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Abstract

The construct validity of algebra word problems for measuring

quantitative reasoning was examined from two perspectives, one focusing on an

analysis of problem attributes and the other on the analysis of constructed-

response solutions. Twenty problems that had appeared on the Graduate Record

Examinations General Test were investigated. Constructed-response solutions

to these problems were collected from 51 undergraduates. Regression analyses

of problem attributes indicated that models including factors such as the need

to apply algebraic concepts, problem complexity, and problem content could

account for 37% to 62% of the variance in problem difficulty. With respect to

constructed-response solutions, four classes of strategies were identified:

equation formulation, ra ) setup, simulation, and other (unsystematic)

approaches. Higher achieving students used equation strategies more and

unsystematic approaches less thar lower achieving examinees. Examinees'

errors were classified into eight principal categories. Problem conception

errors were the best predictor of performance on the constructed-response

problems and on SAT-M. In contrast, procedural errors contributed to the

prediction of performance on the constructed-response problems but not to

standing on SAT-M. Overall, these results provide support for the construct

validity of GRE algebra word problems and of SAT-M as measures of quantitative

reasoning. A preliminary theoretical framework for describing performance on

algebra word problems is proposed and its usefulness for more systematic

design of tests is discussed.
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Toward a Cognitive Basis for Quantitative Ability Measures

One function of validation research is to accumulate a body of empirical

evidence that supports certain interpretations of test scores while

discounting alternative interpretations. A second, perhaps less appreciated

function, is to foster the development of theoretical accounts of performance

that can serve as a basis for more principled test design (Messick, 1989).

This latter function has become increasingly important given innovations such

as computer adaptive testing and the growing demand for tests.that provide

more detailed, instructionally relevant information. Cognitive analysis of

aptitude tests is a method well-suited 1:o serving both functions of construct

validation. In addition to producing evidence relevant to what

interpretations of test scores are and are not justified, cognitive analysis

is useful in uncovering hypothetical constructs that may underlie and

influence performance. These hypothetical constructs can be subjected

subsequently to further empirical tests and, if supported, can be used to

design items and scoring rubrics.

In the present study, our first goal was to explore thR degree to which

algebra word problems, which frequently appear on standardized tests, are

valid indicators of quantitative reasoning ability. Problems were analyzed

from two perspectives. One focused on identifying what problem attributes

contributed to problem difficulty. The other focused on describing

performance in terms of examinees' problem-solving strategies and errors.

These perspectives were coupled because it is increasingly recognized that

neither ability nor item difficulty are unidimensional psychologically

although they may be so psychometrically (Embretson, 1983; Snow & Lohman,

1989). Performance is a result of an interaction between an individual and a



problem and needs to be understood in light of both the_knowledge and skills

the individual brings to the situation and the nature of the demands Imposed

by the problem. Individuals who get a particular problem wrong may do so for

a variety of reasons. Similarly, problems that are equal in difficulty are

not necessarily difficult because of identical factors. Describing the varied

factors that contribute to problem difficulty and to proficient performance is

an important way of evaluating the construct validity of quantitative ability

tests such as those included on the Graduate Record Examinations (GRE) or the

Scholastic Aptitude Test (SAT). In addition, a more detailed understanding of

the characteristics of problems and performance is critical if tests are to be

used to provide more descriptive or diagnostic informatiln to test users.

A second goal of the present study was to describe and evaluate a

preliminary theoretical account of problem solving in a small domain (algebra

word problems) that can support detailed descriptions of individual

'performance. This account describes how problem characteristics and cognitive

processes interact in ways that can influence individual strategies and errors

as well as item difficulty and overall proficiency. The next section

describes a general theoretical model whh includes the relevant cognitive

architecture that mediates problem solving. This is followed by a description

of how the cognitive processes in this model, together with problem

characteristics, serve as the basis for mathematical problem solving.

Theoretical Model

Most current theories of human cognition assume that problem solving

reflects a limited set of capacities. Assuming normal sensory and motor

functioning, differences in problem solving can be attributed to the

interaction between a problem-solving context and a central cognitive

2
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processor that manipulates information in memory. According to this view

(Anderson, 1983; Card, Moran, & Newell, 1983; Newell, 1990) the principle

cognitive activity underlying problem solving consists in modifying working

memory based on the cognitive processor's "recognize-act" procedures. The

problem context introduces information into working memory. The current

contents of working memory are then compared to possible action sequences in

long-term memory by associative links. When a match is found or "recognized,"

the "action" in long-term memory is carried out and the contents of working

memory are updated accordingly. The contents of working memory can be used to

generate external changes or to record a solution, and the external context

can in turn change the status of working memory. Complex behavior results

from the combination of a large number of such memory transformations, using

the current state to find associated states and generate new actions.

This model suggests two central cognitive components that will influence

mathematical problem solution: processing ability and memory contents.

Processing abilities reflect the speed and capacity of information transfer in

working memory. Generally, working memory is thought to handle approximately

seven distinct chunks of information at one time (Miller, 1956). Without

sustained attention, items will remain active for only a few seconds. As a

consequence, any effective problem solving must work within these constraints.

If too much information must be retained in working memory, or if it must be

processed too quickly, the problem cannot be solved. Working memory estimates

are generally fairly stable for a wide range of tasks. However, there are

differences in what constitutes an informational memory unit or chunk.

Increased expertise results in more compact representation, and thus expands

the functional capacity of working memory.
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The second major factor underlying problem solving is the contents of

long-term memory, or content knowledge. This includes knowledge of linguistic

structure and meaning, of mathematical procedures and standard problem types,

of general problem-solving routines and heuristics, and of objects and events

in the world. Problem solving success will depend on the amounts and kinds of

knowledge available.

The utility of that knowledge will depend, of course, on retrieval which

is influenced both by problem context and a problem solver's expertise.

Various aspects of the problem context such as the phrasing of a problem or

the problem content play a role in the extent to which the information in

memory will be located and utilized. For example, a problem statement is more

likely to match a solution structure in memory if the problem statement's

surface structure fits directly with a known problem structune in memory. In

addition, in the course of problem solving, additional information may be

generated and stored externally (e.g., equations, tables, diagrams), modifying

the external problem context. The combination of the external and internal

representations then provides a framework within which the problem is solved.

The influence of problem context and the nature of memory retrieval also

vary with expertise. Experts appear to have their knowledge organized in ways .

that make it possible to detect patterns and form coherent representations

more quickly (Polya, 1973; Glaser, 1991). More proficient students appear to

have categories of problems represented in memory, and they are able to use

that categorization as the basis for retrieving a solution process (Hinsley,

Hayes, & Simon, 1977). Experts are more likely to use the problem (deep)

structure as the basis for a search of memory, whereas novices tend to use

problem (surface) features (Glaser, 1991). In addition, greater proficiency

4
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appears to be associated with improved strategies for developing qualitative

models of a situation rather than proceeding directly with quantitative

manipulations (Paige & Simon, 1966).

Cognittve Architecture and Mathematical Problem Solving

The model of human cognition outlined suggests that there are two

primary

memory.

problem

sources of problem-solving difficulty: working memory and long-term

Here we consider how that general cognitive model can account for

solving in mathematics. Working

determine how problem information can be

there is some evidence of a relationship

memory capacity limits will help

effectively structured. Although

between working memory capacity and

mathematical proficiency (Hiebert, Carpenter, & Moser, 1982), most research

suggests that working memory capacity is fairly consistent across individuals

with varying mathematical ability (Spiegel & Bryant, 1978; Briars, 1983). As

noted above, however, the functional capacity of working memory can vary with

expertise. The quadratic equation, for example, may represent a number of

separate chunks for a novice, whereas it may be a single chunk for a more

proficient mathematician.

Long-term memory, in contrast, is assumed to have no capacity limits.

Its role in problem solving is determined by content. Success in problem

solving will depend on the currently retrievable contents of long-term memory,

including knowledge of specific mathematical relations as well as general

problem-solving strategies.

Solving algebra word problems requires that individuals retrieve from

long-term memory both everyday and more specialized mathematical knowledge.

This knowledge is manipulated in working memory in order to comprehend the

problem situation and construct an integrated model or representation. This
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representation is then used to formulate a solution plan which in turn draws

on other mathematical skills for execution. This approach to mathematical

problem solving can be summarized in terms of four general cognitive

activities: problem translation, problem integration, solution planning and

monitoring, and solution execution (Mayer, Larkin, & Kadane, 1984; Mayer,

1987). The remainder of this section suggests how the properties of working

and long-term memory function jointly with item attributes to influence each

of these four activities.

