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Abstract

As strongly suggested by recent work, patterns of gender difference can
change because of changes in the selectivity of the sample itself. This is a
statistical influence connected with the distributions of female and male scores,
rather than a substantive influence related to demographic characteristics of the
sample such as age or ethnicity. It is, nonetheless, an important influence because
gender differences that are partly statistical in origin can easily confuse possible
implications regarding education and assessment.

This report proposes a general model to account for the effects of sample
restriction on gender differences. Simulations showed the model to be quite
accurate in reproducing standard mean differences and other statistics in a
restricted sample. Three primary contributing factors were identified: the range-
restricting effects of sample selection, differential variability of female and male
scores in the original sample, and the representatioh of females and males in the
restricted sample. A test with actual data showed reasonably good consistency
between trends predicted by the model and trends in gender differences that have
been widely observed in advanced tests administered to select samples.
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The Effects of Sample Restriction on Gender Differences

This report addresses the following question: What is the effect of sample
restriction on observed gender differences? It may be useful to draw some
distinctions as to what we mean by sample and restriction. We use the term
population mainly to refer to age or grade cohorts which, for our purposes, are
unrestricted. We refer to samples intended to represent such populations as
national or representative samples. We are here concerned with restricted
samples that clearly do not represent national cohorts. Sample restriction can
occur in a variety of ways, but we refer primarily to the fact that tests are often
administered to a selected (often self-selected) group of individuals who, on
average, score higher than would a representative sample at the same age level.

One view of the problem is empirical. Why is the standard mean difference,
D, in selected samples more likely to favor males, as compared with Ds for
similar tests in unselected, representative populations? (In computing D, we
subtract the male mean from the female mean.) Elsewhere we have compared Ds
in large selected and unselected populations of students for a number of tests
administered at the same grade level (Willingham & Cole, in preparation).
Results for individual tests varied, but in each of nine categories of tests where
such a comparison was available, the average D was more negative in the
restricted, more able group. This drift in D, favoring males, averaged -.18 for
similar types of tests at the same grade level. The character of the sample would
seem to be a natural suspect in trying to account for this systematic change when
construct and cohort appear to be generally comparable.

Another view of the problem is analytical. It is clear that selection of
students from one tail of a distribution can change the balance of females and
males--certainly one important indicator of gender difference. With normal
distributions and equal standard deviations, explicit selection must yield for the
group with the higher mean a more favorable FIM (female/male) ratio in the
upper tail than exists in the original group. The higher the cut, the greater that
effect. If the standard deviations differ, the FIM ratio will change with selection
even when the mean difference is zero. Figure A shows that such an effect will
be heightened if the group with the higher mean is also more variable. It seems
safe to assume that D will be affected as well (both within the shaded tail area
and at any particular percentile score for females and males), but it is less obvious
how.

Insert Figure A

Our objective, then, is to improve understanding of the purely statistical
effects of sample restriction on indicators of gender difference. That is, how
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do various conditions of sample restriction likely influence gender differences,
independent of test characteristics or changes in the cohort due to learning or
other intervening experience? Since these factors are not normally independent, a
secondary interest is the extent to which such effects appear to account for
changes in the actual pattern of Ds commonly observed in tests administered to
selected samples of students.

Background of the Problem

Critical to any detailed understanding of subgroup differences is the fact
that individuals vary widely within each subgroup and that D, which only
characterizes the mean difference, is a limited and sometimes misleading
indicator. It is reasonable to argue, as have Snow and Ennis (1992), that one's
concern should be to understand group differences at all relevant points on the
score scale--partly because the differences may vary substantially at different
points, and partly because the educational meaning and implication of those
differences may also be substantially different. It is one thing to say that, in a
particular grade, girls are somewhat better readers on average. It is quite another
thing to say that, in that same grade, twice as many boys as girls are essentially
non-readers.

Over the years, practical interests and educational implications have been
reflected in much of the literature on specific types of gender difference--rare
talents, risk factors, affective characteristics, physical abnormalities, and so on
(Obler & Fein, 1988; Singer, Westphal, & Niswander, 1968). Historically,
evidence regarding such variations has been used to speculate about human and
subgroup variation generally, though the connection is often tenuous at best. Such
unusual variations imply the possibility--even the likelihood--of distributional
differences, though most systematic statistical studies have focused on the mean.
The most obvious and useful complement to the mean in understanding the range
and character of subgroup differences on a particular characteristic is, of course,
the standard deviation. Like the mean, the standard deviation is a somewhat
oversimplifying descriptive statistic. It is, nonetheless, a significant addition in
trying to unravel a complex topic.

There is a long history to the interest in gender differences in variability.
Key aspects of that literature were cited earlier (see especially Feingold, 1993;
Maccoby & Jack lin, 1974; McNemar & Terman, 1936; Noddings, 1992).
Nonetheless, distributional aspects of suthgroup differences have received limited
systematic attention. In fact, the most significant advances in understanding
gender differences in variability and the important role variability plays in sample
restriction are quite recent.
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Two Important Lines of Research

In examining performance of students in a classroom or school grade, it is
often natural to focus on comparisons at a particular level of proficiency; for
example, whether pupils in the bottom decile are showing improved skills, year to
year. In that spirit, several researchers at the University of Iowa have used a
statistic which we call here Dp , or "standard percentile difference" (Becker &
Forsyth, 1990; Cleary, 1992; Han, Cleary, & Rakaskietisak, 1992; Martin &
Hoover, 1987). This statistic is a derivative of the familiar D. It simply
standardizes the score difference at a particular percentile level for two subgroup
distributions (e.g., female 90th percentile minus male 90th percentile) by dividing
the difference by the usual average or pooled within-group standard deviation for
the total group.

Cleary (1992) has made the most extensive use of this statistic, and in so
doing, usefully informed the topic at hand. Noting in her large study of gender
differences on aptitude and achievement tests that males were more variable on
"almost all tests," Cleary used Dp to examine gender differences at three points on
the female and male distributions: the 10th, 50th, and 90th percentile points.
Overall, she reported small between-group differences, generally favoring males,
but with the greatest difference favoring males at the upper percentile levels.
Given the tendency to greater male variability, that outcome is illustrated in
Figure A. With normal distributions, it is true but not obvious that a greater male
SD results in a greater female-to-male difference at the 90th than at the 50th
percentile.

Cleary's results also showed consistently larger getider differences favoring
males on tests administered to select as opposed to representative groups. Taken
together, these results suggest that in restricted samples of higher scoring students,
gender differences may be naturally inclined to favor males because of differential
variability, irrespective of other factors such as test content. Cleary did not
examine that possibility, though she signaled the pervasiveness of distributional
differences and illustrated why they are important.

In another significant line of work, other writers have addressed more
directly the joint role of means and standard deviations in describing gender
differences (Feingold, 1992a, 1992b, 1993, 1995; Hedges & Friedman, 1993a,
1993b). Noting the almost exclusive use of D in meta analyses of gender
differences, Feingold (1992a) questioned whether evidence concerning the relative
size of SDs for females and males would support the reasonableness of that
practice. He assembled extensive normative data on variability from several test
batteries in order to test this assumption. His first conclusion, like that of
Maccoby and Jacklin (1974), was that males are more variable in mathematical
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and spatial abilities but not in verbal ability. Second, Feingold provided what he
called subjective estimates of the effect of differences in both mean and standard
deviation. This was accomplished by determining what D would be required at
the mean in order to produce the observed female-to-male ratio in the tails if
there were no difference in standard deviations. The same principles apply, of
course, in the upper and lower tail, but our focus is on the upper tail.. He found
that the gender difference, so characterized, often gave a different impression of
magnitude, compared to that based upon D alone. On this basis he urged the
consideration of both mean and SD in order to understand gender differences at
different performance levels. See Feingold (1995) for further discussion of this
approach.

Hedges and Friedman (1993a) disputed Feingold's estimates of effects in the
tails and demonstrated that, with some assumptions, it was possible to estimate a
precise value for D within the tail. Separately, they also derived estimates of the
ratio of males to females in the tail. There ensued a scholarly exchange in which
the parties maintained some disagreements, but it became evident that their two
estimates of D represent two views of the same picture.

This line of work is important because it represents the first systematic
effort to integrate the effects of mean and standard deviation conceptually and
analytically. It resulted in Hedges and Friedman's (1993b) useful derivations
upon which the current work builds. All of these authors clearly agreed on the
importance of examining female-to-male representation in the tail. Feingold
(1992) was the first to urge formal integration of that metric into the analysis of
gender differences.

Extensions of Recent Work

Each of these two lines of work concerns the interpretation of gender
differences in a segment (i.e., tail) of a distribution. One refers to the standard
gender difference between means within the shaded tail in Figure A. The other
refers to gender difference between scores at a particular percentile. We focus on
the upper tail, though the principles are the same at both ends of the distribution.
Both approaches carry some suggestion as to what gender difference one might
expect to observe in a different sample, somewhat similarly restricted, though
neither actually addresses that question nor intended to. Both approaches also
suggest what role differences in variability can play, although some extensions are
useful to make the relationships clearer and to show how the two lines of work
are related.
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First, a word on notation. We use the subscript o to designate the original
group, r to designate a restricted sample. These may refer either to different
samples altogether or to a total sample versus a restricted portion of that sample.
Thus,

Do is the standard mean difference in an original unrestricted group;

Dr is the standard mean difference in a restricted sample.

D refers in general to a standard percentile difference which is normally
designated with the pertinent percentile subscript, for example:

D90 is the standard score difference between female and male scores
at their respective 90th percentiles.

Hedges and Friedman (1993a) present formulas that provide estimates of N,
mean, and SD for females and males in the restricted group. From these analytic
expressions, explicit and useful as they are, it is difficult to see the relationships of
particular interest; for example, how Dr in the restricted group can be expected to
vary with the SD ratio (SDR) and Do in the original group and with the
proportion selected, Pr . Hedges and Friedman provide estimates of Dr and F
for Feingold's data--which was their main purpose--but relationships among these
measures are not easily recognizable.

In the interest of further clarifying, we have extended the analytic work of
Hedges and Friedman in order to develop expressions for Dr and F IM as a
function of SDR and Do in the total group. Selected values are shown in Table A,
and the relationships are plotted in Figures B and C. These curves may be closely
approximated as follows. (Note that the curves in the figures are actual values,
not the approximations.) When Pr = .10,

Dr .41D0 + 1.671n(SDR)

ln(F/M) = 1.78D0 + 2.291n(SDR)

Insert Table A and
Figures B, C

The standard percentile difference (Dp) used by Cleary (1992) and others
poses similar interpretive limitations. It is apparent in Figure A that D at the
90th percentile varies with the original standard mean difference, Do , but will
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also be affected by unequal female and male variance in the original group. The
main idea of the statistic is to ind .1x such an effect, though the exact nature of the
relationship has not been clarified. It can be shown that D90 is approximated by

D90 = Do + (1.28)1n(SDR)

In general,

Dp = Do + Zpin(SDR) (3)

for SDRs not too different from 1.0. Illustrative values of D90 are shown in
Table B. The preceding equations and illustrative data indicate several useful
relationships, some of which seem obvious, others less so. We examine two
aspects of gender difference and similarity in turn: the standard difference and
the female-to-male ratio.

Insert Table B

Standard Difference. The first line of Table B confirms that, if females and
males 3 not differ as to variability (SDR = 1.0), the Standard Percentile
Difference, Dp , is always the same as Do at the mean. On the other hand,
Figure B shows that with no gender difference in variability, the Standard Mean
Difference within the tail (Dr) is always smaller in absolute value than Do at the
mean. Clearly, the variance of scores is reduced in the tail, but any overall
difference between female and male means is even more reduced.

With both coefficients, Dp and Dr,, there can be a consequential effect of a
gender difference in variability in the original group. Differential variability has a
generally similar effect on Dp and Dr at the 90th percentile. With normal
distributions, a drop in SDR from 1.00 to .85 will tend to lower these two versions
of D in this upper tail by some .21 or .27 points, respectively, on a standard scale;
that is, move D in a negative direction. As Tables A and B suggest, and
Equations (1) and (3) confirm, the effect of unequal variability is more or less
constant at all levels of original D within this range.

On the other hand, Dp and Dr are not similarly affected by unequal
variability at different levels of sample restriction. It is obvious from the nature
of the statistic that, with symmetric distributions, D50 will not differ from Do
because of unequal female-to-male variability. Equation 3 confirms that. On the
other hand, Table A shows that unequal standard deviations affect Dr almost as
much in the mid-range as in the tail.
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Fetnale-to-male ratio. The ratio of females to males (FIM )in a restricted
sample is a second important index of gender difference or similarity. Comparing
D and FIM is a moot issue since, by definition, Dp refers to female and male
groups of equal size. But Dr assumes, in this case, that females and males are
selected on the basis of a single cut score, which means that FIM in the restricted
group will vary and will surely be affected by SDR.

