
DOCUMENT RESUME

ED 388 260 IR 017 409

AUTHOR Jones, Mark K.; And Others
TITLE A Re-Usable Algorithm for Teaching Procedural

Skills.
PUB DATE 94
NOTE 7p.; In: Educational Multimedia and Hypermedia, 1994.

Proceedings of ED-MEDIA 94--World Conference on
Educational Multimedia and Hypermedia (Vancouver,
British Columbia, Canada, June 25-30, 1994); see IR
017 359.

PUB TYPE Reports Descriptive (141) Speeches/Conference
Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Algorithms; *Authoring Aids (Programming); *Computer

Assisted Instruction; Computer Software Development;
Instructional Design; Simulated Environment;
Situational Tests; *Teaching Skills

IDENTIFIERS Prototypes

ABSTRACT

The design of a re-usable instructional algorithm for
computer based instruction (CBI) is described. The prototype is
implemented on IBM PC compatibles running the Windows(TM) graphical
environment, using the prototyping tool ToolBook(TM). The algorithm
is designed to reduce development and life cycle costs for CBI by
providing an authoring environment suited for subject matter experts
who do not have instructional skills, and by supporting rapid
prototyping. The strategy and tactics are predefined; the
instructional developer need only describe the desired performance
and the environment of the performance. The specific algorithm
described implements a simulation-based reactive environment for
lezrning and practicing device operation skills. Examples would
include the operation of many electronic -r mechanical devices. The
reaction approximates the effects the learner's action would cause in
the real ervironment. The realistic reaction may be augmented by
explicit instructional guidance and feedback that would not occur
outside the instructional setting. The algorithm begins with a media
presentation, then continues with a short tutorial designed to both
introduce the procedure and to acquaint the student with some of the
learner control capabilities. After the tutorial, the heart of the
instruction commences, organized around a set of performances: a

demonstration, three levels of practice, and a self-check. Analysis
and resource preparation are discussed as two authoring activities.
The approach to designing and implementing the algorithm is general,
and should apply to other instructional outcomes. (Contains 13
references.) (Author/MAS)

Reproductions supplied by EDRS are the best that can be made
from the original document.

A Re-usable Algorithm for Teaching Procedural Skills

MARK K. JONES, ANDREW S. GIBBONS
Department of Instructional Technology

Utah State University, Logan Utah 84322-2830

DENISE C. VARNER
Southwest Research Institute

6220 Culebra Road, San Antonio , TX 78228-0510

U S. DEPARTMENT OF EDUCATION
OMre of Educational Research anc Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

0 This document haS been reproduced as
received from the person or organization
originatmg it

0 Minor changes hare been made to improve
reproduction outtlay

Pornts of view or opinions stated in this dOcu.
ment do not necesuray represent official
OE RI position Or policy

Abstract: The design of a re-usable instructional algorithm for computer-based
instruction (CBI) is described. The algorithm is designed to reduce development
and life cycle costs for CBI by providing an authoring environment suited for
subject matter experts who do not have instructional skills, and by supporting rapid
prototyping. The specific algorithm described implements a simulation-based
reactive environment for learning and practicing device operation skills. The
approach to designing and implementing the algorithm is general and should apply
to other instructional outcomes.

Problem Statement

The opportunity for repeated practice is critical to the development of procedural skills. The effectiveness
of practice may be increased by providing guidance and feedback to the learner and by structuring the practice
environment to transition in small steps from simple to complex practice situations.

Utilizing a computer to provide practice environments has several advantages. In comparison with the
real environment, a computer may be more convenient, safer, and less expensive. In comparison with human-
based instructional methods, a computer is more patient, more consistent, and available at a time and location
convenient for the individual learner. In comparison to othcr media-based instructional methods, a computer
may provide a reactive practice environment and the potential to customize the instruction to the individual
learner.

A reactive practice environment is key to learning procedural skills. The learner performs and the
environment reacts. The reaction approximates the effect the learner's action would cause in thc real
environment. This provides context for the learner and prepares for the transition from the practice to the real
environment. The realistic reaction may be augmented by explicit instructional guidance and feedback that
would not occur outside the instructional setting. Both learner and the instructional control program may vary
the conditions of the environment and the requirements for performance based upon the learner's progress.

