DOCUMENT RESUME

ED 392 435 IR 017 726

AUTHOR Kahn, Ken

TITLE ToonTalk (TM) -—An Animated Programming Environment for
Children.

PUB DATE 95

NOTE 9p.; In: "Emerging Technologies, Lifelong Learning,
NECC '95"; see IR 017.705.

PUB TYPE Reports - Descriptive (141) -- Speeches/Conference
Papers (150)

EDRS PRICE MFO1/PCO1 Plus Postage.

DESCRIPTORS Authoring Aids (Programming); Autoinstructional Aids;

*Children; *Computer Games; *Computer Graphics;
Computer Interfaces; Computer Simulation; *Computer
System Design; Independent Study; *Programming;
. *Vidzo Games '
IDENTIFIERS *Computer Animation

ABSTRACT

This paper describes ToonTalk, a general-purpose
concurrent programming system in which the source code is animated
and the programming environment is a video game. The design
objectives of ToonTalk were to create a self-teaching programming
system for children that was also a very powerful and flexible
programming tool. A keyboard can be used for various accelerators,
but a ToonTalk user can get by with just a game pad, joystick, or
mouse. Every abstract computational aspect is mapped into a concrete
metaphor. The ToonTalk "world'" resembles a 20th century city; an
entire ToonTalk computation is a city. The programmer controls a
"programmer persona' or robot in this video world to construct, run,
debug and modify programs. In addition to a message-passing
interface, ToonTalk provides a direct control of sprites (animated
graphical elements); a sprite can be flipped over to reveal a
notebook which contains remote controls for that sprite. Initial
testing of ToonTalk use by children has revealed that it provides an

entertaining way of . onstructing programs. (Contains 10 references.)
(AEF)

S e ¢ T v v v v ve Fe v Fe 26 P e ve v ve e vt v v % 3 v e v e v v v 9% Yo v v e vl o Yo de Y e v vl de e v vl de e de vl e e e o e de e de e e de e de e dete e %
. . ‘o
Reproductions supplied by EDRS are the best that can be made *

.
To 1 ¥

from the original document.

Je v e v 2 3 e 76 3¢ 3 e Te T ¥ Fe v e vk e 2 e Fe v Yo e ve de e 3¢ e vt e 9 Fe de v o ve e v v Fe e v e dede o de v v e de e dedede e de e de e dedle de et

¥

¥*

ED 392 435

o | W0, 7724

US DEPARTMENT OF EDUCATION

Oft.ce ot Educaliong’ Hlesaarcn and Improver
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

O Trs document has been reproduced as
recewed from lhe person or orgarszation

originating it
[0 Minor changes have been mage 1o
improve reproduction quality

® Points of view or opinions slated in this
document do nol necessarnly represent
official OERI position or policy

ToonTalk™ - An Animated Programming
Environment for Children

by Ken Kahn

Paper presented at the NECC ‘95, the Annual National Educational
Computing Conference (16th, Baltimore, MD, June 17-19, 1995.

PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED B8Y

BEST COPY AVAILABLE Ponella Ingham

N
&~
TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC) ™

paper

ToonTalk™ — An Animated Programming Environment for
Children

Ken Kahn

Animated Programs

44 EI Rey Road

Portola Valley, CA 94028
415-851-0890 voice; 415-851-4816 fax
Email: Kahn@CSL 1.Stanford.edu

Keywords: computer programming, children, videogames, concurrent
programming
Abstract

Seymour Papert once described the design of the Logo programming language as taking the best ideas in computer
science about programminy !anguage design and “child engineering” them (Papert 1977). Twenty-five years after Logo’s birth,
there has been tremendous progress in programming language research and in computer-human interfaces. Programming
languages exist now that are very expressive and mathematically very elegant and yet are difficuit to learn and master. We
believe the time is now ripe to attempt to repeat the success of the designers of Logo by child engineering one of these modern
languages.

When Logo was first built, a critical aspect was taking the computational constructs of the Lisp programming language
and designing a child friendly syntax for them. Lisp’s “CAR” was replaced by “FIRST”, “DEFUN" by “TO", parentheses were
eliminated, and so on. Today there are totally visual languages in which programs exist as pictures and not as text. We believe
this is a step in the right direction, but even better than visual programs are animated programs. Animation is much better

 suited for dealing with the dynamics of computer programs than static icons or diagrams. Whiie there has been substantial
progress in graphical user interfaces in the last twenty-five years, we chose to look not primarily at the desktop metaphor for
ideas but instead at video games. Video games are typically more direct, more concrete, and easier to learn than other soft-
ware. And more fun too.