That relationship is illustrated in Figure C. First, assuming females and
males are equally variable, a restricted sample will contain more females if the
original Do was positive, more males if Do was negative. As we have noted in
previous discussion, and as is illustrated in Equation (2) and Table A, the farther
out into the tail one looks, the greater this differential representation. Figure C
looks very much like Figure B. SDR and Do have similar, independent effects on
the two indices of gender difference represented in these two figures. In both
figures differential variability has an essentially constant effect across the observed
range of Do. Also, the effects can be consequential. When there is no gender
difference at the mean, a SDR of .85 versus 1.00 results in a F IM ratio of about
.70 rather than 1.00. Finally, the influence of SDR is magnified in the tail. As
Table A shows, when a sample is restricted in mid-range, SDR has essentially no
effect on FIM in the resulting sample.

What can we conclude from these analyses concerning the likely effects of
differential variability on observed gender differences in different parts of a
distribution? Three things, in the main. First, the effects are quite orderly,
approximately proportional to the size of In (SDR) within the range studied, and
essentially constant for different values of Do . Second, as previous writers have
argued, it is clear that the effects of differential variability can be consequential.
This is particularly true in the tail where these effects become progressively larger.
Third, variation in SDR has remarkably similar effects on both D and F
similar in character as well as direction. The effect of SDR is thus compounded
to the extent that D and FM are viewed as two distinct and important aspects of
gender similarity and difference.

The foregoing analyses concern the description of gender differences within
a sample. They pertain to a subgroup of that sample restricted on the basis of
explicit selection on the measure of interest. Some of the most interesting and
important effects of selection on group differences occur, however, in other
situations that engage additional complications. We move now to the more
general problem of sample restriction.
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A Sample Restriction Model

How does the more general problem differ from the situation we have been
discussing? First, there are a wide variety of naturally occurring restricted
samples of interest, and for the most part, they do not come about through
explicit selection as implied in Figure A and the types of analyses just described.
They tend to result from far more complex implicit selection processes in which
several factors may come into play, and often there are no directly comparable
data available on the original unrestricted sample.

Suppose that we have test results for a selected group of students, and we
would like to know how sample restriction may have affected the observed pattern
of gender difference. Scores are available only for the selected group. For
example, students do not decide to take the most advanced mathematics
achievement test, (Math II) offered by the College Board on the basis of their
score on that test. They decide rather on the basis of their interest and
preparation and whether their choice and performance will likely advance their
admissions cause. Such factors have an indirect implicit relationship with score
level and resulting gender difference in the restricted sample of Math II
examinees.

Also, in the explicit selection procedures previously discussed, the number of
females and males in a restricted group comes about inevitably as a necessary
result of a particular selection score and the characteristics of the original group.
In many restricted groups, however, the balance of females and males is an active
and often critical aspect of the sample restriction process itself. This is because
many factors are involved in most selection situationsfactors that are specifically
gender related, such as differential interest patterns. Finally, the most appropriate
standard for evaluating the effects of sample restriction on gender differences in
performance is not altogether obvious. As we shall see, there may be two
standards, equally useful. The foregoing considerations suggest three key issues
that need to be taken into account in studying the effects of sample restriction on
gender similarity and difference. These are: implicit selection, gender-related
sample restriction, and what standard to use in evaluating differences. The
following discussion of these issues lays the groundwork for a description of the
analytic model we propose.

Three Key Issues

Implicit selection. One may be interested in gender difference and similarity
in a wide variety of restricted samples. For example, there are students who
comprise the college-going pool, adults who follow a particular profession, pupils
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who require special instruction, applicants to a graduate program, members of a
college freshman class, examinees who take a subject test for advanced placement,
and so on. These groups can be viewed as selected samples from a general
population such as an age or grade cohort. The groups will vary in many ways, as
will the females and males within each groupcollectively and individually.

Such restricted samples are seldom formed simply through explicit selection
on a particular measure. In fact, a measure of interestsay, an admissions test
taken by the restricted group of students who plan to go to college--is normally
not even administered to an unrestricted representative national sample of 12th
graders. "Restricted" here means the net effect of self-initiated, institutional, and
circumstantial factors that result in the particular selected sample of individuals
who take the test. In order to create an analytic model of the problem, it is
useful to think of a restricted sample as having come about through explicit
selection on some hypothetical composite, X, based on all variables that
determine who ends up in the sample. Any given measure of interest, Y, will have
some correlation, rxy , with that composite. There are implicit selection effects on
variable Y because Y is related to the variables that make up the composite; that
is, the factors that actually determine who takes the test. Such a hypothetical
relationship is illustrated in Figure D.

Insert Figure D

Explicit selection on such a composite results in implicit selection on
variable Y as indicated by the dashed ogive in the upper panel. The cross-hatched
areas in the lower panel illustrate that due to implicit selection, most but not all
individuals with high Y scores self-select into the restricted group, as do even a
few with low Y scores. The variable of interest, Y, may have a characteristic
gender difference, as suggested by the two distributions in the upper panel. Also,
there is presumably a characteristic gender difference on composite X, which
reflects the fact that all things taken into account, either females or males "score"
higher on the hypothetical composite because they are more likely to fall into the
restricted sample. In view of that likely difference, one could show two ogives,
one for females and one for males. Such ogives represent the differential
likelihood that females and males at various score levels on Y will be in the
restricted sample. Thus, gender difference in a restricted sample results partly
from Do in the original sample and partly from the measure's weight (correlation)
as an implicit variable in a selection process that, for many reasons, results in a
given number of females and males in the restricted sample. This brings us to the
second key issue.
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Gender-related sample restriction. Observed gender differences in a restricted
sample can be influenced markedly by gender-related aspects of the selection
process. Pursuing the previous example, the number of women and men who
elect to take a Math II College Board Achievement Test will be influenced by
various factors: attitudes about the test, who schools and teachers encourage to
take the test, and so on. As we shall see, such factors can have large effects on
observed gender differences in such restricted samples of test takers. The
possible contrasting outcomes are more easily illustrated with explicit selection, as
shown in Figure E. The principle is the same with implicit selection.

Insert Figure E

The female and male distributions in Figure E represent two groups of
equal size that are separated at the mean by a standardized value of -.20, a
"small" difference. The arrows illustrate reciprocal outcomes of two opposing
ways that a sample might be restricted. The solid vertical line represents "gender-
blind" selection resulting from a single cut at the 90th percentile of the total
distribution. There is very little difference in the mean performance of females
and males in the resulting restricted samples (Dr = -.08), but the F/M ratio has
dropped to .70 as a result of unequal numbers of females and males in the tail
(see Table A). The dashed lines represent a selection process based on separate
cuts for females and males--at the 90th percentile of each distribution. These cuts
result in equal numbers of females and males (in the two shaded tails), but that
balance comes at the expense of a substantially larger Dr of -.48. The latter
estimate comes from Table G and analyses to follow.

As we shall see, the effects under implicit selection are similar, though
moderated if the measure in question has a low correlation with the selection
process. If the variable is heavily weighted in selection, the trade-off stakes will
be high as suggested by the contrasting results in Figure E. How does gender get
involved in sample restriction so as to influence such reciprocal outcomes?
Differential attitudes and interests will frequently play a role in individual
decisions. One obvious example is the well-documented difference between young
women and men in the value they perceive in advanced mathematics (Chipman &
Wilson, 1985). Females and males may differ--probably in different ways--on
important characteristics, preparation, or accomplishments that bear on the
restriction process. Membership in the restricted group may also be influenced by
unequal opportunity, discrimination, or some deliberate action with benign
intentions, such as affirmative recruiting or a college's effort to achieve some
desired balance of females and males in its freshman class.



As a result of all such factors operating on an unrestricted group, some
proportion of the females (P F) and some proportion of the males (P m) will make
it to the restricted group. Thus, depending upon how it comes about, gender-
related sample restriction (that is, Pp and Pm) can be expected to have reciprocal
effects on two key indicators of gender difference: direct determination of FIM,
and indirect influence on D,. through the rippling effects of implicit selection.

It ;s important to appreciate that this reciprocal trade-off between D and
FIM can be expected to hold and is strictly predictable only for a given set of
scores, within a given sample, where females and males are similarly selected.
FIM and D would not be limited by their statistical relationship if any of these
three assumptions change.

What standard? In examining gender or any other subgroup difference in a
restricted sample, what standard of comparison is most appropriate? The
standard conventionally used is some variation on the average standard deviation
for the groups being compared. But there is an alternative that can often be
informative, and may actually be more appropriate. Again, Figure E can serve to
illustrate.

Assume we have a restricted sample consisting of the two shaded areas. As
indicated, the standard difference betweeh females and males is equal to -.48.
But if one wishes to evaluate differential mean performance of females and males
on the original proficiency scale, then it would be more appropriate to use a
modified coefficient D' , wherein the denominator would be based upon the
within-gender SD for the total unselected group. Similar logic might apply if one
wished to compare gender difference in a restricted group with, say, differences in
a general population of 12th graders. The reasoning stems from this natural
question: To what extent might an observed Dr be larger than the original Do ,

simply because there is less variation among scores in the restricted group? It can
be shown that, if we select those females and males above the Pth percentiles of
their respective Normal distributions, so that FIM = 1.0 (as in Figure E), D' may
be approximated by

DI Do + ln(SDR)
(4)

for SDRs not too different from 1.0. (Here Zp denotes the mean of the tail of a
standard Normal distribution above the Pth percentile.) As illustrated in the
example in Figure E, with Normal distributions and equal female and male
standard deviations, the actual mean difference between the shaded female and
male upper tails will be the same as the mean difference for the total groups.
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Thus if the original standard for comparison is employed, then D' is equal to Do
whenever female and male score variability are the same. In this case, all of the
apparent increase in gender difference, from -.20 to -.48, is due to range
restriction. Notice that the relationship of D' to Do in Equation 4 is parallel to
the relationship of Dp to Do in Equation 3.

Since variability in a restricted group will be smaller than variability in the
original unrestricted group, D' will be smaller than Dr in absolute size. A
comparison of the two provides a convenient index of the extent to which an
apparent change in gender difference is due to range restriction alone. We
provide for that comparison in the analytic relationships (Table C) and empirical
illustrations (Tables F through H) to follow.

In using the original scale of proficiency, one might reasonably question
whether a difference of given magnitude means the same thing or has the same
consequences at different points on the scale. Those are reasonable questions
that deserve attention when considering such differences at different scale points.
It is not clear, however, that such considerations argue for using only a
conventional standard that exagserates the difference and varies with the
character of the sample restriction. An argument for the conventional standard
might be the likelihood that, in time if not initially, judgments about differences
and consequences of differences play out in relation to the amount of variation
among the individuals in the restricted sample. It is a debatable point worth
consideration.

Analytic Characteristics

In the model depicted in Figure D, we start with distributions of scores on Y
for females and males which describe a pattern of gender difference in the
original group. Selection on the hypothetical composite X will produce restricted
female and male samples of varying size and shape, depending upon the
proportion selected and the extent to which X is correlated with Y. The problem
is to estimate Nr,, mean, and SD, for each of the selected samples of females and
males in order to ascertain the pattern of gender difference in the restricted
group. The statistics of interest are summarized in Table C.

Insert Table C

Notation in the first colunm of Table C refers to characteristics of scores in
the original unrestricted group. These statistics, used separately for females and
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males, provide the input information that is needed in order to estimate N, mean
and SD in the restricted group. The second column contains derivative statistics
defined earlier that are useful in characterizing gender differences in the original
group. The last column refers to the restricted group. It shows those same
statistics plus one other, D' , which is Dr corrected for range restriction.

As indicated by the note in Table C, we have special interest in some of
these statistics. In order to estimate the effects of sample restriction on gender
differences, we need each of the five paired items of information in column one.
If starting with an original unrestricted group and predicting forward, the first
three are available. The fourth statistic, P, is also available, either because we
know how many females and males there are in the restricted group of into-est, o..
we wish to examine how Dr varies with different assumptions about the proportion
of females and males selected. The proportion selected is one of two critical
aspects of the sample restriction process and, for that reason, P is a variable of
special interest.

