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Abstract

This paper presents a method for estimating the accuracy and consistency

of classifications based on test scores. The scores can be produced by any

scoring method, including the formation of a weighted composite. The

estimates use data from a single form. The reliability of the score is used

to estimate its effective test length in terms of discrete items. The true-

score distribution is estimated by fitting a four-parameter beta model. The

conditional distribution of scores on an alternate form, given the true score,

is estimated from a binomial distribution based on the estimated effective

test length. The agreement between classifications on two alternate forms is

estimated by assuming conditional independence, given the true score.

An evaluation of the method showed that the estimates of the percent of

test-takers correctly classified and the percent consistently classified were

within one percentage point of the actual values in most cases. Although the

estimated effective test length and the estimates of the conditional standard

error of measurement are sensitive to changes in the specified minimum and

maximum possible scores, the estimates of the decision accuracy and decision

consistency statistics are not.
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Estimating the Consistency and Accuracy
of Classifications Based on Test Scores

Samuel A. Livingston
Charles Lewis

The problem

Several authors have proposed methods for estimating the accuracy or

consistency of classifications based on test scores (e.g., Huynh, 1976;

Subkoviak, 1976; Livingston and Wingersky, 1979; Wilcox, 1981). All of these

methods are based on the assumption that the test consists of a known number

of equally weighted items, scored simply as correct or incorrect, and that the

test score is the number of those items answered correctly. This situation is

certainly a common one. However, many tests are not scored in this way.

Essay tests and performance assessments typically are scored in a way that

allows for partial credit on each item. In some testing programs, test-takers

are classified on the basis of a composite score -- a weighted sum of scores

on two or more tests or subtests, which may be unequally weighted. In all of

these cases, determining the effective length of the test used as the basis

for classification is not just a simple matter of counting test items.

The purpose of this paper is to suggest a generally applicable method for

using data from one form of a test to estimate the accuracy and the

consistency of classifications based on the scores. This method applies not

only to test scores determined by counting correct answers, but to any test

score for which a reliability coefficient can be estimated. The method

described here is actually the fourth in a series of solutions to this

problem. As we have progressed from the first to the fourth solution, the

method has become simpler, more generally applicable, and more accurate.
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Terminology

In this paper we will use the term "test" to refer to the entire

measurement procedure that produces the score that is used as the basis for

classification. The "test", as we will use the term, could actually be a

battery of several measures, possibly including such measures as interview-

based evaluations and performance ratings as well as paper-and-pencil tests.

We will use the term "test forms" to refer to independent replications of the

measurement procedure, varying all the factors that are to be considered as

contributing to errors of measurement. These factors could include the

specific questions or problems presented to the test-taker, the raters or

scorers of any subjective portions, the examiners or interviewers (to the

extent that they may affect the outcome of the measurement), and possibly

other factors also.

We will not use the term "observed score" for the variable that

describes a test-taker's score on a single form of the test, because in some

cases we will be referring to a score on a hypothetical alternate form of the

test, which is not actually observed. Therefore, we will call this variable a

"single-form score". We will use the term "true score" as the term is

traditionally used in psychometrics: an expected (average) value of the test

score, averaged over those factors classified as measurement error. We will

use the term "true score" because it is concise and familiar; a more precise

and more descriptive term would be "all-forms average".

The term "accuracy", as used in this paper, refers to the extent to

which the actual classifications of test-takers (on the basis of their single-

form scores) agree with those that would be made on the basis of their true

scores, if their true scores could somehow be known. The term "consistency"

2



refers to the agreement between the classifications based on two non-

overlapping, equally difficult forms of the test. The group of test-takers

for whom we want to estimate these accuracy and consistency statistics will be

referred to as the "test-taker population".

We will use the term "effective length" to refer to a property of the

test closely related to the precision of the scores. It is the number of

discrete, dichotomously scored, locally independent, equally difficult test

items necessary to produce total scores having the same precision as the

scores being used to classify the test-takers. For example, the test might

consist of three essay questions; its possible score range might be 30 points.

But if it had the same reliability in the test-taker population as a test made

up of 24 discrete items scored simply as right or wrong, its effective length

would be 24.

