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Abstract

Three methods for the estimation of the reliability of single dichotomous items

are discussed. All methods are based on the assumptions of nondecreasing and

nonintersecting item response functions. Based on analytical and Monte Carlo

studies, it is concluded that one method is superior over the other two, because it

has a smaller bias and a smaller sampling variance. Furthermore, this method

shows some robustness under violation of the condition of nonintersecting item

response functions. Item reliability is of special interest for Mokken's

nonparametric item response theory, and is useful for the evaluation of item

quality in nonparametric test construction research. It is also of interest for

nonparametric person fit analysis.

Key words: item reliability, item response theory, Mokken model, nonparametric

item response models, test construction.
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Introduction

For the practical use of tests total scores are more important than scores on

individual items. In test construction, however, the quality of items must be

assessed to select the appropriate items that, taken together, constitute a useful

test. For example, in classical test theory (CTT; Lord & Novick, 1968) item

statistics like the p-value and the corrected item-total correlation are used for this

purpose. In logistic item response theory (IRT; e.g., Lord, 1980) items can be

evaluated on the basis of their difficulty, discrimination power, and

pseudo-chance level. Moreover, the item infonnation function (Lord, 1980, p. 72)

can be used to assess measurement accuracy of the individual item. The

nonparametric Mokken (1971, 1994; Mokken & Lewis, 1982) approach to IRT

uses the p-value and an item scalability coefficient.

Because the Mokken approach provides the theoretical framework for this

study, we will further concentrate on its relevant assumptions and definitions. We

will argue that in the Mokken IRT approach the reliability of an item can serve

as a nonparametric counterpart of the discrimination power from logistic IRT and

the corrected itein-total correlation from CIT [refer to Lord (1980, p. 33) for a

comparison of these latter two item statistics].

The purpose of this paper is to apply three relatively simple methods, used

earlier for the estimation of total score reliability in the nonparametric Mokken

IRT framework (Mokken, 1971, pp. 142 - 147; Sijtsma & Molenaar, 1987), to

the estimation of single item reliability. The asymptotic bias and the finite sample

bias of these methods will be investigated. Furthermore, their standard deviation
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will be studied, whereas results pertaining to skewness and kurtosis will be

briefly summarized.

The Nonparametric Mokken Approach and Item Reliability

Nonparametric IRT models are important because of their potential to order

persons and items. Cliff and Donoghue (1992) provide arguments that favor

ordinal rather than interval measurement in psychological and educational testing.

Mokken (1971, pp. 115 - 169; 1994; Mokken & Lewis, 1982) proposed two

nonparametric IRT models for the analysis of binary item scores. The first is the

model of monotone homogeneity (MH) which is defined by three assumptions:

Unidimensionality, local stochastic independence, and nondecreasingness of the

item response functions (IRFs). An important property of the MH model is that

the latent trait score is stochastically ordered by the number-correct score on k

items (Grayson, 1988; Huynh, 1994). Similar models were studied by Holland

(1981), Rosenbaum (1984), Stout (1990), Ellis and van den Wollenberg (1993),

and Junker (1993); other ordinal models by Schulman and Haden (1975) and

Cliff (1979).

The second model is the model of double monotonicity (DM). This model

rests on the same three assumptions as the MH model, plus the fourth assumption

that the IRFs do not intersect. Thus, the DM mudel not only allows persons to be

ordered, but also allows an ordering of items that is identical, except for possible

ties, for all persons taking the test. Similar models were discussed by Rosenbaum

(1987), Croon (1991), Sijtsma and Meijer (1992). and Sijtsma and Junker (1994).
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It may be noted that the Rasch (1960) model is based on the three

assumptions from the MH model, plus the fourth assumption of minimal

sufficiency of the number-correct scores of persons and items for thedestimation

of the latent person and item parameters, respectively (Fischer, 1974, pp. 193 -

203). Not only are the IRFs from the Rasch model strictly increasing and

nonintersecting but they are also parallel. Levine (1970) has discussed conditions