Problem translation. When reading a problem, students must use

linguistic knowledge to interpret or translate what is being stated, and to

restate the givens and goals in their own terms. They must recognize the

meaning of specific measures such as "meter" or "yard" as well as more complex

terms such as "compound interest." In addition, they often must use a wide

range of factual and common-sense knowledge, such as the assumption that a

train traveling in a certain direction is moving in a straight line. While

overall linguistic complexity (i.e., length and linguistic structure of the

problem statement) is known to be associated with problem difficulty (Barnett,

1984), the contribution of the underlying mathematical complexity to this

relationship has not been fully evaluated. However, there are other, more

specific factors that are likely to affect problem difficulty. For example,

there is evidence that people have more difficulty interpreting relational

statements such as "John is six years older than Sue" than assignment

statements such as "John is nine years old" (Mayer, 1982; Loftus & Suppes,

1972). When children are asked to repeat problems after listening to them,

they often ignore the relational aspects, so that "Bill has seven more apples

than Sue" would be remembered as "Bill has seven apples" (Riley, Greeno, &
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Heller, 1983). Another source of difficulty is the need to notice significant

details such as differences in measurement units (i.e., minutes vs. hours)

among variables, or between the givens and the required answer. Domain

familiarity can also influence comprehension: If a problem statement includes

terms or concepts that are not stored explicitly in long-term memory,

translation becomes more difficult, if not impossible. Finally, problem

solvers may have to distinguish which information in the problem statement is

relevant and irrelevant to the problem solution.

Problem integration. Underlying algebra word problems are one or more

alternative mathematical structures that embody relationships (mathematical

operations) among the problem elements and specify paths from the givens to

the goals. Typically, most of the problem elements, the final goal, and some

constraints are explicit in the problem statement and identifying them is a

matter of translation or comprehension. However, other constraints and the

relationships among the problem elements are often implicit in the problem

situation and much of the challenge in solving algebra word problems resides

in uncovering these implicit relationships and constraints and organizing them

into a larger structure.

The simplest way in which this integrated representation can be achieved

is by the triggering of a previously stored solution strategy (schema) from

long-term memory. This schema can then serve as the structure for the problem

solution.

Not surprisingly, the presence of such schemata is highly dependent on

prior training and experience. Mayer (1981) analyzed algebra word problems

from secondary school algebra texts and found that these problems could be

7

.13



classified into eight families based on the "story line" and source formulas

such as "distance x rate - time" or "interest rate x principle - dividend."

He further identified approximately 100 subcategories of problem types within

these families and found that the frequency of occurrence of these problem

subcategories varied from 4 to 25 per 1000. In a subsequent study, Mayer

(1982) found that these frequencies were positively correlated with

probability of recalling a previously read problem. Furthermore, recall

errors demonstrated a tendency to convert low frequency problems into similar

high frequency ones. Mayer concluded that the presence of problem-solving

schemata is a function of the amount of attention they receive in high school.

Developing problem expertise is, in part, a function of improved

representations in memory through example and practice.

Hinsley, Hayes, and Simon (1977) suggested that competent problem

solvers used problem categorization as an important means to select a solution

schema. They found that competent students can categorize pxoblems into

problem types after hearing only a few words of the problem statement. One

subject, for instance, after hearing the words, "A river steamer..." said

"It's going to be one of those river things with upstream, downstream, and

still water. You are going to compare times upstream and downstream--or if

the time is constant, it will be the distance" (p.97). This ability to sort

problems quickly is useful and is probably one of the hallmarks of expertise

(Glaser, 1991).

This rapid triggering of schemata can also be a liability. Students

often learn schemata linked to particular contexts. For example, one "expert"

high school algebra schema is for "river problems," describing movement of a

boat with and against a current (VanLehn, 1989). However, this type of

14
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problem schema is dependent on surface features and may therefore be overly

specific. If students use the surface cues for retrieving schemata they are

likely to make errors when the problem context is different: A problem

involving a plane flying with a tail wind or head wind might not be seen as

having mathematical structure similar to "river problems." In contrast,

successful problem solvers are more likely than unsuccessful ones to

categorize mathematics problems on the basis of structural rather than surface

features (Silver, 1979). The inappropriate level at which problem types are

stored in memory may account for the widely reported difficulty students have

in new problem contexts despite substar ial success within a given context.

If the problem statement does not directly elicit a specific schema from

long-term memory, the problem solver must compose a representation that

captures the underlying quantitative structure. Although story lines can

provide some clues, similar story lines may reflect very differen:

quantitative structures (Mayer, 1982). In order to capture this relevant

quantitative structure independent of the surface context, a number of network

notations have been developed (Hall, Kibler, Wenger, & Truxaw, 1989; Reed,

1987; Reed, Dempster, & Ettinger, 1985; Shalin & Bee, 1985). For example,

Shalin and Bee analyzed the quantitative structure of word problems in terms

of elements, relations, and structures. Elements include (a) extensives or

primary quantities, (b) intensives such as rates that map two extensives to

each other, (c) differences or additive comparisons of two quantities, and (d)

factors that involve multiplicative comparisons of quantities. Many word

problems consist of one or more triads of elements combined in additive or

multiplicative relationships. One of the relationships Shalin and Bee

described, a multiplicative relationship among one intensive and two
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extensives, is typical of many algebra word problems such as those involving

speed, interest, costs, and work.

For complex problems that involve more that one triad, problem structure

describes the way that these triads are linked. Shalin and Bee found that

many two-step word problems could be classified as an exemplar of one of three

linked structures--hierarchy, shared-whole, shared-part--and that these

problem structures had an effect on problem difficulty. An illustration of a

structural representation for the following word problem is given in Figure 1:

"A person invests $10,000, some at 8 percent per year and some at 10

percent per year. The annual income from this investment is $870. How

much was invested at 8 percent?"

As seen in Figure 1, this problem can be described as having four elemental

triads or substructures related through hierarchical and shared-part linkages.

Insert Figure 1 about here

Although this underlying structure is not dleant to serve as a

description of the student's cognitive activity, it can help to explain

differences in performance. For example, because of working memory capacity

limitations, the more elements and relationships there are, the more difficult

a problem is likely to be. However, knowledge gbout basic, complementary

mathematical relationships among elements such as "distance, rate, and time"

or "dividends, interest, and principal" should help individuals to group or

chunk subparts of a problem, and this knowledge may vary in accessibility for

different problem classes. Integrating these chunks into a larger structure

requires recognizing constraints that are operating in the problem situation.

10



A constraint in the above problem is that the income from the two investments

adds up to the total income.

Problems can also be characterized by a situational structure (Hall,

Kibler, Wenger, & Truxaw, 1989) mhich.preserves certain kinds of information

such as semantic and spatial relations that are lost in the quantitative

abstraction. A situational analysis may underlie solutions that emphasize

model-based reasoning and problem simulation rather than the algebraic

abstraction. For example, the above problem can be solved by recognizing that

complementary portions of the $10,000 investment are put in at each rate and

that the annual income will increase as a greater portion of the money is

placed at the higher (10%) rate. A table of possible solutions with gradual

convergence can then be constructed.

Although quantitative and situational structures do not constitute

psychological models, they do specify structural

possible representations. These representations

solution strategies. For example, problems with

constraints that influence

can in turn influence

concrete temporal intervals,

such as the one above, are amenable to a situational analysis with discrete

temporal units. As a consequence, it is feasible to use a representation that

models successive time int:-.rvals in order to converge on a solution. In

contrast, problems that specify a value in "abstract" rather than concrete

increments (e.g., "y seconds" in Problem #3 or "K kilometers" in Problem #15,

see Appendix A) do not yield a straightforward situational mapping; such

problems therefore are less likely to be solved using a modeling/simulation

approach.

Solution planning and monitoring. For any given problem, there are

multiple approaches to a solution. The chosen approach will depend on how the

11



problem has been translated and whether or not an appropriate schema has been

retrieved. In addition, the approach will depend on the kinds of strategic

knowledge a student has stored in memory. For example, a student may try

decomposition in which a problem is broken down into constituent parts; he or

she may use backward reasoning in which a goal state is specified, components

of the target equation are set as subgoals, and subgoals are in turn broken

into finer subgoals until a solution can be achieved by substitution or simple

computation. While a plan prescribes the actions that should lead to problem

solution, the effectiveness of the plan and the accuracy with which actions

are executed need to be evaluated or monitored as the plan is implemented.

Although planning has been shown to aid problem solving (Schoenfeld,

1979), empirical studies indicate that its use by students is very limited

(Branca, Adams, & Silver, 1980; Briars, 1983). More competent problem-solvers

tend to identify an appropriate schema which requires a specific solution

plan, to monitor the succesp of their progress as they work on their solution,

and to verify the result. Less competent problem solvers often approach a

problem at a superficial level, without adequate planning. Lester (1983)

found that poor problem solvers often use keywords as the basis for

determining which operators to apply, and then apply the chosen operators

directly to the numbers in the problem statement. Less competent problem

solvers likewise tend to assume that there is nne rather direct solution and,

as a consequence, fail to monitor and evaluate their solutions as they are

working (Briars, 1983).