The points that divide the score scafe into categories for classifying

the test-takers will be referred to as "cut-points".

Input

The method presented here requires four kinds of information as input:

(1) the distribution of the scores on one form of the test, observed or

estimated for the test-taker population, (2) the reliability coefficient of

the scores, computed or estimated for the test-taker population, (3) the

maximum and minimum possible scores on the test, and (4) the cut-points that

separate the categories. Although the test score may take on a very large

number of possible values -- enough to make it effectively a continuous

variable -- the computational procedure requires the scores to be expressed as

integers. The cut-points are assumed to be halfway between the highest score

in one category and the lowest score in the next.

3
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Output

Tables 1, 2, 3, and 4 contain examples of some of the statistics

produced by the method described in this paper. They are based on a case in

which the test-takers were classified into five categories by applying four

cut-points. Tables 1 and 2 contain statistics describing decision accuracy --

the agreement between the classifications based on the form actually taken and

the classifications that would be made on the basis of the test-takers' true

scores. Table 1 is the 5x5 contingency table that results from applying all

four cut-points simultaneously. Table 2 consists of the four separate 2x2

contingency tables that result from applying the four cut-points separately.

Tables 3 and 4 correspond to Tables L and 2, except that they contain

statistics describing decision consistency -- the agreement between the

classifications based on the form actually taken and the classifications that

would be made on the basis of an alternate form. Notice that the agreement

indicated by Tables 3 and 4 is not as strong as the agreement indicated by

Tables 1 and 2. The reason is that in Tables 3 and 4, each variable includes

a random component. In Tables 1 and'2, only one of the variables includes a

random component.

Tables 1-4 show some particularly useful statistics for describing

decision consis.nncy and decision accuracy. However, there are other useful

.tatistics that are not shown in these tables. In particular, the test user

might be interested in the conditional distribution of single-form scores for

test-takers with a given true score, or in the standard deviation of this

conditional distribution, which is the conditional standard error of

measurement. The method we describe estimates these statistics also.

4
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Notation

In this paper, X will represent a test-taker's score on one form of the

test, rounded to the nearest integer. Where necessary, we will identify

scores on alternate forms of the test by 4, X, and 4; 4 will represent the

form of the test for which data are available. The lowest and highest

possible scores will be represented by Xmi and X.. (lc, may be negative.)

The reliability coefficient of the test scores in the test-taker

population will be represented by r. The estimated effective length of the

test will be represented by n.

Sometimes it will be convenient to express the single-form score on a

scale of 0 to 1. This proportional score will be represented by p, so that

X Xmin

Anax
(1)

The "true score" associated with X will also be expressed as a proportion, on

a scale of 0 to 1, and represented by Tp, so that

E(X) Xmin
T

P Xmax Xmin
(2)

We will refer to T, as the "proportional true score".

Some parts of the estimation procedure involve a rescaling of the

single-form score from its original scale, which extends from Xml to Xfl,x, onto

a new scale that extends from 0 to n. This transformed score will be

represented by X', so that

X Xmin
X/ = np = n

Xmax Xrnin

Table 5 summarizes these three score scales.

5
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An overview of the method

The general procedure can be described as a series of steps:

1. Estimate the effective test length (n).

2. Estimate the distribution of the proportional true scores (Tp). Divide

the range of this distribution into "levels" (intervals) of size .01 and

compute the proportion of the distribution at each level of T.

3. At each level of T construct a binomial distribution with parameters n

and T. This is the distribution of scores on a hypothetical test of n

discrete items, for a test-taker with proportional true score T. Call

this score variable X'.

4. Transform the category boundaries linearly from the original scale of X

(from Xmm to Xm.) onto the scale of X' (from 0 to n). Use these

transformed boundaries to determine, for each level of T the

conditional classification on a single form of the test (X1) other than

the form actually taken.

5. Also transform the category boundaries linearly from the original scale

of X (from X. to Xm.) onto the scale of Tp (from .00 to 1.00). Use

these transformed boundaries and the conditional classifications from

Step 4 to estimate the joint distribution of classifications on

proportional true scores (Tp) and scores on a single form (X0.