from which it can be derived that, in general, DM IRFs can not be transformed

into Ras h IRFs. For example, the DM model allows IRFs with asymptotes that

are unequal to 0 or 1 whereas the Rasch model excludes such IRFs. Disregarding

the trivial case of constant IRFs, theoretically, the DM model includes the Rasch

model as a special case. In practice, however, differences will become apparent

in particular for small numbers of items. For larger numbers the DM model still

allows relatively easy items to have pseudo-chance levels larger than 0 and

relatively difficult items to have upper asymptotes smaller than I. This is not at

all unrealistic because easy items may also be relatively easy for low-ability

examinees, even if there is no guessing, while difficult items need not be trivial

for high-ability examinees. Meijer. Sijtsma, and Smid (1990) provide a theoretical

and a practical comparison of the DM and the Rasch model.

Note that with their nonparametric definition of the IRFs, the MH and the

DM models do not assume particular distributions for latent model parameters. In

other words, characteristics of the models hold irrespective of such distributions.

As a result of a nonparametric definition, latent item parameters from parametric

models, such as the item difficulty and the discrimination power, can not be

numerically estimated. In the nonparametric approach by Mokken (1971; Mokken

& Lewis, 1982), the latent item difficulty is replaced by the proportion of correct

responses given on an item (Mokken, 1971, p. 124). Furthermore, Mokken (1971,
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p. 151; Mokken & Lewis, 1982) proposed an item coefficient that expresses the

scalability of a particular item with respect co the scale of the other items.

Mokken, Lewis, and Sijtsma (1986) noted that this coefficient is also related to

the slope of an IRF. In addition, Donoghue and Cliff (1991) noted that the

Mokken approach does not provide much specific information at the item level.

An item statistic that is more directly related to the discrimination power could

be useful in item selection. Such a statistic can also play a useful role in

nonparametric person fit analysis (e.g., Meijer, Molenaar, & Sijtsma, 1993;

Tatsuoka & Tatsuoka, 1983; van der Flier, 1982). In this study, item reliability is

proposed as an appropriate replacement for discrimination power [also refer to

Meredith (1965) for a similar proposal] in a nonparametric IRT context.. This can

be explained as follows.

The reliability of an item expresses the degree to which observed item

scores can be repeated independently under similar conditions. Discrimination

power (denoted by a) as defined in logistic IRT (Lord, 1980) has a similar

interpretation. Let 0 be the latent person parameter with probability density f(e).

Furthermore, let item g have a latent difficulty parameter 8g and a latent

discrimination parameter ag. Keeping f(0) and 8g fixed, an increase in ag

corresponds to a higher degree of repeatability of observed scores on item g. In

the limit (a > 00), response performance is in accordance with the deterministic

Guttman (1950) model: this means perfect repeatability and thus perfect item

reliability. For response behavior following a logistic IRT model, an increase in

a yields lower probabilities of a correct response to the left of 8 and higher

probabilities to the right of it. Consequently, for each subject with 0 # 8g

his/her dominant item response (which is incorrect for 0 < 8g and correct for

0 > 8 ) can be predicted with higher probability. Note, that for 0 = 8 the
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success probability is a constant irrespective of ctg. In other words, holding

everything else constant, an increase in ag corresponds to a higher degree of

repeatability of item scores.

Definition and Estimation of Item Reliability

Because the theoretical basis for the definition and the estimation of item

reliability was given by Mokken (1971, pp. 142 - 147), and Sijtsma and

Molenaar (1987), we will only provide results here. Let rcg be the population

proportion of persons giving a correct response on the dichotomous item g, and

rc
88

the population proportion giving a correct response on two locally

independent replications of item g. As a tool for estimating the reliability of a

test score, Mokken (1971 p. 143) defines the reliability of the dichotomous item

score X as

2
It

X
gg gp( )

g g( 1 g

It It
= g gg

g 1 g)

( 1 )

Reliability equal to 0 is obtained if ng = rcg2 (statistical independence between

replications of item g); reliability equal to 1 if rcgg = rcg.

