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Abstract

Simulated data were used to investigate the performance of modified versions of the
Mantel-Haenszel an~d standardization methods of differential item functioning (DIF) analysis
in computer-adaptive tests (CATs). Each "examinee” received 25 items out of a 75-item
pool. A three-parameter logistic item response model was assumed, and examinees were
matched on expected true scores based on their CAT responses and on estimated item
parameters. Both DIF methods performed well. Tye CAT-based DIF statistics were highly

correlated with DIF statistics based on nonadaptive administration of all 75 pool items and

with the true magnitudes of DIF in the simulation. DIF methods were also investigated for
“pretest items," for which item parameter estimates were assumed to be unavailable. The
pretest DIF statistics were generally well-behaved and also had high correlations with the true
DIF. The pretest DIF measures, however, tended to be slightly smaller in magnitude than
their CAT-based counterparts. Also, in the case bf the Mantel-Haenszel approach, the pretest

DIF statistics tended to have somewhat larger standard errors than the CAT DIF statistics.




1. Overview

Many large-scale testing programs are now developing or piloting computer-adaptive
tests (CATs). Among these are the Scholastic Aptitude Test (SAT), the Graduate Record
Examinations (GRE), and Praxis (successor to the NTE teacher assessment), developed at
‘Educational Tesiing Service (ETS), the COMPASS placement tests produced by the American
College Testing Program, the College Board Computerized Placement Tests, the Differential
Aptitude Tests publisﬁed by the Psychological Corporation, and the Armed Services
Vocational Aptitude Battery (ASVAB). The item responses collected from an examinee in a
CAT may be a small fraction of the data that would have been collected in a corresponding
nonadaptive test. - Furthermore, the items received by each examinee are a nonrandom subset
of the available pool of items. The introduction of CATS requires that new approaches be
developed for assessing validity and reliability and for analyzing item properties, including
differential item functioning (DIF).

The purpose of our project was to investigate whether existing DIF analysis methods
could be modified to accommodate the data collected in a CAT. There are several reasons
that DIF detection may be more important for CATs than it is for nonadaptive tests. First,
because fewer items are administered in a CAT, each item response plays a more important
role in the examinee’s test score than it would in a nonadaptive testing format. Any flaw in
an item, therefore, may be more consequential for the examinee. Second, item difficulty and
DIF have been found to be positively related to an appreciable degree for some pairs of

populations {c.g., Kulick & Hu, 1989). Therefore, if the group of primary interest--the focal




group--scores substantially below the comparison, or reference group, the CATs encountered
by the focal group members will be made up of easier items than the CATs encountered by
reference group members. If easier items have, on average, more negative DIF (i.e., DIF
disadvantaging the focal group) than harder items, then the s.ores of focal group members
may be lower than they should be and even lower than they would be on a comparable
nonadaptive version of the test (Holland & Zwick, 1991). Finally, administration of a test by
computer creates several potential sources of DIF that are not present in conventional tests,
such as differential computer familiarity, facility, and anxiety, and differential preferences for
computerized administration. Legg and Buhr (1992) and Schaeffer, Reese, and Steffen (1992)
both report ethnic and gender group differences in some of these attributes. Their findings
suggest that attitudes toward computer testing may be surprisingly complex. For.example,
Schaeffer, Reese, and Steffen (1992) found that Asian test-takers were most likely to have a
computer available at home and most likely to report that using the computer mouse was very
easy. Yet both Schaeffer et al. and Legg and Buhr found that Asian examinees were more
likely than any other ethnic group to state that they preferred paper-and-pencil to
computerized administration.

To investigate DIF detection in CATs, we simulated data consisting of responses to
three different pools of 75 items. In Pool 1, the items had no DIF, in Pool 2, the items had
DIF that was uncorrelated with item difficulty, and in Pool 3, the items had DIF that was
correlated with item difficulty. The only kind of DIF that was studied was a difference in

item difficulty for the reference and focal grcups, often called uniform DIF. The distance
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between reference and focal group means and the sample sizes for the two groups were
varied, as was the DIF status of the items and the item difficulties and discriminations.

Using a CAT algorithm based on item information, each "examinee" was assigned 25
items from one of the three pools of 75 items. Responses to the selected items were
generated using the three-parameter logistic (3PL) item response theory model. The
maximum likelihood estimate (MLE) of the examinee’s ability was recomputed after each
item was administered and the next item selected was the most informative item at the
examinee’s estimated ability.

.The simulated data were used to investigate the feasibility of conducting DIF analyses
using modified versions of the Mantel-Haenszel (MH; 1959) approach of Holland and Thayer
(1988) and the standardization method of Dorans and Kulick (1986). Examinees were
matched on the expected true score for the entire 75-item pool, computed using estimated
ability from the 25 CAT items and estimated item parameters. An approach of this kind was
suggested by Steinberg, Thissen, and Wainer (1990).

In addition, DIF analyses were conducted for "pretest” items that were administered
nonadaptively. All examinees received the same set of pretest items, along with the CAT.
For DIF analyses of the pretest items, the matching variable was the sum of the expected true
score based on the CAT responses and the score (0 or 1) on the item under analysis, referred
to as the studied item.

To disentangle the effects of assigning items via the CAT algorithm on one hand and
matching examinees on expected true score on the other, we also included, for some

simulation conditions, a "nonadaptive control" analysis in which the matching variable for
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DIF analysis was the expected true score computed with the MLE estimated from responses
1o all 75 pool items. The results of this analysis were compared to the results obtained by
matching on the CAT-based expected true score and to results obtained by matching on
number-right score, as in conventional MH and standardization analysis.

The CAT-based DIF statistics were found to be highly correlated with true DIF and
with DIF measures based on nonadaptive administration. Furthermore, the mean DIF
statistics for each pool were clase to their nominal value of zero. .“.ithough Poo! 3 DIF
statistics were not quite as well-behaved as the Pool 2 statistics, our results, in general, appear
to provide good news for testing programs that wish to establish DIF screening procedures for
CATs. In the case of the pretest items, the DIF statistics also appeared to be well-behaved.
However, the <:~ndard errors of the Mantel-Haenszel DIF statistics tended to be larger than in

the CA T, reducing the power to detect DIF.

2. Simulation procedures

Our principle in developing the simulation design was to aim for some reasonable
compromise between an approach that was realistic (in that it mimicked the properties of an
actual CAT) and one that was simple enough to yield useful, interpretable results. In
designing the simulation, we consulted with staff from ETS testing programs to ensure that
our decisions were likely to produce data that were substantially consistent with actual ETS
test results. The design of the simulation had three main components: determination of the

"administration” conditions, definition of the properties of the simulated CAT, and
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specification of the parameters of the CAT pool items and pretest items. These components

are described in the following sections.

2.1 Administration conditions

Eighteen data sets were created, each corresponding to a CAT administration. The
admir.istrations were defined by the properties of the item pool, the ability distributions of the
reference and focal groups, and the group sample sizes. These factors are described below.
The number of levels of the three factors was 3, 3, and 2, respectively, resulting in 18 distinct

data sets, the properties of which are summarized in Table 1.

Insert Table 1 about here.

Item pool: Three item pools were included. Pool 1 had no DIF; its purpose was to allow
investigation of the functioning of the DIF methods in the null case. Any conclusion
of DIF for this pool would constitute a Type I error. Two types of DIF pools were
included: Pool 2 had DIF that was uncorrelated with item difficulty, and Pool 3 had
DIF that was positively cor;elated with item difficulty. Research has found that, for
some pairs of ethnic groups, DIF tends to be positively correlated with item difficulty,
whereas for male-female analyses, this tends not to be true (e.g., Kulick & Hu, 1989).
Pools 2 and 3 were created to allow investigation of the effect of this correlation. The

item difficulty, discrimination, and guessing parameters were the same across all three
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pools of items; only the DIF properties varied. Details on the pattern of DIF are given

in section 2.2.