The fifth input statistic, r (overall, as well as, for females and males
separau:ly), is also a key piece of information, partly because it is always
unkno, in. Since r represents the relationship of Y to the outcome of the selection
process, it can be represented by rxy or rbi, , the biserial correlation of V with
membership in the restricted group. In theory these two are identical. In real
situations one is more likely to use rbis since X is usually only a hypothetical
variable. All empirical estimates of rxy are here based on rbis . Estimates of r
can be based on information available on similar measures, and as we shall see, r
can be estimated from simulations based on plausible estimates. It is also a key
statistic because it represents the second critical characteristic of the restriction
process, namely, how much weight Y has in selection. That weight is reflected
directly in rbis .

In the second column of Table C, both Do and SDR carry special interest.
Do is the primary baseline; for example, with a given Do in the unrestricted group,
what D,. would be expected if such and such are assumed. The special interest in
SDR is because it represents a characteristic of the original distributions of scores
that can have a large impact on restriction effects. The starred statistics in the
first two columns are the ones most useful in conceptualizing and illustrating
graphically the effects of sample restriction; that is, Do , SDR,rxy , P, and the
gender difference in P.

The last column of Table C lists the descriptive outcome statistics of
interest. The conventional measure of standard difference, Dr,, is paired with the
comparable measure, D' , which is corrected for range restriction. The second
important aspect of gender similarity or difference is F /Mr . It is complementary
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to Dr because it denotes relative female-to-male representation rather than
relative level of performance. F IM is a curious statistic because, from different
legitimate perspectives, it can be viewed as both an input and an output measure--
as input in examining the possible consequences of sample restriction, as output in
examining the possible costs and benefits of reciprocal patterns of representation
versus performance level for females and males in a restricted group. We take up
now the equations necessary to express the relationships among these statistics.

Definitions and Derivations

First, we need to review notation. There are three group membership
variables: F for female students, M for male students and r for those students in
the restricted group. For simplicity, let us suppose that students in the restricted
group can be defined as those for whom X> C for some cut score C on the X-
scale. If we want to consider the possibility that different cut scores are
appropriate for female students and for male students, we indicate that with
subscripts: CF and Cm .

As previously noted, we use P to specify the proportion of students
belonging to some group. Thus Pr denotes the proportion of students in the
restricted group. An important additional consideration is our use of conditional
notation. For instance, PrIF. refers to the proportion of female students who are
in the restricted group.

We use the shorthand notation Y for the mean of Y, or E(Y). For
conditional means, such as the mean of Y for female students in the restricted
group, or E(YIr,F), we will use Yr,F. We denote the standard deviation of a
variable by SD, with, for instance, SNIA,f referring to the standard deviation of
X for male students. Of special interest will be rxyl F and rxyl , the correlations
between X and Y for female and male students, respectively.

Putting our notation to use, we define two standardizations of the cut
score(s):

CF-x-Fz=cIF

and Chf -Xm
Zri m=

SNI
for female and male students, respectively.
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In order to derive expressions for the proportions, as well as means and
standard deviations for Y, of female and male students in the restricted group, we
introduce two pairs of assumptions. The first is that the scores for female
students and for male students in the original group on the hypothetical composite
X each have Normal distributions. The second is that the regressions of Y on X
for female students and for male students in the original group are each linear
with homogeneous residual standard deviations. Note that we do not assume X to
have the same distribution for female and male students, nor do we assume that
the regressions of Y on X (or the residual standard deviations) are the same for
the two groups. Also note that the framework adopted here for discussing the
effects of restriction corresponds to that used for deriving the Pearson-Lawley
equations in order to estimate correlations corrected for restriction of range (see,
for instance, Gulliksen, 1950, p. 128-143).

Combining the first pair of assumptions with the earlier assumption that the
students in the restricted group are those whose scores on X exceed the cut
score(s) C, we may immediately write expressions for the proportions of female
and male students in the restricted group:

and

P rIF=1.-4)(Z

PrIM=1 ck(i Af)

where 40 denotes the standard Normal cumulative distribution function. Of
course, in practice, since X is hypothetical, it is unlikely one would know the cut
scores on X. Instead, it is more likely that one would know the proportions of
female and male students in the restricted group. In such a case, we would solve
these expressions for ZCIF and Zo Ai, identifying the standard normal deviates
giving Normal tail areas equal to the known proportions.

To obtain the means and standard deviations for Y in the restricted group,
we first need expressions for the mean and standard deviation of a standard
Normal random variable restricted to be greater than Zc . (The resulting
distribution is sometimes referred to as a truncated Normal.) These are given by
(Johnson & Kotz, 1970, p. 81-83) as:

=
4)(Zc)

Z
r 1-4)(Zd

and
SD71 r=111+Z -22Cr r

r
4 1
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respectively, where 4)(.) denotes the standard Normal density function. The mean
of Y for female students with a standardized value of X equal to .41F is given by
the regression equation

"kF=r7F+(rxyl FSDYIF)4IF

We obtain the mean of Y for female students in the restricted group by taking the
mean of this expression over all X above the cut score, which is equivalent to

substituting 2,.,F for 4IF in the regression equation:

Yr,F'YF+frxyl FSD yl Egr,F

The corresponding expression for the male students in the restricted group is

Yr,A17---41+(rxyl YI iti)Zr,m

Turning now to the standard deviations of Y for female and male students in
the restricted group, there are two sets of components to consider. The first of
these are the residuals around the regression lines. The residual standard
deviations of Y given X have the form

for the female students and

2
SD yl F=SD yl -rxyl F.

SD ylx,M=SDNdl-rxy2I

for the male students. The second set of the components are the mean values of
Y given X. The standard deviations of these for X above the cut score(s) may be
obtained by multiplying the standard deviations of 4IF and .41Af in the restricted
group by their coefficients (assuming these are positive) in the regression
equations for the female and male students:

and

SD II r,F=(rxylFSDYI F)Spz r,F

SD PIr, (rxylmSD riii)SDZIr,A4
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The variances of Y for female and male students in the restricted group are each
given as the sum of the variances of these two components, so the standard
deviations may be written for the female students as

SD yl,,F=iiSD12,Ix F+SD iy2

2
=SD yi -rxyl F(1 -SDz2I T,F)

and for the male students as

SD =ISD 2 +SD 2ylr,M YIX,M r,M

2 2
=SDylkfill.-rxylm(1-SDzIr,m)

With the expressions we have provided for proportions, means and standard
deviations of Y in the restricted group, we can compute F/M ratios, standard
mean differences and standard deviation ratios once we know means and standard
deviations of Y in the original group, proportions of female and male students
selected and the correlations with the selection variable for female and male
students.

Operating Characteristics

How does the proposed model work with real data? There are two main
questions. One concerns the extent to which distributional assumptions of the
model are likely to be met. Another concerns the extent to which the effects of
sample restriction that are predicted by the model are reproduced empirically. To
examine these questions, we have utilized the 1992 followup sample from the
National Education Longitudinal Study (NELS). The NELS data base is useful
because it includes four test scores (reading, mathematics, science, and history)
and transcript-based high school grade information. Also, this large
representative sample of 12th grade students can be restricted to simulate
realistically the types of changes in gender patterns that may occur in more
selected samples of test-takers.

Distributional assumptions. The initial basic assumption of the model is that
the distribution of scores in a restricted sample is generated by a Normal ogive
function such as that represented in Figure D. That is, the probability of an
individual female or male student falling into the restricted group increases
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regularly with increasing scores on the variable of interest. This relationship is
illustrated in Figure F, which shows what proportion of 12th grade seniors at
different achievement levels fall into the restricted sample of students taking a
college admissions test. The data are based upon responses of students in the
NELS sample to questions about admissions tests. Figure F shows what
proportion of students at each high school grade level or NELS composite score
level (an equally weighted average of the four tests) said that they had taken
either the ACT or SAT.

Insert Figure F

The empirical plots in Figure F show a function that is similar in slope and
shape for females and males on the NELS test composite and the high school
average. One difference readily apparent in the figure is that, through most of
the range of test scores, the proportion of females taking an admission. t,:st was
some .10 to .20 higher than that of males--a difference not observed with respect
to high school average. The most parsimonious accounting would suggest that this
difference is simply the net result of women earning somewhat higher school
grades and slightly lower test scores overall in this sample (D = .31 and -.09,
respectively) but being somewhat more likely to take college admissions tests than
are men (FIM = 1.18).

Regardless of the underlying reasons why individual students take tests and
go to college, the curves indicate that probability of membership in the restricted
group of test-takers does increase with achievement level as assumed by the
model. While this would not appear to be an unreasonable assumption, these
data do not speak to its generalizability.

A second basic assumption of the model--an assumption shared by the
derivations of Hedges and Friedman (1993b)--is that the score distributions of
interest are Normal. Whereas the previous assumption seems reasonably safe,
this assumption of normality may be more problematic because the shapes of
distributions can easily vary. We undertook a fairly stringent test of the model's
robustness to violations of this assumption as follows. The NELS composite,
based on all four tests, was used as the selection variable. A restricted sample
was selected as the top 10% of scores on this composite. Using rbis in the
equations previously specified, mean and SD were predicted for females and
males, as well as the value of Dr,, for each individual test score within the
restricted sample.
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Details are shown in the top section of Table D, where the results are
unambiguous. All means in the restricted group were predicted with considerable
accuracy. All SDs were overpredicted, typically by a factor of two or more. All
values of Dr were correspondingly underpredicted in absolute value. This pattern
suggests that the test score distributions were short-tailed, at least for the upper
tail. Examination of the distributions confirmed that fact for both the test scores
and high school average.' The lower section of Table D shows that, when the
original distributions were Normalized, predictions of restricted sample statistics
were reasonably accurate.

Insert Table D

It appears that neither the estimates of tail effects made by Hedges and
Friedman (1993b) nor estimates produced by the proposed model are likely to be
robust to violations of the Normality assumption--at least not at the extremes of
the distribution. In actual practice a given score distribution may be either short-
tailed or long-tailed, and the effects of sample restriction would need to be
modified accordingly. Nonetheless, it is certainly pertinent to ask what general
effects sample restriction might be expected to have, distributional idiosyncracy
aside. It is first desirable to check the internal validity of the model; that is, to
what degree are estimates of the effects of sample restriction accurately
reproduced within a data set known to be normal.

Reproducibility. If one is thinking of "restricted sample" simply as a subset of
a larger population of examinees, then any variation in the observed gender
differences for the restricted and unrestricted group would, indeed, be attributable
to sample restriction alone. The only question would be how accurately one could
reproduce changes in indicators of gender difference from knowledge of the
process whereby the sample was restricted. Such accuracy can be ascertained by
simulating a sample restriction.

Table E shows the results of three such simulated sample restrictions, using
the aforementioned NELS data baze with HSA and the four test variables
Normalized. Results of the first are shown in the column headed "NELS/HSA."
It involved the explicit selection of the top 10% on an equally-weighted composite
consisting of HSA and the average NELS test score (also equally weighted). The
model predicted the values of Dr shown in the first of the two paired numbers in
each column. The actual computed value in the sample so restricted is shown in
parentheses. Note first that the predic, ions were fai rly accurate, considering that
the effects of sample restriction were substantial in this simulation involving of a
fairly extreme selection ratio (P = .10).
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Insert Table E

Note also the compensatory effects of sample restriction: the mean
difference becomes larger, favoring women, on HSA where women tended to be
higher, and becomes smaller, favoring men, on test scores where men tended to
be higher. This effect seems somewhat counter-intuitive. One might imagine that
selecting the women and men who are outstanding on relevant proficiencies would
make them more similar in the selected group. Instead, they have become even
more different on the two measures where there was some difference originally.
By adjusting the selection procedure, one can reduce the difference on one
measure; the trade-off is a larger difference on the other measure, as illustrated in
the next simulation.

The second simulation differs in two respects. First, it involves a more
limited restriction: half of the original group was selected. The effects on D are
less severe, and they are predicted with considerable accuracy. Another
difference is that, in this case, sample restriction is based on only one measure,
HSA. Nonetheless, the effects of implicit selection are apparent in an altered
pattern of gender difference on the test variables. Having selection weight on
HSA has reduced the gender difference on that measure, but the difference on
the test measures is typically larger than in the original group. The implicit
effects on the test variables appear to be predicted with essentially the same
accuracy as the effect on HSA, the variable actually used in the sample selection.

The final simulation adds a different dimension. In this case the restricted
sample was that group of survey respondents who reported having taken either the
American College Test or the Scholastic Aptitude Test. Here again, the D,s in the
restricted sample were quite accurately predicted, even though the actual selection
process had no direct connection with this survey or these measures. As we
noted, all of the results in Table E were based upon Normalized data. In order
to check again on the importance of Normality, the last of the three simulations
was repeated with the original, non-Normalized data. With Normalized data, the
average absolute error in predicting D was .003; with non-Normalized data, the
average absolute prediction error was .005. The accuracy of the predictions
suggests that the model may be.robust to violations of Normality with samples
restricted at this level of selectivity (P =.60).