The proportion rcg can be estimated unbiasedly (Mokken, 1971, p. 126) but

because locally independent replications of items usually are absent, a direct

0
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estimate of n
gg is not available. Therefore, Mokken (1971, p. 143) proposed two

methods using parameters for which sample estimators are available to

approximate ngg. Sijtsma and Molenaar (1987) proposed a third method. All

three methods are based on extrapolation or interpolation using items adjacent to

item g in the ordering of items from difficult to easy. The rationale is the

following.

Assume that the k items from the test are ordered according to increasing

n and that item indices are in accordance with this ordering. Let the IRFs

denoted by ng(0) (g = 1, k) of all k items be nonintersecting: for items g-1,

g, and g+1 this means that

ng_1(0) ng(0) g+1(0), for all 0 . (2)

Based on the idea that the IRFs of the neighbor items in the item ordering are

more similar to it (0) than the other IRFs, all three methods use either rc g-1(0)

or rtg+I(0), or both as a predictor of a real replication of item g. Note that TCgg

equals

rcgg = fir g(0)rcg(0)dRO) (3)

Before integrating with dF(0). one of the probabilities rt8(6) is replaced by a

linear approximation using one or two of its neighbors, n8_1(0) or ng+I(0), or

both: *1(0) = a + brt8_1(e) + eng+ 1(0). Each method is defined by the choice

of a, b, and c. Substituuon of fr
1

(8) in (3) and integration yield

AL
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(4)

In (4), ng- 1
g

is the population proportion of persons that have correct responses
,

on both items g-1 and g. A similar dermition applies to ngs+1. Mokken's (1971,

p. 147) method 1 uses extrapolation with ng, no, and no,g, or ng, 1g+1,

and 7tg,g+1. Sijtsma and Molenaar (1987) provided two alternative

approximations to ltgg. Because each of thesz four approximations is

asymptotically biased (Molenaar & Sijtsma, 1984), Sijtsma and Molenaar's

(1987) method used the unweighted mean of these four approximations which has

only small bias.

Mokken's method 2 uses both neighbors of item g to approximate ngg by

interpolation (Mokken, 1971, p.147). For the two extreme items extrapolation

(method 1) is used. Refer to Sijtsma and Molenaar (1987) for further details.

Note that these earlier publications only give results pertaining to sample bias and

variance of total score reliability estimation for each of the three reliability

,mhods: pl. p2, and pms

All approximations to /Egg are functions of the bivariate proportions and

the distance between item difficulties. If a bivariate proportion is smaller or a

distance is larger than expected if the items had been replications this may bias

itu and, consequently, the reliability estimate of item g. Figure 1 illustrates the

effect of distance on the approximation of ng(0) by means of one neighbor

(method 1; left in Figure

Insert Figure 1 about here
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1) or two neighbors (method 2; right in Figure 1). To illustrate estimation of rcgs

using method 1 we need the extrapolation formula (Mokken, 1971, p. 147)

" U
7C

*1

(5)

For method 1, the striped curve denoted ics(0) in Figure I (left) gives the

approximation to ng(0) using (rcerg+I)rcg+1(0). [note that substitution of this

product in (3) yields (5)]. Asz!Ime that 0 follows a normal distribution with its

peak at the scale value for which rtg(0) = .5. The approximation on the basis of

rtg+0) overestimates rcg(0) to the left of the scale, but it underestimates

rc (0) to the right of it. As it is multiplied by the factor rc (0)dF(0), higher

values of 0 tend to contribute most to the integral that yields the approximation

to Tr
gg

in (5). The underestimation thus tends to dominate the overestimation. A

larger distance usually results in a worse approximation. If irg+1(0) - itg(0)

increases while keeping rcg(0) fixed, the multiplication factor nerg+i in (5)

decreases and the approximation to rtg(0) lies further to the left of itg(0) and

also further below it at the right side of the scale. Thus, it tends to underestimate

rc (0) more strongly if the distance is larger. The same line of reasoning leads to

the conclusion that the approximation based on 7E0(0) (formula not given here)

tends to overestimate rr (0) and, as a result, it more strongly overestimates

rr
gg

if the curves ltg..1 (0) and rc (0) lie further apart.