Focal group ability distribution: The three possible focal group distributions were N(-1, 1),

N(O, 1), and N(+.5, 1). In each case, the reference group had a N(0, 1) distribution.
The differences between reference and focal group means were chosen to be

representative of group differences encountered in ETS DIF analyses.

Group sample size conditions: Two sample size conditions were included: ng = 500, np =

500; and n; = 900, n = 100, where n, and n, are the sample sizes for the reference
and focal groups, respectively. Like the focal group distributions, these sample size

conditions were chosen to be similar to those that occur in ETS analyses.

2.2 CAT simulation

In simulating the CAT data, item responses were generated based on the true item

parameters, using the 3PL item response function,

Pj(e) =¢ + (1 ~-c)d+ exp(—1.7aj(9—bjc)))", (1

where P(8) is the probability of answering item j correctly for examinees with ability 8, g,

and ¢; are the discrimination and guessing parameters, respectively, b is the difficulty in

14
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group G (G = reference or focal), and the factor of 1.7 is included to make the logistic scale
inte an approximate probit scale (Lord & Novick, 1968, p. 400). The focal group difficulty,
b;~ was obtained by adding the item d; value, which could be positive or negative, to the
reference group difficulty, b,,. A response was generated as correct if a random number
drawn from a uniform distribution between 0 and 1 war less than the value of the item
response function computed at the true ability. Otherwise the response was incorrect.

The CAT simulation was designed as a simplified version of actual CATs being
developed at ETS. The CAT algorithm selects as the next item to be administered the most
informative item at the maximum likelihood estimate of ability computed from the items
already administered.! (Estimates of item information and examinee ability were computed
using estimated item parameters, described in section 2.3.6). Most actual CATs under
development at ETS select items on the basis of both information and other characteristics,
such as item format and content.

We based our study on a fixed-length CAT of 25 items. This is similar to the number
of items in a single section of the SAT and GRE CATs. To determine the number of items
in the CAT pool, we conducted trial CAT simulations to allow us to investigate patterns of
item use for pools with various item properties. We considered pools of 75 and 100 items,

and concluded that the 75-item pool was superior in that a higher percentage of the items

'The CAT algorithm was implemented in a revised version of a program written by
Martha Stocking based on the approach of Lord (1976). The item information function is

defined as P/ j(e)z/ PJ(G)QI.(B), where Pj(e) is the item response function (in this case, the
3PL function defined in equation 1), P’ j(B) is the first derivative of PJ.(G) with respect to 9,
and QJ(G) =] - PJ.(B) (see Lord, 1980).
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were actually used. This ratio of items in the pool (75) to items administered per examinee
(25) is smaller than in many real applications. However, using a larger pool would have
meant a reduction in the percent of pool items that were administered.

Selection of the most informative item at the examinee’s estimated ability was
achieved using an item information table, shown in Table A-1 in Appendix A, that contains
columns for equally spaced abilities from -2 to 2 at intervals of .2. Each column lists the
item numbers sorted in descending order by the item information at that abi...y level. The
table contains 25 rows, since each CAT consisted of only 25 out of the 75 pool items. (To
allow additional analysis, examinee responses were also generated for all of the pool items
not administered in the CAT.)

In a process similar to that used in actual CATs, the first item administered was
randomly selected from the first four items in the column at ability zero. The second item
was randomly selected from the first three items at either an ability of -2 or +2, depending on
whether the first item was answered incorrectly or correctly, respectively. Examinees with
all-incorrect or all-correct patterns after responding to item 2 continued to receive the most
informative item (among those not yet administered) from the -2 or the +2 column,
respectively. Once an examinee had both a right and a wrong answer, ability was reestimated
by maximum likelihood following each item response. Each subsequent item was selected
from the column of the information table which was closest to the examinee’s estimated
ability. calculated from responses to all items answered up to that point. The most

informative item that had not already been given to that examinee was administered.

o d
=)
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Examinees that answered all CAT irems incorrectly were assigned an ability estimate of -10.
Examinees that answered all items correctly were given an ability estimate of 10.

Item usage for all conditions is given in Table A-2 in Appendix A. The body of the
table gives the number of examinees, out of a total of 60,000 for each population group, who
were administered each item in the pool. Note that four of the 75 CAT items were never
administered. This occurred because, at every ability level, there were at least 25 items that
were more informative than these items. This phenomenon occurs in real CATS as well. To
show how the usage of items varies across ability level, two illustrative tables were produ-ed.
'fable A-3 shows item usage for various ability intervals in the reference group. Table A-4

gives the corresponding information for the focal N(-1,1) group for the Pool 3 items.

2.3 Specification of item parameters

Within each of the 18 "administrations,” the factors that were varied were the item
discrimination (a) and reference group difficulty (b) parameters® and the item d parameters,
representing the degree to which the item difficulties differed. Decisions needed to be made
about the distributions of item parameters (assuming a 3PL item response function) and of the
DIF parameters d. We chose to use muitivariate normal distributions to model the joint
distribution of the DIF and item parameters, with a natural log transformation applied to the a

parameter. We used three different multivariate normal distributions, each corresponding to

2Although we use the notation by to represent the reference group difficulty in some
instances, we suppress the subscript for simplicity of notation in othcrs. A b without a
subscript refers to the difficulty for the R group.

17
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an item pool, to generate the items. The parameters of these distributions are given in Tables
2 and 3. Sections 2.3.1 - 2.3.4 describe how we determined the means, standard deviations,
and intercorrelations shown in the tables. The parameters for the pretest items were selected
in a much simpler fashion, described in section 2.3.5. P;ocedures for obtaining item

parameter estimates for use in analysis are described in section 2.3.6.

Insert Tables 2 and 3 about here.

2.3.1 Marginal mean and standard deviation of distribution of d

In this study, the DIF parameter for item j was defined as d; = by - b Therefore, a
value of d greater than zero implied that an item was easier for the focal group than for the
reference group, whereas d less than zero implied that the item was harder for the focal
group. To decide on the distribution of d in Pools 2 and 3, we used both theoretical and
empirical findings on the relation of MH D-DIF to d.

Donoghue, Holland and Thayer (1993) used the work of Holland and Thayer (1988) to
show that, under certain Rasch model conditions, the MH D-DIF statistic provides an estimate
of -4ad. The assumptions under which this finding holds are that (1) within each of the
groups (reference and focal), the item response functions follow the Rasch model (obtained
from equation 1 by setting ¢; = O for all items j and g; = a for all items j) (2) the matching
variable is the number-right score based on all items, including the studied item, and (3) the
items have the same item response functions for the reference and focal groups (i.e., bz = byr

= b,), with the possible exception of the studied item.

s
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Previous simulation work has shown that, when guessing is present, the appropriate
multiplier is less than 4. In addition to noniero guessing parameters, our simulation study
included two values of a, rather than a single one. To help us select an appropriate :narginal
mean and standard deviation of d for Pools 2 and 3, we examined the regression of MH D-
DIF on ad for several sets of simulated data. We found the multiplicative constants to be
between 2 and 3 and the additive constants to be about zero. Using this result, we were able
10 determine a mean and standard deviation for d (0 and .3) that would produce realistic
distributions of MH D-DIF. In Pool 1, the DIFless pool, the mean and standard deviation of

d were, of course, zero.
2.3.2 Marginal means and standard deviations of distributions of item parameters

Properties of actual data sets were used to determine how to model the marginal
means and standard deviations of the item parameters. Verbal and Mathematical sections of
two forms of the SAT test were obtained from College Board Statistical Analysis for this
purpose. One form, 3KSAOQ7, had not been screened based on LIF pretest information, the
other form, 3LSA02, had been. We looked at the statistics for all items and for only those
items that were included in the pool. From these, the means and standard deviations of in a,
b, ¢, and the MH D-DIF statistic (for male-female, White-Black, and White-Asian analyses)
were obtajneq. Also, as supplementary information, the means and standard deviations of

item parameters from the initial CAT pool for the GRE quantitative section were obtained.
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To simplify the simulation, we set ¢; equal to .15 for all items. This value was close to the
average value in the SAT and GRE data sets. The means and standard deviations of in a

(-.15, .30) and b (0, .15) were also chosen to be similar to the average values for these data.
2.3.3 Intercorrelations among itemn and DIF parameters.