Overall, these results indicate that the effects of sample restriction on the
pattern of gender differences in a set of measures can be predicted with
considerable accuracy a) if the measures are Normally distributed or selection is
not severe and b) if the relationship of the measures to the selection process (rxy)
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is known. Thus the model appears to provide a useful basis for evaluating the
effects of sample restriction alone on the pattern of subgroup differences; that is,
independent of other possible influences. We move now to a more systematic
examination of the nature of those effects.

Effects of Sample Restriction

In evaluating the possible effects of sample restriction, it is useful first to
recall the situation of interest. A restricted sample may result from explicit
selection on a known variable, or it may come about through a complex selection
process, only partly understood. The restricted sample may show either higher or
lower average achievement than the original sample. We focus here mainly on
samples from the positive end of the achievement scale, though the principles are
the same at either end.

The object is to estimate what effects are likely to be observed regarding
gender differences on Y, a variable that has some direct or indirect relationship to
the restriction process (i.e., some weight in the selection decisions). Since many
variables with quite different patterns of gender difference may be involved in
sample restriction, the ratio of females to males (FIM) in the restricted sample is
not set. It may vary widely, and in fact, is a critical Lspect of gender difference
and similarity in the restricted sample. Finally, there are alternate standards to
consider in evaluating any observed mean difference.

In estimating likely effects of sample restriction, there are two broad
questions of interest. The first is what changes in the pattern of gender difference
and similarity might one expect from sample restriction, per se, independent of
other possible influences? That is, what changes would one expect due only to
changing analytic relationships among means and standard deviations, assuming
no other influences are at work such as variations in the test construct, changes in
the selection process, departures from Normality, or differential learning of
women and men over time. The second broad question is what effects of sample
restriction can one likely expect in the types of sample restriction observed in
actual situations, where other influences do come into play? We address these
two questions in turn.

Analytic Relationships

As outlined in Table C, there are several input and output variables of
special interest. The three key output variables are the FIM ratio, Dr, , and D' in
the restricted group. The latter two indicators of standard mean difference, Dr
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and D', differ only in their use of different standards; that is, whether they are
based upon standard deviations in the restricted versus the original groups. The
difference between Dr and D' indicates the effects of range restriction.

There are five important input variables. The first four are: Do in the
original group; SDR0 in the original group; P, the proportion selected; and r,
which represents the weight that Y had in the restriction process. Both P and r
may differ for females and males. In the interest of simplifying, and because it
seems likely to be less consequential in most situations, we have not attempted to
illustrate the effects of differences between rf. and rm (though the empirical
simulations reported here do include any such variation). In some situations
differences between rF. and rAf may be important; for example, where selective
entry into a graduate field is based on different considerations for women and
men. In practice, such differences in rF and TM are not likely to be easily
estimated.

Gender difference in P is another matter. Difference in P for women and
men directly determines F the representation of women and men in the
restricted group. As we shall see, the effects can be quite consequential. So this
difference between PF and Ppd is most easily expressed in terms of its resulting
effect on FIM, the fifth important input variable. As we noted, it is an unusual
characteristic of the situation that this index of gender balance may be either an
input or an output measure.

The equations previously derived were used to describe the relationships of
interest between these five input and three output measures in both tabular and
graphical form. Table F, for example, shows values of Dr and D' in the restricted
sample for various combinations of Do, SDR, P, and rxy . Different values of
FIM in the restricted sample are represented in Tables F, G, and H. These
tables testify to the complexity of the effects of sample restriction on gender
differences.

Insert Tables F, G, & H

Fortunately, these complex effects can be represented, in simplified form, as
three additive components that match quite well with an intuitive interpretation of
what happens to the observed gender diffeience in a restricted sample.
Furthermore, the components are expressed in terms of the five key input
variables identified earlier. Thus, the change in standard mean difference from
the original to the restricted group is given approximately by

Dr Do A-Do + B.1n(SDR) + C.1n(PFIPM) (5)

2 6
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where A, B, and C are functions of P and r, which define the nature of the sample
restriction.2

The first term on the right side of (5) represents the direct effect of sample
restriction which is proportional to Do , the mean gender difference observed in
the original group. The second term represents the indirect effect of differential
variability expressed as SDR, the ratio of female to male SDs in the original group.
The third component is associated with the differential selection rates, PF and Pm,
for females and males. To better appreciate the character of this third
component, it is useful to rewrite (5) as

Dr Do =A-Do + Bin(SDR) + C-ln(F IMr) (6)

The third component is here represented in terms of F./Mr,, the resulting
gender balance in the restricted group--an outcome measure. It is this outcome
measure that has a critical trade-off relationship with Dr. . For that reason, we
refer to this third component of sample restriction as the reciprocal effect of gender
balance. Together the three components explain any change that occurs in D due
to sample restriction alone. Each of these three deserves some further comment
as to how it might be expected to work in practice.

Direct effect of sample restriction. Assume there is some mean difference,
Do , on a Normally distributed variable in a general population that is half female
and half male. How would one expect that D to change on a compafable
measure in a restricted sample, also half female and half male? That is, what are
the likely statistical effects of restriction, independent of other possible effects
such as differential learning, a change in the test, and so on?

For the present we assume that there are equal numbers of women and men
in the restricted group because there is no reason, a priori, to assume otherwise.
For example, the fact that the mean score for women is typically somewhat lower
than that of men on the mathematics sections of college admissions tests does not
mean that there are likely to be fewer women in the sample of students who go to
college. In fact, more women than men attend college becauk many other
variables come into play. Figure G illustrates the direct effects of sample
restriction--the first component of Equation (6). We start with the assumption
that both F I'M and SD.R are equal to 1.00, which sets the second and third terms
of (6) equal to zero.

Insert Figure G
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Under these conditions we see in Figure G that sample restriction, per se,
always works to increase the absolute size of D. The amount of the increase
depends upon two factors. The more extreme the selection, the larger the
absolute increase in D. Also, the higher the value of r--the weight of Y in
selection--the larger the increase in D. These two effects interact because if a
variable has no weight in selection, in effect, the sample is not restricted with
regard to that variable. Thus, A in Equation (6) represents the joint action of r
and P. Finally, these effects can be expressed as a percentage change for any
value of Do . As indicated in Equation (6), the amount of change is always
proportional to Do .

The general impression of Figure G is that the direct effects of sample
restriction are highly dependent upon r. If a variable has a moderately strong
weight in the process whereby the sample was restricted, the observed mean
gender difference on that variable is likely to undergo a substantial proportional
increase.

Indirect effect of differential variability. The effects of differential variability
are indirect in the sense that changes in D are associated with a secondary aspect
of gender difference in the original group. Figure H illustrates the nature of this
effect, the second component in Equation (6). It shows the amount of change in
D (that is, Dr - Do) that can be expected with different SD ratios. This
particular illustration describes the case where Do = .00 and FINIr = 1.00, thus
setting the first and third term of (6) equal to zero. With an appropriate constant
added to the ordinal scale, the figure can apply generally since the effect of SDR
is constant for all values of Do and FIM.

Insert Figure H

Since SDR appears normally to range from about .85 to 1.00 (Willingham &
Cole, In Prep.), its effect will normally be to move D in a negative direction to the
extent that it is lower than 1.00. That is, gender differences favoring males would
become larger; gender differences favoring females would become smaller.
Figure H shows how SDR interacts with P and r, its effect on D being enhanced
for small P and large r. In terms of Equation (6), B is larger when P is smaller
and r is larger.

Overall, Figure H suggests that differential variability is not likely to have a
large effect when sample restriction is moderate (say, P= .50). But when the
restricted sample represents a small proportion of thc original group (e.g., P= .10),
differential variability can have a substantial effect. For example, if a measure is
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correlated .70 with the selection variable, FM,. = 1.00, and SDR = .85,
selection of the top 10% would result in a standard gender difference of -.26 even
though Do was zero in the original group.

Reciprocal effect of gender balance. There are two natural ways to think
about and describe gender difference and similarity in a restricted group. One is
to compare the difference in the observed means of women and men. Another is
to compare representation of women and men. Each has its rationale as a
relevant measure of interest. It is hard to argue as a general principle that it is
preferable to have equal representation or equal means in a restricted group. As
illustrated earlier in Figure E, these are reciprocal measures. Given a gender
difference in an original group, Equation (6) illustrates that either one of these
measures can be equalized in a restricted group--but only at the expense of the
other. A choice between the two depends on the situation and the consequences.

As we have noted, FIM in the restricted group is directly determined by PF
and Pm . In real situations involving restricted samples, there are many reasons
why those proportions may vary. Those reasons include individual choices, social
constraints, institutional decisions, and so on. Figure I shows the resulting trade-
off between Dr and FIM, which are plotted on the two coordinates. Panels A and
B show the relationship between the two outcome measures when there is a
moderate (.50) and a high (.90) level of r. Similar relationships obtain for positive
values of Do . We assume here no difference in variability in the original group
and a moderate selection rate of .50.

Insert Figure I

Look first at the bottom line in Panel B which represents an original D of
-.40. If selection operates so as to yield a restricted sample with equal
representation of women and men, that equalization comes at the expense of a
larger Dr of -.57. A lower FIM ratio of .84 would maintain Dr at the original
level of -.40.

Other conditions constant, it is apparent from Figure I and from Equation
(6) that the trade-off between D and F IM is the same, regardless of the original
level of Do . The important distinction illustrated in the two panels is the fact
that the stakes are high when the correlation is high, but there is a less
consequential trade-off when the correlation is lower. In other words, if the
measure in question has little weight in the restriction process, there is relatively
little variation in Dr as the representation of women and men varies. In the
extreme case--for a measure uncorrelated with selection--any mean difference in
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the original group should be manifested at the same level in the restricted gyoup,
regardless of the number of females and males represented.

The reciprocity of these two outcomes and the enhanced stakes associated
with the weight a measure has in sample restriction both invite serious
consideration as to the policy implications of selection procedures. Most obvious
would seem to be the tough decisions that arise when there is an imbalance in
women and men who have reached a given level of proficiency. In some cases, it
might be important to have equal representation; in other cases it may be more
important for both women and men to be at some desired level of proficiency. In
this situation the importance of the proficiency is a critical consideration.

Another policy implication concerns the consequence of heavy weight on
one or two measures. These relationships indicate that the more narrowly
selection decisions turn on one or two relevant skills, the more difficult it will be
to balance both representation of women and men and their average proficiency
on the chosen skills. We have another aspect of the outcome measures to
consider; namely, how to interpret the observed standard mean difference in light
of the fact that the "standard" has shifted.

Range restriction. It is not unreasonable to suspect that range restriction
may often play an important role in apparent increases in standard mean
difference in selected groups. It is clear that one regular outcome of sample
restriction will be reduced standard deviations. If a new, reduced standard is used
in judging a mean difference, a larger Dr will necessarily result. Judging a mean
difference in a restricted group with the old standard has a different rationale, as
previously noted, and the alternate statistic, D' , avoids the effect of range
restriction.

It is not so much a question of which metric is correct, but what one may
learn from looking at both. It is clear that they are different. Examining
Tables F, G, and H, where the two sit side by side, gives an impression of much
smaller gender difference in selected groups when the standard is the same as that
used for unrestricted groups. That is particularly the case when the selection ratio
is low and when the measure in question has a heavy weight in sample restriction.

That result is well illustrated in Figure G where all of the effects shown are
due to range restriction. Range restriction is particularly, though not uniquely,
associated with reducing the sample to one tail. Restriction interacts with
differential variability in its effect on Dr,, and sometimes the two work in opposite
directions. Thus, range restriction is not a component that can be expressed as
some given percentage of the overall effects of sample restriction. Two examples
give some feel for the likely contribution of range restriction.

32
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Assume that a high school senior class, equally represented with women and
men, has taken a natural science test with these results: D = -.20 and SDR = .90.
Assume also that half of both the female and the male seniors go to college.
What effect would one expect on Dr , the standard mean difference for the
science scores among those freshmen? One can reasonably assume that science
proficiency, as represented by the test, had only a modest relationship with the
decision to attend college; say, an r of .50. Table G indicates that the effects of
sample restriction would likely increase the mean difference six points to -.26, two
of those points or about one-third being due to range restriction.