We have constructed a general-purpose concurrent programming system, ToonTalk, in which the source code is ani-
mated and the programming environment is a video game. Every abstract computational aspect is mapped into a concrete
metaphor. For example, a computation is a city, an active object or agent is a house, birds carry messages between houses, a
method or clatise is a robot trained by the user and so on. The programmer controls a “programmer persona” in this video
world to construct, run, debug and modify programs. We believe that ToonTalk is especially well suited for giving children the
opportunity to build real programs in a manner that is easy to learn and fun to do.

Goal Number 1: A Self-teaching Programming System for Kids

Programming can be a fun and empouwering activity, but it is accessible only to those who manage to surmount a large
initial hurdle. This hurdle includes learning a formal programming language and computational concepts such as variables,
procedures, and flow of control. If this hurdle could be minimized and overcoming what remains can be made fun, then
children and curious adults would be able to creatively mold computers into whatever they want. Learning to use computers
without learning to program, is like learning to read without learning how to write.

Our goal is to create a computer system which children can use to build a very wide \ ariety of programs without being
taught how to use it. Many believe that any system that is easy enough to learn to use without the help of a teacher will have
to be very limited. ToonTalk, however, is a self-teaching system that is flexible and expressive. A wide range of programs can
be constructed ranging from games like Pong, Hangman and PacMan to programs for controlling motors and sensors of Lego
and other construction toys to conventional programming examples like factorial and parallel quick sort.

There is precedent for powerful, yet self-teaching, systems outside of computer programming. Children, for example,
learn on their own how to build complex Lego constructions. They master video games that require exploration and problem
solving in complex fictional worlds. Analysis of video games and Lego systems has provided many of the ideas that make
ToonTalk easy to learn (Malone 1980; Provenzo 1991).

Some of the design principles derived from good construction toys and video games include:

Make the initial experience simple and gradually increase complexity.

Encourage exploration and curiosity.

Provide and maintain appealing fantasies.

Continually challenge without frustrating.

Frequent use of animation and film techniques and principles (video games only).

G N =

NECC '95, Baltimore, MD Page 243

Q

ERIC

Aruitoxt provided by Eic:

In construciing the ToonTalk programming system, we strove to follow these principles. We also borrowed heavily trom
the technelogy ot video games. For example, we copy the way that video games frequently put the player into the game world
by providing a persona or avatar in that world that the player controls and identifies with. Children react to events as if they
were, for example, one of the Mario brothers when they play the Mario Brothers games. In ToonTalk, the programmer is an
animated character building, testing and debugging programs.

The Logo community is also interested in giving children the ability to program for epistemological reasons (Papert
1993). They argue that programming is a rich soil for learning fundamental thinking and problem-solving skills. Children
learn about representation, problem decomposition, abstraction, debugging and so on. This can happen while learning
programming and it is very important, but unfortunately it is not the typical result of learning Logo (Yoder 1994). While we
hope that this kind of learning will be more frequent with ToonTalk, we will be satisfied if the outcome is simply to empower
children to creatively master computers.

Goal number 2: A Powerful Programming System for Kids

ToonTalk was built to be both very easy to learn and to be a very powerful and flexible programming tool. These are
usually considered conflicting goals that require compromises. A language like C++ is very flexible and powerful but it is also
very complex and difficult to learn. HyperTalk, in contrast, has been learned and used by many non-programmers but it has
many inherent limitations. Kids can pretend to help in the garden with toy shovels and rakes, but if they really want to do
gardening they should have real tools that have been adapted to their special requirements.

Theory based programming language design has produced many languages that are small yet powerful. Most functional
and logic programming languages are examples as are some object-oriented programming languages. The problem is that
languages like Scheme, ML, Prolog, Flat Guarded Horn Clauses (FGHC) and SmallTalk80, while small and elegant, are
difficult for even computer science students to learn. It would seem absurd to expect second graders to master a programming
language that professional programmers find very difficult.