The SAT data sets described in the previous section were also used in modeling the
intercorrelations among the parameters. For purposes of determining the correlation of DIF
with the other parameters in Pools 2 and 3, we used the MH D-DIF statistic as a proxy for d.
To aid in determining reasonable intercorrelations of a, b, and d, the partial correlations of the
estimates of In a, b, and MH D-DIF, with the 2stimated ¢ partialed out, were examined, in
additicn to the zero-order correlations.

The i;ltercorrelations of the item parameters were determined as follows. Pool 1 has
no DIF, so d is uncorrelated with In a and with b. By design, d is also uncorrelated with b in
Pool 2, which closely resembles the actual results for male-female DIF in our SAT data sets,
in the data analyzed by Kulick and Hu (1989) and in other unpublished analyses of College
Board data. The correlation of b and d for Pool 3 was set equal to .40, which is
approximately equal to the average of the correlations of b and MH D-DIF for the White-
Black and White-Asian DIF analyses in the SAT data sets. The average correlation of in a
and MH D-DIF in the SAT data sets was .04. There was considerable variation, but it did
not seem to follow a meaningful pattern. Therefore, a value of zero, which approximated the

mean correlation, was assigned for all three pools. The average correlation of In @ and b was
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about .40; this value was assigned in all 3 pools. Table 3 shows the ccrrelation values used

for modeling the joint distribution of /n a, b, and d in each of t! three pools.

2.3.4 Discretized multivariate normal approach

To generate the item parameters, we assumed a multivariate normal distribution of
In a, b, and d, and then discretized it so that only selected values of each parameter could
occur, By discretizing the distribution, we could assure that only a finite number of item
types were possible, to facilitate summarization and interpretation of results. The values of
the parameters that were selected for inclusion in the study were

In a: -.3, 0 (corresponding to a values of .74, 1)

b: -1.95,-1.3, -.65, 0 .65, 1.3, 1.95

d: -.70, -.35, 0, .35, .70 in Pools 2 and 3; d = O for all items in Pool 1.

This implies a total of 14 possible combinations of a and b, each of which could have five
possible levels of DIF in Pools 2 ¢nd 3.

The probabilities from a multivariate normal distribution with the specified parameters
were used to assign probabilities to the cells of a 2 x 7 x 5 contingency table. To understand
how this was done, consider the b parameter. As noted above, there were to be seven values
of b, separated by .65. The probability associatzd with b = x was defined as P(x - .65/2 < b <
x + .65/2), with the following modification: Probabilities associated with values outside the
intervals surrounding the desired seven values of b were set to zero, and the remaining

probabilities were renormed so that they would sum to 1. The resulting probabilities were
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then multiplied by the desired number of items for the pool and then rounded to integer
values.

We generated the parameters for Pool 3 first. Pool 1 was easily obtained {from Pool 3
by setting all d parameters to 0. Pool 2 was obtained as described above but with the added
restriction that the marginals for a and b remain the same as for the other two pools. The
generated frequencies of d needed to be adjusted to meet this restriction. The resulting joint
distribution was :hen checked to verify that the correlations were close to th-r intended
values.> The joint frequency distributions of CAT item parameters are given in Tables A-5,
A-6, and A-7 for Pools 1, 2, and 3, respectively. The g, b, and d parameters for all three

pools of items are given in Table A-8.
2.3.5 Nonadaptive pretest item parameters

In large testing programs, test forms often include not only items that will be used in
computing the examinees’s overall score, but "pretest” items that are being evaluated for
possible future use. Because the items have never been administered, item parameter
estimates are not available. In CAT-administered exams, some testing programs are choosing
to accompany adaptively administered items with a set of pretest items that are not adaptively

administered. Therefore, we wanted to consider DIF analysis procedures for such items.

*Note that, in this study, an item number (1-75) defines a combination of a, b, and ¢
parameters and a, b, and ¢ parameter estimates. These values are associated with that item
number, rcgardless of item pool. However, the DIF properties of the items vary across pools.
The items in Pool 1 have no DIF and the amount of DIF associated with a particular item
number is not, in general, the same for Pools 2 and 3.

<2
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Responses were generated to the same set of |5 pretest items for each examinee. For these
items, all values of In a were equal to O (corresponding to a = 1). The five levels of d were
cirossed with three levels of b: -1.3, 0, and 1.3. Parameters for the pretest items are given in
Table A-9. The pretest items were identical for all examinees, regardless of the pool from

which the CAT items were selected. The DIF analysis method applied to pretest items is

discussed in section 3.2.

2.3.6 It=m parameter estimation for the CAT

The CAT item parameter estimates used for computing item information and ability
estimates were obtained through an analogue to a paper-and-pencil test administration. (The
administration and analysis of the pretest items did not require that item parameter estimates
be obtained for these items.) A sample of 2,000 examinees were "administered” all 75 items,
and the LOGIST program (Wingersky, 1983; Wingersky, Patrick, & Lord, 1988) was used 10
estimate the a, b, and ¢ parameters for each item. Because 2,000 is a typical sample size for
such calibrations, this approach allowed us to incorporate a realistic amount of estimation
error. The estimated a, b, and ¢ parameters, which were the same for all three pools, are
given in Tabhle A-10, along with the true parameters.

We included only members of the reference population in our calibration sample.
Initially, we considered using a sample consisting of both reference and focal group members
for item calibration or using a weighted combination of true reference and true focal group

parameters, possibly with an error term added. However, because we wished to compare ¢ Jr
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results across simulation conditions, it was desirable to use the same set of parameter
estimates in all cases. In fact, in actual CATs, a single set of parameter estiraates is used,
regardless of the demographic composition of the test-takers in a particular administration. It
was not possible to define a calibration sample that included members of all three focal
groups in a manner that was realistic or useful; therefore, including only reference group
members appeared to be the best procedure. In our simulation, estimation of both item
information functions and examinee ability is based on an incorrect (DIFless) model for the
focal group. This closely approximates the situation that arises in actual testing applizations
when the true item resnonse functions are different for the two groups, but the focal group
constitutes only a small proportion of the calibration sample. In this case, item parameter

I

estimates are, for all practical purposes, estimates of the reference group parameters.

3. DIF analyses

Originally, our investigation was to focus on three general DIF approaches: (1) the
MH and standardization DIF methods, using expected true score on the CAT as a matching
variable, (2) a variation on (1) for nonadaptive pretest items, in which the matching variable
is the sum of the expected true score on the CAT and the score on the studied item, and (3)
comparison of item percents correct for late-occurring items. In addition, we planned a
comparison between DIF results obtained from CATs to results obtained by administering all
pool items and matching either on expected true score based on all item responses or on

number-right score.
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Preliminary simulations allowed us to eliminate from further consideration the method
based on comparison of item percents correct for late-occurring items. The reasons for
eliminating this method are described in the next section, followed by a de<cription of the

MH and standarcization methods.