Changing the situation, assume that the same class has the opportunity at
the beginning of the senior year to take an Advanced Placement course in
Chemistry. Knowing this to be a very difficult course, only 10% of the seniors
decide to sign up--those who are interested in science and have done well in the
subject in the past. Among those who do, assume there are about four women for
every five men. What effect might one expect on Dr, , the standard mean
difference for the science score among the students in the course? In this
situation it is reasonable to assume that high performance on such a science test
would have a fairly high correlation with the decision to take the course; say an r
of .90. Table F indicates that the effects of sample restriction would change the
mean difference 27 points from -.20 to -.47. Twenty of those points, or about
three-quarters, are due to range restriction. From this perspective, the difference
in mean proficiency level between the women and men entering the course is not
nearly as large as would be suggested by routinely computing D with a
denominator based on the smaller SDs of the restricted group.

Needless to say, somewhat different, equally plausible assumptions would
make some difference in these estimates, but would not alter the basic point.
Range restriction can be a minor factor in some situations, a major factor in
others. Where appropriate and possible, it is useful to consider both standards,
restricted and unrestricted, in evaluating an observed mean difference.

Predictions With Actual Data

Is it possible to see in actual data evidence of the analytic effects previously
described? To what extent do such effects appear to account for variations one
observes in the pattern of gender differences in restricted versus nationally
representative samples? In order to address these questions, we need to meet two
general reqnirements.

With actual data, there are several reasons why the pattern of gender
differences in restricted samples might differ from that normally observed in tests
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administered to nationally representative groups of students. Other than sample
differences, the main possibilities are cohort differences and construct differences.
The first requirement, then, is to identify comparison data in which those two
factors are controlled insofar as possible. The second requirement is to find a
plausible basis for estimating the parameters used in the model in order to predict
the effects of sample restriction.

The obvious place to start looking is near the end of secondary school where
there is much data available on representative as well as restricted samples. In
the data base previously cited (Willingham & Cole, In Prep.), there were 74 tests
in 15 categories that had been administered to representative samples of "12th
grade" students (actually some were 11th graders). Self-selected samples of those
12th graders took a variety of more difficult but generally similar tests for college
admissions purposes.

Many of these are achievement tests from the Advanced Placement Program
(AP) or the Admissions Testing Program (ATP) of the College Board. They are
taken by widely varying numbers of very able students. They cover a variety of
subject areas such as Chemistry, Spanish Literature, and Calculus. These tests are
poor choices for the task at hand. One reason is that the constructs do not match
the tests administered to 12th graders generally. Also, we have, at best, a very
shaky basis for estimating the necessary parameters--mainly, because we have little
knowledge of the process through which individual students decide to take these
tests.

For example, it is reasonable to assume that individual students elect to take
AP tests partly on the basis of whether the course is offered in their school,
whether they have done well in similar courses, whether they are interested in the
subject, whether it is readily scheduled, whether they intend to seek course credit
in college, and so on. These factors would likely have quite different effects on r.
With little hard information on how such matters work in actual practice,
estimating r (i.e., how strongly competence in the subject is related to membership
in the test-taking group) is largely a blind guess. The ATP subject tests pose
similar problems. These various sources of uncertainty in estimating r, a critical
parameter, illustrate why predicting the effects of sample restriction on a
particular test is likely to be problematic.

A more promising possibility is to estimate restriction effects for that group
of tests taken by college-going 12th graders for admissions purposes; namely ACT,
PSAT, and SAT. We had data on 11 such tests taken by the broad college-going
group rather than some more selective subsample such as those who take the AP
Chemistry examination. High school average is also available for both the
restricted and unrestricted group of 12th graders. The objective is to predict,

34
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through the following procedure, what gender difference, Dr, would be expected
for each of these measures on the basis of sample restriction alone.

First, each of the 11 tests was matched as closely as possible with one of the
15 categories of tests administered to representative 12th graders. This yielded
the pattern of categories and tests shown in Table I. High school average was
added to the analysis.

Insert Table I

The number of non-selective tests, and associated data sets, in each 12th
grade category is indicated in parentheses--all together, 47 tests and two very large
sets of data for HSA. The next step was to estimate the likely range of Dr values
in each category if all measures in the left column above were subjected to
sample restriction typical of college admissions test-takers nationally. This
involved predicting a value of Dr for each of the 49 data sets using, as the first
two parameters, D and SDR in each of the original representative samples.

The other three necessary parameters are P, FAIT , and r. Since the same
restricted sample of admissions test-takers applies in all cases, a common set of
the first two parameters was used in all 49 predictions. A common r parameter
was used within each category. Two methods were used to estimate these three
parameters. In Method A we estimated P and FA. from ACT and College
Board program statistics, and r from simulations assuming that students decide to
take an admissions test on the basis of their HSA., previous test performance, and
chance factors.3 In Method B we estimated P, F /Mr , and r on the basis of those
students in the 1992 NELS sample who reported having taken either the ACT or
the SAT.4 Again, the rationale of this procedure is to estimate what standard
mean difference, Dr, , one would expect in restricted samples for the tests
administered to representative samples, and then to compare the predicted values
with those actually observed in similar tests.

Figure J provides several types of information to summarize the results.
The 13 stars (*) on the various category lines show the actual values of Dr in the
restricted samples. For each test category and high school average, the symbol 0
represents the average standard difference, Do , for all measures in that category
based on representative samples in Grade 12. The solid lines and dashed lines
represent, for Methods A and B respectively, the mean + 1 SD for all predicted
values of Dr within each category based on estimates of the effect of sample
restriction.
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Insert Figure J

First a comment on the two methods of estimating parameters. Results for
predictions based on Method A and Method B (solid and dashed lines,
respectively) were quite similar as to direction and range; Method A typically
predicted somewhat larger effects of sample restriction than 'did Method B. Both
methods have weaknesses. Method A requires an educated guess as to how much
weight HSA, test scores, and other unknown factors including chance, have on the
decision to take an admission test. Method B is based upon 69% of the NELS
sample--those who had complete test, grade and questionnaire data. This group
may or may not represent well high school seniors nationally. The accuracy of
Method B also depends upon correct reporting of test-taking by students. The
most accurate predictions probably lie somewhere between these two methods.5
Figure J suggests four main results:

In all seven categories, the model predicts that D will move slightly or
moderately in a negative direction, favoring males.

As predicted, in all seven categories the observed Drs are more negative
than the average Do for representative samples at Grade 12.

In most categories, observed values of Dr for tests administered to restricted
samples lie within the range of predicted values.

For two types of measures--language use and high school average--the
observed values of Dr tended to be noticeably more negative than would be
predicted only on the basis of sample restriction.

We have several observations about these findings. The predicted trend to
more negative values of Dr is apparently due mainly to the somewhat greater
variability of male scores in most of the categories and to somewhat greater
representation of women among test-takers (FIM is about 1.16 in test program
data). In this illustration the effect of restriction, per se, is not likely to be large
since the selection ratio is not small (60% of students in the NELS sample
reported taking an admissions test). The fairly wide range of such predicted
values underscores the fact that tests within categories vary in character, and that
prediction of standard mean differences in restricted samples on the basis of
sample restriction alone is an unreasonable expectation. Nonetheless, the findings
do show reasonably good consistency overall between trends predicted by the
model and trends widely observed in gender differences on selective tests.
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The two inconsistencies, language use and high school average, are curious.
The language use tests taken by selected samples do not appear to be qualitatively
different from those regularly administered to general populations of high school
seniors. There is some suggestion of a similar result for other types of language
tests. The reading subscore of the SAT showed a D of -.06 in 1992, placing it and
the ACT reading test at the low end of the predicted range. There are no data
on essay writing for a college-going sample comparable to that on which these
data are based, though what data are available show markedly lower Ds in
selected samples than are typical in general populations. It may be that such tests
tend to have short-tailed score distributions at the top. Reading and language use
tests do not always discriminate well at the top of the scale (Donlon, 1984; Lord
& Wild, 1985). On the other hand, it is possible that the construct is somewhat
different when such tests are designed for more able students.

High school average is a similar but even more curious case because it is, in
fact, essentially the same measure for the unrestricted and restricted samples.
NELS and HSB data show Ds of .31 and .35 for HSA based on high school
seniors; ACT and College Board program data show Ds of .15 and .16 based on
college-going students. There may also be a short-tail problem with HSA due to
a ceiling effect, but some of our analyses seem inconsistent with that as the
explanation. Another possibility is that males may be more prone to exaggerate
when self-reporting their HSA in the college admission context. If so, that would
tend to wash out some of the positive D observed in survey data. Available data
appear to be inconsistent on this point.6

Summary

Our purpose has been to work toward an improved understanding of the
effects on observed gender differences of sample restriction as it may operate
under a variety of conditions. This requires taking into account three important
features: effects of implicit selection on new measures in new situations, the
effects of gender balance on the outcome of sample restriction, and the standard
one chooses to employ in evaluating mean differences. Building on recent work
on differential variability and explicit selection in the tail of a distribution (Cleary,
1992; Feingold, 1992b; Hedges & Friedman, 1993b), we proposed a sample
restriction model that incorporates these features. The model includes five input
variables and three output variables.

In simulated sample restrictions with test and grade data, the model proved
to be quite accurate in reproducing standard mean differences and other statistics
in the restricted group. This was true even in the case of implicit effects on
variables not actually involved in the restriction process. These findings support
the internal validity of the model. Also, the model appears to be relatively robust



-32-

to violations of Normality assumptions with selected proportions in the range of
.50, but much more sensitive if the selected proportion is small (i.e., .10 or less).

Strictly speaking, the statistical effects of sample restriction apply in a
predictable manner for a given measure, within a particular sample, wherein
females and males are selected in a similar manner. Additional contingencies
arise when such a model is used to make external predictions; for example, in
attempting to account for differences in observed D for two similar tests
administered to unrestricted and restricted samples. In such situations a key input
statistic is apparently r, the correlation between the original variable of interest
and the restriction process. This parameter has consequential effects, is typically
unknown, and is difficult to estimate. It is also apparent that external predictions
can be in error because of subtle differences in the selection process for women
and men or in the constructs represented at the input and output ends of the
prediction of interest.

Because of these considerations, it seems clear that the proposed model is
more useful for understanding the general principles that are likely to influence
gender differences under sample restriction than for predicting a restriction effect
in a particular set of test data. Nevertheless, our results show reasonably good
consistency overall between trends predicted by the model and trends widely
observed in gender differences on selective tests.

The model suggests several principles by which sample restriction affects
gender differences. It was possible to demonstrate, analytically and grak
that there are three major components to such effects. First is the direct effect of
restriction, per se. When the same proportion of women and men is maintained
from an unrestricted to a restricted sample and there is no difference in
variability, restriction always increases the absolute value of the apparent mean
gender difference. All of that increase is due to range restriction, not to any
change in the relative performance level of women and men. It does not
necessarily follow, of course, that the character and the consequences of that
difference are the same at different levels of proficiency.

The second major component is the indirect effect of differential variability
in the original unrestricted sample. The typical effect of differential variability is
a negative shift (i.e., favoring males) in the standard mean difference in the
restricted group. Either of these two components or types of effects may be small
or substantial, depending upon the circumstances. The two components may have
a cumulative effect or they may counteract each other. Consequently, it is not
possible to formulate any general rule as to the extent to which changes in the
pattern of gender difference are due to one factor or the other.
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The third component of the effects of sample restriction on mean gender
difference is related to the relative proportion of women and men who are
selected. If more men are selected (Pm > PF), then Dr moves in a positive
direction (i.e., favoring females); and vice versa. This third effect of sample
restriction is quite different from the first two because it is not clear that it is
always desirable to minimize the mean difference, Dr..

Gender difference in any restricted group can be evaluated on the basis of
two outcome measures: the standard mean difference, Dr, and the
representation of women and men who are selected, FIM, . The characteristics of
the model make clear that these are reciprocal features of gender difference and
similarity that can vary substantially, depending upon the nature of the sample
restriction. If a sample is selected in such a manner that one of the outcomes
tends to favor one gender, the other outcome will necessarily move in the
opposite direction if other factors remain constant.

It is important to underst- nd, however, that the reciprocal relationship
between FIM and D holds strictly only in a static situation; that is, for a givc.n
measure within a given sample. If the sample or the situation changes, D may
well be affected by FIM and vice-versa, but their relationship is not necessarily
determinative. Either gender may improve in relative performance on either or
both measures. A good illustration of such an outcome can be observed in test
results ef the Advanced Placement Program over the past decade. A significant
increase in representation of women (FIM) in natural science AP exams in recent
years has not been accompanied by any change in D, the relative mean score level
of females and males (College Board, 1993).