But maybe the difficulty is not in the concepts per se but their lack of accessible metaphors. Consider as an example the
concept of communication channels found in many concurrent systems. Associated with these channels are read and write
privileges. Some support the notion that an attempt to read from an empty channel will suspend until something is written.
These concepts are usually taught in an advarced computer science course. But these difficult abstract concepts can be
replaced by exactly equivalent everyday concrete analogs. In ToonTalk birds and nests are the communication channels. The
ability to write on a channel is a bird who behaves like a carrier pigeon. Read access to that channel is the nest of that bird.
Birds can be copied and each copy has the same nest (i.e., cach bird copy is a write capability on the same channel). The
behavior of birds implements the operational semantics of channels. When a bird is given a message it flies to its nest, leaves
the message on the nest, and flies back to where it was. If there already are things on its nest it puts the new item under these
items (this implements a first-in first-out semantics for the queued messages). If another bird is busy putting something there
it waits for its turn (this provides arbitration between multiple writers on the same channel). A bird finds its nest even if it has
been moved (so a read capability will continue to work even if it has been transferred). These rules of behavior for birds are
not very hard for a seven-year old to understand.

ToonTalk is based upon a concurrent constraint language (Saraswat 1993) similar to Janus (Saraswat, Kahn and Levy
1990). We chose concurrent constraint programming as the underlying foundation of ToonTalk for many reasons. One reason
is that over ten vears of use at many research centers has demonstrated that there is no risk that the language will be inad-
equate for building a wide variety of large programs (Shapiro 1989). The languages are small yet very powerful. This has lead
to a much simpler design for ToonTalk ihan had it been based upon conventional languages.

Another reason for the choice is that these languages are inherently concurrent. Many find it surprising that a concurrent
language would be better for childrer than a sequential language. They see sequential programming as hard enough without
having to consider multiple interacting sequential programs. However, sequential languages extended to be concurrent are
very complex but languages designed from scratch to be concurrent can be very elegant.

Programs typically model the world and the world is concurrent. Sequential programming languages provide a world in
which only one thing can happen at a time. This is a very strange world. Children when first exposed to programming,
especially object-oriented programming, expect it to be concurrent. Most of the programs that children want to write are
naturally concurrent. A Pong game, for example, consists of at least a paddle, a ball and a score keeper. Good object-oriented
design indicates that cach should be handled by an independent computational component. Kids (and most non-programmers
when introduced to an object-oriented programming system) expect that each object is running all the time. How weird to
have to switch attention between controlling the paddle, ball and score keeper instead of just letting each one do its thing. But
anarchy results unless components can communicate and synchronize. Making conventional languages concurrent with
communication and synchronization facilities leads to a complex mess that gives concurrent programming its reputation for
being very hard. A new concurrent programming language with a good semantically motivated design can avnid this mess.

Resnick attempted to introduce concurrency to children by extending the Logo programming language to support
multipi: concurrent threads (Resnick 1988). The language was too complex, but the research confirmed the appropriateness of
concurrent programming languages for children. Resnick also built a parallel form of Logo called Star Logo which had the
simplifying but severe limitatioh that only multiple instances of the same program can run in parallel. More recently LL.CSI's
MicroWorlds Logo introduced a very simple form of parallelism to Logo. While sometimes useful it is very limited in its

Page 244 National Educational Computing Conference, 1995

4

REST copvAvALARLIE @ 1

Q

ERIC

Aruitoxt provided by Eic:

ability to describe communication and synchronization between these parallel activities.

Animated Source Code

The fundamental idea behind ToonTalk is that source code is animated. (ToonTalk is so named because one is “talking”
in (car)toons.) This does not mean that we take a visual programming language and replace some static icons by animated
icons. It means that animation is the means of communicatir.g to both humans and computers the entire meaning of a pro-
gram. Given the dynamic nature of computation animation is especially well-suited for this.

Even small children have no troubles producing a range of sophisticated animations when playing games like Mario
Brothers. While the range is, of course, very limited relative to a general animation authoring tool, video game style animation
is fine for the purposes of communicating programs to computers. If, for example, a program fragment needs to swap the
values of two locations, what can be more natural and easy than grasping the contents of one, setting it down, grasping the
contents of the other, placing it at the first location and then moving the original item to th» second location? (See figure 1)

This is something a very young child can understand and do while only a programmer «.an write the following equivalent
code:

temp = Xx;
X =Y,
y = temp;

Once the step is taken to use video game technology for the construction of source code, it is easy to see other uses of
video game technology for browsing, editing, executing and debuggin;3 programs. Other ideas from video games can be
borrowed. Some video games have animated characters whose purpose is to provide help to users. These characters can play
the role of on-line help and tutorial systems.