3.1 Comparison of item percents correct for late-occurring items

In this proposed DIF analysis method, an examinee’s data for an item were to be
included in the analysis only if the examinee received the item in the latter part of the CAT.
Then, the simple differences in item percents correct for the reference and focal groups were
to be examined. This approach was based oa the expectation that examinees who received an
item toward the end of their CATs would be quite well matched in ability, so that DIF
statistics and simple differences in percents correct would yield similar conclusions (Holland
& Zwick, 1991). However, results from simulation data indicated that this matching strategy
did not work as expected. Two types of simulation data were generated. In one simulation,
item parameters for a 75-item CAT pool were constructed according to the procedures
described in section 2.3. Five thousand examinees were selected from a standard normal
ability distribution and were administered a 25-item CAT. The mean and variability of true
ability for examinees who took items late in the test were then examined. Specifically, we
compared the mean and standard deviation of true ability for (1) all examinees taking the
item, (2) examinees taking the item in positions 16-25, and (3) examinees taking the item in

position 25. In only 32 of 75 items was the variance of ability smaller for examinees whu
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took the item in positions 16-25 than for all examinees taking the item. Similarly, restricting
attention to only those who took the item last did not assure a decrease in variability and, of
course, led to dramatic sample size reductions.

To determine whether this undesirable result was a result of artificial properties of our
particular simulation, the same type of analysis was condusted using preliminary item
parameter estimates for 90 items from the actual CAT pool for the GRE quantitative section.
Again, results were obtained for a sample of 5,000 from a N(0,1) population. In this
simulation, it was found that restricting attention to late usage (positions 16-20 for a 20-item
CAT) led ‘> variance reductions in only 40 of 90 items. Examination of the information
tables for both these simulations showed that items often appeared toward the bottom portion
of the table for several widely separated lability levels. The situation is Lkely to be
exacerbated in the case of actual CATSs, in which constraints on item type and content (e.g.,
not too many items on a particular topic) will mean that item information plays a less
important role in selecting items. Based on our early simulation findings, we excluded this

method from the remainder of our study.

3.2 The Mantel-Haenszel and standardization DIF procedures *

In both the MH and standardization methods of DIF analysis, examinees are first

grouped on the basis of a matching variable that is intended to be a measure of ability in the

*“The description of the MH D-DIF and STD P-DIF statistics is adapted from Donoghue,
Holland, & Thayer (1993).
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area of interest. In most DIF applications, the matching variable is a total test score, based
either on the test in which the studied item is embedded or, if the studied item is being
pretested, on a separate test in the same subject area. The score on the studied item, group
membership, and the value of the matching variable for each examinee definea2x2x K
cross-classification of examinee data, where K is the number of levels of the matchiné
variable. This 3-way classification forms the baéis of both the MH and standardization

procedures. One 2 x 2 layer of this 2 x 2 x K array is represented below.

Performance on the Studied Item
Group Correct = 1 Incorrect = 0 Total
Reference ‘ A, ' B, g, h
Focal C, D, ey
Total My Mgy T,

In this notation, therc are T, examinees with the same value of the matching variable. Of
these, ng, are in the reference group and n, are in the focal group. Of the ng, reference group
members, A, answered the studied item correctly while B, did not. Similarly C, of the ng,
matched focal group members answered the studied item correctly, whereas D, did not. The

MH measure of DIF is defined as

MH D-DIF = -2.35 In(6,,,) (2)
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where &, is the Mantel-Haenszel conditional odds-ratio estimator given by

¥ A, DT,
Oy = g
" Bk CI/Tk

k

)

The transformation of 6, in (2) places MH D-DIF on the ETS delta scale of item difficulty
(Holland ‘& Thayer, 1985). The effect of the minus sign in (2) is t¢ make MH D-DIF
negative when the item is more difficult for members of the focal group than it is for
comparable members of the reference group. An estimated standard error for MH D-DIF is
given in Holland and Thayer (1988), based on work reported in Robins, Breslow and

Greenland (1986) and Phillips and Holland (1987). It is

SE(MH D-DIF) = 2.35/Var(in(G,,,)) (4)

where Var(in(6,,,)) is estimated by

X U, VT
* , 5)
200 A \ Da/Tk)2
k
where
Uy, = A, DY + &,,(8B, C)
(6)

vk = (Ak * Dk) * aMH(Bk * Ck)’
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The Mantel-Haenszel chi-square test of the null hypothesis of no difference between
the performance of the focal group and of comparable members of the reference group on the
studied item was not examined in our study.

The standardization DIF measure, developed by Dorans and Kulick (1986), is
STD P-DIF = p, - p, N

where Pr is the proportion in the focal group who get the studied item correct, and Pr is an

adjusted proportion correct on the item for the reference group, defined as

s Py I ®
k an

ne

il

Pr

where n_ = % n,, is the total number of examinees in the focal group. One interpretation of
k

Pe is that it is the proportion of reference group examinees who would have got the studied

item right had the distribution of the matching variable in the reference group been the same

as it is for the focal group.’

The estimated standard error for STD P-DIF is given by the formula

SE(STD P-DIF) = |G} + G 9)

SWhen np, is equal to zero, both p, and oi are undefined. When this occurs, the
standard ETS DIF software implements an imputation procedure proposed by Holland
(McHale, Dorans, Holland, & Petersen, 1988). Analogous procedures, modifizd to take into
account the special nature of the CAT-based analyses, were used in our work.

oo
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where
1, .
or = — pp (1 = B (10)
nF
and
2
2= LyrmihB (11
n2 k n3
F Rk

Our matching variable for the DIF analysis of the CAT-administered items was
obtained by (1) getting the examinee’s MLE of ability, based on the responses to the 25 CAT
items and (2) using this MLE, along with the estimated item parameters, to compute an
expected true score on all pool items by summing the 75 values of the estimated item

response functions. That is, the matching variable was
75

Expected true score based on CAT = % P, (GCAT), (12)

Jj=1

where ﬁj(-) is an estimate of the function defined in equation 1 and §_,  is the MLE of
ability based on the CAT items. Examinees whose expected true scores fell in the same one-
unit intervals were considered to be matched. For the pretest items, which were administered
nonadaptively, the matching variable was the sum of the expected true score on the CAT,

computed according to equation 12, and the score (0 or 1) on the studied pretest item.




4. Organization of the data for DIF analysis

4.1 Examinee records

The record that was constructed for each examinee contained the following
information: population indicator (either reference or one of 3 types of focal), tn;e ability,
pool indicator (1, 2, or 3), string of 75 responses to all pool items, item numbers of CAT
items administered (in order), string of 15 pretest item responses, estimated ability for the 75-
item nonadaptive test and for the 25-item CAT, and expected true scores corresponding to
each of the two ability estimates.

Generating responses to all 75 pool items had two purposes: (l)lThese responses
could be used for the "nonadaptive control” part of the study, which attempted to distinguish
the effects of using CAT data from the effects of using expected true score as a matching
variable and (2) the responses could be used to construct additional CATS for the examinees
if desired by using the CAT algorithm to generate a CAT sequence and plugging in the
existing item responses. Although we did not make use of (2), constructing the record in this

way makes it possible for us to generate data less expensively in future research.

4.2 Definition of sample size conditions

In our CAT setting, it was not clear how best to define sample size for purposes of

data simulation and analysis. If groups of a fixed sample size were drawn and the CAT
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administered, the sample sizes per item would have a huge range. For example, in Table A-
2, the range of item sample sizes is from 0 to 51,133 (out of a total of 60,000) for the focal
group in Conditions 3 and 4. Because our goal was to investigate the behavior of selected
DIF statistics under a fixed sample size, simply analyzing the available data for each item
was clearly undesirable. We therefore considered several other approaches. Initially, we
attempted to generate enough data to meet the target item sample sizes for all conditions.
This implied that 900 reference group members were needed, along with 500 members of
each of the three focal groups for each of the three pools (see Table 1). To achieve this goal
for most items required generating 60,000 cases for the reference group and for each of the
nine focal distribution by item pool combinations. To assess variability, we planned to
conduct two replications per condition.

