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"A PRIORI VERSUS POST-HOC: COMPARING
STATISTICAL POWER AMONG ANOVA, BLOCK DESIGNS,
AND ANCOVA"

By employing a concomitant variable, block designs and
ANCOVA can be used to improve the power of traditional ANOVA by
reducing error. If subjects are randomly assigned to treatments
without considering the concomitant variable, an experiment uses
a post-hoc approach. Otherwise, an a priori approach is used if
the concomitant variable is utilized for assigning subjects to
treatments. Traditionally, a priori has been considered the more
powerful approach. The purpose of this study is to compare
statistical power of a priori and post-hoc approaches among
ANOVA, block designs, and ANCOVA under various experimental
conditions. The experimental conditions were 48 combinations of
four levels of the number of treatments (T; 2, 3, 4, 5), three
levels of the number of subjects per treatment (n; 8, 40, 72),
and four levels of the correlation coefficient between the
concomitant and dependent variables (p; .00, .28, .56, .84). The
optimal number of blocks to achieve maximum power was also
investigated.

Results indicated that a priori was not generally more
powerful than post-hoc. For ANOVA, a priori became less powerful
as T and p increased. For block designs, the preference depended
on the experimental conditions. For ANCOVA, a priori was more
powerful when T and n were small.
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A PRIORI VERSUS POST-HOC: COMPAIUNG STATISTICAL POWER AMONG

ANOVA, BLOCK DESIGNS, AND ANCOVA

The most widely used procedures to harness the positive effects of a concomitant variable are block

designs and ANCOVA. Whether to block or covary and how many blocks to use if a block design is chosen

become crucial decisions. Wu and McLean (1993, November) and Wu (1994) provided an historical review of

the problem, finding that some researchers favor block designs while others prefer ANCOVA. The most

comprehensive studies on this topic were conducted by Fe 1dt (1958) and Maxwell and Delaney (1984). Fe 1dt

analytically examined the problem using Apparent Imprecision as the criterion variable, while Maxwell and

Delaney empirically examined the problem using the Type I error rate and power in addition to Apparent

Imprecision as the criterion variables. Based on Apparent Imprecision, Fe ldt found the correlation coefficient

between the concomitant and dependent variables is the factor in choosing blocking or ANCOVA. He also

provided the optimal number of blocks to use if blocking is chosen. Feldt's findings have been cited by many

research articles and texts discussing this work (cf., Maxwell & Delaney, 1984; Wu, 1994; Wu & McLean,

1993, November, 1994b).

The recommendation to consider the correlation in choosing blocking or ANCOVA is rejected by

Maxwell and Delaney (1984); "instead, the two factors that should be considered are whether scores on the

concomitant variable are available for all subjects prior to assigning any subjects to treatment conditions and

whether the relationship of the dependent and concomitant variable is linear" (p. 136). Since Maxwell and

Delaney suggested that power might provide a different perspective from Apparent Imprecision, the number of

blocks used by them, which was based on Apparent Imprecision and recommendations by Keppel (1973) and

Winer (1971), may not result in the optimal number of blocks to achieve maximum power. This potential

limitation is magnified by the restricted experiment conditions used by them..

Wu and McLean (1994b) examined the blocking versus ANCOVA issue and estimated the optimal

number of blocks to achieve maximum power using broader and more representative experimental conditions.

They recommended that, when deciding among a completely randomized ANOVA, a block design, or

ANCOV A, researchers should consider the assumptions of the procedures and weigh the magnitude of the

'1
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power increase against the added cost of blocking or covarying. The Wu and McLean study described how

Apparent Imprecision is similar to and different from statistical power, and why the correlation between the

concomitant and dependeut variables is considered the critical factor in choosing blocking or ANCOVA based

on Apparent Imprecision. They also pointed out the potential problems with Apparent Imprecision and

ret;ommended power be used in preference to Apparent Imprecision. A comparison of power and Apparent

Imprecision and a critique of Apparent Imprecision are provided in Appendix A. Generally, the Wu and

McLean study supported the recommendation by Maxwell and Delaney (1984) to use ANCOVA in preference to

blocking if the assumptions for ANCOVA can be met. Nevertheless, results of the Wu and McLean-study

concluded that ANCOVA is not always more powerful than blocking, as suggested by Maxwell and Delaney.

The Wu and McLean study was limited to using only the post-hoc approach.

The Maxwell and Delaney study (1984) explored another dimension to the blocking versus ANCOVA

issue by using the concomitant variable to assign subjects to treatments. If the concomitant variable is not

considered when subjects are assigned to treatments, the experiment uses a post-hoc approach (Boned, 1982;

Keppel, 1973; Myers, 1979); otherwise an a priori approach is used. Maxwell and Delaney (1984) found that

ANCOVA tends to be more powerful than blocking if the same approach is selected, and a priori tends to be

more powerful than post-hoc if the same procedure is selected. The purpose of the present study is to compare

the statistical powers of a priori and post-hoc approaches among ANOVA, block designs, and ANCOVA using

broad..representative experimental conditions and varying the numbers of blocks based on statistical power.

Procedures

Experimental Conditions

This Monte Carlo study compares the statistical powers among ANOVA, block designs, and ANCOVA

under 48 experimental conditions with both post-hoc and a priori approaches. The 48 experimental conditions

are combinations of four levels of the number of treatments (T; 2, 3, 4, 5), three levels of the number of

subjects per treatment (n; 8, 40, 72), and four levels of the correlation coefficient between the concomitant and

dependent variables (p; .00, .28, .56, .84). The levels of experimental conditions were selected to achieve

equal intervals and to be representative of real world situations. The four levels of the number of treatments
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represent the most commonly used numbers of treatmeats; the three levels of the number of subjects per

treatment represent small, medium, and large sample sizes; and the four levels of the correlation coefficient

represent zero, low, moderate, and high correlation.

Method of Assignment

For the a priori approach, the required total number of subjects were randomly selected and ranked by

the concomitant variables. The highest ranked k subjects formed the first block; the second highest ranked lc

subjects formed the second block; and so on until the lowest ranked k subjects formed the nth block, where k is

the number of treatments and n is the number of subjects per treatment. The subjects in each block then were

randomly assigned to treatments. This method was chosen because of its simplicity and its ability to form the

most homogeneous blocks. With this method of assignment, the concomitant variable should be classified as

continuous according to Maxwell and Delaney (1984). For the post-hoc approach, subjects were randomly

assigned to treatments without considering the concomitant variable.

