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An optimization model is presented that allows test assemblers to control the shape

of the observed-score distribution on a test for a population with a known ability

distribution. An obi.ious application is 1RT-based test assembly in programs where

observed scores are reported and operational test forms are required to produce the

same observed-score distributions as long as the population of examinees remains

stable. The model belongs to the class of 0-1 Linear Progranuning models and

constrains the characteristic function of the test. The model can be solved using the

heuristic presented in Luecht and Hirsch (1992). An empirical example with item

parameters from the AAP Mathematics Test illustrates the use of the model.
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An Optimization Model for

Test Assembly to Match Observed-Score Distributions

A traditional objective in test assembly is to maximize the reliability of the

test. From a classical test theory point of view, maximum reliability is an attractive

feature of a test because tests with a high reliability are sensitive to the differences

in true scores between the exarninees in the population and have a low standard

error of measuremem. With the advent of item response theory (IRT), however, the

objective of test assembly changed and it became possible to assemble tests to meet

a targeted infonnation function. It was Birnbaum (1968) who paved the way for this

new objective, proposing an attractive two-stage test procedure based on item and

test information functions. The first step in Birnbaum's procedure is to establish a

target for the information function of the test. This requirement forces test

assemblers to think about the intended use of the test scores and its translation into

an optimal distribution, of the information in the test scores along the ability scale.

Once a target for the test information function is established, the test is assembled

such that the sum of the item information functions matches the target for the test

information function.

The objective addressed in this paper is new in that a model for test

assembly from a calibrated item pool is presented to match a target for the observed-

score distribution for a given population of examinees. This objective may seem

unusual because it the shares the assumption of an IRT-calibrated item pool with an

explicit interest in observed-score distributions; something usually associated with

classical test theory. However, this nev., test assembly model perfectly reflects much

6
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of modern testing practice, where IRT is increasingly used to produce high-quality

tests (i.e., using IRT item parameters estimates to assemble the test or to pre-equate

test forms) but test scores are still reported on an observed-score scale. This practice

can be found, for ex.ample, in testing programs with observed-score scales

established before IRT was introduced and where it is impossible to change

reporting practices without upsetting the consumers.

In such testing programs, it is important to have control of the observed-

score distribution. If changes in the testing program are introduced, the practical

consequences of these changes could be minimized if test assembly would offt-r the

possibility to explicitly control their effects on the observed-score distribution.

Examples of changes in testing programs that may effect observed-score

distributions are: (1) the introduction of new specifications for the item pool; (2) a

change of item calibration procedures; and (3) item parameter drift. It should be

noted that the intent here is not to control individual scores but only their

distribution. This approach is applicable, for example, if some items with new

specifications are added to the pool leading to minor changes in the relative abilities

of examinees, whereas the same observed-score distribution represents the order

between the abilities as adequately as the old pool.

Alternative Solutions

An attempt to control the observed-score distribution is also present in some

procedures already in use in educational measurement. A few examples of such

procedures are: equipercentilc equating, item matching, and test assembly using

target information functions.

In equipercentile equating, the cumulative distribution function of the

observed scores on a new test form is equated to the same function of an old test
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form. However, equipercentile equating can only take place after the new test form

is administered. In addition, this method of equating obtains its results by distorting

the observed-score scale of the new test form. A better solution would be to

assemble all new test forms to automatically produce the requited distribution of

observed scores. Attempting to achieve the latter solution is a fundamental rationale

for the procedure described here. It is, however, correct to view this new procedure

as a variant of equipercentile pre-equating.

With item matching, a new test form can be matched item by item to an

old test form. One method introduced to realize this objective is Gulliksen's (1950)

Matched Random Subsets Method. Linear Programming (LP) models that implement

Ciulliksen's method are given in Amstrong and Jones (1992) and van der Linden and

Boekkooi-Timminga (1988). If items are matched on the basis of estimates of

parameters describing their marginal and joint distributions, for example, item p-

values and covariances, then two test forms with perfect match are bound to produce

identical observed-score distributions for the same population of examinees.

However, methods of item matching may involve new and stringent constraints on

a test assembly process in addition to all other constraints that are typically needed

(e.g., the test content, the format of the items, the length of the item-related text, and

the distribution of the keys across response alternatives). As a result, in practice,

perfect matches may not be approached closely enough to produce satisfactory

observed-score distributions. The model proposed in this paper is not restricted by

any new constraints on the assembly process.

Finally, it is possible to assembly a test using target information functions.