6. At each level of Tp, use the conditional classification on X, (from

Step 4) to construct a conditional two-way classification on X, and X2,

where X, is the score on another form of the test. The assumption is

that classifications based on X, and XI are independent and-identically

distributed for test-takers at a given level of Tp (i.e., a given

interval of size .01). Then sum over the levels of T, to get the

6
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estimated two-way classification based on X, and X.2 for the full test-

taker population.

7. Adjust the estimated two-way classification based on Tp and X, (produced

in Step 5) so that the category frequencies of X, will match those

observed for X,. The adjustment consists of determining a multiplier

for each category of X and applying it to all the cell frequencies for

that category of X. Use this adjusted two-way distribution of Tp and X,

as the basis for estimating statistics that describe decision accuracy.

8. Adjust the estimated two-way classification on X, and X (produced in

Step 6) so that the category frequencies of X, will match those observed

for X. Again, the adjustment consists of determining a multiplier for

each category of X, and applying it to all the cell frequencies for that

category of X,. (There is no attempt to make the category frequencies

of X, match those observed for 4.) Use this adjusted two-way

classification on Y, and Y, as the basis for estimating statistics that

describe decision consistency.

The next two sections of this paper explain some of these steps in

greater detail.

Estimating the effective test length

The effective test length corresponding to a test score is the number of

discrete, dichotomously scored, locally independent, equally difficult items

required to produce a total score of the same reliability. The effective test

length of a score can be estimated from its mean, variance, and reliability

coefficient in the test-taker population. If r is the reliability coefficient

7
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of score X, r is also the reliability coefficient of the proportional score p.

Similarly, if n is the effective test length of X, n is also the effective

test length of p.

The key to estimating the effective length of p (and therefore of X) is

to find two expressions for the overall error variance in p and set them

equal. One of these expressions is based on the reliability coefficient:

2 2.-
cr, = op(' r ) . (4)

The other expression for the overall error variance in p is found by observing

that, at any given level of T all the variance in p is error variance. The

expectation of this conditional variance, over the population distribution of

T, is the overall error variance of p:

2 = E(Var(p1T ) .

Setting these two expressions equal,

ap2 (1-r) = E[Var(pl Tp)]

(5)

(6)

At this point it is necessary to make an assumption: that the

conditional error variance of scores on an n-item test, for test-takers with

proportional true score T, is the variance of a binomial distribution based

on n observations with success probability T. With this assumption,

Equation 6 becomes

8
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4,(1-r) = BETP(1-TP) I [E(T)-E(TA)] . (7)

The expectation is over the distribution of proportional true scores (Tp) in

the test c.E.A.,!r population. E(T) is the mean proportional true score, which

is equa7 to the mean proportional score on a single form. Call this mean

score pp. Then

E(T) = .

To find E(T1), note that for Tp as for any other variable,

so that

(8)

Var(Tp) = E(4) [E(TpH2 ,
(9)

E(4,) Var (T9) + [E(Tp)] 2 = rOp2 (10)

because r, the reliability coefficient, is the ratio of the variance of Tp to

the variance of p.

Substituting these results into the right side of Equation 7,

1 102(1-r) = [VP- (ro 21112)1
= [g

2 -ra2]
= [i.tp(1-11) -ra2] (11)p p P P P

Solving for n, the effective test length,

9
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1.tp(1-111,) rui2,

a
2 (1-r)

Expressing this estimate in terms of the original score scale,

( 1.1x -Xmin) (Xmax -Fix) r CrZ
n

2ar(1-r)

(12)

(13)

Note the way in which the estimated effective test length depends on the

possible score range. For a given distribution of scores with a given

reliability coefficient, the larger the possible score range, the greater the

estimated effective test length. Although the estimated effective test length

is sensitive to this change in the specified possible score range, the

estimated contingency tables are not. A large change in the specified minimum

and maximum possible scores will produce very little change in the estimated

contingency tables. The estimates of the conditional standard error of

measurement, however, will change substantially, especially for true scores at

the high and low ends of the score distribution. Some experimental results

summarized later in this report illustrate the extent to which large changes

in the specified minimum and maximum possible scores affected these statistics

for one test.

