
DOCUMENT RESUME

ED 390 3/8 IR 017 597

AUTHOR Madison, Sandra Kay
TITLE A Study of College Students' Construct of Parameter

Passing Implications for Instruction.
PUB DATE Dec 95
NOTE 323p.; Ed.D. Dissertation, University of

Wisconsin-Milwaukee.
PUB TYPE Dissertations/Theses Doctoral Dissertations (041)

Tests/Evaluation Instruments (160)

EDRS PRICE MFOI/PC13 Plus Postage.
DESCRIPTORS *College Students; Computer Literacy; Computer

Science Education; Computer SysLem Design; *Concept
Formation; Higher Education; Interviews;
*Introductory Courses; *Knowledge Representation;
*Programmers; *Programming; Programming Languages

IDENTIFIERS *Parameter Passing

ABSTRACT
Parameter passing is the mechanism by which various

program modules share information in a complex program; this paper
was a study of novice programmers' understanding of the parameter
consLruct. The bulk of the data was collected from interviews with
eight college students enrolled in a state university introductory
computer programming course. Observations of the programming
instruction, interviews with the course's instructor, and related
student work provided additional data. Results revealed that the
natural-language meaning of some computer terminology caused problems
and most students' understanding of the parameter construct was
fragile at the conclusion of their introductory course. Furthermore,
it found that students' procedural knowledge (ability to construct
modular programs that incorporate parameters) generally surpassed
their conceptual knowledge (understanding of the parameter construct
and of programs that incorporate the construct). The study also
indicated that students who harbored fundamental misconceptions of
the parameter process could, by making seemingly innocuous
adjustmel,ts to procedure heading lines, construct programs that
produced the correct answer. Concrete representations, collaboration
in a structured laboratory environment, focused completion-type
exercises, and elaboration appeared to foster success. Twenty-two
appendices provide consent forms, a background survey form, excerpts
from the literature, laboratory worksheets, assignments, interview
protocols, and programming tasks. (Contains 53 references.)

(Author/AEF)

***********************'*************************

Reproductions supplied by FDRS are the best that can be made
from the original dock lent.

*

*

U S DEPARTMENT OF EDUCATION
cg 01-.1,4-.1.,ii:Pe.,isert, inpouenlo,

EDUCATIONAL RESOURCES INFORMATION

CENTER ,ERIC)
t-j This dOcArtheid has boon reprodd,ed

received th,in the
qpnatog

O M.1, twoo

Point, di vie.% üi ,,dohod.,.. ,lathd
dockiiheid do Icil noces,v,v,

PERI p,s.hon dolwy

A STUDY OF COLLEGE STUDENTS' CONSTRUCT OF PARAMETER PASSING

IMPLICATIONS FOR INSTRUCTION

by

Sandra Kay Madison

A Dissertation Submitted in
Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Urban Education

at

The University of Wisconsin-Milwaukee

December 1995

ES

BEST COPY AVAILABLE

PfRMIs,ciI Tc, RI ppot)0(1- I HIS
z IA HI I N

Sandra Madison

II 11-If LDULA
14 .1 PI(

A STUDY OF COLLEGE STUDENTS' CONSTRUCT OF PARAMETER PASSING

IMPLICATIONS FOR INSTRUCTION

by

Sandra Kay Madison

A Dissertation Submitted in
Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Urban Education

at

The University of Wisconsin-Milwaukee

December 1995

Major Profe gnature Date

Graduate School Approval

ii

3

Date

A STUDY OF COLLEGE STUDENTS' CONSTRUCT OF PARAMETER PASSING

IMPLICATIONS FOR INSTRUCTION

by

Sandra Kay Madison

The University of Wisconsin-Milwaukee, 1995
Under the Supervision of Henry S. Kepner, Jr.

After reaching a peak in the early 1980s, student interest in computer science and

information systems has declined dramatically. When coupled with increased industry

demand for informatioa systems professionals and higher than average salaries, the

decline is especially troublesome. The ..:omputer Information Systems program at a

midwestern state university mirrors the problems reported by other sources. Attrition in

the programming courses is high, and students, especially those from other disciplines

taking the initial programming class as a service course, are often less than successful.

Thus it is important to discover the factors of the computer programming course that

dishearten students and discourage them from pursuing a computing career.

Parameter (argument) passing is the mechanism by which various program modules

share information in a complex program. Without parameters, there is no genuine

programming. Nevertheless, the computer programming instruction literature reveals a

,

virtual absence of attention to the construct. This was a study of novice programmzrs'

understanding of the parameter construct.

The study used a multi-case qualitative design. The bulk of the data was collected

from interviews with eight college students enrolled in a state university introductory

computer programming course. Observations of the programming instruction, interviews

with the course's instructor, and related student work provided additional data.

Among other findings, the study revealed that the natural-language meaning of some

computer terminology caused problems and that most students' understanding of the

parameter construct was fragile at the conclusion of their introductory course.

Furthermore, it found that students' procedural knowledge (ability to construct modular

programs that incorporate parameters) generally surpassed their conceptual knowledge

(understanding of the parameter construct and of programs that incorporate the

construct). The study also divulged that students who harbored fundamental

misconceptions of the parameter process could, by make seemingly innocuous

adjustments to procedure heading lines, construct programs that produced the correct

answer. Moreover, concrete representations, collaboration in a structured laboratory

environment, focused completion-type exercises, and elaboration appeared to foster

success.

(4-,Prze
ajor Prof. sor (Signat Date

iv 5

© Copyright by Sandra K. Madison, 1995

. All Rights Reserved

ACKNOWLEDGEMENTS

I have often remarked that if this degree were divided among all the people who

helped make it happen, the pieces would be minuscule. I thank each one of them, and I

hope I do not offend those who are not named individually.

I first thank my husband, Bob, and my daughters, Nicole and Amy, for their support.

Eight years ago when I undertook this quest, they were forced to redefine the words

"wife" and "mother." I am indebted to my good friends, David and Lee Allen and

William and Susanne Gay, who unhesitatingly shared their homes and their lives during

the many semesters of my commute.

I am grateful for the support of my professional colleagues. I especially thaiik

William Thompson who gave me my start in education, Emery Babcock who encouraged

me to develop my "educatorship," my colleague (known as Professor Collier) who pilot

tested some of the instruments for me, and my department chairperson, William Wresch,

whom I regard as my mentor. I am particularly indebted to the colleague, known

throughout the paper as Dr. Greene, who allowed me to research in his class.

I thank my committee members, Derek Nazareth, Donald Neuman, and John Zahorik

for their support and encouragement. Without that support and encouragement, I surely

would have faltered. I thank my advisor, Henry Kepner, who supervised this project and

guided my doctoral program from its inception.

Finally, I thank the wonderful students who served as the subjects in the study. They

willingly shared their time and their thoughts, recognizing that their only reward would

be the knowledge they helped improve instruction for future programming students.

vii

Table of Contents

Approval Page

Abstract iii

Acknowledgements vi

Table of Contents viii

Lists of Figure and Tables

Chapter I. INTRODUCTION 1

Problem 1

Factors of Success 4
Cognitive Style 6
Technical Information 8
Purpose of the Study 19

Chapter II. LITERATURE REVIEW 20
Framework: Constructivism 20
Theoretical Bases of the Study 22
Related Research Literature 37

Chapter III. METHODOLOGY 53
Introduction 53
General Design 54
Setting 57
Subjects and Sampling 58
Data Collection Procedures 64
Data Preparation 84
Data Analysis 86
Trustworthiness 89

Chapter IV. RESULTS 91

Introduction to the Case Study Reports 91

Case Study : Carol 92
Case Study: Carl 100
Case Study: Amy 107
Case Study: Sammy 119
Case Study: Sondra 135
Case Study: Steve 149
Case Study: Moe 168
Case Study: Jason 180

6/Cii

Chapter V. DISCUSSION
Research Questions
Findings and Implications of the Study
Limitations of the Study and Future Directions

Bibliography
,

Appendices
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

A
B
C
D
E
F
G
H
I

J
K
L
M
N
0
P

Q
R
S
T
U
V

Instructor Informed Consent
Participant Informed Consent
Background Survey
Excerpt from Inventory of Piaget's Developmental
Laboratories 7 and 9
Banner and Revised Banner Assignments
Burger Queen Assignment
Parameter-related Examination Questions
Excerpt from Textbook Coverage of Parameters
Participant Interview One Protocol
Participant Interview Two Protocol
Task 1
Participant Interview Three Protocoi
Task 2
Task 3
Task 4
Instructor Interview One Protocol
Instructor Interview Two Protocol
Payroll Program Simulation
Revised Leestma and Nyhoff Excerpt
Payroll Program
Task 4 Revised

197
197
225
231

233

246
246
249
252

Tasks 255
261
272
276
279
284
286
287
289
290
291
292
293
294
295
296
298
302
304

VITA 311

List of Figures

Figure 1. Modular Pascal program that uses simple parameters 10

Figure 2. Depiction of Jason's variable parameter association 193

Figure 3. Depiction of parameters during execution of Display Output 299

Figure 4. Depiction of the parameters as CalculateSalary begins execution 300

Figure 5. Depiction of the parameters as the execution of
Calculate Salary completes 300

Figure 6. Depiction of parameters after execution of CalculateSalary 300 .

List of Tables

Table 1. Participant Profiles 63

Table 2 Descriptions of Variable 198

Table 3. Participants' Final Grades 222

xli

CHAPTER I

INTRODUCTION

Problem

After reaching a peak in the early 1980s, student interest in computer science and

information systems has declined dramatically (Lockheed & Mandinach, 1986). In

1983, more than 10% of American high school students chose computing fields as their

intended college major; however, this interest dropped to 7% by 1985 (Lockheed &

Mandinach, 1986) and continued to plummet during the early 1990s (Mawhinney, Cale,

& Callaghan, 1990).

Moreover, national studies show that female and minority representation in

computer-related majors echoes the pattern of women and minorities in mathematics and

science; generally both groups are under-represented. Computing, like its sister

disciplines, has traditionally been the domain of Euro-American males. The American

Association of University Women (1992) report, How Schools Shortchange Girls, states

the situation succinctly:

A well-educated work force is essential to the country's economic
development, yet girls are systemath:ally discouraged from courses of
study essential to their future employability and economic well-being.
Girls are being steered away from the very courses required for their
productive participation in the future of America, and we as a nation are
losing more than one-half of our human potential. By the turn of the
century, two out of three new entrants into the work force will be women
and minorities. This work force will have fewer and fewer decently paid
openings for the unskilled. It will require strength in science,
mathematics, and technology. (p. v)

12

2

Although Linn and Songer (1991) echo the concern with female under-representation in

mathematics and the sciences, the authors contend that "by far the most serious issue . . .

is that far too few students altogether are being attracted to mathematics, science, and

technology" (p. 409). When the declining technology interest is coupled with increased

industry demand for information systems professionals and higher than average salaries,

it is especially troublesome (Mawhinney et al., 1990).

The Computer Information Systems (CIS) program at a midwestern state university,

which will be referred to as State University throughout this paper, mirrors the problems

reported by other sources. Although females currently comprise more than half of the

university's student population, only 26% of the CIS students are women. (As students

of Caucasian heritage comprise the great majority of the population of this university,

the picture relative to minority enrollment at State University is less clear.) Moreover,

enrollment in the CIS major and/or minor at this university, reported at 381 in 1986-

1987, fell to 294 by 1990-1991 and continued to drop through the early 1990s. Attrition

in the programming courses is high, and students, especially those from other disciplines

taking the initial programming class as a service course, are often less than successful.

Unfortunately, the Deimel group (1983) observation that "drop out rates are high;

studen;s feel overworked; and many of them, even those who eventually pass, seem

perpetually 'lost' in their first course" (p.12) seems all too often true.

Thus, it would seem there is reason to be concerned about the current enrollment

patterns in the computing discipline. Technological skills will become increasingly

3

important as our country enters the 21st century. Lucrative professional opportunities in

information systems await qualified applicants. In light of the high percentage of White

males currently employed in the field and national concern with affirmative action,

businesses continue to seek out qualified women and minorities. In spite of

acknowledged career opportunities and known financial advantages, interest in the

computing sciences continues to decline. It is important, therefore, to determine what

factors are driving students away.

Many students find college-level computer programming courses demanding, and

attrition rates in those courses are high. Lamenting a high mortality rate of subjects in a

study of computei programming students at the University of Saskatchewan, Greer

(1986) described the problem as "an unfortunate but inevitable consequence of the nature

of university introductory computei science courses" (p. 219). Hostetler (1983),

speaking of programming students at the University of Illinois at Urbana-Champaign (an

institution with high admissions criteria) also noted the broad range of student

programming abilities. Others (Deimal, Hodges, & Moffat, 1983) have observed

students' "invariable lack of intuition" (p. 11) about the natur: of programming.

Various authors offer reasons why students find programming courses difficult. Pea

and Kurland (1985) assert that programming requires the programmer to transform an

ill-defined problem into a well defined one and then solve it. Perkins, Schwartz, and

Simmons (1988) first dismiss the notion that programming is not hard to learn, but

merely poorly taught. They then propose that programming is both problem-solving

14

4

intensive and precision intensive. As an example, Perkins et al. contrast a 90% correct

program with a 90% spelling test. The spelling test, they say, likely earns the student an

'A'. On the other hand, they suggest that a 90% correctly coded program will not

produce an acceptable outcome, will probably make the debugging (finding and

correcting errors) task extremely demanding and frustrating, and will almost certainly

not earn an 'A'. Deimel et al. (1983) and Joni and Soloway (1986) remind programming

instructors that not only do teachers expect programs to work, they expect them to be

robust, user-friendly, well-documented, modifiable, and so on: an undeniably difficult

task. Hancock (1988) summarizes the problem with the observation that teaching and

learning computer programming at the introductory level are difficult, that many

students have had unrewarding experiences and come away believing " 'I'm not the kind

of person who can do this' " (p. 18).

Factors of Success

In light of the preceding observations, it is not surprising that the literature of the

field features numerous reports of studies that attempt to identify factors of computer

programming success. Mathematics-oriented factors have been the traditional fare of

these articles (See Alspaugh, 1972; Chung, 1988; Koubek, LeBold, & Salvendy, 1985;

Kwan, Trauth, & Driehaus, 1985; Leeper & Silver, 1982; Mandinach & Linn, 1986;

Oman, 1986; Sharnw, 1986-87; Stephens, Wileman, & Konvalina, 1981). Many of these

authors found a positive correlation between mathematics factors and programming

success, but others challenged the finding. Numerous other studies have investigated the

15

5

relationship of demographic variables, analogical reasoning ability, spatial ability,

college grade-point average, age, gender, high school performance, verbal ability, prior

programming experience, scores on IBM's Programmer Aptitude Test, and semester in

school to programming success (Bauer, Mehrens, & Vinsonhaler, 1968; Clement,

Kurland, Mawby, & Pea, 1986; Fowler & Glorfeld, 1981; Greer, 1986; Hostetler, 1983;

Johnson & Johnson, 1991; Kagan, 1988; Mazlak, 1980; Newstead, 1975; Sharma, 1986-

87; Wileman, Konvalina, & Stephens, 1981).

Other factors may determine a student's likelihood of success with computer

programming. People classified as Introvert-Sensing-Thinking type (students who tend

to concentrate quietly, pay attention to details, have a talent for memorizing facts, and

demonstrate perseverance) as defmed by the Meyers-Briggs Type Indicator tend to do

better in computer science courses than other personality types (Sharma, 1986-87). In

addition Stevens (1983) and Cavaiani (1989) found that people with a field independent

cognitive style were more successful than those who were field dependent. Johnson and

Johnson (1991) also found positive correlations with neuroticism and introversion.

Although some of the aforementioned studies did find positive correlations between

the named factors and computer programming ability, the studies generally feature some

shortcomings. First, most of the studies are atheoretical. Sheil (1981), commenting on

the atheoretical nature and weak methodology of much computer programming research,

noted the extreme difficulty inherent in designing a meaningful experimental study of

such a complex cognitive skill as computer programming.

1 6

6

Next, the studies attempted to correlate programming success with programmers'

background variables. While these factors may assist advisors counseling students

regarding the selection of programming classes, they do not help the classroom teacher

very much. Teachers cannot alter their students' age, gender, verbal ability, high school

rank, cognitive style, or other background data. Howell (1993), who was mainly

concerned with women's persistence in an undergraduate computer science major, noted

the limitations of background-related studies, and called for studies that would describe

the factors that shape the culture of computer science classes and individual students'

responses to those factors.

Finally, the quantitative studies do not attempt to explain the students' conceptions

or misconceptions. From a study that related computer programming success with such

cognitive characteristics as spatial ability, field independence, visualization ability,

logical reasoning, and direction following, Foreman (1990) concluded, "One clear

Listructional implication is that alternate modes of instruction should be available" (p.

60). Teachers need research that informs the instructional and curricular decisions over

which they have control. As Spohrer and Soloway (1986) report, "The more we know

about what students know, the better we can teach them" (p. 624).

Cognitive Style

Researchers (Cheny, 1980; Johnson & Johnson, 1991) investigating personality

variables regularly find positive correlations between programming ability and people

with an analytic cognitive style. Those with an analytic style approach decision-making

1 7

7

in a structured manner, try to reduce problems to a set of underlying causal relationships,

build models, choose optimal alternatives, and do mathematical analysis. People with a

heuristic style, on the other hand, emphasize common sense, intuition, trial-and-error, ad

hoc sensitivity analysis, "muddling through," use of feedback to adjust the course of

action, and satificing, that is, choosing the first reasonable alternative that presents itself

(Cheny, 1980).

Hence, whether the attribute is called formal reasoning, or hypothetico-deductive

thinking (Lawson, 1985), or working memory capacity, or cognitive style, the literature

documents the notion that some groups of adults will fmd themselves more comfortable

than others with computer programming. Furthermore, the differences cannot be

dismissed on the basis of intelligence alone.

In contrast, other research (Turkle & Papert, 1990) has documented the

programming success of students with a concrete ori:euristic learning style. Using the

term "planner" tc refer to people for whom the top-down, structured, analytical approach

is natural, Turkle and Papert classify people who think concretely as "bricoleurs."

Bricoleurs, the authors say, construct "theories by arranging and rearranging, negotiating

and re-negotiating with a set of well-known materials" (p. 136). According to Turkle

and Papert, bricoleurs prefer a transparent style of program construction, staying in touch

with the details of the program at all times. Planners, on the other hand, prefer an

opaque "black-box" approach, in which procedural abstraction hides the program details.

8

Turkle and Papert (1990), who agree with Piaget's view of the "diverse nature of

different kinds of knowledge" (p. 129), disagree with Piaget's description of the diverse

forms as stages, viewing the "different approaches to knowledge as styles, each equally

valid on its own terms" (p. 129). These authors suggest that people who approach

programming in a nontraditional (concrete) way are discouraged by the dominant

computer culture. These students are not computer phobic; they do not stay away

because of fear or panic. The way of thinking perpetuated by the formal, rule-driven,

hierarchical approach to computer programming, however, forces them to interact in a

fashion that is incompatible with their learning style. Rules do not exclude them from

the computer culture; the way of thinking makes them reluctant to join.

Thus, it becomes difficult to conclude a priori that computer programming per se is

innately foreign to some people. Were such a conclusion the case, the low enrollment of

females and minorities and the difficulties students experience might be considered

beyond pedagogical control. The goal instead must be to discover what the novice

programmer's conceptions are and in what ways, if any, the conceptions of those with a

contextual or concrete cognitive style differ from those with a more analytic style. In

this way, it may become possible to create a computer programming classroom climate

that is less hostile to the contextual thinker.

Technical Information

This section of the chapter introduces technical information that is central to the

study reported in this paper. A brief example program follows adiscussion of structured

1 9

programming, and pertinent technical terms are defined in the glossary that concludes

the technical information section.

Structured Programming

Background. When investigating student programming activities, it is important

to begin with "structured programming." The structured programming paradigm

emerged during the 1960s as a way of reducing program complexity. Prior to that time,

programs were developed using code that lacked structure, a programming style known

as "spaghetti code." Dramatic hardware advances were making it possible to automate

increasingly sophisticated applications, and commercially developed spaghetti-code

programs were increasingly being placed in production with undiscovered errors. In

1964, mathematicians Guiseppe Jacopini and Corrado Bohm proved that any program

logic could be expressed using only three control structures: sequence, iteration, and

selection (Nance & Naps, 1989).

The first time structured programming methods were applied to a large scale

application (IBM Corporation's New York Times Project) resulted in greatly increased

programmer productivity and a phenomenally low error rate (Nance & Naps, 1989).

Faced with evidence of success and due largely to the efforts of Edger Djikstra, the

professional programming community embraced the structured programming paradigm.

Since then, students enrolled in information systems or computer science courses have

been taught using a structured programniing language. Pascal, a programming language

10

developed by Nicklaus Wirth specifically to teach structured programming, is one such

language.

Modularity. In addition to incorporating the three aforementioned program

control structures, structured programming languages must support modularization.

Nance and Naps (1989), for example, defme structured programming as "the process of

developing a program where emphasis is placed on the correspondence between

independent modules" ;:p. 269). They continue:

Structured programming is especially suitable to large programs being
worked by teams. By carefully designing the modules and specifying
what information is to be received by and returned from the module, a
team of programmers can independently develop their module and then
have it connect to the complete program. (p. 269)

A module is a collection of programming statements which work together to perform a

single logical function, and modularity is the first principle of structured programming

(McIntyre, 1991, p.62). Modules are linked together to form programs; the connections

or links between these modules are specified in parameter lists (McIntyre, 1991; Nance

& Naps, 1989).

Variables. An introduction to variables at this point is fundamental to any

discussion of parameters. Leestma and Nyhoff (1993) liken variables to mailboxes.

Their glossary defines a variable as "an identifier associated with a particular memory

location. The value stored at this location is the value of the variable, and this value may

be changed during program execution" (p. 967). Within a program, exactly one memory

location corresponds to a variable, and a variable can hold only one value at a time.

21

11

McIntyre (1991) points out that this is only reasonable; it would be impossible for a

programmer to keep track of variables and their values otherwise.

McIntyre (1991, p. 27) provides a pedagogic view of the term variable. He first

suggests that variables are the single most difficult concept for many naive programmers.

Distinguishing between the terms changing and changeable, McIntyre proposes that a

changeable value is one that is determined rather than arbitrary. In common usage, he

reports, people employ the term "variable" to stand for something that changes, often in

an uncontrolled or unpredictable way. He offers that if most people are asked to give an

example of a variable, they might respond "the weather." This, he says, is not a useful

concept in programming, where the value of a variable is changed in a controlled

manner. McIntyre further posits that beginners have difficulty distinguishing between

the name of a variable, which is constant, and a variable's value, which is changeable.

Invocation. In addition to modularity and variables, a third important concept in

structured programming is "invocation." In a modular program, control of the computer

is passed to a module (Pascal procedure) when the module is invoked or called. The

module retains control until its task is completed; then control is returned to the original

or calling module (McIntyre, 1991). Invocation involves passing information between

modules, and parameters are the mechanism by which information is passed between

program modules (Leestma & Nyhoff, 1993; Mercer, 1992). One great benefit of

parameter (argument) passing is that it allows different modules to refer to the same

variable [memory location] with different names (McIntyre, 1991).

22

12

Significance of parameters. BASIC, the programming language often taught to

pre-college students, typically does not support parameter passing. In other words, all of

its variables are "global" (requiring all modules to refer to a variable by the same name).

For large programs developed by teams of programmers, the requirement is

unreasonable. McIntyre (1991) offers that it is this feature, more than any other, which

limits BASIC's usefulness as a programming language, claiming, "Of all the reasons for

BASIC not being taken seriously as a programming language, the fact that most versions

are restricted to global variables is the most compelling" (p.46). Contrasting the power

of Pascal with the limitation of BASIC, the author continues:

Pascal, on the other hand, is typically written so that all variables are
local, and their names are restricted to the particular module in which they
are defined. Because of this, each module or subroutine can be viewed as
an independent unit. Values for vaiables can be passed as parameters for
the modules or subroutines, and they need not be identified by the same
variable name. When necessary, Pascal does allow for the assignment of
values to global variables. Local and global variables are an integral part
of Pascal, and they are one of the compelling reasons for Pascal being a
favorie language for proponents of structured programming. (p.46)

Parameter definitions. The Cooper and Clancy (198:3) glossary defmes

parameter as follows:

In general, a particular value that is substituted for a general term. In
Pascal, a parameter is a variable created in the parameter list portion of a
subprogram: a value-parameter is a local variable whose starting value is
passed as an argument to the subprogram, and a variable-parameter is a
local re-naming of a (relatively) global variable. These are also called
formal parameters. (p. 572)

2 3

13

In the body of their book, the authors of the well-known text note that changing a value

parameter has no effect on its actual parameter (argument). Conversely, "changing the

variable parameter does affect its argument, since they're exactly the same variable" (p.

72). The Cooper and Clancy defmitions of value and variable parameters provide the

basis for what this paper will refer to as the copy versus the shared memory-location

view of parameter passing.

In contrast, Leestma and Nyhoff (1993),.authors of the text used by the students in

the current study, define a valu t parameter as a "formal parameter of a subprogram that

is used to pass information to the subprogram but not to return information from it" (p.

967) and variable parameter as "a formal parameter of a subprogram that is used both to

pass information to, and return information from, the subprogram" (p. 967). The

Leestma and Nyhoff definitions provide the basis for what this paper will refer to as the

one-way versus two-way communication view of parameter passing.

Taxonomy of parameter-using programs. According to Derek Nazareth

(personal communication, September 1994), programs may be categorized according to

the following taxonomy in terms of parameter passing:

Programs without modules; they hence have no parameter passing.

Modular programs that use global variables; they hence have no parameter passing.

Modular programs that pass simple parameters.

Modular programs that pass structures composed of the same type of elements (arr4s).

Modular programs that pass structures composed of different types of elements (records).

24

14

Modular programs that pass pointers to simple data elements.

Modular programs that pass pointers to structures.

Modular programs that pass control data.

The study described later in this paper reports on students learning to program using

simple parameters. The decision to study that category of programs was made because

programs at the simple end of the continuum (those with no parameters) are useless code

in all but the most trivial of circumstances. On the other hand, however, students must

learn to use simple parameters before they can use more sophisticated techniques.

Summary. Structured programming requires modules, variables, and

parameters. Without parameters, there is no real programming, yet the literature reveals

a virtual absence of attention to the construct of parameter passing. It is the view of

some programming instructors that no single construct poses greater problems for the

novice programmer. For example, James Gifford, a professor of computing at the

university in question, is one such instructor. When asked about the introductory

programming course he regularly teaches, he said, "The heart of the course is the notion

of parameters. Conceptually, it's the hardest thing for the students to get" (personal

communication, October 1994). Thomas Naps, who developed an algorithm

visualization program especially designed to assist novice programmers to understand

computer science concepts, concurred (personal communication, August 1991).

Pascal Example

A brief example may help clarify terminology. The example, shown in Figure 1,

takes advantage of the Turbo Pascal extension, which allows the module declarations to

precede the main module variable declarations.

25

15

PROGRAM CalculateVolume0fARectangularSolid;

PROCEDURE Getthput (VAR Dimension: Real);

BEGIN
Write (`Please enter a dimension ----->
ReadLn (Dimension)

END;

Variable Parameter

Value Parameter

PROCEDURE CalculateVolume (Len,
Wid,
Dep : Real;

VAR Volume : Real);

BEGIN
Volume := Len * Wid * Dep

END;

PROCEDURE Display Output (Answer: Real);

BEGIN
WriteLn ("The volume of the solid is ', Answer : 8 : 2)

END;

VAR
Volume : Real;
Length,
Width,
Depth : Real;

BEGIN
GetIn ut (Depth);
GetInput (Width);
Getlnput (Length);
CalculateVolume (Length, Width, Depth, Volume);
DisplayOutput (Volume)

END.

Formal Parameters

Procedure Declaration

Main Module Variable Declarations

Procedure Call

Actual Parameters

Figure 1: Modular Pascal program that uses simple parameters.

2G BEST COPY AVAILABLE

16

Glossary of Technical Terms

Unless otherwise noted, the following definitions are taken from Leestma and

Nyhoff (1993), the textbook used by the students reported in this study.

Term Definition

Actual Parameter A parameter that appears in a procedure/function reference

and is associated with the corresponding formal parameter

in the procedure/function heading (p. 957).

Formal Parameter A parameter used in a subprogram heading to transfer

information to or from the subprogram (p. 961).

Global Variable A variable that is known throughout the program (Horn,

1995, p. 127.

Iteration (repetition) A control structure in which one or more statements are

Structure repeatedly executed (p. 965).

Local Variable A variable whose scope is a subprogram (p. 962).

Modular A programming strategy in which major tasks to be

Programming performed are identified and individual

procedures/functions (called modules) for the tasks are

designed and executed (p. 963).

Parameter A variable that is used to pass information between

program units (p. 964).

27

17

Term Definition

Procedure Reference A Pascal statement that is used to call a procedure (p. 964).

(Call, Invocation) Activates the named procedure. Execution of the current

program unit is suspended, and execution of the procedure

begins. When the end of the procedure is reached,

execution of the original program unit resumes with the

statement following the procedure statement (p .177).

Selection Structure A control structure in which ow; of a number of alternative

actions is selected (p. 966).

Sequential Structure A control structure in which the statements comprising the

structure are executed in the order they occur (p. 966).

Structured Program A program that is designed using only the three basic

control structures: sequential, selection, and repetition

(p. 966).

26

Term Definition

Value Parameter A local variable, used only in the subprogram, whose

starting value is given by an argument in the subprogram

call. Changing the value parameter has no effect on its

argument (Cooper & Clancy, 1985, P. 72).

Formal parameter of a subprogram that is used to pass

information to the subprogram but not return information

from it (p. 967).

Variable An identifier associated with a particular memory Iccation.

The value stored in the location is the value of the variable,

and this value may be changed during program eicecution

(p. 967).

Variable Parameter An alternate name, meaningful only in the subprogram,

for the variable that's supplied as its argument in the

subprogram call. Changing the variable parameter does

affect its argument, since they're exactly the same variabl

(Cooper & Clancy, 1985, p. 72).

A formal parameter of a subprogram that is used both to

pass information to, and return information from, the

subprogram (p. 967).

29

18

19

Purpose of the Study

The purpose of this study is to describe a novice programmer's understanding of the

construct of simple parameter passing, with the ultimate goal of improving the teaching

of the construct. The study will specifically address the following questions.

1. What action knowledge does the novice programmer bring to the study of parameter

passing?

2. What intuitive conceptions does the novice programmer possess regarding parameter

passing?

3. How does the novice express principled understanding of the parameter passing

construct?

4. What is the relationship between a novice's conceptual and procedural knowledge of

parameter passing?

5. What impact does a student's understanding of parameter passing have on the eventual

success in an introductory programming course?

6. What impact does a student's understanding of parameter passing have on his or her

disposition towards computer programming?

The process of learning and understanding parameter passing is built on one's ability

to construct personal realities. Thus it is necessary to look at currently accepted theories

of how learners construct knowledge. Those theories introduce the second chapter.

30

20

CHAPTER II

LITERATURE REVIEW

Framework: Constructivism

Constructivism contrasts the idea of socially constructed meanings with the

objectivist view that meaning exists separately from the act of interpretation.

Knowledge, to the constructivist, is not an "inert, acquirable commodity" (Sack,

Soloway, & Weingrad, 1993, P. 387) that exists independently, waiting (in a lecture or a

text for example) to be discovered or communicated. Constructivists believe that people,

rather than being empty vessels, fashion their own meanings for the phenomena they

encounter. Learners, using the sum total of their life experiences, construct their own

senses of reality. Learning proceeds from the inside out; seeds in the form of percepts are

acquired and cultivated from. within. Learners select and interpret new information in

terms of what they already know (their existing schemas), and they change and

reorganize their existing knowledge (schemas) in terms of the new knowledge (Gagné,

Yekovich, & Yekovich, 1993; Linn, Sloane, & Clancy, 1987; Neuman, 1993; Tuovinen

& Hill, 1992).

A constructivist view underscores the social nature of learning. Bruner (1973)

cautions, "The psychologist or educator who formulates pedagogical theory without

regard to the political, economic, and social setting of the educational process courts

triviality and merits being ignored in the community and in the classroom" (p. 115).

Citing John Seely Brown, Sack et al. offer that "learning is at core a process of

31

21

enculturation, of entry into a culture or community of practice" (1993, p. 387). The

authors suggest that until recently, problem solving has focused on individuals "de-

contextualized" from their social fabric. In these authors' view, those involved in

activities of knowledge production (science, for example) and knowle,Ige reproduction

(education, for example) are concerned with recruiting, persuading, and enculturating

others. According to this theory, learning involves moving into a community or culture

of practice.

Constructivism is based on the interpretivist philosophy of social reality as mind-

dependent and symbolically constructed. In this philosophical view, reality is socially

and historically conditioned and value laden. There is no single point of view; reality

depends on the perceptions, views, and purposes held in community with others. Truth is

a matter of credibility; it is what those involved agree it is. Valid is a label applied to an

interpretation with which one agrees (Hatch, 1985; Smith & Heshusius, 1986).

Arguing for the interpretivist philosophy, Hatch (1985) observed that whether the

universe is ordered can neither be proven nor disproven. Regularity and statistically

significant predictability, according to Hatch, neither explain events nor prove that events

will always occur. The interpretivist seeks to understand how people define reality, for it

is that definition that governs people's behavior and their interaction with the universe.

Associated with the interpretivist or phenomenological philosophy is the qualitative

research paradigm. The strength of qualitative research resides in its potential to generate

rich, detailed process data. Typically, qualitative research is inductive, process and

32

22

discovery oriented, uses subjective measurement, employs the inquirer as the instrument,

is non-generalizable, and reports the insider's perspective. Qualitative research seeks not

to predict, but to understand, and to find meaning in the social phenomena being

examined. This study adopted a constnictivist zerspective and employed the qualitative

research methods associated with the view.

Theoretical Bases of the Study

The study reported in this paper draws on a variety of theories. The work of

cognitive psychologist John Anderson is included, as it often frames computer

programming research. Because of the abstract nature of the computer programming

activity, Jean Piaget's work is central. Lev Vygotsky's social interactionist theory

provides a foundation for the cognitive apprenticeship approach that is currently

receiving much attention in the computer science education community. The mental

models literature, combined with the cognitive-style research reported in the first chapter,

furnishes a basis for understanding the varied ways learners process information. Finally,

Linn and Songer (1991) supply a model for conceptual change that seems especially to

pertain to novices learning to program.

Cognitive Psychology: Anderson

Although cognitive psychologist John Anderson's (1983) ACT* (Adaptive Control

of Thought) theory might be considered more positivist than constructivist, Lawson et al.

(1991) use it to frame their constructivist hypothesis. Irrespective of the philosophy that

3 3

23

it embodies, Anderson's theory is important for this study because it frames so much of

the computer programming literature.

Anderson theorizes that information is received by sensory receptors and registered

in the central nervous system in immediate memory, where information is held for a very

brief time. Then, by a process of selective perception, a limited amount of information is

transP.rred from immediate to working memory. Working memory, which in humans is

extremely limited, corresponds to awareness. Information that is not lost is transferred

from working memory to long-term memory, which in humans is virtually inexhaustible.

Long term memory is divided into declarative memory and procedural memory.

Procedural knowledge is knowing how to do something (skill knowledge) while

declarative knowledge is knowing about something, for example conceptual or factual

knowledge (Gagne et al., 1993).

Skills, which are stored as production or IF . . . THEN, systems (IF declarative

knowledge THEN action) begin as declarative knowledge. In early stages of skill

acquisition, skill behaviors are "interpreted" one step at a time, making large demands on

working memory. As skills are practiced, the steps become larger, and the demands on

working memory lessen. Finally, after much practice, some skills (priMarily basic skills)

become automated (compiled) and are performed without conscious thought (Gagne et

al., 1993).

Complex skill (computer programming, for example) is composed of declarative or

conceptual knowledge, automated basic skills, and strategies or non-automated skills

34

24

(Gagné et aL, 1993). According to Anderson's theory, practice is a crucial component of

knowledge compilation. Thus, ACT* is seen as a theory of learning by doing. The

practice component of the theory is very appealing, since the programming community

universally attests to the notion that learning to program requires many hours of practice.

Piagetian Theory

Piaget's constructivism. Piaget theorized that intellectual functioning is

characterized by the complementary processes of adaptation and organization.

Adaptation, the mind's ability to alter the organization of the structures or schemas, is

composed of two subprocesses, assimilation and accommodation. Assimilation is the

process whereby new knowledge is interpreted in terms of current understandings

(schemas or stnictures). If the new knowledge provokes conflicts, contradictions, or

incompatibilities, a state of disequilibrium is invoked. In order to return to equilibrium,

current understandings (schemas or structures) are transformed to accommodate the new

understanding and bring about a return to equilibrium. Organization is a self-regulating

mechanism that provides for a balance between assimilation and accommodation, and

makes adaptation possible. Learning is thus the continuous process of active assimilation

and accommodation, according to Beilin (1992) and Neuman (1993).

To restate, individuals need to form their own hypotheses and keep trying them out

through mental actions and physical manipulations: observing what happens, comparing

their findings, asking questions, and discovering answers. When objects and events resist

the working model an individual has mentally constructed, he or she is forced to adjust

35

25

the mental model to account for the new itfformation, reject the new information, or

modify it artificially. The mental models (schemas) are continually reshaped, expanded,

and reorganized by new experiences.

Piaget's stage theory. Piaget's stage theory, at least a later version, is also

important to any discussion of the cognitive demands of computer programming. As

widely documented, Piaget first theorized that all children pass through certain

predictable stages culminating in the stage of formal operations. Certain characteristics

of the formal operations stage are analogous to the skills believed necessary for computer

programming (Bastian et al., 1973; Cafolla, 1986-87; Dalbey & Linn, 1985; Fischer,

1986; Kurtz, 1980; Madison & Gau, 1993; Nachmias, Mioduser, & Chen, 1986). Faced

with mounting empirical evidence contradicting the theorized universal distribution of

formal thinking in adults (Lawson, 1985; Mitchell & Lawson, 1988), Piaget later

acknowledged that "formal operations may not be attained by all people in all areas of

judgment" (cited in Shaldee, 1979, p. 339). Lawson states unequivocally, "Many people

never become formal thinkers. This seems crystal clear" (p. 591).

Fischer (1986) elaborates on components of an introductory Pascal course that

require formal thought. Central to this paper is the attention the author devotes to the

concept of top-down design (of which parameters are a crucial aspect). Fischer quotes

from Dale and Orshalik, authors of a frequently used Pascal textbook:

We start by breaking down the problem into a set of sub-problems. This
process continues until each sub-problem cannot be further divided. We
are creating a hierarchical structure, also known as a tree structure, of
problems and sub-problems called functional modules. (p. 11)

36

26

In order to create such a hierarchy, Fischer contends, the programmer must conceive of

all possible steps and the order in which they occur. Once the student can no longer rely

on concrete experience with a problem, breaking the program down into component parts

requires formal thought and an understanding of interrelated, but unstated components.

Although Fischer fails to mention parameters, it is important to remember that that

parameters are the communication links that connect the functional modules.

Vygotsky-related Theory

Zone of proximal development. According to Wertsch and Tulviste (1992),

Vygotsky posited that all higher order mental functions begin in social interaction and are

only later internalized psychologically. Any function, he theorized, appears in a child's

development twice, first socially and then individually. In conjunction with this theory,

Vygotsky is widely known for his concept of the zone of proximal development (ZPD).

Measured in mental age equivalents, the ZPD is the difference between a child's potential

and actual development levels in any given domain-specific context. The upper limit of

the zone (potential development level) is the child's problem-solving ability given the

assistance of an adult or more able peer. The lower limit is the level at which the child

can function independently (actual development level). In this view, an individual's

potential development level becomes more important than the actual. Learning is seen as

an interpersonal, dynamic event depending on two minds, one better informed or more

37

27

skilled than other. Learners appropriate for themselves modes of thinking that they

observe in an expert (or more able peer), while the duo jointly solves a problem.

Linn and Songer (1991) define the ZPD as the "range of all possible cognitive

changes that might result for students with a given set of initial understandings and

particular learning environment" (p. 382). Effective instruction enables conceptual

change, and the ZPD acts as a guide to determine the point at which instruction would be

the most effective. From this perspective, the only good teaching is that which outpaces

actual development and leads it through the ZPD (Simon, 1987; Tharp & Gallimore,

1989).

Emulating the natural teaching of home and community and the everyday

interactions of domestic life, the teacher's role becomes one of supporting or guiding, and

facilitating learning and development, as opposed to the transmitting of knowledge.

Based on the assumption that learners can first do things in a supportive context and later

independently in a variety of contexts, the teacher provides a "scaffold," assistance that

enables the learner to move to the next level of independent functioning (Lemerise,

1993). The mechanism for passing cognitive skill from teachers to pupils is the transfer

of responsibility for reaching a current goal, whatever the goal might be. The venue for

transfer is ZPD (Belmont, 1989).

Cognitive apprenticeship. Embodying a Vygotskian view of learning, cognitive

apprenticeship is an instructional paradigm based on the time-honored tradition of

novices learning a trade by working closely with the masters (Collins, Brown, & Holum,

38

28

1991). Traditional apprenticeship is comprised of four important aspects: modeling,

scaffolding, fading, and coaching. In modeling, the master demonstrates the different

parts of the task, making the processes visible for the student. The master provides

scaffolding or support for the students as they carry out the task, and gradually fades or

removes the support as the novices become more adept and able to assume responsibility.

The coach at this stage oversees the apprentice's tasks, provides hints, evaluates

activities, provides challenges, offers encouragement, and gives feedback. 7 .3

interaction of scaffolding, observation, and increasingly independent practice assists the

apprentice in developing correction and self-monitoring skills, and in integrating

conceptual knowledge with skill (Collins et al., 1991).

Collins et al. (1991) contast traditional apprenticeship with cognitive apprenticeship.

The former, they note, usually involves tangible, physical activity in which the process is

readily observable. In the latter, however, thinking must be made "visible," and special

attention must be given to the methods experts depend on to acquire or use knowledge in

addressing real-life problems.

Modeling, coaching, and scaffolding are the core teaching methods advocated by

Collins et al. (1991). Teachers, they claim, should supplement the core teaching methods

by evoking the students' articulation of their knowledge or problem-solving strategies.

Encouraging students to reflect on and compare their own problem-solving processes

with those of others, and encouraging students to explore on their own can promote this

process. Tazks, the authors propose, must be sequenced so that global skills are stressed

33

29

first (enabling students to develop a conceptual model), and should increase in

complexity and diversity.

Lastly, Collins et al. (1991) address the sociology of the learning environment.

Crucial to their model is the element of situated learning wherein students must

understand the purpose of what they are learning. They must construct knowledge

actively rather than receive it passively, and they must learn the different conditions

under which their knowledge can be applied. Common projects and shared experiences

of students working together in communities of practice, the authors contend, lead to a

"sense of ownership, characterized by personal investment and mutual dependency"

(p. 45).

Mental Models

Mayer (1985) described a user's mental or conceptual model of a computer

programming system as the "conception of the information-processing transformations

and states that occur between input and output" (p. 90). Observing that mental models

vary in their usefulness, he asserted that more useful models assist sophisticated

programming performance. The models also vary in their veridicality, with the more

veridical models matching the operations of the machine's language more closely.

Mayer described a good model as one "that helps novices to successfully perform on

programming problems" (1985, p. 91), and referred to Du Boulay's requirement that

good mental models should be transparent (the internal operations and states should be

visible to the learner).

4 0

30

Comparing the naive conceptions of beginning programmers to the naive

conceptions of students learning science, Mayer (1985) theorized that learning a

programming language involves acquiring several types of knowledge. A beginning

programmer gains knowledge of syntax, learns how to generate a program, and develops

a mental model of the computer system. Reporting on research with BASIC students,

Mayer offered that students with less mathematical experience or lower mathematical

abilities seemed to profit most from direct instruction on a mental model early in their

programming experience. Moreover, high-ability subjects in Mayer's study did not

appear to be hindered by the mental model instruction.

Perkins et al. (1988) described BASIC programmers' knowledge as fragile,

speculating that programming behaviors could not be accounted for simply in terms of

missing knowledge. Basi., i-eir fmdings on such examples as plausible but garbled

commands, the Perkins group offered that students failed to hand-execute the BASIC

commands "with a mental model of the machine in mind" (p. 157), either because the

students lacked a model or neglected to evoke such a model. Attributing the fragile

prograrmning knowledge to the students' lack of a mental model, these authors contended

that a mental model of the computer would allow students to check tentative responses

found in a fragile knowledge base. Citing Mayer's work, the Perkins group advocated

using a visual paper computer, a tbnctional model of the BASIC language.

Norman (1983), in mild contrast to other authors, distinguished between conceptual

and mental models. Conceptual models, he claimed, are developed as tools to help

41

31

understand physical systems; mental m3dels are what actually exist in people's minds to

guide their use of the physical systems. Ideally, conceptual and mental models should

have a direct relationship. Norman concluded that an effective mental model enables the

user to predict the behavior of a target system.

Du Boulay (1986) proposed that even if no effort is made to give novices a view of

the inner workings of a computer, they develop one of their own: a view that may be

impoverished. He wrote that novices may rely on coincidences, and that their models are

often insufficient to explain observed behavior. A desirable conceptual model, he

submitted, has two importsnt characteristics: simplicity and visibility (1989). Moreover,

the notional (or virtual) machine must be built upon the characteristics of the language.

In other words, a BASIC machine would not be the same as a Pascal machine.

Furthermore, the model should be a "glass box," emphasizing the processes that go on

inside the machine, rather than a "black box" that emphasizes inputs, outputs, and a

process without concern for what actually happens (Du Boulay, cited in McIntyre, 1991).

