 4077.72631579

8-Square C.V. Root MSE TEST2 Mean

0.203994 59.04377 5.97274321 10.11578947

'zource OF Type I SS mean Squara F value Pr > F

GENDER4TmENT 3 831.42311,399 277.14103966 7.77 0.0031
urce OF Type III SS Mean Square F Value Pr > F

6ENOtRv.TRTmENT 3 831.42311899 277.14103966 7.77 0.0001

1 3 vit

13 !
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INSTRUCTOR DIFFERENCES -

TRTMENT.1

Gereral Linear Models

POSTTEST II

Proceoure

Oepenoent Variable: TEST2

Source OF Sum cf Squares Mean Square F Value Pr > F

model 5 216.80E78553 43.30175711 1.02 0.4218

Error 37 1577.88888889 42.64564563

,Corrected Total 42 1794.69767442

R-Souare C.V. Root MSE 1E572 Mean

0.120605 87.47839 6%53036336 7.46311628

Source OF 1Ype SS Mean Square F Valve Pr > F

INSTkCTR 2 105.24529347 54.62264673 1.2E 0.2898t,Eid,ER 1 C.00051142 0.00051142 0.00 0.99731NSTRCTRENDER 2 107.56298064 53.73149032 1.26 0.2952
Source OF Typo III SS Mean Square F Value Pr > F

1NSTkCTR 2 50.71731636 25.35965819 0.59 0.556vtI,ENDER 1 26.8588588o 28.858858d6 C.68 0.4161INS TkCTRGENOER 2 107.56298064 33.78149032 1.2d 0.295,

I C,
.1 '3k 6



INSTAUCTCR OIFFERENCES -

TRTMENT=2

Gereral Linear Models

POSTTEST Il

Procedure
Oeperdent Variaolo: TEST2

source OF Sum cf Squares mean Square F Value Pr > gmuael
5

297.71978022 59.54395604 1.71 0.1108Error 46 1431.35714286 31.15993789
Corrected Total 51 1731.07692308

R-Sduere C.V. Root MSE
TEST2 Mean

0.171565 45.35463 5.58210873
12.30769231

Source OF Iy03 I SS Mean Square F Value Pr FINS TRC T R
2

C.313557652 0.19278846 0.01 0 . ,P,39
GENOtR

1 281.44102483 2d1.4d102483 5.03 0.0043
luSTF,CTR4GENOER 2 15.85317847 7.92658923 0.25 0.7763Source OF Type III SS Mean Square F Value Pr > FINS TkC TR

2 6.97946862 3.43973432 0.11 0.d957
GENDER

1 283.80170145 2E3.90170145 9.11 0.0041
INSThCTRGENO,ER 2 15.95317847 7.52658523 0.2: 0.7765
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P.. t

DIFFERENCES BETWEEN POSTTEST

Gereral LInear Models

I ANC POSTTEST II

Proceoure
Gepencient Variaole: 01FF

Source OF Sum cf Squares
Mean Square F Value Pr ) Fmooe1

7
211.41669481 30.20238497 0.75 0.6288Error 87

.3494.01488414 40.16109062
(.orrecteo Ictal 94

3705.43157895

R-Souare
C.V. Root MSE

OIFF mean
0.057056 282.6485 6.33727185

2.24210526
5ource OF

TYPR I SS wean Square F Value Pr > FGENDER
1

13E.64035554 138.64035554 3.45 0.0666
TImE

1
1C.55582306 10.64502306 0.27 0.6071

LENUER2TIME
1

C.07693270 0.07692270 G.00 0.9452
TRTMENT

1 C.00377232 0.0u377232 0.00 0.9523
GENDER4TRIm8NT

1
2.16190915 2.16190919 0.c5 0.8171

11ME4TR1mEN1
1

35.84471507 39.84471507 0.99 0.3220
GEN0ERv1Im5,41R7m4NT 1

15.19318653 19.99318693 0.50 0.4923Source OF Typo III SS Mean Squar2 F Value Pr > F,lEN0ER
1 E.65596405