Estimating the true-score distribution

The distribution of the proportional true scores (Td is estimated from

the observed distribution of single-form scores (X), by a method developed by

Lord (1965; also see Hanson, 1991, pp. 3-9). This method requires as input

the first four moments of the distribution of the transformed score X'

10
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(computed by transforming each individual observed score X to X'). Lord's

(1965) method assumes that the proportional true score (Td has the form of a

"four-parameter beta distribution", with density

B(d+1,A+1)
(14)

where B is the beta function. This formula can be obtained by taking a random

variable having a (two-parameter) beta distribution on (0,1), with parameters

(d+1) and (A+1), and transforming it linearly onto the interval (a,b), where

0 a < b 1 . The additional parameters a and b make the model more

flexible, by allowing zero frequency for extremely low or extremely high true-

score levels.' One limitation of this model is that it does not allow for a

bimodal true-score distribution. However, bimodal score distributions are

fairly rare on tests of any substantial length. If the test score is a

composite of two or more subscores measuring somewhat different proficiencies,

a bimodal true-score distribution would be even less likely.

How good are the estimates?

The decision accuracy statistics estimated by this method describe the

agreement between classifications based on an observable variable (scores on

one form of a test) and classifications based on an unobservable variable (the

test-takers' true scores). Therefore, these estimates cannot be evaluated on

the basis of actual responses from real, live test-takers. In contrast, the

'Hanson and Brennan (1990) have shown that, when the estimated true-score
distribution is used to reconstruct a single-form score distribution, the
additional two parameters can greatly improve the fit of the reconstructed
distribution to the observed distribution.

11
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decision consistency statistics describe the agreement between classifications

based on two observable variables (scores on two forms of the same test).

These estimates can be evaluated in a situation in which the same test-takers

take two alternate forms of a test, under conditions that make it reasonable

to assume that test-takers' true scores will not change between forms. These

conditions are not often found in actual test use. However, it is possible to

create such a situation artificially, using actual v-st response data, by

splitting a test into parallel halves. This split-halves approach was the

basis for a series of tryouts of the method described in this paper. The

procedure for the tryouts can be summarized as follows:

1. Select a test for which item scores are available for a large group of

test-takers. Divide the test into two half-tests as similar as possible

in the content and format of the items.

2. Compute the two half-test scores of each test-taker. Compute the

distribution of scores on each half-test and the correlation between the

half-test scores.

3. Select cut-points for each half-test score that represent, as closely as

possible, the same percentile ranks as the cut-points actually used on

the full test. At each cut-point, compute the 2x2 contingency table of

classifications based on the two half-test scores. These tables

indicate the "actual" consistency of the classifications based on the

half-test scores.

4. Apply the estimation method to the scores on one of the half-tests,

using the correlation between the two half-test scores as the

reliability coefficient. Compare the resulting estimated 2x2

contingency tables with the "actual" tables from Step 3.

12
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This evaluation procedure was applied to four tests. The tests were

selected to be quite different from each other in content, format, and

statistical characteristics. Test 1 was an all-multiple-choice test used in

the licensing of elementary school teachers. States using this test use

several different cut-points. The cut-points applied to the half-tests

corresponded, in terms of percentile rank, to three of these user-state cut-

points: the lowest, the highest, and one in the middle. The remaining three

tests were from the Advanced Placement Program. They consisted of various

combinations of multiple-choice items and constructed-response tasks of

various types. The Advanced Placement "grade" reported to the test-taker and

to the college is based on a weighted composite of scores on the different

sections of the test. Four cut-points are applied to this composite score, to

divide the composite score scale into five large intervals, representing the

five Advanced Placement grades: 1 (lowest) to 5 (highest). The cut-points

applied to the half-tests in this study were selected to represent, as nearly

as possible (given the rounding of the composite scores), the same percentiles

as the cut-points used on the full test.