Method of Analysis

For ANOVA, the concomitant variable was not considered in the analysis. For block designs, subjects

in each treatment were blocked by their ranks on the concomitant variable. The block analyses included all

possible numbers of blocks to achieve equal numbers of subjects in each block. For example, with 72 subjects

per treatment, analyses were conducted with 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, and 72 blocks. For ANCOVA,

the concomitant variable was treated as the covariate in the analysis.

Post-hoc ANOVA (Completely Randomized ANOVA) as the Control Group

The experiment controlled the power of the post-hoc ANOVA (completely randomized ANOVA) at .50

using the effect sizes reported by Wu (1994). This allows the power of the other procedures to increase or

decrease as a function of experimental conditions and to make comparisons of the analysis procedures more

meaningful with the post-hoc ANOVA serving as a control group.

Computer Simulation System

The computer simulation system initialized by Wu and McLean (1993, November) and used by Wu

(1994) and Wu and McLean (1994b) was modified for this study. This computer simulation system has been
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demonstrated to be capable of generating data that meet predetermined specifications and carrying out accurate

simulations; also, the computer programs can be modified easily for many other studies (Wu & McLean,

1994a). For this study, paired data were generated from two linearly correlated normal populations. Data

generated in this nature will meet the assumptions of ANOVA and ANCOVA, but will not completely satisfy

the assumptions of block designs. Robustness of block designs under the circumstances has been illustrated

analytically by Fe Idt (1958) and empirically by Maxwell and Delaney (1984).

The computer programs used by Wu (1994) and Wu and McLean (1994b) were used for the post-hoc

approach in this study. The specific computer codes and a detailed description of the simulation procedures can

be found in Wu. The same seed numbers used by the two studies were used in this study. The results

demonstrated Wu's statement that experiments are replicable using the same seeds. The computer programs for

the a priori approach are slightly different from the post-hoc approach and are listed in Appendix B. The same

seeds used for the post-hoc approach were used for the a priori approach in order to compare the two

approaches based on analyzing the same sets of data.

Results

The resulting power values under each experimental condition are listed in Appendix C. Each power is

based on 3,000 analyses with a preset at .05.

Optimal Number of Blocks

Results show that the optimal number of blocks to achieve maximum power increases as the

correlation, the number of treatments, and the number of subjects per treatment increase. The optimal number

of blocks for the a priori approach is essentially the same as that for the post-hoc approach. As adjacent

numbers of blocks often yield very close power values, the optimal number of blocks has no clear-cut boundary.

In fact, the power values are almost the same as the number of blocks approaches its optimal number. This is

important for researchers because the optimal number of blocks may not be as crucial as it has been regarded,

although theoretically there exists an optimal number of blocks. The results of this study support the

recommendation by Wu and McLean (1994b) that researchers may select from a wide range of numbers of

blocks if they avoid using small numbers of blocks when the correlation, the number of treatments, and the
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number of subjmts per treatment are large, and vice versa. The optimal numbers of blocks are listed in Table

1. The purpose of this table is to show the trend that the optimal number of blocks increases as the correlation,

the number of treatments, and the number of subjects per treatment increase, rather than provide strict numbers

of blocks for researchers to follow.

Table 1

The optimal number of blocks to achieve statistical power

Correlation
Coefficient*

Number
of

Treatments

Number of Subjects per Treatnient

8 40 72

.28

2 2 10 18

3 4 10 24

4 4 20 24

5 4 20 24

.56

2 4 10 24

3 4 20 36

4 8 20 36

5 8 20 36

.84

2 4 20 36

3 8 20 36

4 8 40 72

5 8 ao 72

*Between concomitant and dependent variables.

Post-hoc ANOVA (Comnletelv Randomized ANOVA) as the Control Group

When the correlation coefficient is zero, both a priori and post-hoc ANOVAs are as powerful as or

more powerful than blocking and ANCOVA. They are more powerful when the number of subjects per

treatment (n) and the number of treatments (T), especially n, are small. This is plausible because blocking and

ANCOVA achieve no advantage over a completely randomized ANOVA when the correlation is zero and using

blocking or ANCOVA loses degrees of freedom for error. Thus, for block designs, power is diminished when
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a larger number of blocks is used. The loss of degrees of freedom has little impact when the sample size is

large, but causes significantly more power loss as the sample size becomes small.

The power of post-hoc ANOVA (completely randomized ANOVA) is controlled at .50 under all

experimental conditions. The power of a priori ANOVA is also controlled at .50 when the correlation is zero.

This is also plausible because a priori ANOVA is no different from the completely randomized ANOVA when

the correlation is zero. But the power of a priori ANOVA drops as p and T increase. For example, a priori

ANOVA loses .27 power with T=5, n=72, and p= .84. The magnitudes of the power loss under each

experimental condition are listed in Table 2. Loss of less than .02 are omitted for clarity.

Table 2

Power difference between a priori and nost-hoc ANOVA

Number of
Subjects per
Treatment

Correlation
Coefficient*

Number of Treatments

2 3 4 5

8

.28 t t t -.03

.56 t -.04 -.07 -.09

.84 t -.11 -.21 -.24

40

.28 t t t -.03

.56 t -.03 -.06 -.10

.84 t -.12 -.21 -.26

72

.28 t t t -.02

.56 t -.04 -.07 -.08

.84 t -.11 -.21 -.27

* Between concomitant and dependent variables.
t Denotes difference is less than .02.