NECC 95, Baltimore, MD Page 2.5

(1

Q

ERIC

Aruitoxt provided by Eic:

Figure 1 — Snapshots from swapping two elements. (color original)

ToonTalk — The Language and Metaphor

Video games, especially adventure and role-playing ones, place the user in an artificial universe. The laws of such
universes are designed to meet constraints of game play, learnability, and entertainment. While playing these games the user
learns whether gravity exists, if doors need kcvs to open, if one’s health can be restored by obtaining and consuming herbs,
and so on. What if the laws of the game universe were designed to be capable of general purpose computing, in addition to
meeting the constraints of good gaming?

It seems that no one has ever tried to do this. (And when we figured out how to, we applied for a patent on the inven-
tion.) Rocky’s Boots and Robot Odyssey were two games from The Learning Company in the early 1980s that excited many
computer scientists. In these games, one can build arbitrary logic circuits and use them to program robots. This is all done in
the context of a video game. The user persona in the game can explore a city with robot helpers. Frequently in order to proceed
the user must build (in an interactive animated fashion) a logic circuit for the robots to solve the current problem. ToonTalk is
pushing the ideas behind Robot Odyssey to an extreme, capable of supporting arbitrary user computations (not just the
Boolean computations of Robot Odyssey).

Computer scientists strive to find good abstractions for computation. Here, in addition, we are striving to find good
“concretizations” of those abstractions. The challenges are twofold: to provide high-level powerful constructs for expressing
programs and to provide concrete, intuitive, easy-to-learn, systematic game analogs to every construct provided.

The ToonTalk world resembles a twentieth century city. There are helicopters, trucks, houses, streets, bike pumps,
toolboxes, dust busters, boxes, and robots. Wildlife is limited to birds and their nests. This is just one of many consistent
themes that could underlie a programming system like ToonTalk. A space theme with shuttle craft, teleporters and like would
work as well. So would a medieval magical theme or an Alice in Wonderland theme.

An entire ToonTalk computation is a city. Most of the action in ToonTalk takes places in houses. Communication between
houses (and to built-in capabilities) is accomplished by birds (kind of like homing pigeons). Birds accept things, fly to their
nest, leave them therey and fly back Typically houses contain robots that have been trained to accomplish some small task.
Robots have thought bubbles that contain pictures of what the local state should be like before they perform their task. Local
state is held in cubby holes (i.e. boxes). Cubbies also are used for messages and compound data (i.e., tuples). If a robot is given
a cubby containing everything that is in its thought bubble, it will proceed and repeat the actions it was taught. Abstraction
arises because the picture in the thought bubble can leave things out and it will still match. A robot corresponds roughly to a
method in an object-oriented language or a conditional. A line of robots provides something like an “if then else” capability.
Animated scales can be placed in a compartment of a box, The scale will tip down on the side whose neighboring compart-
ment is greater than {or if text, alphabetically after) the compartment on the other side. By placing scales tipped one way or
another the conditionals can include less than, equal or greater than tests.

The behavior of a robot is exactly what it was trained to do by the programmer. This training corresponds in traditional
terms to defining the body of a method or clause. The actions possible are:

» sending a message by giving a box or pad to a bird,
spawning a new agent by dropping a box and a team of robots into a truck,
performing simple primitive operations such as addition or multiplication,
copying an item by using a magician’s wand,
terminating an agent by setting off a bomb,
changing the contents of the compartments of a box.

When the user centrols the robot to perform the actions she is acting upon concrete values. This has much in common
with keyboard macro programming and programming by example (Smith 1975). The hard problem for programming by
example systems is how to abstract the example to introduce variables for generality. ToonTalk does no induction or learning,
Instead the user explicitly abstracis a program fragment by removing detail from the thought bubble. The preconditions are
thus relaxed. The actions in the body are general since they have been recorded with respect to which compartn.ent of the box
was acted upon, not what items happened to occupy the box.