Unfortunately, developing computer-based instruction which incorporates a reactive environment, explicit
guidance and feedback, and variable practicc conditions and performance requirements. is very expensive.
Highly specialized personnel arc required. The high cost and long timelines of development and the scarcity
of skilled personnel limit the application of this type; of instruction. It is simply not cost-effective if the
potential audience is small, the instruction will have a short useful life, or thc development is being
undertaken by a small company or intended for public education.

The goal of our research is to dramatically lower the cost of development and the required skill level of
development personnel. The approach is to provide re-usable instructional programs in which thc strategy and
tactics arc pre-defined for a particular instructional objective. Thc instructional developer need only describe
the desired performance and the environment of the performance.

299

BEST COPY AVAILABLE 2

PERMISSION TO REPRODUCE IHIS
MATERIAL HAS BEEN GRAN1E II BY

cciry. .1.1. Narks _

TO THE EDUCATIONAL HLSOlip; I ;.
INFORMATION CENTER (ERIC'

Approach

Existing computer-based instruction (CBI) authoring tools successfully address a specific problem. It is
assumed that the author, someone with teaching or instructional dcsign experience, knows what they want to
teach and how they want to teach it -- in fact they may already be teaching thc material using non-computer
means. The author is not however an experienced computer programmer, and does not know how to program
the computer to deliver the desimd instruction. The authoring language or system is designed to help the
author make the translation from what to teach and how to teach, which is known, to how to make the
computer teach, which is unknown, and to accomplish this without requiring the author to become an expert
programmer.

As computers have become more widely available, more organizations have desired to develop computer-
based instruction than there are available teachers and instructional designers. It is now commonly the casc
that the person responsible for developing CBI is not only not a programmer, but is not an experienced teacher
or instructional designer either. The skill this person is most likely to have is subject matter expertise. The
assumptions made by existing authoring systems -- that the author knows what to teach and how to teach it --
are no longer valid. In fact, lack of knowledge in these two areas may be the most important barrier to thc
development of effective CBI.

The successful solution to the problem of teachers who did not know how to program computers was not
to teach them to be programmers, but rather to provide tools that allowed them to create CBI without needing
to learn much about programming. Similarly, the solution to the problem of subjcct matter experts who do not
know much about instruction will not be to teach them to be teachers, but to provide tools which allow them to
create CBI without needing to learn either programming or instructional design.

This approach does not focus on making tools that are just "simple to use". Teaching and learning arc
complex human endeavors with many variables and incomplete knowledge. This complexity cannot be
entirely avoided, however the nature of the complexities presented to authors can be managed. The most
important step that can be taken is to assure that the authoring decisions, whether simple or complex, require
only knowledge that it is reasonable for the author to have. In other words, the contcxt of' the authoring should
be familiar to the author. In the case of a subject matter expert, it is feasible to require authors to describe the
desired performance and the objects upon which that performance will occur. While somc authoring tasks
may require authors to think more deeply about these and to describe them more explicitly than they have
before, the domain is at least familiar and accessible. On the other hand, even fairly simple authoring tasks
that require instructional or programming expertise are inaccessible to thc average subject mattcr expert.

Instruction

We have developed a prototype re-usable instructional algorithm. The protot>pe is implemented on IBM
PC compatibles running the WindowsTM graphical environment, using thc prototyping tool ToolBookTm.

The algorithm is designed to instruct algorithmic procedures in the arca of device operation. Examples
would include the operation of many electronic or mechanical devices. The specific test case for the prototype
was the performance of the Central Air Data Computer Self-Test procedure for F-16 aircraft.

The algorithm begins with a media presentation. This, and all similar media presentations. is completely
undcr the control of the author and may range from a piece of text or a graphic to a complete multi-media
presentation including digital audio and video.

The lesson then continues with a short tutorial. This is designed both to introducc the procedure and to
acquaint the student with some of the learner control capabilities. Thc learner is shown general information
about the procedure and thc sequence of steps that makc up thc procedure. The results dialog box. hich will
display the learner's progress, is introduced. The learner is also shown a list of all personnel involved in thc
procedure and (under author control) may select which role to practice. Each sct of information is presented
in a dialog box that is keyed to one of the icons in the toolbar. Aftcr this introductory tutorial, only the results
dialog will be automatically displayed again, however all dialogs arc available at the learner's discretion
throughout the instruction.

After the tutorial, the heart of the instniction commences. This is organized :round a set of performances.
Thc author may add, subtract, and customize thc performances. but b default there arc five, a demonstration.
three levels of practice, and a self-check.