Because planning and monitoring are superordinate to, and integrated

with other aspects of problem solving, few factors can be identified that have

a unique impact on specific problem-solving activities. One exception may be



the nature of the problem goal which can be classified as either a quantity or

as an expression containing a variable. The presence of a variable in a goal

would seem to make it more difficult to evaluate the reasonableness of a

result. For example, finding that a car was.traveling 600 miles an hour

should alert an individual to a possible error in the solution. However, an

answer of x/7 miles per hour cannot be so readily evaluated.

Solution execution. Once a sequence of steps has been planned, the

solution must be implemented by executing those steps. In general, this

consists of a series of computations as well as symbolic manipulations.

Typically, more competent students will plan the whole solution before

execution, whereas the less competent students may execute portions of an

incomplete set of plans before formulating further steps. In either case, the

difficulty of these steps will again depend on the extent to which they are

already stored in memory and can be simply retrieved.

For most word problems, some simple procedures (such as addition of two

single-digit numbers) can generally be solved by rote; the relevant "known

facts" are retrieved from memory as needed (Fuson, 1982). More complex

procedures, however, may require a sequence of steps that present multiple

opportunities for making errors. There are probably at least two sources for

errors in execution. First, the student may retrieve a procedure that is not

specified in enough detail. For example, he or she may move a variable by

simply removing a value from one side of the equation and subtracting it from

the other, a procedure that works for addition, but not for subtraction.

Second, although a student may have the correct procedure in long-term memory,

an error may be produced by the incorrect execution of an operation from
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working memory. For example, a decimal point may be placed inappropriately,

or a value may be changed inadvertently during transcription.

In the ideal case, translation, integration, planning and monitoring,

and execution tend to proceed in a linear manner without error or

inefficiency. However, the more common case includes substantial movement

between the various stages. A solution, for example, is partially executed

and a difficulty is encountered. The student might then go back to read the

problem again, and generate a new translation. VanLehn (1988) has suggesi:ed

that the difficulties in a solution strategy or the "impasses" are critical to

an understanding of student solutions. Students do not follow a linear path,

but rather when they encounter a difficulty, they search for a "repair" that

generates a solution within the new context they have constructed in their

solution effort.

Empirical Analysis

This paper uses the theoretical model described above to account for

performance on a set of algebra wo....d problems. More specifically, an attempt

is made to provide a preliminary cognitive rationale for word-problem

performance on the GRE General Tests's quantitative section. To that end,

detailed analyses are performed on student solutions to identify strategies

and errors in a set of typical word problems. These analyses are placed

within the context of the way in which cognitive processes interact with item

attributes to account for performance.

Method

Materials

All word problems (excluding quantitative comparison problems) were

identified on disclosed versions of the GRE General Test quantitative sections

20
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administered from 1985 to 1989. This problem pool was composed of 75 problems

that were classified into categories of Equation, Probability, Distance Rate

x Time, Interest, Work, and Graduated Rate by an ETS test developer. Twenty

problems, shown in Appendix A, were selected from the four latter categories.

These 20 problems had been administered in a multiple-choice format on the

GRE. In the present study they were administered in a constructed-response

format. Problem difficulty, as measured by equated delta values for different

samples of e-,aminees who took the GRE, is shown in Table 1. (Equated delta is

a transformation of percent correct with a mean of 13 and a standard deviation

of 4, and is comparable across samples of examinees. In contrast with percent

correct, equated delta and difficulty are pcsitively related: the more

difficult a problem, the higher the equated delta). The mean equated delta

was 13.48, indicating that this set of problems is of average difficulty.

Insert Table 1 about here

Problem representations. As noted earlier, there are numerous

alternative representations that can be formulated for any given problem

statement. For purposes of our analysis, we used two alternative

representations that capture essential problem information in a parsimonious

form for each of the twenty problems. The first of these consisted of one or

more equations that incorporated all the relevant values and variables from

the problem statement, any implicit values or other necessary variables, and

the relationships among these values and variables as concisely as possible.

(These equation-based representations for all twenty problems are included in

Appendix A.) These equations were developed by two of the authors in

15



consultation with another indtvidual with expertise in developing quantitative

items for standardized tests. The second form of representation was a diagram

based on Shalin and Bee's (1985) analysis of word problems that lends itself

to qualitative descriptions of aspects of the problems' structure. Examples

of both forms of representation are illustrated in Figure 1.

Item attributes. After the problem representations were agreed upon,

each problem was coded for the attributes shown in Table 2. These attributes

were selected based on a review of previous research on problem

characteristics in mathematics (cf. Goldin & McClintock, 1984; Mayer, 1981,

1982; Scheuneman, in preparation; Shalin & Bee, 1985), as well as discussions

among the project staff. These attributes attempted to capture the essential

properties of the problem statement as well as critical features of each of

the two alternative problem representations.

Insert Table 2 about here

Sub'ects. Fifty-one undergraduate students at The Catholic University

of America were recruited as part of a course requirement in Introductory

Psychology. Thirty-three students were female and 18 were male. Four

students were in the Nursing School, 10 in the School of Engineering and

Architecture, and 37 were in the School of Arts and Sciences; of this last

group, 25 had selected majors--17 in humanities, 3 in math or science, 2 in

the Social Sciences and 3 in Business. SAT scores were available for

forty-one of the subjects. In those cases in which students had taken the

test more than once, the highest score was used. For these students, the mean

SAT-M score was 578 with a standard deviation of 91; the mean SAT-V score was

16 *2.



506 with a standard deviation of 74. In contrast, mean scores for all

examinees in 1987, the year most subjects would have taken the SAT, were 476

(SD122) for SAT-M and 430 (SD-111) for SAT-V (College Board, 1987).

Procedure

All problems were presented in open-ended format, with no answer options

available. After completion of consent forms, students received general

instructions together with a set of twelve word problems which they solved at

their own pace. When they had completed those problems, students were given

twelve algebraic equations to solve which tapped the requisite symbolic and

computational skills needed to solve the word problems; these procedural

problems are not discussed further here. Finally, after completing the

equations, the students were given an additional eight word problems. The

entire session lasted from one to two hours depending on the individual. No

supplementary materials or calculators were available during the session.

Scoring of solutions

Each problem was analyzed for the correctness of the end result and for

the presence of any errors in the solution. A solution was considered

"correct" if the answer was exact, if it was more precise than requested, if

it differed from the desired answer only by precision beyond the first decimal

place, or if the afiswer was\correct given a plausible alternative reading of

the problem stem. For example, one problem (#1) asked for the number of

"complete steps" required. The answer "115.2" was not in complete steps, but

was otherwise accurate and therefore was considered correct. In determining

the presence of errors, the presumption was in favor of the student. If the

end result was correct, no error was assigned unless it could be clearly
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established how the error resulted in a correct end result. There was a

negligible number of such solutions.

Analysis of strategies and errors

Each solution was analyzed for the.strategies used and errors made.

Since most students appeared to use one dominant approach, the analysis

considered only the final strategy for each problem. An initial taxonomy of

strategies and errors was developed by one of the authors based on the actual

solutions and test developer suggestions. This taxonomy was expanded as

necessary by two research assistants who reanalyzed each problem. A subset of

problems was then analyzed again by one of the authors. Any discrepancies or

questions were resolved by joint analysis with the research assistants.

Thirty responses with their analyses were then presented to a test developer

for final confirmation of the structure of the taxonomy.

Results

Responses were available from nearly all subjects for all problems. Of

the 1020 solutions (51 subjects X 20 problems) data was missing for 25

responses. In 6 cases, it was not possible to tell if the subject had

unintentionally skipped the problem. For the remaining 19 cases, the

omissions were clearly intentional and were treated as errors.

Percent correct for each problem is shown in Table 3. Mean performance

across subjects was 42% correct (S.E. 3.5), and varied across subjects from

0% to 85% on the 20 problems. Only one quarter of the subjects got at least

50% of the problems correct and only three subjects got at least 75% of the

problems correct.

18



Insert Table 3 about here

Performance in this study was highly correlated with standard measures

of problem difficulty and student proficiency. The results from the sample of

51. subjects showed a difficulty ordering very similar to that obtained when

these problems were administered nationally in multiple-choice format.

Problem difficulty as measured by percent correct for our constructed-response

sample correlated -0.87 with the GRE equated deltas based on national

administrations.

For the forty-one subjects for whom SAT scores were available, SAT

scores were positively correlated with percent correct (Pearson r with SAT-M =

0.74; with SAT-V - 0.53). Using a least squares simple linear multiple

regression, it was found that the stronger relationship was with mathematical

ability (b - 1.33; t(38) - 5.51, p< .01) although there was also a reliable

effect of verbal ability (b - .63, t(38) - 2.12, p<.05); the adjusted R2 for

both variables together was 0.58.

Item Attributes

Preliminary analysis was concerned with identifying attributes that

occurred with reasonable frequency in this small set of items and determining

if these attributes were related to item difficulty. Two measures of item

difficulty were used: the percent correct obtained in the current study

(constructed-response format) and the equated delta from the GRE

administrations (multiple-choice format). The fact that only 20 problems were

available limited the sensitivity of the analyses of item attributes.