According to McGrath (1990), mental models may take the forms of analogies,

images, or metaphors. Analogies, she proposed, help students understand the relations

among actions. Observing that both novices and experts employ mental models,

McGrath counseled teachers to think carefully about the models they select. The well-

chosen model must be simple enough for students to comprehend and employ, but should

be equally useful to the expert. McGrath noted that good mental models are most helpful

for the developing students, and concluded that witnessing the students' understanding is

4

32

the reward for incorporating carefully selected models. McIntyre (1991), in his textbook

on teaching structured programming, agreed that "the use of models is one of the most

powerful tools of science and technology" (p. 161).

Mayer (1989), reporting on his use of a concrete model of a BASIC computer--

memory scoreboard, input window, arrow pointing to a program list, and an output pad--

summarized the position on mental models with the statement:

These results provide clear and consistent evidence that a concrete model

can have a strong effect on the encoding and use of new technical
information by novices. These results provide empirical support to the

claims that allowing novices to "see the works" allows them to encode in a

more coherent and useful way. When appropriate models are used, the
learner seems to be able to assimilate each new statement to his or her
image of the computer system. Thus, one straightforward implication is:
If the goal is to produce learners who will not need to use the language
creatively, then no model is needed. If the goal is to produce learners who
will be able to come up with creative solutions to novel (for them)
problems, then a concrete model early in learning is quite useful. (p.147)

Linn and Songer Model for Conceptual Change

The three stages established by Linn and Songer (1991) in their model for conceptual

change include action knowledge, intuitive conceptions, and scientific principles. Built

on a constructivist philosophy, the model focuses on the understandings students bring to

a learning situation, their initial conceptions, and the mechanisms that decide the rate of

the constructive process (Linn & Songer, 1991). The authors proposed that some

cognitive change theories are domain-specific while others are domain-general. Some

theories posit revolutionary conceptual changes, and still other theories claim changes are

evolutionary. Linn and Songer proffered an integrated perspective, advising researchers

43

33

to acknowledge that all viewpoints contribute to understanding cognitivechange and

concept development. Posing dichotomies is unproductive for analyzing complex

situations, they claiamed. Since computer programming is unquestionably a complex,

cognitivey demanding situation, this study attempted to follow their lead.

Originally posed for students learning science, the Linn and Songer (1991) three-stage

model holds great appeal as a framework for describing novice programmers' acquisition

of Pascal programming constructs. First, it allows for domain-independent

developmental constraints outlined by the Piagetian-related theories. However, the

model also allows for domain-specific, plan-oriented theories that dominate computer

programming literature. The model allows for evolutionary changes such as increased

working memory capacity or progress through the ZPD, but still acknowledges the "o-

ho!" Certainly students acquire a gradually increasing repertoire of progamming

templates and skills, but they also experience revolutionary changes (Linn, 1992). In

fact, the novice in the pilot study reported in this paper, after struggling extensively to

understand parameter passing, described success as a "mountain-top experience."

Action knowledge. During the first stage of the model (Linn & Songer, 1991),

learners acquire action knowledge. Reminiscent of Piaget's theory of how young

children learn, these authors theorized that learners acquire action knowledge from

action, observation, and unreflective responses to events they encounter. Their action

knowledge summarizes their actual experience.

4 4

34

Although in reality all computer science concepts do find their bases in natural world

occurrences (Nance & Naps, 1989), the gulf between the abstract computer science

concepts and natural world experiences the concepts imitate is wide. Students rarely

learn the concepts using unguided discovery, perhaps because the gap between concrete

life experiences and the abstract programming constructs is just too great to be bridged

without instruction designed to make explicit the connections.

Intuitive conceptions. In the second stage of the model, learners combine action

knowledge into intuitive conceptions, conjectures they make to explain events they

observe. Using a process of reflective abstraction (wherein people combine information

available to them by reflecting on inconsistencies and commonalties), learners ground

their intuitive conceptions in experience and intentionally organize knowledge to make

sense of the world and reduce its complexity (Linn & Songer, 1991). The Linn and

Songer position is in accord with Neuman's (1993) definition of learning, which asserts

that students learn when they realize

that knowledge they have acquired either intuitively or from experience

inadequately or inaccurately explains observed phenomenon. They

recognize the incongruity or inconsistency between their expectations and

the firsthand evidence. They then actively construct a new reality that is

personally understandable and plausible and that fits the new evidence. (p.

94)

However, because students are more likely to base their ideas solely on personal

experience, unguided discoveries often lead to flaws or conceptions that differ from those

of scientists. Although these flaws are generally labeled misconceptions, Linn and

45

35

Songer prefer the term "intuitive conceptions," alleging that it emphasizes the positive

nature of a student's constructive process.

Although research on the development of programming skills is still an "infant field"

(Pea, Soloway, & Spohrer, 1987), the literature is in accord with the Linn and Songer

(1991) position. Studies describing students' misconceptions appear frequently.

Claiming that students actively build a knowledge system of procedural skills and

concepts, researchers have found that, rather than resulting from slips in mechanics of

program construction, most faulty answers arise from systematic application of

knowledge the student already has. The answers make sense when interpreted in terms of

the student's current understanding (Pea et al., 1987).

Linn and Songer (1991) specifically identified the u.se of natural-world terms in

scientific jargon as an inhibitor to the construction of science students' intuitive

conceptions. In consonance, the programming literature also calls attention to the

problems caused by the discrepancy between the technical and everyday meanings of

many computer terms.

Principled understanding. In the third stage of the Linn and Songer (1991)

model, learners acquire scientific principles. This acquisition, the authors hypothesized,

is the result of schooling. It provides students with a reason to abandon their intuitive

conceptions. Learners organize their intuitive conceptions into principles consistent with

those held by experts. However, because there is often a large gap between intuition and

46

36

scientific principles, scientific principles are frequently unattainable through unguided

discovery.

In addition, Linn and Songer cautioned that students abandon construction and resort

to memorization if they are presented with inaccessible principles. It is possible to

speculate that learning to program is cognitively demanding precisely because the nature

of the activity often precludes resorting to memorization.

It is perhaps the instruction characteristic of the model's third stage that makes it

seem especially suitable for describing novice programming conceptions of the parameter

construct. Self-taught (usually BASIC) programmers invariably write programs

composed of unstructured spaghetti code. The structure of the Pascal language (as it is

taught in introduôtory courses) effectively prohibits students from producing spaghetti

code, but it does not force students to write modular programs. Self-taught Pascal

programmers sometimes write one-module programs, but they regularly write programs

that circumvent the parameter construct for communicating information between

modules. Typically, these novices see no reason to abandon their intuitive conception in

favor of the principle consistent with that of expert programmers, and they resist the

change vehemently.

Summary. In short, Linn and Songer (1991) presented a model of conceptual

change that is governed by a constructive process. According to this view, a number of

factors affect the rate or pace of change. Schooling is of primary importance; students do

47

37

not develop principled understanding of science or mathematics [or computer

programming] through unguided discovery.

Related Research Literature

There seem to be two arguments for teaching programming represented in the related

research literature. First, there are those who maintain that students who learn to program

will develop problem-solving skills that will transfer to other situations. This argument

prevails at the pre-college level. This strand of inquiry, although obviously important, is

not pursued in this paper. Instead, this review focuses on the literature related to the

position that computer programming should be taught for its own sake, with goals such

as professional training or computer literacy.

Piagetian-related Studies

Formal thinking and success. The literature reports a number of Piagetian-

based studies that seem to support the hypothesized connection between formal thinking

and programming success (Cafolla, 1986-87; Fischer, 1986; Kurtz, 1980; Madison &

Gau, 1993; Nachmias et al., 1986). In Fischer's studies, students' ability to construct

complete combinations and permutations correlated strongly with the programming

course grade. Hence, she.concluded that students' ability to understand the relationship

of parts to whole, and to systematically construct all possibilities, are critical for

successful programming.

Kurtz (1980), who studied 23 FORTRAN students, administered a subjective,

untimed test of formal reasoning that successfully predicted student performance in the

48

38

programming course, correlating more highly with performance on examinations than

with programming assignments. Furthermore, results on related formal reasoning test

items displayed a weak correlation to students' prior mathematics, statistics, or logic

background, suggesting that performance on the reasoning test was largely independent

of specific school achievement.

The Cafolla (1987-88) study examined the relationship between the student's score

on the fmal examination in a BASIC programming course and the student's verbal

ability, mathematical ability, and intellectual development, as measured by Furth's

(1970) Inventory of Piaget's Developmental Tasks (IPDT). The IPDT score and verbal

ability were linearly predictive of success in the computer programming course. The

study supported previous research claiming that not all college students are formal

thinkers; of the 23 subjects in Cafolla's sample, 9 (39%) were found to be formal thinkers

and 14 concrete thinkers.

The University of Wisconsin-Stevens Point (UW-SP) studies (Madison & Gau,

1993; Madison & Nazareth, in preparation) also incorporated the IPDT. The availability

of construct validity (using tladitional Piagetian interviews) and reliability information

guided the instrument choice (Milakofsky & Patterson, 1979; Patterson & Milakofsky,

1980). The latest study, which included 307 UW-SP students, obtained results

remarkably similar to those in Cafolla's study. Of the 172 students taking the

introductory Pascal classes, 42% were formal thinkers. Of the 135 students taking

advanced programming classes, 51% were formal thinkers. The UW-SP researchers also

4 9

39

found statistically significant correlations between IPDT total scores and students'

examination scores.

Other researchers, who studied pre-college programming students, found results

congruent with the aforementioned studies. Nachmias et al. (1986) found their group of

gifted fourth graders unable to grasp the concept of variables; sixth graders also had

difficulty with the concept. Additionally, a study of high school students documented

those students' difficulties (Kurland, Pea, Clement, & Mawby, 1986). After two years of

programming instruction, high school students in the reported study had only a

rudimentary knowledge of the programming languages taught. Few students could

follow the flow of control correctly, and most could not systematically keep track of the

values in variables. Observers noted that students used trial-and-error approaches and

quickly asked for help. Programming success correlated strongly with students' ability to

reason procedurally, decenter, translate word problems into symbolic equations, and

analyze and design algorithms (Kurland et al., 1986): characteristics typically associated

with formal thinking.

Concrete thinking and success. On the other hand, Kuhn, Ho, and Adams

(1979) found in their study that 18 of 35 college students categorized as non-formal

thinkers displayed either partial or fully formal reasoning when a problem was presented

in a concrete rather than a written format. Madison and Gau (1993) also found only weak

correlations between formal thinking and programming success in their study of college

programmers. Additionally, Turkle and Papert (1990), reporting on their study of

50

40

Harvard University programming students, documented the programming success of

students with a concrete style:

When we looked closely at programmers in action we saw formal and
abstract approaches, but we also saw highly successful programmers in
their relationship with their material that are more reminiscent of a painter
than a logician. They use concrete and personal approaches to knowledge
that are far from the cultural stereotypes of formal mathematics. (p.128)

Multiple representations. Bruner (1960) claimed that any problem, idea, or

body of knowledge could be presented in a form simple enough that any given learner

could understand it. He advocated proceeding from the concrete to the pictorial to the

symbolic representations, and considering the age and previous experience of the learners

(Marchionini, 1985). Many students use visual imagery to reason; Battista and Clements

(1991) urged us to respect this mode of thinking and to help students coordinate images

with conceptual knowledge.

Researchers in the field of computer science education offer various suggestions for

facilitating the absorption of complex concepts. Spohrer and Littman (1988) advised

teaching students various representational devices such as graphs and rules to specify a

problem. Basing their fmdings on clinical interviews, Perkins et al. (1988) described

students' programming knowledge as fragile, due in part to students' lack of a mental

model. The researchers employed a visual model of a "paper computer" to help students

learn BASIC. Computer-generated visual animations of algorithms allow students to

manipulate abstract representations (see Brown, 1988, 1989; Cicero & Groppe, 1993;

Knudson, 1987, 1988; Multiscope, 1991; Naps, 1989, 1990a, 1990b; Popyack, 1988;

51

41

Sack et aL, 1992). Others (Brown, Fell, Proulx, & Rasa la, 1992; Taylor & Cunrnff,

1988) use graphical feedback in college computer science courses in much the same

manner as the Logo programming language's turtle graphics do.

Helping the learner to construct powerful representations is just one of the cognitive

advantages Linn (1992) and Linn and Clancy (1990) claimed for their case study

approach. The authors stressed the importance of multiple representations, "linking a

verbal description, pseudocode, pictorial illustrations, dynamic illustrations, analogies,

and Pascal code" (Linn & Clancy, 1990, P. 22). On the basis of their study, Turkle and

Papert (1990) asserted that computer graphics, animations, and text can "provide a port of

entry for people whose chief ways of relating to the world are through movement,

intuition, and visual impression" (p. 131).

Schema-related Studies

Templates. Several schema-related studies performed between 1981 and 1992

were based on Piaget's notion cf schemes and Anderson's (1983) idea of schemas.

Soloway (1986) referred to schemes as domain-specific "chunks." The chunks form the

programming plans or templates of code that expert programmers reportedly use to

organize their knowledge of programs (Linn, 1992; Linn & Clancy, 1992; Van

Merrienboer & Krammer, 1987). Programming plans, combined with goals and

comments about the code, are schemas in concrete form. McKeithen, Reitman, Reuter,

and Hirtle (1981) maintained that experts have better organized and more useful chunks

of information. Their research revealed that experts surpassed novices when the experts

52

42

recalled chunks of meaningful programs, but not scrambled ones. Similarly, Soloway

and Ehrlich (1984) found that experts better recalled program code when it followed the

"rules of programming discourse," that is, when it was plan-like.

Consistent with Anderson's schemas, many (Dalbey et al., 1986; Kurland et aL,

1986; Linn, 1985; Sheil, 1981; Soloway, 1986; Soloway & Ehrlich, 1984; Spohrer &

Soloway, 1986) suggested that experts have large libraries of stereotypical solutions

(t6mplatts) as well as strategies for using them. "What," Soloway asked, "are the basic

building blocks for analyzing problems and constructing programs? Goals and plans--

stereotypical, canned solutions" (p. 851). Contending that learning programming

language syntax and constructs does not cause novice programmers major problems,

Soloway proposed that novices have real problems merging plans, or putting the pieces

together (Soloway, 1986; Spohrer & Soloway, 1986).

Founded on programmers' hypothesized goal-plan cognitive structures, Spohrer and

Soloway (1986) collected an entire library of errors in their efforts to develop a

descriptive theory of "buggy novice programs." From this work and the work of others

with Pascal programmers, Spohrer and Soloway ostensibly dispelled the "folk wisdom"

that "most novice bugs arise because novices do not fully understand the semantics of

particular programming language constructs" (p. 627), offering alternative "plausible

accounts" for most novice errors. Since the authors reported that half of the errors either

might be or certainly could be attributed to faulty understanding of language constructs, it

is possible to contest their findings. More important for this study is the observation that

53

43

nowhere in their discussion of buggy Pascal programming constructs did the authors

mention parameter passing or procedures.

Programming language constructs. While the Soloway (1986) position that

assembling plans (themselves composed of combinations of language constructs) causes

more misunderstandings than the language constructs alone is quite reasonable, others

(Linn, 1985; Putnam, Sleeman, Baxter, & Kuspa, 1986; Kong & Chung, 1985) reminded

the programming community that knowledge of language constructs is a necessary link in

the chain of learning to program. Putnam et al., for example, asserted, "A major

component of learning to program is learning enough about the specific constructs . . . to

gain an understanding of the 'conceptual' machine underlying a programming language"

(p. 460). The authors reasoned that a programmer cannot design a program that uses IF

(an implementation of a selection control structure) statements if the programmer does

not understand how the IF statement works.

Putnam et al. (1986) drew their conclusions from a qualitative study of 96 high

school BASIC programming students. The researchers interviewed 56 students who

predicted program output and constructed simple programs. The investigators--who

analyzed tape recordings, written notes, and responses generated during the interview--

found eight categories of misconceptions of BASIC language constructs. The constnicts

listed included variables, repetition, arid selection control statements. Once more, the

authors did not mentinn the GOSUB statement (the BASIC language implementation of

the Pascal procedure concept). In a similar study, the same group (Sleeman et al., 1986,

54

44

1988) described high school Pascal programmers' errors. Their appendix of constructs

studied alludes briefly to procedures; it does not mention parameters.

Others researchers have also studied students' understanding of language constructs.

Samurcay (1985) investigated beginners' looping (repetition) strategies. Du Boulay

(1986) investigated problems with variables and flow of control (selection and repetition

control stuctures). Kurland et al. (1986) studied selection and looping constructs. The

Kurland group attested that programmers must have a good model of the structure of the

language, pointing out that one cannot write a modular program without understanding

how control is passed in the language, and how the logical tests that control the selection

and repetition control structures operate.

Stressing the need for program readability and reader expectations, Joni and Soloway

(1986) proffered a catalogue of programming discourse rules. All progeams, they

suggested, should follow these conventions or discourse rules. In their moderately

extensive discussion of parameters (the only one found in the literature), the authors

cautioned regarding the inappropriate use of VAR (variable) parameters. Joni and

Soloway offer that inappropriately VARing parameters misleads program readers, makes

the inappropriately VARed variables more susceptible to being "clobbered," and the

program harder to debug (p. 115-117). In a footnote Joni and Soloway outline their

suspicions:

We suspect that many novice programmers have difficulty with VARing
variables because they have misconceptions about argument passing in
general. In addition, they often have an unclear picture of memory storage

55

45

and retrieval, which contributes to their difficulties in VARing variables.
(p. 115)

It seems reasonable to conclude that Joni and Soloway's observation is correct, that

students' lack of an accurate mental image of the way in which parameters are passed in

memory inhibits their understanding of the parameter construct.

Effective instruction. The Linn group (Linn, Sloane, & Clancy, 1987; Sloane &

Linn, 1988) conducted a descriptive study of naturally occurring instruction in advanced

placement (AP) Pascal classes. Armed with the goal of developing a theory of

instruction, the researchers attempted to identify instructional strategies that promoted

proficiency in designing solutions to programming problems. They found that three

factors influenced learning: on-line access (time spent at the computer), explicit

instruction in applying concepts and problem-solving strategies, and informational

feedback on problem solving. The authors expressed little fear that too much explicit

instruction would stifle the development of students' problem-solving skills, because

students in an AP course typically spend much time working independently at the

computer. However, the authors stressed the need for instructional balance, as small

group and individualized instruction correlated more strongly with successful program

creation than large group lectures.

Students learned better when they were explicitly taught than when they were left to

develop independently (by discovery), a recurring pattern the Linn research group

apparently found in the pre-college classrooms. In the authors' words, "Exemplary

56

46

classes appeared to help students construct more productive understanding" (Linn et aL,

1987, p.487).

Vygotsky-related Studies

Collaborative learning. Providing a basis for their research with collaborative

computer programming environments, Webb and Lewis (1988) cited authors who

theorize that group ideas may give rise to the conceptual conflict and resolution that is

assumed to facilitate cognitive restructuring. Continuing, the authors offered that the

resolution of disagreements that may occur during group interaction provides

opportunities for members to "retrieve prior knowledge, evaluate their own and others'

answers, ideas, and opinions, confront their own misunderstandings and lack of

knowledge, and as a consequence, restructure their own thinking" (p. 181). Webb and

Lewis went on to cite others who theorized that group activities provide opportunities for

modeling and imitation, suggesting that successful peers may be better models than

experts, especially for novices with doubts about their capabilities. The authors proposed

that communication among peers may be more effective than teacher-student

communication, that peers can be more direct, that they better "tune in" to each other's

problem-solving processes and thinking, and thus provide more effective feedback.

Reports of successful collaborative learning, including some collaborative learning of

computer programming, appear throughout the literature (Bredehofl, 1991; Cheny, 1977;

Davies, 1988; Johnson & Johnson, 1987, 1990). However, it must also be stressed that

group work does not guarantee learning for everyone (Lemerise, 1993; Webb & Lewis,

57

47

1988). Lemerise offered the general advice that group learning situations must be

structured carefully if all participants are to benefit. Webb and Lewis concluded that

positive effects do not take place if all students do not actively participate, if some lack

the requisite skills, or if students fail to get help when they need it. After noting that the

results.of studies on group versus individual learning of computer programming are thus

far inconclusive, Webb and Lewis suggested that it is more important to discover the

factors that influence learning than to question whether individual learning is superior to

group learning.

From the results of two Webb studies with adolescents (one using Logo and one

using BASIC), Webb and Lewis (1988) alleged that "the-mdkriking finding is that

much of the planning and debugging carried out without the presence of an instructor was

positively related to most achievement outcomes, whereas verbalizing the same kinds of

behavior to an instructor was negatively related or not related to achievement" (p. 193).

Not receiving help when requested was negatively correlated with success. The specific

behaviors found to be correlated with achievement were giving and receiving

explanations, giving and receiving input suggestions, receiving responses to questions,

and verbalizing general planning and debugging strategies to peers.

As a closing note, Webb and Lewis (1988) cautioned that the Webb studies were

correlational, not empirical, that they involved only one teacher who had a rather indirect

teaching style, and that not all strategies may work with all students. Moreover, the

studies did not investigate the mechanisms by which the peer interaction influenced

58

48

learning. Additionally, it is pertinent to note that the intervention was very brief, and the

subjects were volunteers. Furthermore, these studies, along with many others reported in

the literature, were done with school children (adolescents and younger). The findings

may simply not apply to adults enrolled in a professional program.

Application of cognitive apprenticeship. A decade ago, Deimel et al. (1983)

stressed the importance of students studying non-trivial computer programs. These

authors expressed surprise about the continued write-only tradition of computer science,

posing the following question:

Programs are the primary artifacts generated by programmers. They are
bodies of what is quite properly called a language. They constitute the
basic literature of programming. Is it not surprising that we attempt to
teach composition in unfamiliar languages without encouraging reading
knowledge of the literature in those languages? (p. 104-105)

Drawing upon both the Vygotskian-based cognitive apprenticeship model and

Anderson's ACT* theory, a related line of investigation has been expanded in the years

hence.

Van Merrienboer and I Jammer (1987), for example, studied three different

approaches to teaching computer programming: the expert, the spiral, and the reading.

Basing their analysis upon John Anderson's ACT* theory, the authors suggested six

tactics for teaching computer programming: a) presenting a concrete computer model, b)

using programming plans, c) incorporating program design diagrams, d) including

annotated, worked-out examples (examples that include explanations), e) providing

practice, and 0 furnishing task variation. The authors championed the reading approach

59

49

because it encompasses teaching strategies better matched to the six tactics than the

strategies associated with the spiral and expert approaches.

Van Merrienboer and Paas (1990) added further arguments for the use of annotated,

worked-out examples. Noting that expert programmers are believed to have thousands of

task-specific procedures available in their memory, the authors suggested that such

detailed procedural knowledge is likely to be tacit and not easily verbalized. Teachers, as

a result, may have difficulty explaining such knowledge. To combat the problem, the

authors stressed the importance of providing annotated, worked-out examples for the

students to refer to during practice.

Van Merrienboer and Paas (1990) and Van Merrienboer and De Crook (1992)

cautioned that the worked-out examples must provoke "mindful abstraction." The

authors suggested using partially completed, well-structured, understandable computer

programs. As the novices must design and generate code, they practice basic program

generation skills. Additionally, the students must understand the program in order to

complete it; hence engaging in such an activity promotes conceptual understanding as

well. A Van Merrienboer and De Crook (1992) study empirically demonstrated the

superiority of the program completion method over a program generation method.

Drawing upon extensive computer programming (already cited) and science research

experience (Ey lon & Linn, 1988; Linn & Songer, 1991), researchers have developed a set

of case studies for use in introductory programming classes (Clancy & Linn, 1992a,

1992b; Linn, 1992; Linn & Clancy, 1990, 1992). A case study consists of a prob:em

60

50

statement, one or more solutions, and commentary describing the design solutions. The

authors suggested that the case studies provide opportunities for novices to "think along"

with experts in posing and analyzing solutions, thereby engaging the students in

apprenticeships with expert programmers. Using the case studies, students solve

problems they could not solve alone.

Linn and Clancy (1990) are convinced their case studies will help students develop

program design skills by: a) helping students construct a powerful representation of

pertinent knowledge, b) reducing the task complexity for the learner, c) focusing on the

problem-solving process rather than the solution, and d) nurturing the development of

students' reflection and self-monitoring skills (p. 22). The authors also echoed the

obvious, but sometimes unheeded, truism that program design skills must be explicitly

taught; novices, they contended, do not absorb the skills by some osmosis-like process

(Linn & Clancy, 1992a).

Basing their conclusions on the results of interviews with competent programmers,

Linn and Clancy (1992) also concluded that experts do not use the linear top-down

design process most classroom instruction preaches. In reality, the authors said, experts

"engage in top-down, bottom-up, and middle-out design as well as lots of backtracking

and revision of their original ideas," (p. 125) contending that "instruction that suggests

program design proceeds in an uncomplicated, top-down fashion confuses and frustrates

students" (p.125). Apparently Linn and Clancy were referring to all students, not just to

bricoleurs.

61

51

Summary

In summary, research verifies that teaching Pnd learning computer programming are

cognitively demanding activities. Learners with a more analytic cognitive style who

demonstrate characteristics typically associated with Piaget's notion of formal thinking

seem to be more successful in the structured programming environment than concrete

learners. On the other hand, concrete learners have been shown to be successful.

Moreover, providing students with concrete and graphical representations appears to help

both goups of students understand the abstract programming concepts.

Results of research focusing on the collaborative learning of computer programming

generally echoed the findings in other areas. Novices, when provided with opportunities

to interact, to verbalize their understandings, to evaluate their own and other people's

ideas, and to observe more able peers, succeed more often.

Expert programmers differ from novices in their possession and use of an extensive

repertoire of programming plans or templates. Effective instruction has been shown to

help students acquire those understandings and templates. Among the strategies that

have been found to help students learn is explicit instruction, combined with a balance

between small group and individual instruction and large group lectures. Explicit

instruction includes providing students with annotated, worked-out, partially-completed

examples and concrete models.

The body of literature associated with teaching and learning computer programming

documents the virtual absence of the topic of parameter (argument) passing from the

62

52

research base. As a result, direction for the study reported in this paper was gleaned from

the broader body of literature devoted to the teaching and learning of computer

programming in general. Special attention was given to the various ways that learners

process information and to the instructional methods that appear most effective in helping

novices acquire the complex cognitive skill of computer programming.

63

53

CHAPTER III

METHODOLOGY

Introduction

This is a theory-driven qualitative study; it is an exploratory, descriptive study that

draws from several methodologies traditionally employed in qualitative educational

research. Ethnographic methods investigate participants within a relevant context to gain

an understanding of some phenomenon from their point of view. Data collected from a

variety of sources (observation, interviews, and documents) are then examined for

constructs or themes (Burton & Magliaro, 1987-88). The data for the study reported in

this paper were collected from all three sources.

Research on computer programming has often employed protocol analysis. During

protocol analysis, data are typically gathered by recording participants' verbalizations as

they perform a target task. Ericsson and Simon (1980) asserted that verbal data that

simply relate the problem solver's thoughts are valid data sources and do not unduly

interfere with the problem-solving process.

Sheil (1981) suggested that introspection while formulating a program segment is

perhaps the most compelling subjective evidence of a programmer's skill. Putnam et al.

(1986), in a descriptive study of BASIC programmers, asked students to trace programs

and explain how the programs worked. The Putnam group used tape recordings, written

notes, and responses generated during interviews to search for patterns of errors and

misconceptions about the constructs under study. Perkins, Hancock, Hobbs, Martin, and

64

54

Simmons (1986); Sleeman et al. (1986); and Swan (1993) described a structured clinical

observation method in which the experimenter presents the programming problem,

observes the student's attempts to solve the problem, and probes for explanations of the

student's intentions and ideas. The study reported in this paper followed the lead of the

earlier computer programming research and incorporated protocol analysis along with the

previously discussed ethnographic data collection methods.

General Design

The study employed a multi-case design, the unit of analysis being a novice

programmer's understanding of the programming language construct of parameter

passing. The unit is drawn from a general class of concerns with a novice programmer's

conceptions of computer programming language constructs. A case study design was

chosen because a qualitative design is ideal for understanding Lducational phenomena

(Merriam, 1988). The author maintains, moreover, that the design is particularly suitable

"for dealing with critical problems of practice and extending the knowledge base of

various aspects of education" (p. xiii).

Importance of the Study

It is important to study this construct because, as noted earlier,te literature

documented well the difficulties novices encounter when learning to program. Linn et al.

(1987) proposed a chain of cognitive events leading to the development of problem-

solving skills. Understanding the programming language's fundamental constructs was

the first link in the chain. The literature also revealed numerous studies related to

65

55

program design and several related to fundamental language constructs such as variables

and conditional flow-of-control (repetition and selection) structures. What appears to be

missing is a study of the construct of parameter passing.

Modularity is the first principle of structured programming (McIntyre, 1991). In

structured programs, individual program modules are linked together to form a complete

unit. Parameters provide the connectionsthe links--between the modules (Nance &

Naps, 1989). Hence, parameter passing, the mechanism by which the various modules in

a program share information, is a pivotal topic in an introductory course. Its mastery is

crucial for a student's continued success in the discipline since virtually every program

the student encounters henceforth will incorporate the construct. As Dr. William Wresch,

chaimerson of the Department of Mathematics and Computing at UW-SP elaborated

recently.

A complex program which consists of a single piece is incredibly difficult
to understand. Programs are always partitioned into modules to make
them more manageable. Novices have to learn this technique during their
first semester or change majors. (personal communication, September 13,
1994)

Beaulieu (1990), arguing for the use of structure charts (a structure chart is to a program

what an organization chart is to an organization) in introductory Pascal classes, observed

that many students have difficulty understanding the concepts of value and variable

parameters. Experienced programming instructors have confirmed the difficulty novice

Pascal programmer experience when they encounter the parameter construct. The fact

66

56

that high school Pascal courses frequently omit the topic attests further to the challenges

it presents to novices.

Research Questions

The study addressed the following questions:

1. What action knowledge does the novice programmer bring to the study of parameter

passing?

2. What intuitive conceptions does the novice programmer possess regarding parameter

passing?

3. How does the novice express principled understanding of the parameter passing

construct?

4. What is the relationship between a novice's conceptual and procedural knowledge of

parameter passing?

5. What impact does a student's understanding of parameter passing have on the eventual

success in an introductory programming course?

6. What impact does a student's understanding of parameter passing have on his or her

disposition towards computer programming?

Influence of Theory

Several theories influenced the design a priori. First, Piagetian theory guided the

purposeful selection of participants and guided the initial formation of two broad

categories: formal and non-formal thinkers. Linn and Songer's model provided another

dimension in which a participant's conceptions of parameter passing and related

67

57

constructs could be categorized as action knowledge, intuitive conceptions, or principled

understanding.

The work of Turk le and Papert (1990), in which the authors proposed that concrete

and formal thinking are not stages of development but equally valid problem-solving

styles, is crucial as it is from this perspective that the data were analyzed. Throughout the

remainder of the paper, the learners whom Piaget described as concrete, and Turkle and

Papert labeled bricoleurs, will be called contextual to avoid the pejorative connotation

associated with the terms "concrete" and "bricolage." The learners that Piaget desLribed

as formal and that Turkle and Papert labeled planners will be referred to as analytical

problem-solvers.

Setting

The study was situated at a state university located in a small city in the midwestern

United States. The city would perhaps more aptly be described asa large small town

where residents proudly boast of the clean streets and a friendly, hometown atmosphere.

State University, which recently celebrated its centennial, is one of 13 four-year

campuses in the midwestern state university system; it currently serves about 8,500

students. Most come from White middle or working class families, and many students

return home on weekends.

Approximately 250 State University students currently declare CIS as their major or

minor. As is traditional in a computing major, programming classes comprise most of

the lower division course work. CIS 110 (Algorithm Development and Computer

58

Programming IPascal) is the first course in the CIS major, and several other disciplines

require it as well. The three-credit course provides students with two 50-minute lectures

and one 110-minute structured laboratory session during each week of a 15-week

semester. The university offers four sections of CIS 110 every semester, each with an

expected enrollment of 25 to 35. The data for the study were collected from students

enrolled in one section of CIS 110 during a fall semester.

This class was chosen because CIS 110 is the Pascal class in which the construct of

parameter passing is taught. The site was chosen because my position as a faculty

member in the computing department at State University gained me initial access to the

site. Additionally, as a regular teacher of the CIS 110 course, I had insider knowledge of

the topics taught and typical student performance. Finally, the instructor, Dr. Greene (a

pseudonym), and I had team-taught the class in the past. I was familiar with his

presentation of the course content, and he was comfortable having me observe his class

and talk with his students. Moreover, Greene's position as a tenured full professor

provided him with professional security. Dr. Greene agreed that one of his sections

would participate in the study prior to the start of the semester in which the datawere

collected.

Subjects and Sampling

Dr. Greene and I briefly explained the purpose and the requirements of the research

to our respective students during the first class meeting of the semester. At that time, all

students in all sections were offered the opportunity to switch to a research/non-research

69

59

section. Students in the research section were also advised that they would be excluded

from the study if they preferred not to switch to another section for scheduling or other

reasons, but were disinclined to participate in the study. No students switched, and no

students asked to be excluded.

During the second class meeting of the research section, Dr. Greene introduced me. I

then explained the purpose and requirements of the study in more detail. As I passed out

the informed consent forms, Dr. Greene signed the instructor informed consent form (see

Appendix A), explaining that he was part of the study, too. Then he turned to me and,

with a chuckle, asked: "What will you do if I refuse to sign?' "I'll be glad to do a

reading at your funeral," I rejoined. Amid some laughter, all 30 students (10 females and

20 males) signed the participant informed consent forms (see Appendix B). The 30

students then completed a 21-question background survey (see Appendix C), and the last

seven subtesta of the Inventory of Piaget's Developmental Tasks (IPDT), placing their

answers on Scantron sheets (see Appendix DS for selected items).

As elaborated in the paragraphs following, the results of the IPDT and the

background survey guided the purposeful selection of the interview participants.

According to Merriam (1988), purposeful sampling is based on the assumption that one

desires to discover or understand a phenomenon. Thus, a researcher selects the sample

from which he or she expects to learn the most. As a strategy for purposeful sampling,

Merriam suggests choosing the typical case and the extremes. Accordingly, a sample of

60

nine students (three with high IPDT scores, three with middle-range scores, and three

with low scores) was chosen.

Inventory of Piaget's Developmental Tasks

In a. several years preceding this study, more than 300 State University

programming students completed the IPDT. Theory and classroom experience had

already provided persuasive evidence that students with low scores struggle to acquire the

same understandings of the abstract programming concepts that seem to come almost

naturally for some students with high scores. Thus, it was reasonable to assume that

students from the two goups might have differing conceptions of the parameter

construct.

The IPDT, a 72-item multiple choice test, has been shown to be a valid (by

comparing scores on the written group test with scores obtained from classic Piaget

interviews) and reliable (using the test-retest and split-half measures) indicator of the

Piagetian view of cognitive development (Milakofsky & Patterson, 1979; Patterson &

Milakofsky, 1980). Because of a possible ceiling effect, the earlier studies followed

Cafolla's (1987-88) example and used only the last six subtests (shadows, classes,

distance, inclusion, inference, and probability), questions 49-72. This study did the same.

(The students completed the angle subtest, questions 45-48, but the questions were not

scored.)

Each subtest in the IPDT consists of four questions. According to the literature that

accompanied the inventory, a subject must answer three out of the four questions for all

71

61

six subtests to be considered a formal thinker. For purposes of this study, then, 24 was a

perfect score. The IPDT scores in the research section ranged from 11 to 23. Upon the

advice of Dr. Greene and the counsel of one doctoral committee member, a student with a

score of 11 was eliminated as a potential participant. The student was a non-native

English speaker, and there was concern that language difficulties would pose significant

problems.

The most frequently missed question was #60, a somewhat ambiguous distance

question. The question displayed several different rectangles (all with the same perimeter

but with different dimensions) and asked: "Which rectangle is the largest or are they the

same?" The correct answer, according to the scoring key, was the one with the largest

area. However, 19 students selected "They are the same." As no one asked for an

interpretation of the term "largest," it is reasonable to assume that some students believed

largest referred to perimeter rather than area, in which case "the same" would be the

correct answer. The next most-often-missed question was #55, a question on classes; of

the 30 students who took the inventory, 16 missed it.

Background Survey

The background survey was originally conceived as a means of eliminating students

with prior Pascal experience as participants, assuming they would have had prior

exposure to the parameter concept. Question 10 asked, for example, about prior

programming experience; then question 11 asked if the prior experience had been in

Pascal. One student, who was being considered as a participant, answered ambiguously

72

62

("No" to question 10 and "Yes" to question 11). In order to clarify the situation, I called

him. He had, it turns out, taken the one-semester, one-credit Pascal class at State

University. The parametez construct is not included in the content of the course.

Surmising that there might be other students who had correctly responded that they had

completed a one-semester Pascal class, but who had not been exposed to the parameter

concept, I called all students who were being considered participants on the basis of their

IPDT score. Only those who verified that they had actually already studied the topic

were eliminated as participants. No called students refused to participate.

Gender

The literature reported that gender does not correlate with programming success; it

does, however, correlate with enrollment and retention, and State University echoes this

pattern. The females who persist are at least as successful as the males; the low female

enrollment and retention rates are troubling. Perhaps because gender does not correlate

highly with programming success, the studies of student programmers' conceptual

understanding do not generally report by fmdings by that variable. However, Linn and

Songer (1991) reported that adolescent males and females construct quite different views

of themselves as learners. Females, they claimed, do not agree with males about the

nature of science and mathematics. The authors went on to say that females also report

feeling unwelcome in domains constructed by males and perceived by males as being

more male oriented. Turkl, -nd Papert (1990) also found many women uncomfortable

with the structured (Pascal) programming style. Indeed, if there are differences, those

73

63

fmdings could inform practice. Consequently, each range of IPDT score included

representatives from both genders in the interview sample. There were three females and

six males, one female and two males from each IPDT range.

Participants

Before moving to data collection, this section introduces the participants. Table 1

summarizes the background of each as revealed by the IPDT and the background survey.

Table 1.

Participant Profiles

Name Se
x

Age Class Major Minor ** IPDT
Score

For-
mal

Amy F < 21 Soph Math CIS Y Y 23 Y
Carol F 21-25 Senior Math Ed none N N 20
Carl M < 21 Soph Undecided CIS Y Y 20
Jason M < 21 Soph Paper Sci none N N 22 Y
Moe M < 21 Fresh Math Y 23 Y
Rainbow M 21-25 Soph Undecided N 19
Sammy F < 21 Junior English CIS Y Y 13
Sondra M < 21 Fresh Paper Sci none ? N 17
Steve M < 21 Fresh CIS Business ? Y 17

* Planned to enroll in subsequent programming class.
** Did enroll in the subsequent programming class.

All names are pseudonyms. During the first interview, the students selected their own

pseudonyms, the only requirement being that the first letter of the pseudonym and the

student's given name be the same. I considered changing some of the names to avoid

possible confusion engendered by the choices. Carol and Carl are after all easily

confused, Sammy is a female, and Sondra is a male. The participant choices were

preserved because the pseudonyms may, in some small measure, reflect the various

74

64

participants' personalities. A more complete "porixait" of the participants is included in

the individual case study reports. Rainbow is not included in the study results. He

ceased coming to class and submitting assignments some time between the first interview

and start of the parameter instruction. He did not withdraw from the class and eventually

received an F.

Data Collection Procedures

The first section provides a brief background in order to give a sense of the climate

in which the data were collected. Descriptions of the various data collection procedures--

observation, interviews, and document examination--employed in the study follow.

Background

During the fall semester in which the data were collected, I (the researcher) taught

two sections of CIS 110 and Dr. Greene taught the other two. We followed an already

established pattern of giving joint examinations and assignments, and using similar

syllabi. As in the past, students were encouraged to seek help from whichever instructor

was available. Greene taught the morning sections and held morning office hours; I

taught the afternoon sections and held late afternoon (5:00-6:00 p.m.) cffice hours.

Moreover, I typically worked in my office at least one evening a week.

State University's extensive network of computing facilities is a selling point of the

school. It has numerous computing labs available for student use, including one in the

Science building: a three-section lab that accommodates 75 students. The CIS students

appear to prefer working in this lab over all others on campus. There are several reasons

75

65

why this may be so. First, the CIS 110 structured laboratory sessions meet in the science

lab; hence, students are familiar with the facilities. Second, all CIS classes meet in

nearby classrooms, and CIS students tend to congregate in the general area. Third, the

programming instructors' offices are located directly across the hall from the science lab,

providing students working there with easy access to help. My office is directly across

the hall from the Science building computer lab. Programming students have always

sought my evening-hours help as I typically am the only programming instructor there at

the time.

The semester in which the research data were collected was the first time that either

Greene or I taught CIS 110 as a laboratory course. (It had until the past year been taught

as a straight lecture course.) It was also the first time either of us used the textbook,

Turbo Pascal: Programming and Problem Solving by Sanford Leestma and Larry

Nyhoff. Opting not to use the accompanying laboratory manual, we developed our own

laboratory activities. Thus, in many ways it was a new preparation for both of us, and

most of the structured laboratory activities were being tried for the first time. Greene's

laboratory sessions met at 8 o'clock and 10 o'clock on Friday morning; mine met at noon

on Friday and at 3 o'clock on Monday afternoon. Throughout the semester, I regularly

visited the lab on Friday morning to see if there were problems with the newly developed

activities, problems that I might resolve before my classes met. When it appeared that

Greene needed assistance, I stayed to help.

76

66

Moreover, the computing faculty at State University is a first-lidme faculty. During

the class observations, Greene typically used the title "Professor" when he addressed me.

Upon occasioz,, though, he called me "Sandy."

As a result of the circumstances--the teaching schedules, the office location, the

frequent visits to Greene's class, and the infbrmalitythe students in research class knew

me well and sought my help as regularly as did my own students. I did not refuse to help

students just because they were participants in the study. (As helping was the established

pattern of behavior, not doing so would have been an intervention.) Conversely, I did not

seek out the participants to offer them additional help.

Classroom Observations

Overview. Classroom observations were included in the study primarily to

provide a record of the instruction and the instructional climate. The videotapes, the

student responses, and the field notes all provide evidence that Greene delivered the

standard textbook content, and that the quality of the instruction was at all times

acceptable. Pertinent aspects of' the parameter-related instruction follow; specific

participant reactions to the instruction are included in the individual case studies.

I observed all of Dr. Greene's classroom presentations where procedures and

parameters were the topics of instruction (October 27 and November 1, 3, 8, and 15). All

classes except one were videotaped. Typically I arrived in the classroom 10 minutes

early to set up the video camera. On November 8, I was late; choosing not to disturb the

class more than my presence was already doing, I relied on field notes. I observed and

77

67

videotaped the structured laboratory on November 4. The class did not meet on

November 10, and I did not observe the November 11 mid-term examination or the

November 18 laboratory session.

Physical Environment. The short, wide classroom in which the lecture sessions

were held accommodates approximately 35 people, with three rows each containing 11 or

12 desks. A blackboard spans the front of the room. One overhead projector, a screen,

and a computer data display occupy center front, and a second overhead projector faces a

screen mounted in the corner of the room.

As students typically do, the students tended to sit in the same place for each class

even though they did not have assigned seats. In the front row, looking from the window

to the classroom door, there were (in order) six females, two males, and one female.

Amy and Sammy sat side-by-side in the middle of the front row. Jason and Sondra also

sat in the front row, closer to the classroom door. The middle row held four males and

then three females. Carol sat closest to the door, next to the video camera. In the back

row, there were 11 males, among them Carl, Steve, and Moe.

The computer lab was arranged with five rows of six computers each. Seating

arrangements varied from class to class, as students came in and sat at the available

workstations.

Instruction. The planned syllabus followed the text closely. A brief background

overview, basic Pascal, simple selection, and the WHILE . . . DO iteration structure

preceded the procedure topic. Simple procedures were introduced first, followed by

73

68

procedures with value parameters, and then variable parameters. Of particular interest is

the fact that instruction on the procedure topic did not begin until midway through the

semester and that FUNCTIONs (a second type of Pascal module) did not precede the

procedure-parameter topic.

During the related classroom instruction, Greene used the blackboard and a lecture-

large group discussion format exclusively. He began the instruction by motivating the

topic of procedures thoroughly, sharing the reasons for modularization. He started with

simple procedures, moved to value parameters, and then to variable parameters in a

logical fashion. He used concrete analogies to great advantage. In one example, students

assumed the different functions in an automobile factory; in another, he used access to a

post office box as an analogy. The classroom presentations were lively, and the students

seemed interested and involved.

Greene addressed the Pascal parameter syntax thoroughly. He addressed the terms

formal versus actual parameters, explaining the distinction in terms of placement. He

demonstrated the comtruction of the formal and actual parameter lists in several

examples. Greene instructed the students to use different names for the formal and actual

parameters, explaining that he was imposing the rule so that the students would avoid

falling into the trap of thinking that corresponding actual and formal parameter names

needed to be the same. His examples, moreover, inevitably used different names for the

formal and actual parameters. In a very effective exchange, Greene asked students to

think about how the association between actual and formal parameters could be made if

79

69

they were not associated by name. It did not take long for a student to volunteer that the

association must be made by relative position in the parameter lists. Greene said, "Think

about it. Could it be done any.other way?"

The textbook provided explicit rules for parameter list construction, and the partially

completed examples in laboratory exercises (see Appendix E) provided practice using the

rules. The original programming assignments (see Appendices F and G) and several

examination questions (see Appendix H: questions 13, 14, 20, 21, and 29-31) also

addressed parameter syntax.