300

Each performance instructs all steps of the proccdurc. Thc algorithm is designed to instruct the
performance of cach step. thc sequence of steps, who performs each step, and any tools that arc required for
thc performance of a step. In addition, the algorithm connects the strictly procedural know ledge to proccss
knowledge: information about what is happening to thc objects as they arc being acted upon in cach step.

The demonstration performance introduccs thc stcps and thcir sequences. All procedural information is
presented to the learner: thc name of the step, its order in the sequence, thc idcntity of the person responsible
for performing the stcp. any tools uscd in performing the step, and a mediated demonstration of the stcp being
performed. Thc only performance required of the learner is to repeat the performance of the step immediately
following thc demonstration. Process knowledge is not instructed.

Thc practicc levels slowly fade the cues and increase the requirements for the performance. Additionally,
proccss knowledge is taught. The learner may be asked to prcdict thz value which a property of one of the

-.objects in the environment will have after the step is performed. The learner may also be shown a summary of
the effects of a step on all properties simulated by the instruction. F:om this summary, the learner may request
an explanation of the value of any property, or explicit instruction li iking sets of input values to output values
for a selected property.

Self-check withdraws all cues and requires full performance of the procedure by the learner, including
proper ordcring of steps. selection of tools, and performance of the stcps.

Each performance of the procedure may include an introductory and conclusion media presentation. In
addition, at all times that an explicit learner response is not prompted, the learner may explore any object that
is visualized or referenced on the screen. This exploration may lead to the display of information, a media
presentation. or explicit instruction. For example, clicking on a device brings up a dialog which describes the
device and lists its properties and thcir states.

Step performance is via direct manipulation of a visualization of the performance environment. Each
object in thc environment (for example, devices, device controls, device indicators) is represented visually by a
graphic. Objects which always appear the same arc represented by a single graphic. Objects whose
appearance varies with their state are represented by a set of graphics, to each of which the author attaches a
rulc indicating for which state values that graphic is valid. The appropriate graphic is automatically selected
for display during instruction based upon the state of the represented object. Objects which represent controls
(buttons, switchcs, knobs, dials, etc.) respood during a learner performance with a popup menu of valid
settings whcn clicked by the learner. The learner then selects a setting. During a demonstration performance,
the algorithm selects the setting automatically.

Whenever any action occurs that changes the state of a control, the simulation which underlies the
visualization is updated. Each object may have defined upon it one or more properties which represent the
state values of the object. For each property the author defines a set of rules which determine the value of that
property. During a simulation cycle the rules of all properties arc interpreted and the property values updated.
Immediately afterward, the rules for all visualizations are re-examined based on thc new property values, and
the visualizations updated. From the learner's point of view, he or she clicks on a control and selectsa setting;
the control then changes to represent the new setting (for example, a toggle switch goes from off to on) and
possibly othcr devices change as well (for example, a light may be illuminated).

The simulation is not free play -- the learner may perform any action but only corrcct actions are
simulated. Incorrect actions receive feedback, which may range from a message indicating that the action is
not correct to a demonstration of the correct action. The type of feedback is determined based on the
performance level and the learner's prior actions. The decision to not support free-play simulation is based
primarily on the goal of authoring efficiency. It turns out that the definition of the rules which govern the
simulation is the most difficult and least familiar task authors must perform. A free-play simulation requires a
rule sct considerably morc complete and complex than is thc case for path-based simulation. A functional and
instructionally useful path-based simulation may be constructed with a small set of rules and may be defined
with a relatively limited knowledge of the actual inner workings of the device being simulated.

It should be mentioned that an instructional simulation of thc type described here is built for different
purposes and under different constraints than othcr simulations. Many simulations, for example those used in
engineering dcsign or prediction of natural phenomena, arc used to study the system being simulated for thc
purpose of acquiring new knowledge. These systems arc only useful to the extent that they fully and accurately
capturc the dynamics of thc system. An instructional simulation of the type described here is designed to
support a reactive environment for practicing the performance of a proccdurc. It need only account for

existing knowledge and not for new or unknown system attributcs. Thc conditions of its use are constrained.
It need not completely model the system, only that part of the system which is instructionally relevant to the
objective at hand. Nor must the model be fully accurate, in fact, it may be desirable to implement a model of
system function that is simplified as that may be more appropriate for a particular category of learner. For
example, the appropriate model for an operator of a device is not the same as the morc detailed model
necessary for repair or design of the device.