After examining the DIF results from this approach, we concluded that the standard
errors of the DIF statistics were large enough to make it difficult to characterize the behavior
of the statistics for different item types and different conditions. Even averaging across two
replications did not appear adequate. Because of the cost of data generation, we did not wish
to simulate additional data. We considered several resampling approaches, which would have
allowed us to obtain multiple estimates of each statistic, but none seemed ideal for our
purpose. The approach we ultimately decided to use, proposed by Charles Lewis, was as
follows: For each item, we used all the available CAT data (out of a maximum of 60,000
responses per group) to form the 2 (item responses) x 2 (groups) x K (levels of the matching
variable) contingency table needed for DIF analysis (see section 3.2). We then converted the

table frequencies to proportions of the total number of observations. Using these proportions
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as estimates of the population probabilities associated with the 4 x K cells for the particular
configuration of conditions in question, we obtained expected tables for our target sample
sizes by multiplying the probability estimates for focal group cells by the desired focal group
sample size and then doing the same for the reference group cells. Next, we computed DIF
statistics and standard errors, based on the expected tables, for all 18 conditions in Table 1.
(Note that the estimate of the STD P-DIF statistic obtained using the expected table approach
is the same as the value obtained using all available data, regardless of the target sample
sizes.)

As a simple example of the expected table (ET) approach, consider the following
hypothetical data for a single item, assuming that there are only two levels of the matching
variable. The first step would be to use all the data available for the item to construct a 2 x 2
x 2 frequency table (because K = 2 here). Then the frequencies for the reference group
would be divided by the total number of reference group examinees and the frequencies for
the focal group would be divided by the total number of focal group examinees, producing

the following 2 x 2 x 2 table of probabilities:

Low on Matching Variable

Right Wrong Total
Reference 2 1 3
Focal 2 2 4

High on Matching Variable

Right Wrong Total
Reference S 2 ¥
Focal 4 2 .6
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Now assume that we wanted target tables for the ny = 900, n; = 100 condition. The reference
group probabilities would be multiplied by 900 and the focal group probabilities would be

multiplied by 100, producing the following table, which would then be used for DIF analysis.

Low on Matching Variable

Right Wrong Total
Reference 180 90 270
Focal 20 20 40

High on Matching Variable

Right Wrong Total
Reference 450 180 630
Focal 40 20 60

For the MH D-DIF statistic, the formula for the standard error of the ET estimate,
SE.{MH D-DIF), is given in Appendix B. For the sample size conditions we investigated, its
value is very similar to the value of SE(MH D-DIF) (equations 4-6) obtained using all the
available data. For the STD P-DIF, the standard error of the ET estimate, SE(STD P-DIF),
is identical to the value of SE(STD P-DIF) (equations 9-11) obtained using all the data;
therefore, no special computing formula is required. SEg{MH D-DIF) and SEg(STD P-DIF)
are typically much smaller than the ordinary standard errors that would be obtained for the

target sample sizes in question.® Therefore, even though it produces only a single estimate,

$SEg{MH D-DIF) and SE(STD P-DIF) reflect the degree of precision with which the
population value is estimated using the ET approach. Because the ET estimates are typically
based on thousands of cases in this study, these standard errors tend to be small. They should
not be confused with the standard errors that are computed based on the expected tables
generated with the ET approach, using the usual formulas (equations 4-6 and equations 9-11).
This second type of standard error (which does not have an "ET" subscript) closely
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the ET approach can provide a relatively precise idea of the behavior of the DIF statistics. A
comparison of the ET method to an estimation procedure based on multiple replications
appears in Appendix C. Our comparison was based on pretest items, for which 60,000
responses per population group were available for each item. As shown in Table C-1, the ET
method was found to give results similar to those of the replication-based approach. For the

items we studied, the ET estimate of MH D-DIF was as precise as the average over 316
replications of the MH D-DIF statistic based on the target sample sizes. Another advantage
of the ET approach is that, once the 2x 2 x K probabiliiy tables have been created, DIF
results can be generated easily for any target sample size. This will be useful if we wish to

consider other sample size conditions in the future.

5. Results
The results of the study are summarized in the following sections. Section 5.1 gives
results for the items in the 75-item CAT pool, section 5.2 gives results for the pretest items,

and section 5.3 gives some results on ability estimation for examinee groups.

5.1 Results for the CAT pool items

Results are given first for the comparison of CAT-based DIF results to nonadaptive

DIF analyses. Correlations between CAT-based DIF statistics, DIF statistics based on

approximates the standard errors that would be obtained using actual samples of the target
sizes.
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nonadaptive administration, and "true DIF" are presented first, along with the means of the
various DIF measures. For purposes of this analysis, true DIF was defined as the product of
the item discrimination parameter (a) and the difference between the item difficulties for the
reference and focal groups (d). The theoretical rationale for defining true DIF in this way is
given in section 2.3.1. Following this, tables of MH D-DIF and STD P-DIF means for every
combination of ad and b are given, along with a discussion of the standard errors of the DIF
statistics. Finally, an estimate is given of the proportion of times each type of item would be
declared an extreme DIF ("C") item using the ETS method of classifying items into DIF

categories.
5.1.1 Comparison of CAT-based and nonadaptive DIF analyses

For selected simulation conditions, we compared MH and standardization results from
the CAT analyses, described above, to results of two nonadaptive DIF analyses. Thé first was
a procedure (B-75) in which all 75 pool items were "administered” and gxaminees were
matched 'On expected true score calculated using the MLE of ability based on all 75 responses
(the "nonadaptive control"). That is, instead of the matching variable in equation 12, the

matching variable was

75
Expected true score based on all 75 items = ¥ IS} (675), (13)

j=t




where 675 is the MLE of ability based on all 75 items. The second approach (NR) was a

conventional DIF analysis, in which all 75 pool items were administered and examinees were

matched on number-right score. The results of this comparison are given in Tables 4-6.

Insert Tables 4-6 about here.

For this analysis, we chose to include only the simulation conditions that had DIF and
were based on reference and focal sample sizes of 500--that is, Conditions 4, 6, 10, 12, 16,
and 18 (see Table 1). For each of the six conditions, the correlation matrix was computed for
four variables: the three types of DIF statistics and the true DIF for the item. Each
correlation matrix was based on the 71 items that were administered in the CATs (see section
2.3).

The CAT-based MH D-DIF and STD P-DIF statistics used in this analysis were
computed using the ET method, while the two other statistics were computed based on actual
samples of 500 from the reference and focal groups. Therefore, for most items, the CAT
statisti.cs were much more precisely determined. To avoid giving a spuriously inflated
impression of the performance of the CAT analyses, we computed correlations that were
corrected for unreliability, using the following formula:

rE = X (14)

where rYf, is the corrected correlation between X and Y, ry, is the ordinary Pearson correlation

hetween X and Y, and ry and 7,y are the reliabilities of X and Y. For a particular type of DIF

st tistic (MH D-DIF or STD P-DIF), reliability was estimated as
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% SE} (DIF statistic)!J
J

Reliability =1 - , (15

Variance across J items of DIF statfistic

where J is the number of items. The numerator on the right-hand side represents error
variance, while the denominator represents total variance. (For the CAT DIF statistics, the
SE?(;) values were the squares of the SE.{MH D-DIF) or SE;{STD P-DIF) values as
appropriate; see footnote 6. The reliability of ad is, of course, unity, since it is not a
statistic.) These corrected correlations provide a more equitable way of comparing the CAT,
6-75, and NR analyses.’