As noted earlier, Pascal programs employ two kinds of parameters: value parameters

and variable parameters. Leestma and Nyhoff (1993) motivated the need for parameters

with the following:

What is needed . . . are special kinds of variables in a procedure to which
values can be passed from outside the procedure. In Pascal, these special
variables are called formal parameters and are declared in the procedure's
heading. Parameters that can store values passed to them but that cannot
return values are called value parameters or in parameters. . . .

Parameters that can both receive values and return values are called
variable or in-out parameters. (p. 183)

Fundamental to incorporating the two kinds of parameters in a program is familiarity

with the syntax. The instructor provided classroom instruction that reinforced the

instruction provided in the text. He used the terminology providfhi there (in versus in-out

parameters), and he covered the syntax of the differences carefully. Once more the

assessment matched the instruction. Students could not construct parameter lists as

required in the completion and construction tasks (see Appendices E, F, and G) if they

80

70

did not know the syntax. Examination questions (see Appendix H: questions 4, 10-12,

15-17, 19, 23) also addressed the syntactical differences between value and variable

parameters.

. In contrast to the syntactical aspects of the parameter list construction, which

conscientious students typically master without undue difficulty, novices often

experience difficulties deciding when to use a variable parameter and when to use a value

parameter. That decision must be based on the programmer's understanding of the

semantic difference between value and variable parameters.

The Leestma and Nyhoff (1993) glossary defmes a value parameteras a "formal

parameter of a subprogram that is used to pass information to the subprogram but not to

return information from it" and variable parameter as "a formal parameter ofa

subprogram that is used both to pass infotmation to, and return information from, the

subprogram" (p. 967). Th .:. authors imbed most of their text coverage on the semantic

differences between value and variable parameters in an extended example that converts

currency (see Appendix I for an excerpt). Tht., text does include diagrams that depict the

copy versus the shared memory-location perspective, and includes a verbal reference

reflecting that view. In addition, Greene once more reinforced the textbook terminology.

For example, he referred to variable formal parameters as being "associated with" actual

parameters; moreover, he several times referred to a value parameter as a copy. But iust

as the text emphasized the one-way versus two-way communication view ofparameters,

so did the classroom instruction. Greene said several times, for example, "Value

81

71

parameters are a one-way pass. With value parameters information only goes into the

procedure; it does not come out" and "Variable parameters are a two-way pass;

information goes into the procedure and comes back out."

During one class Greene choreographed a concrete simulation with the goal of

helping students understand the differences between value and variable parameters. He

called students to the front of the room to act as modules: a main module and several

procedures. With the audience's help, the "modules" simulated the behavior of a

modular payroll program. The modules received pads of paper that simulated variable

parameters; the students could turn the page and write on the next page to send

information back if they had a pad of paper. However, if the module received only a

single sheet (a value parameter), there was no next page to write on. As the data will

reveal, the concrete representation proved to be a crucially important instnictional

strategy. Once more, however, the simulation focused on the one-way versus two-way

communication view of parameters.

The assessment reflected the instruction. In order to correctly complete the

laboratory and construction exercises, students needed to understand that value

parameters pass information into a procedure, but variable parameters return information

from a procedure as well. Examination questions also addressed the behavior differences

(see Appendix H: questions 2, 6, 7-12, 18, and 22).

The formal classroom instruction concluded on November 15 (the first class period

following the test) when Greene reviewed the mid-term examination. During that class

82

72

period, he spent considerable time tracing the code upon which examination questions 7-

12 were based. As the participants were required to perform similar activities during

some of the interview tasks, it is important to note that I did not observe any in-class

code-tracing activity until Greene reviewed the examination questions and the correct

answers.

In an introductory course, the parameter construct is sometimesmaybe more than

sometimestaught using a black box approach, one that emphasizes only the inputs (no

VAR versus VAR) and the outputs (one-way communication versus two-way

communication) and a process, without regard to how the proceis converts the inputs to

the outputs. A State University advanced computing student who had taken her

introductory courses at a sister institution recently described that situation succinctly with

the following statement:

I was told that if you put a VAR in front of the parameter, it comes back.
If you do not put a VAR there, it does not. For now, take it on faith. You
will learn more about how it happens in the advanced courses.

The following excerpt from Structured Programming in Turbo Pascal (1995), by L.

Wayne Horn supports the student's statement:

A value parameter is a parameter that the procedure uses as input; that is,
value parameters are used to pass values to the procedure. We say that
these values are imported into the procedure for processing. A variable
parameter is used by the procedure to communicate with the calling
program; that is, variable parameters are used to pass values from the
procedure to the calling program. These are the exports of the procedure.
Often, a variable parameter serves as both an import and an export. That
is, a procedure ma:. take the content of a variable parameter, process it,
and return the modified value to the calling program. (p. 220)

83

73

In contrast, the Cooper and Clancy (1985) definition for variable parameter states:

A variable parameter is an alternate name, meaningful only in the
subprogram, for the variable that's supplied as its argument in the
subprogram call. Changing the variable parameter does affect its
argument, since they're exactly the same variable. (p. 72)

Given the extremes, the instruction provided in this study could be categorized as

somewhere midway between the Cooper and Clancy (1985) and Horn (1993) coverage.

To summarize, much of the classroom and textbook instruction and the assessment

used a black-box (communication oriented) approach to understanding parameter

passing. It focused on the inputs, outputs, and the behavior of value parameters versus

the behavior of variable parameters. What appears to have been under-emphasized was

attention to the process that causes the difference in the value and variable parameter

behavior. Under-emphasized, however, does not mean omitted. Both the text and

Greene used phrases associated with the copy wnsus the shared-memory location view.

Moreover, the diagrams embedded in the currency exchange program (see Appendix I)

graphically illustrate the differences.

Participant Interviews

Participant interviews provided the main data source. Eight participants were

interviewed three times. A fourth interview was planned in the event one of the

participating students withdrew from the course during the interval between the

completion of the instruction and the completion of the study; however, none of the

participants withdrew. All interviews were audio-tape recorded arc" transcribed verbatim.

74

The first interviews tended to be fairly brief. The second two ranged in time from 30

to 90 minutes, depending on the participant. In order to preserve the participants'

privacy, the formal interviews were arranged by telephone. However, the students

occasionally stopped at my office door or in the hall to make arrangements. As Dr.

Greene's office is nearby, it is likely he guessed the identity of some participants.

Interview One. Participant interview one (see Appendix J for the protocol), a

semi-structured interview conducted in mid-October, focused on questions of prior

computing experience, Samurcay (1989) stated that it is necessary to have a precise

image of students' understandings about a concept in order to understand the difficulties

encountered in teaching the concept. Thus, it is important to collect evidence about

students' conceptions and the evolution of their conceptions during the learning process.

The first interview thus zqso included brief questions related to parameters to establish a

baseline understanding of the novice's conceptions prior to the parameter instruction. It

also addressed the concept of a variable because understanding the variable construct is

prerequisite to any understanding of the parameter construct, and is covered very early in

the semester.

Interview Two. The second participant interview (see Appendix K for the

protocol) took place just as the parameter instruction was concluding. A semi-structured

interview, it commenced with questions about the participant's perceptions of the CIS

110 class up to that point. (In response to a query about the favorite and least favorite

assignment, seven of the eight participants alluded to the out-of-class parameter

t.;

75

assignment, the Burger Queen (BQ) assignment (see Appendix G).) The interview again

included questions related to parameters. It also included an analogy that participants

were asked to relate to the concept of parameter passing.

The second interview concluded with an analysis task in which students were given

an almost-completed program and the output the program produced. Their.task was to

choose one missingsrocedure heading line from four provided (see Appendix L, Task 1)

and explain their reasoning. According to Samurcay (1989), completion tasks differ from

program construction because the completion tasks involve program understanding as a

sub-task. Soloway and Ehrlick (1984) and Samurcay (1989) used a technique similar to

that employed in this study. In the earlier studies, students were given an incomplete

fragment of code with critical lines missing; the students were to fill in the missing lines.

Interview Three. Participant interview three was conducted several weeks later

(See Appendix M for the protocol). By that time students had written several parameter-

related programs and had taken a mid-term examination in which procedures was a major

topic. The first interview-three task was completion-type activity as described previously

(see Appendix N, Task 2). Using paper and pencil, students explained their reasoning as

they constructed procedure heading lines for an otherwise completed program. The

synthesis activity exemplifies the parameter-related decisions students must make when

they write original programs.

Linn and Dalbey (1985) reported that teachers often assess knowledge of

programming language features by "asking students to reformulate or change a language

86

76

feature of the program so that the program does something different" (p. 192). In her

studies, Webb merged two data sources: computer program listings and tape recorded

verbal interactions (Burton & Magliaro, 1987-88). The second interview-three exercise

(see Appendix 0, Task 3) used the techniques reported in Burton and Magliaro and Linn

and Dalbey. Seated at the computer, the participant converted a non-modular program

into a modular program that incorporated the parameter construct. The program was

saved on a computer disk each time the student compiled it (that is, each time the student

believed the program was completed correctly). Intermediate versions of the program

were preserved and the computer program listings later printed for use during analysis.

Linn (1985) stated that "students' knowledge of language features is often assessed

with items asking them to predict how programs using the feature will perform" (p. 192).

The last interview-three task (see Appendix P, Task 4) assessed students' understanding

using that technique. The last task differed from the earlier tasks in that it was not similar

to the tasks the students had seen during their instruction. It also differed in that it

required the student to understand the shared memory-location perspective of the

parameter process, while the previous interview tasks did not.

The third interview concluded by asking the students to imagine the procedure

heading line of a well known, constantly used, but never-seen procedure, ReadLn, the

procedure that transfers information from the keyboard into the application program.

Never having seen the ReadLn's formal parameter list, the task required the participants

87

77

to determine whether ReadLn's parameters are variable or value parameters based only

on what they knew about the procedure's behavior.

Summary. The interview performance tasks did not measure all of the

understandings or skills novice Pascal programmers are expected to develop during the

first semester. Indeed, the selected tasks deliberately minimized the use of other

programming constructs and skills, particularly those known to challenge novices. For

example, the problems contained no loops, selections, or array processing. Moreover,

only one interview exercise, the computer-assisted revision task, included program

design; the design was as simple and straightforward as possible in a modular program.

Pilot testing of the interview protocols. The participant interview questions and

several of the problem solving tasks were pilot tested during the semester prior to the

initiation of the study. A State University computing faculty member, Professor Collier

(a pseudonym), who was then auditing the CIS 110 course, acted as the testee. The Mona

Lisa analogy (see Appendix J) was retained intact. Other tasks were modified as a result

of the pilot study. For example, the pilot versions of the procedure heading line task (see

Appendix L) and the paper-and-pencil construction task (see Appendix N) required only

that Collier write down ale reason for the choices. As the pilot test of those tasks yielded

little information about Collier's reasoning, the participants in the final study explained

their answers orally in a dialogue with the interviewer. As the next chapter reveals, the

participant explanations proved to be valuable data sources.

88

78

The computer-assisted construction task was videotaped during the pilot study. The

videotaping process, however, seemed intntsive, and the videotape was difficult to

transcribe. In the fmal study, the task was audio taped quite successfully. The second

analysis task (see Appendix P, Task 4) and the ReadLn exercise were not pilot tested.

The pilot study provided some guidance as to the conceptions potential participants

might frticulate. It is important to note, however, that the CIS 110 class Collier was

auditing at the time of the pilot study was not her first Pascal experience. She had taught

the one-credit Pascal class for several semesters and had observed portions, including the

parameter topic, of the CIS 110 class in the past..

During the interview, Collier commented that the textbook used in the course, Turbo

Pascal Programming and Problem Solving (Leestma & Nyhoff, 1993), lacked an

essential element she believed would greatly increase students' understanding: the use of

concrete examples. The book, she noted, uses X and Y and N1 and N2 to designate

variable names. She suggested, instead, the text employ "something that keeps, instead

of just those letters." It does not matter how removed from the discipline the terms are,

she asserted, offering "apples and oranges and peaches and pears, or black and white and

red and blue," as possible alternatives.

Collier's words seemed to foretell the reaction of the students to the illustrations that

proved most helpful. Her description of the instruction she provides on the variable

concept (in the one-credit Pascal class) added further evidence to the value she places on

concrete examples. One analogy involved the tale of a homeowner with three mailboxes.

89

79

"I have a mailbox that holds the Journal, a mailbox that holds The Shopper's Herald, and

a mailbox that holds US mail," she explained. "Each mailbox knows exactly what kind

of stuff it can hold. I tell them, 'The name stays the same on the mailbox, but what's

inside keeps changing all the time,' " and added that the students enjoy and benefit from

the analegy.

Collier also highlighted her use of "transparent envelopes" as an effective

instructional technique for teaching students about variables. "The name stays the same

on the outside," she summarized, "but using this transparent envelope idea lets the

information come in and out." Although she confessed that many students initially reject

the lesson as juvenile in nature, she added that a majority of them confide later that it is

highly effective.

Turning to the parameter concept, Collier defmed a variable p&arneter as follows:

It simply means that we only get one box to share. We have only one spot
for the twothe procedure end the main programto share. Anything that's
being done to the variable is also being done both locally and globally at
that pointor in the progarn and in the procedure bothbecause we're both
ming the same spot e--actly. We're sharing, and there's only one number
allowed in there at a time, or only one value allowed in there at a time.

Collier's definition reflected the shared memory-location view of parameters, calling

attention to the data storage notion of the variable that the procedure and the main module

share. When questioned about differing names for the formal and actual parameters, Collier

again replied with a comparison running along the same lines. "It doesn't make much

difference," she responded. "It's just iike at the post office. Tlxre are two sides in your

j 0

80

mailbox, and it's the same thing here." She continued by recalling the practice of inserting

mail in one side of the mailbox and retrieving it from the opposite side. "We're just using

different sides," she reasoned, "but we're going to the same spot in the middle."

Collier's definition of value parameters was equally vivid. Her depiction of the process

of passing information involved physically removing it and placing it "into another

mailbox." Extending her metaphor, Collier referred to two locations ("mailboxes"):

Say you put 4 in Apples. It's coming up from the main program, and we're
into the procedure. I'll take the 4 and put it in Delicious. At that point,
Apples just remains at 4, and it just fades out of sight; I never see it again. I
just fool around within my little box that's got Delicious on it. That's it;
anything that happens there just stays right there.

Collier's depiction firmly mirrored the copy idea of a value parameter; however, her

comments ("Finally, hey? It's a wonderful feeling to finally see it!") reveal that she also

struggled to attain this understanding.

Collier's elaboration on the Mona Lisa analogy also disclosed her skill in interpreting

and relaying the sometimes perplexing reasoning inherent in parameter passing. Asked

to summarize her understanding of the analogy, Collier first defined the value parameter

passing: "the main programthat's the art teacherhas the Mona Lisa, the replica of the

Mona Lisa." The teacher, she continued, hands the replica to the students, just as the valve

would be passed to the receiving procedure. Upon receiving the replica, the student "sets it

up on the easel and then b1s his own easel beside and paints it as much as he can from that

picture." Her portrayal continued with the student's copy going into his portfolio, and the

teacher's untouched replica being returned to the supply closet. Her account concluded:

91

81

Now the variable parameter passing would be that the person who owned
the Mona Lisa would take it to the art shop. That person would actually
touch the painting, actually change the painting, change the pigment, to
restore it. And that would mean actually changing, so that the person would
get back not the original Mona Lisa, but the Mona Lisa that's been taken
care of, has had work done on it, actually physically had something done to
it, something changed, to that Mona Lisa.

Collier's articulations firmly reflected the copy versus shared-memory location perspective

of parameters. A review of the pilot interview transcripts and the problem-solving tasks,

however, alerted me to the fact that none of the tasks required an understanding of that

perspective. Task 4 (see Appendix P) was added to the final study as an attempt to probe

for that understanding.

Instructor Interviews

Dr. Greene was interviewed twice (see appendices Q and R for the interview

protocols), once shortly before the instruction on parameters began, and then again near

the end of the semester after all other data collection was complete. During the latter

interview, Greene shared his perceptions regarding the effectiveness of the various

instructional strategies he had used, and the areas that posed the most difficulties for his

students. The insights he provided helped guide the data analysis.

Speaking of the class's performance during the semester, Greene indicated that

students were turning in all assignments, viewing the fact as a sign of success. Noting

that during other semesters there "would typically be some people who, up until

procedures, were making do." After that point, he offered, "they would end up with

92

82

programs that might run, but wouldn't accomplish the task that was required," adding

that he had not observed this phenomenon during the present semester.

Accounting for his students' high level of success, Greene credited the labs. In

previous semesters, he recalled, students experiencing difficulty had only one source of

assistance: the professor. "If 30 students needed help, they had to try to fit into one

instructor's time," he pointed out. He added that the lab situation ma...unized teaming

potential, as, in his words, "we end up with students helping each other. So in one sense,

there are 31 potential instructors."

Greene also noted the collaboration that he had observed among students working in

the labs. Labeling the students "comfortable asking each other questions," he went on to

mention situations where he witnessed higher-ability students who had finished their

work moving to another pair to assist them, "acting almost like lab assistants."

Citing the completion-type laboratory exercises as a major reason for the students'

high performance, Greene reflected on the strategy of providing students "with modules

that work." The modules, he conjectured, increase students' success because the learners

are able to focus on whether or not information is being transferred "back and forth"

rather than wondering why the code did not work correctly.

Greene spoke of another strategy he feli had been successful:

I still think my (and I've done it in the past and I've always liked it) notion
of visualizing parameter passing in terms of sheets of paper. I use the
strategy of a sheet for a value parameter and a pad fo- a variable
parameter. The sheets would passed between people and then discarded;
the pads would come back, that kind of thing. I think that has in the past
been successful, and it was successful again this semester.

93

83

Sensitive to the fragile understanding some students still displayed at the semester's

end, Greene observed the general tendency to overuse the VAR. Contending that the

practice did not make a lot of difference "in the programs the students write during the

introductory course because the value parameters are not modified," he remarked, "they

tend not to be creating problems for themselves." Greene then astutely observed: "So

they're not really forced to come to.grips with that." Concluding, he said, "Obviously, if

they don't pass the proper parameters and the procedure needs the information, the

programs don't run."

Greene continued by expressing general satisfaction with the students' progress,

stating that the majority of them understood the construct at an acceptable level.

Although a small percentage of the students, he noted, still had but a rudimentary

understanding of parameter passing ("they grasp parameters as a means of conveying

information to the procedure, but they have not yet made a distinction between which

have to be also conveyed backwards"), Greene pointed out:

I have a few very good students who, at this point, seem to be able to write
a procedure and rather quickly understand, almost without thinking about
it, what parameters need to be passed, and more importantly to me, which
ones need to be variable and which ones need to be value.

Greene's observations generally reflect the literature regarding the value of the

structured laboratory environment, the collaboration, the focused completion exercises,

and the concrete representations. Moreover, as the parts.- 'pant data will reveal, his views

94

84

are in harmony with the thoughts expressed by the study participants, both in regards to

the instruction that was most valuable and to the difficulties they were experiencing.

Documents

Academic transcripts, the background survey, the IPDT results, the written interview

tasks, the printed program listings from the program revision activity, the mid-term

examinations, the participants' written class work, znd Dr. Greene's grade book were all

potential document sources. The participants' written work was especially important as it

often confirmed the participants' interview statements. Moreover, the programming

patterns demonstrated during the interview tasks were frequently mirrored in the written

work. In several instances, the combination of data sourcesthe participant's

verbalizations, the solutions to a variety of diverse parameter-related tasks, and the

written work--provided persuasive evidence for interpretations that would have been

insupportable with fewer data sources.

Data Preparation

A hand-written data sheet containing pertinent information from the IPDT and the

background survey was created for each participant. It contained such information as the

participant's IPDT score, categorization as formal versus non-formal thinker, IPDT

questions missed, major, minor, gender, age cate2,ory, previous computing experience,

previous Pascal experience, and expectations regarding success. The information on the

data sheet was used in the initial search for categories.

95

85

The interview transcriptions, expanded observation field notes, and a methodological

log were all prepared using the word-processing program, Word for Windows 6.0. Hired

transcribers transcribed the interviews verbatim. To insure the accuracy of the record, I

edited each transcription in its entirety. Every line of each interview transcription was

coded with a participant identification code and a unique line number. The interview

transcriptions and the Turbo Pascal 7.0 program listings were preserved on paper and in

machine-readable format. Handwritten notes were prepared from pertinent sections of

the videotapes. In one instance, where Dr. Greene was explaining the code-tracing

question from the mid-term examination, a 10-minute portion of the videotape was

transcribed completely.

During the data collection period, Dr. Greene made available the work produced by

all students in the research section. He generally kept the work in a cardboard box for

transporting between the university and his home. I personally removed, photocopied,

and then returned the pezticipants' original assignments and tests to the box. The copies

were hand coded as necessary.

As this is a multi-case study, the participant data were arranged according to case,

using file folders. In each folder, the data were arranged chronologically. Maintaining

the bulk of the data in machine-readable format allowed for electronic "cutting-and-

pasting," while the coding scheme preserved identification of the original da..a source.

96

86

Data Analysis

Merriam (1988, p. 6C) described a method of constant comparative analysis for use

in qualitative studies. During the first stage of the process, incidents are compared and

tentative categories developed or properties generated. Next, incidents are compared to

the properties of the categories that were developed during the first stage. Third, the

number of categories is reduced, hypotheses are proposed, and the data are reviewed to

determine how closely they match tne categories. Merriam (1988) stated that the "goal of

analysis is to offer reasonable conclusions and generalizations based on the

preponderance of the data" (p. 130): to discover categories or themes that emerge from

"recurring regularities in the data" (p. 132).

Preliminary categories

As noted earlier, Piagetian theory guided the purposeful selection of the participants.

During the informal analysis that accompanied the data collection, the theory also

suggested early categories: formal versus informal thinker, and high versus medium

versus low IPDT score. The selection of participants from both genders allowed for

another category: male versus female. Previous programming versus no previous

programming experience, and previous Pascal versus no previous Pascal experience

suggested still other schemes. College grade-point average, major, and disposition

toward mathematics were also considered. As the data collection continued, the

preliminary categories all collapsed, as none of the categories seuned to show a

relationship to the levels of understanding displayed b: the participants.

97

87

All-inclusive category

A perusal of the interview protocols reveals no reference to the ReadLn exercise.

The decision to include the exercise in the interviews resulted from a growing realization

that an unmistakable pattern was emerging: a pattern which suggested that the

participants were unanimously and consistently articulating a conception that reflected

the one-way versus two-way communication view of the parameter process.

As the study progressed, I questioned whether the opaque view provided the students

with sufficient understanding to visualize an unseen parameter list. If they were

successful with the ReadLn exercise, I hypothesized, it would be reasonable to conclude

that the students' reliance on the opaque view did not unduly hamper their understanding

of the parameter construct. Conversely, if the stadents were not able to correctly identify

the ReadLn parameters as variable, the fact would add support to my emerging

hypothesis that a transparent conceptual model, one with fidelity to the process as well as

the products, might improve novices' understanding of the parameter construct.

The startling failure of all participants to correctly solve the task (see Appendix P,

Task 4) whose solution required the participant to apply the shared memory-location

view of the variable parameter process eclipsed other preliminary findings and directed

the initial stages of the formal analysis.

Linn and Songer categories

The Linn and Songer (1991) model of conceptual change provided an integrative

categorization scheme. The first interview, conducted prior to the instruction, allowed

98

88

for classifying the knowledge the learners brought to the parameter learning situation as

action knowledge. Moreover, formal analysis revealed patterns of fragile understandings

and misconceptions that could be grouped under intuitive conceptions. Principled

understanding could serve as an over-arching category allowing for the examination of

the students' conceptions from different perspectives. Learners, for example, could

demonstrate principled understanding of the parameter process from either the copy

versus shared memory-location perspective, or from the one-way versus two:way

communication view.

Formal analysis revealed a second important dimension for examining students'

principled understanding of the parameter construct. The participants employed

problem-solving styles comparable to those reported in Turkle and Papert (1990); some

displayed an analytical style, some a contextual style, and one seemed to move between

the two styles with ease. The over-arching category allowed for attention to the different

learning and problem-solving styles students employed.

Formal data analysis commenced in February after all interviews were transcribed.

After reflection during the analysis, I constructed an "understanding continuum" along

which the participants were arranged. Moving along the continuum from most principled

to least principled, the participants, in order, were: Carol, Carl, Amy, Sammy, Sondra,

Steve, Moe, and Jason. Although the placements remained stable, formal analysis

continued until mid-June when I could provide convincing explanations for the

appearance of the continuum.

99

89

Trustworthiness

Merriam (1988), citing Lincotn and Guba (1985), stated that one measure of a

study's 4-ustworthiness is its truth value or internal validity: how closely it reports what is

really there. A researcher insures truth value by using techniques such as multiple

sources of data, member checks, long-term observation, and peer debriefmg.

Trustworthiness for this study was established by using the technique of triangulation

(collecting data through multiple data sources), by incorporating multiple cases, by

spending extended time in the field, by employing member checking, by including peer

debriefing, and by providing thick description. All participants were interviewed three

times, during which they solved a variety of parameter-related problems. All classes in

which the topic of parameter passing was the focus of instruction were observed. The

instructor was interviewed twice, once just before the instruction and again near the end

of the semester. The parameter sections ofnumerous textbooks and the parameter-related

class work of all participants were examined. Member checking in the form of questions

such as "This is what I heard. Is this what you mean?" and "Did you mean to say

that . . .?" was employed. The department chairperson at the university in question acted

as a peer debriefer throughout the data collection and data analysis processes, and Dr.

Greene himself acted as a peer debriefer during the concluding interview. Finally, the

findings were shared with the pre-service teachers enrolled in the computer science

teaching methods class.

luO

9(;

Merriam (1988) described the extent to which the fmdings can be applied to other

settings (or in more traditional terms, replicated) with terms such as reliability,

consistency, transferability, and external validity. The thick description found in this and

the next chapter provides readers with a detailed view of the environment in which the

study was conducted, enabling readers to reasonably estimate the extent to which the

findings may transfer to other settings. Additionally, the purposeful sampling of

participants encourages transferability. An audit trail, which includes a methodological

log and the safekeeping of all original data sources (videotapes, audio tapes, field notes,

expanded field notes, documents, transcriptions, and computer files) ensures

dependability and confirmability.

Summary

This study employed a theory-driven, qualitative design to investigate novice Pascal

programmers' understanding of the parameter passing construct. The bulk of the data

was collected from eight college students enrolled in a state university introductory

computer programming course. Observations of the programming instruction, interviews

with the course's instructor, and examination of pertinent documents provided additional

data. Trustworthiness was established using a variety of techniques including

triangulation and thick description.

10 1

91

CHAPTER IV

RESULTS

Introduction to the Case Study Reports

The individual eight case studies are arranged along a continuum developed after

considerable reflection during formal data analysis. The continuum begins with the two

students whose understanding appeared principled (Carol and Carl) and moves to the

three students who appeared to harbor fundamental misconceptions of the parameter

construct (Steve, Moe, and Jason). Between the two extremities lay the three students

whose understanding showed varying degrees of fragility (Amy, Sammy, and Sondra).

Commencing with a capsule of the individual case, each narrative then paints a

verbal portrait of the participant, with some attention to his or her background. The

report next considers the participant's reactions to the CIS110 course, attempting to

provide information concerning, for example, the topic the participant considered most

challenging (inevitably parameters), favorite and least favorite assignments, and pertinent

data on the class work. Following a segment specifically devoted to participant remarks

concerning parameters, the account considersin orderthe participant's response to the

Mona Lisa analogy (see Appendix J); problem-solving efforts on Task 1, Task 2, Task 3,

and Task 4 (see Appendices L, N, 0, and P); and the participant's interpretation of the

ReadLn parameter list.

102

92

Case Study: Carol

A Capsule of Carol

Carol demonstrated a principled understanding of the parameter construct from the

communication perspective. Although she displayed a faint inclination toward the shared

memory-location outlook when she used the words "copy" and "original" to describe

value parameters, the bulk of evidence shows that Carol relied on the communication

view. She articulated the terminology of that perspective effortlessly and succinctly, she

correctly analyzed programs that did not require the shared memory-location view, and

she constructed modular programs without errors.

According to the 1PDT, Carol was categorized as a non-formal thinker, but the

problem-solving style she demonstrated and verbalized was consistently that of an

analytical learner. The mental models literature (Mayer, 1982, 1985, 1989) and Turkle

and Papert (1990) suggest that people with an analytical style are comfortable with a

black box model; they are quite happy to use objects without fully understanding all the

details. As Carol appeared to have been unhampered by her reliance on the rule-driven,

abstract parameter passing model, the case of Carol would seem to lend support for the

position.

Background

A female in her early twenties, Carol is a senior-standing transfer student who

is majoring in mathematics education. As might be expected from her major,

Carol indicated that she enjoys mathematics and does well in it. Her transcript

103

93

revealed her to be a B/C student overall and in the major. A computer user since

middle school, Carol had copied BASIC exercises that came with an early

computer, had taken a high school computer applications course, considered

herself comfortable with word processing, and had previously taken State

University's campus computing facilities course. At State University,

mathematics education majors are required to take three credits of computing, but

the three credits need not be CIS 110. Carol's reason for enrolling was, in her

words, "to learn something new," and she expressed her desire to succeed in the

course. Despite the slight initial concerns, she earned a high A.

Carol scored 20 on the IPDT, missing questions 49 (a shadows question), 54

and 55 (classes questions), and 60 (a distance question). The two mistakes on the

classes subtest prevented her from being categorized a formal thinker.

Reactions to the Course

At the semester's outset, Carol indicated that she did not plan to continue in

computing, offering the following explanation:

Honestly, I had a friend who was a CIS major. She stumbled through 110
and ended up changing majors. She was my roommate at the time, and I
would see her with all the problems.

Describing her perception of the first part of the course, Carol said, "So far, it's been

going real good. I thought it would be impossible, but it's real easy." Midway through

the semester, Carol said, "I really enjoy the course. It seems like it's not too hard for me.

104

94

In fact, it's the class I'm doing the best in." The following semester, Carol commented

on her decision not to continue in CIS:

Halfway through the semester I was kicking myself for not taking it [CIS
110] earlier. I do not have a minor, and I defmitely would have chosen
CIS. I enjoyed the course more than any other I have taken since I've
been here. I student teach next semester, and then I'm done. But I'm
thinking that once I've started teaching, I'll come beck and pursue the
minor.

Carol's observations have implications for the question of a relationship between

programming success and a positive disposition toward the subject.

When asked to describe her favorite element of the course, Carol was initially

undecided, then claimed she liked "all of it" except for completing the laboratory

exercises in the lab. "I prefer to work at home. At the beginning it helped when I really

had no idea about it. Now I'm better off doing it at home on my own time." The only

participant who commented negatively about the structured laboratory component of the

course, Carol's observation that she benefited from the experience when she was unsure

of herself is in accord with the less secure students who strongly endorsed the labs.

Speaking of the assignments, Carol offered that she enjoyed figuring out how to

solve the problems. She said, "I feel like I really accomplished something when I start

out with a problem, and I've got a program that produces the answer to it. It feels like a

real accomplishment." The BQ assignment, which she described as challenging, was her

favorite. "When my original idea of how I was going to write it didn't work out, I was

105

95

able to figure out where my problems were," she claimed, suggesting that she enjoys

controlling the machine, as did the planners in the Turk le and Papert (1990) studies.

Carol, who consistently demonstrated an analytical problem-solving style, also

volunteered that she liked the graphical banner assignment. Her words underscore the

supposition that contextual learners are not the only ones who benefit from concrete

representations. A review of Carol's parameter-related class work reveals that it matched

her assessment of her performance. It was consistently done correctly.

Parameters

When asked which concept she had thus far found the most challenging, Carol

replied, "The difference between variable and value parameters. As I was doing the

banner and the revised banner, all ofa sudden it just seemed to click. I knew what it

was." Carol's forthcoming description of value parameters illustrates her accurate

understanding of the concept. "The information in the variable is passed into the

procedure, but is not passed back out," she said, and described changes to value

parameters as follows:

It's just left in the procedure because the main program has the original
value. The procedure gets a copy of the original, and that's changed, but
it's not passed back to the main program. So the original value stays in
the main program.

Her descriptions demonstrated a firm understanding of the value parameter concept,

reflecting both the shared memory and the communication perspectives. When asked for

a definition of variable parameters, Carol replied, "Information that is passed into the

106

96

procedure through the variables. It can be changed, and then it is passed back out to the

main line."

Carol offered that the in-class demonstration provided her with a mental model of the

way information is passed to a procedure, saying, "I just kind of remember back to that

in-class exercise that he had with passing the pads of paper." Her image of how

information is passed into the procedure and back out, however, appears to lack that

clarity. Her reply to the question "Do you have an image of how information is passed

into the procedure and back out?" was "Not really. It's not really pictured or anything

except for the in-class simulation." Carol's reference to the in-class simulation of the

parameter process affirms the value of concrete representations.

Analogy

In the analogy segment of the interview (see Appendix K), Carol proved her ability

to conceptualize and describe the action of a variable parameter situation. When called

upon to make a comparison concerning situation two, she correctly responded that it

reminded her of a variable parameter:

How it's changed and then passed back to the owner, like the main
program. Situation one is more like the value parameter, where the
painting that the student made stays there. It's not passed back.

Carol's response aptly described the action of a variable parameter situation. The

procedure changes the painting and passes it back to the calling module in its changed

condition. Carol's interpretation identified the student-created paintings with value

parameters; thus her analogy was correct in the sense that the newly created novice

1.0

97

paintings (changes made during the procedure) were not passed back to the instructor.

Carol's analogy reflected the communication view of the parameter process; however, it

did not incorporate the notion of "copy" that she used earlier when describing a value

parameter.

Task 1

When presented with the analysis task, Carol first looked to the main program and

correctly observed, "The I in the main program is 16, and theoutput for both numbers is

16. So when you swap them, the I remains 16. The J would be changed to 16." Carol

then looked to the details of the procedure, traced tin; code without hesitation, and chose

the correct procedure heading line. She also recognized that she had just seen something

similar on the test and in a previous lab exercise.

Task 2

Interview three, conducted on November 24, began with the paper-and-pencil

construction task. After studying the program briefly, Carol confidently constructed

correct procedure heading lines, giving appropriate reasons for her choices. She offered

that the formal parameter in the Getlnput procedure needed a variable parameter "because

the dimension has to go back to the mainline program." She identified the

CalculateVolume parameters as value parameters "because the information .-,omes from

the main program and is used to calculate the volume." "Volume," she said, "needed to

be a variable parameter because it is given back to the main program."

108

98

Evidence of Carol's analytical problem-solving approach surfaced during the

interview task. She addressed the problem in a structured, top-down fashion that

reflected the classroom instruction. In a structured approach to programming, students

are encouraged to decide first what a program's input and output should be, and only later

develop a process that converts the input to output. Specifically Carol, as she analyzed

the problem, looked first at the output procedure even though it physically appeared

second on the page. She moved next to the input procedure that physically appeared third

on the page. She examined the calculate procedure last, even though it physically

appeared first.

Task 3

Carol methodically converted the one-module program to a modular version without

difficulty. She routinely used different names for the formal and actual parameters,

claiming it was easier for her to understand if the names were different. Carol addressed

the procedures in the logical order of their execution, and carefully checked the parameter

list order and names before attempting to compile the program. Her first attempt was

successful; moreover, she asked for paper and pencil to verify that the program results

were correct.

Task 4

When given the code tracing task, Carol looked first to the main module, saying:

N equals 3. When you call the procedure, you put in N twice. In the
procedure, the first N correlates with A, and the second N correlates with
B. They're both variable parameters. In the procedure you add 1 to A,
and you add 1 to B. You end up getting A is 4 and B is 4. Because

109

99

they're variable parameters that are passed back, the main has that value
for N. With WriteLn (N), you get 4 as your output.

Carol's answer reasonably reflected the communication viewpoint of the parameter

process, the perspective she consistently expressed. Although Carol had earlier used the

terms "copy" and "original" in reference to value parameters, she had never articulated

the shared memory-location outlook in reference to variable parameters. She solved the

problem appropriately, in terms of her understanding.

ReadLn

Without hesitation, Carol offered that a ReadLn formal parameter needed to be a

variable parameter because "you use the information later on in the main line." As Carol

was not asked to apply her understanding in an example, or asked how the outcome of a

procedure call to ReadLn would differ if the parameters were value parameters, it is not

known whether she could correctly apply her knowledge.

no

100

Case Study: Carl

A Capsule of Carl

Carl demonstrated a principled understanding of the parameter construct from the

communication perspective. He facilely expressed the terminology and constructed

programs modular programs without significant errors. The data disclose that Carl relied

on the communication view for value parameters; he never used the term "copy." Most

of Carl's reports suggest that he also firmly relied on the two-way communication view

of variable parameters, although his closing comment during the second analysis task

hinted at some perception of the shared memory view. If the interpretation is correct,

then Carl seemed to be integrating the two views.

Carl's IPDT score of 20 categorized him as a non-formal thinker. However, his

problem-solving approach on the interview tasks displayed an analytical style; without

variation, he looked at the broad view first and attended to details as necessary. Although

Carl did say he imagined variable parameters as a chalkboard and did once allude to the

in-class simulation, he claimed to have no concrete image of value parameters. Lack of

such an image seems tot to have impeded his understanding. After examining Carl's

performance and his responses, it appears safe to assume that his case supports the theory

propounded by Turkle and Papert (1990); he was unhampered by the rule-driven

communication model.

1 I.

101

Background

Carl is a male who is under 21. A sophomore without a declared major, Carl named

CIS as his minor in the beginning-of-the-semester survey; he also indicated that he was

uncertain whether he would take the subsequent computing course. He did enroll in and

complete the next class. Carl has been programming for some time; his father, who has

programmed professionally, began teaching him to progam when he was in the fourth or

fifth grade. The youth took a computer applications course, which he described as

simple, when he was in high school. While he did study Pascal briefly while in high

school, he indicated that the students had done no more than copy the instructor's

programs, exercises no more than a half-page long. Describing himself as confident in

his success in the programming course (he did earn an A), Carl also claimed that he

enjoys mathematics and does well in it. Carl's college performance thus far would

categorize him as a B/C student.

A non-formal thinker who earned a score of 20 on the IPDT, Carl missed questions

59 and 60 (distance questions), 61 (an inclusion question), and 70 (a probability

question). The two missed distance questions prevented him from being classified a

formal thinker.

Reactions to the Course

During Carl's second interview, on November 17, he described the course as

interesting, "not too hard." Reflecting Turkle and Papert's (1990) description of their

planners, he added that "learning how to make the computer do what you want it to"

112

102

provided him with a sense of accomplishment. Carl said there had been no assignment

that he would describe as either favorite or least favorite, commenting that they all

seemed pretty relevant. A review of Carl's work suggests that he did initially have

difficulties with parameters. His first procedure lab (Lab 7) contained numerous

parameter errors, including several instances of value-variable mistakes. He also missed

approximately 10 procedure-related examination questions on the November 11 test.

However, Carl's BQ assignment, although it contained design and style flaws, passed

parameters appropriately, and consistently used different formal and actual parameter

names. Moreover, the second procedure laboratory exercise (Lab 9) was completely

correct.

Parameters

Asked about procedures with parameters, Carl replied, "It took a little while to

actually grasp the variable-value parameter type thing." He explained: "You're doubling

your variable ratio because you have different variables in your procedures and in your

main line, just keeping them straight in your mind." Carl's statement agrees with the Van

Merrienboer and Krammer (1987) position that some novice programmer errors are due

to information processing overload. The authors explicitly named top-down design

techniques--to which the procedures and parameters are fundamental--as a troublesome

area.

Carl continued to reflect on his parameter problems, naming specifically having to

"decide if you wanted the number back out." He offered:

113

103 .

At first that caused a problem for me, but then Dr. Greene did that little
skit, the simulation. It seemed menial at first, but it actually made sense
after a while because I found myself thhiking notepad or paper. So it
actually did help.

His statement testifies to the value of concrete representations. Echoing the terminology of

the communication perspective, Carl offered that changes made to variable parameters

hold, while changes made to value parameters do not. Asked what guided his thinking

about when a variable parameter is appropriate, Carl aptly replied, "Is the variable going to

be changed in the procedure, and do I need the change?'

Analogy

Presented with the Mona Lisa analogy, Carl responded without hesitation,

connecting situation two with a variable parameter, stating, "They send it back, ic gets

changed, and it comes back changed." Situation one he connected with value parameters,

offering, "The students paint it and change it, but when it comes out, it's still the original.

The original is still there." Carl analogized appropriately, given the communication

perspective. In situation two, he connected changes being made to an original painting

with variable parameters. His response to situation one, where the original is intact--

where actions of the procedure do not change the original--was consistent with his earlier

statements.

Task 1

As Carl attempted to choose the correct procedure heading line, he looked first to the

procedure lines. He immediately eliminated procedure line two (the one with both value

114

104

parameters), saying, "One of them gets changed, and the other stays the same." Asked

what the procedure accomplished, he unhesitatingly replied, "It just rotates all the values.

I suppose I should look at it first before I assume. Yes, it just rotates the values." Carl

then looked to the details; he correctly traced the values and chose procedure line one.

Congruent with the characteristics Turlde and Papert (1990) attributed to analytical

learners, Carl easily accepted the swap procedure without first examining the details.

It is perhaps relevant to note that the test and Greene's extended review of code-

tracing questions similar to the interview task preceded Carl's second interview. Had the

interview occurred earlier, Carl's understanding might have been less secure.

Task 2

Interview three, conducted on November 22, began with the paper-and-pencil

construction task. Carl first determined the procedure functions and named them

accordingly. He turned first to the GetInput procedure and correctly decided it needed a

variable parameter because "you need those to come back into the main line because you

have to send them somewhere else." He first chose an arbitrary name for the formal

parameter. After looking at the ReadLn, he correctly changed the name to Dimension,

commenting "I didn't even see that before." Carl next worked on the CalculateVolume

procedure. He completed the task correctly except for the ordering of the parameter list

in the CalculateVolume procedure. As he had done in previous task, Carl first gained a

grasp of the overall task; only then did he look to the details, and apparently only then

when he felt it was necessary. Although the interview transcript does not disclose

115

105

precisely the order in which Carl examined the procedures, it is certain that he followed

the logical order of execution rather than the physical order in which the procedures

appeared on the page.

Task 3

Carl accomplished the modularizing exercise easily, the only errors being two

misspellings. It seems logical, therefore, to assume that his occasional errors seemed to

be mistakes ef inattention rather than errors in understanding. One might speculate that

Carl reduced his information-processing load by relying on the compiler to find syntax

errors. It may be that his previous programming experience made him more aware of the

kind of assistance the computer could provide.

Task 4

Given the code tracing exercise, Carl first made sense of the program, then attended

to the details of tracing the code. He summarized his understanding:

I can tell just by looking at it that it's 4, but I would set up a trace. A and
B, the original value is 3 for both of them. It goes through the procedure
once, adds 1 to both of them, and ends, and then WriteLn (N). I'm not
sure what N is. N is both of them, really, but they're the same. So it
would display 4. I'm a little confused by the one variable, though.

One of the few participants who alluded to the storage component of the term "variable,"

Carl had earlier defined a variable as "something that holds a value in memory." He had

also said, "For variable parameters, I picture like a trace. It's like a little chalkboard.

You just cross out what you had before." The task, in which "N is both of them,"

appeared to generate a small amount of cognitive dissonance, perhaps causing Carl to

116

106

question his chalkboard image. That both parameters returned the same value (4) may

have allowed Carl to reconcile the incongruity without abandoning his chalkboard image.

If this is true, then a better task would be one in which A and B are not changed by the

same value. Carl's reference to "N being both of them," and the statement of confusion

when one variable was passed twice, suggest a glimmer of understanding concerning the

parameter construct from the shared memory-location perspective.

ReadLn

Asked to identify the ReadLn parameters, Carl replied without hesitation, "A VAR

parameter, because if it wasn't, there would never be anything in that variable." Carl's

description implied that he understood the effect of value parameters; he was not asked to

apply the knowledge.

117

107

Case Study: Amy

A Capsule of Amy

Amy was generally successful constructing modular programs. Her level of

understanding was sufficient to permit the regular use of different formal and actual

parameter names. As further evidence of her comprehension, she repeated the words of

the communication perspective with understanding. Moreover, once she related the

problem to her prior experience, she successfully analyzed the program in the first task.

Additionally, she offered a reasonable solution to the second analysis task. During the

hand-construction task, Amy correctly selected between value and variable parameters,

giving appropriate reasons for her choices. However, she seemed to rely on the computer

to assist her with the value versus variable parameter decisions during the computer-

assisted task.

Amy struggled to envision the unseen ReadLn parameter list. As she admitted to

having no mental image of the parameter process (other than the in-class simulation), it may

be that her lack of a concrete mental model inhibited her from imagining the parameter list.

Amy is a formal thinker. It is possible to conjecture that her formal thinking ability

allowed her to move between the top-down and bottom-up approaches, as she seemed able

to do. Employing both analytical and contextual problem-solving styles upon occasion,

Amy demonstrated a flexibility consistent with Linn and Clancy's (1990, 1992) observation

of expert programmers. Alternatively, it may be that Amy exemplifies the Turkle and

Papert (1990) bricoleurs who resorted to analytical problem-solving styles to succeed in a

118

108

structured programming course. Amy's problem-solving approach on most of the interview

tasks, her partiality to the concrete banner program, and the self report of her BQ

assignment efforts support this interpretation. If this rendering is correct, it is reasonable to

hypothesize that Amy would have profited from additional exposure to the tansparent,

concrete, shared memory-location view of the parameter process.