A popular definition of parallel tests in IRT is Samejima's (1977) which considers

tests to be parallel if they have the same information function. However, unlike

classical definitions of parallel tests, Samejima's definition does not guarantee
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identical observed-score distributions. One reason is that in test assembly two

different sets of item response functions may approach the same target information

function. A more fundamental reason, however, is that a test information function

only governs the (asymptotic) distribution of error in the ability estimates on the 0-

scale but not the distribution of the true scores for the test.

An Optimization Model

The approach in this chapter is to assemble a test using a target for the

characteristic function rather than the information function of the test. This

characteristic function is the transformation needed to transform the 0-scale in the

IRT model into the we-score scale underlying the test. The true-score scale is

identical to the observed-score scale of the test. The transformation is amply

demonstrated in Lord and Novick's (1968, sect. 16.14) well-known graphs of

"typical distortions in mental measurement." Tests with identical characteristic

functions produce the same true-score distributions if the ability distribution of the

examinees is the same. For professional tests of sufficient length, with items

produced by trained item writers, the reliability coefficients typically are in the upper

.80s or lower .90s. Therefore. differences between the shapes of the observed-score

and true-score distributions are usually minor compared to the differences between

the observed-score distribution and the ability distribution on the 0-scale. Also, a

target for the charactenstic I unction of the test implicitly constrains the infonnation

function of tlw test to tu.e its larger values in the region where the characteristic

function has its steepest slope. Typically, the ability distribution is centered in this

region, and therefore the impact of random error on the true-score distribution for

9
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the test is automatically reduced for the majority of the examines. However, it is a

straightforward extension to provide the model with explicit constraints for the

information function of a test.

An attrw:tive feature of the test characteristic function is that, like the test

information function, it is additive across the items. This facts allows us to design

Linear Programming (LP) models for test assembly that minimize the differences

between a test characteristic function and its target. LP models for test assembly

have been introduced earlier for a variety of other test assembly problems (Adema,

1990a, 1990b, 1992; Adema & van der Linden, 1989; Amstrong & Jones, 1992;

Amstrong, Jones & Wu, 1992; Boekkooi-Tinuninga, 1987, 1989, 1990a, 1990b;

Theunissen, 1985; van der Linden, 1993; van der Linden & Boekkooi-Timminga,

1988, 1989).

Model

The following notation is needed to present the model. Let i=1,...,I denote

the items in the pool and let xi= (0,1) be decision variables to denote whether or not

the item will be assigned to the test Suppose that the test characteristic function,

which is defined as the sum of the item response functions P(0) in the test, has to

be controlled for a grid of fixed ability values ek, k=1,...,K. The target values for

the test characteristic function are denoted by TC(0k). Finally, the positive and

negative deviations of the test characteristic function fmm its target values are

defined as (non-negative) variables uk and vk, respectively. Then the following

model minimizes the sum of the deviations of the test characteristic function form

its target values:
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minimize I (u k+v
k= 1

P k)x k+v =
i=1

I x = n;
i.1

k=1,...,K;

(1)

(2)

(3)

(1)
Z xi n j=1,...,J; (4)

ie V
1

(2)

iiE xi nj ,

xi = 0,1, i=1 I;

4 -;

(5)

(6)
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0.

In (2) the variables uk and vk are defined. The constraint in (3) puts the length of

the test equal to n items. The constraints in (4) and (5) impose lower and upper

bounds to the numbers of items to be selected from subsets Vj, j=1,...,I, in the item

.1

pool, where each subset V is supposed to cover a content area represented in the

pool. These constraints will be used in the example below to guarantee that existing

content specifications for the test are met.

The constraints in the model are a small sample of the possibilities available

to realize test specifications when assembling tests through the use of LP models.

Any specification that can be represented as a linear (in)equality in the decision

variables can he inserted in the model. A review of other possibilities is given in van

der Linden and Boekkooi-Timminga (1989). Algorithms and heuristics for solving

LP models for test assembly are described in Adema, Boekkooi-Tiinminga and van

der Linden (1991). Amstrong, Jones and Wu (1992) and Luccht and Hirsch (1992).

An Empirical Example

To illustrate the practical use of the model in this paper, a test was

assembled from an item pool previously in use for the Mathematics Test in the ACT

Assessment Program ( AAP) The pool consisted of 520 items all calibrated under

the 3-parameter logistic model using an MML method with 0 distributed as N(0,1).
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Method

The following steps were taken in this study:

First, a 40-item test, assembled by hand to meet the specifications in the

AAP at an earlier occasion, was selected from the pool to generate a target for the

distribution of the observed scores. The target was generated assuming the abilities

in the population of examinees to be distributed N(0,1) and using the generalized

binomial as the conditional probability function of the observed score given the

ability level of the exatiliriee (Lord, 1980, sect. 4.1).