Both uncorrected and corrected intercorrelations of the values of the MH D-DIF
statistic for the three types of matching variables and the values of the true DIF are given in
Table 4 for each of the six conditior.ls. The median across conditions is also given. The
corresponding information for STD P-DIF is given in Table 5. Both Tables 4 and 5 show
that the CAT, 6-75, and NR analyses produced results that were highly correlated wiux each
other and with the true DIF values. In particular, the two analyses based on all 75 item
responses produced virtually identical results (with corrected correlations excezding unity).
The median corrected correlation with true DIF was about the same for the CAT, 8-75, and
NR analyses, which is somewhat surprising since the CAT DIF approach matches evaminees
on the basis of only 25 item responses. In general, correlations tended to be slightly higher
for the MH D-DIF statistics than for STD P-DIF. The near-unity correlations of the CAT

DIF statistics with true DIF was a welcome finding.

"If reliability is underestimated, the corrected correlation in equation 14 can exceed unity.
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For some simulation conditions, we have direct evidence that use of the ET method
gives similar correlation results on the performance of the CAT-based DIF procedure as does
an analysis based on actual samples of the target sizes. For Condition 6, we compared MH
results based on actual samples of S00 per group to the ET results. Based on the samples of
500, the uncorrected correlations of the CAT MH D-DIF statistics with MH D-DIF values
from the 6-75 and NR procedures were .88 and .87, respectively--the same as for the ET-
based CAT statistics. Based on the samples of 500, the uncorrected correlation of the CAT
MH D-DIF statistics with true DIF was .92, compared to .95 for the ET method.

High correlations alone, however, do not ensure the accuracy of the DIF methods. To
determine whether the obtained statistics had the desired means, we computed, for each
analysis strategy in each simulation condition, the mean MH D-DIF and STD P-DIF values
across the 71 items that were given in the CAT, along with the standard deviation across
items. The results are given in Table 6, along with the medians over the six simulation
conditions. (In the case of STD P-DIF, means and standard deviations have been multiplied
by 10.) The mean across 71 items of the true DIF values is -.004 in Conditions 4, 10 and 16
(Pool 2) and -.001 in conditions 6, 12, and 18 (Pool 3), with a standard deviation of .293 in
both pools.

In MH D-DIF analysis in which all examinces take all items and the matching variable
is number-right score, the average MH D-DIF is constrained to be approximately zero across
items, producing a negative covariance among the DIF s.tistics within a test. If it were not
for rounding error and for the adjustment procedure described in Footnote 2, the STD P-DIF

statistics would sum to zero under these conditions as well. This constraint on the MH D-
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DIF and STD P-DIF is not present in the CAT and 8-75 analyses. In these other types of

DIF analysis, the nature of the covariance across DIF statistics within a test is unknown.
The issue of covariances across DIF statistics is relevant to Table 6 for two reasons:
First, because of the constraint on the mean of the NR-based statistics, it is not clear which
across-item NR mean is the most useful for comparison to other analyses: the one based on
only the 71 items given in the CAT or the mean over 75 items. Both these means (and
accompanying standard deviations) are therefore included in Table 6. Second, the non-zero
covariances for the NR-based statistics and possibly for the other analyses makes it difficult
to estimate the standard errors of the means in Table 6. If the MH D-DIF statistics were
independent across items, the standard errors of the average MH D-DIF statistics in 'fable 6
would be roughly .009 for the CAT analysis and .049 for the two nonadaptive analyses
(obtained by dividing the average item-level standard error by the square root of the number
of items). Judged in this light, the means for the nonadaptive procedures were quite close to
zero, but the means for the CAT procedure were slightly inflated. All six means for the
CAT-based procedurc were greater than zero and the means were larger for the Pool 3
conditions than for the Pool 2 conditions. However, these values for the standard error of the
mean are only approximate. Because of the negative covariances among NR MH D-DIF
statistics within a test, the value of .049 is definitely an overestimate of the standard error of
the mean for the NR analyses. Presumably, this overestimation holds for the 8-75 approach,
which pléduced results nearly identical to the NR analyses. For the CAT DIF statistics, the
value computed under independence may either under- or overestimate the standard error. In

any case, the practical implications of an inflation of .01 to .05 in the MH D-DIF statistic are
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small in that a difference this size is uniikely to have much effect on decisions about the
item. (Of course, it would be possible to rescale the statistics so that they would be centered
on zero for a particular collection of items.) Under independence, the standard errors of the
means for STD P-DIF x 10 in Table 6 would be about .008 for the CAT analysis and .03 for
the two nenadaptive approaches (obtained, once again, by dividing the average standard error
by the square root of the number of items). Again, there appears to be a slight inflation of
the statistics in the CAT analysis. There were also relatively large departures from zero for
the two nonadaptive methods in Condition 4.

In addition to comparing the values_of MH D-DIF and STD P-DIF for the three
matching variables, we also examined their standard errors. For the 6-75 and NR analyses,
the average values of SE(MH D-DIF) within each con&ition were about .40, whereas the
CAT-based MH D-DIF statistics tended to have standard errors of about .35. One hypothesis
for this discrepancy is that the smaller standard errors for the CAT DIF analysis are relatéd,
at least in part, to the use of the ET estimation method. Table C-1 shows that the ET-based
estimates of SE(MH D-DIF) tended to be smaller than the average SE(MH D-DIF) across 66
replications by about .03. Another hypothesis is that CAT-based methods of DIF analysis
tend to produce lower standard errors for reasons unrelated to ET estimation, such as the
restriction of the analysis to examinees in a smaller ability range (see the related discussion in
section 5.2.2). The interpretation of the standard error results for the three DIF analyses is
complicated, however, by the fact that the pattern of standard errors for MH D-DIF is not
paralleled by the results for SE(STD P-DIF), where average standard errors (multiplied by 10j

ranged from .25 to 32. Here, the average SE(STD P-DIF) within a condition did not vary
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much across the 6-75, NR and CAT DIF statistics. Although the differences were small,
howe ver, the values of SE(STD P-DIF) were larger for the CAT approach than for the 8-75
and NR approaches for all six simulation conditions. These standard error findings, along

with those described in section 5.2.2, require further investigation.
5.1.2 MH D-DIF and STD P-DIF statistics by item type

In addition to comparing the CAT approach to nonadaptive DIF analysis methods, we
examined the average CAT DIF statistics for various types of items and simulation factors.
To determine the best way to summarize the results, we conducted a series of analyses of
variance (ANOVAs) in which the observations were the DIF statistics and the independent
variables were sample size condition, focal group distribution, item difficulty level (B), item
discrimination (A), item DIF level (D), and item position. Pool 1 was analyzed separately;
Pools 2 and 3 were analyzed both separately and in combination (with pool' as an additional
independent variable). We began with the MH D-DIF statistics, which we analyzed under
several different assumptions concerning interactions among the independent variables and
several different numbers of levels of item difficulty, item position, and DIF. Results were
quite consistent across the analysis models. In Pool 1, only the B effect was significant at an
a of .01;% it explained less than 3% of the variance in the MH D-DIF statistics. In Pools 2

and 3, D explained about 85% of the variance. Most analyses of Pools 2 and 3 showed very

®As in all exploratory analyses, significance testing can be viewed here only as a rough
tool for ranking the size of effects.
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small, but statistically significant effects of B, and of the B x D and A x D interactions.
Somewhat surprisingly, focai group distribution had, essentially, no effect, nor did it interact
with other variables. Sample size too, had no effect. (Since the results for the two sample
size conditions were generated from the same set of expected tables, they were highly
correlated. The main value of generating results for two sample size conditions was that it
allowed the examination of the behavior of the standard errors of the DIF statistics, discussed
below.) Item position and pool never yielded statistically significant main effects, though
these factors sometimes showed tiny interactions with other variables. We conducted similar
analyses for the STD P-DIF statistics and obtained nearly identical results. Based on the
ANOVA findings, we displayed MH D-DIF and STD P-DIF averages for every combination

of ad and b.

