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Numerous investigations have been conducted on dozen of

proposed indices of goodness-of-fit in confirmatory factor

analysis. The focus of these investigations has been largely

limited to sample size (see review and discussions by Bentler,

1990; Bollen, 1990; Gerbing el al., 1992, Marsh et al., 1988;

Mulaik et al., 1989). It is well-known that a large sample size

"biases" the chi-square test in a confirmatory analysis in favor

of model rejection, and researchers have proposed a variety fit

indices as solutions to this problem. Indeed, two fit indices,

the Tucker-Lewis (1973) Index TLI (also called the non-normed fit

index by Bentler and others), and Bentler's (1990) comparative

fit index (CFI), appear to have at least partially solved this

problem (Marsh et al., 1988; Bentler, 1990).

Although originally pointed out by Fornell (1983), much less

attention has been paid to another type of "bias" that is

inherent in a confirmatory factor analysis. Fornell (1983)

points out that larger models (those with many items or

indicators) are more likely to be rejected than smaller models.

Stated another way, if we were to analyze a 12-item personality

test with three 4-item dimensions using the 12x12 item covariance

matrix as input, we would likely reject the model (at least our

experience suggests that this is the case) . In contrast, if we

were to simplify the aforementioned measurement model by adding

items from the same dimension and forming a 6x6 covariance of

"doublets" (as is often done), we would likely not reject the

model, or at least its fit would be considerably better than when

analyzed a 12x12 matrix. Thus, the problem is that identical
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data can be arbitrarily configured in ways that either support or

do not support the a priori measurement model.

The problem is even more evident when one considers

confirmatory factor analysis in light of traditional reliability

theory. As is well known, increasing the number of indicators

(e.g., items) is a widely recommended method for assuring high

reliability. It is almost certain that a longer measure will be

better than a shorter measure. But in the context of

confirmatory factor analysis, the opposite is true. Longer

measures will typically be poorer than shorter measures, at least

in terms of model fit. One can easily verify this fact by

analyzing a full 20-item, uni-dimensional questionnaire, and then

comparing its fit to that of its two randomly determined halves

(as determined in two separate confirmatory factor analyses) . In

our experience, the fit of the complete questionnaire will be

considerably better than the fit of the shorter questionnaire.

Perhaps because this tendency is not well known, a cursory review

of recent confirmatory factor analytic articles indicates that

the typical researcher readily accepts two or three indicator

confirmatory models without even examining the reliability of the

constructs that the confirmatory factor analysis "supports".

Our anecdotal evidence and at least some empirical evidence.

(Hocevar et al., 1984) suggests that the traditional chi-square

test is strongly biased against models with a large number of

measured variables. It is reasonably to expect that some

contemporary fit indices might control for this bias. In our
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estimation, over fifty such indices have been proposed to date.

For practical reasons, we will limit the present analysis to

those which are available in two well-known structural equation

modeling computer programs EQS Version 4.02 (Bentler, 1993)

and LISREL 8 (Joreskog & Sorbom, 1993). The issue to be

addressed in this study is which (if any) contemporary fit

indices are least susceptible to the bias associated with

confirmatory factor analysis that involves a large number of

measured variables.

Method

Data were obtained from studclit responses between 1980 to

1990 to Marsh' (1987) Students' Evaluations of Educational

Quality (SEEQ) instrument. The instrument has 41 items with

clusters of these items designed to measure nine separate

dimensions of instructor and course effectiveness. Factor

analytic studies (e.g., Marsh & Hocevar, 1991) have validated the

SEEQ factor structure underlying nine dimensions of teaching and

course effectiveness. Each SEEQ item was rated on a Likert-scale

from 1 to 5 with high score indicating rating effectiveness. For

this study only student scores for 28 SEEQ items were included in

a confirmatory factor analytic model. The CFA model specified a

priori measurement model with seven factors, each having four

item loadings as follows! Learning Value (item 1-4) , Instructor

Enthusiam (item 5-8), Organization/Clarity (item 9-12), Group

Interaction (item 13-'16), Individual Rapport (item 17-20),

5
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Breadth of Coverage (item 21-24), and Workload/Difficult (item

32-35).

The data were screened with listwise deletion by PRELIS 2

(Joreskog & Sorbom, 1993) which resulted in a final sample of

7,407 classes. Item responses in each class were averaged across

students to create a data matrix with 28 x 7,407 continuous

elements. Sample covariances were derived from this matrix for

model estimation using LISREL 8 and EQS Version 4.02.