For method 2 (Figure 1, right; formula not given here), the underestimation

at the right of the scale obtains a larger weight than the overestimation at the left,

and *u according to method 2 tends to be an underestimate. Moving rcg_i(0)

further to the right while keeping rcg(0) and ng+I(0) fixed, thus increasing

inequality of distances leads to a situation in which it is difficult to predict how
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the bias of ita will be affected.

These examples lead to the conclusion that distance affects the degree to

which it is biased, and unequal distances of both neighbors to it (e) affects
gg

the bias differently than equal distances. Given the susceptibility of the item

reliability methods to the quality of other items in the test, it will be investigated

which of the three methods has the smallest bias.

An alternative approach would be the use of the m (m > 2) nearest

neighbors to approximate itgg. However, neighbors that are farther away are less

similar (in the sense of replications) to item g than the two nearest neighbors.

Thus, we would expect larger bias in estimating rugg for m > 2. By using more

information from the data, however, the sampling variance of the estimates might

decrease compared with m = 2. An acceptable compromise between bias and

accuracy would, probably, depend on several characteristics of test, items, and

population. Also refer to Donoghue and Cliff (1991) and Cliff and Donoghue

(1992) who use ordinal multiple regression for a related problem in ordinal true

score theory. Rather than pursuing a more complex strategy, we will stay within

the confines of the Mokken approach and investigate asymptotic and sampling

characteristics Of reliability estimators based on the simpler methods 1, 2, and

MS. Only if none of these methods yields satisfactory results may a more

complex strategy be rewarding.

An analytical derivation of the distribution properties of the three methods

is not pursued because the ordering of the items according to their difficulty may

well vary across random samples and different approximations to rtgg will be

used. Therefore, conclusions will be based on simulation studies.
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Asymptotic Bin,: in Item Reliability Estimation Methods

Method. As a first step, the bias of each of the three item reliability

methods with respect to p(Xg) in (1) was investigated using population fractions

obtained via numerical integration across the ability distribution. This allowed to

study the performance of the three methods in the ideal case of very large

samples. Throughout this study sets of 7 items were used. Such a small set was

large enough because (1) the focus of attention was on the individual item; (2)

distance between items could be manipulated equally well in small and large sets;

(3) differences bctween extremely located items and items in beti.; een could be

studied independently of test length; and (4) with usually smaller distances

between adjacent items in longer tests, results for smaller tests were expected to

be conservative. Furthermore, logistic IRFs were used. Note, in particular, that

although our theoretical framework is nonparametric IRT, parametrically defined

IRFs and parameter distributions are necessary to simulate O's and l's.

Given 7 two-parameter logistic IRFs and a standard normal distribution of

0, numerical integration (IMSL routine DCADRE, 1982) was used to obtain the

population proportions ng (g = 1, ..., 7), ngg (g = I, ..., 7) and ngh (g, h = 1,

..., 7; g h). Using ng and 7Igg, the item reliability p(Xg) was calculated. To

calculate item reliability with approximation methods 1, 2 and MS, the

proportions 7c and n h were used: the results are denoted by pl. p2, and pms,

respectively. The difference between each of these parameters and p(Xg) equals

the bias of a specific method with respect to Cie reliability (1) for item g (g = I,

..., 7).

10
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A completely crossed 4 x 2 x 3 design was used. The first factor was

average discrimination power am (subscript M denotes mean), with four levels:

am = .5, 1, 2, and S. In combination with a standard noirnal distribution of 8

these values cover the complete range from very weak to very strong

discrimination (Meijer et al., 1993). The second factor was spread of the as

within one test, with two levels: zero spread (all 7 as equal) and positive spread

(as unequal). Zero spread corresponds to nonintersection of two-parameter

logistic IRFs. For example, for am = 1 we have ag = 1 (g = 1, ..., 7). Positive

spread corresponds to intersection of IRFs, and thus provides a violation of a

condition underlying estimation of item reliability. For example, for am = I we

have a = (1.3, 1, 1, .7, 1, 1.3, .7). This more realistic condition allows us to

investigate the robustness of tile estimation methods. The third factor was

distance between item locations. A distinction was made between sets of equally

spaced items and sets of unequally spaced items. Three levels were distinguished.