Another type of reciprocity was illustrated in simulations of restriction
effects involving more than one selection measure. When two measures like high
school average and an admissions test score show opposite gender differences,
sample restriction may increase both differences or decrease one at the expense of
a larger difference on the other. One important conclusion we draw is that such
inevitable trade-offs bring into focus important issues concerning policy and
practice in seeking gender equity. When is differential proficiency more or less
important than differential representation in a restricted group? What are the
costs and benefits of gender parity on one proficiency in a restricted group if it
comes at the expense of disparity in another proficiency?
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TECHNICAL NOTES

1. High school average and all four NELS tests showed a moderate level of
negative kurtosis (-.75 to -.95). The tests showed a slight negative skewness
(typically about -.16, except for the reading test at -.37); the HSA was
skewed positively to a small degree (.20). In the case of the test scores, the
negative kurtosis may result from the use of a Baysian method of IRT
scaling in the NELS study, which tends to pull in the tails somewhat.
Apparently, high school averages tend naturally to be moderately short-
tailed. When Normalizing NELS test scores, we simply replaced the original
score at the Pth percentile with the corresponding percentage point for the
Normal distribution having the same mean and standard deviation. This
was done separately for male and female distributions.

2. This equation was first obtained empirically, after studying Tables F, G, and
H. We noted that, for fixed values of the correlation (r) and the proportion
selected (P), the values of Dr given in the tables could be approximately
represented as a sum of three components, related to Do , SDR, and P FIPA,f
The size of these components varies as a function of r and P, but they are
always (approximately) proportional to Do , ln(SDR), and ln(PF/Pm),
respectively. Note that the input variables PF and Pm cannot be varied
independently in Equation (4), since it assumes that P is fixed. In other
words, if you were to hold PA,f constant and vary PF , the weights A, B and C
would all change, as a result of changing
(PF+PAN2 = P.

3. P, FIM and r were estimated by Method A as follows. Based on a 1992
high school senior class of 2.5 million (U. S. Department of Education,
1992), program data from ACT and the College Board indicate that about
33% and 41% of those seniors took the ACT and SAT respectively.
Considering overlap testing, we estimated that 65% of all seniors took one
or both tests. The F IM ratio of test candidates for both testing programs
combined was 1.16. In order to estimate r, a selection variable X was
defined as an equally weighted composite of HSA, NELS test composite and
a random variable with D = .00 and SDR = 1.00. Selecting the top 65% on
X yielded values of rbi, in the range of .60 to .65 for the tests and .70 for
HSA.

4. P, F and r were estimated by Method B as follows. The 1992 NELS
questionnaire asked seniors to report whether they had taken the ACT
and/or the SAT. The group who said that they had taken both defined
P = .61 and F = 1.19. This definition of the restricted sample yielded
values of rbis. about .10 lower than the estimates produced by Method A.
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5. Method A and Method B gave reasonably similar estimates of P and FIM
as described above. The difference in the estimates of these two parameters
did not appear to be a significant source of difference in the predictions.
An error in rbis. is likely to have more influence. The Method A estimate is
suspect because it involves a judgmental simulation. Method B is suspect
because it is based upon a sample with significant data loss, and any student
errors in reporting on the tests would tend to reduce rbis with an attendant
underestimation of restriction effects. Curiously, it seems that not all
students are accurate in reporting such information. We know of no good
data on this specific point. Though there is some indication that, in general,
males tend to be less accurate in their survey responses (Kaufman, Rasinski,
Lee, & West, 1991; Baratz-Snowden, Pollack, & Rock, 1988). It is on the
basis of these several considerations that we suggest that the more accurate
predictions lie somewhere between Method A and Method B.

6. A study by the National Center for Education Statistics (Fetters, Stowe, &
Owings, 1984) reported no gender difference in the tendency to exaggerate
grades earned. On the other hand, Freeberg (1988) reported that 21% of
males and 16% of females overreported. Maxey and Ormsby (1971)
reported similar figures: 15% for males and 12% for females.

14
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Figure 10-B
Illustration of the Largely Independent Role of Original Da and the Standard

Deviation Ratio in Determining Dr Within the Upper Tail (Top 10%)
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Figure 10-C
Illustration of the Largely Independent Role of Original Do and the Standard
Deviation Ratio in Determining FIM Ratio Within the Upper Tail (Top 10%)
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Figure 10-D
Restriction Model: Illustration of Implicit Selection on Variable Y

Due to Its Correlation With a Hypothetical Composite X,
on Which a Sample is Explicitly Selected
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Figure 10-E
Illustration of Reciprocal Effects on Standard Mean Difference (Dr)

and Female-Male Ratio (FIM,), Dependhig Upon the Nature of
Sample Restriction

...c--- Dr = -.08; FPI, =.70
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Figure 10-F
Proportion of Females and Males Taking a College Admissions Test

(ACT or SAT) as a Function of (A) High School Average and
(B) Composite NELS Test
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Figure 10-G
Direct Effects on Standard Mean Difference (D,.) in a Restricted Sample

Under Different Conditions of Sample Restriction
(SDR = 1.0; FIM Ratio = 1.0)
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Figure 10-H
Indirect Effects on Standard Mean Difference (D r) in a

Restricted Sample Associated with Differences in
Variability (SDR) in the Original Sample
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Figure 10-I
T Trade-off Between Standard Mean Difference (Dr) and

Representation of Females and Males (FIM,.) in a
Restricted Sample (SDR = 1.00; P = .50)
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Table A
Standard Mean Difference (Di) and Female-Male Ratio (FIM)

in the Upper Tail (Top 10%, Top 50%) as a Function of the
Standard Deviation Ratio (SDR) and Do in the Original Group*

(Top 10%) Do in the Original Group:
SDR -.40 -.20 .00 .20 .40

Dr 1.00 -.16 .00 .08 .16
.95 -.25 -.17 -.09 -.00 .08

.90 -.34 -.26 -.18 -.09 -.01

.85 -.43 -35 -.27 -.19 -.11

.80 -.45 -37 -.29 -21

FIM 1.00 .49 .70 1.00 1.42 2.04
.95 .43 .63 .89 1.27 1.80
.90 .38 35 .79 1.12 139
.85 .33 .48 .69 .99 1.40

.28 .41 .60 .86 1.23

(Top 50%)

Dr 1.00 -.24 -.12 .00 .12 .24
.95 -31 -.19 -.07 .05 .17

.90 -.38 -.26 -.14 -.02 .10

.85 -.45 -.33 -.21 -.09 .03
.80 -33 -.41 -.29 -.17 -.05

FIM 1.00 .73 .85 1.00 1.17 1.38

.95 .73 .85 1.00 1.17 1.38

.90 .73 .85 1.00 1.17 1.38
.85 .73 .85 1.00 1.17 1.38
.80 .72 .85 1.00 1.17 138

*Following Hedges and Friedman, 1993
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Table B
Effect of Differential Female and Male Variability (SDR) on the

Standard Percentile Difference (Dp) at the 90th Percentile

Do in the Original Group:

SDR -.40 -.20 .00 .20 .40

1.00 -.40 -.20 .00 .20 .40

.95 -.47 -.27 -.07 .13 .33

.90 -.53 -.33 -.13 .07 .27

.85 -.61 -.41 -.21 -.01 .19

.80 -.68 -.48 -.28 -.08 .12



-51-

Table C
Sample Restriction Model: Statistical Components

Input Statistics,
Original Sample

F, M F, M
Separately Difference

Output Statistics,
Restricted Sample

F, M
Difference

1. Sample Size

2. Mean

3. Standard
Deviation

4. Proportion
Selected

5. Correlation
with Composite

SDF,SDA1

[PF PM1N

N
[rF ,rMJ

[F1Mr?

iDT,D911

SDR,

°Statistics of special interest.
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Table D
Effects of Non-normality on Predictions of

Statistics in a Restricted Sample*

NELS
Test

Predicted (Actual) Values for:
Females Males

Y SD Y SD Dr

NELS Scores

Reading 46.8(46.9) 7.1(2.6) 463(463) 7.1(2.8) .07(.19)

Math 68.2(68.2) 9.1(4.8) 70.0(70.1) 9.6(4.5) -.20(-.40)

History 42.0(42.0) 3.2(1.8) 42.8(42.8) 3.9(1.5) -.23(-.50)

Science 31.7(31.7) 3.5(1.9) 33.1(33.1) 4.4(1.7) -35(-.75)

Composite 5.71(5.71) .49(.16) 5.83(5.83) .56(.15) -.22(-.74)

Normalized Scores

Reading 49.7(49.7) 5.6(6.2), 48.7(48.7) 5.8(6.8) .17(.15)

Math 69.6(69.6) 83(8.4) 71.8(71.8) 8.5(8.5) -.27(-.26)

History 425(42.5) 3.0(33) 44.2(44.1) 3.2(3.6) -.54(-.47)

Science 31.9(31.9) 3.4(3.6) 345(34.4) 3.7(4.2) -.72(-.65)

Composite 5.80(5.80) 37(32) 6.00(6.00) .38(.36) -.52(-.57)

NAB entries refer to the restricted sample which consisted of the top 10%
on an equally weighted composite of the four NELS tests.



T
ab

le
 E

R
ep

ro
du

ci
bi

lit
y 

of
 th

e 
E

ff
ec

ts
 o

f 
Sa

m
pl

e 
R

es
tr

ic
tio

n 
on

St
an

da
rd

 M
ea

n 
D

if
fe

re
nc

es
 (

D
r)

 in
 th

e 
N

E
L

S 
Sa

m
pl

e

Pr
ed

ic
te

d 
(A

ct
ua

l)
 V

al
ue

s 
of

 D
r 

in
 S

am
pl

es
 R

es
tr

ic
te

d 
on

 th
e 

Fo
llo

w
in

g
B

as
es

:*

M
ea

su
re

O
ri

gi
na

l
D

o
N

E
L

S/
H

SA
P=

.1
0

H
S 

A
ve

ra
ge

P=
.5

0
A

C
T

/S
A

T
 T

ak
er

s
(P

=
.6

0)

N
E

L
S 

R
ea

di
ng

.2
4

.0
2

(.
04

)
.1

5
(.

14
)

.2
0

(.
20

)

N
E

L
S 

M
at

h
-.

09
-.

42
(-

.4
0)

-.
26

(-
.2

5)
-.

19
(-

.1
9)

N
E

L
S 

H
is

to
ry

-.
16

-.
60

(-
.5

3)
-.

32
(-

.3
1)

-.
25

(-
.2

4)

N
E

L
S 

Sc
ie

nc
e

-.
31

-.
79

(-
.7

5)
-.

48
(.

46
)

-.
39

(-
.3

8)
en (1

4

N
E

L
S 

C
om

po
si

te
-.

09
-.

61
(-

.6
3)

-.
27

(-
.2

5)
-.

18
(-

.1
7)

U
.S

. A
ve

ra
ge

.3
1

.4
6

(.
50

)
.1

7
(.

17
)

.2
9

(.
29

)

°T
he

 N
E

L
S/

H
SA

 r
es

tr
ic

te
d 

sa
m

pl
e 

co
ns

is
te

d 
of

 s
tu

de
nt

s 
w

ho
 s

co
re

d 
in

th
e 

to
p 

10
%

 o
n 

an
 e

qu
al

ly
w

ei
gh

te
d 

co
m

po
si

te
 o

f 
H

SA
 a

nd
 N

E
L

S 
te

st
 c

om
po

si
te

.
T

he
 H

SA
 s

am
pl

e 
co

ns
is

te
d 

of
 th

e 
to

p 
50

%
 o

n
th

at
 m

ea
su

re
. T

he
 te

st
-t

ak
er

 s
am

pl
e 

co
ns

is
te

d
of

 th
at

 6
0%

 o
f 

th
e 

N
E

L
S 

sa
m

pl
e 

w
ho

 r
ep

or
te

d 
ha

vi
ng

ta
ke

n 
ei

th
er

 A
C

T
 o

r 
SA

T
. H

SA
 a

nd
 te

st
 s

co
re

di
st

ri
bu

tio
ns

 w
er

e 
no

rm
al

iz
ed

.



T
ab

le
 F

St
an

da
rd

 M
ea

n 
D

if
fe

re
nc

e 
[D

r 
(D

')]
 f

or
 V

ar
ia

bl
e 

I' 
in

 S
am

pl
es

 R
es

tr
ic

te
d 

T
hr

ou
gh

 I
m

pl
ic

it 
Se

le
ct

io
n

U
si

ng
 R

es
tr

ic
te

d 
an

d 
U

nr
es

tr
ic

te
d 

St
an

da
rd

 D
ev

ia
tio

ns
 -

- 
Fe

m
al

e/
M

al
e 

R
at

io
 =

 .8
0*

10
%

 S
el

ec
te

d
50

%
 S

el
ec

te
d

O
ri

gi
na

l M
ea

n 
D

if
fe

re
nc

e
O

ri
gi

na
l M

ea
n 

D
if

fe
re

nc
e

xr
SD

R
-.