An initial CFA model with 28 items loading on their

designated seven separate but intercorrelated factors was first

estimated. In subsequent runs, the same CFA model was maintained

but the number of items per factor was then reduced by random

deletion to 3 and then to 2. Thus, three highly similar CFA

models with 28 (4x7) , 21 (3x7) , and 14 (2x7) items were analyzed.

All model parameters and goodness-of-fit indices were estimated

by both LISREL 8 and EQS. Because the items exhibited high

skewnesses ranging from -3.1074 to .4512 and high kurtoses

ranging from 1.5576 to 15.6020, two methods of estimation were

used: (a) maximum likelihood (ML) method by both LISREL 8 and

EQS, and (b) robust ML by EQS and LISREL weighted laast square

(WLS) distribution-free method for non-normal data. A comparison

of the two methods of estimation provided a test for the highly

non-normal data of the influence of a violation of the normal

theory assumption by subjecting the data under the normal ML and

the robust ML provided by EQS's Satorra-Bentler scaled chi-square

and the LISREL asymptotic distribution-free estimation.
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Results

With the ML method, both LISREL 8 and EQS produced

consistent results for model fits and parameter estimates. The

chi-square values were inexplicably somewhat lower with LISREL 8

than with EQS but the differences were of no significant meaning.

The estimates of standard errors by the normal ML were negatively

downward biased by a range of -.002 to -.007 in comparison to the

same estimates obtained with the robust ML method by EQS. This

result confirmed existing research findings (e.g., Muthen

Kaplan, 1985) of the downward bias of the normal ML when used

with severely non-normal data. Model fits were improved markedly

with the Satorra-Bentler scaled statistic under EQS robust ML

estimation. Thus, the findings discussed below are based on the

Satorra-Bentler scaled test statistic when possible.

1. Joreskog's GFI index. Poorer fit for larger models was

noted on Joreskog's goodness-of-fit index. GFI index values were

.872, .813, and .740 for the 14, 21, and 28 item models,

respectively (Table 1).

Insert Table 1 about here

2. Satorra-Bentler chi-square test. As predicted, the chi-

square goodness-of-fit test was strongly "biased" against models

that included a large number of measured variables.

Specifically, chi-squares equaled 1,960, 3,918, and 9,042 for the

14, 21, and 28 item models, respectively (Table 2).
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Insert Table 2 about here

3. Joreskog's AGFI index. Joreskog's adjusted goodness-of-

fit index adjusts for degree of freedom. Thus, we expected that

this index might not be susceptible to large model bias. This

expectation was disconfirmed: The AGFI index had values of .760,

.742, and .679 for the 14, 21, and 28 item models, respectively

(Table 1).

4. Bentler-Bonett normed fit index (NFI). The NFI had a

strong negative monotonic relationship with the number of items.

For models with 28, 21, and 14 items, the NFI ranged from .975,

.985, and .987 (Table 2) and from .969, .978, and .988 (Table 3).

The strong stability of the NFI in models containing different

numbers of measured variables supports the conclusion that the

NFI is not biased against larger models.

Insert Table 3 about here

5. Bentler's comparative fit index (CFI). The CFI was

proposed as a way of controlling for the well-known sample size

bias inherent in the chi-square test. In our analysis, the CFI

index had a negative monotonic relationship with the number of

items, but its strong stability (Table 2) in models containing

different numbers of measured variables supports the conclusion

that the CFI is not biased against larger models.
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6. Tucker-Lewis index (TLI) (also known as the non-normed

fit index). The TLI, originally proposed in 1973 by Tucker and

Lewis, has been more recently advocated by Marsh et al. (1988) as

a way of controlling for sample size effects. In this study, the

NNFI was the only index that did not have a monotonic

relationship with the number of items, and similar to the CFI, it

was very stable. Specifically, the TLI had values of .972, .981,

and .978 (Table 2) and .964, .972, and .964 (Table 3) for

analyses with 28, 21, and 14 items respectively.

Conclusion

As predicted at the onset of this study, models with a

larger number of items had poorer fits when fit was assessed

using the chi-square statistic. Neither Joreskog's GFI or his

AGFI adequately controlled for the number of items. However,

Bentier's CFI, Bentler-Bonett NFI, and the Tucker-Lewis TLI were

highly stable within seven factor models varying from 14 to 28

items. Because the CFI and TLI have the traditional advantage of

protecting against the bias associated with large samples, our

results support their routine use as an adjunct to the chi-square

test in confirmatory factor analysis.
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