Background

A female under age 21, Amy is a sophomore who has declared a mathematics major

and a CIS minor. As might be expected from the major, she reported that she enjoys

mathematics and does well in it. Her academic transcript generally supports her

assessment; it would place her as a B student. She took the one-credit Pascal class,

which she described as easy, during her first semester at State University, and earned an

A. Amy volunteered during the first interview that she had decided to minor in

computing approximately half way through the earlier programming course. At the CIS

110 semester's outsti, Amy said she hoped to do well in the class, but had some concerns

about her eventual success. She did earn an A. Amy is a formal thinker, with an IPDT

score of 23. She missed only question 55, a classes question.

Reactions to the Course

At the November 9 interview, Amy described the class thus far as challenging.

Observing that she enjoyed trying to figure out answers and working for outcomes, she

said of computer programming:

I like to put a program into a computer and have it do things and print out
something completely different from what it was given, to make it myself.

113

109

Amy's description of her interaction with the computer is remindful of the Turk le and

Papert (1990) planners. It also indicates her image of success. She described the

concrete banner as her favorite assignment thus far and the BQ assignment, which she

described as "nerve racking," as her least favorite. Elaborating on her difficulties with it,

she said:

First I tried modifying a previous one. I thought that wou'Al be easier than
just starting from scratch. I did all this stuff to it, and it didn't work. So I
just threw that one out. I ended up doing it three times before I got to my
final one.

Amy attributed her early difficulties with the assignment to parameters, and described her

successful effort:

The last time I did it, I wrote down each of the variables, and I wrote down
next to it, everything that went with it. I think because I organized on paper,
it was a lot easier.

Amy's description of her initial approach to the BQ assignment is reminiscent of the

Turkle and Papert (1990) bricoleurs. She constructed her BQ program "by arranging and

rearranging, negotiating and re-negotiating with a set of well-known materials" (p. 136),

in this case the Flipper program she had written previously. As with some of the Turkle

and Papert bricoleurs engaged in a structured programming course, Amy found herself

more successful when she adopted a more analytic strategy.

Other evidence of Amy's sometimes contextual problem-solving style emerged as

the interview progressed. For example, Amy noted that although her BQ assignment had

not yet been returned, she believed it produced the correct answer. She admitted, though,

120

110

that she had not verified the calculations. In her words, she trusted her work, believing

that after all the time she had spent on it, it must be correct. In contrast to her earlier

statements, this observation suggested Amy viewed her relationship with the computer

almost as a partnership, and that she was trusting the machine to do its part.

Except that she used variable parameters in the output procedures, an error Amy said

she had become aware of after the assignment was submitted, the parameter-related

portion of her BQ program was correctly done. In every instance, she chose a formal

parameter name that differed from the actual name. Moreover, Amy's laboratory

exercises were well done, and she missed no parameter-related questions on the test two

days later.

Parameters

Accrediting the ease with which she mastered the topics before procedures to the

fact that she had encountered them in the one-credit class, Amy indicated that the

procedure topic was challenging her as prior topics had not. Alluding to the BQ

assignment, she described having a local variable that should have appeared in the

parameter list. She elaborated:

I think it's difficult just knowing what goes where, because you can have
five procedures and the same word meaning different thLigs. All the
different variables and parameters that mean the same thing or mean
different things. For example, for Number, you can use Num 1 , you can use
Number, you can use Num. Just keeping them all organized, knowing what
you axe going to use for which one, and where it goes. I think just
organization.

12!

111

Amy emphasized organization, but she seemed to be echoing the literature position

regarding the information-processing demands on working memory. Additionally,

although the parameter instruction was essentially complete, Amy was still unsure about

some tenninr ,gy. For example, she substituted the phrase "the parameter that is in the

main" for the term "actual parameter." Others, including Greene and Collier, have

commented on the surfeit of additional terminology associated with the parameter concept.

Amy elaborated on the difficulties she was experiencing. "I think the things that really

confuse me are the value and the VAR parameters and the local variables, just knowing

when to use them," she admitted. When asked what helped her to make those decisions,

Amy replied:

When I do my programs now, I seriously think of a piece of paper or a pile
of paper. It helped a lot. When I do my program, I seriously think, "Do I
want this piece of paper back or the pad of paper back?" I mean it helps me
in that way.

Once more, the value of concrete representations became apparent.

Of a value parameter, Amy said, "It doesn't come back out." Her conception of

variable parameters included the observation that changes to variable parameters are

reflected in the original variable. Amy's terminology consistently reflected the

communication view of the parameter process. Moreover, her words, "get a number back

that can now be placed in the original variable," implied a replacement of the actual

parameter at the conclusion of the procedure's execution.

122

112

Analogy

The analogy portion of the interview provided the first opportunity for Amy to apply

her understanding of the parameter process. When posed with the Mona Lisa analogy,

Amy offered that she would consider situation two similar to a variable parameter because

they're sending the painting to somebody else. That somebody else would
be the procedure doing what needs to be done to adjust the painting. Then
they're sending back the painting.

Amy thought situation one would be classified as a value parameter. She justified her

response, saying, "Because they're keeping it. They're sending back a different one. That

would be a variable parameter, like painting two would be a variable parameter." Not

surprisingly, since Amy's expressions consistently confirmed her adoption of the

communication outlook, the movements of the paintings guided Amy's thinking. She

cotmected the Mona Lisa model, which was retained, with a value parameter and the

student paintings that were "sent back" with variable parameters. In terms of her

understanding, Amy analogized correctly. A modified-and-returned painting represented

the variable parameter, and a painting that was not returned represented the value

parameter.

Task 1

After displaying some initial confusion regarding the structure of the program--possibly

due to nervousness generated by the interview situationAmy began analyzing the code.

Her observation that "NI would be I, and N2 is J. N 1 is 16" indicates that she understood

the actual-formal parameter connection. Beginning to trace the code within the procedure,

123

113

she correctly observed "T would be 16; then N2 would be 16 also." Amy's partial trace

was correct; it was, however, incomplete. Hence, it appears that her initial effort concluded

with 16 in all three procedure variables.

Amy next asked if it was possible that there could be more than one correct heading

line. If her original trace did place 16 in all three variables, then three of the four procedure

lines would have produced the desired output, in which case Amy's question was germane.

In response,to her question, I (the interviewer) offered that there were four possible

combinations of two numbers and four procedure heading lines. The response to Amy's

question may have been inappropriate, as it could only have been interpreted correctly if the

procedure swapped the values (as its name implied). Although Amy had, during her initial

efforts, alluded to "switching the numbers around," she had leapt into the details of the task

and was even initially confused about the program's structure. It is possible she was still in

the process of formulating for herself the outcome of the procedure statements.

In response to the observation about the possible answers, Amy replied, "I still think

it's number three because it puts the value of N1 which is equal to I which equals 16 into T.

Then N2 equals NI. N2 is 5, so NI would now equal 5," as she correctly traced through the

statements of the procedure. This time she did not conclude that all the values were 16.

Moreover, she acknowledged that she recognized the code as the Flipper program. She

responded correctly (5 16) when asked what the output would be if the procedure worked

correctly, and followed up by indicating she did not want line three any more "because the

same number's corning out. One of them has to bc variable and one of them has to be a

124

114

value." Prompted with a question regarding the program's output if procedure line one was

the correct choice, Amy responded by orally working through the procedure's actions and

selecting procedure line one, the correct choice. Considering that the abstract task may

have initially been confusing to the participant, it is possible that the reference to the

outputs assisted in her ability to focus on the procedure heading lines. It is equally

plausible that she understood the effect of the procedur e heading lines and was instead

initially confused about the effect of the procedure statements. Asking Amy what the

output would be if procedure line one was the choice may also have encouraged her to

consider procedure heading lines other than the familiar procedure line three, the one that

would have produced the output she knew a correctly functioning procedure should have.

Whatever provided the link, it appears that once Amy was able to relate the problem to her

previous experienceto recognize it as an incorrectly structured Flipper moduleshe was

able to solve it quickly. As Amy missed none of the procedure-related questions on the test

two days later, one could speculate that Amy profited from the opportunity to elaborate her

conceptions of the parameter construct.

Task 2

The third interview, conducted November 18, began with the paper-and-pencil

construction task. As Amy examined the procedures in the order of their appearance on the

page rather than the order of their execution within the program, it was apparently the

concrete, physical representation of the program rather than the logical representation that

guided Amy's efforts. She correctly chose value and varii,ble parameters appropriately,

125

115

saying, for example, "It's a value parameter because it doesn't need to come back to the

main. It can just stay up there." She provided correct formal parameter names, except that

she chose the parameter name Volume instead of Answer in the DisplayOutput procedure,

indicating that she chose Volume because she used that name in the CalculateVolume

procedure. As she correctly identified all other parameter names and used different actual

and formal parameter names in the BQ assignment, it is likely that her mistake was no more

than an oversight.

Task 3

Amy began the modularization task by stating that she would first cut and paste the

user instructions to make a procedure for that purpose. Then, referring to the paper copy of

the program statements, Amy looked at the details of the defined constants (InputPrompt2

and InputPrompt3), the statements that physically appeared first in the program, and

contemplated constructing procedures for them. Only then did she stop to question the

function of the program. Upon receiving an explanation, she decided to construct a multi-

purpose module, which she named CalculateCyrossPay, to obtain the necessary input and

calculate the gross pay. That completed, Amy inquired, "Is this program only going to go

through once?" Again, it appeared that she was working from the "bottom-up," attending

first to the details and later to the over-all program structure.

Next Amy constructed an output procedure. She took care to use different actual and

formal parameter names, saying she did not want to confuse them. Because she had

neglected to change a variable name as she moved a statement into a procedure, her first

126

116

compilation attempt failed. Her next attempt compiled successfully; however the execution

produced zero values for HoursWorked and Pay Rate because Amy used value parameters

instead of variable. As GrossPay was correctly identified as a variable parameter, it may be

that she was relying on her prior experience with single-purpose calculate modules, in

which case parameters comparable to HoursWorked and PayRate would appropriately have

been value parameters. Amy made the necessary corrections without hesitation; she

apparently recognized the symptom and knew the treatment.

One explanation for Amy's actions posits that they simply reflected her preferred

cognitive style. Cheny (1980) reported that "the heuristic approach is characterized by a

trial-and-error method and the use of feedback to adjust the course of action chosen" (p.

285) The description seems to flt Amy's behavior.

Alternatively, Amy's actions c)uld be interpreted to suggest that she was relying on the

computer to assist her problem-solving efforts. If this is so, the "electronic coach" may

have been acting as the more able peer, helping her to complete assignments successfully

(Pea, 1985). On the other hand, the computer-provided assistance may have relieved Amy

of the need for "mindful abstraction" (Van Merrienboer & Paas, 1990; Van Merrienboer &

De Crook, 1992). As long as the problems were routine and the programs produced the

correct answer, she did not have to ponder seriously whether a parameter should be value or

variable.

127

117

Task 4

Amy undertook the code tracing exercise and proceeded without hesitation. For this

task her approach was more itructured, as she looked first at the program's structure. She

verbalized her understanding as follows: "The main program has N equal . Then it calls

a procedure, putting 3 in two different places; it does N twice." Amy's last statement

calls attention to a misconception that can be attributed to her total reliance on the
,

communication perspective of parameters. As the communication view provides no

image of the manner in which the two-way communication is accomplished, learners are

forced to construct their own model, a model that, according to Mayer (1982, 1985), may

be impoverished. The process, in which two copies of the 3 were made, that Amy was

attributing to the variable parameter was in fact the value parameter process.

Amy continued, correctly tracing the action of the procedure statements, arrived at a

value of 4 for N "because you changed the value of N when you went through the

procedure." Considering that Amy described a variable parameter with the following

statement, "It has information that will be sent to the matching variable up in the procedure

itself. Then the information can change, and you get a number back that will now be placed

into that original variable," she answered correctly in terms of her understanding. She

recognized that changes made to A and B changed N, and she knew that the change

happened twice. Her answer was reasonable, given the firm entrenchment of the

communication outlook.

128

118

ReadLn

Amy offered that ReadLn would have variable parameters because, in her words,

"When you enter a number, more than likely you would use the number somewhere again

in the program, other than having a ReadLn and oti;71t right after that." She then

concluded that the ReadLn would have value parameters "because when we put it in, we

can't change it until we call it again. So if I put ReadLn and I entered a number in, I

couldn't change the value unless I called it again." Amy's mental model of the parameter

process, one that strongly reflected only the communication viewpoint of parameters, did

not enable her to visualize the behavior of the abstract and unseen ReadLn procedure.

129

119

Case Study: Sammy
A Capsule of Sammy

Sammy used the terminology of the text and classroom instruction easily, perhaps

due to the reading she reported doing. In addition, she could construct generally correct

programs. Her BQ assignment tised identical actual and formal parameter names, but the

later interview construction task did not. During construction tasks, she usually chose

value and variable parameters correctly, giving appropriate reasons, with the exception

that she sometimes used variable parameters in the output procedures.

Sammy struggled with the first analysis task. As she observed that assigning values

to value parameters made no sense, it may be that the entire abstract task made no sense

to her. As she continued her problem-solving efforts, two naive conceptions about value

parameters emerged. She was uncertain whether or not value parameters returned values

when the actual and formal parameter names differed, and she also did not know if

changed value parameters returned values to the calling module.

Encouraged by the interview probes to verbalize her thoughts, Sammy worked

through her fragile understanding and eventually solved the problem. She attributed

variable parameters to the ReadLn, but then expressed confusion when asked to imagine

the behavior of a ReadLn with value parameters. Sammy's first answer (4) to the last

analysis task reflected the prevailing communication view, but she did express a small

amount of dissonance. Sammy, the contextual thinker, repeatedly revealed that she

learned from concrete models. Although she several times used the term "copy" in

130

120

conjunction with value parameters, her own words divulged that she had formed no

mental picture of a value parameter. To hypothesize that Sammy would have benefited

from additional exposure to the more concrete, pictorial copy versus shared memory-

location view of parameters seems valid.

Background

Sammy is a female under the age of 21. A junior, she is an English major with CIS

and technical writing minors. Her transcript shows a B/B+ grade-point average; it also

discloses that she earned a B- in her first semester, and that the overall grade-point has

improved consistently since then. Indicating she had used a computer extensively both as

a high school yearbook editor and during several summers of employment, she described

herself as mainly self-taught. She took the one-credit Pascal course in the semester

preceding her enrollment in CIS 110, and earned a grade of A-. The earlier course

Sammy described as "neither easy nor difficult, just there." At the semester's outset

Sammy indicated that she was confident that she would succeed in CIS 110; she earned a

B+.

Referring to her disposition towards computers, Sammy described herself as excited

because she realized how much there is to learn. She said:

I have so much learning to do with computers. It's kind of neat because
you learn something, and it's almost like the first rung on that ladder that
everybody's got to climb. It's kind of neat because you know there's a lot
more you can learn.

131

121

Sammy's observations mirrored the Turk le and Papert (1990) description of contextual

learners, people who view computer experiences as an interactive conversation, in

contrast to analytical learners, who think in terms of controlling the machine.

Sammy is a non-formal thinker, earning a score of 13 on the IPDT. She missed

question 49 (a shadows question), 52-56 (all four classes questions), 59 and 60 (distance

questions), and 70-72 (three of the four probability questions).

Reactions to the Course

The November 9 interview began with a question about her reaction to the course

thus far. Sammy confessed, "It's not a breeze. Challenging would be a good word."

Asked what challenged her most, Sammy said the amount of work; however, she added

that she also found the content challenging. Although it is not uncommon for

programming students to complain of excessive work, Sammy's problems with the

content likely exacerbated her perception that the course involved immoderate amounts

of work. The students who were struggling rarely finished the laboratory activities in the

two hours provided; those who were not usually did.

Asked to describe the most difficult elements of the course, Sammy answered, "It's

unfamiliar. I don't have a whole lot of Pascal background. That's the main problem."

Having completed the one-credit Pascal course, Sammy probably had more background

than most students who enroll in the CIS 110 course (which has no prerequisites).

Asked about her least favorite assignment thus far, Sammy, without hesitation, identified

an earlier gas meter problem. She attributed her difficulties to the mathematics involved in

132

122

the program, observing, "I'm not a math person. I like playing with numbers; it's just that

they don't agree with me." Sammy described all of her mathematics classes as the same

except for geometry. Of that class she observed, "The teacher was real good. He'd draw

everything on the board." Sammy's observations about her high school mathematics

classes and the instruction from which she most benefited foretell her perceptions of the

programming class.

Sammy named the BQ assignment as her favorite, despite the challenges it posed for

her. She said, "I had to figure out what was going wrong with it, and then I couldn't," and

described spending five unsuccessful hours working on it, re-reading the text, asking

questions in class, and then spending five more hours before she completed the assignment.

Her words testified to her persistence and her determination to succeed.

Continuing, Sammy commented that the laboratory exercise (Lab 7) had been "kind of

easy" because it entailed only "procedure parameters and a call." Sammy's statements

echoed the intention of the laboratory exercise: to provide an initial experience allowing

students to focus only on passing parameters. Moreover, she recalled asking "a lot of

whys" of her classmates during that laboratory period. Her statements reflected those of

Greene and of the considerable literature regarding the benefits that accrue from

collaborative learning. The structured laboratory environment, with the students seated side

by side working on the same problems, facilitated desirable student-student interactions.

Although Sammy provided vivid details of her struggles to complete the assignments,

they were correctly done except that the BQ assignment--the one she had just completed--

133

123

inappropriately used VAR parameters in one output procedure. The BQ assignment did,

however, use identical names throughout for the actual and formal parameters. Sammy

missed only three (out of approximately 25) parameter-related questions on the test two

days later.

Parameters

Of parameters, Sammy observed, "It took me a while to get the hang of it." She

indicated she had been confused about the terminology: "what to call the parameters on

top, and what to call those in the call." Her statements added to the mounting evidence

attesting to the increased complexity caused by the surfeit of new terminology.

Sammy concluded it was not only the new terminology, it was the new concepts that

were giving her difficulties. Likening her current situation to a biology major thrown

into the middle of a Shakespeare class, she observed, "He'd be lost. I mean he wouldn't

know what you were talking about when you start talking about all the forms you can

write in." Continuing, she astutely remarked:

That's kind of like what it is right now. I'm being handed a new concept
on a plate, and it just takes it a while to separate it all into its own
category. I've never encountered it before. It doesn't make it impossible
by any means, just challenging. I've never encountered anything like this
before.

Claiming that reading and re-reading the text had been very helpful, Sammy

employed the words of the authors. She also reported asking many questions in class, a

fact verified by the classroom observations. Asked about helpful instruction, Sammy

referred to Greene's summation. Then she alluded to in-class payroll program

13 4

124

simulation, calling it an "adventurous activity." In her words: "The sheet of paper thing

that helped a lot because now this is on a pad because I want to take it back, so it has to be

variable parameter. I don't want it to stay there." Sammy's words spoke to the value of

concrete representations of the abstract concepts, particularly those that are foreign to the

learner's prior experience.

Sammy's concise description of value and variable parameters echoed the words of the

textbook and precisely described the communication view of the process:

In parameters can take information into a procedure, but can not take it back
out. In-out parameters allow you to put it into the procedure and take it back
out so you can use it in the main program or anywhere else you want.

Asked what happened if a procedure changed a value parameter, Sammy claimed not to

know "because changing a value parameter made no sense." She perceptively observed,

"I would think that if it is going to change, you would make it a variable parameter."

Sammy again repeated the rule for value parameters, but then she added, "You would

have to name it something else down there to get it, down there in the main program. I'd

think you have to name it something else to get it back out." Sammy's response revealed a

naive understanding of value parameters. Although she fluently repeated the words that

described the actions of a value parameter, she was unsure of the effect. She thought

perhaps a formal value parameter with a different name from the corresponding actual

parameter might "bring the information back out." She concluded the interchange by

once more correctly repeating the rules for value and variable parameter action.

135

125

Analogy

Presented with the Mona Lisa analogy, Sammy offered an expressive response:

In the second one, it seems as if you have to use a variable parameter if you
are going to do a procedure about it. You're taking the Mona Lisa into the
restoration master with the procedure. You're taking it in to him, and you
want to take it back out. You would need to have a variable parameter for
that. Otherwise you couldn't take it back out. Otherwise the restoration
master would have it, and he could keep it. There's no way of getting back
otherwise. If you just make it a value, he has it for good.

Apparently, the painting's destiny was guiding Sammy's thinking. As she eloquently.

observed, if the painting were a value parameter, the restoration master would have kept it.

Given the text and clasaroom treatment of value versus variable parameters, and her

consistent use of the communication-view terminology, her analogy was apt. Sammy also

correctly noted that the restoration master would have received a copy had it been a value

parameter. Although she used the word "copy" when referring to a value parameter, her

overall analogy firmly reflected the communication view.

Turning to the situation-one analogy, Sammy voiced her understanding by first

observing that the painting would be a variable parameter because "the instructor returns it

to the supply closet." Then she surmised it would be a value parameter "because it stays in

the art room," while the copies the students took home would be the variable parameters

"because they're taking them out." Once more, a painting's final destination determined

whether it simulated a value or a variable parameter. In Sammy's mind, the painting that

remained was a value parameter, and the paintings that moved to another location were

136

126

variable parameters. Viewed from the communication (or movement) perspective,

Sammy's interpretation was not unreasonable.

Task 1

Presented with the analysis task, Sammy immediately looked to the procedure lines.

She commented that lines three and four were the same, looked closer, and corrected

herself. Sammy's momentary hesitation over the two procedure heading lines suggested

that the form of the parameter lists confused her.

Sammy quickly recognized the task as the Flipper program she had done during the

previous laboratory session. She explained that "you have your triangle here, and that's

[the three variables] what you need to flip the numbers around," as she easily '...-aced through

the actions of the flip. Acknowledging a compliment to her explanation, Sammy

volunteered that she had origin, tu seen the flip as a seesaw, that she could not take full

credit for the idea. She offered the following:

Amy was sitting behind me in the lab, and we were both trying to figure it
out. She [Amy] said, "Well you'd kind of have to make it so you'd have
three variables." I [Sammy] said, "So you mean a kind of a triangle." Amy
said, "Yes, that's what I was thinking." So it kind of came as a collaborative
idea. I can't take full credit for that one.

Sammy 's observation again attested to the value of the collaboration promoted by the

laboratory environment. The mutual validation the two students provided for each other

reinforces the idea that students do learn from each other.

Once Sammy determined the procedure's behavior, she turned her attention to the

procedure heading lines. She began by expressing her confusion that the variables were

13 7

127

named I and J in the main, and NI and N2 in the procedure. The different actual and

formal parameter names confused Sammy briefly, perhaps because her BQ assignment

used identical names throughout. Then she observed:

You're calling it different things, which doesn't make a difference. Here's
where it's kind of fuzzy for me. I know if you have variable parameters,
you can use those same names down in the mainline program.

Given her earlier confusion regarding the effect of a value formal parameter with a

different name than its corresponding actual parameter, it may be that the remark about

being able to use either the same name or different names for variable parameters was

significant. She perhaps did not know the effect of identical formal and actual value

parameter names.

Recogniimg the procedure statement behavior and the heading line that would cause

the procedure to operate correctly, Sammy adroitly observed that the numbers would not

swap if the heading line were other than the third one. When her attention was called to

the output (16 16), Sammy confessed, "That's what I don't understand. It's actually not

doing anything because N1 and N2 are both N1 (16). I don't understand how you do

that." Sammy knew that variable parameters returned values to the calling module, and

she knew that the procedure swapped the variables. lf, however, she believed--as seems

plausible from earlier statementsthat value parameters whose formal parameter name

differed from the actual parameter name also returned values to the calling module, then

the reason for her confusion is clear. There was no possible way of producing the output

138

128

the program was claimed to have. Irrespective of the procedure heading line, the output

would have been 5 16.

Sammy once more expresml her confusion that the main module variables (I and J)

were not incorporated into the procedure. However, her correct observation that I

matched up with NI in all four cases confirmed that she understood the actual-formal

parameter connection. Sammy orally traced the statements several times more, and

several times more expressed her confusion. Tnen she remarked, "I've never encountered

this before, where you're assigning values to your parameters." Given the response, it is

likely that Sammy was saying she was confused by the assignment of a value to a value

parameter within the procedure body. Earlier in the interview she claimed she did not know

what would happen if that was done. Interpreted in terms of the earlier statement, Sammy's

confusion was understandable. She knew the parameters could not both be variable

parameters, but she did not know what would happen if an assignment was made to a value

parameter. Coupled with her uncertainty over the effect of value parameters with different

actual and formal parameter names, confusion was the only possible state.

After more tracing and more expressions of frustration, Sammy again alluded to the

Flipper program. She recalled the procedure Irading line she had used there, and she knew

the outcome: the values had "flip-flopped." Specifically, Sammy observed that if the values

had gone in 16 and 5, they would have returned 5 and 16 had procedure line three been the

correct choice. Sometime later, she again expressed her bewilderment:

There's just something I'm not understanding. I'm trying to figure it out. If
this one doesn't come out, and if it's not supposed to come out, then I don't

139

129

think it counts in your call line. Yet I put a lot of things in my call line
yesterday for that program that didn't count. The values didn't come out
with it. They were just there.

As Sammy appeared stumped, I suggested that she try the process of elimination.

Then, as she seemed discouraged, I offered her the option to stop. Sammy chose not to

stop; however, she professed that she did not know what to eliminate. Reminded that she

had already eliminated procedure line three, she immediately eliminated procedure line two

"because all those values stay in the procedure." Asked what the output would look like if

procedure line two were the correct choice, Sammy once more traced the swap, remarking

that the swap seemed to work fine no matter how she did it. Asked if there was any reason

other than the statement in the procedure body that might account for the variables not

coming back swapped, Sammy responded, "The procedure line."

Referring to the fourth procedure heading line, Sammy correctly observed that the

value parameter would not be "taken back out" and wondered, "I don't know if it still

counts in your call line or not." As she had used the phrase "does not count in the call line"

several times, I questioned the meaning. Apparently substituting the phrase "call line" for

"procedure heading line," Sammy explained:

Remember when you asked me before if a value parameter can be brought
out of a procedure call line if it's called something else? I said I didn't
know. It's the same thing with this one. I don't know. If that is possible,
then that changes everything.

Sammy's statements confirmed her earlier assertions regarding her fragile conception

of value parameters. Despite the fact that she accurately repeated the words describing the

1 10

130

behavior of value parameters, she was uncertain about the effect of changes to value

parameters. As Sammy aptly observed, "If that is possible, then that changes everything."

Sammy once more repeated the value and variable parameter rules, asserting, "Value is

in, and variable is in-out." Asked what that meant in relation to value parameters, she

answered, "They siay in the procedure; they can't leave it." Without hesitation, Sammy

correctly traced the action controlled by procedure line four, but again expressed her

frustration at her lack of understanding. Encouraged to continue her thinking, Sammy

correctly traced the action still another time. This time, however, she explained her

reasoning in a mariner that demonstrated understanding. Moreover, she immediately

identified the first procedure line as the appropriate choice, musing, "How come I didn't see

that before?" Thereafter, Sammy unhesitatingly traced through all four procedure lines and

justified her choices with appropriate explanations. She correctly observed that procedure

line two was a useless procedure because it swapped the numbers, but did not return them,

and concluded, "I think I'll go with door number one."

When Sammy began the code-tracing task she first appeared stymied, articulating her

lack of understanding repeatedly. One reason may be that the task was abstract, with no

connection to a concreteor relevantreality for her. It bore little resemblance to the more

contextually rich problems Sammy had previously encountered in the laboratory exercises

and the assignments. Furthermore, Sammy had several times said it "made no sense" to

change a value parameter. It may be that the task made no sense to 11.r in terms of her

understanding of when a value parameter is appropriate. That would not be an inaccurate

141

131

assessment of the task. Sammy could not reconcile the program's behavior with her past

experience; it did not behave as she knew it should behave.

.Confronted with this new and contradictory situation, she retumed again and again to

the familiar procedure body, attempting to explain what was happening in terms of her

current understanding. Eventually, Sammy's continued problem-solving efforts revealed a

fragile conception of value parameters, a conception she was able to consolidate as she

explained her thoughts. Given the scaffolding and the support the interview situation

afforded, Sammy persisted and eventually understood. Her statement "Why didn't I see

that before?" recalls the flash of understanding that comes after periods of struggle. One

cannot help observing the potency of verbalization, as noted by Mayer (1985) and others.

Task 2

The third interview, held on November 29, commenced with the hand-construction

task. Sammy examined the procedures in the logical order of the program's execution. Her

only niistake was making the DisplayOutput parameter Answer a variable parameter.

Asked why, Sammy replied:

I made it VAR because you have to take it back out of the program and
put it in Volume when you display it. You have to take it out. If it's
going to go in and stay in, but it's coming out. That doesn'i tell me much.

Evidently, Sammy was still unsure about when to use a value parameter. She knew the

rules of taking it in and "staying in" or "coming out." In her own words, though, the rules

did not help her very much. One could speculate that the opaque, one-way versus two-way

communication view of parameters was not helping Sammy to understand when a variable

142

132

parameter was needed, or when a value parameter would suffice. She needed a concrete

image of what was actually happening to guide her decision making.

Referring to the Calculate Volume procedure a short time later, Sammy said:

It's just not making any sense to me. I guess I don't understand how these
would be moved up there and used in there, but I don't care really. I've
never understood how it got into the procedure. Never mind, I answered
my own question. If it's already in these three [mainline variables], that's
how it got up in there.

Sammy was expressing confusion over how the Calculate Volume procedure obtained

access to the values it needed to calculate the volume. Although she rather quickly

recognized that the Get Input procedure had acquired them, and seemed satisfied despite a

cloudy understanding, it may be that Sammy would have profited from the more

transparent, shared memory-location view of parameters that rendered explicit the manner

in which the mainline variables were altered.

Task 3

Sammy next moved to the computer-assisted modification task. She looked first at the

input prompts provided as user-defmed constants, remarked that they were unnecessary,

and retyped them in the body of the Getlnput procedure. Sammy 's retyping efforts seemed

to be an example of the contextual learner's need to stay in touch with the form of a

program at all times during the construction process (Turkle & Papert, 1990). The user-

defined constants added another level of abstraction, one that perhaps hampers the

contextual learner who needs to stay in touch with the details and form of the program.

Although students do need to incorporate user-defined constants in their programs,

143

133

requirements for their inclusion may be inappropriate when the novices first encounter

otherwise unrelated concepts.

Sammy availed herself of the hard copy listing of the program and took a moment to

partition the program into the anticipated modules, an obvious instance of planning and

using a concrete aid to assist in the planning. Sammy constructed the program correctly,

except that once again the display procedure had variable parameters. She checked over the

procedure calls and the parameter lists before compiling; her first attempt was successful.

Task 4

Concentrating, Sammy proceeded to trace the details of the program statements.

Although she appeared perplexed and debated briefly, she decided the WriteLn would

display a 4. Acknowledging that she chose 4 because A and B were variable parameters

and the changes had to be "brought out," she added, "The fact that they were called Ns

replaces this value then. So the WriteLn displays whatever was in N; 4 was in N." As

Sammy realized that A and B replaced N, it may be that A and B having the same value

allowed her to resolve the dissonance she was expressing. A better task would have been

one that adjusted the parameters A and B with different values.

Asked how she imagined that changes to A and B changed N, Sammy replied:

When you call your procedure, like here you're calling Increment, and
you're calling A N and B N. It's kind of like a hand: once the procedure is
done, it's kind of like a hand that's going out and grabbing whatever is in A
and B and bringing it back down to the main line. The way I look at it is
that whatever was in A is in N, whatever was in B is in N, and N is 4, so . . .

144

134

Although the picture Sammy's words paint is more vivid than those of some other

participants, she shared with them all the naive conception of the formal variable parameter

replacing the actual parameter at the procedure's conclusion. It seemed the order of the

appearance in the formal parameter list governed the order in which Sammy's imagined

"hand" replaced the Ns.

To a question about her image of a value parameter, Sammy answered:

It just kind of is put in the procedure and stays there. It doesn't come back
out even if it's changed. In order for you to bring it back out, you have to
call it a variable procedure, and you have to indicate that by putting VAR
before it.

Sammy's response confirmed that she had clarified her understanding of the effect of

changes to a value parameter. Moreover, it affirmed once more her total reliance on the

communication view of the parameter process.

ReadLn

Sammy offered that ReadLn's parameter needed to be variable. Asked why, she

responded that nine times out of ten the program would be using the value elsewhere.

When asked, "What if the ReadLn parameter were a value parameter instead of a variable

parameter?" Sammy responde, "I have no idea. It would still be user input, though,

because they're still inputting input/output. I don't know. Honestly, it doesn't make any

sense to me." One can hypothesize that Sammy, who acknowledged having no mental

image of how value parameters are passed and who relied on concrete models, was

simply not able to picture the unseen parameter list of a ReadLn with value parameters.

145

135

Case Study: Sondra

A Capsule of Sondra

Sondra consistently constructed programs that produced the correct answer.

However, in all instances where he was given a choice, he used identical formal and

actual parameter names. Although he admitted not always being sure of his choices,

Sondra chose value and variable paranters correctly, and provided appropriate reasons

for doing so.

While claiming that he was unsure of the terminology, Sondra was able to repeat

words that reflected the communication perspective of the parameter construct. He was,

however, unable to apply that knowledge to correctly solve the first analysis task.

Moreover, as Sondra described the unseen ReadLn, he once more correctly echoed the

language, but was again unable to apply that knowledge. One explanation for Sondra's

limited success with the analysis task and the ReadLn exercise is their abstract nature.

Another is that his understanding was fragile. Additionally, Sondra harbored a

misconception regarding the parameter syntax, which likely contributed to his limited

success on the first analysis task, and probably hampered other work.

Of all eight participants, Sondra seemed closest to adopting the shared memory-

location perspective of the parameter construct. He used the terms "copy" and "original"

with apparent understanding, and he included the notion of data storage in his definition

for variable. Moreover, his retreat from the communication-oriented answer in the

146

136

second analysis task could be interpreted to mean it was in conflict with a budding sense

of the shared memory-location perspective.

Sondra's score on the IPDT classified him as a non-formal thinker. His problem-

solving approaches on the interview taskslearning about a problem by examining its

details, remaining in touch with the details, and employing trial and error--suggest a

contextual learning style. In view of his apparent learning style, his reported lack of a

mental image of the parameter process, and his emerging shared memory-location

viewpoint, one can hypothesize that Sondra would have greatly profited from a

transparent, concrete model that makes explicit the process by which parameters are

passed.

Background

Sondra, a male under the age of 21, is a freshman majoring in paper science with no

programming experience before enrolling in CIS 110. Apparently unaware that the

course is a requirement in the paper science curriculum, Sondra elected the class because

he lacked confidence in his computer fluency. He volunteered that he had some concerns

at the semester's outset as to whether he really belonged in the class. He earned an A-,

slightly better than the overall B average he earned during his first semester at State

University.
f

Sondra is a non-formal thinker who earned a score of 17 on the IPDT. He missed

questions 54-56 (three of the classes questions), 59 and 60 (two of the distance

questions), and 71 and 72 (two of the probability questions).

147

137

Reactions to the Course

During the second interview, held on November 10, Sondra described the course thus

far as "a challenge." He admitted that he was sometimes confused for "a day or two."

He added, however, "I pick up on it after a while." Sondra identified the lab as the facet

of the course he most liked. Referring to the bounded activities that allowed the students

to focus solely on the parameter process, he said:

I tend to like stuff that I understand and I can comprehend. Some of the
labsjust our past labwhere we did a few parameter things [referring to
Lab 7], that's when I was starting to understand parameters and what was
going on.

Continuing, he said:

I kind of liked it because I could understand what's going on. I could
comprehend it. Sometimes I see something and think "Oh my gosh!
What does this mean?" I kind of get confused, and I don't like this. It's
just natural for me. If I understand something, I like it. If I don't
understand something, I automatically don't until I do understand it. Then
I say, "Oh, it isn't that bad."

Sondra's statements have implicationz for the disposition research question. For Sondra

there was a vital relationship between understanding and a favorable disposition toward

the computing discipline.

Sondra "kind of liked" the banner and the revised banner assignment, offering that it

provided a chance to be creative. The BQ assignment he described as his least favorite

because he "found it very difficult to do, keeping all your variables straight and in order."

Sondra's version, although it displayed some design and style shortcomings, passed

parameters correctly, albeit using identical actual and formal parameter names. The

148

138

procedure laboratory exercises were also correctly done, although the Flipper program--in

which Sondra was free to choose parameter namesalso matched the actual and formal

names. Sondra missed three procedure-related questions on the test that he took the day

following his second interview.

Parameters

As Sondra had indicated he found the course challenging, a question about the

relative difficulty of the topics seemed appropriate. Sondra offered that the corstructs

prior to parameters had not posed particular problems. He explained, "IF this,THEN

that ELSE it's going to be something else. It is the same with the WHILE . . . DO:

WHILE this is happening, it's going to do that. I mean the words explain it for you." In

contrast, Sondra depicted parameters as challenging:

It took me a pretty long time to catch on to thoseabout a week, perhaps a
week arid a halfbefore I actually really, fully understood what it meant if
you defmed a variable here, down there, and the order they had to be in. It
took me quite a while to figure those out.

Sondra was describing one of the complexities of the parameter construct. In contrast to

some of the other language features such as the WHILE and the IF statements, the Pascal

syntax does little to assist the novice in developing a mental image of the parameter

passing process.

Sondra elaborated on his confusion regarding the parameter process, singling out the

idea of "what a value parameter could do, and what a variable parameter could do." He

149

139

confessed that it took some time before he could understand the difference between the

two concepts and when it was appropriate to use them.

Apparently the participant arrived at the point where the definitions became clear in

his mind, for Sondra repeated defmitions that suggested he understood the two concepts

correctly. A value parameter he described as able to store information, but not send the

information out of a procedure. Variable parameters, he said, can "put information into

the procedure, and that information can be taken out." It is perhaps relevant that

Sondra's words distinguished between the actions of the two different parameter types;

they did not address the question of when it is appropriate to use them.

Analogy

The interview next turned to the Mona Lisa analogy. After some thinking aloud,

Sondra offered the following explanation of situation one:

The instructor brings a first class replica, so that means there's a place in
the memory of the computer where you're taking the value out of there,
but a copy of the value stays in there, stays in that memory location.
You're bringing a copy of that out of the memory. After the students are
done doing work with that copy, he's putting it right back there.

Sondra's explanation of the situation-one Mona Lisa reflected the idea of a copy of a

memory location, one of the few references any of the participants made that directly

implied the notion of data storage function of variables. Of the second situation, Sondra

said:

He's taking the original out of the memory location and doing work on it,
but there's not a copy in the memory location becausf: it's the original.
He's taking everything out of the memory location, doing work on it, and
putting everything back in.

130

140

Erring only in their implication of movement, Sondra's explanations, more than any

offered by any other participant, embodied the shared memory-location view of a variable

parameter. However, he incorrectly connected situation one with a variable parameter

and situation two with a value parameter. Sondra concluded by speculating that he might

have the two "mixed up for some reason."

Sondra did have the situations reversed. His error may have been no more than a

slip, due to the strain of the interview situation. Conversely, his uncertainty at the end of

the response suggests that he had not yet firmly connected the terminology and the

concepts. Sondra's appropriate use of tilt.. 4erms "copy" and "original" as he analogized,

as well as his allusion to memory locations, implies that he was constructing an image

consonant with the shared memory-location view of the concept.

During the same interview, Sondra defmed a variable as "a place in memory, and you

are going to be able to store a value there." It may be that Sondra's image of a variable, an

image that included reference to data storage, provided the scaffolding that sensitized him

to the textbook and classroom references to the shared memory-location perspective. It

may also be that Sondra, the contextual learner, could relate to the visual image of a

memory location more easily than he was able to relate to the abstract rules of the

communication perspective.

151

141

Task 1

Sondra next attempted to select the correct procedure heading line in the first

analysis task. He began by going directly to the procedure's variable section, correctly

observing that he could eliminate any procedure line that had a T in it because T was

local to the procedure. Not finding a T in any of the procedure lines, Sondra commented

he would need to look elsewhere for a connection. After several minutes of unproductive

time examining the details of the procedure, he stopped to question the procedure's

function, at which point he recognized the problem as similar to the previous laboratory

exercise. Apparently unable to build on the prior knowledge, Sondra commented, "I'm

looking at the last one and trying to decide if I need a variable parameter at all," and

spent several more minutes tracing the procedure body's statements. After tracing the

swap several times, Sondra tried to "plug in" another heading line 'to see what happens."

Apparently unable to imagine the procedure heading line's role in determining the output

of the procedure, he returned to mechanically tracing the values through the statements in

the body of the procedure.

Looking at procedure lines three and four, Sondra explained, "These two are the

same thing. The only difference is this one has a comma." He was confused by the

parameter syntax, incorrectly believing the parameter lists (VAR N1, N2: Int eger) and

(VAR NI.: Integer; N2: Integer) to have the same effect. He did not understand that

both parameters in the former are variable parameters, while N2 in the latter is a value

parameter.

152

142

Referring to the triangle Greene had repeatedly used in the variable swapping

demonstration, Sondra traced the code again. His statement that "NI is going to equal 16

and N2 is going to equal 5" reveals that he understood the connection between the actual

and formal parameters. This time he correctly identified procedure line one as the

appropriate choice, correctly repeating words that described the behavior of the swap

algorithm and of value and variable parameters. However, he seemed stymied by the fact

that the body of the procedure correctly performed its task, yet returned incorrect values

to the calling module. Finally, Sondra turned his attention to procedure line two, and

after some time, eliminated it because there was no variable parameter, correctly

observing that "there has to be one if they end up being the same thing."

During the interview, Sondra seemed to be constructing his understanding of value

parameters, as is demonstrated by his eventual elimination of procedure line two. His

misconception regarding the syntax of procedure line three may have camouflaged a

better understanding of situations where all parameters are variable.

How might Sondra's problem-solving behavior be explained? His style mirrored the

heuristic style described by Cheny (1980). Employing trial-and-error, Sondra "plugged

in" one after another procedure heading line "just to see what happened." Moreover,

Sondra, the contextual thinker, learned about the problem by examining its details. It

may be that, needing to stay in touch with the details of the problem at all times, he could

not envision the swap without repeating the details. Another possibility is that there was

too large a gap between the abstract interview task and the Flipper program Sondra had

153

143

written previously. Perhaps if the interview problem had been posed by asking him to

identify the incorrectly constructed Flipper program that produced an output of 16 16, he

would have been able to connect the task to his existing knowledge. Likewise, the

additional abstraction of non-matching actual and formal parameter names likely

increased the problem's complexity for Sondra, who consistently chose identical names.

Task 2

Two weeks later, on November 23, Sondra returned for the third interview, which

commenced with the hand-construction task. After hearing the instructions, Sondra

examined the bodies of the procedures to discover the procedures' tasks. As he

considered the procedures in the order of their appearance on the page, Sondra was

apparently guided by the physical representation of the program rather than the logical

order in which the statements would be executed. He correctly assigned procedure names

compatible with those used in the procedure calls. Having examined the details of the

procedures, Sondra mused:

I'm not sure where I want to start. For my CalculateVolume variables in
my procedure, I'm just deciding what I want for my variables in that
procedure line. I'm looking at the main program right now to decide what
I want to put up there.

Sondra recognized without difficulty that Getlnput needed a variable parameter

"because the rest of the program needed that information to work." He correctly chose a

value parameter for DisplayOutput although he admitted not being "100% sure" about the

choice. Moreover, he correctly identified the CalculateVolume parameter that needed to

154

144

be variable "because you need to get that information out." The remainder he made value

parameters "because after you do the calculations you don't need those numbers any

more." Before stopping, Sondra once more reviewed the formal and actual parameter

lists to verify their accuracy; Sondra's version was correct. He did indicate, however,

that he would have been more comfortable if he had a computer to check out his work

and "see if it really works."

Sondra's self-reports suggest that he had not consolidated his understanding of the

parameter construct. It may be that his reliance on the machine to "see if it really works"

allowed Sondra to write programs that produced correct answers without confronting his

fragile understanding of the constructs in question.

Task 3

Sondra started the modularization task by saying, "I'm just kind of looking at what it

all has to do here," after which he immediately began building procedures and moving

statements. In contrast to other students (who constructed a single input module or

combined input and processing nodules), Sondra built two input procedures, giving the

two procedures names (InputPrompt2 and InputPrompt3) that duplicated the names of the

defined constants rather than names that reflected the modules' purposes. He said:

What I'm going to do with those constants, I'm going to make them
procedures. I'm going to keep the same names. Right now I'm just
making this into a procedure, and I'm just rearranging it so it can be done
in procedures.

145

Sondra, the contextual learner, solved the new problem by rearranging familiar features

of an existing one. Manipulating the familiar, he retained the input prompt names.

Needing to stay in touch with the details of the problem, Sondra eliminated the defined

constants and retyped the details of the WriteLns in the newly created procedures.

Sondra explained each statement in detail as he typed it, much the way he articulated

each imagined move in the earlier analysis task. When asked why he had moved some

statements while retyping others, he candidly admitted, "I never actually (small chuckle)

looked down at the program. I didn't really look down in the program first before I did

it." Again Sondra had learned about the problem by first examining its details.

The construction-task performance paralleled his class work. Given a choice, he

chose identical formal and actual parameter names. He did comment however, that the

names need not be the same; he just "found it easier." As Sondra correctly completed

several tasks that required different actual and formal parameter names (including the

previous hand-construction task), his evaluation seems likely. Turkle and Papert (1990)

reported that some bricoleurs in their studies avoided sub-procedures, preferring to retype

statements because doing so allowed them to stay in touch with the program's details. It

may be that maintaining identical formal and actual parameter names helped Sondra to

stay in touch with the details of the program. It may also be that using identical names

alleviated his difficulty "keeping all the variables in order."