Power of Block Desiens and ANCOVA

The completely randomized ANOVA is the best choice and there is no need to block or covary when

the correlation is zero. When the correlation is not zero, blocking and ANCOVA become more powerful than

the completely randomized ANOVA as p, n, and T increase. Neither one procedure nor one approach is

uniquely most powerful. ANCOVA is not generally more powerful than blocking and the a priori approach is
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not generally more powerful than the post-hoc approach. The relative merits of the procedures are complicated
and the choice of the optimal procedure varies depending on the experimental conditions. The power increases
for both blocking and A.NCOVA are listed in Table 3 and 4. Note that, under each experimental condition, all
procedures analyze the same sets of data with the post-hoc ANOVA (completely randomized ANOVA) serving
as the control group. The effect size of treatments is set at a specific value under each experimental condition
to control the power of the completely randomized ANOVA at .50. Thus, the increase is calculated by
subtracting the power of the completely randomized ANOVA from the powers of the optimal blocking
procedure and ANCOVA under each experimental condition. When the correlation is low (p = . 28), the
increases do not exceed .05 for either approach. When the correlation is moderate (p = . 56), the increases
range from .10 to .21. When the correlation is high (p = .84), the increases are as high as .24 to .49.

Table 3

Power increase using optimal blocking and ANCOVA for the a priori approach

Number of Treatments
2 3 4 sOptimal

Block ANCOVA
Optimal
Block ANCOVA

Optimal
Block ANCOVA

Optimal
Block ANCOVA

8

.28 t .02 t .02 t .04 t .02.56 .13 .17 .12 .16 .14 .17 .15 .17.84 .37 .46 .43 .48 .43 .46 .45 .48
40

.28 .04 .04 .03 .03 .04 .04 .03 .03.56 .16 .17 .18 .18 .17 .17 .17 .17.84 .45 .46 .46 .47 .46 .46 .48 .48
72

.28 .04 .03 .05 .05 .04 .04 .03 .03.56 .16 .16 .16 .16 .17 .16 .18 .18.84 .44 .44 .46 .46 .46 .47 .48 .48
* Denotes number of subjects per treatment.

**Denotes correlation coefficient between concomitant and dependent variables.t Denotes difference is less than .02.
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Table 4

Power increase using optimal blocking and ANCOVA for the post-hoc approach

rt * p**

Number of Treatments

2 3 4 5

Optimal
Block ANCOVA

Optimal
Block ANCOVA

Optimal
Block ANCOVA

Optimal
Block

:

ANCOVA
8 .28 t t .02 t .03 t .04 t

.56 .10 .13 .12 .14 .16 .17 .17 .18

.84 .24 .43 .32 .46 .36 .45 .40 .48
40 .28 .03 .03 .03 .03 .05 .04 .05 .03

.56 .13 .16 .16 .17 .19 .17 .21 .18

.84 .31 .4.6 .38 .47 .41 .46 .45 .48

72 .28 .03 .03 .04 .04 .05 .03 .05 .03

.56 .14 .16 .16 .15 .20 .19 .21 .17

.84 .30 .44 .37 .46 .42 .46 .45 .49

* Denotes number of subjects per treatment.
** Denotes correlation coefficient between concomitant and dependent variables.
t Denotes difference is less than .02.

Table 5

Power differences between optimal blocking and ANCOVA for the a priori approach

n* p**
Number of Treatments

2 3 4 5

8 .28 t' t t t
.56 .04 .04 .04 .02

.84 .09 .04 .03 .02

40 .28 t t t t
.56 t t t t
.84 t t I. t

72 .28 t t t t

.56 t t t, t

.84 t t t
-

t

* Denotes number of subjects per treatment.
** Denotes correlation coefficient between concomitant and dependent variables.
t Denotes difference is less than .02.
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Comparing Blockine and ANCOVA

The power differences between optimal blocking and ANCOVA for both approaches are listed in

Tables 5 and 6.

Table 6

Power differences between optimal blocking and ANCOVA for the post-hoc approach

n* P**
Number of Treatments

3 4 5

8

.28 t t t -.02

.56 .03 t t. t

.84 .19 .14 .10 .08

ao

.28 t t r -.02

.56 .03 t t -.03

.84 .14 .09 .05 .03

72

.28 t t t -.02

.56 t t t -.04

.84 .15 .09 .04 .04

* Denotes number of subjects per treatment.
** Denotes correlation coefficient between concomitant and dependent variables.
t Denotes difference is less than .02.

For the a priori approach, ANCOVA is more powerful tban the optimal blocking procedure when the

number of subjects per treatment is small and the correlation is moderate or high. For the post-hoc approach,

ANCOVA is more powerful when the correlation is high while the optimal blocking procedure is slightly more

powerful when the correlation is low or moderate and the number of treatments are large. These findings are

different from those based on Apparent Imprecision that suggest ANCOVA is consistently better than blocking

as the correlation increases (Fe 1dt, 1958). Rather, the results support Maxwell and Delaney's (1984) statement

that "the recommendation of most experimental design texts to consider the correlation between the dependent

and concomitant variables in choosing the best technique for utilizing a concomitant variable is incorrect" (p.

136).
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Comparina A Priori and Post-hoc Approaches

Overall, the a priori approach yields little advantage over the post-hoc approach. The power means of

the a priori and post-hoc approaches of all the analysis procedures over all the experimental conditions except

those with zero correlation are listed in Table 7. Tables 8 and 9 show the power differences between a priori

and post-hoc approaches for optimal blocking and ANCOVA.

Table 7

Mean powers of analysis procedures for a_priori and post-hoc approaches

Design
Approach

a priori post hoc

ANOVA .432 .500

2 blocks .630 .629

3 blocks .679 .665

4 blocks .689 .671

5 blocks .705 .684

6 blocks .708 .690

8 blocks .703 .6F0

9 blocks .715 .696

10 blocks .717 .695

12 blocks .717 .698

18 blocks .719 .700

20 blocks .721 .699

24 blocks .720 .701

36 blocks .721 .702

40 blocks .719 .696

72 blocks .720 .700

ANCOVA .723 .717

I a
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Table 8

Power differences between a priori and post-hoc approaches for optimal blocking

Number of
Subjects per
Treatment

Correlation
Coefficient*

Number of Treatments

2 3 4 5

8 .28 t t t -.03
.56 .03 t -.03 -.02
.84 .13 .12 .07 .05

40 .28 t t t -.02
.56 .04 t -.02 -.04
.84 .14 .08 .05 .03

72

_

.28 t t t -.02

.56 .02 t -.04 -.03

.84 .14 .09 .05 .04

* Between concomitant and dependent variables.
t Denotes difference is less than .02.