Table 6 describes the half-tests used in the evaluation and presents the

results. The descriptive information presented for each half-test includes

the academic subject tested, the test-taker population and the number of test-

takers for whom data were available, the number of items of each type,' the

reliability coefficient, and the percentile ranks of the cut-points. The

results are presented in terms of the proportion of the test-takers

21n two cases (English and Art History) the half-tests actually included
less than half of the full Advanced Placement Examination. In each case the
items left out were essays requiring approximately fifteen minutes of the
test-taker's time.
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consistently classified at each cut-point, i.e., classified in the same way by

the two half-tests. The "actual result" is based on the agreement between the

two half-tests. The "1st estimate" was obtained by applying the method

described in this paper to the data from the first half-test. The

"2nd estimate" was obtained by applying the method to the data from the second

half-test.

For Test 1, all the estimates are within .005 of the actual values. For

Test 2, all but one of the estimates are within .01 of the actual values, and

four of the eight are extremely close. The one estimate that is not within

.01 of the actual value misses by slightly more than .01. For Test 3, all the

estimates are within .01 of the actual values. For Test 4, the estimates are

within .01 of the actuals for cut-points 2 and 4, but they differ from the

actuals by more than .02 for cut-points 1 and 3.

How much do the estimates depend on the possible score range?

To determine the extent to which the estimates produced by this method

depend on the possible score range, wt applied the method several times to the

same data, changing the specified minimum and maximum possible scores. The

data were from a test of 150 multiple-choice items, each scored 0 or 1, and 22

short-answer essay items, each scored 0 to 3. The total score was a weighted

composite of scores on the two sections; the actual minimum and maximum

possible scores were -20 and 223. When these values were input into the

estimation procedure, the computer program did not run to completion, because

the estimated effective test length was greater than it could accommodate. We

then experimented by re-running the program five times, changing only the

minimum and maximum possible scores. The widest of the five specified

14
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possible score ranges was 1.76 times the observed score range; the narrowest

of the five was identical to the range of scores actually observed.

Table 7 shows the results of the experiment. As the possible score

range decreased, the estimated effective test length decreased greatly, from

238 items to 74 items. At the same time, the estimated percent correctly

classified and the estimated percent consistently classified, at each of

several cut-points, were almost completely unaffected by the change in the

specified possible score range. Even where the effect was largest -- for cut-

points nc:ar the median of the distribution -- the estimate changed by only

about one-half of one percent. The estimated conditional standard error of

measurement (CSEM), however, was sensitive to the change in the possible score

range. (Note that the conditioning variable the true score was

expressed on the scale of the scores themselves, rather than as a proportion

of the possible score range.) As the possible score range narrows, score

levels at the upper and lower ends of the distribution become closer to the

maximum and minimum possible scores, and the estimated CSEM at these score

levels decreases. (The CSEM for a test-taker whose true score is the maximum

possible score or the minimum possible score must be zero.) Since the overall

standard error of measurement does not change when the specified possible

score range changes, the estimated CSEM in the middle of the distribution must

increase, to compensate for the decrease at the ends of the distribution.

15
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Conclusion

From the user's point of view, the essential features of the estimation

method presented in this paper are these:

1. It estimates statistics describing the agreement between classifications

based on alternate forms of a test (decision consistency) and between

classifications based on one form and classifications based on test-takers'

true scores (decision accuracy).

2. It requires as input only the distribution of scores on one form, the

minimum and maximum possible scores, the cut-points used for classification,

and the reliability coefficient. It will work for any test score for which

this information is available, regardless of the format of the test.

3. The estimates of the percent of test-takers correctly classified and the

percent of test-takers consistently classified tend to be within one

percentage point of their actual values.

4. The estimates of the decision consistency and decision accuracy statistics

are affected very little by large changes in the specified minimum and maximum

possible scores.
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Table 1.
Decision accuracy: estimated joint distribution (contingency table)

Cell entry is proportion of all examinees

Classification on all-forms average*

Classification
on form taken

Category
A

Category Category Category Category Total

Category A .0248 .0148 .0002 .0000 .0000 .0398
(161 to 200)

Category B .0079 .0746 .0277 .0000 .0000 .1102
(143 to 160)

Category C .0001 .0236 .3581 .0359 .0000 .4176
(103 to 142)

Category D .0000 .0000 .0339 .2748 .0127 .3213
(60 to 102)

Category E .0000 .0000 .0000 .0193 .0918 .1111
(0 to 59)

Total .0328 .1130 .4198 .3299 .1045 1.0000

* "True score"

Actual number of examinees 1080

24



Table 2.
Decision accuracy: estimated 2x2 contingency tables.