156

146

Task 4

Attempting the second analysis task, Sondra started by examining the details of the

procedure. "I'm looking at the procedure just to see what this program is going to do. A

equals A+1, and B equals B+1. A and B are both variable parameters," he correctly

observed. Repeating each program statement, Sondra continued:

The procedure call inside the program says (N, N). That means they go
back up to the procedure. That means A is going to equal 3, and B is
going to have a value of 3. So A+1, in other words, 3 + 1 equals 4. So A
is going to equal 4, and B + 1, which is 3. So B is going to have the value
4. Then the procedure ends. My guess is that it's going to write 4 for our
answer for WriteLn (N).

At this point Sondra paused, appearing a bit perplexed. "It seems too simple; that's the

problem. I'm just looking at it, and there must be more to it than just this," he confessed.

Articulating the problem again, he concluded, "A and B are going to have the value of 4.

However, it just says WriteLn (N). I have two values, A and B, and it just says WriteLn

(N)." Acknowledging that N was the main module's only variable, Sondra remarked:

It would WriteLn a 3; it would display 3. Actually the procedure here
means nothing because it doesn't WriteLn (A, B) in a procedure line. It
just WriteLns (N) in the main program. N equals 3 in the main program,
so it would WriteLn a 3.

His immediate answer of 4 was quite reasonable from the communication outlook,

demonstrating his recognition of the fact that variable parameters return changes to the

calling module. The revised answer (3)--given after a moment's reflectionsuggested

that he had abandoned the communication view. One interpretation might be that he

revised his answer because the reasonable answer, given the communication perspective,

157

147

conflicted with his budding shared memory-location perspective. During the Mona Lisa

analogy, Sondra had referred to the variable parameter as the "original" variable. He had

earlier defined a variable as a "spot in memory," and presumably knew that a memory

location can hold only one value at a time. From this it is possible to conjecture that he

held some image of a variable. On the other hand, Sondra denied having a mental image

of the process that caused value and variable parameters to behave as they do. In the

preceding task, the student was confronted with both A and B equaling N. It may be that

his understanding of variables conflicted with his fragile knowledge of parameters.

Without a concrete parameter model, one that was compatible with his understanding of

variables, his knowledge of variables prevailed. Sondra abandoned what he knew about

variable parametersthat they return values to the calling module--and decided the

procedure did nothing. Conversely, Sondra's comment that "it was too simple" may

mean that he suspected a trick, and responded with what seemed to him the only possible

answer other than 4.

During the ensuing interchange, Sondra correctly identified the parameters as variable,

and attested again that changes to variable parameters would be reflected in the calling

module. Nevertheless, he repeated his statement: "All it says is WriteLn (N). What you're

WriteLn-ing is N from the main program," and again confirmed that N retained the value

(3) given by the main module. As Sondra affirmed that changes to a value parameter

would not "come back," it would have been informative to query him what the output

would have been if the parameters had been value.

158

148

ReadLn

The interview concluded with the question about ReadLn's parameters. Sondra

correctly responded that they would be variable parameters:

. . because when you ReadLn, you're ReadLn-ing into that spot in
memory. You need that piece of information later in the program that's
using it. You're going to have to take it out of that place in memory again
in order to use it.

His response mirrored the phrases he had used during earlier tasks when explaining his

value-variable choices. "If it were just a value, you'd just be ReadLn-ing it in," he

continued, "You really couldn't do much with it." The following query prompted Sondra

to apply his understanding:

If ReadLn had a value parameter, could the program do anything with it?
[Referring to task 4] Instead of assigning a value of 3, what if it said
ReadLn (N) and the person typed in a 3? If it were a value parameter,
what would be in N?

He was unable to do so, and replied "3," the appropriate answer for a variable parameter.

Asking Sondra to apply his understanding of a ReadLn with variable parameters would

likely have been productive. Without further data, however, it is possible only to posit

that Sondra, the contextual learner, could not visualize the abstract and unseen ReadLn

parameter list.

159

149

Case Study: Steve

A Capsule of Steve

Steve fluently repeated words that reflected the communication perspective of the

parameter construct. He easily accomplished the first analysis task, he correctly

recognized that ReadLn has variable parameters and a ReadLn with value parameters

could not return information, and he gave a reasonablealbeit communication-oriented--

answer (4) in the last analysis task.

Conversely, Steve struggled with the interview construction tasks; his remarks

suggested that he struggled with the class work also. Repeating several times that it was

important to do so, Steve chose different actual and formal parameter names during the

interview tasks. However, when he was required to construct parameter lists for existing

procedures (where the parameter name is fixed), he did not consistently choose names

compatible with the procedure statements. Steve also acknowledged that he sometimes

used variable parameters "just to be on the safe side," implying that he was not always

certain when value and variable parameters are appropriate. There is also some question

whether Steve understood what happens when a variable parameter is used.

Steve's score on the IPDT classified him as a concrete thinker; moreover, he

frequently displayed problem-solving behaviors characteristic of Turk le and Papert's

(1990) bricoleurs. Furthermore, Steve's detailed description of the instructor'sconcrete

examples attested that he learns from concrete models. Given the nature of his

hypothesized misconception and his apparent preferred learning style, it is likely that

160

150

Steve would have benefited from additional exposure to the concrete, transparent model

of parameters espoused by the shared memory-location philosophy of the process.

Background

A sophomore, Steve is a male under age 21. At the beginning of the semester, Steve

listed CIS as his major and business as his minof. A former wildlife major, Steve had

changed majors the previous semester while he was enrolled in the one-credit Pascal

class. Returning to school following his father's mid-semester fitneral, Steve fell behind

in his biology class, a class required for the wildlife major. As he was "carrying a high

mark" in the CIS class, he changed to a CIS major. Steve described the earlier Pascal

course as fairly easy; he earned a B. He did acknowledge, however, having difficulties

with several of the concepts covered in the course. Remarking that he really enjoyed the

word-processing/spreadsheet class he had taken his first semester at State University,

Steve volunteered that he had earned an A in it.

Steve is the only participant who spoke of grades. His academic transcript reveals

his grades in the early CIS courses were consistently higher than his grades in other

courses. From this information, it is possible to hypothesize that Steve developed

positive feelings toward a course when he earned good grades. If Steve's sentiment

prevails among students, then Dr. Greene's grading system (which was generous) would

seem to support the development of a positive disposition toward the subject. The

question would be a fruitful one to pursue, especially in terms of students' eventual

success in the CIS major.

161

151

Apparently unaware of the demands of a college curriculum when he arrived at State

University, Steve's academic transcript disclosed a 1.4 grade-point average during his

first semester, an average that has since improved consistently. At the semester's

beginning, Steve indicated confidence in his ultimate success in CIS 110; he earned an

A-.

Steve is a non-formal thinker. He earned a score of 17 on the IPDT, missing

questions 49 (a shadows question), 53-55 (three classes questions), 60 (a distance

question), and 61 and 64 (inclusion questions).

Reactions to the Course

Midway through the semester, Steve described the class thus: "From challenging to

exciting. If it gets too challenging, then you get frustrated. To get done and to know that

your program runs and works, however, is a good feeling." Steve's words indicated that

he equated a successful program with one that produced the correct answer. Observing

that the course "started out pretty easy," Steve added, "once we hit procedures, though, it

was tough."

Steve offered that his favorite assignment was the first procedure laboratory exercise

(Lab 7). He summarized his reaction to the assignment as follows:

We had three programs that were already typed up, and we had to go
through and change certain parts. We worked with one other person, and
my partner and I did really well on that. It felt good to just go through it
and know what you were doing and complete it. That was one of the first
times where it all sort of came together. I'd say it was my favorite just
because of the way it challenged you, but it didn't stump you.

162

152

Steve's reactions attest to the value of the narrowly-focused laboratory exercises and

the supportive, collaborative environment of the structured laboratory. He volunteered

that finishing the laboratory exercise early had permitted him to begin working on the BQ

assignment, which he described as his least favorite. "That was probably my least

favorite. I just had so many problems and so many questions," he admitted.

Commenting that he had worked on the assignment for about five hours, he recalled that

it "was more thinking than typing. It had to be thought out." Despite his reported

struggles, Steve's BQ assignment was well done and displayed excellent form. The only

parameter-related error was one instance of a variable parameter that should have been a

value parameter. It did, however, use identical actual and formal parameter names

throughout. Lab 7 was correctly done; Lab 9 was also, with the exception of one

inappropriately VARed parameter. A review of Steve's November 11 test, however,

disclosed numerous parameter-related errors, with few other incorrect answers.

Parameters

Steve reported having difficulty with the syntax of the procedure heading line. His

comment, "If you have a comma here, don't have a comma here, and they only identify

up to a declaration of a variable" suggests that he would have benefited from exercises

focusing on the different syntactical forms a formal parameter list can assume.

Speaking of parameters specifically, Steve commented, "The value parameters,

they're no problem. It's just the variable parameters I have trouble with." He elaborated:

I think it's the fact that you can have VAR sections within the parameters,
or within the procedures. When you call them up, it's a different variable

163

153

than it is in the procedure that you're calling. I have trouble grasping how
to write out the procedure header and the procedure call. I think that the
reason it becomes a problem is that it uses different forms of the variable
that aren't the same.

Further probing seemed to suggest that Steve was having difficulty connecting the formal

and actual parameters when the names are different.

Steve correctly noted that a "value parameter is passed from the main line to the

procedure only, and not from the procedure back to the main line, so whatever is stored in

the main line stays the same." His answer echoed his observation that value parameters

did not pose a problem. He correctly indicated that a variableparameter "changes the

actual parameter in the main line if it's changed in the procedure, because they can send it

back and forth." When asked, "Do you have image of why a value parameter is not

changed back in the main module and a variable parameter is?" Steve responded:

If you don't declare it as a variable parameter, it's not sent back to the
main line. It's kept within the procedure. I really don't understand why it
isn't sent back or why it can't be sent back. Now I think of Dr. Greene
with pieces of paper, saying, "If you just get a piece of paper, you can't
send it back, but if you get a notepad you can." I really truthfully on the
syntax level do not know why it doesn't work or why jt doesn't send it
back. I really couldn't tell you.

Steve's words affirmed the power of the concrete, in-class simulation. His expressions of

non-understanding also provided an early clue to his apparent intuitive conception of

variable parameters.

164

154

Analogy

Unlike other participants, Steve did not immediately relate the Mona Lisa analogy to

parameters. Instead, the analogy reminded Steve of Greene's variable swap

demonstration. He expressed his perception as follows:

The first thing that came to mind was when Professor Greene brought over
those sheets of paper, and he talked about how a copy was made, how you
have some information in one area, and you copy it into another variable.
Then it can be changed and copied back into that variable. That's the first
thing that came to niind with the Mona Lisa, him talking about having to
get his high-tech paper.

His observation once more attested to the power of concrete, everyday examples in

helping novices to understand abstract concepts.

Relating the Mona Lisa analogy to parameters, Steve reported his belief that the

situation-one Mona Lisa would be a value parameter because the "original Mona Lisa

never leaves the possession of the instructor, and copies are made and taken home."

Given the communication perspective, his interpretation is not unreasonable. Steve

related situation two to a variable parameter because, in his words:

The original is passed. For example, if the main line would be the owner,
it's passed from the main line to the procedure so the restoration procedure
can be carried out on the Mona Lisa. Then it is delivered back to the
owner, or the main line. So there's a passing back and forth.

From the communication perspective, Steve's situation-two analogy reflects a variable

parameter precisely.

165

155

Task 1

Steve accomplished the first analysis task (selecting the correct procedure heading

line) rather easily. He looked first at the procedure statements, then offered, "I'm trying

to figure out which one of them passes back and forth." He concluded by correctly

tracing the swap code and choosing the proper heading line. Explaining his reasoning,

Steve volunteered that he had seen the algorithm before, in the Flipper program. He

observed, "I'm looking at the output. Instead of being swapped, they're the same, which

tells you if this procedure was.designed to swap, it doesn't work. The output should be 5

and 16." Evidently Steve, the contextual learner, provided his own context to the abstract

problem, connecting it to a Flipper program that did not work. He ruled out the

procedure line with both value parameters, providing an appropriate reason. He also

acknowledged seeing similar code on the test, admitting that it caused him.problems on

the test. He however,

Now that I've done this and talked through it, I understand it better. I
understood it well. I can't say that I was really sure of myself, but talking
it through, explaining it, and thinking it through certainly is helping me to
understand.

Steve's experience adds to tho mounting evidence supporting the constructivist position

regarding the importance of explaining one's thoughts.

Without devaluing the ease with which Steve accomplished the preceding task, it is

significant that his second interview took place the day following Dr. Greene's after-test

review (during which Greene spent a considerable portion of the class period reviewing

166

156

the code-tracing questions). In contrast, most of the other participants' second interviews

either preceded or coincided with the test. Steve (like Carl, whose second interview wai

also late) fared well on the interview task, but poorly on the test. One can speculate that,

for thoze students whose interview preceded the test, the interview itself provided an

inadvertent instructional intervention.

Task 2

Steve began the two-part interview, conducted on November 30 and December 1,

with the hand-construction task. He first went through the procedures in order of their

appearance on the page, assigning procedure names of his choice. Then, commenting

that he had just looked at the main module, Steve correctly changed the procedure names

to match the procedure calls.

Attempting to construct the formal parameter list for Getlnput, Steve mused, "I'm

pondering whether these are local variables. I just don't understand. I'm confused by the

three separate calls of the same procedure." He recognized that the input procedure

needed a variable parameter "because it [the value] has to send it to CalculateVolume

(Length, Width, Depth, Volume). There's one thing, I know," he continued, "I know it

reads them in the same order as they're entered in here because it needs to go to

CalculateVolume." Steve's reference to the appearance of the two procedures' parameter

lists (that the parameters needed to be in the same order) offered another clue to his

imagined perception of a direct procedure-to-procedure link.

167

157

As the Get Input procedure seemed to be confusing Steve, I (the interviewer)

suggested looking at the other procedures first. Doing so may have been a mistake.

Because Steve was examining the procedures in the logical order of execution, the

outcome of his efforts on the task may have been different had he continued with that

approach.

Steve next worked on the parameter list of Calculate Volume. The procedure heading

line (which follows)

PROCEDURE CalculateVolume (Numl : Real;
Num2 : Real;
Num3 : Real;

VAR Num4 : Real);

he constructed contained the correct number of parameters, and the value and variable

choices were correct. However, Steve selected the parameters names Numl, Num2,

Num3, and Num4, none of which matched the names used in the procedure's only

statement (volume : Len * Wid * Dep) . Steve offered that he had not chosen the

names for any particular reason, that "the actual parameter list just needs something to

match up with." Num4, he offered, needed to be a variable parameter because "it has to

get passed between procedures to DisplayOutput after it's calculated." His phrase

"passed between procedures" again suggested the direct link.

Steve next inspected the DisplayOutput parameter list (which follows).

PROCEDURE DisplayOutput(Answer: Real)

He correctly named the single value parameter Answer "because the WriteLn calls it up

as Answer." However, he also changed the Num4 parameter in the CalculateVolume

166

158

procedure to Answer "because Volume is associated with Answer, but you can not have

the same name in the main line and in the procedure." The revised procedure heading

line follows.

PROCEDURE CalculateVolume (Numl : Real;
Num2 : Real;
Num3 : Real;

VAR Answer: Real);

Steve allowed that the program would compile if the actual and formal parameter names

were the same, but said it would confuse the reader of the program.

As Steve had correctly chosen the identifier Answer because of its use in the

Display Output procedure's WriteLn, he apparently knew that variable names must be

consistent within a procedure. However, Greene had strongly stressed the importance of

using different names for the actual and formal parameters, an admonition that apparently

impressed Steve powerfully. As written, the Calculate Volume procedure demanded the:

the formal parameter be named Volume, a requirement that conflicted with Greene's

counsel regarding parameter names. One could conjecture that when Steve encountered a

conflict between Greene's caution and the consistency requirement for variable names

within a procedure, the admonition prevailed. However, other than possibly focusing

Steve's attention on choosing formal parameter names that differ from the actual

parameter names, and away from the need for consistency within the procedure, the

explanation does not account for his choices of Numl, Num2, and Num3 in the

CalculateVolume procedure. ." 1ternatively, it may be that the added level of abstraction

imposed by the requirement of different actual and formal parameter names hampered

169

159

Steve's construction efforts. As his correctly done BQ assignment had used identical

names throughout, the interpretation seems plausible. The combination of evidence,

however, will suggest a more cogent interpretation for Steve's construction.

The other procedure heading lines completed, Steve returned to Get Input. He once

more alleged that the parameters needed to be VARs because "they have to go to other

procedures." After an extended pause, and an offer to stop that he declined, Steve said:

I don't know why it wouldn't work the same. If it were just regular, as if
they were ail in one line [In contrast to the input procedure in this program
that was called several times, most input procedures Steve had seen obtained
all the necessary input for the program during a single call.] But it's a new
call each time. This is basically a part that I am having trouble dealing with.

It appears that Steve began by imagining a correctly constructed Get Input parameter list

(which follows).

PROCEDURE GetInput (VAR Dimension: Real);

He admitted that this portion of the task was "kind of confusing," and correctly speculated

that when the procedure GetInput (Depth) is called, it will "go through and run the

procedure and associate Dimension with Depth." Then he questioned:

But then when you call GetInput (Width), is it going to know to run the
procedure and instead of putting it in Depth again, will it put it in the next
one?

In answer to his query, I posed a general question about how the association was made,

expecting an answer involving the actual and formal parameters. Instead Steve replied,

"By sequence, normally, but usually when you see them with this . . ." If he meant to say

that the connection is made by sequence within the actual and formal parameter lists, his

ti

160

answer was accurate. Then Steve mused to himself, "I don't know why it wouldn't work

the same," and inquired, "I wouldn't have to put them in each time after this one, would

I?" Assuming (an assumption that in all likelihood was faulty) that he was asking

whether he needed a parameter list, I inquired about his understanding of the scope (the

part of the program where the parameter is defined) of a formal parameter. Steve

answered, "I would assume only that procedure."

It may be that the intended-to-be general responses to his parameter-related questions

misled him into constructing the input procedure as he did. If that interpretation is

correct, then Steve's understanding was merely fragile or incomplete.

On the other hand, it seems possible that Steve inferred the sequence interchange to

mean either that the procedure would use a different formal parameter in each successive

call, or that the procedure must have a formal parameter available for each unique

variable used in a procedure call (that is, Numl is associated with Depth, Num2 with

Width, and Num3 with Length). Since there are three procedure calls and three

parameters, either interpretation is possible.

It also seems that Steve may have interpreted the scope interchange in terms of the

execution, rather than the compilation of a procedure. This conjecture, combined with

Steve's earlier statements about not understanding how the procedure header and the

procedure call should be written, and his lack of understanding the process on the

"syntactical level" could mean that he did not understand the connection between an

actual parameter and a formal variable parameter. He knew that a variable parameter

171

161

returns a value, but it may be that he was unsure where it went. For example, Steve had

earlier said: "A value parameter passes only from the main line to the procedure, and a

variable parameter can be passed between procedures and back and forth between the

main line and procedures." Speaking of changes to variable parameters he had also

offered, "Then it's changed completely. If you pass a variable from a procedure to

another procedure and that procedure changes it, then that is the value that's stored in

memory." Steve's solution of the construction task provided evidence that he harbored a

fundamental misconception of the parameter passing process.

Steve did not recognize the GetInput procedure as conceptually identical to the

GetPercent procedure in one of the Lab 7 programs. He constructed the GetInput to match

what he was more accustomed to seeingone call to a procedure that secured all the inputs

the program needednaming the variable parameters Numl, Num2, and Num3. The

provided procedure calls and the GetInput procedure heading line that Steve constructed

to match the calls follow.

GetInput (Depth);
GetInput (Width);
GetInput (Length);

PROCEDURE GetInput (VAR Numl: Real;
VAR Num2: Real;
VAR Num3: Real;)

As Steve constructed numerous correctly functioning procedures over the course of the

semester, one must assume he knew the number of actual and formal parameters must

match. However, the conflict provoked by the seemingly novel input procedure caused

Steve to abandon or distort the procedure-line construction rules (rules whose purpose he

172

162

perhaps did not understand) to allow him to build a procedure heading line :onsistent with

his understanding. After nearly an hour, the interview was suspended with the task in the

state described.

Steve asked to return to the task when he arrived to continue the interview the next day.

Recognizing that the Get Input procedure needed a declaration to match the ReadLn

(Dimension) statement, he added Dimension as a local variable. Apparently referring to

the Get Input procedure, Steve claimed, "That's the only one that is going to use the

Dimension in that form because it's not used anywhere throughout, so it's not going to be

put in the VAR parameter. It's a local variable." It appears Steve was imagining a direct

procedure-to-procedure connection between the parameters, a connection that was

established through identical parameter names. As no other procedure had a parameter

named Dimension, he assumed that Get Input did not need one either.

Task 3

Next Steve undertook the modification task. After examining the program briefly and

creating a simple procedure for user instructions, Steve began constructing what would

become the input procedure. He typed the input prompts, saying "Now we're going to get

rid of the constant section." Steve perused, but did not modify, the paper copy of the

program listing, commenting, "Just so as I change this I don't get confused about what it

was originally supposed to do." Using techniques that allowed him to remain in contact

with the program details, Steve solved the problem. As he finished the Getlnput procedure,

he commented that "There is always revising to be done with me." As with the Turkle and

173

163

Papert (1990) bricoleurs, mid-course adjustments were apparently an accepted aspect of his

problem-solving style. Steve also volunteered that he had made copies of all the programs

so that he could use them as models when he was coding in the future.

As Steve correctly completed the GetInput module, he duplicated the main module

variable names in the formal parameter list. When asked why, he immediately changed the

formal parameter names. He next constructed the CalculateWage procedure (making all

three parameters variable), and continued with the Display procedure, offering that he was

going to make the parameters VARs "just to be on the safe side." One could assume that

Steve had discovered he could get programs to produce the correct results if he used

variable parameters. In this case, though, he thought the Display parameters should be

variable because "you need to get the information from the procedure." Steve understood

that a variable parameter is required when the information is returned from the procedure;

like other participants, he did not always know when it needed to be returned.

Although Steve's modularized version of the payroll program consistently used

different actual and formal parameter names, the forma: parameter names were identical in

all procedures, just as they were (inappropriately) in the rreceding task. Moreover, his BQ

assignment had used identical names throughout. If Steve's hypothesized intuitive

conception of variable parameters is accurate, then he found a way to reconcile his

conception (that information is conveyed between procedures via a procedure-to-procedure

connection established by identical formal parameter names) with Greene's requirement

that actual and formal parameter names differ.

174

164

One remarkable trait Steve possesses is his perseverance. When he compiled the

program the first time, he encountered the compiler error message String constant exceeds

line because he had misplaced an apostrophe in a WriteLn. Steve thought the cause of the

error to be a WriteLn that produced too long an output line. He admitted having longer

statements in other programs, but conjectured that the rules might be different for WriteLns

in procedures. In an attempt to rectify the problem, Steve changed the format specifiers in a

different WriteLn than the one with the error. When that tactic did not help, he admitted

being stumped. However, he elected not to stop. In answer to Steve's request to execute

the program, I noted the program had not compiled, and proposed that it must have a syntax

error somewhere. A short time later, after consulting the on-lint help, Steve heaved a heavy

sigh of relief and said, "I know. I know. I know." He added a second apostrophe to a

WriteLn that should have had none. Although the program compiled, it displayed the

incorrect string constant Steve had just constructed. This time he recognized his error, and

without further ado, corrected the offending WriteLn. As Steve finished the task, the audio

tape ran out. He had worked for 45 minutes on the modularization task.

Task 4

After receiving the instructions for the predict-the-output task, Steve talked himself

through the process. "I'm looking at the procedure first, just to see what the procedure

does," he said. "Basically all procedure Increment does is keep a count." He seemed to

have provided his own context for the abstract task, attributing the familiar task of

counting to the procedure Increment. He continued, "It's going to assign N a value of 3.

175

165

It runs through the procedure. A and B, and it's N and N. So it's 3. So it's basically 3

and 3." Steve's words demonstrated his understanding of the actual-formal parameter

connection. He continued, "It replaces the A with the N or 3. It says 3 is equal to 3 plus

1, so 4 basically. And the same thing: 4." To Steve, who ascribed to Increment the

function of counting, 4 was not only a reasonable answer given the communication

perspective, it was the logical outcome for the procedure.

Offering that changes made to A and B were reflected in the main line because they

were VAR parameters, Steve concluded by declaring that the answer would have been 3 if

the procedure had value parameters. Both this and the previous analysis task (Task 1)

contained only one procedure that was called once. For these tasks, Steve recognized

without difficulty the effect of the value and variable parameters, given the

communication perspective.

As the interview drew to a close, Steve once more explained the difference between

value and variable parameters, saying, "A value parameter is passed only from the main

line to the procedure and not back. Variable parameters pass back and forth between

procedures and the main line, depending on how many procedures and whatnot." His

phrase "depending on how many procedures and whatnot" is consistent with the

hypothesized procedure-to-procedure link.

Asked if he had any mental image of why a parameter is changed one time (when it

corresponds to a variable parameter) and another time it is not (when it corresponds to a

17

166

value parameter), Steve alluded to the in-class simulation with the paper and the

notepads:

When it's a piece of paper, it's a value parameter. When it's a notepad,
it's a variable parameter. The procedure is allowed to write one thing on a
piece of paper, but not to send it back. If it receives something on a
notepad, it could turn the page, write it on another piece of paper, and send
it somewhere else. The next procedure would turn the next page and write
something on there, but if there isn't a next page, then it can't send
anything out.

Again, the phrase "send it somewhere else" is consistent with the interpretation

suggesting procedure-to-procedure linkage. Steve concluded by saying, "You know,

that's just the way I picture it. It helps a lot."

ReadLn

Without much hesitation, Steve identified the ReadLn parameters as variable

"because with the ReadLn, once you ask for something and it's stored in the computer

memory, it can be used througho ut. In other words, once it's stored, it knows that it is

supposed to be associated with A, for example." It alinost seems that Steve was

imagining that VARing a parameter made it global (known "throughout"), an accurate

depiction if all procedures employ identical formal parameter names when referring to

the same memory location (as Steve's programs did).

Steve first stated that if ReadLn's parameters were value parameters, the variable that

is the actual parameter would contain the value that had been typed in. Then, however,

he insisted, "I know it can't do the same thing as a VAR parameter. I know value and

VAR parameters can't do the same thing. I know a value parameter can'tpass

171

167

information between procedures." Steve pondered some more, and although he did not

clearly express what would be in the variable, he did decide it would not be what the user

entered. The unseen ReadLn had given him a slight pause, but Steve was able to work

through his thoughts and respond appropriately, perhaps because the correct answer to

the question did not cause a conflict with his hypothesized procedure-to-procedure link.

17

168

Case Study: Moe

A Capsule of Moe

The most challenging participant to analyze in terms of his understanding was Moe.

He could construct programs that produced the correct answers. However, as he believed

that variable parameters were required to pass information between procedures, Moe

tended to overuse variable parameters (his original programs used them exclusively).

Moreover, he mistakenly believed that formal and actual parameter names could not be

the same. His word choice concerning the value and variable parameters rendered the

data difficult to interpret; it differed from the instruction and from that used by other

participants. There seems to be some evidence that either he imagined a procedure-to-

procedure link accomplished via variable parameters, or was confused regarding the

effect of the value and variable parameters, or possibly both.

Moe was able, after some reflection and elaboiation, to successfully solve the first

analysis problem and to describe ReadLn's behavior. However, his solution (3) to the

second analysis task again suggested a flawed conception of the parameter process. Moe

is a formal thinker, and his general problem-solving approach on the interview tasks

identified him as having an analytical style.

Moe concisely expressed his perception that he did not understand how parameters

are pas3ed, and seemed discomfited by the lack of understanding. Mayer's (1985)

observation that students will construct their own mental model if they are not provided

with one was confirmed by Moe's construction of a flawed model of the parameter

173

169

process. Given the cognitive dissonance that Moe expressed and his erroneous self-

constructed mental model, it is reasonable to hypothesize that he would have profited

from exposure to a transparent mental model in a form he could internalize.

Background

A freshman who had no declared major or minor at the beginning of the CIS 110

semester, Moe is a male who is under 21. Offering that he had for some time been

interested in computers, Moe said he enrolled in CIS 110 because it is the first

programming course in the sequence. At the semester's outset, Moe indicated he hoped

to succeed in the course, but had some concerns (He earned an A-). Moe is a formal

thinker, scoring 23 on the IPDT. He missed only question 60, the somewhat ambiguous

distance question.

Reactions to the Course

During the second interview, on November 14, Moe described the class as "really

interesting" and sometimes a little too challenging, claiming the topics preceding the

"more complicated procedures" had not posed undue difficulties. He named the BQ

assignment as his favorite "because it took the most knowledge to do." His version,

however, incorrectly passed every parameter as a variable parameter. Commenting that

he realized his error when the assignment was returned (several days prior to the second

interview), Moe would, however, replicate the pattern of using variable parameters

exclusively in the upcoming modularization exercise. Moreover, both parameter

laboratory exercises contained some incorrect value-variable choices. Moe missed four

170

questions (of 50) on the mid-term examination that preceded the second interview by

several days; all were parameter-related questions.

Parameters

Commenting on his difficulties with the parameter construct, Moe admitted that he

had "a hard time understanding how the information was passed from one procedure to

another and then back into the main code." Moe's expression, "passed from one

procedure to another and then back into the main code" provide initial evidence ofan

imagined procedure-to-procedure conception of the parameter process. Claiming that he

had "figured it out," Moe said:

I don't necessarily know how it does it, but at least now I know how to
make it do it. I wou.d like to know how the information was passed from
one to the other. I know that it is, and what you have to do to get it to do
that, but I don't know how it does it. Sometimes it bothers me a little.

When describing procedures, Moe distinguished between value parameters, variable

parameters, and the output of a procedure. His description of parameters defmed them as

being composed (If variables, and he used the phrases "order of the variables used in the

parameter" and "variables are passed between parameters." Hence, it appears Moe

inte,preted parameter to mean the entire list. "The output of the procedure," Moe offered,

"is what you need back or what the user ultimately wants." Evidently, Moe referred to the

value that is returned to the calling module as the "output of the procedure." For

example, he claimed, "The output is passed in thc order of whatever the variables were in

181

171

the procedure," and "the actual parameters will output in the same order that the formal

parameters are."

Moe described a value parameter as "a number where the original number is not

important." Describing changes to a value parameter, he also said, "When a value

parameter is passed into a procedure itself, and it's changed in the procedure, the same

number does not go back to the main line." He continued: "The original number that was

passed into the procedure, the main line does not need it." Had Moe not distinguished

between "output of the procedure" and value parameters, his statements would suggest he

imagined value parameters destroying the value in the variable designated by the actual

parameter.

Of variable parameters, Moe said, "The procedure can change it, but it will also send

the original back, or at least the main line keeps the number somewhere. The original

number is important and the output can be important, too." He also described a variable

parameter as "assigning that number temporarily to a certain space in memory." Moe's

descriptions of value and variable parameter suggest that he imagined variable parameters

"remembered" and value parameters "not remembered," in exact opposition to the authentic

processes. However, the interjection of "output" and the abuse ofthe terminology render

the data difficult to interpret.

Analogy

During the analogy portion of the interview when Moe was first asked to apply his

understanding of parameters, he offered:

182

172

In situation one, the Mona Lisa that the instructor brought in is the
variable parameter and the completed assignments that the students take
home are the output of the procedure. In situation two, the original Mona
Lisa is a value parameter, and the restored Mona Lisa is the output of the
procedure.

Moe once again used the phrase "output of the procedure" to refer to information that is

passed out of the procedure. Hence, in the first situation Moe seemed to equate the

students' paintings with ifformation being passed out or returned, perhaps relating to his

phrase "what is important, what the user wants." In situation two, the restored Mona Lisa

was returned. His analogy was consistent with his descriptions of the value and variable

parameter terms. In accordance with his understanding, the original Mona Lisa in

situation one was important and was unchanged after the procedure, and the original

Mona Lisa in situation was not important and was not "remembered."

Task 1

Given the task of choosing the correct procedure heading line, Moe quickly

established that the procedure exchanged the two values. He recognized the expected

output if the procedure performed correctly. Then, observing that "Both outputs are 16,"

he just as quickly discerned that one parameter woald have to be value and one would

have to be a variable. Exuding a heavy sigh, Moe confessed, "Now all I have to do is

figure out which is which. I've never figured out exactly how it works." He continued:

I think that I [the participant] want I to be a variable and J to be a value so
that when I is sent to the procedure, it will come back the same. When J is
sent back to the procedure, it will have been put through the procedure and
have been changed. J will have been changed to 16, and I--well it may
have been changed to 5 in the procedure--will stay 16 in the main line.

183

Moe's first analysis attempt reflected precisely the descriptions he had provided earlier.

Changes to a variable parameter are not reflected in the main module, while changes to

the value parameter are. Continuing, Moe correctly associated the actual and formal

parameters, demonstrating that he understood the connection. Tracing through the code a

second time, he observed:

I think I have it backwards. I think number one is the correct procedure.
Unless I can sit down at a computer and test them a little bit, I couldn't tell
you which one it is. One or four, it is either one or four.

Once more a student acknowledged relying on the computer for assistance. Moe had

earlier admitted to not understanding the parameter process, but had "figured out how to

make it work" (by using variable parameters exclusively) during the construction process.

He had also apparently found he could rely on the electronic aid in the analysis tasks. As

a result, Moe had not been forced to confront his misconception. At the interview's

conclusion, Moe, given the opportunity to choose between procedure line one and four,

amended his earlier statements. He correctly selected the first procedure line, offering an

appropriate explanation for his choice:

The variable N1 is a value parameter, which means it's not going to
change anything in the mainline program. N2 is a variable [parameter]
which would mean O. At it is going to change something in the procedure
and output the 16.

Apparently Moe was either constructingor consolidating his understanding of the

parameter construct as the interview progressed, thus perhaps profiting from the

opportunity to elaborate. As he admitted to guessing on similar test questions the

184

174

previous week, the interview may have been the first time Moe earnestly pondered his

conception of the parameter process.

An examination of the problem-solving situation suggests that Moe adopted an

analytical approach, attending firs(to the program's purpose. He either accepted, given

the procedure name Swap, or discerned, given his lab experience, the procedure's task.

Only later did he examine the details of the procedure body.

Task 2

The third interview, scheduled for November 22, commenced as Moe undertook the

task of completing the procedure heading lines. Addressing the procedures in the logical

order of their execution, Moe consistently chose correct formal parameter names,

indicating he understood the need for identifier (name) consistency within a module.

After correctly identifying the GetInput parameter, he added:

I'm trying to decide whether it's a variable or a value parameter. I think
it's a variable parameter because it's going to be used in this procedure
and in the procedure to calculate the volume. It has to be passed from one
to another without being changed.

The phrase "passed from one to another without being changed" again suggests that he

irnagineda direct connection. Tracing the program's execution, he correctly identified the

changes to the mainline variables, Depth, Width, and Length.

Upon further examination, Moe decided that the CalculateVolume parameters Len,

Wid, and Dep should be value parameters because they are "changed in the procedure

and not used again." As the procedure body's only statement

Volume :a Len * Wid * Dep

185

175

employs, but does not change Len, Wid, and Dep, the phrase "changed in the procedure"

generates a question regarding his possible misunderstanding of the assignment

statement.

Moe correctly identified Len, Wid, and Dep as value parameters; however, it may

have been for the wrong reason. As he was examining the problem in the logical order of

execution, his statement "not used again" was likely referring to the non-reporting of the

rectangular solid's dimensions in the Display Output procedure. A probe to determine if a

version of Display Output that included the dimensions caused Moe to change the

parameter status of Len, Wid, and Dep would possibly have revealed further clues to his

misconception. Referring to the procedure statement, Moe observed that "Volume is

calculated here and is output to the main line." He correctly assigned it a variable

parameter status because it "is used in the main line and in the procedure.-

Moving to the DisplayOutput procedure, Moe decided that Volume needed to be a

variable parameter because it was "passed between procedures in the main line." This

time his reasoning resulted in the wrong choice. Moe's reasoning regarding the

appropriate use of variable parameters could account for their overuse. It may be that he

reasoned that information used in the program subsequent to the execution of the

procedure in question needed to be communicated via variable parameters. As

essentially every variable was ultimately reported in the output of the programs to which

the class was exposed, the programs (according to Moe's rule) needed variable

parameters exclusively.

186

176

Task 3

Next Moe completed the modularization exercise. After e_amining the program to

discern its task, Moe combined the input and processing functions into one procedure.

Having completed that, he constructed an output procedure. Moe's reasoning was

consistent; both procedures used variable parameters exclusively because "they're passed

between procedures, in the output." However, his phrase "Procedure into the main line,

outputting Hours Worked, Pay Rate, and Gross Pay" as he referred to his input-calculate

procedure, diminished support for the hypothesized procedure-to-procedure link.

Moe erroneously believed that actual parameter names (identifiers) are required to

differ from formal parameter names. (A review of his original constructions revealed that

he strove to ensure that no identifier was duplicated.) Moving statements, he had

neglected to change the identifiers in the moved procedure statements, while he carefully

constructed formal parameter lists with formal parameter names that differed from the

actual parameter names. As the identifiers used in the declarations did not match the use

in the procedure statements, the program did not compile. Moe, however, attributed the

failure to compile to the fact that the identifiers used in the procedure statements were

identical to those in the main module statements. Moreover, he added, "If it does

compile, you'll get the wrong input, output anyway, most probably." Moe's statement,

which implies that identifiers ,arameter names) govern the communication process,

suggests a fundamental misunderstanding of the process by which information is

communicated among a program's modules.

187

177

Task 4

Advancing to the second analysis task, Moe first sought an overall picture of the

program's function. As he noted that N, which he observed was "assigned a value of 3,"

would "be put into A and B," Moe realized that the value of N was being communicated

to both A and B. However, he continued:

But the WriteLn (N) seems like it will just write 3 because it's only
outputting one N. It doesn't make sense to me how the procedure can . . .

because in the WriteLn there's only one N. According to the procedure,
you're going to want two outputs, or two different . . . you can't have two
values in the same variable name. So to me, it would make sense [that]
either there's a runtime error or else N still equals 3. It just doesn't make
sense to me otherwise.

One interpretation of Moe's remarks suggests that his original description of variable

parameters, in which the original value of the main module variable is "remembered,"

still guided his thinking. Simply stated, there was no procedure to receive and display the

changed value of the variable parameters A and B.

Conversely, Moe's analysis could be interpreted to suggest that he seemed to be

thinking that A and B could not both change N because "you can't have two values in the

same variable name." It may be that he was experiencing a conflict between what he

knew about variables (that they can hold only one value at a time) and the

communication view of the parameter process (that variable parameters return values to

the calling module). His conceriion of variables prevailed, he abandoned the vulnerable

parameter conception (one he had already admitted to not understanding), and he opted

for the only possibilities that made sense to him: runtime error or 3.

188

178

ReadLn

The interview culminated with the questions related to the ReadLn procedure. Asked

about the ReadLn, Moe first conjectured that it would be a value parameter "because you

put [it] in the variable N, and that's the only place it's going to be used. You might use it

in the main line." Moe's earlier statements that "variable parameters pass values between

procedures" would account for his initial response. Then he altered his statement,

observing that "A ReadLn can pass things to a WriteLn. Then it would make sense to me

that both of them [the parameter iists of the ReadLn and WriteLn procedures] would be

variable because they're going to pass and not change. Interpreted in terms of his earlier

statements regarding variab!e parameters, Moe's account was reasonable (Values are

passed "unchanged" between procedures via variable parameters). Elaborating further,

Moe correctly decided that WriteLn could have a value parameter because "all the

WriteLn does with it is output it to the screen or printer." He continued:

But the ReadLn can pass it either into an equation or into a WriteLn or
wherever, so the ReadLn would be a variable and the WriteLn would be a
value.

In a few brief moments, Moe moved from believing the ReadLn would have value

parameters to believing that both standard procedures needed variable parameters, to

correctly recognizing that ReadLn required a variable parameter while value parameters

would suffice for the WriteLn. His succinct answer precisely described the standard

procedures' behaviors. One could hypothesize that the interview process, in which Moe

was encouraged to verbalize his thoughts, provided the scaffolding Moe needed to

179

progress toward principled understanding. Moe, however, was not asked to apply the

knowledge the ReadLn behavior.

190

180

Case Study: Jason

A Capsule of Jason

Jason was able to construct correct programs as long as he was allowed to use the

same formal and actual parameter names, and his nearly perfect first compilation attempt

in the modularization task suggested he was not relying heavily on the computer to find

his errors. During the construction tasks, Jason chose value and variable parameters

correctly. However, his repeated comments that "value parameters are used when only

that procedure needs it, and variable parameters are used when the value needs to be sent

to other procedures" suggest that the choices were not consistently made for the correct

reasons.

Jason's reliance on parameter names that duplicated the main module's variable

names camouflaged an important misconception. He failed to choose appropriate

parameter names during the hand-construction task; a possible interpretation is tizat he

was not cognizant of the scope rules for parameter names. A more cogent argument

asserts that Jason imagined a direct procedure-to-procedure connection in which variable

parameters with .dentical names provided the link. In harmony with his conception,

Jason appeared to have expunged the role of the actual parameter list in the parameter

passing process. The evidence provided by the interviews and his class work supports

that argument.

Jason, the formal thinker, consistently demonstrated an analytical problem-solving

style during the interview tasks. If Turkle and Papert (1990) are correct, then Jason--

191

181

more than any other participant--should have been secure and comfortable with the

abstract, rule-driven, communication representation of the parameter mechanism.

Nevertheless, Jason constmcted a faulty conception of the process. In view of the image

that he appears to have constructed, it seems likely that he would have profited

enormously had he adopted the shared memory-location viewpoint of the parameter

concept. Thus, the case of Jason lends strong support for Mayer (1985) and Du Boulay's

(1986) position regarding the value of an authentic mental model.

Background

Jason, a sophomore under the age of 21, is a male majoring in paper science, a

discipline that requires CIS 110 as a service course. At the CIS 110 course's outset,

Jason indicated that he did not plan to elect the next computing course, and he did not.

The only participant who judged the computing field to have little or no career potential

for him, Jason indicated his confidence in his ultimate succesS in the programming

come. The A- he earned in th? course was higher than his overall B- average.

Indicating that he had worked extensively with computer applications and had used a

computer regularly during a recent paper mill internship, Jason recalled copying "tiny"

BASIC programs that came with an early computer. He also reported having positive

preconceptions regarding the CIS 110 course. Friends who had taken the course

previously described it as not difficult, only time consuming.

Beginning some time in the second week of November, just as the parameter

instruction was concluding, Jason missed appreximately one week of school because of

192

182

emergency surgery. He did say, however, that he did not miss any of the actual

classroom instruction on the parameter concept. (The class was canceled on November

10, the test was administered on November 11, and Jason was apparently back for class

on November 15.) It is difficult to speculate how much impact his weakened condition

and extended absence at this crucial time during the semester may have had on his class

work and his participation in the study. Jason is a formal thinker, scoring 22 on the

IPDT. He missed questions 54 (a classes question) and 59 (a distance question).

Reactions to the Course

Agreeing to a second interview on November 16, the day after he returned to school,

Jason described the course thus far as interesting and time consuming, but "not too

tough" and "not real boring for me." He identified what he liked best about the course:

You have to do everything logically in order and steps and everything.
Kind of everything you do in a program makes sense. Everything has its
own little place and step, and has its own job to do in a program. It's kind
of neat.

His observation about the best-liked facet of the course provides a clue to his learning

style. Moreover, when asked which instructional strategy had proved most helpful, Jason

(in contrast to other participants who chose concrete examples such as the laboratory

exercises or the simulation) alluded to Dr. Greene's summation.

Jason indicated an earlier assignment (one that had focused on the selection control

structure) as his favorite, correctly observing that it was the first complicated individual

assignment. Acknowledging that he felt rewarded when he was able to complete the

193

183

assignment successfully, he also commented that simple procedures were "pretty easy."

The BQ assignment, however, posed some frustrations for him, and he described it as his

least favorite of the assignments. Asked to describe his frustrations, he offered these

observations:

I got to the end, and I figured I would have a pretty decent start on it.
When I went to run it, it didn't work right. The calculations were wrong,
for one thing. I know that. It was kind of odd. I figured that would, that
should be one of the things that would come out for sure, and then it didn't
go into the loop right or something like that. It just didn't work right.

Despite Jason's reported struggles, the parameter passing in the BQ assignment was

correct, except that it used identical formal and actual parameter names. His Flipper

program in the Lab 7 exercise was also incorrectly done, while the parameter passing in

the other Lab 7 tasks was correctly done. On the test (which he took late), he missed

three parameter-related questions: 10, 12, and 30. Two questions involved a procedure

with value parameters; one involved the actual-formal parameter connection. Jason's

pattern of errors, when combined with the performance in the interview tasks, will prove

significant. As he apparently did not turn in the second parameter laboratory exercise

(Lab 9), it may be pertinent to note that the only correctly done programs that required

different actual and formal parameter names were the two exercises in Lab 7.

Parameters

When asked to describe the topic that challenged him the most, Jason indicated the

parameter topic. "That was tougher," he admitted, and went on to confess his confusion

concerning which of the parameters had to get passed on to different procedures, and

194

184

which ones "had to be called at the end in the main program for the procedure heading,

what parameters had to be put in there." Later he defined his difficulties in greater detail,

claiming:

It's not so bad knowing the stuff that has to go to other procedures. I get
mixed up on the actual parameters, which ones you have to call on at the
end when you call it up, and I can't remember. It's the formal parameters
that go right after the procedure headings. That's where I get mixed up
mostly.

It seemed at first that Jason's difficulty might be the terminology. However, his

statement that "value parameters are used when only that procedure needs it, and variable

parameters are used when it the value needs to be sent to other procedures" suggested he

had a fair grasp of those terms. Expressing belief in his ability to recognize the

difference between the value and variable parameters, Jason, however, confessed:

I'm not sure in the value parameter, if that comes from a different
procedure or if that's one that's made in the procedure itself, if they come
in from a different procedure or if they are made in that procedure.