Table 9

Power differences between a priori and oost-hoc approaches for ANCOVA

Number of
Subjects per
Treatment

Correlation
Coefficient*

Number of Treatments

2 3 4 5

8 .28 .03 t t t
.56 .04 .02 t t-
.84 .02 t t t

40 .28 t t t t
.56 t t t t
.84

,

t t t t
72 .28 t t t t

.56 t t -.03 t

.84 t t t t

* Between concomitant and dependent variables.
t Denotes difference is less than .02.

A priori blocking is more powerful than post-hoc blocking when the correlation is high. Post-hoc

blocking is slightly more powerful than a priori blocking when the correlation is low or moderate and the

number of treatments is large. A priori ANCOVA is more powerful than post-hoc ANCOVA when the number

of subjects per treatment and the number of treatments are small. These results do not support Maxwell and
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Delaney's (1984) conclusion that the a priori approach is generally more powerful than the post-hoc approach.

However, this study does support their findings for similar experimental conditions. But, Maxwell and Delaney

used much narrower experimental conditions. Specifically, the power values in the upper-left three cells (T=2,

n=8, and p=.28, 56, and 84) of Tables 8 aad 9 actually support the results reported by Maxwell and Delaney.

The pattern of the magnitudes of power differences is analogous to that of the Maxwell and Delaney study,

where the magnitudes of differences are generally small except the one between a priori and post-hoc blocking

when the correlation is high and the number of subjects per treatment and the number of treatments are small.

Discussion and Recommendations

No one procedure or single approach is uniquely more powerful. Although the most powerful

technique to employ a concomitant variable varies depending on the experimental conditions, most of the

magnitudes of the power differences are not large enough to be practically significant. It is recommended that

researchers utilize the tables provided in this study to help select the best technique when employing a

concomitant variable.

The problems concerning utilizing a concomitant variable become complicated when considering a

variety of experimental conditions, methods of assignment, and assumptions of the analysis procedures. Despite

these complications, the results of this study show ed at choices in research practice may have little impact

because many of the power differences are small. Based on practical significance, this study suggests the

simplest rule to follow is use rezular ANCOVA (post-hoc ANCOVA) if its assumptions can be met. The

rationale for preference of blocking over ANCOVA reported by earlier experimental design texts, such as ease

of calculation and ability to test simple effects, seems to have faded away recently. With modern computer

statistical packages, ANCOVA becomes at least as easy to compute as block designs. Using regular ANCOVA,

researchers need not consider questions such as whether the concomitant variable is available before the

experiment, how to assign subjects, what is the magnitude of the correlation, and how many blocks should be

used, and still gain power though not necessarily achieve maximum power. The power differences between

post-hoc ANCOVA and the optimal procedure are of little practical significance under most experimental

conditions, and do not exceed .04 even in the most extreme cases.
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When the correlation is zero, the waste of degrees of freedom due to blocking and ANCOVA may

result in the reduction of power. Wasting degrees of freedom has little influence on power when T and n are

large but has an effect when T and n are small. For example, the power drops from .50 to .43 when using

post-hoc 8 block analysis procedure for p =.00, T=2 and n=8. Because this study uses a minimum n of 8, the

loss of one degree of freedom using ANCOVA, especially a priori ANCOVA, when the correlation is zero,

seems to have little effect on the loss of power. However, one should be cautious that the loss will increase as

n becomes smaller. Much of the criticism of the post-hoc approach is based on the ease with which researchers

can block or covary in a post-hoc manner Myers (1979) pointed out the danger of abusing post-hoc block

designs by demonstrating that reordering scores within each treatment does not change the treatment means but

generally reduces the error variance, resulting in significant Fs which "merely reflect the reduction in error

variance due to blocking rather than any variability due to treatments" (p. 155). However, Myers did not

consider the loss of degrees of freedom with block designs. Wasting degrees of freedom on some nonsense

concomitant variable would simply decrease power. Nevertheless, the caution urged by Myers should be

considered. It is often too easy to peek at the data, play with several concomitant variables, or try several

analysis procedures to achieve significant results. However, these should be considered ethical problems rather

than problems of the post-hoc approach per se. Researchers should neither block nor covary unless they can

justify the concomitant variable before the analysis. If researchers would always consider practical as well as

statistical significance, these problems could be avoided as none of these analysis techniques affect effect sizes.

One of the most interesting findings of this study is the problem with a priori ANOVA. Maxwell and

Delaney (1984) questioned this method and detected minor Type I error rate problems with it. But the Type II

error rate problem with a priori ANOVA was not detected in their study. This is because their study was

limited to two treatments. Future research could investigate the Type I error rate using broader experimental

conditions. A follow-up Monte Carlo study comparing a priori and post-hoc ANOVA by examining the sample

distributions of the variances showed that the power loss of a prior ANOVA was due to a decrease of treatment

variance and an increase of error variance while stratified instead of randomized assignment is used. The Type

II error rate problem with a priori ANOVA may provide the best example of how power can be different from
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Apparent Imprecision; the precision of a priori ANOVA is higher than the completely randomized ANOVA but

results in lower power. This may also explain why the a priori approach is not generally more powerful than

the post-hoc approach. A priori does achieve more homogeneous blocks and ensures more equal covariates

across treatments. But, the advantages are reduced by the loss of power due to stratified rather than random

assignment. Stratified assignment is still a common practice. It is believed to guarantee fairness of treatments

and avoid preexisting differences. Some suggest that stratified assignment reduces error and increases power.

Based on the results of this study, if stratified assignment is used, the concomitant variable should not be

ignored in the analysis. Since stratified assignment loses power due to non-random sampling but gains power

because of providing more homogeneous blocks for analysis, future research could investigate whether there is

an optimal combination of the number of blocks used in assignment and the number of blocks used in analysis.

Wu and McLean (1994b) suggested four reasons that Maxwell and Delaney's (1984) results differed

from theirs: (1) limited experimental conditions, (2) not including the optimal number of blocks, (3) including

the interaction in the effects model, and (4) inaccuracy of the computer simulation. The results of this study

show that not including the optimal number of blocks causes only minor power loss, and the inaccuracy of this

computer simulation and that of the Maxwell and Delaney study is unlikely because results of the two studies

support each other for similar experimental conditions. Among the four factors, the restriction of experimental

conditions and including the interaction in the effects model should contribute the most to the different findings.