If a user never turned off their computer nor wanted to share a program with another then this world with houses,
robots, etc., would be adequate. To provide permanent storage we have introduced notebooks into ToonTatk. A programmer
can use notebooks to store anything they’ve built. Notebooks can contain notebooks to provide a hierarchical storage system.
Notebooks provide an interface to the essential functionality of the file system without leaving the ToonTalk metaphor. The
initial notebook contains sample programs and access to facilities like animation and sounds.

Beyond the Programming Language

The Logo programming language isn't just a child-engineered version of Lisp, but also includes turtle graphics. While
Logo i» sometimes used to perform numerical or textual computations, its prirary appeal has been in its turtle graphics
package. While turtle graphics is still appealing and many modern Logo implementations have extended the idea to have
multiple turtles with different appearances, it does not have the same appeal as game programming has with children. While
game programming is possible using turtle graphics, it is difficult.

Page 246 National Educational Computing Conference, 1995

6

ToonTalk does not currently support turtle giaphics — instead, effort was made to provide support for game program-
ming. The lowest level of support is a message-passing interface to a sprite library. Sprites are animated graphical elements
that are composed to make a game. Mario is a sprite, as is a mushroom he might eat, and so on. A sprite’s appearance is
selected from a set of animation loops. A sprite’s size and location changes can be animated as well. A mechanism is provided
for detecting and acting upon collisions between sprites. A ToonTalk message-passing interface to such functionality means
that one can obtain a bird for a sprite and give that bird messages that mean things like “move up 10 units”, or “change size to
20", “set speed to 30” or “are you colliding with anyone?”. This interface is very general and powerful but it turned out to be
too awkward and clumsy for doing simple things.

In addition to the message passing interface ToonTalk provides a direct control of sprites. A sprite can be flipped over.
Initially on the back side is just a notebook which contains remote controls for that sprite. For example, its width control can be
obtained from the notebook. As the width of the sprite is changed the number in the control changes as-well. Also the user can
change the value of the number and the sprite’s width automatically changes accordingly. There are currently remote controls
for position, speed, size, collision detection, and appearance selection.

For example, one ran train a robot to repeatedly increment a number and put that robot to work on the speed of the
sprite and the sprite will accelerate. One can place this robot and remote control on the back side of a picture and then flip the
sprite back over. If this sprite is copied or saved and later retrieved from a notebook, this acceleration behavior will still be on
the flip side of the sprite and active. This enables one to build a nice library of useful behaviors for sprites like bouncing off of
walls or tracking the mouse. Sprites can be composed simply by placing one on top of another. (The hand vacuum is -\ecessary
for separating them later.) Behaviors can be copied and combined directly.

In addition to turtle graphics, many Logo implementations include libraries for controlling motors and sensors in a Lego,
Fisher Technic or Capsula construction set (Papert 1993). This enables children to build toys with behaviors. Children have
made things ranging from robots, to cars that follow lines drawn on the floor, to household machines like toy washing
machines that stop when the door is opened, to traffic lights that change color and respond to a pedestrian button. As with
LegoLogo, ToonTalk provides an interface for turning on and off motors and lights and reading sensors, Currently, only a
message-passing interface exists but another interface based upon remote controls is planned. While our experience with this
is limited, it does seem that the underlying concurrency of ToonTalk enables much more modular control than Logo does. A
ToonTalk house can be built with robots for controlling a tratfic light, another for a car which stops at red lights, and so on. In
contrast, in Logo a sequential program must alternate its attention between different elements.

Building a Pong-like Game in ToonTalk

In an attempt to provide a more detailed understanding of ToonTalk, the full-length version of this paper describes how
a child builds a Pong-like game from scratch. ToonTalk is started and the user finds herself (or himself) flying in a helicopter
over a city. Houses can be seen below. She lands in front of a house and enters the front door. Following her everywhere is a
toolbox character. Inside, there is a friendly Martian ready to offer tours or coaching, but she ignores him since she’s used the
system a bit and feels confident she can build a simple Pong-like game on her own. (See Figure 2.) She sits down on the floor
and her toolbox scurries in front of her and opens. Four characters emerge. A notebook flies out. A hand-held vacuum with
legs runs out. A bike pump hops away. And a magic wand floats out. Remaining in the toolbox are eight kinds of things that

the programmer will use to construct her game: number pads, text pads, cubby holes, bird nests, scales, robots, construction
trucks and bombs. (See Figure 3.)