When asked what is provided in the actual parameter list, Jason replied, "That's what

I'm not sure about. I really don't know that." Responding to a question about variable

parameters, Jason said, "Those parameters are able to be passed on to other procedures.

They can be moved to other procedures." Jason's words described his conception:

variable parameters are "passed to other procedures."

When queried for a definition, Jason incorrectly described a parameter as "a variable

within a procedure." As he had expressed confusion concerning where the value

parameters are "made," his response at first suggested that Jason lacked virtually any

195

185

understanding of the parameter concept. However, his elaborated answer: "The

parameter is known in other procedures, and it can be known in the main" dispelled that

notion. Jason understood that parameters are a means of sharing information among

program moduies. While the reference to "can be known in the main" may only have

been an unfortunate word choice, the bulk of evidence suggests otherwise. The response

was congruent with his repeated description of variable parameters as being passed

between procedures. As Jason several times repeated his statement about not

understanding "where value parameters are made," it is more likely that he did not

understand the role of the actual parameter list in the parameter communication process.

His problem-solving activity in the upcoming tasks lent support to this interpretation.

Analogy

Posed with the Mona Lisa analogy, Jason correctly identified the painting in situation

two as similar to a variable parameter, saying:

If you have one value and something has to be added to it or subtracted or
you need some kind of new value from the original, it has to be sent to a
different procedure and then pulled back out.

Once more, Jason referred to variable parameters as being passed between procedures,

providing more support for a direct-link theory.

Describing the Mona Lisa in situation one as a global variable, Jason offered, "All

other procedures have access to it, and it stays unchanged." With surprising precision,

Jason described the problem with a global variable (one to which all procedures have

access). Therefore, it became important to discern whether he connected the parameter

196

186

role in protecting global variables from inadvertent alteration with the need to prevent the

students (who have no reason to apply their paintbrushes to the original Mona Lisa) from

doing so. It is possible he made the connection. However, in view of other evidence, it

is more likely that Jason--who did not know "where value parameters were made," and

who seemed incognizant of the actual parameter list's role in the communication process-

-believed the value parameters to be "made" from a global variable.

Task 1

After receiving instructions for the first analysis task (selecting the correct procedure

heading line), Jason looked first to the main module of the program. After remarking, "I

see there's a 5 down there, and there's no 5 in the output," Jason turned to the procedure

body, and described an algorithm that would equate the values N1, N2, and T. Asserting

that he did not know which of the procedure heading lines would be appropriate, Jason

claimed he had no ideas, and asked to stop.

Initially, Jason's request to discontinue the interview seemed to reflect the "stoppers"

Perkins et al. described in their 1986 study. "Lacking a ready answer to the difficulty, the

student not only feels at a complete loss, but is unwilling to explore the problem further"

(p. 42), they contend, but this explanation seems unlikely in Jason's case. Given his

success in the demanding paper science curriculum, a slightly more plausible

interpretation would be that he was exhausted or rushed or perhaps too polite to ask to be

excused from participation in the study. Another equally probable explanation proposes

that Jason, who had judged a computing career to have little or no potential for him, and

197

187

who had no plans to continue in the discipline, attached no importance to the abstract

task. .

A more interesting interpretation is one that assumes that Jason was engaged, that he

knew what values were passed to the procedure through the formal parameter list, and

that he knew what happened to the variable parameters in the list, but that he did not

understand the workings of the procedure. Referring to the task, Jason acknowledged

that he had seen something similar in the laboratory exercise, but claimed he did not

remember the procedure's specifics. A review of Jason's Flipper program disclosed that

the instructions there were incorrectly coded, resulting in no swap. Professor Greene,

although he had not deducted points, had written correct code beside Jason's erroneous

code. Perhaps because points had not been deducted, Jason had not recognized the

significance of his error or tied to remedy his understanding. More likely, Jasonon his

second day back in school--had not yet looked at the graded exercise. For whatever

reason, it seems possible that Jason was unaware of the errors in his Flipper program as

he undertook the interview task.

Jason would have needed to trace the swap algorithm correctly for the problem to

make sense. If he traced the algorithm such that N 1, N2, and T all ended up equaling 16,

then three of the four procedure heading lines would have provided the required output.

If, on the other hand, he traced the algorithm such that N1, N2, and T ended up equaling

5, none of the procedures heading lines would produce the provided answer. An

interpretation that asserts that Jason understood the parameter construct, but

198

188

misunderstood the effect of the procedure's statements, could account for his confusion

on the first interview task.

Combined with other evidence, another explanation seems equally likely, an

explanation that proposes Jason knew neither the values that were passed to the

procedure through the value parameters in the formal parameter list, nor the destination

of the variable parameters in that list. Contrary to most of the examples he had seen

previously, there was no input procedure to obtain the values and pass them to the swap

procedure. Furthermore, there was no output procedure to which the swap procedure

could pass its information to be displayed. If Jason did not understand the role of the

actual parameter list, he would not have known where to begin, an interpretation of the

situation that seems apt.

What is the most persuasive explanatiPn for Jason's behavior? Given the

preponderance of the data, it is likely that Jason could not trace the code, and that he

neither knew what was passed to the procedure in the formal parameter list as value

parameters, nor did he know what happened to any variable parameter information.

Task 2

The November 29 interview commenced when Jason began the procedure heading

line-construction task. He first looked at the main module, then turned to the first

procedure on the page. In his construction (which follows)

PROCEDURE CalculateVolume (Len : Real;
Wid : Real;
Dep : Real;

VAR Volume: Real);

193

189

of the procedure heading line for CalculateVolume, Jason correctly named Len, Wid, and

Dep (because of their use in the assignment statement) and made them value parameters

because, in his words, "they are only going to be used in this procedure." Volume he

made a variable parameter, citing as his reason, "it has to be sent, available for the

DisplayOutput procedure to use." In this instance, Jason constructed the procedure

heading line correctly. However, it seems possiEe that it was a coincidence due to the

fact that DisplayOutput reported only the volume of the rectangular solid and not the

dimensions. Jason's repeated assertion regarding the need for a variable parameter--

when the information must be available to a subsequent procedure--seems to imply that if

DisplayOutput had reported the dimensions, he would have made those parameters

variable also. Unfortunately the problem was not posed.

Next, Jason worked on DisplayOutput (which follows), the second procedure on the

page.

PROCEDURE DisplayOutput(Volume: Real);

He gave the procedure a value parameter because "it didn't need to be sent anywhere."

However, he named it Volume rather than Answer, the identifier used in the procedure

statement, because, in his words:

It has to come from the above procedure [CalculateVolume]. Volume was
used as a variable parameter up there [Volume in CalculateVolume], so it
has to be sent down to this procedure DisplayOutput.

Jason's observations implied that he imagined a direct variable-to-value parameter

connection between procedures, a connection that was established with identical

190

parameter names. (Jason's hypothesized conception as somewhat resembled the actual

process that occurs when nested procedure calls are employed in a program.)

Last, Jason examined the Get Input procedure, the third procedure on the page. The

main module procedure calls and Jason's procedure heading line follow.

GetInput (Depth);
GetInput (Width);
GetInput /Length);

PROCEDURE GetInput (VAR Len :Real;
VAR Wid : Real;
VAR Dep : Real;)

He incorrectly gave the procedure three parameters--Len, Wid, and Dep--which he

correctly identified as variable parameters "so they can be sent to the procedure to

perform the calculation," the Calculate Volume procedure. A general question about the

appearance of the GetInput parameter list did not provoke further attention to the number

of parameters in the list.

One interpretation of Jason's parameter name choices in the GetInput and

DisplayOutput procedures suggests that he was not sensitive to the fact that the scope

(the parts of the program that may use a particular identifier) ofa parameter name is

limited to the procedure in which the formal declaration appears. It also suggests that he

may not have realized the formal parameter list provides the declarations for the variables

used in the statements of the procedure. Jason used identical actual and formal parameter

names (meaning that every parameter name matched a main module variable name) in

every task that allowed him to do so. Moreover, he commented that he always used the

same names. Doing so may have camouflaged the fact that Jason did not understand the

201

191

scope of the identifiers. If there were no other evidence, this would be a reasonable and

sufficient explanation for Jason's choices.

Conversely, .) Lson may have understood the scope rules. If he understood the scope

rules but did harbor the hypothesized misconception regarding the direct procedure-to-

procedure, name-connected link, his conception of the parameter process would have

clashed with his knowledge of the scope rules if the various procedures used different

formal parameter names to refer to the same memory location. His consistent use of

identical variable and parameter names throughout a program may have allowedhim to

reconcile his naive parameter conception with the scope rules. Moreover, the tactic

would have allowed him to construct programs that compile, execute, and produce the

correct answer.

Interpreted from the perspective of Jason's hypothesized name-controlled, direct-

connection link, his parameter choices were appropriate. CalculateVolume provided a

Volume to DisplayOutput; thus DisplayOutput needed a Volume to receive it.

CalculateVolume needed Len, Wid, and Dep; thus GetInput needed to supply them. It is

noteworthy that Jason examined the procedures in the order of their physical appearance

on the page, rather than the logical order of their execution. Apparently, that order

determined the name choices.

Task 3

Jason began the modularization tisk by constructing a Getlnput procedure, to which

he moved the input prompts. Next he turned his attention to the CalculatePay procedure,

192

making HoursWorked and PayRate value parameters because "they won't have to go any

further than this procedure." GrossPay needed to be a variable parameter because "it has

to be used in another procedure that's going to display it." Jason's words provided a

second chance to inquire about the need for variable parameters. The question: "If you

were accumulating totals of HoursWorked for multiple employees somewhere (i.e., using

HoursWorked in another procedure), would HoursWorked need to be a VAR parameter?"

evoked the (correct) response: "No, I don't think so because it is a VAR up here [in the

GetInput procedure]." His statement seemed to indicate that he understood when a

variable parameter was needed; he just did not know what happened to it. That

interpretation is consistent with his correct value-variable choices in the BQ assignment.

Jason next examined the display procedure, and concluded with an instructions

module. He checked over his work before compiling; he was also the only participant

who left the original program essentially intact and available for review (by enclosing the

unnecessary Pascal statements in comments that become transparent to the compiler

during the compilation process). Jason's first attempt contained only one small syntax

error, an overlooked data type in a procedure heading line. As previously noted,

however, he uniformly used the mainline variable names as formal parameters.

Task 4

After looking briefly at the program in the code tracing exercise, Jason summarized

his intended approach:

First I'm going to see what the procedure does. Now I'm looking at the
main line. Both A and B are going to be stored as N, which is 3, so WriteLn

2 0 3

193

(N) is going to be equal to 4. A and B are both going to be equal because
they're both stored as the same value, which is given right here as 3 in the

main line. The procedure adds 1 to N, which is 3.

Jason recognized that the changes to the variable parameters in the procedure Increment

would be reflected in the calling module, the main module. A diagram he drew, shown in

Figure 2, illustrates that he uncle -stood the correspondence between the formal variable

parameters A and B and the main module variable N.

A
4,

= 4

Figure 2. Depiction of Variable Parameter Association

In the absence of other evidence, Jason's response could mean that he correctly

understood the communication aspect of the variable parameter concept. That both A

and B returned a value of 4 might have allowed Jason to reconcile his perception that

both were "stored at the same value [location]."

In view of the accumulation of evidence, another interpretation of Jason's response is

more cogent. The "global" variable N pros ided the value 3 for A and B. After the

procedure added 1 to both, A and B replaced N. Jason was able to reconcile the different

namesN versus A and B--because the main module only had one variable; it was the

only choice.

194

Later Jason offered that a change to A or B changed N because A and B were

variable parameters. Asked if he had any mental image of how that happened, Jason

replied, "I don't know if I have an image. If I see a VAR, then I know it can be sent to

other procedures." I Rhe interviewed slipped and said, "Do you understand why, when

you change A that it's really N being changed?" Referring to the diagram (Figure 3), Jason

responded, "Yes. Basically I see these two numbers; N ana N are in this order. That means

A and B will be stored in that order. I just see two little arrows that go right there." Jason

knew a correspondence took place between the main module N and the formal variable

parameters, and he knew that changes to the formal parameters were communicated back to

the calling module. However, he seemed to be imagining copies replacing the main module

variable N, with the order determined by the position in the parameter list. The unintended

inLervention provided by the statement "A change to A is really a change to N" did not help

Jason, as it contradicted the mental image he had constructed of the way variable

parameters are passed. As a novice, Jason appeared to have resisted instruction contrary to

his intuitive conception, a practice also noted by Linn and Songer (1991) in their study of

science students.

As the unintended intervention had not provoked the feared disaster, it seemed

reasonable to pursue the topic. To the question: "If they were value parameters, what

would happen to changes made to A and B; that is, if the VAR were not there, what would

N be?" Jason replied, "It would still be 4, I think. The VAR really doesn't . . . I don't think

you need it in this procedure." Asked again: "If this were a value parameter, if A and B

195

were value parameters, what would N be when this WiiteLn (N) is executed?" Jason again

answered, " It would still be 4." The question: "If it would still be 4, how do value and

VAR parameters differ?" evoked the following response:

If you have more than one procedure, say three, four procedures . . . if A and
B would have to be sent from this procedure to a different procedure, then
you need VAR, but this program is not big enough to need a VAR.

Jason's response was congruous with his other statements. Interpreted from the

hypothesized name-controlled, direct procedure-to-procedure link, the parameters in the

first procedure to be executed (the Increment parameters A and B) obtained their values

from the "global" mainline variable N. As the program had no other procedures to which

the value needed to be sent, variable parameters were unnecessary.

ReadLn

Asked whether ReadLn's parameters were value or variable, Jason responded, "VARs,

because ReadLn has to he sent from somewhere else in order to get it." As the response did

little to assist in uiderstanding his thoughts, Jason was asked to apply his understanding of

the ReadLn parameter list. Framed in terms of a modification to the previous analysis task

(task 4), the problem was posed as follows:

What if we changed this program a bit? Instead of the call to Increment, the
main module assigned a value of 3 to N using an assignment statement, and
then had ReadLn (N). Assume the user typed in a 6 and that the ReadLn's
parameter was a value parameter. What would be in the variable N after the
ReadLn? What would this WriteLn display?

Consistent with his response concerning the Increment procedure in the preceding task,

Jason responded, "6." In Jason's mind the modified ABC program--without other

206

196

procedures--was not, in his words, "big enough" to need variable parameters. The powerful

image of Jason's hypothesized procedure-to-procedure connection inhibited him from

seeing the incongruity of his answer.

207

197

CHAPTER V

DISCUSSION

This chapter examines the data from the perspective of the original research

questions, addressing the questions in order. It is followed by a summary of the major

findings of the study and a statement regarding the significance of the findings. A

discussion of the pedagogical implications of the findings, sometimes accompanied by

recommendations for instruction, appears next. The chapter concludes by calling

attention to the limitations of the study.

Research Questions

Action Knowledge

What action knowledge does the novice programmer bring to the study of parameter

passing? It appears that a few pieces of action knowledge had an extraordinary impact,

often negative, on the novices learning the parameter construct. This was most seen in

terms that have computing meanings that differ vastly from the natural-language meaning

of the words. Linn and Songer (1991) propose that the use of natural-world terms in

scientific jargon inhibits the construction of intuitive conceptions. Others also have noted

the problems associated with everyday meanings for computer terminology (Pea et al.,

1987). Hence it is reasonable to conjecture that the action knowledge the participants

brought to the learning situation may have interfered in the learning process.

Because some evidence suggested that not all participants had espoused the technical

meaning of the word, "variable" is discussed first and at length. Terms specific to the

1. 0 Ci

198

parameter concept are addressed only briefly, as it was not apparent that prior knowledge

of those terms posed serious problems for the participants. The information processing

load, caused by the surfeit of terminology associated with the construct, appear to be of

more concern.

Variable. Understanding the variable construct is fundamental to understanding

the parameter construct. The Leestma and Nyhoff (1993) glossary defines a variable as

"an identifier associated with a particular memory location. The value stored at this

location is the value of the variable, and this value may be changed during program

execution" (p. 967). As the variable construct is covered early in the CIS 110 course, it

seemed reasonable to assume that students would bring a principled understanding of

variables to the parameter learning situation. As Table 2 reveals, the expectation was

only partially borne out.

Table 2

Descriptions of variable

Name Description
Carol A number that can change; a value that can be changed
Carl Something that holds a value in memory; something that

is relative to change; in the main line
Amy Something that represents something else
Sammy Something that stands for something else; you can assign

a value, like to a string.
Sondra A place in memory, and you are going to be able to store

a value there; a place where you can store stuff.
Steve Something found in the VAR
Moe Something that can be changed to suit your needs; a user-

defined value
Jason A word that can be used to denote another word or some

kind of number; a value that is used in the program

203

199

Although most participants did include in their definitions some phrase concerning

change, only two (Carl and Sondra) referred to a variable as a memory location (see

Table 2). It is likely that the everyday meaning of the term "variable" interfered with

some students' adoption of the data storage notion inherent in the technical meaning. If

the conjecture is true, then some participants may have been prohibited from developing

a principled understanding of the parameter construct because they lacked the

prerequisite knowledge.

Just as Carl and Sondra were the only two who included the notion of data storage in

their variable definitions, they are also the only two who appeared to be even minimally

aware of the shared memory-location perspective of the parameter construct. It may be

that their conception of a variable sensitized them to the facets of the instruction

emphasizing that view.

Beyond its specific application to the parameter construct, the conjecture regarding

students' understanding of variables suggests that instructors cannot assume a student

fully understands a concept solely on the basis of prior instruction, or demonstration of

some facility using the concept. Referring to youngsters writing recursive Logo

programs, McIntyre (1991) observed:

Proponents of Logo point to the availability of recursion, reporting
examples of youag students using recursion in solving problems. . . . The
ability of students to use recursion to draw complex and attractive patterns
and designs is one thing; the ability of students to understand recursion as
an elegant mathematical construct and a useful programming concept is
another. (p.74) [underline in original]

200

Applied to the participants in this study and their use of the variable concept, the

observation seems apt.

Professor Collier, the instructor of the one-credit Pascal class, provided a vivid

account of her variable instruction for this study; the description is provided in the

CHAPTER III section titled "Pilot testing of the interview protocols." Given this

elaborate definition, it would be reasonable to expect that the definitions given by

students who completed that course (Amy, Sammy, and Steve) would reflect the notion

of data storage regardless of whether the CIS 110 instructor had provided that kind of

instruction. A perusal of those students' responses (see Table 2), however, reveals little

that resembles Collier's statements. The data could be interpreted to mean that the

instruction was not powerful enough to overcome the conception provided by the

everyday meaning of the term "variable." Irrespective of the skill of the teller or the

quality of the tale, the data could also be interpreted as providing support for the

constructivist position regarding the relative ineffectiveness of "telling."

As stated previously, understanding the variable concept is essential to understanding

the parameter construct. Hence, insuring that novices construct an understanding of the

term "variable" compatible with its technical meaning is crucial. Current constructivist

thought proposes that learners fashion meaning by talking, writing, and connecting ideas

to their lives. Hence, variable-related programming instruction must structure

opportunities for novices to do this. For example, programming students might develop

variable analogies, draw pictures, or perhaps explain the technical meaning of "variable"

2 11

201

to a non-programmer, and then reflect on the interchange. Another possibility is a

semester-long, collaborative project during which teams design variable surveys, choose

subjects, collect data, organize and present their results, and design and write programs

related to and using the data they collect.

Terms specific to the parameter construct. As with variable, the natural-world

meanings of the terms "procedure" and "parameter" differ greatly from the meanings

employed by the computing community. As lack of parameter experience was the first

criterion for participant selection, the students' conceptions of the parameter-related

terms quite reasonably reflected the familiar meaning. The participants typically

responded to the term "procedure" with variations of "a way of doing things, certain steps

to take," or "how you do something." "Parameter" drew such responses as "lower bound

and upper bound," "guidelines," "a form that something takes," "evolves around this kind

of context," and "outline."

The terms "value parameter" and "variable parameter" seemed even less familiar to

the students. Before the instruction, only two participants ventured guesses for the

expression "value parameter." Carl offered "guidelines for a certain variable," and

Sondra described it as a "parameter that evolves around some values." Carol and Sammy

connected the term "variable parameter" with "range," while Sondra aptly described it as

a "parameter that includes variables." Interestingly, Steve thought it to be a "parameter

that changes." It appears that the everyday meaning of the variable portion of the term

guided his thinking.

202

Summary. As classroom instructors cannot unilaterally alter the discipline's

jargon, they must seek methods for overcoming the interference generated by the

intrusion of everyday meanings into technical terms. One possibility is a parenthetic

redefinition of the offending words with technical terms the students are less likely to

know. The term "subroutine," for example, could appropriately serve as a re-definition

for the term "procedure," and "data store" could substitute for "variable." While it might

reduce the interference, the strategy would, however, likely exacerbate the serious

problem caused by the surfeit of terminology associated with the parameter construct.

One conclusion is certain. Instructors, who have long been immersed in the

computing community with its extensive jargon, cannot assume that novices attach the

same meanings that professionals do to the technical terms pervading the instruction.

Intuitive Conceptions

What intuitive conceptions does the novice programmer possess regarding the

parameter passing construct?

Naive conceptions. Du Boulay (1986) observed that learners, if not provided

with conceptual models, construct their own mental models, models that may be

impoverished. When applied to the parameter models the participants constructed, the

perception seems appropriate. In accord with Linn and Songer (1991), who maintained

that intuitive (flawed) ideas are largely derived from natural-world experiences, the

intuitive conceptions of variable parameters developed by the participants in this study

did seem to derive from natural-world occurrences. Carl, for example, envisioned a

203

chalkboard, and Sanuny imagined a hand grabbing the value and bringing it back (to the

calling module). Although the words differed, all participants seemed to envision some

notion of the value in the actual parameter being replaced by the value in the formal

variable parameter at the procedure's conclusion. The obvious extension is that they

incorrectly imagined the procedure receiving a copy of the actual parameter at the

procedure's inception. Amy, for example, used the words, "N is copied into two different

spots in memory" as she introspected during the second analysis task. From this

evidence, one conclusion is certain. The opaque, one-way versus two-way

communication model that permeates much introductory Pascal instruction apparently

allowed none of the participants to construct a mental model that reflected the authentic

variable parameter process.

If intuitive conception is interpreted to include fragile knowledge, then Sammy's and

Sondra's repeated statements of "I'm not sure if . . ." provided evidence of their intuitive

conceptions. The several allusions to difficulties with the terminology added more

evidence regarding the fragile nature of some participants' understanding. Moreover,

most participants erred when choosing between value and variable parameters either in

their class work or during the interview tasks.

Syntax-related misconception. Sondra's efforts with the first analysis task

divulged a misconception regarding the parameter syntax. He incorrectly believed the

parameter lists (VAR N1, N2 : Integer) and (VAR NI.: Integer; N2: Integer) tO

have the same effect. As there is no reference in the research literature to the various

214

204

forms the formal parameter list can assume (as related to learning), the topic is an ideal

candidate for an experimental study. In contrast to fundamental misconceptions about

the communication process, remedying syntax-related problems would not seem to pose

undue pedagogical difficulties once they are identified. Om instructional possibility is an

exercise combining the same formal parameters into various lists. Learners could predict

the behavior, execute the program to test their predictions, and answer questions about

the behavior. Not only might such an exercise reveal or remedy syntax misconceptions,

it could provide an opportunity for students to incorporate the parameter terminology in

their writing and speaking.

Fundamental misconceptions. Steve, Moe, and Jason exhibited problem-

solving behaviors that could be attributed to a fundamental misconception of the

parameter process. Each made errors that could be interpreted as systematic applications

of a parameter process that involved a direct procedure-to-procedure communication.

The three partic 'pants appeared to imagine different processes; the common factor was

the direct procedure-to-procedure link.

This finding has several important implications. First, Moe and Jason are both

formal thinkers, and both consistently exhibited problem-solving behaviors that would be

described as analytic. Steve is a concrete thinker whose problem-solving style appeared

to be contextual. Thus it is not possible to conclude, as might have been expected, that

concrete, contextual thinkers are more prone to misconception than formal, analytical

thinkers. Tobias (1990) advised against assuming "too narrow a vision of what kinds f

2 1 5

205

attributes, behaviors, and lifestyles the 'true' scientist displays" (p. 14). The evidence

from this study suggests that her counsel applies to assumptions about novice

programmers as well.

It is also important to note that, during the interviews, all three participants who

seemed to foster significant misconceptions verbalized their inability to understand.

Although the words varied, the common message was: "I do not understand." This fact

suggests that students can provide helpful information about their understandings and

misunderstandings if they are pm vided an opportunity. In recent years, student journals

and other classroom assessment techniques have gained great popularity; incorporating

their use in an introductory programming class could provide novices with the

opportunity to say, "I do not understand."

Teachers might also be alerted to student difficulties by using a face-to-face grading

scheme (Cooper, 1985). Obviously, an instructor teaching multiple classes of 30 to 35

programming students cannot engage in face-to-face grading with every student.

However, journals or other classroom assessment techniques could identify students who

would profit most from the interchange. The practice seems to offer many potential

benefits. Students who explain a program's function, and justify design decisions, could

obtain the same benefit that interview participants did: the opportunity to elaborate their

conceptions. Moreover, one could hypothesize that students would be less inclined to

submit a program they did not fully understand if they knew they might be required to

216

206

explain the program's functioning to their instructor. Finally, the scheme ensures that

students receive immediate feedback on their work.

Summary. If the replacement notion of a variable parameter is viewed as an

intuitive conception, then it was one shared by all eight participants. Since that

conception could reasonably be attributed to the instruction, further discussion will be

postponed until the section on principled understanding. Beyond that, only two (Carol

and Carl) of the eight participants did not display some form of intuitive conception or

fragile understanding during the interview tasks or in the BQ assignment. One

participant revealed a syntax-related misconception, and three displayed behaviors that

could be interpreted as applications of fundamental misunderstandings of the parameter

process. This accumulation of evidence suggests that the community of computer

programming instructors may wish to examine its beliefs about the way the parameter

construct has traditionally been taught.

Principled Understanding

How does the novice exPress principled understanding of the parameter passing

construct?

Two perspectives. Basing their statements on their study of adolescents learning

science, Linn and Songer (1991) noted that some scientific principles are inaccessible to

stud-rqs because the principles integrate a wide range of information, or because they are

based on hidden mechanisms. It may be that the shared memory-location perspective of

the parameter passing mechanism is -.uch a principle. Linn and Songer advocated using

207

"pragmatic principles" to assist students in the knowledge constniction process. As

Pascal textbook coverage, even coverage including the shared memory-location view,

almost inevitably includes the one-way versus the two-way communication approach,

some tex aok authors may consider that the communication view is a necessary

pragmatic principle for novices learning the parameter construct. Hence, for purposes of

discussion, the copy versus the shared memory-location and the one-way versus two-way

communication perspectives will both be considered principled.

As the instruction emphasized the one-way versus two-way communication outlook,

it is not surprising that the participants adopted that viewpoint. By the third interview, all

participants repeated the words of the text and the classroom instruction regarding value

parameters. Although not unanimously successful, they also echoed the language of

variable parameters, analogized appropriately, constructed modular programs, and

analyzed problems for which that parameter model sufficed.

The students were less successful demonstrating principled understanding of the

shared memory-location perspective. Understanding appeared limited to occasional

employment of the terms "copy" and "original." No one, however, used the terms

consistently, and no one was able to apply that knowledge in the second analysis task

(Task 4). As novices rarely analyze the program correctly, and advanced programming

students seldom err, it is reasonable to question why. One interpretation proposes that

the code may be too "tricky." The brevity of the exercise may lull less sophisticated

programmers into believing it trivial. Alternatively, it may be that the shared memory-

208

location principle (upon which the task depends) is beyond the zone cf proximal

development of novices during the initial stages of parameter instruction. Still another

explanation proposes that novices would be more successful with the task if they were

provided with a more authentic model of the parameter process from the outset.

Additional research may provide an answer to this question.

McGrath (1990) maintained that a good mental model must be useful to experts as

well as novices. The communication parameter model allowed no one to solve the

analysis task (Task 4) correctly, and allowed all participants to develop an inaccurate

image of the variable parameter process. Hence, it is possible to conclude that the

communication model alone is not sufficient (and perhaps not even useful), and that a

better model would integrate the communication and the shared memory-location models

of the parameter process. Two suggestions for doing so--within the structure of an

introductory Pascal programming class such as the one studied--follow.

Cognitive benchmark. Linn and Songer (1991) reported that sometimes even

pragmatic principles are incomprehensible, that novices need effective representations to

help them understand abstract ideas. With few exceptions, the participants in this study

referred to the classroom payroll simulation when recalling the instruction that had

proved most helpful in providing an image of the parameter process. Given the apparent

power of the simulation, one could theorize that a concrete representation of the shared

memory-location parameter model, embedded in a familiar context, would help propel

students toward principled understanding of that perspective (for the description of a

'4'1._ 9

209

simulation that concretely represents the shared memory-location perspective, see

Appendix S). Bruner maintained that students need multiple representations that move

from the concrete to the iconic to the symbolic (Marchionini, 1985). Accordingly, a

revised version of the Leestma and Nyhoff (1993) example provides a graphical

representation of the simulated payroll program, accompanied by verbal explanations

(see Appendix T). The program itself provides the link between the concept and the

Pascal syntax (see Appendix U).

Linn and Songer (1991) wrote that benchmarks are used as anchors or bridges to fill

the gaps between novice and expert views. In their work with science students, a key

experiment--where everyone understood the situation and the explanation--served as a

benchmark, and was used to help students integrate action knowledge and intuitive

conceptions. The multiple representations of the payroll program could serve as a

benchmark to students learning about Pascal parameters.

Explicating the parameter process. Carefully structured to incorporate the

guidance provided by the literature, the second analysis task (see Task 4, Appendix P)

seems an ideal vehicle for forcing students to adjust their incomplete and sometimes

inaccurate mental models of the parameter construct. Linn et al. (1987) found, for

example, explicit instruction to be effective in their studies of AP classes. Moreover,

Clancy and Linn's (1992) case study approach is built on the premise that students can

benefit from expert knowledge if the expert thinking is made explicit (transparent). Van

210

Merrienboer (1987, 1990, 1992) and associates extolled the benefits of novices reading

completed programs.

Accordingly, a version of the interview task (modified to incorporate the counsel of

the literature) is found in Appendix V. Using the debugging tools provided in the Turbo

Pascal Integrated Development Environment, students observe the action on the program

variables as the execution progresses. The computer acts as the more able peer and

makes explicit the parameter passing process as it happens, and the accompanying

questions encourage mindful abstraction.

Problem-solving styles. In addition to the two parameter perspectives, the study

explored another dimension of principled understanding, that of problem-solving styles.

The participants demonstrated diverse approaches to problem situations, styles generally

consistent with those described in the literature (Cheny, 1980; Johnson & Johnson, 1991;

Turkle & Papert, 1990). Four students (Carol, Carl, Moe, and Jason) consistently

displayed behaviors that could be described as analytical. Those students, for example,

generally

scrutinized the abstract analysis tasks without imbedding the code in a familiar context,

did not need to stay in close contact with the details of a problem situation,

discerned the general purpose of a program before examining the details,

attended to the logical representation of programs,

showed litde evidence of relying on trial-and-error as a problem-solving approach, and

alluded to control when describing their human-machine interactions.

2 2 1

211

Conversely, three participants (Sammy, Sondra, and Steve) typically displayed

behaviors that were consistent with the literature descriptions (Cheny, 1980; Johnson &

Johnson, 1991; Turk le & Papert, 1990) of heuristic or concrete (contextual) learners.

Those students generally

placed the abstract analysis tasks in context before analyzing them,

attempted to remain in contact with a problem's details,

often examined the details of a problem at length before discovering its purpose,

occasionally seemed bound by a program's physical representation,

regularly employed trial-and-error as problem-solving approach, and

described their interactions with the computer as a partnership.

Moreover, they invariably indicated concrete or visual examples when describing

successful instructional strategies. There was no evidence, however, that the contextual

learners regularly eschewed planning, an implication that might be drawn from Turk le

and Papert's (1990) choice of the term "planner" to describe people whose style was

analytical.

Amy, the eighth participant, appeared at different times to demonstrate

characteristics of both the analytical and contextual problem-solving styles. Furthermore,

she seemed able to move between the two styles as needed.

Contextual learners. The students with low IPDT scores, those who in Piagetian

theory would be classified as concrete learners, uniformly exhibited a contextual learning

style. Excluding performance that could be attributed to fundamental misconceptions,

222

212

the contextual learners were not as successful as the analytical learners. If creating a

more inclusive computing discipline is a genuine goal, then computer programming

educators must consider strategies that will better serve the group of students whose

problem-solving style is contextual. Moreover, given the regularity with which the

analytical learners referred to the value of the concrete representations and other

strategies believed to assist the contextual learner and the difficulties displayed by most

participants, it is reasonable to hypothesize that analytical learners would benefit from

their employment as well.

According to Turlde and Papert (1990), the contextual learner is likely to be initially

uncomfortable with the idea of procedural abstraction (of which parameter passing is an

integral component), prefen;ng to stay in contact with the program's details. While

procedural abstraction is an essential aspect of the structured programming paradigm to

which programmers must become accustomed, the transition canbe facilitated by

introducing the concept with a concrete, visual programming language. Karel the Robot

(Pattis, 1981) and Logo's turtle graphics are two languages that have been used

successfully to accomplish this task (personal communication, J. Kmoch, September

1993). As the designated languages can function without data, the introduction of

parameters can be postponed until novices are acclimated to procedure use. Introducing

parameters with graphics examples where students can observe the parameter effects (see

the Banner program, for example, in Appendix F) is likely helpful, and algorithm

visualization and animation techniques have also been shown to be successful.

213

Given their reactions to the abstract interview tasks, contextual learners may be more

successful if the problems they are asked to solve are placed in an understandable

context. Moreover, they would likely benefit from increased attention to the transparent,

visual copy versus shared memory-location perspective of the paramete process.

At the semester's end, most participants still seemed to be consolidating fragile

knowledge and naive conceptions of the parameter construct. Restructuring the course to

introduce the procedure topic immediately would undoubtedly allow more time for

greater attention to the troublesome area.

Beyond the immediacy of the present Pascal programming environment, other

options exist. In recent years, for example, the movement to replace structured

programming with an object-oriented paradigm has been gaining momentum. That

paradigm may foster an environment that is more agreeable to the concrete thinker.

Turk le and Papert (1990) observed:

In the traditional concept of a program, the unit of thought is an
instruction to the computer to do something. In object-oriented
programming the unit of thought is creating and modifying interactive
agents within a program (p. 155).

They additionally speculated that the growing support for icons may be part of a growing

acceptance of concrete ways of thinking.

Where it is feasible (or possible) to identify a learner's preferred problem-solving

style before he or she enrolls in a programming course, instruction could be adapted

accordingly. It may be, for example, that a sequence of programming courses beginning

224

214

with an assembly language experience--where the programmer is continually immersed

in the details of a program--would be more congenial to the contextual learner.

Summary. The participants in the study demonstrated their principled

understanding of the parameter construct in a n....nner that reflected the CIS 110

instruction, generally embracing the communication-oriented view. As that view allowed

the development of a flawed variable parameter model, it was concluded that the

communication view would be more useful if it was integrated with the shared memory-

location view.

The eight participants displayed diverse problem-solving styles that generally

reflected the styles reported in Turkle and Papert (1990). After allowing for

misconceptions, it appeared that those with an analytical style were more successful than

those with a contextual style. As the problem statement expressed concern over the

success and retention rates of struggling novice programmers, several suggestions for

enhancing the programming experiences of the contextual learners (and perhaps all

learners) were offered.

Conceptual Understanding and Procedural Knowledge

What is the relationship between a novice's conceptual understanding and

procedural knowledge of parameter passing? For this study, conceptual understanding

was operationally defined as understanding of the parameter construct and the behavior

of programs employing the construct, while procedural knowledge was defined as skill in

constructing modular programs.

215

Without exception, the procedural skills of the participants appeared to surpass or

equal their conceptual understanding of the construct. All participating students except

Jason submitted every assignment, and the programs generally produced the correct

results. All participants successfully completed the computer-assisted modification task;

with the exception of Steve, they seemed to manage the task easily. Furthermore,

excluding difficulties that could be attributed to a fundamental misunderstanding of the

parameter concept, the participants appeared to have little difficulty with the hand-

construction task. There are several possible reasons why this is so.

Goals of an introductory programming course. Perhaps the most persuasive

explanation for the earlier development of procedural skills is that the introductory

programming course, as it is traditionally taught, is a skills development course.

Programmers- are ultimately judged by the skill with which they construct programs;

accordingly, instruction has been designed to develop that skill. The course in which the

participants were enrolled was no exception. The textbook and classroom instruction

stressed procedural knowledge heavily, and a review of the student activities and test

questions confirms that the assessment matched the goals. As a result, the students had

less experience with analysis and understanding tasks than they did with construction

tasks.

This explanation for the uneven development of conceptual understanding and

construction skills suggests that perhaps the parameter-related goals of the introductory

course should be redefined to focus more on the former, and less on the latter. The

216

literature does provide some support for such a re-definition. More than a decade ago,

Deimel et al. (1983) expressed surprise concerning the continued write-only tradition of

computer science. Van Merrienboer and his associates (1987, 1990, 1992) investigated

strategies that could sustain such a re-definition. They advocated that novices read

programs and complete partially constructed programs, contending that the student must

understand the program to change it or complete it. The Clancy and Linn (1992) case

study approach requires students to answer questions about worked-out code, maintaining

that such activities foster understanding. Both schemes show promise. The students'

success during the semester in question was at least partly attributed to activities of

precisely the type proposed by Van Merrienboer and his associates, and the interview

results, in which students appeared to construct their understanding as they introspected,

seem to support to Clancy and Linn's work.

Regarding the goal of the parameter instruction in an introductory course, it appears

the programming education community has two options. It can continue to stress success

and procedural skills (what the student can do). Attendant with that choice is the

likelihood that many students will continue to acquire only limited understanding of the

parameter construct during their introductory course. Conversely, the community can

shift the emphasis to conceptual knowledge (what the student understands). Attendant

with that choice is the possibility that students will acquire less procedural skill during

their introductory course.

217

Obscured Misconceptions. A second explanation for the conceptual-procedural

relationship proposes that students with significant parameter misconceptions can

construct programs that produce the correct answer by making seemingly innocuous

adjustments to the parameter lists. The study provided compelling evidence that students

whose understanding was fragile a) overused variable parameters, b) used identical actual

and formal parameter names exclusively, or c) consistently provided identical formal

parameter names when different modules referred to the same calling-module variable.

In various ways, the adjustments allowed students to construct correctly working

programs despite fragile understandings and significant misconceptions. The

adjustments, however, concealed from the instructor, and perhaps from the students

themselves, their misunderstanding.

Computer as Coach. Beyond the preceding explanations is the fact that the

students have the computer to act as the expert, or more able peer, when they are

constructing programs (Pea, 1985). The Pascal compiler (the program that converts

Pascal statements into machine language) finds syntax (typographical, punctuation, and

spelling, for example) errors, and forces students to confront the language-associated

mistakes they make when composing programs. Programs do not compile until they are

syntactically correct. Novice programmers, and perhaps all programmers, rely on the

compiler's assistance to reduce the information processing load associated with

constructing computer programs. The participants in this study were no exception. For

example, some students required several attempts before successfully accomplishing the

2 8

218

relatively simple (compared to other class-related construction tasks) task of

modularizing the one-module program.

Perhaps more importantly, the computer provides students with concrete

representations of the solutions they construct. The students know--or can know--when

their solutions are correct. There is no doubt that programmers, not only novice

programmers, rely on this assistance. Again, the students in this study were no

exception. Several mentioned during the hand-construction task that they would be more

comfortable if they had the computer to help them find their errors. Moreover, the

computer-assisted task was the only one that led to eventual success for all participants.

Besides the general assistance described above, the machine provides specific

assistance to students constructing modular programs. When executed, the program

produces the wrong results if the programmer uses value parameters when variable

parameters are needed. Amy, for example, recognized immediately that she needed to

change value parameters to variable parameters when her modularized version of the

payroll program reported zero results. On the other hand, substituting a variable

parameter for a more appropriate value parameter does not yield erroneous results unless

the program has other errors. There is some evidence that participants relied on this fact.

Amy, Sammy, Steve, and Moe all inappropriately used variable parameters during the

interview tasks and in some of their class work, and Steve forthrightly admitted that he

gave a display procedure variable parameters "just to be on the safe side."

225

219

Failure to correctly make value-variable choices (which almost invariably meant the

student inappropriately chose variable parameters) was in truth the most commonly

observed mistake in the participants' interview task performance, and in their class work.

The most benign interpretation of the overuse of variable parameters is that most students

had difficulty determining when they needed a value parameter and when they needed a

variable parameter.

It may be that the computer-provided assistance, in the form of answers, relieved

some students of the need for the mindful abstraction that Van Merrienboer and his

associates (1987, 1990, 1992) deemed so important. It is possible that, when uncertain of

the value-variable choice, some students had discovered that they could construct

programs that produced the correct results by using variable parameters. If students

equate success with a program that produces correct results (as the interviewcomments

seemed to imply), and if modular programs that rely on variable parameters more often

produce the correct results, then the computer-produced feedback of their solutions

perhaps relieved some students of the need to carefully consider the value-variable

parameter choices. Assuming this interpretation has merit, then an instructor's sole or

heavy reliance on computer-assisted, construction-only parameter assignments (ould

inhibit the development of students' conceptual understanding of the construct.

As encouraging novices to carefully attend to value-variable choices would seem to

enhance both understanding and construction skill, several suggestions are provided.

220

Whether the suggestions have value, however, will not be known until they are tested

empirically.

Enriched with questions requiring explanations, the focused completion and

modification laboratory exercises (see Appendix E) reported in this study show promise.

Such exercises would be consonant with strategies suggested by Van Merrienboer and his

associates (1987, 1990, 1992) and Linn and Clancy (1990, 1992). A second possibility iF

the increased use of tasks such as the hand-construction task, perhaps enriched ,ith the

requirement that students explain the reasons for their choices. A third suggestion is the

employment of computer-assisted assignments with the sole criteria of correctly

constructed procedure heading lines.

Still another instructional strategy might be to focus attention on the appearance of

the formal parameter lists, both in the teacher-provided models and in the student work.

For example, instructors might insist that parameters be listed vertically (one per line),

that all value parameters appear before any variable parameters, or that multiple

parameters not be combined in lists separated by commas. Close attention to the

appearance of the formal parameter list might induce students to attend more closely to

their value-variable decisions. An experimental investigation of the impact of various

forms of the parameter list might yield helpful information.

Additionally, the topic seems an ideal candidate for classroom debates or small-

group work. Such activities would provide novices opportunities for collaboration,

elaboration, cmflict resolution, and construction of their own criteria for correctness.

221

Abstract Tasks. Subordinate to the preceding explanations for the conceptual-

procedural relationship is one related to the nature of the interview tzsks. The

construction tasks were familiar and contextually rich, while the analysis tasks were

abstract. It is certain the abstract quality affected some participants' performance.

Summary. The participants in the study demonstrated procedural skills that

(Aceeded their conceptual understanding of the parameter construct. Several

explanations have been proffered to explain the conclusion. First, an emphasis on skill

development is consonant with the traditional goals of the course. Second, students could

screen fundamental misconceptions and still write routine programs that would produce

the correct results by making relatively minor adjustments to the program's parameters.

Third, the computer helps find errors when a program is constructed incorrectly.

Moreover, it is forgiving of inappropriately used variable parameters. Finally, the

interview analysis tasks were abstract in contrast to the contextually-rich construction

tasks.

Success

What impact does a student's understanding of the parameter passing construct have

on his or her eventual success in an introductor; programming course?

Measured by the traditional standard (the student's final grade), the students enrolled

in the research section were very successful. Thirty students completed the surveys at the

semester's onset; 26 completed the course. Of those, 10 earned A's, 7 earned A-'s, and 9

earned B+'s; thus, all students who completed the tests and submitted the assignments

3 2

222

earned a grade of at least B+. A generous grading scale may account for the high success

rate. Conversely, much about the course changed dramatically in the year preceding the

study; it is likely those changes contributed to the high success and retent. on rates.

As was the class overall, the eight participants were inordinately successful. The

final grade pattern, provided in Table 3, does seem to mildly suggest that those students

whose parameter understanding seemed most principled were the most successful. The

tight cluster of grades, however, prohibits drawing any but the most tentative

conclusions.

Table 3

Participants' final grades

Name Carol Carl Amy Sammy Sondra Steve Moe Jason
Grade A A A B+ A- A- A- A-

Carol and Carl, for example, con :ently and relatively effortlessly accomplished the

interview tasks, and offered explanations that demonstrated understanding. Amy

succeeded with all but one of the tasks, albeit after a bit of struggle. However, the

success of the others, especially those who appeared to harbor fundamental parameter

misconceptions, raises doubts.

The problem statement asserted that understanding the parameter construct is crucial

for sucess. As participants who appeared to demonstrate only limited understanding of

the construct or to harbor serious misconceptions were successful, the study did not

support the problem statement. Therefore, it is fitting to attempt to briefly account for the

participants'success.

4 33

223

First, the parameter construct is only one of several studied throughout the span of

the semester. While the parameter construct was central to one mid-term examination, a

perusal of the related test questions reveals that few focused on understanding.

Moreover, most of the parameter assignments were program construction activities.

Students with fragile understanding could construct programs that produced the correct

answer by making seemingly innocuous adjustments to parameter lists. Overuse of

variable parameters also allowed students to construct correctly-working programs

without fully understanding when variable parameters were the appropriate choice.