Conclusions based on restricted conditions may limit generalization. As to the interaction factor, the two studies

complement each other's findings as some researchers suggest pooling the interaction variance with the error

variance when the interaction is non-significant while other researchers do not. Note that Maxwell and Delaney

did not specify that the interaction was included in the effects model. Our conclusion is based on the statement

*perform a two-way analysis of variance (ANOVA) utilizing levels of the concomitant variable as a factor in the

design" (p. 138).

A randomized complete block design is defined as a block design in which each block within each

treatment has only one observation. Lindquist (1953) used the term, treatments-by-levels design, which consists

of more than one subject in a cell, to differentiate it from the randomized complete block design. The
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treatments-by-levels design is also called the treatments-by-blocks design (Kennedy & Bush 1985). While the

randomized complete block design usually uses an additive model because there is only one observation per cell,

the treatments-by-blocks design can either use an additive or nonadditive model by excluding or including the

interaction term in the effects model. The additive model is used in this study because the interaction does not

exist in the population. Which model to be used should be based on researchers' subject matter knowledge and

should be justified before the experiment. For example, suppose the concomitant variable is an IQ score, the

dependent variable is a Scholastic Achievement Test (SAT) score, and the treatments are some teaching

methods. If researchers can justify that the correlation between the IQ score and the SAT score should not be

influenced by the teaching methods, the additive model should be used. When an additive model is used, the

concomitant variable is treated as a nuisance variable and the variance accounted for by the concomitant variable

is nuisance variance, which is out of the researcher's interest and is to be extracted to reduce error and increase

power. But, if the dependent variable is a computer attitude measure and the researcher cannot justify that high

IQ students usually have better attitudes toward computers, disregarding the teaching methods used, the

nonadditive model should be used. Under these circumstances, the concomitant variable is no longer a nuisance

variable; rather, it is a factor of interest because the researcher would want to test if a teaching method is better

for low IQ than high IQ students. In this case, the block design in form, in analysis, and in interpretation is

undistinguishable from a factorial design. The difference is that in a factorial design subjects are assigned to

each combination (cell) of factors, while in block designs subjects in each block level are assigned to treatments

and the block factor is usually intrinsic in the subjects themselves.

The question of should nonadditive block designs be categorized as block or factorial designs adds some

difficulty to the nomenclature of experimental designs. The alternative uses of terms such as blocking, factorial,

and stratification by researchers certainly add some confusion. Which model to use and whether to adhere to

the original model or revise it during the analysis process should be justified in advance. In many instances, the

researcher includes the interaction for convenience. If the interaction is non-significant, some researchers pool

the interaction variance with the error variance in order to increase power. The issue of pooling and non-

pooling is still disputed. If the interaction does not exist in the population, pooling the interaction variance with
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the error variance should provide a better estimate of the error term and increase power due to an increased

number of degrees of freedom for the error term.

Using nonadditive model suggests another question: Should the block levels formed by ranking be

treated as random or fixed? If random, the interaction should be used as the error term to test the treatment

effect (see Kirk, 1982, p. 240-241); if fixed, the within cell variance should be used as the error term (see

Fe ldt, 1958; Maxwell & Delaney, 1984). Levels based on the rank of sample subjects seem to be more fixed,

though not completely fixed, than random because ranking is deterministic instead of random. Calculating

expected mean squares seems to be the most appropriate way to obtain the error terms, which is beyond the

scope of this discussion. However, future Monte Carlo studies could block the population to obtain completely

fixed block levels. Boundaries for block levels can be set based on two principles: equal proportion or equal

interval (Fe 1dt, 1958). In research practice, blocking a populatioi i. is not feasible in most cases. An alternative

method is to randomly select subjects, then fit them into corresponding levels. This would most likely result in

unequal nun thers of subjects in the blocks. To obtain an equal number of subjects in each block, researchers

could kee-4., on randomly selecting subjects until the required number of suojects fit in each block level and

discard those exceeding the required number of subjects.

j
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Appendix A

Examining Apparent Imprecision may provide an insight of how it can be similar to or different from

power. Apparent Imprecision is defined as the product of True Imprecision and an adjustment factor based on

the degrees of freedom for error:

ave var 4fe3
min var d4+1

BEST COPY AVAILABLE
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where, ave var is the average variance of the treatment mean difference from sample to sample; and min var is

the theoretical minimum variance of the treatment mean difference. According to Fe 1dt (1958), the minimum

variance is the variance of the dependent variable at a fixed value of the covariate given the assumption of

homoscedasticity. For block designs, Apparent Imprecision (AIRD) is computed with the following formula:

A. IBD

22a2 a 74-2
Y [1 p2(1 ----i-)] [1-p2(1--L)]

n a x fe +3 az fe +3
YX X

fs +1 (1-p2) 4, +12a2

Y(1-p2) Y 7

where Y represents the dependent variable; X, the concomitant variable; p, the correlation coefficient between

X and Y; n, the number of subjects per treatment; x2, the average variance of X over all blocks; and fe , the

degrees of freedom for error in Y. For ANCOVA, Apparent Imprecision is computed using the following

formula:

AIANCOVA

202
Y (1 p2)(1 +--1)

f +3 1 4 +3n 41-2 4; ,x
sy

x
+1 -2 f. +12a 2 fe fx r

where 4. stands for the degrees of freedom for error in X.

For block designs, the average variance of the covariate over all blocks decreases and the True Imprecision

approaches 1.00 as the number of blocks increases. Theoretically, if an infinite number of blocks could be

used, the values of the concomitant variable would be the same in each block, and True Imprecision would be

exactly 1.00. This does not mean that employing a larger number of block.s always decreases Apparent

Imprecision, because as larger numbers of blocks are used, larger degrees of freedom for error are lost, and,

based on the adjustment factor, Apparent Imprecision increases. Therefore, there is an optimal number of

blocks that minimizes True Imprecision, yet, on the other hand, minimizes the increase of Apparent Imprecision

due to the loss of degrees of freedom for error. This phenomenon of Apparent Imprecision is analogous to that

of power. For the same reason, there is an optimal number of blocks such that the higher the degree of the

correlation between the concomitant and dependent variables, the more homogeneous the values of the

2
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dependent variable are in each block, the more variance that is extracted from the error term, the higher the

power. At the same time, the power is decreased due to the loss of degrees of freedom for error. To optimize

power, one must find a balance between these two forces. Apparent Imprecision is similar to power in this

regard.