On two levels, item locations (Ss) were equidistant with median equal to zero

and distance [d(8)] equal to either .1 or .5, respectively. These levels are denoted

ES (Equidistant, Small distance) and EL (Equidistant, Large distance),

respectively. On the third level, d(8) varied more realistically within one item

set. In particular, 8 = (-.4, -.3, -.2, 0, .2, .8, 1.6) for all design cells on this level.

The third level is denoted UD (Unequal Distance).

Results. Table 1 shows a summary of the asymptotic bias results for the

complete design. For Nonintersecting IRFs (left half of Table 1) the

Insert Table 1 about here

lt;
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general conclusion for method MS is that the reliability is almost unbiased for

most Stems (results denoted by #nobi, number of items having "no bias"). Out of

84 reliabilities (12 cells), 70 have a bias smaller than 1.011, and 75 have a bias

smaller than 1.031. The largest bias (denoted min, for am = 5 and UD) is -.06.

The results for #nobi, min and max are almost always better for method MS than

for methods 1 and 2. These latter methods often yield unacceptably large biases,

for example, larger than 1.101. Method 1 often has a large bias for most of the 7

items in the test. Method 2 mostly yields large biases for the two extreme items

(for which, in fact, method 1 is used) and sometimes also for the items in

between.

For intersecting IRFs (right half of Table 1) asymptotic bias is larger for all

three methods. For method MS, 25 of the 84 reliabilities have a bias smaller than

1.011, and 53 have a bias smaller than 1.031. The largest bias is -.07 (min for am

= 5 and U13). As for Nonintersecting IRFs, the results for Intersecting IRFs are

almost always better for method MS than for the other two methods. With a few

exceptions (not all individual values are shown in Table 1), the bias of method

MS for individual item reliabilities is acceptable.

For method MS, the grand mean of the bias is .001. Main effects and

interaction effects are mostly very close to 0 (<1.010, with one exception for am

= 5 and EL (first-order interaction is -.03).

It can be concluded for method MS that: (1) bias is smaller than for

methods 1 and 2; (2).bias is often negligible or practically acceptable; and (3)

bias stays within reasonable limits even if IRFs intersect.
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Finite Sample Estimation of Item Reliability

Method. A Monte Carlo study was conducted to assess the sampling

characteristics of the three approximations to item reliability for realistic sample

sizes. Despite the larger asymptotic biases for method 1 and method 2 (Table 1),

they were also subjected to the Monte Carlo investigation because: (1) not only

bias is important but also sampling variance; (2) it could well happen that a

method with larger asymptotic bias has smaller finite sample bias, given e.g. the

additional problem of different neighbors mentioned above; and (3) methods 1

and 2 are simpler than method MS and might thus be recommended if the bias of

method MS ii only slightly larger.

Data matrices containing n(persons) x k(items) binary item scores were

generated (for the simulation procedure see Sijtsma & Molenaar, 1987) using

two-parameter logistic IRFs and a standard normal distribution of 8. The design

from the asymptotic bias study was extended by adding sample size as a fourth

factor with three levels: n = 100, 300, and 900. The sample size n = 100 can be

considered to bc typical of ad hoc test construction that is part of a larger

research project, n = 300 of test construction research as performed in a non-

commercial environment (e.g., universities, where the means to collect data from

larger samples are limited). and n = 900 (or more) of large scale test construction

on a more commercial basis.

Thus a completely crossed 4 x 2 x 3 x 3 design was used. The number of

replications in each cell of the design was 200. For each replication, the

estimated it and rEgh were used (in the order found from that matrix) for

_i_ Li
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estimation of p by methods 1, 2, and MS.

Results. Method MS has almost always a smaller finite sample bias than

methods 1 and 2. In addition, for practical purposes the bias of method MS can

be ignored. Furthermore, the standard deviation of method MS is almost always

smaller than that of methods 1 and 2 (not tabulated here). Because of these

results only the Monte Carlo results for method MS are discussed.