There is some reason to hypothesize that the addition of the structured laboratory

component to the course positively impacted student performance. The overall success of

the class, the positive reaction of most students, and the instructor's observations appear to

support the claims of benefit revealed in the literature. Two aspects of the structured

laboratory experience emerged as significant: the collaboration it fostered and infusion of

focused, completion-type programming exercises.

Expressing opinions consistent with the literature, the instructor and several of the

participantsespecially some of those who struggled--attested to the value of the

collaboration that was promoted by the structured laboratory environment. Moreover, the

nature of the informal, self-selected student groups was consistent with the successful

grouping patterns reported in Webb and Lewis (1988). Furthermore, the collaboration

reported in this study mirrored the literature reports of students working in communities of

6 34

224

practice that are, according to Collins et al., "fostered by common projects and shared

experiences" (1991, P. 45).

The instructor and several of the students attributed the enhanced achievement partly

to the incorporation of focused, completion-type parameter exercises. The perception of

benefit supports the findings of Van Merrionboer and Paas (1990) and Van Merrionboer

and De Crook (1992) reported earlier in the paper. At this time, the claim of superiority

for the completion-type parameter exercises over construction-type exercises is an

untested hypothesis. Whether the hypothesis is borne out remains for further

investigation.

Effect of Understanding on Disposition

What impact does a student 's understanding of the parameter passing construct have

on his or her disposition toward computer programming? The study provided limited

evidence that improved understanding of the parameter construct could advance a more

favorable disposition toward computer programming. The participants commonly used

the term "challenging" to describe the introductory programming course, and they

unanimously agreed that the parameter construct was the most challenging concept the

course entailed. However, they seemed to welcome the challenge as long as they were

generally successful. As improved understanding would likely result in more successful

programming experiences (as would improved understanding of any other programming

construct), improved understanding of the parameter construct could indirectly help to

generate a more positive disposition toward computer programming.

225

Findings and Implications of the Study

Several conclusions emerged from the interpretation of the individual cases and the

preceding analysis. A discussion of the study's major fmdings and the implications of

the study follows.

Finding 1

Students' understanding of the natural-language meaning of some terminology

appeared to interfere with their adoption of the technical meaning of the terms, possibly

inhibiting their understanding of the parameter construct. The term'variable" seemed

especially suspect. Variable is a fundamental programming construct, and it was covered

early during the instruction. Moreover, most participants reported having some

programming experience where they would have previously encountered the concept.

The finding that students may have lacked an understanding of the data storage

component of the term has several implications. It implies first that instructors cannot

assume novices attach the same meaning to the terminology that experts do. Moreover, it

suggests that instructors cannot assume students understand a concept simply because

they have been previously exposed to it, regardless of the quali:y of prior instruction.

Instruction on crucial ideas, consequently, should be spiral, and teachers should structure

experiences that require learners to attend to both the essential and the abstruse aspects of

a concept. In a more global sense, the finding counsels that textbook authors, publishers

of instructional materials, compiler writers, and inventors of new programming languages

should be sensitive to the difficulties inherent in some terminology.

6 36

226

Finding 2

Most students displayed either fragile understanding of the parameter construct, or

solved problems in a manner consistent with a systematic application of a fundamental

misconception of the parameter process. Both analytical learners and contextual learners

experienced misconceptions.

It was apparent that most participants in the study were still constructing or

consolidating a fragile understanding of the parameter construct several weeks after the

conclusion of the instruction. The finding suggests that perhaps the procedure-parameter

topic should be introduced very early in the learning experience to provide students with

a greater number and variety of parameter learning activities, and more time to construct

their understanding.

The most pervasive instance of fragile understandinp was the participants'

uncertainty regarding their value-variable parameter choices. To encourage the

development of decision-making skill, learners need to be provided with carefully

structured situations requiring them to construct their own criteria for the correctness of

their value-variable decisions.

Among the eight participants, two analytical learners and one contextual learner

demonstrated problem-solving behaviors suggestive of fundamental misconceptions of

the parameter construct. Consequently, instructors cannot assume that most students

construct an undistorted image of the parameter process during iidtjal instruction.

Furthermore, they cannot assume that contextual learners are more likely than analytical

227

learners to develop flawed conceptions. Importantly, all three students who harbored

misconceptions verbalized their inability to understand. This fact suggests that students

can provide helpful information regarding their conceptions and misconceptions if they

are encouraged to do so.

Consistent with the literature on misconceptions, some oral and written responses

that initially appeared capricious, and even bizarre, proved to be logical and appropriate

choices when interpreted in terms of the learner's hypothesized misconception. The

finding, thus, suggests that programming teachers refrain from interpreting program

errors as simply carelessness or lack of attention or lack of concern on the student's part.

Finding 3

The mental model of the parameter process constructed by the students reflected the

conceptual model provided by the classroom and textbook parameter instruction. The

textbook and classroom instruction stressed the one-way versus two-way communication

model, and the students universally adopted the communication-oriented mental mcdel of

the process. Guided by the opaque communication model, all participants appeared to

imagine some variation of a mechanism whereby the value in a formal variable parameter

replaced the value in the corresponding actual parameter at the ccnclusion of a

procedure's execution.

Given that the replacement idea isa flawed image of the variable parameter process,

it is possible to hypothesize that increased emphasis on the more transparent shared

memory-location perspective would allow novices to construct a more authentic mental

4.."' :3 ('

228

model of the parameter process. As the incorporation of concrete representations seemed

to be a powerful strategy for assisting students in constructing their mental models, the

provision of a concrete representation of the shared memory-location perspective would

appear to be beneficial. Beyond that, the finding counsels instructors to remember that

learners do not automatically construct understandings that propel them toward a

principled understanding of a concept. Learning situations must be carefiilly structured if

they are to advance the desired understandings, those compatible with expert perceptions.

Finding 4

Students with an analytical problem-solving style generally demonstrated a greater

understanding of the parameter construct than those with a contextual problem-solving

style. This fmding may be attributed in part to portions of the instruction (the opaque,

communication-oriented parameter model) and to the abstract nature of some interview

and assessment tasks, which possibly hindered learners with a contextual problem-

solving style and favored those with an analytical style. The conclusion implies that

programming instruction must provide a climate responsive to students' different

learning styles by providing a broad array of examples and activities that would allow

students with varied learning styles to benefit from the class.

Finding 5

Students' procedural knowledge appeared to equal or surpass their conceptual

understanding of the parameter construct. The finding can be attributed at least in part to

the traditional skill-oriented goals of computer programming courses. Given the

239

229

students' relative success with procedural skills and the nature and extent of the

conceptual difficulties disclosed by the study, a re-definition of the goals to focus more

on understanding and less on skill development (at least for the parameter construct)

seems reasonable.

Finding 6

Programs that produce the correct answers can camouflage a student's lack of

understanding from him or herself and from the instructor. The study disclosed that

apparently innocuous adjustments to parameter names and value-variable choices

allowed students to construct programs that produce the correct resu!its despite

fundamental misunderstandings of the parameter construct. In this manner, students'

lack of understanding was camouflaged from the instructor and perhaps from the learners

themselves. The study also revealed that programming students value success and that,

moreover, they equate correctly working programs (programs that produce the correct

results) with success. Hence, the students presumably employed whatever strategies

were necessary to achieve success. If understanding of the programming language

constructs is a legitimate and important goal of programming instruction, the findings

suggest that instructors of introductory programming courses must structure opportunities

whereby learners construct criteria for programming success that are more

comprehensive than merely "finding the right answer." Redefined goals that more

heavily emphasize conceptual understanding would likely facilitate the incorporation of

such activities.

230

Findink 7

Both analytical learners and contextual learners were generally successful in the

course and in their ability to construct original modular programs. The conclusion

implies that computer programming educators cannot assume a student will be

unsuccessful solely because his or her predominant learning or problem-solving style

differs from that traditionally associated with successful computer programmers. They

must, instead, assume a priori that every student has the potential to succeed. Moreover,

combined with other conclusions, the finding suggests that instructors cannot assume that

students understand the parameter construct simply because they are able to construct

programs that employ the concept.

Finding 8

The interview process provided an instructional intervention when participants

explained their reasoning. The impact appeared to be most notable for participants whose

understanding was fragile. Mayer (1982) proposed that encouraging a learner to explain

in his or her own words and to relate new information to other ideas or concepts (to

elaborate) supports the activation of relevant existing knowledge, and assists in the

assimilation of new material. The participants in this study who elaborated during the

interviews appeared to reap the benefit proposed by Mayer. This finding strongly

suggests that providing students with opportunities to elaborate will enhance their

understanding of the parameter construct.

2 4 I

231

Finding 9

Concrete representations, focused parameter activities, and a structured laboratory

environment that promoted collaboration appeared to contribute to students' success.

The finding implies that the continued and expanded use of these instructional techniques

could enhance students' ability to understand and use the parameter construct.

Limitations of the Study and Future Directions

The study is subject to all the limitations inherent in a qualitative study (Merriam,.

1988). Moreover, of the instruments and protocols employed, only the IPDT had

undergone the rigor of validity and reliability testing (Milakofsky & Patterson, 1979).

With the exception of the second analysis task (Task 4, Appendix P) excerpted from the

Advanced Placement Course Description (College Board, 1993, p. 41), the tasks utilized

in the exploratory study were the invention of the researcher. They reflect one

instructor's view of skills and understandings that might be important to assess when

studying novice Pascal programmers learning the parameter passing construct.

Owing to the exploratory nature of the study, some tasks may not have probed

participants' understanding as deeply as possible. Given, for example, the unexpected

emergence of the direct procedure-to-procedure link misconceptions, the analysis tasks

(those incorporating only one procedure) likely yielded less information regarding the

novices' intuitive conceptions than would tasks with multiple procedures. Moreover, no

tasks included variables superfluous to the parameter process; the likelihood of correct

guessing was thereby increased. Additionally, no task required the programmer to

442

232

construct actual parameter lists to match existing formal parameter lists. Attention to

these limitations provides guidance for future researchers.

While the researcher was not the instructor of the studied class, she was actively

involved in developing the laboratory exercises, the original programming assignments,

and the examination questions. There is, as a result, a congruence between the interview

tasks and the instruction that may not have existed had the researcher been less actively

involved in the instruction. Different results would likely come out of a research

condition in which this were not the case.

Finally, the researcher's bias must not be minimized. The researcher in this study

subscribes to the position of Turlde and Papert (1990) that concrete (contextual) and

formal (analytical) problem-solving approaches are both productive styles of thinking. A

researcher who regarded them as stages of development might interpret the case study

data differently.

243

233

Bibliography

AAUW. (1992). How schools shortchange girls: A study of major findings on girls and
education. American Association of University Women.

Alspaugh, C. A. (1972). Identification of some components of computer programming
aptitude. Journal for Research in Mathematics Education, 2, 89-98.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard
University Press.

Armstrong, A. M. (1989). The development of self-regulation skills through the modeling
and structuring of computer programming. Educational Technology Research and
Development, 12(2), 69-76.

Bastian, S., Frees, J., Gruber, Sr. L., Johnson, J., Landes, B., Morton, L., Rozgony, S., &
Stewart, J. (1973). Are ISU freshmen students operating at a formal level in thought
processes? Contemporary Education, 44, 358-362.

Battista, M. T. (1990). Spatial visualization and gender differences in high school
geometry. Journal for Research in Mathematics Education, 21(1), 47-60.

Battista, M. T. & Clements, D. H. (1991). Using spatial imagery in geometric reasoning.
Arithmetic Teacher, 3.2(1), 18-22.

Bauer, R., Mehrens, W. A., & Vinsonhaler, J. F. (1968). Predicting performance in a
computer programming course Educational and Psychological Measurement, 2a,
1159-1164.

Beaulieu, J. E. (1990). Using structure charts to teach problem solving and program
design in beginning Pascal. Journal of Computer Science Education, 5.(1), 13-20.

Beilin, H. (1992). Piaget's enduring contribution to developmental psychology.
Developmental Psychology, za, 191-204.

Belmont, J. M. (1989). Cognitive strategies and strategic learning: The socio-
instructional approach. American Psychologist, 44, 142-148.

Bonar, J. & Soloway, E. (1985). Preprogramming knowledge: A major source of
misconceptions in novice programmers. Human-Computer Interaction,i, i 33-161.

244

234

Booth, S. (1990). Conceptions of programming: A study of learning to program. (ERIC
Document Service No. ED 338 227).

Borman, K. M., Le Compte, M. D., & Goetz, J. P. (1986). Ethnographic and qualitative
research design and why it doesn't work. American Behavioral Scientist, 12(1), 42-57.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer
programming. International Journal of Man-Machine Studies, 2, 737-751.

Brown, C., Fell, H., Proulx, V. K., & Rasala, R. (1992). Using visual feedback and model
programs in introductory computer science. Journal of Computing in Higher
Education, 4(1), 3-26.

Bruner, J. (1960). The process of education. Cambridge, MA: Harvard University Press.

Bruner, J. (1966). Toward a theory of instruction. Cambridge, MA: Harvard University
Press.

Bruner, J. (1973). The relevance of education. New York: Norton.

Burton, J. K. & Magliaro, S. (1987-88). Computer programming and generalized
problem-solving skills: In search of direction. Computers in the Schools, 4(3-4), 63-
90.

Cafolla, R. (1987-1988). Piagetian formal operations and other cognitive correlates of
achievement in computer programming. Journal of Educational Technology Systems,
IC 45-55.

Cavaiani, T. P. (1989). Cognitive style and diagnostic skills of student programmers.
Journal of Research on Computing in Education, 21, 411-420.

Cheny, P. (1980), Cognitive style and student programming ability: An investigation.
AEDS jaumal, la, 285-291.

Choi, W. S. & Repman, J. (1993). The effects of Pascal and FORTRAN programming on
the problem-solving abilities of college students. Journal of Research on Computing in
Education, 25, 290-302.

Chung, C. (1988). Correlates of problem solving in programming. CHUK Education
Journal, 1¢, 185-190.

2 4 5

235

Clancy, M. J. & Linn, M. C. (1992a). Case studies in the classroom. SIGCSE Bulletin,
24, 220-224.

Clancy, M. J. & Linn, M. C. (1992b) Iksigning Pascal solutions: A case study approach.
New York: Freeman.

Clement, C. A., Kurland, D. M., Mawby, R., & Pea, R. D. (1986). Analogical reasoning
and computer programming. Journal of Educational Computing Research, 2, 473-485.

College Board. (1993). Advanced placement course description: Computer science. USA:
College Entrance Examination Board.

Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making
thinking visible. American Educator,11(3), 6-11, 38-46.

Cooper, D. (1985). Teaching introductory programming. New York: Norton.

Cooper, D. & Clancy, M. C. (1985). Oh! Pascal! New York: Norton..

Dalbey, J. C. & Linn, M. C. (1985). The. demands and requirements of computer
programming: A literature review. Journal of Educational Computing Research, 1.,
253-274.

Dalbey, Tournaire, F., & Linn, M. (1986). Making programming instruction
cognitively demanding: An intervention study. Journal of Research in Science
Teaching, 2a, 427-436.

Deimel, L. E., Jr., Hodges, L. F., & Moffat, D. V. (1983). Restructuring the introductorj
programming course. AEDS Monitor, 21(7-8), 11-15.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2, 57-73.

Du Boulay, B., O'Shea, T., & Monk, J. (1989). The black box inside the glass box:
Presenting computing concepts to novices. In E. Soloway & J. C. Spohrer (Eds.),
Understanding the novice programmer (pp. 431-446). Hillsdale, NJ: Lawrence
Erlbaum.

Ericsson, K. A. & Simon, H. A. (1980). Verbal reports as data. Psychological Review,
$1, 215-251.

4 b4-1

236

Ey lon, B. & Linn, M. (1988). Learning and instruction: An examination of four research
perspectives in science education. Review of Educational Research, 51, 251-301.

Fay, A. L. & Mayer, R. E. (1988). Learning LOGO: A cognitive analysis. In R. E. Mayer
(Ed.), Teaching and learning computer programming: Multiple research perspectives
(pp. 55-74). Hillsdale, NJ: Lawrence Erlbaum.

Fischer, G. B. (1986). Computer programming: A formal operational task. Paper
Presented at the 16th Annual Symposium of the Piaget Society. (ERIC Document
Service No. ED 275 316).

Foreman, K. H. (1990). Cognitive characteristics and initial acquisition of computer
programming competence. School of Education Review, 2(Spring), 55-61.

Fowler, G. C. & Glorfeld, L. W. (1981). Predicting aptitude in introductory computing: A
classification model. AEDS Journal,14, 96-109.

Furth, H. (1970). An inventory of Piage, s developmental tasks. Center for Research in
Thinking and Language, Department of Psychology, Catholic University: Washington,
D. C.

Gagné, E. D., Yekovich, C. W., & Yekovich, F. R. (1993). The cognitive psychology of
school 1earni4. New York: HarperCollins.

Geisert, G. & Dunn, R. (1991). Effective use of computers: Assignments based on
individual learning style. The Clearing House, March/April, 70-75.

Grandgenett, N. & Thompson, A. (1991). Effects of guided programming instruction on
the transfer of analogical reasoning. Journal of Educational Computing Research, 2,
293-308.

Greer, J. (1986). High school experience and computer achievement in computer science,
AEDS Journal, 12, 216-225.

Hancock, C. (1988). Context and creation in the learning of computer programming. For
the Learning of Mathematics, $(1), 18-24.

Hatch, J. A. (1985). The quantoids versus the smooshes: Struggling with methodological
rapprochement. Issues in Education, 2, 158-167.

`41'1

237

Hayek, L. M. & Stephens, L. (1989). Factors affecting computer anxiety in high school
computer science students. Journal of Computers in Mathematics and Science
Teaching, $(4), 73-76.

Hostetler, T. R. (1983). Predicting student success in an introductory programming
course. SIGCSE Bulletin,I5.(3), 40-49.

Howell, K. (1993). The experience of women in undergraduate computer science: What
does the research say? SIGCSE Bulletin, 25.(2), 1-7.

Inhelder, B. & Piaget, J. (1958). The growth of logical thinking from childhood to
adolescence. New York: Basic Books.

Inhelder, B. & Piaget, J. (1980). Procedures and structures. In D. R. Olson (Ed.), The
social foundations of language and thought. New York: Norton.

Johnson, D. W. & Johnson, R. T. (1986). Computer-assisted cooperative learning.
Educational Technology, 26(1), 12-18.

Johnson, J. A. & Johnson, G. M. (1992). Student characteristics and computer
programming competency: A correlational analysis. Journal of Studies in Technical
Careers,14(1), 33-46.

Johnson, R. E. & Keil, D. M. (1995). Introduction to computer programming using Turbo
Pascal. St. Paul: West.

Joni, S. A. & Soloway, E. (1986). But my program runs! Discourse rules for novice
programmers. Journal of Educational Computing Research, 2, 95-125.

Kagan, D. M. (1988). Learning how to program or use computers: A review of six
applied studies. Educational Technology, 21(3), 49-51.

Knudson, D. L. (1987). Teaching complexity of algorithms using concurrent real-time
graphic animation of various sorting techniques. Proceeding of the Nth Annual
Small College Computing Symposium, 217-227.

Knudson, D. (1988). Sort-Demo [Computer program]. LaCrosse, WI.

Kong, S. C. & Chung, C. M. (1989). Effects of language features, templates, and
procedural skills on problem-solving in programming. CillaEducationismmai, 27,
79-88.

2 46

238

Koubek, R. J., Le Bold, W. K., & Salvendy, G. (1985). Predicting performancc in
computer programming courses. Behaviour andinformation Technology, 4, 113-129.

Kuhn, D., Ho, V., & Adams, C. (1979). Formal reasoning among pre- and late
adolescents. Child Development, 5.Q, 1128-1135.

Kull, J. A. (1988). Children learning Logo: A collaborative, qualitative study in the first
grade. Journal of Research in Childhood Education, a, 55-75.

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A study of the
development of programming ability and thinking skills in high school students.
Journal of Educational Computing Research, 2, 429-458.

Kurtz, B. L. (1980). Investigating the relationship between the development of abstract
reasoning and performance in an introductory programming class. ACM SIGCSE
Bnligin, 110-117.

Kwan, S. K., Trauth, E. M., and Driehaus, K. C. (1985). Differences and computing:
Students' assessment of societal influences. Education and Computing, 1, 187-194.

Lawson, A. E. (1985). A review of research on formal erasing and science teaching.
Journal of Research in Science Teaching, 22, 569-617.

Lawson, A. E., Mc Elrath, C. B., Burton, M. S., James, B. D., Doyle, R. P., Woodward,
S. L., Kellerman, L., & Snyder, J. D. (1991). Hypothetico-deductive reasoning skill
and concept acquisition: Testing a constructivist hypothesis. Journal of Research in
5siQnsig_Igaching, za, 953-970.

Leeper, R. R. & Silver, J. L. (1982). Predicting success in a first programming course.
SIGCSE Bulletin, 14, 147-150.

Leestma, S. & Nyhoff, L. (1993). Turbo Pascal: Programming and problem solving (2nd
ed.). New York: MacMillan.

Lernerise, T. (1993). Piaget, Vigotsky, & Logo. The Computing Teacher, 22(7), 24-28.

Lincoln, V. S. & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage
Productions.

Linn, M. C. (1985). The cognitive consequences of programming instruction in
classrooms. Educational Researcher, 14 (5), 14-16, 25-29.

243

239

Linn, M. C. (1992). How can hypermedia tools help teach programming? Learning and
Instructim 2, 119-139.

Linn, M. C. & Clancy, M. J. (1990). Designing instruction to take advantage of recent
advances in understanding cognition. Academic Computing, April, 20-23, 35-41.

Linn, M. C. & Clancy, M. J. (1992). The case.for case studies of programming problems.
Communications of the ACM, 15., 121-132.

Linn, M. C. & Dalbey, J. (1985). Cognitive consequences of programming instruction:
Instruction, access, and ability. Educational Psychologist, 211, 191-206.

Lirm, M. C. & Songer, N. B. (1991). Cognitive and conceptual change during
adolescence. American Journal of Education, 22, 379-417.

Linn, M. C., Sloane, K. D., & Clancy, M. J. (1987). Ideal and actual outcomes from
precollege Pascal instruction. Journal of Research in Science Teaching, 24, 467-490.

Lockheed, M. E. & Mandinach, E. B. (1986). Trends in educational computing and the
changing focus of instruction. Educational Researcher,(5), 21-26.

Madison, S. & Gau, G. E. (1993). Formal thinking and computing students. Proceedings
of the Midwest Computer Conference, 55-62.

Mandinach, E. B. & Linn, M. C. (1986). The cognitive effects of computer learning
environments. Journal of Educational Computing Research, 2, 411-427.

Marchionini, G. (1985). Teaching programming: A developmental approach. The
Computing Teacher,12(9), 12-15.

Mawhinney, C. H., Cale, E. G., Jr., & Callaghan, D. R. (1990). Freshmen expectations of
information systems careers versus their own careers. Clialdilgatalivaim, 2(3), 2-8.

Mayer, R. E. (1982). Diagnosis and remediation of computer programming skill for
creative problem solving. Volume 1: Description of research methods and results.
Final Report. Santa Barbara, California: University of California. (ERIC Document
Services No. ED 230 199).

Mayer, R. E. (1985). Learning in complex domains. In G. H. Bower (Ed), The
gsyghQ1Dgy jaigarni4gAndiuthyatim (pp. 89-130). Orlando, FL: Academic Press.

0

240

Mayer, R. E. (1988). Teaching and learning computer programming: Multiple research
perspectives. Hillsdale, NJ: Lawrence Erlbaum.

Mayer, R. E. (1989). The psychology of how novices learn computer programming. In E.
Soloway & J. C. Spohrer (Eds.), Understanding the novice programmer (pp. 129-159).
Hillsdale, NJ: Lawrence FrIbaum.

Mazlak, L. J. (1980). Identifying potential to acquire programming skill.
Communications of the ACM, 22(1), 14-17.

McGrath, D. (1990). Using mental models to teach programming to beginners. The
Computing Teacher, 12(9), 11-14.

McIntyre, P. (1991). Teaching stnictured programming in the secondary schools.
Malabar, FL: Krieger.

McKeithen, K. B., Reitman, J. S., Reuter, H. H., & Hirtle, S. C. (1981). Knowledge
organization and skill differences in computer programmers. Cognitive Psychology,
13., 307-325.

Mercer, R. (1992). Problem solving And program implesnentation using Turbo Pascal.
Wilsonville, OR: Franklin Beedle.

Merriam, S. H. (1988). Case study research in education: A qualitative approach. San
Francisco: Jossey-Bass.

Merritt, S. M. (1992). ACM model high school computer science curriculum. ACM
SIGCSE Bulletin, 24(1), 39. (Abstract).

Milakofsky, L. & Patterson, II. 0. (1979). Chemical education and Piaget. Journal of
Chemical Education, 51, 87-90.

Mitchell, A. & Lawson, E. (1988). Predicting genetics achievement in nonmajors in
college biology. Journal of Research in Science Teaching, 254 23-37.

Multiscope, Inc. (1991). Multiscope Debugger for Windows [Computer program].
Mountain View, CA.

Nachmias, R., Mioduser, D., & Chen, D. (1986). Variables: An obstacle to children
leaning computer programming. Paper presented at the AERA. (ERIC Document
Services No. ED 290 459).

241

Nance, D. W. & Naps, T. L. (1989). Introduction to computer science: Programming,
problem solving., and data structures. St. Paul: West Publishing.

Naps, T. L. (1989). Design of a completely general algorithm visualization system.
Proceedings of the 22,nd Annual Small College Computing Symposium, 233-241.

Naps, T. L. (1990a). Algorithm visualization in computer science laboratories. ACL1
SIGCSE Bulletin, 22, 105-110.

Naps, T. L. (1990b). Generalized Algorithm Illustration through Graphical Software
(GAIGS) [Computer program]. Appleton, WI: Lawrence University.

Neuman, D. B. (1993). Experiencing elementary science. Belmont, CA: Wadsworth.

Newstead, P. R. (1975). Grade and ability predictions in an introductory programming
course. SIGCSE Bulletin, June, 87-91.

Norris, C., Jackson, L., & Poirot, J. (1992). The effect of computer science instruction on
critical thinking and mental alertness. Journal of Research on Computing in
Education, 21 329-337.

Oman, P. W. (1986). Identifying students' characteristics influenciag success in
introductory computer science courses. AEPS Journal, 12, 226-233.

Papert, S. (1980). Mindstornas. New York: Basic Books.

Patterson, H. 0. & Milakofsky, L. A. (1980). A paper-and-pencil inventory for the
assessment of Piaget's tasks. Applied Psychological Measurement, 341-353.

Pea, R. D. (1985). Integrating human and computer intelligence. In E. L. Klein (Ed.),
Children and computers: New directions fcir child development. (pp. 75-95). San
Francisco: Jossey-Bass.

Pea, R. D. (1986). Language-independent conceptual "bugs" in novice programming.
kurnal of Educational Computing Research, 2, 25-36.

Pea, R. D. (1983). On the cognitive prerequisites of learning computer programming.
(Tech. Rep. No. 52). New York: Bank Street College of Education Center for Childreri
and Technology.

Pea, R. D., Soloway, E., & Spohrer, J. C. (1987). The buggy path to the development of
programming expertise. Focu I .01 1* I 1./ I St 2(1), 5-30.

242

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of
learning in novice programmers. Journal of Educational Computing Research, 2, 37-
55.

Perkins, D. N., Schwartz, S., & Simmons, R. (1988). Instructional strategies for the
problems of novice programmers. In R. E. Mayer (Ed.), Teaching and learning
computer programming: Multiple research perspectives (pp. 153-178). Hillsdale, NJ:
Lawrence Erlbaum.

Perkins, D. N. & Simmons, R. (1988). Patterns of misunderstanding: An integrative
model for science, math, and programming. Review of Educational Research, 52., 303-
326.

Putnam, R. T., Sleeman, D., Baxter, J. A., & Kuspa, L. K. (1986). A summary of
misconceptions of high school basic programmers. Journal of EducationaL Computing
Research, 2, 459-472.

Rogers, J. (1982). Teaching beginners to program: Some cognitive considerations. (ERIC
Document Service No. ED 219 880).

Sack, W., Soloway, E., & Weingrad, P. (1992). Re: Writing cartesian student models.
Journal of Artificial Intelligence in Education, a, 381-399.

Samurcay, R. (1985). Learning programming: An analysis of looping strategies used by
beginning students. For the Learning of Mathematics, 5, 37-43.

Samurcay, R. (1989). The concept of variable in programming: Its meaning and use in
problem-solving by novice programmers. In E. Soloway & J. C. Spohrer (Eds.),
Understanding the novice programmer (pp. 161-178). Hillsdale, NJ: Lawrence
Erlbaum.

Schneiderman, B. (1977). Teaching programming: A spiral approach to syntax and
semantics. Computers and Education, 1, 193-197.

Shaklee, H. (1979). Bounded rationality and cognitive development: Upper limits on
growth? Cognitive Psychology,11, 327-345.

Sharma, S. (1986-87). Learners' cognitive styles and psychological types as intervening
variables influencing performance in computer science courses. Journal of Educational
Technology Systems, 15_, 391-399.

243

Sheil, B. A. (1981). The psychological study of programming. Compating..Suaexa,
101-120.

Simon, J. (1987). Vygotsky and the Vygotskians. American.Journal of Education, 21
609-613.

Sleeman, D., Putnam, R. T., Baxter, J., & Kuspa, L. (1988). An introductory Pascal class:
A case study of errors. Journal of Educational Computing Research, 4., 5-23.

Sloane, K. D. & Linn, M. C. (1988). Instructional conditions in Pascal programming
classes. In R. E. Mayer (Ed.), Teaching and learning computer programming: Multiple
research perspectives (pp. 207-235). Hillsdale, NJ: Lawrence Erlbaum.

Smith, J. K. & Heshusius, L. (1986). Closing down the conversation: The end of the
quantitative-qualitative debate. Educational Researcher,I1(1), 4-12.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and
explanations. Communications of the ACM, 22, 850-858.

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, n, 595-609.

Soloway, E. & Spohrer, J. C. (1989). Studying the novice programmer. Hillsdale, NJ:
Lawrence Erlbaum.

Spohrer, J. C. & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct?
Communications of the ACM, 22, 624-632.

Stephens, L. J., Wileman, S., & Knovalina, J. (1981). Group differences in computer
science aptitude. ALDs Journal, 14, 84-95.

Stevens, D. J. (1983). Cognitive processes and success of students in instructional
computer courses. AEDS Journa1,16, 228-233.

Swan, K. (1993). Domain knowledge, cognitive styles, and problem solving: A
qualitative study of student approaches to Logo programming. Journal of Computing
in Childhood Education, 4, 153-182.

Taylor, R. P. & Cunniff, N. (1988). Moving computing and education beyond rhetoric.
Teachers College Record, a2, 360-372.

6 54

244

Tharp, R. G. & Gallimore, R. (1989). Rousing schools to life. American Educator, 12(2),
20-25, 46-52.

Tuovinen, J. E. & Hill, D. M. (1992). Towards better strategies for thinking and
programming. School Science and Mathematics, 22,, 206-211.

Turk le, S. (1988). Computational reticence: Why women fear the intimate machine. In C.
Kramarae (Ed.), Technology and women's voices: Keeping in touch. New York:
Rout ledge and Kegan Paul.

Turk le, S. & Papert, S. (1990). Epistemological pluralism: Styles and cultures within the
computer culture. Signs: Journal of Women in Culture and Society,16, 128-148.

Van Merrienboer, J. J. G. (1988). Relationship between cognitive learning style and
achievement in an introductory computer programming course. Journal of Research on
Computing in Education, 21,181-186.

Van Merrienboer, J. J. G. & De Crook, M. B. M. (1992). Strategies for computer-based
programming instruction: Program completion vs program generation. Journal of
Educational Computing Research, 365-394.

Van Merrienboer, J. J. G. & Krammer, H. P. (1987). Instructional strategies and tactics
for the design of introductory computer programming courses in high school.
Instructional Science, h, 251-285.

Van Merrienboer, J. J. G. & Paas, F. G. W. C. (1990). Automation and schema
acquisition in learning elementary computer programming: Implications for the design
of practice. Computers in Human Behavior, 273-289.

Webb, N. M. & Lewis, S. (1988). The social context of learning computer programming.
In R. E. Mayer (Ed.), Teaching and learning computer programming: Multiple
research perspectives (pp. 179-206). Hillsdale, NJ: Lawrence Erlbaum.

Wertsch, J. & Tulviste, P. (1992). L. S. Vygotsky and contemporary developmental
psychology. Developmental Psychology, za, 548-557.

Wileman, S., Konvalina, J., & Stephens, L. J. (1981). Factors influencing success in
beginning computer science courses. Journal ofEducational Research, 223-226.

Wresch, W. (1988). Cognitive barriers to initial programming instruction: A survey of
research. Paper presented at National Educational Computing Conference.

255

245

Zirkler, D. & Brownell, G. (1991). Analogical reasoning: A cognitive consequence of
programming? Computers in the Schoola, 1 135-145.

256

246

Appendix A

Instructor Informed Consent

As an assistant professor in the Department of Mathematics and Computing at the
University of Wisconsin-Stevens Point. I am conducting a study of Pascal students'
understanding of the construct of parameter passing, one of the pivotal concepts taught in
CIS110. I would appreciate your participation in the study, as it may inform our efforts
to improve the way we teach the construct.

Upon your consent and the students' consent, the students in section two of CIS110
which you teach will be given an Inventory of Piaget's Developmental Task (IPDT), a
novel concepts task, and a background survey to complete. They take about 30 minutes
total to complete and will be administered during the class. The students will be asked to
retake the IPDT once more at the end of the semester. It will again be administered
during class.

In addition, demographic and background information will be collected from student
records. I will use the information to investigate possible relationships between these
variables and the students' understanding of the construct of parameter passing.

I will observe selected sessions of the class during the semester and may videotape some
activities.

Some students will be asked to participate in a series of three interviews as the class
studies the construct of parameter passing. The interview questions will focus on the
students' computing and programming background and understanding of the construct of
parameter passing. The interviews will be audio tape recorded and transcribed. It is
estimated that the interviews will last from 20-30 minutes. The interviews will be
conducted outside of class. Interview candidates will be chosen to provide a broad range
of prior computing experience and backgrounds.

I will also ask to interview you three times during the semester. The first interview will
focus on your background, the second on the CIS110 class and the parameter construct in
particular, and the third will ask you to reflect on those portions of the class.

There are no foreseeable risks or discomforts associated with this study, other than the
aforementioned inconvenience of time for those selected to be interviewed. Neither you
nor the students will be subjected to any sensitive questioning, and there are no costs
involved on the students' or your part. Students selected for thc interviews may have the
advantage of additional one-on-one interaction with a CIS110 instructor. Interviewees
will also be excused from one two-hour parameter lab if they choose.

257

247

Safeguards will be used to assure your and your students' anonymity and the
confidentiality of the data collected. No names will be associated with the recordings,
transcriptions, or other data. All data will be kept in a locked office in the Science
Building. Statistical results will be reported in the aggregate. If any individual quotes or
descriptions are published, they will be disclosed in such a manner as to ensure
anonymity and confidentiality, using either general descriptions (e.g., One female student
said, "....) or pseudonyms. Results of this study will be made available to the University
of Wisconsin-Stevens Point and other associations/publications interested in computer
programming instruction.

Your participation and your students' participation in the study are completely voluntary.
A decision not to participate will involve no penalty or prejudice on the part of the
University of Wisconsin-Stevens Point. Students who choose are free to discontinue
participation without penalty or prejudice.

Once the study is completed, I will be glad to share the results with you. In the
meantime, if you have any questions please contact:

Ms. Sandra Madison, Assistant Professor of Computing
Department of Mathematics and Computing
University of Wisconsin-Stevens Point
(715) 346-4612
email: smadison@uwspmail.uwsp.edu

If you have any complaints about your treatment as a participant in this study, please call
or write either:

Dr. Beth Forman, Consultant Dr. La Rene Tufts
Institutional Review Board for the

Protection of Human Subjects
Institutional Review Board for the

Protection of Human Subjects
Environmental Health and Safety University of Wisconsin-Stevens Point
University of Wisconsin-Milwaukee Stevens Point, WI 54481
P.O. Box 413 (715) 346-4511
Milwaukee, Wisconsin 53201
(414) 229-6016

...

253

248

Although Dr. Forman or Dr. Tufts will ask your name, all complaints will be kept in
confidence.

Upon consent, please complete the following:

I understand the components of this study, as outlined in this letter, and agree to
participate. I understand that participation in this study is strictly voluntary.

Name Date

This research has been approved by the University of Wisconsin-Stevens Point and the
University of Wisconsin-Milwaukee Institutional Review Boards for the Protection of
Human Subjects for a one-year period.

259

249

Appendix B

Participant Informed Consent

As an assistant professor in the Department of Mathematics and Computing at the
University of Wisconsin-Stevens Point. I am conducting a study of Pascal students'
understanding of the construct of parameter passing, one of the pivotal concepts taught in
CIS110. I would appreciate your participation in the study, as it may inform our efforts
to improve the way we teach the construct.

Upon your consent, you will be given an Inventory of Piaget's Developmental Task
(IPDT) and a background survey to complete. They take about 30 minutes total to
complete and will be administered during the next class.

In addition, demographic and background information will be collected from the
backgrotmd survey. I will use the information to investigate possible relationships
between these variables and your understanding of the constnict of parameter passing.

I will observe selected sessions of the class during the semester and may videotape some
activities.

Some of you will be asked to participate in a series of three interviews as you study the
construct of parameter passing. The interview questions will focus on your computing
and programming background and your understanding of the construct of parameter
passing. The interviews will be audio tape recorded and transcribed. It is estimated that
the interviews will last from 20-30 minutes. The interviews will be conducted outside of
class, but every effort will be made to schedule them at your convenience. Interview
candidates will be chosen to provide a broad range of prior computing experience and
backgrounds.

There are no foreseeable risks or discomforts associated with this study, other than the
aforementioned inconvenience of time for those selected to be interviewed. You will not
be subjected to any sensitive questioning, and there are no costs involved on your part.
Students selected for the interviews may have the advantage of additional one-on-one
interaction with a CIS110 instructor. Interviewees will also be excused from one two-
hour parameter lab if they choose.

Safeguards will be used to assure your anonymity and the confidentiality of the data
collected. No names will be associated with the recordings, transcriptions, or other data.
All data will be kept in a locked office in the Science Building. Statistical results will be
reported in the aggregate. If any individual quotes or descriptions are published, they
will be disclosed in such a manner as to ensure anonymity and confidentiality, using

250

either general ckseriptions (e.g., One female student said, "....) or pseudonyms. Results
of this study will be made available to the University of Wisconsin-Stevens Point and
other associations/publications interested in computer programming instruction.

Participation in the study is completely voluntary. A decision not to participate will
involve no penalty or prejudice on the part of the University of Wisconsin-Stevens Point.
If you choose to participate, you are free to discontinue participation without penalty or
prejudice.

Once the study is completed, I will be glad to share the results with you. In the
meantime, if you have any questions please contact:

Ms. Sandra Madison, Assistant Professor of Computing
Department of Mathehiatics and Computing
University of Wisconsin-Stevens Point
(715) 346-4612
email: smadison@uwspmail.uwsp.edu

If you have any complaints about your treatment as a participant in this study, please call
or write either:

Dr. Berri Forman, Consultant Dr. La Rene Tufts
Institutional Review Board for the

Protection of Human Subjects
Institutional Review Board for the

Protection of Human Subjects
Environmental Health and Safety University of Wisconsin-Stevens Point
University of Wisconsin-Milwaukee Stevens Point, WI 54481
P.O. Box 413 (715) 346-4511
Milwaukee, Wisconsin 53201
(414) 229-6016

251

Although Dr. Forman or Dr. Tufts will ask your name, all complaints will be kept in
coffidence.

Upon consent, please complete the following:

I understand the components of this study, as outlined in this letter, and agree to
participate. I understand that participation in this study is strictly voluntary.

Name Date

This research has been approved by the University of Wisconsin-Stevens Point and the
University of Wisconsin-Milwaukee Institutional Review Boards for the Protection of
Human Subjects for a one-year period.

4 62

252

Appendix C

Background Survey

1. What is your gender?I

,
a. male
b. female

2. Whicn category best describes your
age?

a. under 21
b. 21-25
c. 26-30
d. 31-40
e. over 40

3. Which phrase best describes the extent
of your computer experience before
taking this course?

a. never used a computer
b. used a computer a few times
c. used a computer occasionally
d. used a computer extensively

4. Which phrase best describes the nature
of your computer experience before
taking this course?

..

a. none
b. mostly game playing
c. mostly computer aided instruction in

other classes (e.g. tutorial, drill)
d. mostly word processing, spreadsheets,

or other application programs
e. mostly programming

5. Which phrase best describes your use
of the campus computing facilities,
excluding in-class laboratory activities?

a. do not use
b. use occasionally
c. use regularly
d. use extensively
e. use exclusively

6. Excluding the student computing labs,
how much access do you have to a
personal computer?

a. none
b. limited
c. regular
d. extensive
e. unlimited

7. If you use the student computing labs,
rate the labs in terms of access.

a. almost always available when I need
them.

b. usually available without waiting
c. frequently wait for a work station
d. almost always have to wait for a work

station
e. times when lab facilities are available

are not convenient

4 b
a";

253

8. Did you complete a computer
awareness or applications course in
high school?

a. yes
b. no
c. uncertain

9. Did you complete a computer
awareness or applications class (e.g.,
CIS101, CIS102 [not programming])
here or at another post-secondary
institution?

a. yes
b. no
c. uncertain

10.Have you completed a one-semester
programming course prior to this
semester?

a. yes
b no
c. uncertain

11.If you completed a one-semester
programming course, was the primary
language Pascal?

a. yes
b. no
c. uncertain

12.How much have you used a computer
in an employment situation?

a. not at all
b. rarely
c. occasionally
d. regularly
e. extensively

13.In which subject do you intend to
major?

a. Computer Information Systems
b. Business
c. Mathematics
d. Undecided
e. Other

14.In which subject do you intend to
minor?

a. Computer Information Systems
b. Business
c. Mathematics
d. Undecided
e. Other

15.Which phrase best describes your
reason for taking CIS110?

a. required
b. recommended by advisor or a friend
c. general interest in computing
d. undecided about my future and

exploring different areas
e. other reasons (e.g., scheduling,

reputation as an easy "A", etc.)
16.Do you plan to take CIS 111? a. yes

b. no
c. undecided

264

254

17.Which phrase best describes your
career experience?

a. training for my first career
b. training for a career change
c. considering or training for

advancement
in my present career

18.Which phrase best describes your
prediction about your performance in
CIS 110?

a. confident that I will be successful
b. hope that I will be successful but have

some concerns
c. do not expect to be very successful, but

expect to pass
d. concerned that I will not pass the

course
e. cannot predict

19.Which phrase best reflects your
feelings about mathematics?

a. I really enjoy it and do well.
b. I do not really enjoy it but I do well.
c. I enjoy it but do not do all that well.
d. I do not enjoy it and I do not do well.
e. Mathematics evokes no particular

reaction for me, one way or another.
20.Rate the job potential as you see it for

people entering the computing field
compued to the general employment
market.

a. much better opportunities
b. somewhat better opportunities
c. no difference
d. somewhat poorer opportunities
e. much poorer opportunities ,

21.Rate the job potential as you see it for
yourself in the computing field.

a. good potential fbr me
b. some potential for me
c. little or no potential although I have

some interest in the computing area
d. no potential as my career goals are in

another area ,

e. undecided

Appendix D

Exceipt from Inventory of Piaget's Developmental Tasks

[example

We have many different blocks like these.

00AC106.0 01113 A
11114 111111111

AOC
These blocks go in this circle. These blocks go In this circle.

We put the circles together like this.

Which block belongs In the middle?

3

.
b 6

,00

Here are two circles.

Which block belongs in the middle?

A

Here are two circles.

Which block belongs in this circle? -1

0
A 0

26i

53

54

256

Here are two circles. i A \
/

(A ? I
\ 0 /\ /.%...,........

Which blocks belong in the middle?

0 14
A B

Here are three circles.

Which block belongs in the middle?

A

A A 3

268

55

56

257

Here are 4 wires.

Which is the shortest?

A

c AAA/

Here is a long piece of barbed wire.

NiCli K K K D(K

We bend it to make figure 1.

gigmr-x Kg's
Then bend the same wire to make figure 2.

Then bend the same wire to make figure 3.

3.
$ 4-4K-11F .

Which figure is the largest or are they ail the same?

2 6 3

59

60

No. 1 largest

A

No. 2 largest

No. 3 largest

all the same

258

We put these balls into a box.

Which balls do you guess you will take out 1st and 2nd ?

1st 2nd

0

A

1st 2nd

0 0 70

1st 2nd

We put these balls into a box. 0 00

Which balls do you guess you will take out 1st, 2nd, and Srd?

1St 2nd 3rd

I@ 0

A

1st 2nd 3rd

6 70

1st 2nd

0 0

711

1st 2nd 3rd

00 0

259

260

We put these balls into a box. 0 0

Which balls do you guess you will take out 1st 2nd and 3rd?

1st 2nd 3rd

0

A

1st 2nd 3rd

0
1st 2nd 3rd

0 0

72

1st 2nd 3 rd

0

2 '7

261

Appendix E

Laboratories 7 and 9
CIS 110

Laboratory 7

Objectives: To develop skill passing simple parameters
To write an original program that uses a procedure and passes parameters.

Download LAB7A.PAS and LAB7B.PAS from the CIS 110 directory using Courseware
Download. You may work with a partner for this part of the lab, but you are not required
to do so. Turn the remainder of the program in today if you finish, otherwise next class.