Nevertheless, Apparent Imprecision could suggest different results from power. For block designs, the

average variance and the minimum variance decrease as the correlation increases. But, the average variance

would never decrease as much as the minimum variance unless an infinite number of blocks were used.

Therefore, the Apparent Imprecision of a block design usually increases as the correlation increases. For

ANCOVA, the correlation terms in the numerator and denominator are canceled out because the average

variance is a function of the minimum variance. Notice that the minimum variance is the ideal variance based

on the covariance model. Therefore, the Apparent Imprecision of ANCOVA is the same for all values of the

correlation. This is basically why block designs are found to consistently become less precise than ANCOVA

as the correlation increases and why the correlation has been regarded as the critical factor in choosing block

designs or ANCOVA. The correlation being negative in a block design and irrelevant in ANCOVA based on

Apparent Imprecision is different from what most texts and this study have found about the positive effect of

higher correlation in reducing error and increasing power.

A simple rule to follow when evaluating a criterion variable is to determine if it provides a direct measure

of the variable of interest. For example, if a new brand of bulbs is to be evaluated, it is better to check how

long the bulbs last rather than to analyze the precision of the components of the bulbs. The precision of the

components of the bulbs would be a good criterion if it could determine a useful property; for example, the

more precise the element is, the longer the bulbs last, the less power the bulbs consume, or the less eye strain

the bulbs cause. A theoretical framework merits less if the degree it can be related to the physical property of

interest is low. For example, the theory of the imagined number ,FT would not have been valuable if it could

not be used to predict the behavior of electronic circuits. Based on the rule, the Type I error rate and statistical

power should be considered a good criterion in evaluating a research design.

Maxwell and Delaney (1984) also illustrated how Apparent Imprecision might be different from power:
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Suppose an experimenter plans to conduct a two-group comparison of means using an alpha level of

0.05. If the population difference in means is .5 standard deviation units, and 150 subjects are

randomly and independently assigned to groups, the power for an independent groups 1. test is 0.99.

Suppose that a concomitant variable were available that correlated .6 with the dependent variable. The

power of an ANCOVA would still be 0.99 (or, actually, 1.00 if rounded to two decimal places). From

the standpoint of power, the ANCOVA offers no gain over the test. On the other hand, it can be

shown that the apparent imprecision of the test here is 1.573, whereas for ANCOVA the apparent

imprecision is 1.010, demonstrating that the estimated magnitude of the treatment effect is much more

precise when ANCOVA is used rather Ulm the t test. (p. 137)

One might interpret, facially, the above demonstration as a benefit of using Apparent Imprecision as the

criterion variable. However, it should be noticrd that the powers of the t test and the ANCOVA have both

reached the ceiling point because of the large sample size that was used.. Based on the rule, this illustration,

indeed, offers an example of power as a favorable criterion. If one can achieve a .99 power with a I test, what

is the advantage of spending money on collecting concomitant data? For example, administering a pretest or IQ

test, to gain an impractical .001 power. Eventually, almost all analysis will become statistically significant if a

large enough size is used. 'What is the use of a new teaching method that claims to increase students' SAT

scores by 1 point? Practical significance would also need to be considered when evaluating the results of an

analysis.

Executable File
/* */

ADDRESS COMMAND
"ERASE PVALUE DATA A"
NUMERIC DIGITS 10
TIME = 1
DO WHILE TIME < 1001
SEED = 2132560 4. (TIME -1) * 2147483
"EXECIO 1 DISKW" NEWSEED DATA A "(STRING" SEED
"EXEC SAS T57284"
"ERASE NEWSEED DATA A"
TIME=T1ME+1

END

"EXEC SAS 757284P"

First SAS Program (T57284 SAS A)
CMS FILEDEF 1NDATA DISK NEWSEED DATA A;
CMS FILEDEF PVALUE DISK PVALUE DATA A (LRECL 306
BLKSIZE 306 RECFM F8S;
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8

CMS FILEDEF SASLIST DISK T57284 LISTING A;
DATA BIVNORH;

INFILE INDATA;
INPUT SEED;

DO 1=1 TO 360;
X=RANHOR(SEED);

Y=.84*X+SORT(1-.84**2)*RANMCR(SEED);
OUTPUT;

END;

PROC SCRT;

BY X;

DATA BIVNORM;

SET BIVNORM;

872=CEIL(_N_/5);

82=CEIL(B72/36);83=CEIL(872/24);

84=CEIL(872/18);86=CEIL(872/12);
S8=CEIL(872/9);89=CEIL(872/8):
812=CEIL(872/6);1118=CEIL(1172/4);

824=CEIL(872/3);836=CEIL(872/2);



PROC SORT;
BY 872 1;

DATA BIVNORM (DROP=SEED I);
SET ElIVNORM;

GROUP=MOD(N_,5); IF GROUP=0 THEN GROUP=5;
IF GROUP=2 THEN Y=0.0951+Y;
IF GROUP=3 THEN Y=0.1903+Y;
IF GROUP=4 THEN Y=0.2854+Y;
IF GROUP=5 THEN Y=0.3805+Y;

PROC PRINT;

PROC SORT;
BY GROUP;

PROC CORR DATA=BIVNORM;
VAR X Y;

BY GROUP;
PROC ANOVA;

CLASS GROUP;
MODEL Y=GROUP;

PROC ANOVA;
CLASS GROUP 82;
MODEL Y=GROUP 82;

PROC ANOVA;

CLASS GROUP 83;
MODEL Y=GROUP 83;

PROC ANOVA;
CLASS GROUP 84;

MODEL Y=GROUP 84;
PROC ANOVA;

CLASS GROUP 86;
MODEL Y=GROUP 86;

PROC ANOVA;
CLASS GROUP 88;

MOOEL Y=GROUP 88;
PROC ANOVA;

CLASS GROUP 89;
MODEL Y=GROUP 89;

PROC ANOVA;
CLASS GROUP 812;
MODEL Y=GROUP 812;

PROC ANOVA;
CLASS GROUP 818;
MODEL Y=GROUP 818;