In Table 2 (results for bias and standard deviation for n = 300 ), it can be

seen that method

Insert Table 2 about here

MS is almost unbiased. For the widely spaced items (Table 2, EL) that have

Nonintersecting IRFs (Table 2, first half) the bias is, except for am = 5,

somewhat larger for the extreme items. For am = 5, the bias is larger for the

items in between. For unequally spaced items (Table 2, UD), bias is negligible

save a few exceptions if am = 2 and am = 5. For n = 100 (not tabulated), bias

is in general somewhat higher, especially for a = .5 and a = 1. For n = 900 (not

tabulated), bias results are highly comparable to the results obtained for n = 300.

For ii = 300 and Nonintersecting IRFs (Table 2, first half), the standard

deviation for almost all items is approximately .05. Only the standard deviation

for the extremely easy and difficult items from widely spaced sets of items

(Table 2, EL) sometimes is somewhat larger. For small sample size (n = 100; not

tabulated), the standard deviation of method MS across samples is rather large

(between .7 and .13 for the extreme items and between .04 and .09 for the items

in between). For large sample size (n = 900; not tabulated), the standard



hem Reliability

16

deviation for almost all items is approximately .025. In general, for n = 100 the

standard deviation is approximately 43 times as large as for n = 300, and for ii =

900 it is approximately 43 times as small as for n = 300.

The results for the third and fourth moments (not tabulated) are briefly

sumrnarized. For aM 1 and a = 2 the distribution of estimator MS is rather

symmetrical around its mean (all sample sizes; skewness between

-.4 and .4). For am = .5, for some items the distribution is positively skewed.

For am = 5 (all sample sizes), the distribution is negatively skewed for some

items and positively skewed for others. The peakedness of the distribution is

more or less comparable with the normal distribution for all discrimination levels

(in general, the kurtosis is approximately 3).

If IRFs intersect (Table 2, second half), the bias of method MS is generally

larger than if IRFs do not intersect (Table 2, first half). The pattern of biases

across items within a test is rather inconsistent. For a few items bias ranges

from -.08 to .05. However, for the majority of the items bias is much smaller.

Compared with nonintersection of IRFs (Table 2, first half), standard deviation

results are approximately the same if IRFs intersect (Table 2, second half). The

same conclusion holds for skewness and kurtosis results.

The grand mean of the bias is -.001 for the results pertaining to n = 300.

The vast majority of main and interaction effects i,; smaller than 1.011. A few

exceptions occur for some first, second, and third order interactions (effects

smaller than 1.021 in most cases; never larger than 1.031) for am = 5. ANOVA

results for the standard deviation show no interesting offects.
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Discussion

This study has introduced and compared three methods (method 1, method

2, and method MS) for the estimation of the item reliability that are based on the

Mokken model of double monotonicity. Method MS was unbiased,for almost all

items with the exception of a small and probably unimportant bias for the

extreme items if item difficulties are widely spaced. In addition, in all cases

studied, method MS had smaller bias than the other two reliability methods.

Reduction of the bias of method MS for the extreme items seems problematic,

because the use of, for example, the m (m > 2) nearest neighbor items rather than

the two nearest neighbors would probably reduce the standard deviation but

increase the bias, in particular for the two extreme items.

Method MS had the smallest standard deviation across random samples. For

a sample size n = 300, its standard deviation ranged from .03 to .06. For small

samples (n = 100), on the average the standard deviation was larger by a factor

of approximately 43 and for larger samples (n = 900) it was smaller by the same

factor. It may be concluded that for n = 300 and larger samples reliability

estimates are accurate enough to allow the identification of unreliable items. For

small samples (n = 100) accuracy may be too small, but it may be noted that

such samples are generally considered to be too small for serious test

construction and only allow tentative conclusions about the quality of a test and

its items. Finally, other results indicated that the sampling distribution of method

MS is approximately symmetrical in most situations that were considered here.
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Figure Caption

Three IRFs with 1Cg+1=.697, ne.500, 7C 1= 222, rg_14=.162, and

ng,g+1=420, illustrating the approximation of trg(0) by means of method 1

(left; dashed curves) and method 2 (right; dashed curves). Proportions based on

6g+1=-1, Sg=0, 80=1.5, a=1 for all three items and 0 standard normally

distributed.
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