5.1.2.1 MH D-DiF results

The average MH D-DIF statistics are given in Tables 7-9 for Pools 1, 2, and 3,
respectively. Results are given for the n, = 500, n, = 500 sample size condition only. As
noted, results were nearly identical for the two sample size conditions. The average standard
error of the estimate, SE.{MH D-DIF), is given as well. As described earlier, computation of
the standard error of the mean DIF statistics is not straightforward. The average value of
SE.{MH D-DIF), given in parentheses in Tables 7-9, is the maximum value that the standard
error of the mean MH D-DIF could take (i.e., the value that would occur if all items had

intercorrelations of one) and therefore yields an overestimate of the standard error of the
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mean. The third erﬁry in each cell in Table 7-9 is the number of item results contributing to
the average. Since results are averaged over the three focal group distributions, a single item
within a pool generates three entries in the table in which it occurs. The total number of
entries in each of Tables 7-9 is 3 (focal group distributions) x 71 (items administered in the
CAT) = 213.

As shown in Table 7, the MH D-DIF statistics were well-behaved in the_ null case;
they were equal to zero at the tabled level of accuracy. The bottom margins of Tables 8 and
9 show that the average value of MH D-DIF was typically about 3.3 times the value of ad in
Pool 2, and 3 times the value of ad in Pool 3 (compared to the theoretical value of 4ad that
holds in the Rasch case described in section 2.3.1). In Pool 2, Table 8 shows that, for a fixed
value of ad, the average MH D-DIF usually decreased in absolute value as b increased. For
example, for ad = -.35, the average MH D-DIF was -1.3 for b = -1.95, -1.2 for b =0, and
-0.7 for b = 1.95. This phenomenon, noted by Donoghue, Holland, and Thayer (1993), occurs
in simulations in which the guessing parameter ¢ is constrained to be the same in the
reference and focal groups. The more difficult the item, the closer the probability of correct
response is to the guessing value, and the harder the groups are to differentiate.
Superimposed on this phenomenon, Pool 3 (Table 9) included a correlation between the
difficulty and DIF parameters. Easier items in Pool 3 are more likely to have negative DIF
than harder items. The relation between MH D-DIF and b for fixed ad was not as evident in
Pool 3 as it was in Pool 2. Also, the average MH D-DIF for the DIFless items were not as
close to zero as they were in Pools 1 and 2. For d = 0, the average MH D-DIF decreased

from 0.3 to -0.5 as b increased from -1.95 to 1.95. One item that showed surprising behavior
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in Pool 3 was item 75, which appears in the bottom row of the body of Table 9 at the far
right. The average MH D-DIF departs considerably from 3ad= 2.10. At first, we
hypothesized that this was because item 75 was one of the items that were administered
randomly to some examinees at the beginning of the CAT (see section 2.2). However, we
found that item 75 had an unusually small MH D-DIF value even when administered
nonadaptively. The most likely explanation is that the small DIF value is related to the

extreme difficulty of the item.

Insert Tables 7-9 about here.

The values of SE(MH D-DIF) varied little across pools, DIF levels, item difficulty, or
item discrimination. The primary determinant of SE(MH D-DIF) was sample size. For the
ng = 500, np = 500 condition, SE(MH D-DIF) ranged from about 0.3 to 0.4; for the ng = 900,

ne = 100 condition, the range was from about 0.5 t0 0.7.

5.1.2.2 STD P-DIF results

STD P-DIF results are given in Tables 10-12 for Pools 1, 2, and 3, respectively. The
STD P-DIF statistics, as well as the values of SE.(STD P-DIF), have been multiplied by 10.
Results are given for the ng = 500, n = 500 sample size condition only. As noted earlier, ET
estimates of the STD P-DIF statistics do not depend on the target sample sizes; therefore, the
results for the ng = 900, n = 100 sample size condition were identical. The average value of

values of SE(STD P-DIF) (x 10) is given as the second cntry in each cell of the tables. As
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noted, this value yields an overestimate of the standard error of the mean. The third entry in
each cell in Tables 10-12 is the number of iteﬁ results contributing to the average. The third
entries are the same as those in the MH D-DIF results (Tables 7-9).

Table 10 shows that, in Pool 1, the STD P-DIF statistics were close to zero, as
desired. The bettom margins of Tables 11 and 12 show that the average values of STD P-
DIF x 10 were roughly 2.7 times the value of ad in Pool 2,-and 2.5 times the value of ad in
Pool 3. Table 11 shows that, unlike MH D-DIF, STD P-DIF did not tend to decrease in
absolute value as b increased for a fixed value of ad. An aspect of the results that did mirror
the MH D-DIF results was that the average STD P-DIF for the DIFless items in Pool 3
(Table 12) were not as close to zero as they were in Pools 1 and 2. For d = 0, the average
value of STD P-DIF x 10 was 0.21 at b = -1.95 and 0.22 at b = -1.30. It then decreased as b
increased, reaching -0.46 for b = 1.95. Also, as in the MH D-DIF results, item 75 in Pool 3,
which appears in the bottom row of the body of Table 12 at the far right, had a smaller DIF

statistic than expected.

Insert Tables 10-12 about here.

The values of SE(STD P-DIF) varied little across pools, DIF levels, item difficulty, or
item discrimination. As in the case of SE(MH D-DIF), the primary determinant of SE(STD
P-DIF) was sample size. For the n, = 500, n; = 500 condition, SE(STD P-DIF) x 10 was

always about 0.3; for the ng = 900, n = 100 condition, it was about 0.5.
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5.1.3 Estimated percent of "C" results for item types

ETS has a system for categorizing the severity of DIF based on MH results.
According to this classification scheme, a "C" categorization, which represents extreme DIF,
requires that the absolute value of MH D-DIF be at least 1.5 and be significantly.greater than
1 (at o = .05). A "B" categorization, which indicates moderate DIF, requires that MH D-DIF
be significantly different from zero (at o = .05) and that the absolute value of MH D-DIF be
at least 1, but not large enough to satisfy the requirements for a C item. Items that do not
meet the requirements for either the B or the C categories are labeled "A" items, which are
considered to be free of DIF.

Because most of the ET estimates of MH D-DIF and SE(MH D-DIF) statistics are
based on at least 10,000 observations, it is reasonable to assume that they provide precise
estimates of the population mean and standard deviation of the MH D-DIF statistic for the
relevant configuration of item properties and simulation conditions. This is supported by the
analysis described in Appendix C. If it is assumed that the MH D-DIF statistics for this
configuration are normally distributed with this mean and standard deviation, percentiles of
the MH D-DIF distribution can be obtained. These percentiles can then be used to estimate
the percent of times such au item will be classified as an A, B, or C item.” This is an
alternative way of providing information about the sampling variation of the MH D-DIF

statistic.

*This approach was suggested by Charles Lewis.

J LRIC | 4




45

Based on the ETS DIF rules, we developed an algorithm for estimating these percents,
to be applied separately to each item in each condition (see Appendix D). The algorithm was
tested and found to work well with data for 15 items from our simulation, using the ET
estimates of MH D-DIF and SE(MH D-DIF) to approximate the mean and standard deviation
of the MH D-DIF distribution. Details and results are given in Table C-1 in Appendix C.
The algorithm was also tested on data from the sirmulation study of Donoghue, Holland, and
Thayer (1993) consisting of 100 replications of the MH D-DIF, SE(MH D-DIF) and MH chi-
square statistics for six different items. For each item, the estimated percents of A, B,and C
results based on the method of Appendix D (using the average over 100 replications of MH
D-DIF and SE(MH D-DIF) to estimate the mean and standard deviation of the MH D-DIF
distribution) matched very closely the actual percents of A, B, and C results in the 100
replications.