PROC ANOVA;
CLASS GROUP 824;
MODEL Y=GROUP 824;

PROC ANOVA;

CLASS GROUP 836;

MODEL Y=GROUP 836;
PROC ANOVA;

CLASS GROUP 872;
MODEL Y=GROUP 872;

PROC GLM;

CLASS GROUP;
MOOEL Y=GROUP X/SS3;

DATA;
INFILE SASLIST;

INPUT WORD1 S WORD2 S 2;
FILE PVALUE MOD;

IF WORD1 = 'X' ANO WORD2 2'72' THEN DO;
INPUT MEAN STDDEV;
PUT MEAN 6.4 STDDEV 6.4 9;
INPUT Y S N MEAN STDDEV;
PUT MEAN 6.4 STDDEV 6.4 2;
END;

ELSE IF WORD1="X" AND WORD? = '1.00000' THEN
DO;

INPUT CORR;
PUT CORR 6.4 2;
END;
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ELSE IF WORD1="GROUP" AND WORD2 = '4' THEN DO;
INPUT SS MS F PR;

PUT PR 6.4 2;
INPUT BLOCK $ DF SS MS F PR;
PUT PR 6.4 9;
END; */

Second SAS Program (T57284P SAS A)

CMS FILEDEF INDATA DISK PVALUE DATA A;
DATA PVALUE;

INFILE INDATA;
INPUT (G1XMEAN G1XSD G1YMEAN G1YSD G1CORR

G2XMEAN G2XSO G2YMEAN G2YSD G2CORR
G3XMEAN G3XSO G3YMEAN G3YSD G3CORR
G4XMEAN G4XSD G4YMEAN G4YSD G4CORR
GSXMEAN G5XSD G5YMEAX G.SYSD G5CORR
GROUP18 BLOCK18 GROUP2B BLOCK28 GROUP38
BLOCK38 GROUP48 BLOCK48 GRCUP68 BLOCK68
GROUP8B BLOCK88 GROUP98 8LOCK98 GROUP128
BLOCK128 GRCUP18 GROUP188 BLOCK188 GROUP248
BLOCK248 GROUP368 8LOCK368 GROUP728
BLOCK728 GROUPANC BLOCKANC) (51* 6.4);

G1BSG=0;
B1BSG=0;

G2BSG=0;
82BSG=0;

G3BSG=0;
838SG=0;
G4BSG=0;
848SG=0;

G6BSG=0;
B6BSG=0;

G88SG=0;
B8BSG=0;
G9BSG=0;
898SG=0;
G128SG=0;
8128SG=0;
G188SG=0;
818BSG=0;
G248SG=0;
11248SG=0;

G368SG=0;
8368SG=0;

G72BSG=0;
8728SG=0;

GANCSG=0;
BANCSG=0;

TOTAL=1;
IF GROUP18 <= 0.05 THEN G1BSG=1;
IF 8LOCK18 <= 0.05 THEM 81BSG=1;
IF GROUP2B <= 0.05 THEN G2BSG=1;
IF BLOCK28 <= 0.05 THEN 828S0=1;
IF GROUP38 <= 0.05 THEN G38SG=1;
IF BLOCK38 <= 0.05 THEN 838SG=1;
IF GROUP48 <= 0.05 THEN G48SG=1;

IF 8LOCK48 <= 0.05 THEN 848SG=1;
IF GROUP68 <= 0.05 THEN 06850=1;

IF BLOCK68 <= 0.05 THEN 868SG=1;
IF GROUP88 <= 0.05 THEN G88SG=1;

IF 8LOCK88 <= 0.05 THEN 888SG=1;
IF GROUP98 <= 0.05 THEM G98SG=1;

IF BLOCK98 <= 0.05 THEN 898SG=1;
IF GROUP128 <it 0.05 THEN 012330=1;

IF 8LOCK128 <= 0.05 THEN 81238G=1;
IF GROUP188 <= 0.05 THEN G188SG=1;
IF BLOCK188 <, 0.05 THEN 8188SG=1;
IF GROUP248 <= 0.05 THEN 624850=1;
IF BLOCK242 01 0.05 THEM 224930=1;

2it
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IF GROUP368 <= 0.05 THEN 0368S0=1;
IF 3L0CK368 <= 0.05 THEN 8368SG=1;
IF GROUP728 <= 0.05 THEN G728SG=1;
IF 8LOCK728 <= 0.05 THEN 8728SG=1;
IF GROUPANC <= 0.05 THEN GANCSG=1;
IF BLOCKANC <= 0.05 THEN 8ANCSG=1;

PROC FREQ;
TABLE GUISG BANCSG;

PROC SUMMARY DATA=PVALUE;
VAR G1XMEAN BANCSG;
OUTPUT OUT = DESCRIPT;

PROC PRINT DATA=DESCRIPT;
PROC UNIVARIATE DATA=PVALUE PLOT NORMAL;

VAR GUMEAN 8LOCKANC;

Appendix C
Power Table

ANO 802 803 804 805 806 808 809 810 812 818 820 824 836 1140 872 COY

12 n08 COO A .505 .498 .489 .449 .498

P .497 .491 .4.81 .430 .457

C28 A .506 .519 .513 .472 .527

P .505 .510 .511 .470 .501

C56 A .500 .592 .616 .584 .658

P .490 .565 .589 .554 .623

C84 A .484 .773 .872 .870 .958

P .501 .680 .740 .730 .934

n40 COO A .502 .498 .501 .501 .500 .500 .498 .483 .501

P .503 .503 .503 .502 .506

C28 A .508 .526 .535 .537 .533 .536 .535 .525 .539

P .501 .521 .529 .529 .532 .532 .527 .521 .533

CSC A .499 .603 .648 .655 .660 .663 .661 .652 .671

P .499 .583 .613 .614 .622 .623 .624 .621 .657

C84 A .498 .820 .908 .919 .939 .943 .949 .948 .953

P .498 .693 .769 .779 .797 .802 .812 .805 .954

n72 COO A .502 .503 .502 .503 .502 .503 .500 .501 .500 .500 .500 .493 .503

P .513 .511 .511 .509 .507

C28 A .505 .521 .526 .530 .532 .533 .535 .535 .538 .537 .536 .339 .531

P .501 .522 .527 .529 .533 .531 .532 .533 .532 .531 .532 .529 .535

C56 A .495 .598 .622 .634 .643 .649 .649 .653 .656 .660 .660 .657 .660

P .499 .579 .606 .614 .624 .627 .628 .630 .629 .636 .633 .628 .655

C84 A .496 .819 .884 .910 .930 .939 .940 .943 .948 .947 .948 .947 .950

P .510 .694 .748 .769 .788 .794 .799 .805 .807 .808 .809 .806 .954

continued)
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ANO 802 803 804 805 806 808 809 810 812 818 820 824 836 840 872 COV