Dichotomous variables were included in the analysis only if there was a
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minimum of five instances of the less-frequent value for the set of 20

problems. This resulted in the exclusion of some potentially interesting

attributes. For example, having to express an answer in terms of a variable

rather than a quantity seemed to make problems particularly difficult

(Problems #3, #13, and #15), but given the small number of instances, the

specific contribution of this variable could not be evaluated.

In Table 4, first order correlations between measures of problem

difficulty and item attributes are presented. (The coding for each problem on

these attributes is presented in Appendix B.) These attributes are grouped

into categories on the basis of both logical analysis and intercorrelations

among the attributes. The first category, labeled "Algebra," consisted of only

one attribute, the appearance of a variable more than once in the equation-

based representation. This attribute tended to have low to moderate

correlations with other attributes (-.03 to .43) and was a particularly good

predictor of the difficulty of constructed-response problems.

Insert Table 4 about here

The finding that the "Algebra" attribute was related to difficulty is

important. Many problems in our set were "non-algebraic" in that they coul-1

be represented using only one variable and solved through a series of

arithmetic operations without any need to manipulate variables. Other

problems, however, required either more than one variable or the repetition of

a variable in the representation. For these problems, examinees had to engage

in some minimal algebraic thinking such as representing one variable in terms

of another or expressing an answer in terms of a variable. Thus, thc
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application of algebraic concepts, which requires abstraction from a context

and fosters generalization and formalization of the problem situation,

characterized some of the more difficult problems. According to the

Curriculum and Evaluation Standards of the National Council of Teachers of

Mathematics (1989), the ability to represent quantitative situations with

expressions that include variable quantities is a central competency that

should be developed in the high school years if not earlier. The NCTM

standards state that an "understanding of algebraic representation is a

prerequisite to further formal work in virtually all mathematical subjects"

(p. 150). That college students--who should be proficient in representing

problems algebraically--found these questions relatively difficult is

disturbing.

The next category in Table 4 consists of four attributes that are

measures of the complexity of either the equation-based or the structural

representations of the problems. These attributes had high intercorrelations

with each other (.72- 97) and were Rood predictors of difficulty, as might be

expected given an assumption of limited cognitive capacity. Level of nesting

was an especially strong predictor of difficulty in the GRE sample.

A third group of attributes was categorized as content attributes and

included the need to convert measures of time and the presence of metric

measures or money in the problem statement. The intercorrelations among this

group of variables were moderately high and sometimes negative (-.54 to .54).

Content categories tended to be mutually exclusive: Problems that were about

money seldom included metric measures or measures of time. The time

conversion attribute logically could have been categorized as a complexity

attribute in that it requires additional arithmetic operations; however, it

21



was included in the content category because of its association with other

content variables uhich also sometimes required additional arithmetic

operations (percents to decimals or fractions). The content attributes were

among the best predicvors of difficulty in the college sample, although time

conversions and metric measures were associated with increased difficulty,

whereas money was associated with decreased difficulty, perhaps reflecting

relative familiarity with using the relevant units.

Finally, linguistic attributes, including whether there were specific

ielational words in the problem statement and the frequency of various kinds

of propositions, are grouped together in Table 4. However, the

intercorrelations of these attributes with each other were low to moderate

(.03 to .67) and similar to their correlations with complexity attributes

(-.05 to .70). The correlations of these attributes with problem difficulty

also were low to moderate.

Multiple regression analyses. Multiple regression analyses were carried

out to evaluate the independent contribution of the various attributes to

difficulty. Based on both theoretical considerations and evaluation of the

first-order correlations, a 2-variable model including the "algebra" attribute

and a complexity attribute, "level of nesting," was selected for evaluation.

Content and linguistic attributes were added to this model individually to see

if they accounted for any additional variance. The addition of linguistic

attributes did not produce significant changes in R2 and are not discussed

further. Summaries of the 2-variable and 3-variable models which included

content attributes are presented in Table 5 and in Table 6 for the college

sample and the GRE samples respectively. The 2-variable model accounted for

32% and 41% of the variance in the two measures of problem difficulty. Both
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the time conversion and the money content variables produced significant

increases in R2 for the prediction of percent correct in the college sample.

However, the fact that the content attributes in these problems are confounded

makes it difficult to interpret the effects of these attributes unambiguously.

Are "money" problems easier to solve because people are more familiar with

them (and can retrieve appropriate schema more easily) or are they easier

because they do not involve time conversions or working with unfamiliar metric

measures? For the prediction of equated delta, only the addition of the money

content variable produced a significant increase in R2.

Insert Tables 5 and 6 about here

In sum, a 3-variable model taking into account the need to apply

algebraic concepts, problem complexity, and some aspect of content accounted

for between 37% to 62% of the variance in two independent estimates of problem

difficulty in this set of 20 problems. Because these estimates of item

difficulty were obtained under very different circumstances, including

differences in subject cohort, motivation, and problem format, the influence

of these attributes seems robust. Furthermore, the finding that these

attributes, rather than linguistic ones, are related to problem difficulty, is

supportive of the construct validity of these problems as measures of

quantitative reasoning. However, 1:cause of the small number of problems in

the set, the confounding of attributes, and the /ow frequency of some

potentially important attributes, the results of these analyses must be viewed

as suggestive. In future research, problems should be designed to vary item
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attributes systematically so that their independent contributions can be

evaluated.

Strategies

Strategy taxonomy. Subjects used a wide range of approaches to the

constructed-response problems, although there was substantially more

consistency for correct than incorrect solutions. Of some 600 incorrect

solutions, 75% resulted in unique final answers given by only one subject,

indicating that the numerical end-result alone is not an adequate means to

diagnose errors in the solution process.

Three broad classes of strategy were evident: equation formulation,

ratio setups, and simulations. Equation approaches were those in which the

students attempted to establish and work through the solution primarily by

using a set of equations, with or without explicit variables. Ratio setups

used a specific set of equations that followed the canonical form a/b c/d,

with one of the terms representing the unknown. Simulations were strategies

in which the students "modeled" the situation by indicating the state at

different iterations on one variable, usually time. The frequency of

occurrence of each of these approaches is shown in Table 7.

Insert Table 7 about here

The three primary strategies accounted for 99% of correct solutions and

68% of the incorrect solutions. Of the total solutions, 2% were not attempted

and were therefore considered incorrect (labeled "N" for "No Work Shown" in

Table 7). Students used strategies that were not easily classified in 17% of

their solutions, almost all of which were incorrect. These alternative
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strategies (classified as "Other" in Table 7) included guessing and trial-and-

error. The use of these strategies varied markedly with problem difficulty;

84% of "other" strategies were for the more difficult half of the problems, as

defined by equated delta.

Equation strategies accounted for 65% of solutions overall and 81% of

correct solutions. This strategy was used more frequently than the ratio or

simulation strategies for 18 of the 20 problems. Most typically these

solutions were constructed from relatively simple, learned formulae, such as

d - rt.

Although almost all of the problems could be solved using a single

equation with appropriate conversions, relatively few subjects followed that

strategy. This was particularly noticeable with problems which required the

statement of one term of the equation in terms of another. For example, in

Problem #4, if the time of the first train were represented as x, the time of

the second train would be x-2. In Problem #5, if the amount invested at 8%

were represented as 7, the amount at 20% would be "$10,000 - However,

only 14 of the subjects used this approach on at least one of these two

problems. Surprisingly, only 4 subjects used the procedure on both problems,

suggesting that the context was important in procedure selection.

More commonly, subjects attempted to decompose the problem into its

constituents. Most solutions employed the strategy of isolating the smallest

possible step and incrementally adding to those steps. This approach appears

to be followed even in cases in which this approach is not most efficient.

For example, Problem #6 asks how long it would take to double the principal of

$750 given an annual interest rate of 5%. For that problem, 90% of the

forty-two subjects who had an identifiable strategy included the specific
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dollar amount in their solution, the vast majority determining the yearly

return of $37.50 and then dividing $750 by that amount to arrive at a solution

of 20 years. In this case, however, the specific dollar amounts could have

been ignored since, for any principal amount, it would take 20 years to reach

100% at 5% per year.

Ratio setup was the preferred strategy for Problem #1 and constituted at

least 10% of ehe solution strategies in five other cases (Problems #2, #3, #8,

#9, and #15). These problems can be identified as those in which the

structure of the problem maps reasonably directly onto a ratio. The canonical

form of such problems is: If quantity-A of unit-1 is generated in quantity-B

of unit-2, what quantity-C of unit-1 will be generated in quantity-D of

unit-2? Problem #1 has the simplest and most direct mapping from text to

ratio and is the one for which this strategy is most successful. When a time

transformation (Problems #3, #8, and #15), a variable (#3) or a constant (#15)

is introduced, the strategy becomes less frequent and less successful.