40
-.

20
.0

0
.2

0
.4

0
-.

40
-.

20
.0

0
.2

0
.4

0

.3
00

1.
00

-.
38

(-
.3

7)
-.

18
(.

.1
7)

.0
3(

 .0
3)

.2
4(

 .2
3)

.4
5(

 .4
3)

..3
6(

-.
35

)
-.

15
(-

.1
5)

.0
5(

 .0
5)

.2
6(

 .2
5)

.4
7(

 .4
5)

.9
5

-.
41

(.
40

)
-.

20
(-

.2
0)

.0
0(

 .0
0)

.2
1(

 .2
0)

.4
2(

 .4
0)

-.
37

(.
36

)
-.

16
(-

.1
6)

.0
4(

 .0
4)

.2
5(

 .2
4)

.4
5(

 .4
4)

.9
0

-.
44

(.
42

)
-.

23
(-

.2
2)

-.
02

(-
.0

2)
.1

8(
 .1

8)
.3

9(
 .3

8)
-.

38
(.

.3
7)

-.
18

(-
.1

7)
.0

3(
 .0

3)
.2

3(
 .2

3)
.4

4(
 .4

3)
.8

5
-.

47
(-

.4
5)

-.
26

(.
.2

5)
-.

06
(.

05
)

.1
5(

 .1
5)

.3
6(

 .3
5)

-.
40

(.
39

)
-.

19
(-

.1
9)

.0
1(

 .0
1)

.2
2(

 .2
1)

.4
3(

 .4
1)

.5
00

1.
00

-.
39

(.
.3

5)
-.

17
(-

.1
5)

.0
6(

 .0
5)

.2
8(

 .2
5)

31
( 

.4
5)

-.
34

(.
.3

1)
-.

12
(-

.1
1)

.1
0(

 .0
9)

.3
1(

 .2
9)

33
( 

.4
9)

.9
5

-.
44

(-
.3

9)
-.

22
(-

.1
9)

.0
1(

 .0
1)

.2
3(

 .2
1)

.4
6(

 .4
1)

-.
36

(.
.3

3)
-.

14
(-

.1
3)

.0
7(

 .0
7)

.2
9(

 .2
7)

.5
1(

 .4
7)

.9
0

-4
9(

-4
4)

-.
27

(-
.2

4)
-.

04
(.

04
)

.1
8(

 .1
6)

.4
0(

 .3
6)

-.
39

(-
.3

5)
-.

17
(-

.1
5)

.0
5(

 .0
5)

.2
7(

 .2
5)

.4
9(

 .4
5)

.8
5

-.
55

(-
.4

9)
-.

33
(.

.2
9)

-.
10

(.
.0

9)
.1

2(
 .1

1)
.3

5(
 .3

1)
-.

41
(.

.3
8)

-.
19

(-
.1

8)
.0

3(
 .0

2)
.2

4(
 .2

2)
.4

6(
 .4

2)

.7
00

1.
00

-.
42

(-
.3

3)
-.

16
(-

.1
3)

.1
0(

 .0
7)

.3
6(

 .2
7)

.6
2(

 .4
7)

-.
33

(-
.2

8)
-.

09
(-

.0
8)

.1
5(

 .1
2)

.3
9(

 .3
2)

.6
3(

 .5
2)

.9
5

-5
1(

.3
9)

..2
5(

-.
19

)
.0

1(
 .0

1)
.2

7(
 .2

1)
53

( 
.4

1)
-.

37
(.

30
)

..1
3(

.1
0)

.1
2(

 .1
0)

.3
6(

 .3
0)

.6
0(

 .5
0)

.9
0

-3
9(

..4
6)

..3
3(

-.
26

)
-.

07
(-

.0
6)

.1
9(

 .1
4)

.4
5(

 .3
4)

-.
40

(.
33

)
-.

16
(-

.1
3)

.0
13

( 
.0

7)
.3

2(
 .2

7)
56

( 
.4

7)
85

-.
68

(.
53

)
-.

42
(-

.3
3)

-.
16

(-
.1

3)
.1

0<
 .0

7)
.3

6(
 .2

7)
-.

44
(-

.3
7)

-.
20

(.
17

)
.0

4(
 .0

3)
.2

8(
 .2

3)
32

( 
.4

3)

.9
(X

)
1.

00
-.

53
(.

.3
1)

-.
18

(-
.1

1)
.1

7(
 .0

9)
$2

( 
.2

9)
.8

7(
 .4

9)
-.

34
(-

.2
4)

-.
06

(.
04

)
.2

3(
 .1

6)
32

( 
.3

6)
.8

0(
 5

6)
.9

5
-.

68
(-

.3
9)

-.
33

(-
.1

9)
.0

2(
 .0

1)
.3

7(
 .2

1)
.7

2(
 .4

1)
-.

40
(.

.2
8)

-.
11

(-
.0

8)
.1

8(
 .1

2)
.4

6(
 .3

2)
.7

5(
 3

2)
.9

0
-.

82
(-

.4
7)

-.
47

(-
.2

7)
-.

12
(.

.0
7)

.2
2(

 .1
3)

57
( 

.3
3)

-.
45

(.
32

)
-.

17
(.

.1
2)

.1
2(

 .0
8)

.4
1(

 .2
8)

.6
9(

 .4
8)

.8
5

-.
98

(.
36

)
-.

63
(.

36
)

-.
28

(-
.1

6)
.0

7(
 .0

4)
.4

2(
 .2

4)
-3

1(
..3

6)
-.

22
(.

16
)

.0
6(

 .0
4)

.3
5(

 .2
4)

.6
3(

 .4
4)

.9
99

1.
00

-.
71

(-
.2

9)
-.

23
(-

.0
9)

.2
6(

 .1
1)

.7
4(

 .3
1)

1.
22

( 
31

)
-.

37
(-

.2
2)

-.
04

(.
02

)
.2

9(
 .1

8)
.6

2(
 .3

8)
.9

6(
 3

8)
.9

5
-.

93
(.

.3
8)

..4
5(

-.
18

)
.0

4(
 .0

2)
32

( 
.2

2)
1.

00
( 

.4
2)

-.
43

(-
.2

6)
-.

10
(.

06
)

.2
3(

 .1
4)

56
( 

.3
4)

.8
9(

 .5
4)

.9
0

-1
.1

6(
.4

8)
..6

7(
..2

8)
-.

19
(-

.0
8)

.2
9(

 .1
2)

.7
7(

 .3
2)

-3
0(

-,
31

)
-.

18
(-

.1
1)

.1
5(

 .0
9)

.4
8(

 .2
9)

.8
1(

 .4
9)

.8
5

-1
.4

0(
38

)
-.

91
(3

8)
-.

43
(-

.1
8)

.0
5(

 .0
2)

33
( 

.2
2)

-3
8(

-,
35

)
-.

25
(-

.1
5)

.0
8<

 .0
5)

.4
1(

 .2
5)

.7
4(

 .4
5)

%
T

ab
le

d 
en

tr
ie

s 
ar

e 
D

r 
an

d 
(D

').
 S

D
R

 is
 th

e 
fe

m
al

e/
m

al
e 

st
an

da
rd

 d
ev

ia
tio

n 
ra

tio
 in

 v
ar

ia
bl

e 
Y

; rx
y

is
 th

e 
co

rr
el

at
io

n 
w

ith
 s

el
ec

tio
n 

co
m

po
si

te
 X

.



T
ab

le
 G

St
an

da
rd

 M
ea

n 
D

if
fe

re
nc

e 
[D

r 
(D

)]
 f

or
 V

ar
ia

bl
e 

Y
 in

 S
am

pl
es

 R
es

tr
ic

te
d 

T
hr

ou
gh

 I
m

pl
ic

it 
Se

le
ct

io
n

U
si

ng
 R

es
tr

ic
te

d 
an

d 
U

nr
es

tr
ic

te
d 

St
an

da
rd

 D
ev

ia
tio

ns
 -

- 
Fe

m
al

e/
M

al
e 

R
at

io
 =

 1
.0

0f
i

r
SD

R

10
%

 S
el

ec
te

d
O

ri
gi

na
l M

ea
n 

D
if

fe
re

nc
e

50
%

 S
el

ec
te

d
O

ri
gi

na
l M

ea
n 

D
if

fe
re

nc
e

-.
40

-.
20

.0
0

.2
0

.a
o

-.
40

-.
20

.0
0

.2
0

.4
0

30
0

1.
00

-.
42

(-
.4

0)
-.

24
-.

20
)

.0
0(

 .0
0)

.2
1(

 .2
0)

42
( 

.4
0)

-.
41

(-
.4

0)
-.

21
(-

.2
0)

.0
0(

 .0
0)

.2
1(

 .2
0)

.4
1(

 .4
0)

.9
5

-.
44

(-
.4

3)
-.

24
(-

.2
3)

-.
03

(-
.0

3)
.1

8(
 .1

7)
.3

9(
 .3

7)
-.

42
(-

.4
1)

-.
22

(-
.2

1)
-.

01
(-

.0
1)

.1
9(

 .1
9)

.4
0(

 .3
9)

.9
0

-.
47

(-
.4

6)
-.

27
(-

.2
6)

-.
06

(-
.0

6)
.1

5(
 .1

4)
.3

6(
 .3

4)
-.

44
(-

.4
3)

-.
23

(-
.2

3)
-.

03
(-

.0
3)

.1
8(

 .1
7)

.3
9(

 .3
7)

.8
5

-3
0e

.4
9)

-.
30

(-
.2

9)
-.

09
(-

.0
9)

.1
2(

 .1
1)

.3
3(

 .3
1)

-.
45

(-
.4

4)
-.

25
(-

.2
4)

-.
04

e.
04

)
.1

7(
 .1

6)
.3

7(
 .3

6)

50
0

1 
(X

)
-.

45
(-

.4
0)

-.
22

(-
.2

0)
.0

0(
 .0

0)
.2

2(
 .2

0)
.4

5(
 .4

0)
-.

44
(-

.4
0)

-.
22

(-
.2

0)
.0

0(
 .0

0)
22

( 
.2

0)
.4

4(
 .4

0)
.9

5
-.

50
(-

44
)

-.
28

(-
.2

4)
-.

05
(-

.0
4)

.1
7(

 .1
6)

.4
0(

 .3
6)

-.
46

(.
42

)
-.

24
(-

.2
2)

-.
02

(-
.0

2)
.2

0(
 .1

8)
.4

1(
 .3

8)
.9

0
-5

5(
.4

9)
-.

33
(-

.2
9)

-.
10

(-
.0

9)
.1

2(
 .1

1)
.3

5(
 .3

1)
-.

48
(-

.4
4)

-.
26

(-
.2

4)
-.

05
(-

.0
4)

.1
7(

 .1
6)

.3
9(

 .3
6)

85
-.

61
(.

34
 )

-.
38

(-
.3

4)
-.

16
(-

.1
4)

.0
7(

 .0
6)

.2
9(

 .2
6)

-5
1(

-.
46

)
-.

29
(-

.2
6)

-.
07

(-
.0

6)
.1

5(
 .1

4)
.3

7(
 .3

4)

70
0

1.
00

-3
2(

-4
0)

-.
26

(-
.2

0)
.0

0(
 .0

0)
.2

6(
 .2

0)
32

( 
.4

0)
-.

48
(-

.4
0)

-.
24

(-
.2

0)
.0

0(
 .0

0)
.2

4(
 .2

0)
.4

8(
 .4

0)
.9

5
-.

60
(-

.4
6)

-.
34

(-
.2

6)
-.

08
(-

.0
6)

.1
8(

 .1
4)

.4
4(

 .1
4)

-5
2(

-.
43

)
-.

28
(-

.2
3)

-.
03

(-
.0

3)
.2

1(
 .1

7)
.4

5(
 .3

7)
.9

0
-.

69
(-

33
)

-.
43

(-
.3

3)
-.

17
(-

.1
3)

.0
9(

 .0
7)

.3
5(

 .2
7)

-.
55

(-
.4

6)
-.

31
(-

.2
6)

-.
07

(-
.0

6)
.1

7(
 .1

4)
.4

1(
 .3

4)
.8

5
-.

78
(-

.6
0)

-3
2(

-.
40

)
-.