Figure 2 — Programmer and toolbox inside

NECC 95, Baltimore, MD Page 247

ERIC 7

Aruitoxt provided by Eic:

Q

Figure 3 — Floor view after sitting

Briefly, she begins by building a paddle that follows the vertical movements of the mouse. She trains a robot to copy the
mouse’s vertical speed over to the paddle’s vertical speed. She puts the robot on the back side of the paddie and gives it a
cubby containing a mouse sensor and speed control. She then trains a robot to respond to collisions of the ball. She trains

another robot to deal with the ball missing the paddle and moving off the left:side of the screen. She adds sound effects and
plays with her game.

Summary and Future Plans

We have presented-what we believe is the first system to support an animated source code and to use video game
technology to support general purpose programming,. As of February 1995, ToonTalk has operational versions of all of the
constructs described above. The Martian character is operational as a coach and help system but not vet as a tutor.

Testing of ToonTalk in a fourth-grade class and in some homes began in January. Several children have played with
ToonTaik for an hour or so. One encouraging observation from this casual use by children is that it seems to be succeeding in
providing an entertaining way of constructing programs. Children like to play with the birds, hand-held vacuum, bike pump
and magic wand, watch houses being built and destroyed, fly around in the helicopter and so on even if they are not con-
structing a useful program. Today it is too early to evaluate how well children can use ToonTalk to build programs, but it
every encouraging, that they find that just playing around with the equivalent of the program editor lots of fun.

ToonTaik runs on 386 or better PC running Microsoft Windows 3.1 or better. A Mac port should not be too hard.

ToonTalk variants can easily be imagined. A virtual reality version of ToonTalk would enable one to build programs from
inside VR. Since ToonTalk is built upon a concurrent foundation, a modem-based or networked version would be a natural
extension. Multi-user games could be built and programmers could work together in the same world. I often think about what
a professional version of ToonTalk would be like. A compiler could augment the system’s interpreter and would make more
ambitious programs much faster and smaller.

ToonTalk is a real programming environment and vet it does not rely upon a kevboard. A keyboard is handy for various
accelerators but one can get by with just a game pad, joystick or mouse. This opens up the possibility of a port to a game
machine. We are excited by the possibility that the millions of kids around the world who have a game machine at home might
be able to use it to make their own games and do real programming,

Acknowledgments

L am very grateful for the help, advice and support [have received from many people during this project. In particular
David Kahn, Mary Dalrymple and Markus Fromherz deserve special thanks for all their help. | am very grateful to Greg
Savoia for the wonderful artwork and animation he contributed to ToonTalk.

References

Thomas Malone. What Makes Things Fun to Learn? — A Study of Intrinsically Motivating Computer Games, Stanford Univer-
sity Psvchology Department doctoral thesis, 1980,

Seymour Papert. presentation at the August 1977 Logo Users Meceting, MIT.

Sevmour Papert. Children’s Machines. Basic Books, 1993,

Page 248 National Fducationtal Computing Conference, 1995

8

ERIC

Aruitoxt provided by Eic:

Eugene Proverzo, Video Kids — Making Sense of Nintends, Harvard University Press, Cambridge, Ma. 1991.

Mitchell Resnick. Multilogo: A study of children and concurrent pregramming. Technical report, MIT Media Lab, 1988.

Vijay A. Saraswat, Kenneth Kahn, and Jacob Levy. Janus—A step towards distributed constraint programming. In
Proccedings of the North American Logic Programming Conference. MIT Press, October 1990.

Vijay A. Saraswat. Concurrent constraint programming languages. Doctoral Dissertation Award and Logic Programming
Series. MIT Press, 1993.

Ehud Shapiro. The family of concurrent logic programming languages. ACM Computing Surveys, 1989.

David Smith, Pygmalion: A Creative Programming Environment, Stanford University Computer Science Technical Report
No. STAN-CS-75-499, June 1975.

Sharon Yoder, Discouraged? .. Don’t Dispair! [sic], Lugo Exchange, Vol 12, No. 4, Summer 1994, Journal of the ISTE Special
Iaterest Group for Logo-Using Educators.

Internet access to the full-size version of this paper is available via anonymous ftp from csli.stanford.edu. The ToonTalk
entry in pub/Preprints/INDEX contains more information.