Finally, simulation was the preferred strategy for problem #5; students

estimated the amount invested at 8% and the amount at 10%, determined the

outcome, and then revised their estimates. Simulations also constituted the

strategy for over 10% of the solutions in three other instances (Problems #4,

#10, and #11). In each case, the student attempted to determine the target

values for each increment of time until a solution was achieved. For example,

a student would indicate the distance from the station for each of two trains

at each hour (Problem *4).

Situational determinants. Based on the large percentage of "standard"

strategies associated with correct solutions, it appears that, whenever

possible, subjects tried one of a very limited number of known procedures.
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The key to using prior knowledge is being able to retrieve the appropriate

"schematic" elements and to combine those components to construct a

satisfactory representation. Forming such a representation, however, depends

on several factors including the surface context of the problem and its

linguistic structure.

The surface context serves as one clue to solution strategies. For

example, one of two approaches was usually applied to the train catch-up

problem (#4). Of the 40 subjects who had an identifiable strategy, 50% used

equations that took into account the discrepancy between the trains while 42%

set up some form of table for a simulation of the two train states. Surface

context, however, can also elicit the wrong approach. On Problem #6, which

involved an interest bearing account, many students assumed that the problem

concerned compound interest, although only simple interest was required.

The linguistic structure of the problem stem can also induce certain

strategies. For example, problem #1 maps directly onto a ratio strategy. For

that problem, a ratio approach accounts for 57% of correct solutions. The

linguistic structure can also interfere with problem solution when it appears

to match the quantitative structure, but does not. For example, Problem #2

appears to have a ratio structure that can be expressed as

"time-1:speed-1::time-2:speed-2." In this case, the assumption is wrong since

the ratios as formulated are not equivalent.

If neither the surface context nor the linguistic structure serves as

adequate retrieval cues for solution methods, as was the case for many of the

problems, then it is necessary to abstract from the context. Subjects must

then use heuristics and more general problem-solving approaches to try to

construct a representation. Subjects could do this reasonably well for
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problems with concrete scenarios, but showed substantial difficulty when the

problem introduced variables or constants (Problems #3, #13, and #15). The

more abstract formulation appears to have prevented subjects from employing

simple schemata that they otherwise were quite capable of using. For example,

although the underlying solution structure is very similar for Problems #1 and

#3, subjects had 74% correct on Problem #1 and only 22% on Problem #3. This

difficulty seems to stem from two sources, the use of variables x and y

instead of numerical values and the introduction of a time conversion. In

fact, the presence of more than one variable in a problem and.the presumed

need to use algebraic rather than simple arithmetic concepts had a

particularly detrimental effect on students' ability to develop a coherent

approach to problem solving. The correlation of this problem attribute and

the log of the frequency of "other strategies" was .64 (p<.002), indicating

that the presence of variables led students to use other (mostly ineffective)

solution methods.

In addition, subjects appeared to use simulation when the equation

solution to a probler .7t.ald require the use of multiple instances of a

variable (Problems #4 and #5) or a variable nested in a multipart equation

(Problem #11). Presumably if subjects cannot generate the more complex

equation structures, they use a simulation strategy.

Strategies and subject proficiency. Although equation/schema strategies

were most prominent, there were individual differences in strategy selection.

Most noticeably, the more proficient subjects tended to use the equation

strategy more than the less proficient subjects. Use of equation strategies

increased with better performance (r pbis - 0.64; (49) - 5.82, 2(.01) and

with higher SAT-M scores (r pbis 0.68; (39) 6.48, 2<.01). Ratio and
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simulation strategies were used roughly equally across ability levels, whereas

strategies that could not be categorized (including guessing and trial and

error) decreased with performance (r 0A, - -0.65; t (49) - 5.96, p<.01) and

SAT-M (r - -0.59; t (39) - 5.09, 2<.01).

Errors

Error Taxonomy. As described above, each solution was individually

analyzed and each error was categorized by at least two raters. The taxonomy

attempted to provide as much detail as possible without making unnecessary

inferences about the subjects' performance. Using this approach, 17 types of

errors were identified in the subjects' solutions. These error types were

grouped into eight major error categories as shown in Table 8. (No measure of

reliability of error types or categories is provided here; the taxonomy is

intended only as an initial framework.) In cases in which no specific source

could be established for an error, that error was classified as a guess

(Table 8: I.D.)

Insert Table 8 about here

Errors and problem attributes. The frequency of occurrence of major

error types for each of the 20 problems ordered by problem difficulty is shown

in Table 9. Roughly one-third of the errors stem from problems in which

subjects fail to develop a representation that captures the problem solution

structure; these errors are labeled Problem Conception Errors (Table 9: I).

Thirteen percent of these problem conception errors are cases in which the

student solves for something other than what was requested in the problem

(I.A); almost half of this 13% was associated with one problem (#9). That
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problem involves three separate devices working independently but

simultaneously to drain a tank; many students interpret the problem as three

separate devices which are not working together and thus produce three

separate values in their answers. Another twenty percent of the errors in

this category consist of misusing the givens or in making additional

assumptions that are not part of the gtvens (I.B). Finally, two-thirds of the

problem conception errors are instances in which the student did not complete

the solution or guessed (I.C.,and I.D). In these instances, students have no

clear sense of how to proceed. This kind of error is especially evident for

problems that (a) utilize variables instead of specific quantities (Problems

#13 and #18), (b) have multiple variables in the canonical quantitax.,--

representation (#5), or (c) have a deep level of nesting (#19).

Insert Table 9 about here

The relationship between item attributes and problem conception errors

was explored through correlational analyses. Log transformations of the error

data were performed because of skewed distributions. As might be expected

from the analysis of item difficulty, both the algebra and complexity

attributes were positively related to the log of the frequency of such errors.

However, these two classes of attributes were associated with different

classes of conceptual errors. The correlations between the four complexity

attributes and "problems-with-givens" errors ranged from .47 to .58

(p's <.05). Problems that are complex, as defined in this study, typically

have more givens, and thus more opportunities for information to be misread or

misinterpreted. The algebra attribute, however, correlated .62 (p <.05) with
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failures to complete problems. Again, the need to work with variables rather

than quantities appears to have a devastating effect on the ability to develop

a coherent approacn to problem solution and led to incomplete solutions.

As might be expected, other types of errors were associated with

specific item attributes but occurred only when the problem required certain

procedures. Thus, weight errors (II.C) occurred only for Problems #13 and

#16, clock and elapsed-time errors (II.D) only for #4 and #14, and constants

and variable errors (V) almost exclusively for Problems #3, #5, #13, and #15.

In addition, almost 90% of conversion errors (VI) were associated with

Problems #3, #8, #14, #15, and #16.

In contrast, errors in labeling units (VII) and carrying out procedures

(VIII) appeared to be distributed relatively evenly across problems with two

exceptions. On Problem #1, subjects often failed to carry out the procedure

to provide an answer in "complete steps." On Problem #14, subjects frequently

failed to carry out their computations to the required two decimal places, and

in this instance, that slip affected-the outcome.

Strategies and errors. As shown in Table 7, roughly half of the

solutions using any one of the three major strategies (equation, ratio,

simulation) resulted in an error, whereas virtually all of the solutions

achieved through strategies not falling into one of these groupings produced

an error. Most categories of error occurred with each type of solution

atrategy, although the opportunity for certain errors was substantially less

for ratio and simulation strategies because they were used so much less

,frequently than equations. Schema (II.A), Plan Setup (II.B), and Plan

Execution Errors (II.E) were most common in problems that emphasized the
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equation strategy. Two categories of error, ratio (III) and simulation (IV),

could occur only in those cases in which the related strategy was employed.

Errors and subject proficiency. Each major error category was inversely

related to constructed-response performance and SAT-M score as shown in

Table 10. The strength of the contributions of each category was determined

by a least-squares stepwise regression in which percent correct for 51

subjects and SAT-M for 41 subjects were predicted from the number of errors in

each of the eight error categories. Error categories were entered in order of

the greatest zero-order correlation with the predicted variable. For

constructed-response performance, five of the eight categories (all except

ratio setup, simulation/modeling, and units) contributed significantly to the

regression, with problem conception contributing the greatest percentage of

the variance followed by procedural errors.

Insert Table 10 about here

For SAT-M, only one error category, problem conception, contributed

significant variance in the stepwise regression. Problem conception errors

decrease gradually with proficiency. Whereas specific procedural errors were

significant (but weak) indicators of how an individual did on the constructed-

response problems, they did not predict the general quantitative reasoning

proficiency measured by SAT-M.

D:scussion

Construct validity of alLebra word problems

One goal of this research was to gather evidence in support of the

construct validity of GRE algebra word problems as measures of quantitative
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reasoning ability from two perspectives. The first perspective focused on the

analysis of problem attributes and the second on the analysis of students'

solution strategies and errors. We found that problem attributes such as the

need to apply algebraic concepts, problem complexity, and problem content were

important determinants of difficulty in this small set of problems.