2. Complete the programs following the instructions in the comments included in the
program. Test the programs to ensure they work correctly. Turn the program listings nnd
printscreens which demonstrate you tested the programs.

3. Write a program TestFlipper that will call a procedure Flipper. Flipper will exchange
the values of the mainline's two variables which will be obtained interactively. The
main will display the contents of its variables before the procedure call and after the
procedure call. Be sure the WriteLns are explicit enough and complete enough to
demonstrate that the parameters were passed correctly (e.g., WriteLn (First: 6, Second:
6); would be insufficient.). Turn the program listings and printscreens which
demonstrate you tested the programs.

Turn in: Grading Sheet, name side up
Program Listings
PrintScreens of executions

stapled in order.

272

Grading Sheet
LAB 7

Name(s) Section Score

1. LAB7A.PAS
Correct Formal Parameters 5 points

Correct Actual Parameters 5 points

Proper use of value and variable parameters 5 points

2. LAB7B.PAS
Correct Formal Parameters 5 points

Correct Actual Parameters 5 points

Proper use of value and variable parameters 5 points

Correct Calculations in PROCEDURE 5 points

3. Flipper

Appropriate Parameter Passing 5 points

Correct results from the procedure 5 points

Driver program tests parameter correctness 5 points

Total 50 points

r2 7.3

262

263

PROGRAM Lab7a;
USES

Crt, Printer;

* The following procedure returns the
* average of three values passed to it and *

* informs the calling module of the result *

* Complete the code by providing both the
* FORMAL and ACTUAL PARAMETER LISTS
* You may NOT change any other aspect of
* the code in either the PROCEDURE or the
* Main module

PROCEDURE AverageThree(
BEGIN

Numl := Numl + Num2;
Numl := Numl + Num3;
Mean := Numl / 3;

END;

VAR
First,
Second,
Third : Integer;
Average : Real;

) ;

{END PROCEDURE AverageThree}

BEGIN {BEGIN Main}
Write('Enter an integer variable: ');
ReadLn(First);
Write('Enter another integer variable: ');
ReadLn(Second);
Write('Enter a third integer variable: ');
ReadLn(Third);
WriteLn('Before PROCEDURE call the variables are: ',First:6,

Second:6, ' and ', Third:6);

AverageThree ();

WriteLn('After PROCEDURE call the variables are: ',First:6, Second:6,
' and ', Third:6);

WriteLn('Their average is: ', Average:8:2);
END.

4 74

PROGRAM Lab7B;
USES

Crt, Printer;

264

* The following procedure returns a user
* entered percent as a decimal value

* Cmplete the code by providing both the
* FORMAL parameter list and any necessary
* local variables
* You may NOT change any other aspect of
* the code in the PROCEDURE

PROCEDURE GetPercent() ;

BEGIN
Write('Please enter the percent as a whole number: ');
ReadLn(Whole);
Percent := Whole / 100;

END; {END PROCEDURE GetPercentl

* For PROCEDURE ProvideResults, complete
* parameter list as needed. Account for
* local variables and do any necessary
* calculations to prcduce reasonable results*
* DO NOT change any WriteLn statement--you *

* may add statements before or after any
* existing WriteLn

PROCEDURE ProvideResults(

BEGIN
WriteLn
WriteLn
WriteLn

StateBucks
WriteLn
WriteLn

('Salary before Taxes:
('Federal tax rate of
('State tax rate of ',
:8:2);

('City tax rate of ',

('Leaving a take hc",e

) ;

', Before:8);
FedRate:4:2, = $', FedBucks:8:2);

StateRate:4:2,

CityRate:4:2, = $'. CityBucks:8:2);
pay of: $', NotEnough:8:2);

END; (END PROCEDURE ProvideResults)

6 75

265

{

* In the Main, provide the appropriate
* parameters for the PROCEDURE calls.
* You may also need to provide some
* additional input code
* Change nothing else in the Main

VAR
FedTax,
StateTax,
CityTax : Real;
GrossWage : Integer;

BEGIN
ClrScr;

{BEGIN Main}

WriteLn('Enter the t of Wage paid as Federal Tax');
GetPercent();

WriteLn('Enter the t of Wage paid as StateTax');
GetPercent();

WriteLn('Enter the t of Wage paid as City Tax');
GetPercent() ;

Write('Enter Salary before taxes: $');
ReadLn(GrossWage);

ProvideResults()

END.

2 76

266

Name

Appendix E continued

CIS 110
Laboratory 9Instructions

November 18/21

Section Score

1. Download LAB9A.PAS and LAB9B.PAS.from the CIS 110 directory using
Courseware Download.

2. Complete LAB9A.PAS and test the program to ensure it does what it advertises. Turn
the program listing and printscreens which demonstrate you tested all paths of the
program. You must not alter the existing code.

3. Complete LAB9B.PAS and test the program to ensure it does what it advertises. Turn
the program listing and printscreens which demonstrate you tested all paths of the
program. You must not alter the existing code.

Turn in a disk with your hard copy material. (In a correctly assembled folder)

Uses Boolean operator correctly 3

Uses Procedures correctly 12

Produces correct output 10

Tests program thoroughly 5

2 7 7

LAB9a Lab9b

-

267

Author:
Course! CIS 110
Section:
Date Due:
instructor:

* This program reverses a number and displays the reversed number
Ex: 354 --> 453.(1000 -->1 is acceptable-need not print leading O's)

PROGRAM ReverseNumber;
USES

Crt;

PROCEDURE : GetInteger *

Purpose : Get an integer number to reverse
0 < Number <= 9999

*)

PROCEDURE GetInteger

BEGIN
Write ('Enter a positive integer with value less than 10,000 ==>
ReadLn (Number);

{keep entering number until it is greater than 0 and <= 9999)

BEGIN
Writeln ('Number must be positive and less than 10,000');
ReadLn (Number);

END;

{endwhile}
Writeln:

END; (procedure GetInteger)

4 78

268

PROCEDURE : TurnAround
Purpose : Reverses the program's variables

it

PROCEDURE TurnAround(Forward: Integer;
VAR Backward: Integer);

t**** *****

BEGIN
Backward := 0; {Note (Backward*10) causes overflow when }
WHILE Forward > 0 DO {Number is 5 digits.

}

BEGIN
Backward := (Backward*10) + (Forward MOD 10);
Forward := Forward DIV 10

END;

{endwhile}
END; {procedure Turnaround)

PROCEDURE : PrintReverse
Purpose : Prints the number and its reverse

PROCEDURE PrintReverse (Number,
Reverse: Integer);

BEGIN
Writeln ('Original number =====> ', Number:5);
Writeln ('Its reverse =========> Reverse:5);

END; {procedure PrintReverse}

Main
VAR

Number,
Reverse: Integer;

BEGIN
{Procedure call to get a valid integer)
{Reverse the number)
{Print the number and its reverses)

END.

2'79

269

Author:
Course: CIS 110
Section:
Date Due:
Instructor:

*This program counts the number of even and odd numbers and reports
* the count and percentage of each.

}

PROGRAM CountEvensAndOdds;
USES

Crt, Printer;

CONST
Sentinel = 0;

TYPE
String4 = STRING [4];

PROCEDURE : InitializeCounters
Purpose : Initialize the program's variables

PROCEDURE InitializeCounters (

BEGIN
{code here to initialize the NECESSARY Counters}

END;

PROCEDURE : CalculatePercentage
Purpose : Calculate percentages

PROCEDURE CalculatePercentage (

BEGIN
Percentage := Portion / TotalCount

END; {CalculatePercentage}

U

270

{

PROCEDURE : DisplayPercentage *

* Purpose : Display the results of the calculations *
*

PROCEDURE DisplayPercentage (Message:String4;
TotalCount,
PartialCount: Integer;
Percent: Real;

BEGIN
WriteLn ('Of the ', TotalCount, ' numbers entered, ', PartialCount,

' or ', Percent * 100:3:0, 't were ', Message);

END; {DisplayPercentage}

4 It

PROCEDURE :

Purpose :to input valid numbers. Reject negative and
numbers over 1000

PROCEDURE GetInput (

BEGIN
Write ('Please enter a whole number. Zero to quit ==> ');
ReadLn (WholeNumber);
{add validation code here}

END; {GetInput}

PROCEDURE :WriteUserInstructions
Purpose :Tell the user about the program

ft

PROCEDURE WriteUserInstructions;
BEGIN

ClrScr;
Writeln ('This program counts the number of odd and');
Writeln ('even numbers and calculates the percentage of the');
WriteLn ('total of each category. Output remains on the screen.');
Writeln;

END; {WriteUserInstructions}

VAR
Number,
OddCount,
EvenCount,
Count: integer;
OddPercent,
EvenPercent: Real;

271

BEGIN
{Display some user instructions here.)
(Initialize the variables that need to be initialized here)
{input a valid number}

WHILE Number <> Sentinel DO
BEGIN
(accumulate the appropriate counters)
{input another valid number)

END;
{endkihile}
IF Count <> 0 THEN
BEGIN

{Calculate the percentage of even numbers}
{Calculate the percentage of odd numbers}
{Display the count and percentage of even numberscall follows}
DisplayPercentage ('event, Count, EvenCount, EvenPercent);
{Display the count and percentage of odd numbers)

END (THEN)
ELSE

WriteLn ('No numbers entered');
(endif)
WriteLn ('Thank you for using my number programP)

END.

262

272

Appendix F

Banner and Revised Bawler Assirmments

The Banner

Objectives:
1. Using programmer-wiitten procedures without parameters.
2. Preparing a structure (hierarchy) chart.
3. Producing aesthetically pleasing output.

Tasks:
Prepare a hierarchy (structure) chart showing the relationship of the various program
modules.

Write a properly documented program (using the programming style introduced in class
and in the coding standards) to produce a one-word banner. You may choose any five-
letter word (minimum) you choose for your banner with one minor consideration--at least
three of the letters must be the same. Examples are `MOMMY,' rarer,"pepper,'
`sassy,"poppy,' or 'MISSISSIPPI.'

Using any keyboard characters you choose (remember that one of the objectives is to
produce aesthetically pleasing output), create a banner in this general form.

etc.

cm4 3

273

Write a separate procedure for each block letter. The procedure for "L" might, for
instance, be called PrintL.

Include some instructions for the user about the purpose of the program. Put these
instructions in a programmer-written procedure. WelcomeUser or WriteUserInstructions
or Explain Program are a few possible procedure names. These instructions always
remain on the screen.

Direct the output from the original version of your program to the screen. Include the
source code listing of this version in your folder.

Be sure the program includes some comments for the person who reads the Pascal code.

Onc(you are reasonably satisfied with the appearance of your banner, alter the program
to direct the output (banner only) to the printer. Do not direct your output to the printer
until you are confident it is working correctly. By doing so, you will save yourself time
and effort, conserve paper, and show consideration for your fellow students in the
computer lab. Recompile your program and rerun it.

284

274

CIS 110 Programming Assignment 6
The Banner

Date Due: Name: Section Score

Assemble the required materials stapled in order in a properly labeled folder.
1. Grading Sheet
2. Hierarchy/Structure Chart
3. Source code listing with output directed to the screen
4. Source code listing with output directed to the printer
5. Output (banner)

Grading Sheet (this side up)

1. Correct folder, contents, order (required for acceptance) 0 pts.

2. Hierarchy (structure) chart 10 pts.

3. Source code style (follows coding standards and assignment
specifications--instructions, comments, etc.) 5 pts.

4. Uses procedures correctly 15 pts.

5. Computer output
Appropriate user instructions 5 pts.

Produces correct output 10 pts.

Aesthetics (banner appearance) 5 pts.

Total Possible 50 pts.

Appendix F continued

CIS 110 Programming Bonus Assignment
The Banner Revised

Date Due: Name: Section Score
Objectives:
1. Using programmer-written procedures with value parameters.
2. Evaluating whether an existing program is worth modifying.

275

Task: Modify the program you created for Assignment 6 (or start over if you feel that is
easier) to allow the main line (main module, executable portion, statement portion, boss)
to determine the character each module will use in forming its block letter and pass that
character to the module as a parameter. For the repeated letter in the banner, the mainline
module should select a different character each time the lettei is displayed/printed. In
other words a procedure to print a block letter "L" could produce

* or # or 0
* # 0
* # 0

####### **00000

depending on the parameter
passed.

Submit in the same folder and at the same time as Assignment 6.

Assemble the required materials stapled in order in a properly labeled folder.
1. Grading Sheet
2. Source code listing--either to the screen or printer
3. Output (banner)

Grading Sheet (this side up)
1. Correct folder, contents, order (required for acceptance) 0 pts.

2. Source code style (follows coding standards and assignment
specificationsinstructions, comment, ec.) 5 pts.

3. Uses value parameters correctly 15 pts.

4. Computer output
Appropriate user instructions, correct output, etc. 5 pts.

5. Aesthetics (banner appearance) 5 pts.

Total Possible Bonus 30 pts.

2 86

276

Appendix G

Burger Queen Assignment
Date Due:
Objectives: To create a structure diagram, also known as a hierarchy chart, (showing

data flow) of an original program.
To produce pseudocode for the main module of a modular program.
To develop an original program that uses procedures with parameters.

Problem: Princess Coal Black (you may have heard of her ancestor Snow White),
heir apparent to the renowned Charming family crown, has awarded you the contract to
the Burger Queen payroll list application program. The system must be ready to produce
a payroll list for the work week ending November 8, 199? Princess Co (as she is
affectionately known by her contemporaries) 's future depends on your successful
implementation of the system. Hence, as is customary with contracted information
systems, you will be penalized for every business day the system is late. Because
Princess Co's future depends on the successful implementation of the system, the
contract also specifics the penalties to be assessed for failure to accurately follow the
specifications. The specifications for the payroll list follow.

Input: Identification number (of the form 9999, which you may assume will be entered
correctly), Hours Worked, in half hour increments. (Ex: 35.5 would be 35 and a
half hours)
Pay Rate (per hour rate in the form of 99.99).

As the work force in Camelot is somewhat volatile, it is not known in advance
how many people will work during the week or indeed if anyone will work.
Continue processing until an Identification number of 0 is entered to signal the
end of the input.

Processing.. Employees are to be paid at a rate of 1.5 times their regular rate for any time
over 40 hours. From each employee's gross pay (as calculated above), subtract Cameleot
Federal Taxes at a rate of 19% and State taxes at a rate of 4%. Calculate the Gross Pay,
Federal Tax, State Tax, and Net Pay (the gross pay less the federal and state taxes) for
each Burger Queen employee. Because the Charming family fortune is in jeopardy, the
monarchs (King and Queen Charming) also need to know the total payroll costs for the
Burger Queen operation for the week--including the number of employees, total gross
pay, total federal tax, total state tax, and total net pay.

Output: An attractively formatted report (..,eing charming is quite vain about the
appearance of the Burger Queen reports) that is printed (directly on the printer). The
report should effectively advertise Burger Queen to any one who reads the report (have a

2 8 7

277

Burger Queen title), should include appropriate column headings, and should have
columns that line up. Report weekly totals in the appropriate columns.

Constraints: King and Queen Charming prefer (for security reasons) that the

programming of this project be apportioned among several (dYtHICAL because you are
going to do this independently) programmers. Hence it is to be a well-structured
program with each task done by a separate module (procedure). The boss module will do
what real world bosses do--give orders and make decisions. The modules also get only
the information they need to know to do their jobs.

286

Naine

CIS 110 Assignment 8
Grading Sheet

Section Score

No points will be awarded to any program that contains and uses global variables
and/or does not use procedures.

Test with:

1. 0 first (should have a report with title, column headings, and 0 totals).
2. ID Hours Worked Pay Rate

1234 30.0 5.25
5678 56 6.00
9012 39.5 7.50
3456 40 8.00
7890 40.5 9.00
1111 55 10.00

283

279

Appendix H

Procedure-related Examination Questions

Examination Date: Date November 11, 19_

I. Which of the following are reasons for using PROCEDURES in Pascal programs?
A. Repeated use of the same task at several points within a program.
B. Need to implement the same task in several programs
C. It simplifies team programming
D. Modularity
E. All of the above are reasons that Pascal employs procedures

2. Which of the following are true of Pascal's passing of parameters (variable) to and from procedure??
A. A value which is input from the keyboard in a procedure is automatically global
B. If a variable modified in a procedure is to have its changed value effective in the calling procedure (an

IN-OUT parameter) it should be a value parameter.
C. If a variable modified in a procedure is to have its changed value effective in the calling procedure (an

IN-OUT parameter) it should be a variable parameter
D. Pass by value is the same as using global variables
E. None of the above are true

4. In a formal parameter section, variable parameter declarations are immediately preceded by
A. a colon
B. VAR
C. BEGIN
D. a left parenthesis
E. none of the above

6. Values that are ONLY imported (input) into a procedure should be declared parameters.
A. value
B. variable
C. intermediate
D. informal
E. none of the above

For questions 7 - 9, use the following program.
PROGRAM Drill;

PROCEDURE Switch (VAR X, Y :Integer);
VAR
Temp:Integer;

BEGIN
Temp:=Y;
Y:= X;
X:= Temp

END; (procedure Switch)
VAR
A,
B,
C: Integer;

BEGIN (main)
A:=4;
B:=6;
C:=9;
IF A > B THEN (p2)

Switch (B, A)
ELSE

Switch (A ,B);
{endif)
Switch (B, C);
WriteLn (A,' ',C) {PI }

END.

7. What does line (PI) display?
A. 4 6 9
B. 6 4 9
C. 4 9 6
D. 694
E. 964

8. What does line (p I) display if line (p2) is changed to the following?
IF A < B THEN

A. 4 6 9
B. 6 4 9
C. 4 9 6
D. 694
E. 9 6 4

291

280

281

9. What does line (P1) display if line {p2} is changed to the following?

IF A < > B THEN
A. 469
B. 649
C. 496
D. 694
E. 964

For questions 10- 12, assume the program has returned to its original form. i.e., IF A > B THEN

10. What would line (pi) display if the procedure heading line were the following?
PROCEDURE Switch (X : Integer; VAR Y : Integer);

A. 469
B. 444
C. 666
D. 644
E. 4 9 9

11. What would line (pl) display if the procedure heading line were the following?
PROCEDURE Switch (VAR X : Integer; Y ; Integer);

A. 4 6 9
B. 444
C. 6 6 6
D. 644
E. 6 9 9

12. What would line (P1) display if the procedure heading line were the following?
PROCEDURE Switch (X: Integer; Y: Integer);

A. 4 6 9
B. 444
C. 666
D. 644
E. 494

Question 13-17 refer to the code for PROGRAM Drill. There is no partial credit on the following answers.

Each answer must be completely correct to receive any credit.

13. Identify all the formal parameters.

14. Identify all the actual parameters.

15. Identify all the value parameters in the formal parameter list

16. Identify all the variable parameters in the formal parameter list.

17. Identify any local variables in PROCEDURE Switch

18. Values that are exported (output) from a procedure should be declared as
A. value
B. variable
C. constant
D. string
E. none of the above

19. Consider the following procedure heading line:
PROCEDURE Testi (A,.B: Integer);

Which of the following statements are true?
A. A and B are variable parameters
B. A and B are value parameters
C. A is a value parameter and 13 is a variable parameter
D. A is a variable parameter and B is a value parameter
E. none of the above is true

20. Actual and formal parameters are associated
A. by position from left to right
B. by exact name match
C. by data type--Integer with Integer, Real with Real and so forth
D. by designation--value with value and variable with variable
E. none of the above the number of formal parameters.

21. The number of actual parameters must be
A. greater than
B. less than
C. equal to
D. less than or equal to
E. It doesn't matter; the compiler uses what it needs.

parameters.

282

283

22. If a procedure changes the content of a value parameter
A. the corresponding actual parameter is changed
B. the corresponding actual parameter is not changed
C. an error will result since a procedure cannot change the value of a value parameter
D. only actual parameters specified as a variable will be changed
E. none of the above

23. A Pascal programmer indicates that a variable is being passed as a variable parameter
(i.e., changes made to the variable within a procedure have an effect in the calling module)

A. Preceding the variable name with a VAR in the call to the procedure
B. Preceding the variable name with a VAR in the parameter list of the procedure heading line
C. Preceding the variable name with a VAR in both the call and the procedure heading line
D. Doing nothing. No indication is necessary because all parameter passing in Pascal is done

as variable parameter passing unless indicated otherwise.

For Questions 29 - 31, suppose that the MAIN program contains these declarations:
VAR

I, J, K, L, M, N : Integer;
A, B, C, ID: Real;

For each of the following, you are given a procedure header and an invocation of that procedure. Indicate
with by cit., 'rig, V those that are Valid and by circling I those that are Invalid. Invalid simply means the
compiler would indicate a syntax error had occurred.

I V 29. Header: PROCEDURE PI (A, B, C : Integer);
Called with: PI (J, K);

I V 30. Header: PROCEDURE P2 (VAR A, B, C : Integer);
Called with: P2 (A, B. C);

V 31. Header: PROCEDURE P3 (J, K, L: Real);
Called with: P3 (A, B, C);

42. Which of the following words MUST appear in the Pascal code of any Pascal program using
programmer written procedures?

A. VAR
B. PROCEDURE
C. VALUE
ID. CALL
E. FUNCTION

294

284

Appendix I

Excerpt from Textbook Coverage of Parameters
(Leestma & Nyhoff, 1993)

Value (In) Parameters

Before a procedure like Convert is referenced, its formal parameters are
undefined. At the time of reference, memory locations are associated with
its value parameters, and the values of the corresponding actual
parameters are copied into these locations. Thus, for the procedure
Convert, the formal parameters Code, Rate, and Amount are undefined
until the procedure reference statement

Convert (CurrencyCode, ConversionRate, Money)

is encountered. At this time, the values of the actual parameters
CurrencyCode, ConversionRate, and Money are copied to Code, Rate,
and Amount, respectively.

Actual
Parameters

CurrencyCode

ConversionRate

Money

Mr inory Lucations

Formal
Parameters

- - Code

Rate

Amount

After execution of the procedure, value parameters once again become
undefined, so that any values they had during execution of the procedure
are lost and are not returned to the main program or subprogram that calls
the procedure (p. 189).

Variable (In-Out) Parameters

As we noted earlier, a procedure must use variable or in-out parameters
to return values to other parts of the program. Thus in the procedure that
implements the preceding subalgorithm, the parameter that returns the
converted monetary amounts must be a variable parameter (p. 190).

When the procedure reference statement ... is executed, new memory
locations are associated with the formal value parameters Code, Rate,
and Amount of procedure Convert2, and values of CurrencyCode,
ConversionRate, and Money are copied into these locations. No new

memory location is obtained for the formal variable parameter

EquivAmount. Instead, this variable parameter is associated with the

existing memory location of the corresponding actual parameter

ConvertedMoney.

Actual
Parameters Memory Locations

Formal
Parameters

CurrencyCode
fP IF Code

ConversiortRa te

Money

ConvertedMoney

1.14---- Rate

Amount

EquivAmount

When procedure Convert2 is executed, a value is calculated for

EquivAmount, and because ConvertedMoney is associated with the same

memory location as EquivAmount, this value is also the value of'

ConvertedMoney.

Actual
Formal

Parameters Memory Locution,. Parameters

CurrencyCode
--- Code

ConversionRate
1.14 -- Rate

Money .0(=------310

ConvertedMoney 4 41

-- Amount

EquivAmount

Because the memory locations associated with CurrencyCode,

ConversionRate, and Money are distinct from those for Code, Rate, and

Amount, changes to Code. Rate, and Amount in procedure Convert2

cannot change the values of CurrencyCode, ConversionRate, and

Money. When execution of the procedure is completed, the association of

memo' y locations with Code, Rate, and Amount, and EquivAmount is

terminated, and these formal parameters become undefined.

CurrencyCode

ConversionRate 1.13 1

Money

ConvertedMoney

2 9 6

4.42 (p. 194)

285

Appendix J

Participant Interview One Protocol

286

II

Time, date, place

This is Sandra Madison interviewing student . Welcome, and thank you for
coming. Before we get started, I need to reaffirm that this interview is voluntary
and that at any time you may choose not to continue. Do you wish to proceed?

Your instructor will not hear the tape and will not see the transcripts until after
the semester ends. There is no way that anything you say will affect your grade.
I simply want your honest responses.

Tell me how you came to be enrolled in CIS 110 here at the university.

What experience did you have with computers before taking this class?
(Much, little, games, applications, CM, etc.?)

What feelings did your prior computer experiences evoke? How did they affect you?
(Intimidating, challenging, fun, easy, engaging, boring, difficult, time-consuming?)

Describe your most memorable computer experience prior to this course.

Tell me about your prior programming experiences.(if any)
What language did you use?

Tell me about your most memorable assignment. Why do you remember this particular
assignment?

What about the programming activity did you find most challenging?

How would you define variable? Procedure? Argument? Parameter? Value parameter?
Variable parameter?

Thank you for coming. We'll talk again in a few weeks. Next time we'll talk
about the Pascal class in which you are currently enrolled.

a

Appendix K

287

Participant Interview Two Protocol

Time, date, place

This is Sandra Madison interviewing student . Welcome, and thank you for
coming. Once again, I need to reaffirm that this interview is voluntary and that
at any time you may choose not to continue.

There is no way that anything you say will affect your grade. I simply want
your honest responses.

Earlier, we talked about the computing (and programming) experiences prior to this class.
By any chance, did the previous interview provoke any computing memories beyond
what we have already talked about?

How do you feel about the class so far this semester? Easy, challenging, fim, boring,?
Can you explain why?

Describe one experience that stands out in your mind for some reason.

Which assignment was your favorite? Least favorite? Why?

Which activity have you enjoyed the most? The least?

Which concept or topic have you found to be the most challenging so far this semester?

Do you know why it has challenged you the most?

How would you define variable? Procedure? Argument? Parameter? Value parameter?
Variable parameter?

298

288

Consider the following analogy:

Situation one. There is a class of novice painters, learning to paint. During one of their
classes, the instructor brings in a fust-class replica of the Mona Lisa for the students to

use as a model. The students are instructed to reproduce the painting. The students
complete the assignment. They take their copies home, and the instructor returns the

model to the supply closet.

Situation Two. The original Mona Lisa painting has deteriorated. It needs some
restoration work. The original is delivered to a restoration master who completes the
work needed. The restored Mona Lisa is then returned to its owner.

How is this situation analogous to parameter passing in Pascal?

Here is a program, and here is the output it produces. Read it over and decide which of
the procedure heading lines would produce the output shown. Then tell my why you
think it is so. (Give participant a paper copy of Task 1 and a pencil.)

Thanks for coming. We'll talk some more soon.

29J

289

Appendix L

Task 1

PROGRAM ProcedureExample;

PROCEDURE Swap (N1: Integer; {1}

VAR N2: Integer);

PROCEDURE Swap (N1,

N2 : -Integer);

{2}

PROCEDURE Swap (VAR N1,

N2 : Integer);
(3)

PROCEDURE Swap (VAR N1: Integer; {4}

N2: Integer);

VAR
T: Integer;

BEGIN
T := N1;
N1 := N2;
N2 := T

END; (procedure swap)
The output for this program is: 16 16

Which of.the above procedure heading llnes
produces this output? Explain how you know.

PROCEDURE Swap (

(main)
VAR

J : Integer;

BEGIN
I := 16;

J := 5;
Swap (I, J);
WriteLn (1:5, J:5)

END.

290

Appendix M

Participant Interview Two Protocol

Time, date, place

This is Sandra Madison interviewing student . Welcome, and thank you for
coming. Once again, I need to reaffirm that this interview is voluntary and that
at any time you may choose not to continue. There is no way that anything you
say will affect your grade. I simply want your honest responses.

Repeat if appropriate.
How would you define variable? Procedure? Argument? Parameter? Value parameter?
Variable parameter?

Do you see any connection between variables and parameters?

Today I have some tasks for you to solve, and I want to record your thoughts as
you solve them. Think aloud as you are solving the problem. Take your time.
There is no hurry.

The first task is to complete the procedure heading lines for this otherwise complete
program. Think aloud as you solve the problem. (Give participant a paper copy of Task
2.)

Next, I have loaded a one-module program for you. Your task is to modify the program
so that it uses procedures and parameters. Each time you compile a version, I want you
to save it under a new name (Versionl, Version2, etc.) so we have the intermediate
versions. Explain each change you make, and tell me what you are thinking as you make
the change. (Give participant a paper copy of the program listing for Task 3, which is
also loaded into the Turbo 7.0 Pascal editor on my office computer.)

The last task I have is an analysis exercise. Would you look over this program and tell
me what the output will be? Think aloud as you're solving the problem. Probe: Why do
you think that is the answer? (Give participant a paper copy of Task 4.)

Thank you for your time and cooperation this semester. It has really helped.
Once I've finished collecting data, be happy to talk over any of these tasks
with you.

301

291

Appendix N

Task 2

Complete the missing procedure heading lines so that this program will compile and do
the job implied by its name. Remember that the formula for calculating the volume of a
rectangular solid is: volume = length x width x depth. As you complete each
procedure heading line, explain as completely as you can why you constructed it as you

did.

PROGRAM CalculateVolume0fARectangularSolid;

PROCEDURE

BEGiN
Volume := Len * Wid * Dep

END;

PROCEDURE

BEGIN
WriteLn ('The volume of the solid is ', Answer : 8 : 2)

END;

PROCEDURE

BEGIN
Write ('Please enter a dimension ==>, ');

ReadLn (Dimension)
END;
(main)
VAR
Volume : Real;

Length,
Width,
Depth:. Real;

BEGIN
GetInput (Depth);
GetInput (Width);
GetInput (Length);
CalculateVolume (Length, Width, Depth, Volume);
DisplayOutput (Volume)

END.

Construct a set of reasonable inputs and corresponding output for the program.

302

292

Appendix 0

Task 3

PROGRAM PayrollPreparation;
USES Crt;

CONST
InputPrompt2 = 'Please enter hours worked (1/2 hour increments) =>
InputPrompt3 = 'Please enter pay rate (2 decimal places) => ';

{main}
VAR

PayRate,
HoursWorked,
GrossPay : Real;

BEGIN
ClrScr;
WriteLn ('This program computes the gross pay for one employee');
WriteLn ('Overtime is not taken into consideration');
WriteLn;
Write (InputPrompt2);
ReadLn (HoursWorked);
Write (InputPrompt3);
ReadLn (PayRate);
GrossPay := HoursWorked * PayRate;
WriteLn;
WriteLn ('Hours Worked ': 12, 'Rate ':10, 'Gross Pay ':10);

WriteLn (HoursWorked:12:2, PayRate:10:2, GrossPay:10:2);
END.

303

Appendix P

Task 4

PROGRAM ABC;

PROCEDURE Increment (VAR A,
B: Integer);

BEGIN
A := A + 1;
B := B + 1

END;

VAR
N: Integer;

BEGIN
N := 3;
Increment (N, N);
WriteLn (N)

END.

{ procedure Increment}

304

293

294

Appendix Q

Instructor Interview One Protocol ii
Time, date, Place

This is Sandra Madison interviewing Dr. Greene. Do you mind if we tape
record the conversation?

Tell me how you came to be a computer programming instructor.

You taught in another discipline before you taught computing. Can you tell me what
attracted you to this subject?

How did you learn to program?

Tell me about your most memorable programming experience.

If you can recall, as a novice, what programming concept or skill did you find most
difficult to learn?

You have taught CIS 110 several times in the last few years. Describe it in your own
words.

What are your goals for the class? For the students?

Tell me about the CIS 110 lesson that pleased you most.

What about the lesson pleased you least?

What concept seems to give the novice Pascal programmers the most difficulty?

Describe the way you teach the construct of procedures and parameter passing.

How do your students demonstrate their understanding of the construct of parameter
passing?

Thanks for talking with me today. We'll talk once more later in the semester.

305

306
BEST COPY AVAILABLE

295

Appendix R

Instructor Interview Two Protocol

Time; date; place

This is Sandra Madison interviewing Dr. Greene. Do you mind if we tape
record the conversation?

You have completed are unit on procedures. I'd like to talk about that.

How do you feel this portion of the course went this semester?

What are your perceptions of your students' understanding of the construct of procedures
and parameter passing?

What gave them the most difficulties?

Describe the errors or misconceptions they demonstrated, either in class, on the
assignments, or on the tests.

Of the different instructional strategies you employed this semester, which do you think
was the most helpful in developing your students understand the constructs of procedures
and parameter passing? Can you give me an example of why you think this?

Was there a strategy that flopped? What makes you think so?

Is there anything you would like to add for the record that we haven't touched upon
during the three interviews?

Thank you for your help this semeter. You know how much it means.
Hopefully, we will be able to describe our students' understanding of the
construct of parameter passing. Then, perhaps we can identify some
instructional strategies that will increase that understanding.

307

296

Appendix S

Payroll Program Simulation

Objective: To provide a concrete representation of the copy versus shared memory-
location perspective of the parameter mechanism.

Context: PayRoll Program (something familiar and concrete). Omits other concept such
as loops and selections and allows student to focus only on the construct in question.

Reading: see Appendix T, for example.

Participants: One volunteer for each worker module plus an employee.

Materials Needed:
Variables: Transparency sheets folded and taped to form envelopes for the variables
(storage locations). Main module variable name and data type should be permanently
applied to one side of the envelope (to simulate the fixed variable name). One for each of
the main module variables, plus any necessary for the copies that are passed to the
modules.

Values: Card stock cut to the size of the envelope. They can be slid in and out (to
simulate the fact that the values in a variable can be changed). Laminated gold for the
main module variables provides opportunity for levity and comments such as the "boss
module" sharing its valuable information. Non-laminated green or blue card stock for the
copies sent to the procedures as value parameters allows for comments such as "dull
green copy of the real thing."

Titles for the Modules: Laminated card Stock that could be taped to the wall, like the title
on the door of an office for the boss module and the worker modules (to simulate the
procedure names).

Tools: A marking pen for each module

Chits: One for each main module variable, inscribed with a message approximating
"Permission to change variable (the main module variable name)" (to
simulate passing a variable parameter).

Scripts: Each module needs a short script so that he or she knows what to do.

For example, when control is transferred to WriteUserInstructions, the module should
stand up and announce the purpose of the program.

297

Get Input should ask the person designated as the employee for his or her name, hours
worked, and pay rate.

Calculate Pay should perform the calculations.

Display Output should announce (and display) the results of the payroll calculation to the
audience.

Procedure: The class decides which modules will be invoked, which variables will be
passed as parameters to each module, and whether the parameters will be value or
variable.

If it's a variable parameter, the "boss" hands the module the chit that gives permission to
the module to change the main module (boss) variable.

If it's value, she makes a dull, green, copy of the gold value, places it in one of the spare
envelopes, and hands it to the module. The value parameters are tossed into the "bit
bucket" (the waste basket) at the module's conclusion.

I ask for volunteers; if no one volunteers I volunteer someone. That person chooses his
or her "job" and volunteers the next person.

Reflection: Possible discussion:
Similarities and the differences between the simulation and the actual process
Connection to the Pascal syntax (see Appendix U for an example)
Reasons for the value-variable choices

Extension: What if . . .? questions, perhaps relating to what would have happened had
inappropriate choices been made (especially if the class chose everything correctly during
the simulation), possibly redoing parts with incorrect choices, encouraging the modules
to "clobber" inappropriately VARed parameters.

309

298

Appendix T

Revised Leestma and Nyhoff Excerpt

Excerpts from Chapter 5 in our text: Turbo Pascal: Programming and Problem Solving
by Leestma and Nyhoff (1993), modified to use the Payroll example used in the
simulation.

Simple Procedures

The simplest procedures are those that do not receive any information from other
subprograms or from the main program and do not return any information to them The
example to display instructions in the PayRollCalculation program does not require
information from other parts of the program (p. 175).

PROCEDURE WriteUserInstructions;
BEGIN

ClrScr;
Writeln (`This program computes the gross pay for one employee');
Writeln ('Overtime is not taken into consideration');
Writeln

END; (procedure WriteUserInstructions)

Referring to the formal parameters used by the other procedures:

What is needed instead are special kinds of variables in a procedure to which values can
be passed from outside the procedure. In Pascal, these special variables are called formal
parameters and are declared in the procedure's heading. Parameters that can store
values passed to them but that cannot return values are called value parameters or in
parameters and are the kind of parameters we consider first....Parameters that can both
receive values and return values are called variable or in-out parameters and are
considered later in this section (p. 183).

Value (In) Parameters

PROCEDURE DisplayOutput(EmployeeName: String20;
Time: Integer;
Rate0fPay,
Pay: Real);

BEGIN
Writeln;
Writeln (' Employee':20, 'Hours': 10, ' Rate':10, 'Gross Pay':15);
Writeln (EmployeeName:20, Time:10, Rate0fPay:10:2, Pay:15:2);

END; (procedure DisplayOutput)

299

Before a procedure like Display Output is referenced (called), its formal parameters are
undefined. At the time of reference, memory locations are associated with its value
parameters, and the values of the corresponding actual parameters are copied into these
locatioas. Thus, for the procedure DisplayOutput, the formal parameters
EmployeeName, Time, Rate0fPay, and Pay are undefined until the procedure reference
statement (call).

DisplayOutput (Name, HoursWorked, PayP.ate, Salary);

is encountered. At this time, the values of the actual parameters Name, HoursWorked,
PayRate, and Salary are copied to EmployeeName, Time, Rate0fPay, and Pay
respectively.

Actual Formal
parameters Memory Locations Parameters

I Darenl oraren

HoursWorked__{ 30 I ol 30

PayRate 5.00 I ol 5 00

Name

Salary 150.00 I oi 150.00

EmployeeName

Time

Rate0iPay

Pay

Figure 3. Depiction of parameters during execution of DisplayOutput

After execution of the procedure, value parameters once again become undefined, so that
any values they had during execution of the procedure are lost and are not returned to the
main program or sub, ,rogram that calls the procedure (p. 189).

Variable (In-Out) Parameters

As we noted earlier, a procedure must use variable or in-out parameters to return
values to other parts of the program. Thus in the procedure that implements the
preceding subalgorithm, the parameter that returns the converted salary amounts must be
a variable parameter. Declarations of formal variable parameters are preceded by the
reserved word VAR to specify that they are variable rather than value parameters (p.
190).

When a procedure reference statement

CalculateSalary (HoursWorked, PayRate, Salary);

300

is executed, new memory locations are associated with the formal value parameters
TimeWorked and Rate0fPay parameters of procedure CalculateSalary, and values of
HoursWorked and PayRate are copied into these locations. No new memory location is
obtained for the formal variable parameter GrossPay. Instead, this variable parameter is
associated with the existing memory location of the corresponding actual parameter
Salary.

Actual
Parameters Memory Locations

HoursWorked--I 30 I -4.1 30 1

PayRate

Salary

I5(1°1
5 00

Figure 4. Depiction of the parameters as CalculateSalary begins execution.

Formal
Parameters

Hours

Rate

GrossPay

When procedure CalculateSalary is executed, a value is calculated for GrossPay, and
because Salary is associated with the sane memory location as GrossPay, this value is
also the value of Salary.

Actual
Parameters Memory Locations

HaursWorked 30 I -41 30

PayRate I 5.09 oo 1

Formal
Parameters

Hours

Rate

GrossPaySalary 150.00

Figure 5. Depiction of the parameters as the execution of Calculate Salary completes.

Because the memory locations associated with HoursW irked and PayRate are distinct
from those for Hours and Rate, changes to Hours and Rate in procedure
CalculateSalary cannot change the values of HoursWorked and PayRate. When
execution of the procedure is completed, the association of memory locations with
Hours, Rate, and GrossPay is terminated, and these formal parameters become
undefined (p. 194).

HoursWorked---DO I

PayRate j 5.001

Salary 1150.00 1

Figure 6. Depiction of parameters after execution of CalculateSalary.

312

301

Rules for Parameter Association

The following rules summarize the relation between actual and formal parameters:

1. There must be the same number of formal parameters as there are actual parameters.

2. The types of associated formal and actual parameters must agree; however, an actual
parameter of integer type may be associated with a formal value parameter of real
type, but not with a formal variable parameter.

3. An actual parameter associated with a variable formal parameter must be a variable; it
may not be a constant or an expression (p. 195).

Appendix U

Payroll Program

PROGRAM PayrollPreparation;
USES Crt;

TYPE
String20 = string(20);

PROCEDURE WriteUserInstructions;
BEGIN

ClrScr;
Writeln ('This program computes the gross pay for one employee');
Writeln ('Overtime is not taken into consideration');
Writeln

END; {procedure WriteUserInstructions}

PROCEDURE GetInput (VAR WorkerName: String20;
VAR TimeWorked: Integer;
VAR HourlyRate: Real);

CONST
InputPromptl = 'Please enter the employee"s name ==> ';
InputPrompt2 = 'Please enter hours worked (1 hour increments) ==> '

InputPrompt3 = 'Please enter pay rate (2 decimal places) ==> ';

BEGIN
Write (InputPrompt1);
ReadLn (WorkerName);
Write (InputPrompt2);
ReadLn (TimeWorked);
Write (InputPrompt3);
ReadLn (HourlyRate);

END; {procedure GetInput}

PROCEDURE CalculateSalary (Hours: Integer;
Rate: Real;

VAR GrossPay: Real);

BEGIN
GrossPay := Hours * Rate

END; {procedure CalculateSalary}

j14

302

;

303

PROCEDURE DisplayOutput (EmployeeName: String20;
Time: Integer;
Rate0fPay,
Pay: Real);

BEGIN
Writeln;
Writeln (' Employee':20, 'Hours': 10, ' Rate':10, 'Gross Pay':15);
Writeln (EmployeeName:20, Time:10, Rate0fPay:10:2, Pay:15:2);

END; (procedure DisplayOutput}

{main}
VAR

Name : String20;
PayRate : Real;
HoursWorked: Integer;
Salary : Real;

BEGIN
WriteUserInstructions;
GetInput (Name, HoursWorked, PayRate);
CalculateSalary (HoursWorked, PayRate, Salary);
DisplayOutput (Name, HoursWorked, HoursWorked, Salary)

END.

315

304

Appendix V

Task 4 Revised

PROGRAM ABC;

PROCEDURE Change (VAR A,
B: Integer);

BEGIN
A := A + 2;
B := B + 1;
WriteLn ('A = ', A, ' B = B)

END;

VAR {main}

N: Integer;
BEGIN

N := 3;
Change (N, N);
WriteLn ('N = N)

END.

CIS110 Understanding Parameters

Name Section

305

Objectives: To understand how information is communicated among program modules
To be able to explain what causes the difference in the behavior of value
and variable parameters.

Individual Activity:
1. Trace through the following program, and predict the cutput of the WriteLn.
Prediction: . Justify your answer.

2. Imagine (or pencil in) the program changed so that both parameters are value
parameters. Repeat activity 1. Prediction: . Justification:

3. Imagine (or pencil in) the program changed so that A is a value parameter and B is a
variable parameter. Repeat activity 1. Prediction: . Justification:

0 17

306

Small group activity: Compare your predictions and the reasoning provided for the
prediction. Attempt to come to a consensus.

1. Both variable parameters: Prediction: . Justification:

2. Both value parameters. Prediction: . Justification.

3. A is a value parameter and B is a variable parameter. Prediction: . Justification:

'118

307

Individual Lab Activity:
1. Type in the program (in its original form). Add a CIrScr if you wish.

2. Size the edit window, open a watch window, and move the watch window so you can
see both windows completely.

3 Add watches for N, A, and B.

4. Begin tracing at the program's first instruction, using <F7> . Remember that the
highlight bar is located at the next instruction to be executed.

Group Lab Activity: (Compare your results and your explanations with those of your
neighbors.)

1. (Both VAR parameters) Describe what happened to the "watched" variables as you
executed the instruction N := 3.

Explain your findings.

Describe what happened as you executed the instruction A := A + 2.

Explain your findings.

Describe what happened as you executed the instruction B := B + 1.

Explain your findings.

'119

308

2. Change the program to both A and B value parameters. Repeat the trace. Describe
what happened to the "watched" variables as you executed the instruction N := 3.

Explain your findings.

Describe what happened as you executed the instruction A := A + 2.

Explain your findings.

Describe what happened as you executed the instruction B := B + 1.

309

3. Change the program to make A a value parameter and B a variable parameter. Repeat
the trace. Describe what happened to the "watched" variables as you executed the
instruction N := 3.

Explain your findings.

Describe what happened as you executed the instruction A := A + 2.

Explain your findings.

Describe what happened as you executed the instruction B := B + 1.

Explain your findings.

Understanding Parameters

Date Due: Section

Name Name

Name

Score

310

Write a conjecture about the way variable parameters communicate information among
the program modules.

Write a conjecture about the way value parameters communicate information among the
program modules.

,r; 2. 2

VITA

Title of Dissertation: A Study of College Students' Construct of Parameter Passing:
Implications for Instruction

Full Name: Sandra Kay Madison

Place of Birth: Gary, Indiana

Colleges and Universities:
University of Wisconsin-Milwaukee
1958-1964 Bachelor of Science

University of Wisconsin-Stevens Point
1983-1986 Master of Education-Professional Development

Professional Positions Held: Assistant Professor of Mathematics and Computing

Membership in Honorary Societies:
Sigma Epsilon Simla
Delta Chi Sigma

1959
1963

3 11.

Publications: (Proceedings)
The Construct of Parameter Passing: A Study of Novice Programmers.
National Education Computing Conference. Baltimore, MD. June 1995.

Creating a More Equitable Computing Climate. American Association of
University Women Pre-Conference Symposium. Orlando, FL. June 1995.

Using Student Experience to Guide Curriculum in Introductory
Computing National Educational Computing Conference. Orlando, FL.
June 1993.

Formal Thinking and Computing Students: Preliminary Results. Midwest
Computer Conference. Whitewater, WI. March 1993.

Major Department: Curriculum and Instruction

Minor: Business Adminis atio

Signed
Major I lessor in arge of ssertation

3 3