Cell entry is proportion of all examinees

Classification Classification on all-forms average*
on form taken Category A Categories B,C,D,E

Examinees in Category A (161+) .025
Examinees in Categories B,C,D,E (160-) .008

Estimated proportion correctly classified = .977

.015

.952

Categories A,B Categories C,D,E

Examinees in Categories A,B (143+) .122
Examinees in Categories C,D,E (142-) .024

Estimated proportion correctly classified - .948

.028

.826

Categories A,B,C Categories D,E

Examinees in Categories A,B,C (103+) .532
Examinees in Categories D,E (102-) .034

Estimated proportion correctly classified = .930**,

.036

.399

Categories A,B,C,D Category E

Examinees in Categories A,B,C,D (60+) .876
Examinees in Category E (59-) .019

Estimated proportion correctly classified = .968

Actual number of examinees 1080

* "True score "
** Inconsistent with cell entries because of rounding

.013

.092



Table 3.
Decision consistency: estimated joint distribution (contingency table)

Cell entry is proportion of all examinees

Classification on alternate form

Classification
on form taken

Category
A

Category
B

Category
C

Category
D

Category
E

Total

Category A .0237 .0150 .0011 .0000 .0000 .0398

(161 to 200)

Category B .0155 .0616 .0331 .0000 .0000 .1102
(143 to 160)

Category C .0013 .0375 .3269 .0518 .0000 .4176

(103 to 142)

Category D .0000 .0000 .0463 .2531 .0219 .3213

(60 to 102)

Category E .0000 .0000 .0000 .0230 .0881 .1111
(0 to 59)

Total .0405 .1141 .4075 .3280 .1099 1.0000

Actual number of examinees 1080
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Table 4.
Decision consistency: estimated 2x2 contingency tables.

Cell entry is proportion of all examinees

Classification Classification on alternate form
on form taken Category A Categories B,C,D,E

Examinees in Category A (161+) .024
Examinees in Categories B,C,D,E (160-) .017

Estimated proportion consistently classified - .967

.016

.943

Categories A,B Categories C,D,E

Examinees in Categories A,B (143+) .116
Examinees in Categories C,D,E (142-) .039

Estimated proportion consistently classified - .927

.034

.811

Categories A,B,C Categories D,E

Examinees in Categories A,B,C (103+) .516
Examinees in Categories D,E (102-) .046

Estimated proportion consistently classified - .902

.052

.386

Categories A,B,C,D Category E

Examinees in Categories A,B,C,D (60+) .867
Examinees in Category E (59-) .023

Estimated proportion consistently classified - .955

Actual number of examinees 1080
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.088



Table 5.
Score scales used in the estimation process.

Name Symbol Range Size of interval

Single-form score X X...; to X.,,u 1

(<0, X, X2)

Proportional
single-form score

p .00 to 1.00 .01

Transformed
single-form score

X' 0 to n 1

Proportional
true score

Tp .00 to 1.00 .01

2



Table 6.
Results of the evaluation of the method.

Note: The statistics in this table describe the half-tests used in the
evaluation, not the full parent tests.