Furthermore, the mathematical complexity of the problems was found to be

strongly associated with difficulty whereas linguistic complexity was not.

When solution processes were analyzed, more proficient students tended

to show a greater use of systematic equation strategies and a less frequent

use of highly idiosyncratic strategies. This may reflect the fact that the

more proficient student has better problem-solving techniques, and that

proficiency is more likely to result from known techniques than from

generation of a completely novel solution strategy.

Performance on constructed-response problems in this study was highly

correlated with SAT-M scores, suggesting that our analysis and the

standardized test scores are capturing similar underlying abilities. It is

therefore plausible that the characteristics we have described can be applied

to the analysis of SAT-M scores. Greater proficiency. as measured by SAT-M,

resulted in fewer errors in each of the eight error categories analyzed. Both

constructed-response performance and SAT-M were most strongly related to

differences in the number of conceptual errors. Procedural errors played a

lesser role in specifying constructed-response performance and showed no

significant relationship with SAT-M. In sum, the major difficulty on these

problems appears to be in appropriate conceptualization and planning of a

solution, not in executing the steps or working out the equations.

33



These data provide preliminary support for the view that SAT-M

represents a measure of quantitative reasoning rather than computational

ability. Most of the problems used here, which are reasonably representative

of GRE discrete quantitative word problems, can be solved using a limited

factual base and a collection of general quantitative problem-solving skills.

They do not require retrieval from memory of facts, such as the conversions of

kilometers to miles, nor do they demand retrieval of complex formulae.

Performance differences among individuals in this context appeared to depend

on the ability to represent the problem, to recognize general algorithms, to

utilize heuristics, and to construct solutions.

Two other findings illustrate the psychological multidimensionality of

algebra word problems. First, problem attributes can be combined to predict

problem difficulty just as error types can be combined to account for

proficiency. Secondly, different problem attributes have differential effects

on students' strategies and errors. Thus, construct validity problems might

arise when examinees are tested on different sets of problems, as in computer

adaptive testing (Embretson & Wetzel, 1987). If one examinee receives

problems that are difficult because of the need to formulate an algebraic

representation while another examinee is tested on problems that are difficult

because of structural complexity, the same abilities may not be brought to

bear by both examinees. Finally, these findings suggest how more informative

descriptions of student performance might lead to more systematic problem

designs. More systematic problem designs would be fostered by a theoretical

framework linking problem attributes with individual differences in

performance, as we discuss below.

34



Integration of the theoretical framework with the study results

The data reported here fit reasonably well with a cognitive processing

model based on memory search. As students try to construct a solution

representation, they follow a limited set of strategies to achieve a

successful solution. They may retrieve a previously known "schematic"

solution, construct an equation based on problem components, employ a ratio,

or generate a solut a by simulating changes in various properties over time.

The selection of a strategy appears to depend upon the mapping between

the problem stem and representations in memory. Some problems will trigger

familiar plans for certain students (e.g., a train catch-up problem as in

Problem #4); others will map to a ratio (e.g., when a known distance and time

are followed by an unknown distance and a second time as in Problem #1); still

others will suggest a simulation (e.g., when two conditions are varying over

time until a target is reached, as in Problem #5).

Some of the more successful students write out formulae or immediately

retrieve an equation. For some problems, this is a straightforward direct

mapping. As problems become more complicated, however, equation specification

becomes a multi-step process. Solutions are constructed from partial schemata

which are modified to fit the specific problem, and individual equations are

constructed to fit meaningful substructures of the problem. For example, for

Problem #6, it is possible to write a complete equation of the form "Start

Time + (Distance-1 / Rate-1 + (Total Distance - Distance-1) / Rate-2) - FiLish

Time" and then fill in the values by appropriate substitution, but that

approach is rare. Instead, students tend to determine separately the time for

the first part of the trip, perhaps by retrieving a generalized d rt formula

and then transforming it to yield t d/r. The second distance is then
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determined, followed by the time for that distance. The separate times are

combined, and finally, the elapsed time is added to the starting clock time.

As the number of compcments to manipulate (conversions, weightings, constants,

etc.) increases, students have more difficulty maintaining that information in

memory, and, as a consequence, separating out situational components for which

they have known procedures. Problem solving appears successful in these

circumstances only if the problem can be decomposed into segments that are

manageable within memory constraints.

Problems also become more difficult as the solution procedure becomes

increasingly abstracted from the problem stem. This abstraction can result

from either the situational or the quantitative structure of the problem.

Students appear to use their understanding of the problem situation to help

mediate the decomposition of the problem and the formation of an associated

representation. Some problems do not possess a clear, concrete situational

structure; that is, it is difficult to form a specific model of the described

situation. This is especially the case with the introduction of constants or

variables as in Problems #3 and #15. In those cases, none of the simulation

strategies are successful, and the students try a large number of "other"

strategies, again almost always unsuccessfully. Students also construct

solutions based on a learned set of Quantitative structures, and problem

difficulty is therefore related to the underlying quantitative structure. In

our sample, this structure is especially complicated for problems that require

an "algebraic" equation in which a variable is used to represent more than one

instance of the concept, as in Problems #4 and #5. In those cases, there are

a substantial number of simulations and "other" strategies, presumably because

of the complexity of the appropriate equation formulation. Again, the
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frequency of non-standard strategies and the accompanying errors increase

dramatically with problem difficulty.

Since almost none of the "other" strategies generated successful

solutions, it appears to be the case that these "other" strategies (including

trial and error) are employed primarily when none of the three primary

strategies can be used. These "other" strategies frequently involve

manipulation of various subparts of the given information in the absence of a

coherent solution plan. In a number of cases, subjects make some attempt to

solve the problem, but then indicate that they-simply do not know how to

prOceed.

These results are consistent with a model of sequential memory access in

which a student retrieves the most specific solution strategy available from

memory. If a problem-specific solution is available, it is retrieved and

applied. If not, the student may try to reformulate the problem, primarily by

decomposition, to match known solution strategies. Of course, even in these

retrieval scenarios, the student may need to reconstruct or model the

situation in a way that provides an adequate mapping to representations in

memory. The more indirect the relationship between the problem statement and

the desired solution strategy--that is, the greater the abstraction--the

harder the problem.

If these more specific retrieval strategies are unsuccessful, the

student may utilize more general simulation or model building procedures. If

none of these approaches works, then students attempt to manipulate the given

information in order to generate a plausible solution.
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Evaluation of the framework and future directions

The cognitive framework presented in this study was useful for

identifying, organizing, and evaluaiing problem attributes and processing

characteristics that underlie performance on a set of algebra word problems.

Given the increasing emphasis on open-ended problems, it is especially

important to establish how such problems measure proficiency. The data here

suggest that, for our limited sample, proficiency based on constructed-

responses is highly correlated with proficiency based on standardized

multiple-choice tests. Similar results have been reported by Bridgeman

(1992). At the same time, there are differences in the importance of

attributes and types of errors in these contexts. For example, specific

problem content (e.g., money) was significantly correlated with constructed-

response performance but not.with a standardized measure of multiple-choice

difficulty (equated delta). Likewise, computational errors played a more

substantial role in success on constructed-response problems than they did in

SAT-M scores. (These SAT scores were obtained on test forms that included

only multiple-choice items.) Whereas constructed responses may provide a

better way to assess different aspects of proficiency, such responses may also

be more subject to the specifics of item construction. Interestingly, our

data support SAT-M as a measure of quantitative reasoning, suggesting that

open-ended responses may introduce other cognitive factors into the

assessment. Multiple-choice items may reduce the impact of procedural and

computational errors and increase the construct validity of the test as a

measure of quantitative reasoning (Katz, Friedman, 6, Bennett, 1993).

Expanding on this cognitive analysis will be an important part of any response

to the call for more open-ended problems in assessment. As part of that goal,
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there are many ways in which the current framework can be improved so as to

provide a more principled basis for problem development and scoring.

First, it is necessary to examine the attributes studied here in a more

systematic way with a larger sample. This examination would require

constructing specific items which show systematic variation on the relevant

attributes and gathering data to test hypotheses about the effects of those

attributes on performance. For example, the presence of a variable in the

final answer appeared to be a major factor in problem difficulty, but there

were insufficient instances to test thac relationship. In other cases,

attributes were confounded, so it was difficult to clearly isolate the

independent contributions of attributes.

Secondly, it is important to consider the generality of the sources of

problem difficulty described here. Our sample included 27% of the total word

problems from the disclosed forms of the GRE-Q over a period of five years and

62% of the word problems in the four major categories that we analyzed. It

therefore seems reasonable to suggest that our descriptions provide a good

characterization of a substantial portion of GRE-Q word problems. It is less

clear how these results would generalize to other types of problems. For

example, problems that require more algebraic manipulation (e.g., 4 x 2 -

4xy + y2 0) would be expected to result in more procedural errors. Likewise

if the problems were to require specific content knowledge, such as the

formula for the area of a circle, then content-based errors would be likely to

increase.