13 n08 COO A .498 .495 .491 .471 .492

P .508 .508 .495 .481 .485

C28 A .483 .505 .506 .495 .516

P .493 .514 .516 .501 .512

C56 A .463 .584 .621 .619 .658

P .498 .591 .617 .607 .634

C84 A .376 .762 .888 .924 .966

P .490 .720 .797 .809 .952

n40 COO A .499 .499 .498 .500 .497 .498 .498 .498 .500

P .503 .501 .501 .500 .498

C28 A .493 .525 .531 .535 .538 .536 .534 .534 .539

P .508 .526 .533 .535 .537 .537 .539 .537 .540

C56 A .469 .598 .650 .654 .671 .669 .676 .670 .678

P .500 .602 .641 .647 .656 .658 .662 .658 .667

C84 A .378 .800 .913 .927 .943 .949 .954 .956 .965

P .493 .744 .831 .843 .864 .864 .872 .870 .960

n72 COO A .486 .486 .487 .487 .488 .485 .486 .487 .488 .484 .482 .485 .486

P .504 .505 .506 .504 .506

C28 A .494 .524 .533 .533 .536 .538 .538 .538 .538 .538 .536 .537 .544

P .490 .516 .523 .525 .527 .529 .528 .531 .533 .534 .533 .531 .530

C56 A .466 .589 .622 .636 .650 .654 .656 .658 .659 .663 .663 .661 .666

P .508 .610 .638 .648 .661 .665 .666 .669 .672 .670 .671 .671 .658

C84 A .395 .815 .902 .929 .945 .952 .953 .957 .961 .961 .964 .964..964

P .504 .742 .807 .834 .851 .858 .863 .867 .871 .875 .875 .873 .968

(continued)
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ANO 802 803 804 805 806 808 809 810 812 818 820 824 836 840 872 COV

T4 n08 COO A .504 .505 .497 .484 .502

P 497 .496 .497 .477 .485

C28 A .488 .516 .519 .510 .536

.501 .529 .532 .522 .518

C56 A .427 .572 .619 .632 .669

.495 .616 .651 .657 .666

C84 A .305 .752 .897 .935 .966

P .510 .764 .853 .865 .964

n40 COO A .509 .508 .508 .506 .507 .507 .504 .503 .510

P .505 .507 .506 .504 .500

C28 A .479 .516 .524 .525 .528 .526 .529 .529 .532

P .494 .523 .536 .536 .540 .536 .541 .535 .532

C56 A .438 .581 .639 .648 .656 .659 .668 .668 .674

P .502 .625 .662 .669 .679 .621 .688 .685 .672

C84 A .291 .787 .922 .940 .953 .958 .962 .964 .969

.505 .782 .875 .888 .905 .908 .913 .914 .968

n72 COO A .503 .503 .501 .502 .499 .502 .501 .500 .502 .503 .501 .504 .502

P .506 .508 .508 .508 .508

C28 A .483 .510 .517 .520 .521 .524 .525 .524 .528 .525 .526 .524 .528

P .493 .529 .533 .537 .539 .539 .541 .540 .541 .541 .543 .543 .527

C56 A .428 .578 .611 .630 .641 .651 .655 .657 .661 .661 .663 .661 .660

P .498 .626 .662 .677 .686 .693 .695 .695 .698 .699 .701 .699 .692

A .303 .811 .900 .930 .954 .959 .961 .965 .965 .967 .969 .970 .973

P .508 .788 .849 .877 .901 .912 .915 .920 .923 .923 .969

(continued)
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ANO 802 803 804 805 806 808 809 810 812 818 820 824 836 840 872 COV

15

'n40

nO8 COO A .515 .512 .511 .496 .509

P .508 .503 .502 .488 .486

C28 A .471 .507 .515 .522

P .502 .532 :540 .533 .518

C56 A .421 .584 .646 .679

P .510 .633 .678 .680 .689

C84 A .252 .757 .906 .947 .971

P .494 .791 .875 .893 .970

COO A .504 .504 .505 .503 .500 .501 .502 .502 .504

P .509 .509 .511 .513 .506

C28 A .479 .515 .526 .530 .530 .532 .529 .530 .537

P .504 .537 .549 .551 .555 .555 .554 .552 .532

C56. A .413 .582 .641 .652 .666 .668 .678 .678 .680

P .508 .645 .690 .702 .710 .711 .714 .712 .685

C84 A .238 .781 .926 .942 .960 .966 .973 .973 .979

P 495 .814 .901 .913 .931 .934 .940 .940 .973

n72 COO A .502 .503 .502 .501 .502 .500 .501 .500 .503 .501 .502 .501 .502

P .498 .498 .497 .495 .500

C28 A .474 .510 .517 .522 .524 .526 .528 .528 .529 .529 .528 .526 ,531

P .498 .532 .541 .544 .547 .547 .549 .548 .548 .549 .547 .545 .528

C56 A .420 .583 .627 .645 .666 .671 .673 .676 .679 .681 .683 .681 .685

P .504 .642 .674 .690 .703 .706 .711 .711 .714 .714 .715 .717 .675

C84 A .227 .781 .888 .920 .949 .961 .964 .968 .972 .972 .973 .974 .976

P .492 .807 .870 .895 .918 .923 .927 .930 .934 .936 .937 .936 .981

Note. Tx represents a number of treatments of x. Nxx represents a number of subjects per treatment of xx.
Cxx represents a correlation coefficient between the concomitant and dependent variables of .xx. ANO
represents ANOVA. 8xx represents a block design with xx blocks. COV represents ANCOVA. A
represents the a priori approach. P represents the post-hoc approach.