8.65596409 0.22 0.6436
TIME

1
35.95643885

39.55643885 0.95 0.3213
GEN0ER401mt

1

17.44897471 17.44897471 0.43 0.5115
TRTMENT

1
34.33188793

46.33188793 U.40 0.3442
GENDeRvTRTMENT 1

1C.15116526 10.15195526
t...25 0.6154

THE27,(1.NT
1

51.13018463 57.13018463 1.42 0.2362
u4NOER*11;st*TRT.,ENT 1

15.99318693 19.59318693 0.50 6.4823

DIFFERENCES BETSIEEK POSTTEST I ANC POSTTEST II

Gereral LInear Models Procedure
Least Squares Means

TRTMENT

1

2

CIFF
LSPEAN

4.15882353
2.12537874



Oependant Variaole: 0IFF

INSTRUCTCR DIFFERENCES IN POSTTEST I vS. POSTTEST

TRTMENT=1

Gereral Linear Models Procedure

Il

JOUrce DF Sum ct Squares Mean Square F Value Pr > Fmodel
5 162.63275194 32.72655039 0.90 0.4516Error 37 1346.04166667 26.37950450

Correctod Total 42 1509.67441860

R-Square
.:04. Root MSE

01Fr: Mean
0.106389 270.1628 6.03154246 2.23255814

Source Dr: Type I SS Mean. Square F Value Pr > FINSTRCTR 2 84.92739480 42.46369740 1.17 0.3224
GENDER

1 52.3695874> :2.36958745 1.44 0.2378iNSTRCIRt,G6NDER 2 24.33576969 13.16788484 0.36 0.6987Source OF Typo III $S Mean Square F Value Pr ) FINSTkCTR 2 74.45868138 27.22934069 1.62GENDER
1 4.19024493 4.19024493 0.12INST1CTRN,GENOR 2 26.3376965 13.16788484 0.36

41 4, 1

'144,
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1.).!perdsnt VarLaoil: 31FF

IMSTRUCTCR DIFFERENCES IN POSTTEST I VS. POSTTEST

YRTMENT=2

Gereral Linear Models Frocedure

II

Source OF Sum ct Squares Mean Square F Value Pr > F

model 5 186.05708181 37.21141636 0.85 0.5206

Error 2005.69291819 43.68897648

Corrected Total 51 2195.73000000

R-Square C.V. Root MSE OIFF Mean

0.0847.55 293.7673 6.60976372 2.25000000

Source OF Type I SS Mean Square F Value Pr > F

INSIkCIR 2 121.11153846 60.55576923 1.35 0.2603GENDER 1 6C.85316456 60.85316456 1.35 0.244015TkCIR;.GENUEk 2 4.09237879 2.04618939 0.05 0.9545

Source OF T. III SS mean Square F Value Pr > F

it6TACTR 2 13C.45070401 65.22533200 1.49 0.2354GENDER 1 54.7969810d 56.79698108 1.30 0.26011NSTRCTRGENDEd 2 4.09237879 2.04618939 0.05 0.9543



14t;

.

:

MEAN TEST SCORES BY GENCER ANO POSTTEST
TRTm6NT GENDER N Oos Variable N Pisan Std Oey minlmum ;1axlmum

1 1 21 TESTI 21 8.47619 4.83342 0.00000 20.000007E512 21 7.71429 5.91729 0.00000 19.00000
2 22 TEST1 22 10.86364 6.04976 2.00000 29.00000TES72 22 7.22727 7.21065 0.00000 33.00000

2 1 26 TESTI 26 11.23077 6.56236 2.00000 26.000007E512 26 10.00000 4.56946 2.00000 19.00000
26 TES11 26 17.88462 6.88957 8.00000 26.00000TESI2 26 14.61538 6.10624 2.00000 30.00000

GENDER

1 = male
2 = female

TRTMENT

1 = control
2 = experimental
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