Third, the strategies described here account for only a limited portion

of the data; they provided only major groupings for the final strategy

selected by the students. A more detailed analysis would be needed to
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describe the patterns of solution construction and repairs that led to success

or failure. For example, it is possible that proficiency differences are

related to the sequence of strategies employed or the way in which impasses

are handled.

Finally, the framework described here needs to be extended in order to

provide more detailed understanding of the process of representation and

integration. In the present study, the phase of integration and

representation played.en important role in performance. We suggested that

success in this phase reflected individual differences in search and retrieval

from long-term memory; those students uho have appropriate representations of

the relevant type of problem in memory perform better. Thus improved problem

representation and integration may be, at least in part, a function of prior

experience with relevant problems, and such prior experience may also be

responsible for some of the individual differences in SAT-M. Nevertheless,

most of the problems we considered did not require any detailed knowledge of

facts, and could be solved with limited general problem-solving skills,

especially in the absence of any strong time constraints. However, despite

the fact that many students appeared to have the requisite quantitative

skills, they often failed to use them successfully in certain contexts. To

more fully understand these difficulties, we need to develop a clearer

understanding of the relationship between underlying mathematical structure,

item attributes (e.g., the introduction of variables), and solution

difficulty.

One hypothesis is that reasoning occurs within specific domains and that

systematic change of problem context will change the way in which problems are

addressed. Given a familiar environment, general reasoning resources could be
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more readily applied. A baseball fan could compute a range of batting

averages, but might have difficulty with determining on-time airline records

that required similar quantitative reasoning skills. An alternative

hypothesis is that there is something about the abstractive properties

independent of domain that makes certain problems hard. Similar probability

problems should be approximately equivalent in difficulty, according to this

view. In order to compare.these alternattves, it would be necessary to define

a set of probleis with similar underlying quantitative structures, but

variable contexts.

A structural representational system might be particularly useful (cf.

Hall et al., 1989; Shalin & Bee, 1944) as a principled basis for designing

problems and for analyzing responses. Problems can be designed so that

structure varies within content area and is made comparable across different

contexts (concrete as well as abstract). Then, the effects of these

dimensions can be evaluated independently. Student responses could be

analyzed in terms of their mastery of elemental structures and their ability

to integrate elemental structures into various higher-order ones in different

contexts. Student errors could be taxonomized with respect to the level of

structure at which errors occur. Other important aspects of the analyses of

student responses would involve describing the strategies they use to

represent problems in different contexts, their flexibility in applying

different strategies, and the efficiency of the strategies and problem

decompositions they use.
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Table 1

Problem Descriptions

Problem # Descriptive Key
Test Development
Classification Equated Delta

1 16 Steps Dist. - Rate x Time 8.20

2 Train Return Dist. - Rate x Time 10.80

3 xy Rate Dist. - Rate x Time 13.70

4 Train Catch-up Dist. - Rate x Time 15.40

5 8/10% Invest Interest 14.30

6 $750 Interest Interest 13.00

7 Down Payment Interest 10.40

8 Brads Work 12.00

9 "R,S,T Machines" Work 13.80

10 Lawyer Graduated Rate 9.90

11 Bricklayer Graduated Rate 12.70

12 Electricity Graduated Rate 9.80

13 h Hour Trip Dist. ,.. Rate x Time 15.60

14
1

600 Mile Dist. - Rate x Time 13.50

15 k Kilometers Dist. - Rate x Time 16.00

16 Bike Ride Dist. - Rate x Time 16.60

17 4 Machines Work 14.80

18 Workers V & W Work 15.40

19 Carpenter Work 19.80

20 Drain Tank Work 13.80

Note. Equated Delta is a linear transformation of percent correct with
a mean of 13 and a standard deviation of 4.



Table 2

Attributes of Algebra Word Problems

Attributes Based on the Problem Statement

Givens -
the number of quantities, factors, and variables that
were explicit in the problem statement

Numeric and content characteristics -
whether the problem statement included whole numbers,
fractions, decimals, percents, rates, measures of
time, distance, volume, or money

Linguistic characteristics -
counts of the number of arguments, predicates and
modifiers in the problem statement as well as whether
any relational words that express a quantitative
relation between quantities or variables such as
twice, older than, later than, appeared in the problem

statement

Distracting information -
presence of letter labels (Train T) that might be
confused with variable labels, or of quantitative
information that is irrelevant to the solution of the
problem

Attributes Based on Problem Representation

Equation-based Attributes

Implicit values-
values necesE.a.ty to represent the problem as an
equation that were not given in the problem statement

Variables in the equation -
the number of times variables appear in the equation

Operations -
the number of mathematical operations in the equation

Conversions -
whether scnle conversions such as minutes to hours or
percent to decimals or fractions are required

Nest level -
the number of levels of parentheses and/or the number
of equations in the representation
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Attributes of Algebra Word Problems

Answer form -
whether expected answer was a quantity or an
expression containing a variable

Structural Attributes (based on Shalin & Bee, 1985)

Elementary structures -
the number of lower-order groupings of quantities
and/or variables and whether they involved additive
relations among extensives (primary quantities),
additive relations among intensives (rates),
multiplicative relations among extensives and
intensives, and multiplicative relations among
extensives and factors

Higher-order structures -
the number of higher-order relations among elementary
structures and whether they involved a hierarchy, a
shared whole, a shared part, or a shared rate (a
special case of a shared part)



Table 3

Summary of Correct Responses by Problem Across Subjects

Problem *

Number of Students
Attempting a

Solution

Number of Students
with Correct
Solutions

Percent of Students
with Correct

Solutions

1 50 37 74

2 51 26 51

3 50 11 22

4 51 17 33

5 51 19 37

6 49 33 67

7 51 42 82

8 51 29 57

9 51 24 47

10 51 38 75

11 50 30 60

12 51 38 75

13 51 5 10

14 51 7 14

15 51 6 12

16 51 5 10

17 51 15 29

18 51 11 22

19 50 3 06

20 51 25 49



Table 4

Correlations Between Problem Attributes and

Measures of Problem Difficulty (n-20)

Examinee Sample

Attributes College Sample GRE Samples

Algebra

More than 1 variable in the
representation

....-

-.54* .42+

Complexity
--

Level of nesting -.40+

No. of operations in the
representation

-.31

...-

.46*

No. of elemental structures -.22 .34

No. of higher order structures -.27 .41+

Content

Time conversions -.39+ .14

Metric measures -.38+ .35

Money .57** -.36

Linguistic

Relational Word

--

-.08 .28

No. of arguments -.17 .14

No. of predicates -.24 .32

No. of connectives -.10 .16

No. of modifiers -.22 .32

Note. Performance in the college sample is expressed as percent correct. The
GRE samples' performance is in terms of equated delta.

**R<.01. *R<.05. +R<.10.



Table-5

Prediction of Problem Difficulty (Percent Correct) for College Sample:

Estimated Regression Parameters and R2 Values (n-20)

Alternative Models

1 2 3 4

Intercept 56.16. 71.48 62.97 49.17

Beta for Attributes

More than 1
variable -.48* -.39* -.38+ -.42**

Level of
nesting -.32+ -.50** -.37+ -.36*

Time
conversions -.50**

Metric
uteasures -.30

Money .54**

df (2,17) (3,16) (3,16) (3,16)

R2 .39 .60 .47 .68

Adjusted R2 .32 .54 .37 .62

Significance
of change in R2 <.01 n.s. <.001

Note. Adjusted R2 is corrected for the number of variables in the
model.

*R<.05. **2<.01. +R<.10.



Table 6

Prediction of Problem Difficulty (Equated Delta) for GRE Sample:

Estimated Regression Parameters and R2 Values (n-20)

Alternative Models

1 2 3 4

Intercept 11.19 10.34 10.73 11.92

Beta for Attributes

More than 1
variable .33+ .28 .22 .29+

Level of
nesting .55** .60** .60** .57**

Time
conversions .32+

Metric
measures .34+

Money -.36*

df (2,17) (3,16) (3,16) (3,16)

R2 .47 .56 .58 .60

Adjusted R2 .41 .48 .50 .53

Significance
of change in R2 <.10 <.10 <.05

Note. Adjusted R2 is corrected for the number of variables in the
model.

*R<.05. **p<.01. +R<.10.
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Table 8

List of Principal Error Types

I. Problem Conception

A. Misconceptions of Problem Objective

Solutions pravide information other than what is requested in the
problem statement.

Example: Problem #9. The student indicates how much water will
be drained rather than how much will be left.

B. Problems with Givens

Information concerning the given information in the problem is
misread or misinterpreted. Includes making assumptions not in the
problem statement.

Example. Problem #13. "The first third...took twice as long" is
interpreted to mean that each remaining third took twice as long,
or equivalently that the first third took "half" as long.