Test 1

Subject: All elementary school subjects
Test-taker population: Beginning elementary school teachers and student

teachers
Number of test-takers: 10,352
Format (half-test): 74 multiple-choice items
Reliability coefficient: .852

Percentile rank of each cut-point:

Cut 1 Cut 2 Cut 3

1st half-test 13.5 8.1 2.9
2nd half-test 14.3 8.7 2.9

Proportion of test-takers classified consistently at each cut-point:

Cut 1 Cut 2 Cut 3

Actual .923 .945 .976
1st estimate .919 .947 .976
2nd estimate .919 .947 .978

Test 2

Subject: English literature and compesition
Test-taker population: High school students seeking advanced placementNumber of test-takers: 113,129
Format (half-tert): 23 multiple-choice items and one essay, scored 0 to 9
Reliability coefficient: .603

Percentile rank of each cut-point:

Cut 1 Cut 2 Cut 3 Cut 4

1st half-test 87.2 69.5 31.1 2.42nd half-test 87.6 69.0 31.1 2.6

Proportion of test-takPrs classified consistently at each cut-point:

Cut 1 Cut 2 Cut 3 Cut 4

Actual .850 .733 .749 .9661st estimate .853 .744 .749 .9652nd estimate .849 .739 .751 .962
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Table 6 (continued).
Results of the evaluation of the method.

Test 3

Subject: French language
Test-taker population: High school students seeking advanced placement

Number of test-takers: 3,555
Format (half-test): 36 multiple-choice items, 10 completion items, and either

one speaking task, scored 0 to 9, or 6 speaking questions, scored 0 to 4.

Reliability coefficient: .891

Percentile rank of each cut-point:

1st half-test
2nd half-test

Cut 1 Cut 2

84.6 67.6

84.8 68.6

Cut 3 Cut 4

33.2 15.7

34.0 15.8

Proportion of test-takers classified consistently at each cut-point:

Cut 1 Cut 2 Cut 3 Cut 4

Actual .914 .870 .871 .909

1st estimate .917 .872 .862 .902

2nd estimate .905 .866 .867 .912

Test 4

Subject: Art history
Test-taker population: High school students seeking advanced placement

Number of test-takers: 1,960
Format (half-test): 53 multiple-choice items and three short essays, scored

1 to 4.
Reliability coefficient: .641

Percentile rank of each cut-point:

Cut I Cut 2 Cut 3 Cut 4

1st half-test 86.3 65.4 27.9 9.1

2nd half-test 86.5 65.0 28.1 9.5

Proportion of test-takers classified consistently at each cut-point:

Cut I Cut 2 Cut 3 Cut 4

Actual .833 .753 .785 .884

1st estimate .855 .748 .762 .881

2nd estimate .856 .745 .763 .881



Table 7.
Results of varying the maximum and minimum possible scores.

(Observed score range - 52 to 183; mean score = 119.2;
standard deviation = 23.8; reliability - .91)

Maximum possible score 210 200 194 188 183
Minimum possible score -20 1 24 47 52
Possible range/

observed range 1.76 1.52 1.30 1.08 1.00

Estimated effective
test length 238 178 130 87 74

Estimated percent
correctly classified :

Cut-point percentile
151.5 90.0 .959 .959 .959 .958 958
136.5 75.0 .931 .931 .930 .927 .927
118.5 49.7 .909 .909 .907 .905 .905
102.5 25.6 .920 .921 .921 .921 .922
88.5 10.4 .951 .952 .953 .955 .956
79.5 4.8 .969 .970 .971 .974 .974
69.5 1.0 .991 .991 .991 .992 .992

Estimated percent
consistently classified:
Cut-point percentile

151.5 90.0 .942 .943 .943 .942 .941
136.5 75.0 .902 .902 .901 .897 .897
118.5 49.7 .873 .872 .871 .868 .868
102.5 25.6 .889 .888 .889 .889 .890
88.5 10.4 .931 .931 .933 .936 .937
79.5 4.8 .958 .958 .960 .963 .964
69.5 1.0 .985 .985 .986 .988 .988

Estimated conditional
standard error of
measurement:

True score* percentile
180 99.9 5.04 4.51 4.13 3.53 2.26
160 95.3 6.16 5.99 5.98 6.06 5.82
140 78.3 6.87 6.86 6.96 7.18 7.17
120 51.1 7.29 7.33 7.41 7.57 7.63
100 21.5 7.46 7.47 7.43 7.34 7.36
80 4.8 7.40 7.31 7.02 6.42 6.27
60 0.3 7.11 6.83 6.11 4.41 3.68

*Expressed in the units of the scores
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