26
(-

.2
0)

.0
0(

 .0
0)

.2
6(

 .2
0)

-5
9(

-.
49

)
-.

35
(-

.2
9)

-.
11

(-
.0

9)
.1

3(
 .1

1)
.3

7(
 .3

1)

M
X

)
1.

00
-.

70
(-

.4
0)

-.
35

(-
.2

0)
.0

0(
 .0

0)
.3

5(
 .2

0)
.7

0(
 .4

0)
-3

7(
-.

40
)

-.
29

(-
.2

0)
.0

0(
 .0

0)
.2

9(
 .2

0)
.5

7(
 .4

0)
.9

5
-.

84
(-

.4
8)

-4
9(

-.
28

)
-.

14
(-

.0
8)

.2
1(

 .1
2)

.5
6(

 .3
2)

-.
63

(.
.4

4)
-.

34
(-

.2
4)

-.
05

(-
.0

4)
.2

3(
 .1

6)
.5

2(
 .3

6)
.9

0
-.

99
(-

.5
7)

-.
64

(-
.3

7)
-.

29
(-

.1
7)

.0
6(

 .0
3)

.4
1(

 .2
3)

-.
68

(-
.4

8)
-.

40
(-

.2
8)

-.
11

(-
.0

8)
.1

8(
 .1

2)
.4

7(
 .3

2)
.8

5
-1

.1
5(

-.
66

)
-.

80
(-

.4
6)

-.
45

(-
.2

6)
-.

10
(-

.0
6)

.2
5(

 .1
4)

-.
74

(-
32

)
-.

45
(-

.3
2)

-.
17

e.
12

)
.1

2(
 .0

8)
.4

1(
 .2

8)

99
9

1.
00

-.
97

(-
.4

0)
-.

48
(-

.2
0)

.0
0(

 .0
0)

.4
8(

 .2
0)

.9
7(

 .4
0)

-.
66

(-
.4

0)
-.

33
(-

.2
0)

.0
0(

 .0
0)

.3
3(

 .2
0)

.6
6(

 .4
0)

.9
5

-1
.1

9(
-.

49
)

-.
70

(.
29

)
-.

22
(-

.0
9)

.2
7(

 .1
1)

.7
5(

 .3
1)

-.
73

(-
.4

4)
-.

40
(-

.2
4)

-.
07

(-
.0

4)
.2

6(
 .1

6)
.5

9(
 .3

6)
.9

0
-1

.4
1(

-.
58

)
-.

93
(-

.3
8)

-.
45

(-
.1

8)
.0

4(
 .0

2)
.5

2(
 .2

2)
-.

80
(-

.4
8)

-.
47

(-
.2

8)
-.

14
(-

.0
8)

.1
9(

 .1
2)

32
( 

.3
2)

.8
5

-1
.6

5(
-.

68
)

-1
.1

7(
-.

48
)

-.
69

(-
.2

8)
-.

20
(-

.0
8)

.2
8(

 .1
2)

-.
88

(-
.5

3)
-3

4(
-.

33
)

-.
21

(-
.1

3)
.1

2(
 .0

7)
.4

5(
 .2

7)

*T
ab

le
d 

en
tr

ie
s 

ar
e 

D
r 

an
d 

(D
').

 S
D

R
 is

 th
e 

fe
m

al
e/

m
al

e 
st

an
da

rd
 d

ev
ia

tio
n 

ra
tio

 in
 v

ar
ia

bl
e 

Y
;

rr
y

is
 th

e 
co

rr
el

at
io

n 
w

ith
 s

el
ec

tio
n 

co
m

po
si

te
 X

.

6



T
ab

le
 H

St
an

da
rd

 M
ea

n 
D

if
fe

re
nc

e 
[D

r 
(E

Y
)]

 f
or

 V
ar

ia
bl

e 
Y

 in
 S

am
pl

es
 R

es
tr

ic
te

d
T

hr
ou

gh
 I

m
pl

ic
it 

Se
le

ct
io

n
U

si
ng

 R
es

tr
ic

te
d 

an
d 

U
nr

es
tr

ic
te

d 
St

an
da

rd
 D

ev
ia

tio
ns

 -
- 

Fe
m

al
e/

M
al

e 
R

at
io

 =
 1

.2
5°

r xY
SD

R

10
%

 S
el

ec
te

d
O

ri
gi

na
l M

ea
n 

D
if

fe
re

nc
e

50
%

 S
el

ec
te

d
O

ri
gi

na
l M

ea
n 

D
if

fe
re

nc
e

-.
40

-.
20

.0
0

.2
0

.4
0

-.
40

-.
20

.0
0

.2
0

.4
0

.3
00

1.
00

-.
45

(-
.4

3)
-.

24
(-

.2
3)

-.
03

(-
.0

3)
.1

8(
 .1

7)
.3

8(
 .3

7)
-.

47
(-

.4
5)

-.
26

(-
.2

5)
-.

05
(.

.0
5)

.1
5(

 .1
5)

.3
6(

 .3
5)

.9
5

-.
48

(-
.4

6)
-.

27
(-

.2
6)

-.
06

(-
.0

6)
.1

5(
 .1

4)
.3

5(
 .3

.4
)

-.
48

(-
.4

7)
-.

27
(-

.2
7)

-.
07

(-
.0

7)
.1

4(
 .1

3)
.3

4(
 .3

3)
.9

0
-3

4-
.4

9)
-.

30
(-

.2
9)

-.
09

(-
.0

9)
.1

2(
 .1

1)
.3

3(
 .3

1)
-.

49
(-

.4
8)

-.
29

(-
.2

8)
-.

08
(-

.0
8)

.1
3(

 .1
2)

.3
3(

 .3
2)

.8
5

-.
54

(.
32

)
-.

33
(-

.3
2)

-.
12

(-
.1

2)
.0

9(
 .6

3)
.2

9(
 .2

8)
-.

54
-.

49
)

-,
30

(-
.2

9)
-.

09
(-

.0
9)

.1
1(

 .1
1)

.3
2(

 .3
1)

30
0

1.
00

-3
4-

.4
5)

-.
28

(-
.2

5)
-.

06
(-

.0
5)

.1
7(

 .1
5)

.3
9(

 .3
5)

-3
3(

-.
49

)
-.

31
(-

.2
9)

..1
0(

-.
09

)
.1

2(
 .1

1)
.3

4(
 .3

1)
.9

5
-3

6(
-3

0)
-.

33
(-

.3
0)

-.
11

(-
.1

0)
.1

1(
 .1

0)
.3

4(
 .3

0)
-.

56
(-

31
)

-.
34

(-
.3

1)
-.

12
(-

.1
1)

.1
0(

 .0
9)

.3
2(

 .2
9)

.9
0

-.
61

(.
65

)
-.

39
(-

.3
5)

-.
16

(-
.1

5)
.0

6(
 .0

5)
.2

9(
 .2

5)
-3

8(
-3

3)
-.

36
(-

.3
3)

-.
14

(-
.1

3)
.0

8(
 .0

7)
.2

9(
 .2

7)
.8

5
-.

67
(.

39
)

-.
44

(-
.3

9)
-.

22
(-

.1
9)

.0
1(

 .0
1)

.2
3(

 .2
1)

-.
60

(-
.5

5)
-.

39
(-

.3
5)

-.
17

(-
.1

5)
.0

5(
 .0

5)
.2

7(
 .2

5)

.7
00

1.
00

-.
62

(.
47

)
..3

6(
-.

27
)

-.
10

(-
.0

7)
.1

6(
 .1

3)
.4

2(
 .3

3)
-.

63
(.

32
)

-.
39

(-
.3

2)
-.

15
(-

.1
2)

.0
9(

 .0
8)

.3
3(

 .2
8)

.9
5

-.
70

(-
.5

4)
-.

44
(-

.3
4)

-.
18

(-
.1

4)
.0

8(
 .0

6)
.3

4(
 .2

6)
-.

67
(.

35
)

-.
43

(-
.3

5)
-.

18
(-

.1
5)

.0
6(

 .0
5)

.3
0(

 .2
5)

90
-.

78
(-

.6
0)

-3
2(

-.
40

)
-.

26
(-

.2
0)

-.
00

(-
.0

0)
.2

6(
 .2

0)
-.

70
(-

.5
8)

-.
46

(-
.3

8)
-.

22
(-

.1
8)

.0
2(

 .0
2)

.2
6(

 .2
2)

.a
s

-.
87

(-
.6

7)
-.

61
(-

.4
7)

-.
35

(.
.2

7)
-.

09
(-

.0
7)

.1
7(

 .1
3)

-.
74

(-
.6

1)
-.

50
(-

.4
1)

-.
2(

..2
1)

-.
02

(-
.0

1)
.2

2(
 .1

9)

90
0

1.
00

-.
87

(-
.4

9)
- ..5

2(
- 

.2
9)

-.
17

(-
.0

9)
.1

8(
 .1

1)
.5

3(
 .3

1)
-.

80
(.

36
)

-3
2(

-.
36

)
-.

23
(-

.1
6)

.0
6(

 .0
4)

.3
4(

 .2
4)

.9
5

-1
.0

1(
.3

8)
-.

66
(-

.3
8)

-.
31

(-
.1

8)
.0

4(
 .0

2)
.3

9(
 .2

2)
-.

86
(-

.6
0)

-3
7(

-.
40

)
-.

28
(-

.2
0)

.0
0(

 .0
0)

.2
9(

 .2
0)

90
-1

.1
6(

-.
66

)
-.

81
(-

.4
6)

-.
46

(-
.2

6)
-.

11
(-

.0
6)

.2
4(

 .1
4)

-.
91

(-
.6

4)
-.

63
(-

.4
4)

-.
34

(-
.2

4)
-.

05
(-

.0
4)

.2
4(

 .1
6)

85
-1

.3
1(

-.
75

)
-.

%
(-

55
)

-.
61

(-
.3

5)
-.

26
(-

.1
5)

.0
9(

 .0
5)

-.
97

(-
.6

8)
-.

69
(-

.4
8)

-.
40

(-
.2

8)
-.

11
(-

.0
8)

.1
8(

 .1
2)

.9
99

1.
00

-1
.2

2(
-.

51
)

-.
74

(-
.3

1)
-.

24
-.

11
)

.2
3(

 .0
9)

.7
1(

 .2
9)

-.
96

(.
38

)
-.

62
(-

.3
8)

-.
29

(-
.1

8)
.0

4(
 .0

2)
.3

7(
 .2

2 
)

.9
5

-1
.4

4 
(-

.6
0)

-.
96

(-
.4

0)
-.

47
(-

.2
0)

.0
1(

 .0
0)

.5
0(

 .2
0)

-1
.0

2(
-.

62
)

-.
69

(-
.4

2)
-.

36
(-

.2
2)

-.
03

(-
.0

2)
.3

0(
 .1

8)
.9

0
-1

.6
7(

-.
69

)
-1

.1
9(

-.
49

)
-.

70
(-

.2
9)

-.
22

(-
.0

9)
.2

7(
 .1

1)
-1

.1
0(

-.
66

)
-.

77
(-

.4
6)

-.
43

(-
.2

6)
-.

10
(-

.0
6)

.2
3(

 .1
4 

)
85

-1
.9

1(
-.

79
)

-1
.4

3(
59

)
-.

94
(-

.3
9)

-.
46

(-
.1

9)
.0

3(
 .0

1)
-1

.1
8(

..7
1)

-.
84

(3
1)

-.
5 

4-
.3

1)
-.

18
(-

.1
1)

.1
6(

 .0
9 

)

*T
ab

le
d 

en
tr

ie
s 

ar
e 

D
r 

an
d 

(0
).

 S
E

M
 is

 th
e 

fe
m

al
e 

/m
al

e 
st

an
da

rd
 d

ev
ia

tio
n 

ra
tio

 in
 v

ar
ia

bl
e

Y
; r

o 
is

 th
e 

co
rr

el
at

io
n 

w
ith

 s
el

ec
tio

n 
co

m
po

si
te

 X
.

()
 t)



-57-

Table I
College Admissions Tests and Matching 12th Grade

Test Categories Used in Predicting Effects of
Sample Restrictions on Particular Tests

12th Grade Category° ACI' Tests

Language Use (6) English

Reading (10)

Vocab./Reasoning (8)

Math Concepts (13)

Natural Science (7)

Social Science (3)

Reading

Mathematics

Natural Science
Science Reasoning

Social Studies

College Board Tests

Test of Standard
Written English

PSAT-Verb al
SAT-Verbal

PSAT-Math
SAT-Math

°Number of tests in each category is shown in parentheses.