C. Failure to Complete

Work is terminated before a solution is reached, taken to indicate
that the student either misconstrues the problem or is unable to
generate a strategy for continuing. .

D. Guess

The student appears to have no specific direction; the failure to
achieve a correct solution could not be ascribed to any other
specific error type. In some instances students write that they
are making a guess.

II. Equation Setup

A. Scheme Failure

Solutions include use of the correct concepts, but in incorrect
relations. Major equations include d-rt, balance-rp-deposit.
Errors also include equations that demonstrate misconceptions of
"rate" and failing to differentiate events that are concurrent and
sequential.

Example: Problem #4. Rather than setting equal two simultaneous
distances (r1t1 - r2t2), the distances are added (r1t1 + r2t2 x).
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B. Plan Setup Errors

Errors in formulating a set of equations that reflect an error in

correct structure although they do not appear to be a part of a

coherent schema. This includes a few instances of misconceptions
about equations (e.g. two unknowns in one equation), confusing

rate with time, incorrectly distributing partial values, and

confusing concurrent and successive work episodes.

Example. Problem #19. 'If A would take 6 days to complete a job

and A and B take 4 days together, then B takes 1/2 of 4 or 2 days,

which is 1/3rd the rate of A.

C. "Weight" Errors

Either the rate or time associated with some events is not
appropriately weighted. Subjects frequently assume that a simple

average of two rates will give the appropriate overall rate

regardless of the time at each rate.

Example. Problem #16. If the rate to school is 0.12 kilometers
per minute and the return trip rate is 0.24 kpm, then the average

speed is (0.12 + 0.24)/2 - 0.18 kpm.

D. Clock and Elapsed Time

These are difficulties with the use of clock time or the treatment

of clock and elapsed time as the same.

Example. Problem #4. Answer given as relative rather than clock

time.

E. Plan Execution Errors

These are errors that reflect a correct plan but a failure in some

part of its implementation. The errors, however, are not merely

computational.

Example. Problem #17. Provide an answer using only 1 machine

instead of 4.

III. Ratio Setup

Solutions use matching of units (a/b c/d), but misorder the

terms or include incorrect items. Common errors, include problems

with the need to invert the labels for ratio equivalence.

Example. Problem 2: Subjects set up the equivalence

60 mph/3.5 hr - 50 mph/x hr instead of the correct version,

60/50 x/3.5.

b
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IV. Simulation/Modeling

Solutions "model" the situation typically by an explicit or
implicit table indicating incremental changes in the state of

problem variables. Errors resulted from incorrect estimates of

steps in the simulation or matching of incompatible units.

Example. Problem 2:

V. Constants and Variables

A. "Constant" Errors

50 miles ->1 hour;
+50 miles ->2 hours;
+50 miles ->3 hours;
+50 miles ->4 hours;
+10 miles ->4 hours 10 minutes

Constants are ignored, given a specific unjustified value, or used

in an inappropriate way.

Example. Problem #3. The answer is given as "x/60" without

inclusion of "y."

B. "Variable" Errors

Variables are ignored, the same variable is used for more than one
meaning, or unnecessary variables are added.

Example. Problem #5. The variable 'x' is used to represent

both the amount at 10% and the amount at 8%: ".08x + .10x $870."

VI. Conversion

Units are transformed
time units, but also

Example: Problem 2.
minutes."

VII. Units

improperly. This occurs most commonly with
includes percent to decimal conversion.

"4.10 hrs" is converted to "4 hours 10

Units are ignored, improperly combined, or misapplied. In some

cases, a solution has the correct value, but then is given an

incorrect label.
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VIII. Procedural Difficulties

A. Computational

Errors in arithmetic operations of addition, subtraction,
multiplication, and division as well as errors in precision.

B. Transcription

Errors are made in copying information from one part of the
problem to the next.
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Appendix A
GRE Algebra Word Problems and
Equation-based Representations

1. When walking, a certain person takes 16 complete steps in 10 seconds. At
this rate, how many complete steps does the person take in 72 seconds?

16 steps x72 sec = x steps
10 sec

2. A train travels from City X to City Y in 3 hours and 30 minutes at an
average speed of 60 miles per hour. If the train returns at an average speed
of 50 miles per hour, how long does the return trip take?

x 60 mph xhrs
50mph

3. If a certain object has been moving at the constant rate of x meters per
minute, how many meters has the object moved in the last 7 seconds?

(x mpm) x y sec = z meters

4. At 9:00 a.m. train T left the train station and two hours later train S
left the same station on a parallel track. If train T averaged 60 kilometers
per hour and train S averaged 75 kilometers per hour until S passed T, at what
time did S pass T?

60 mph x t his = 75 mph x (t - 2) his
9 am + t hxs = (x) o'clock

5. A person invests $10,000, some at 8 percent per year and some at 10
percent per year. The annual income from this investment is $870. How much
was invested at 8 percent?

(8%) $x + (10%) ($10,000 $x) = $870

6. Money in a certain investment fund earns an annual dividend of 5 percent
of the original investment. In how many years will an initial investment of
$750 earn total dividends equal to the original investments?

111

$750 -xyears
$750 x (5%)

A buyer must make a 15 percent down payment on the house she is purchasing
for $32,000. If she has already made a $500 deposit, how much more will she
need for the down payment?

((15%) x $32,000) - $500 = $x

*Brackets ( ) are used to indicate the need for a conversion such as between
scales of time or percents to decimals/fractions.
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8. At the rate of 36 brads per 10 seconds, how many brads does a machine
produce per hour?

36 brads x ({1 hr}) -2:brads
10 sec

9. Three devices, R, S, and T, each working by itself at a constant rate,
require 4, 8, and 12 hours, respectively, to drain 240 gallons of water. If
there are 240 gallons of water in a tank, how many gallons of water will be
left in the tank after each of the three devices has worked by itself for
exactly 1/2 hour?

..1Athx/240 ga.1 240gal 240gal)240 gal x gal
4 ka 8 hi 12 hr

10. A lawyer charges $100 for the first hour of service and $75 for each
additional hour. A bill of $625 represents how many hours of the lawyer's
services?

$100 + $75 (x hrs - 1) = $625

11. A bricklayer receives $6 per hour for a 7-hour day and 1 1/2 times his
regular hourly rate of pay for time in excess of 7 hours during a single day.
If he received $54 for a single day's work, how long had he worked that day?

($6 x 7 hi) + (11A x $6 x (x - 7)hts) = $54

12. Electricity to operate a window air conditioner costs 3 cents per hour
and to operate an attic fan 1.2 cents per hour. How many hours would the
attic fan have to be in operation for the cost to be the same as the cost to.
operate the air conditioner for 8 hours?

3 Oph x 8 hr
1.2 Oph

x his

13. The first third of a 75-mile trip took twice as long as the rest of the
trip. If the first third took h hours, what was the average speed, in miles
per hour, for the whole trip?

2t =hhrs
75 miles -xmph
(h Ins + t)

14. On a 600-mile motor trip, Bill averaged 45 miles per hour for the first
285 miles and 50 miles per hour for the remainder of the trip. If he started
at 7:00 a.m., at what time did he finish the trip?

7 , 285 miles (600 - 285) mkles {x} o'clock
45 mph 50 mph
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15. A car is travelling at an average speed of 80 kilometers per hour. On
the average, how many seconds does it take the car to travel k kilometers?

.48:7 kmhIl -xsec

16. Jane takes 50 minutes to ride her bike from home to school. She takes 25
minutes to ride her bike home along the same route. It is 6 kilometers in
each direction. What is her average speed in kilometers per hour for the
round trip?

(6 + 6) km x kmph
( (50 + 25) min)

17. The 4 machines at company K operated simultaneously and at a constant
rate r to fill 5/8 of a production order for wrenches. The remaining wrenches
needed to fill the order were produced in 3 hours with all 4 machines running
at the same constant rate r. The cost of operating each machine for one hour
was $22.00. What was the total cost of machine operation for this order?

(1 - N) order 1 order
3 hxs t his

$22 per hx pex machine x 4 machines x thxs = $x

18. Worker W produces n units in 5 hours. Workers V and W, working
independently but at the same time, produce n units in 2 hours. How long
would it take V alone to produce n units?

n units / in units n units) -xhrs
k 2 hxs 5 las

19. A carpenter worked alone for 1 day on a job that would take him 6 more
days to finish. He and another carpenter completed the job in 4 more days.
How many days would it have taken the second carpenter to do the complete job
working alone?

(1 j ob - ( (4 + 1) days x
1 j ob 1 1 job 4 days

(6 + 1) days! j x days

20. How many minutes will it take to fill a 2,000-cubic-centimeter tank if
water flows into the tank at the rate of 20 cubic centimeters per minute and
is pumped out at the rate of 4 cubic centimeters per minute?

2000 cc x min
(20 - 4) ccpm
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