Second, the relative true-score distribution associated with the observed-

score distribution was assumed to follow a four-parameter beta density with

function:

) -1( 4+)a -1(u )b-1
+11-113(a,b),

(8)

where 2 is the relative true score, B(a,b) is the Beta function with parameters a and

b, and the density is defined on the interval [Ltd with 0.1<u1. All four unknown

parameters were estimated from the first four factorial moments of the target for the

observed-score distribution using a program by Hanson (1991).

Three, because the test characteristic function transforms the 0-scale into

the true-score scale, it can be calculated from the distribution functions of the

abilities and the true scores. Let Ci(t) be the distribution function associated with

the beta density in (8) and F(0) the N(0,1) distribution function. Then the test

characteristic function is given by:
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Td0)=40G -1(F(0)). (9)

Four, target values ior the test characteristic function were calculated from

(9) and inserted into the constraint in (2). The model was solved to assemble a 40-

item test from the pool with a test characteristic function meeting the target values

in (2). The model was solved using an adapted version of the heuristic in Luecht and

Hirsch (1992).

Five, two different versions of the model were solved. One model was the

full model with the content constraints in (4)-(5). The following six content areas

were represented in the pool: Arithmetic and Algebraic Reasoning (14); Arithmetic

and Algebraic Operations (4); Geometry (8); Intermediate Algebra (8); Number and

Numeration Concepts (4); and Advanced Topics (2). The numbers between

parentheses are the required numbers of items in the test for each of the content

areas. The second model ignored all content constraints.

Six, for both solutions the observed-score distributions were generated using

the same procedure as in Step 1.

Results

The characteristic functions of the tests assembled without and with the

content constraints are presented in Figures I and 2, respectively. Each functions

appears to closely approximate its respective target characteristic function. The

effects of imposing content constraints on the assembly process seem to be

iiegligible. Figure 3 plots the difference between the test characteristic functions in

Figures 1-2 as a function of a The difference is never larger than .26 on the true-
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score scale, which runs from 040, whereas the mean difference is equal to .18.

Figures 1-3 about here

In Figures 4-5 the observed-score distributions generateti for the two

solutions are plotted. Both for the model with and the model without the content

constraints the distributions fit the distribution of the original target test tightly over

the whole score range, except for a small bump just to the left of the middle of the

scale. It is unclear to the authors whether these bumps, which were a systematic

phenomenon in runs with other problems by the authors, are caused by the actual

composition of the item pool and/or features of the heuristic used to solve the

model. As displayed in Figure 6, the mean difference between the two distributions

is equal to zero and is never Larger in absolute value than .0008 across the observed-

score scale.

Figures 4-6 about here

Discussion

The empirical study should be repeated for other item pools and test

assembly problems to provide further support for the practical feasibility of the

model presented in this chapter. Also, it m'ght be worthwhile to study the effect of

introducing a target for the test intbrmation function as an additional contraint in the

15
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model. Such a target could be used for fine tuning the observed-score distribution

in certain regions, for instance, at its right-hand tail if the test is used to award

scholarships to the best students.

The remarkable thing about the method followed in the empirical example

is that no distribution of actual observed scores is required to set a target for the

test; the only information needed is the density of this distribution: In principle, all

a test assembler has to do is to draw a curve on paper that represents the density of

the observed-score distribution he or she hat: in mind. The method of moments,

commonly in use as a method for estimating the parameters in the beta-binomial

model and implemented in the program by Hanson used in the empirical example

in this paper, allows us to estimate the target for the true-score distribution directly

from this curve, and from iliere on it is only one step to derive a target bor the

characteristic function of the test. However, in addition to this approach, it is always

possible to administer a real test to a random sample of examinees for the

population for which the test program is designed, and use its scores as a target for

the observed-score distribution in the program.

I 0
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Figure Captions

Figure 1. Comparison between the characteristic function of the assembled

test and its target (model without content constraints)

Figure 2 Comparison between the characteristic function of the assembled

test and its target (model with content constraints)

Figure 3 Differences between the characteristic functions of the assembled

tests in Figures 1-2 as a function of 0.

Figure 4 Comparison between the density function of the observed-score

distribution on the assembled test and its target (model without

content constraints)

Figure 5 Comparison between the density function of the observed-score

distribution on the assembled test and its target (model with

content constraints)

Figure 6 Differences between the density functions of the assembled tests

in Figures 4-5 as a function of 0.
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