Authoring

Authoring involves two activities: analysis and resource preparation.

Analysis

The analysis required is more involved than is the case with existing authoring systems. The author is
required to carefully describe both the performance and the environment of the performance. A set of pre-
defined generalized object descriptors, or classes, is provided. These are of three types: content, instructional,
and visualization objects. Content objects represent subject matter: examples are procedures. devices, controls.
and personnel. Instructional objects define how the instruction is to be carried out; examples include lessons,
performances, and guidance settings. A set of pre-defined instructional objects is provided so that authors
need not be concerned with these, however for those authors with instructional_ design expertise the
instructional objects are available for customization. Visualization objects link to the resources (graphics,
video, audio) which represent the objects of the instructional environment.

Each class defines a set of slots, or attributes, that are valid for objects of that class. Authoring consists of
creating new objects (instances) based upon the patterns stored in the classes and providing values for the
attributes. Attribute values may be primitive types such as strings or numbers, complex types such as rules, or
links to other objects. For example, the step object has attributes for the action to be performed (a complex
type which uses a simple grammar to specify a setting for a control, for example "SET main powcr switch TO
on"), links to the person who performs the step and the tools used in the step (links to othcr content objects).
and a link to a visualization object demonstrating the step being performed.

Though the analysis required exceeds that normally performed, there arc two important advantages. First,
it makes possible the entire approach of re-usable algorithms. The algorithm is defined based upon the object
classes, and not upon any specific subject matter. Thus the algorithm is designed to teach a step, its personnel,
its tool, its demonstration and action without knowledge of any specific step. personnel, tool, etc. During
instruction, the specific elements are retrieved from the knowledge base and substituted. The algorithm may
be re-used many times, with different subject matter.

Second, the instruction is generated directly from the analysis. This differs from the standard approach of
a sequence of translations, from analysis to design to final development in some programming language. This
has several important consequences. With a single representation of thc contcnt there arc no problems of
inconsistent representations: the analysis is always up to date and reflccts exactly what is taught. Changes at
the analysis level immediately update the instruction. As a result. life-cycic costs arc dramatically reduced.
Updates and modifications to existing lessons may be carried out at the analysis level, which is the most
accessible for humans (as compared to the computer code). Within thc knowledge base, cach clement is
represented exactly once, no matter how many times it is used in the instruction. Thus updates to a knowledge
object may be made with full assurance that all uses of that object have been updatcd.

Another important consequence is support for rapid prototyping. Not all attributcs need be assigncd
values in order for instruction to run. In fact, the algorithm is designed to function completely with only a few
attributes defined, and even finished instruction may leave many attributes undefined. Missing data is
replaced by defaults and place holders. This has the most important effects in the instructional and
visualization objects. All instructional objects have pre-defined default values, so that no authoring nccd be
done at all. Visualization objccts will provide place holders, so that the instruction may be run with full user
interaction prior to the development of all or any graphic or media resources.

Rapid prototyping is an important clement of the approach towards reducing overall development costs.
Developing prototypc instruction very early' in thc analysis phase means that alternative approaches may be
explored with feedback from colleagues and othcr intcrcstcd parties. Because the prototype is the instruction.

302

rather than an abstract representation of the potential instruction (for example, a list of objectives or a
storyboard) it is more easily interpreted by those with less expertise in thc representations uscd by instructional
developers: for example. management, clients and potential uscrs. Changes suggested by these people may be
incorporated at far lower cost than is the case when the first working version of the instruction is ready only
when the development schedule is 90% complete.

Resource Preparation

Resource prcparation is thc development of graphics. video, audio, and any othcr mcdia to bc included in
the instruction. The basic work of resource preparation is unchanged: graphic artists must still draw pictures.
video production staff must still shoot video.

While the re-usable algorithm approach cannot automate picture drawing. it can positively affect thc
overall cost of resource development.

First, unlike much current video-based instruction, the resources do net carry the principal instructional
message. The algorithm accomplishes this. Resources primarily visualize the environment and supplement
the principal message. Fewer overall resources may be needed.

Resources may be re-used. Often, a scene is built from a series of graphics. each of which may bc re-used
in a variety of situations. Life-cycle costs are reduced when a part of a device changes. as only that part need
be re-shot rather than thc entire scene in which that part appears.

The rapid prototyping. which may precede resource development, or may usc cheap resources such as
camcorder video or audio captured by thc developer, means that the instruction may bc more completely
developed and critiqued before resource development commences. This should reduce the need to re-do media
production due to dcsign changes.

Finally, the management of the overall development process will have more information available that can
bc used to streamline media production. Reports may be generated from the knowledge base indicating the
number and types of media resources specified in the analysis. This information may be used to coordinate
and schedule media production.

Prior Work

This research extends our earlier work on transaction shells (Li & Merrill, 1990; Merrill. Li. & Jones.
1991). This prior work focused on teaching part structure and did not incorporate simulation. The knowledge
representation builds on that previously reported in (Jones, Li & Merrill. 1990). which in turn was influenced
by work in semantic data bases (Hull & King, 1987; Peckham & Maryanski. 1988) and object oriented
programming (Agha. 1987; Goldberg & Robson, 1983). The simulation aspect is influenced by (Towne &
Munro, 1988) and (Halff. 1990). The instructional strategy has roots in (Merrill, 1983) and (Gagne. 1985).
Notions about mental models are widely published, see for example (White & Frederiksen, 1990). Work on
rapid prototyping in software development has some parallels to courseware development. see (IEEE, 1989).

Further Work

This project has completed the first of three phases. In phase 2. a numbcr of extensions and modifications
arc planned. The most important of these are:

extensions to the content objects to represent conditional and repeated steps, branches. waits
instruction of the materials used in a step
specialized instruction for steps flagged as critical or dangerous
specialized feedback for actions flagged as common or dangerous crrors
support for all MCI devices
support for procedural attachments to resources so that they may update themselves
incorporating structural instruction: device parts and connectivity
support for multiple environment locations and explicit instruction for finding a control in a
location

maintenance of individual student profiles and customization based on the profile across sessions

303

We envision eventually creating a library of such re-usable algorithms, of which dcvicc operation
procedures are just one example.

References

Agha, G. A. (1987). .4 CTORS: a model of concurrent computation in distributed systems. Cambridge, MA:
MIT Press.

Gagne, R. M. (1985). The conditions of learning. New York: CBS College Publishing.
Goldberg, A. & Robson, D. (1983). Smalltalk-80: the language and its implementation. Reading, MA:

Addison-Wesley.
Halff, H. (1990). Automating maintenance training. Arlington, VA: Halff Resources.
Hull, R., & King, R. (1987). Semantic database modeling: survey, applications, and research issues. .401

Computing Surveys 19 (3), 201-60.
IEEE (1989). Rapid prototyping in software development. Special issue of Computer 22 (5).
Jones, M. K., Li, Z., & Merrill, M. D. (1990). Domain knowledge representation for instructional analysis.

Educational Technology 30 (10), 7-32.
Li, Z. & Merrill, M. D. (1990). Transaction shells: a new approach to courseware authoring. Journal of

Research on Computing in Education, 23 (1), 72-86.
Merrill, M. D., Li, Z., & Jones, M. K. (1991). Instructional transaction theory. Educational Technology 31

(6), 7-12.
Merrill, M. D. (1983). Component display theory. In C. M. Riegeluth (Ed.). Instructional Design Theories

and Models. Hillsdale, NJ: Lawrence Erlbaum.
Peckham, J. & Maryanski, F. (1,988). Semantic data models. ACM Computing Surveys 20 (3). 153-89.
Towne, D. M. & Munro, A. (1988). The intelligent maintenance training system. In J. Psotka. D. Massey, &

S.A. Mutter (Eds.), Intelligent Tutoring Systems: Lessons Learned. Hillsdale. NJ: Lawrence Erlbaum.
White, B.Y. & Frederiksen, J.R. (1990). Causal model progressions as a foundation for intelligent learning

environments. Artificial Intelligence 42, 99-157.

Acknowledgments

This is a team effort and would not be possible without the efforts of a number of people, including M.
David Merrill, Zhongmin Li, Scott Schwab, Mark Lacy, Lesion Drake. Vicki Napper. Jean Pratt. Richard
Cline, and Thor Anderson.

We especially appreciate the support of our sponsors. the Training Systcms Program Office of thc U.S. Air
Force Aeronautical Systems Center.

304