Tables 13-15 give the average expected percent of C results for each combination of
ad and b. The first entry in each cell is the average expected percent of C results for the
ng = 900, n, = 100 condition, the second entry is the average expected percent for the
ng = 500, n = 500 condition, and the third entry is the number of item results contributing

to the average.

Insert Tables 13-15 about here.

Table 13 shows that the percents of C results were close to zero in the null case, as
desired. Even in the worst case (b = -1.95, ng = 500, ne = 500), the average expected percent

of C results was only 0.2. As noted earlier, an item must have an MH D-DIF with a
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magnitude exceeding 1.5 in order to be a C item. Because MH D-DIF was found to be
approximately equal to 3ad in the conditions investigated in our study, items with ad = +.70
and ad = +.52 can be regarded as nominal C items. The bottom margin of Table 14 shows
that with samples of 500 in each group, Pool 2 items with ad = +.70 would nearly always be
identified as C items. Those with ad = .52 would be expected to be so labeled at least three
quarters of the time. As anticipated, the power to detect extreme DIF items was substantially
smaller for the n,, = 900, n = 100 sample size conditions. Table 15 shows smaller detection
rates for the nominal C items in Pool 3. As noted, item 75, which has a difficulty of 1.95,
had a smaller MH D-DIF value than expected; therefore, its average expected percent of C
results was also smaller. The three items with ad =+.52 also had considerably smaller

detection rates than the ad =+.52 items in Pool 2.

5.2 Results for the pretest items

For several reasons, results for the pretest items must be interpreted differently from
the results for the CAT items. First, the pretest items were administered nonadaptively.
Second, the pretest items were identical for all examinees, regardless of which CAT pool was
administered. Therefore, the identity of the CAT pool is relevant only because the matching
variable for the pretest items was a function of the expected true score on the CAT. Third,
the properties of the pretest items follow a balanced design. Specifically, three levels of b

were crossed with five levels of d, and a was equal to 1 for all items.
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5.2.1 MH D-DIF and STD P-DIF for pretest items

To determine how to summarize the results of the pretest items, an ANOVA was
conducted using the MH D-DIF statistics as the observations. (Because analyses on the CAT
pool items showed that ANOVAs of MH D-DIF and.SYD P-DIF led to nearly identical
results, no ANOVA was conducted for STD P-DIF for the pretest items.) The factors
included were focal group distribution (F), item pool (P), item difficuity (B), and item DIF
level (D). All two-factor and three-factor interactions were also assessed. Results were
somewhat different from th‘ose obtained for the CAT items. All effects were statistically
significant at o = .01 except for the Px D, FxPxD,FxBxD,and PxBxD
interactions. However, the only effects that explained more than 1% of the variance were D
(92%) and B x D (3%). Therefore, for simplicity, results were tabled in the same way as the
CAT item results; that is, results were displayed for each combination of ad = d and b.

Results for the pretest items are given in Tables 16-20. Although the pretest items
were not subject to problems of variability in sample sizes across items, we used the ET
estimation procedure for these items, as for the CAT items. Because the MH D-DIF and
STD P-DIF statistics were nearly identical across pools, results for these statistics are given

for Pool 1 only (Tables 16 and 17). Results are shown only for the 7, = 500, n, = 500




condition.

Insert Tables 16-20 about here.

In all three pools, items without DIF had DIF statistics of about zero, as desired. For
items with DIF, MH D-DIF, but not STD P-DIF, tended to decrease in absolute value as b
increased for a fixed value of ad. The DIF statistics for the pretest items tended to be
slightly smaller than the corresponding statistics for the CAT items.

As an additional check on the DIF results for the pretest items, the correlation matrix
for MH D-DIF, STD P-DIF and ad was obtained within each of the three pools. The three
correlation matrices were nearly the same. The correlation between the two DIF statistics
was .95, the correlation between MH D-DIF and ad was .96, and the correlation between STD
P-DIF and ad was .94 t0 .95. (Because all the DIF statistics for pretest items were based on
the ET method, reliabilities were close to unity. Therefore, the corrected correlations

obtained using equation 14 were almost identical to the uncorrected correlations.)

5.2.2 SE(MH D-DIF) and SE(STD P-DIF) for pretest items

~ The most pronounced difference between the pretest and CAT item results was the
size of the standard error of MH D-DIF. While the values of SE(STD P-DIF) x 10 for pretest
items were, on the average, slightly smaller than those for CAT items (0.2 to 0.3 for the ng =
500, n = 500 condition and 0.3 to 0.5 for the ng = 900, n = 100 condition, compared to

fairly consistent values of 0.3 and 0.5, respectively, for the two sample size conditions in the
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CAT), the standard errors of MH D-DIF tended to be considerably larger for the pretest items
than for the CAT items (ranging from about 0.4 to 0.6 for the ng = 500, n; = 500 condition
and from 0.6 to 1.1 for the ng = 900, n.= 100 condition, compared to 0.3 to 0.4 and 0.5 to
0.7, respectively, for the two sample size conditions in the CAT).

There are several factors that may have contributed to the larger standard errors. First,
they may be related to the larger group differences in ability distributions in the pretest
compared to the CAT. The pretest items are administered to all examinees, whereas the CAT
is administered to those within a relatively narrow range of ability. Therefore, the pretest
data are distributed across more levels of the matching variable, and this greater sparseness
may lead to inflation of the standard errors (see the related discussion in section 5.1.1). A
second possible reason for the larger standard errors is the definition of the matching variable
in the pretest analyses. The estimated standard error of MH D-DIF has been found to be
inflated by inclusion of the studied item in the matching variable (Donoghue, Holland, &
Thayer, 1993). Therefore, it is possible that the lgrger estimated standard errors in the pretest
analyses resulted from the nonstandard method of including the studied item (i.e., adding the
studied item score to an expected true score based on the remaining items). A third possible
contributing factor is the relation between item difficulty and SE(MH D-DIF). This
phenomenon was also investigated by Donoghue, Holland, and Thayer (1993), who studied
the behavior of the ratio of the average SE(MH D-DIF) over 100 replications to the standard
deviation of MH D-DIF over replications. They found that this ratio was larger for items
with difficulty (b) parameters of -.5 and +.5 than for those with b = 0. Our examination of

their data revealed that the average SE(MH D-DIF), like the ratio, was larger for the lower
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and higher difficulty levels than for the middle difficulty level. The standard deviation of
MH D-DIF had the opposite pattern: It was smaller for b = -.5 and b = +.5 than for b = 0.
In investigating the pretest items that had unusua.lly large standard errors, we found that these
items had very large percents correct (above 85). In every simulation condition, items 4 and
S had the largest values of SE(MH D-DIF). These were the easiest of the pretest items, with
b =-1.3 and d = .35 and .70, respectively. A detailed examination of pretest items for
examinees in Condition 17 showed that the Spearman correlation between item percent
correct and SE(MH D-DIF) was .88. In other conditions, such as Condition 5, the relation
took a curvilinear form, which is consistent with the findings of Donoghue, Holland, and
Thayer (1993). In general, whether the relation was curvilinear or monotonic, the items with
the highest percents correct tended to have the highest values of SE(MH D-DIF). Because the
CAT items were administered to examinees with a narrower range of ability, they rarely had

percents correct over 75, which may, in part, explain their smaller standard errors.

5.2.3 Expected percent of C results for pretest items

The average expected percent of C resuits, given in Tables 18-20 for the three pools,
was, of course, affected by the larger values of SE(MH D-DIF) for the pretest items, as well
as the slight tendency of the DIF measures themselves to be slightly smaller in the pretest
than in the CAT. Results were quite similar for Pools 1 and 2, but were somewhat different
for Pool 3 because of a slightly different pattern of standard errors for that pool. Given a

particular value of ad and b, an item was more likely to be labeled a C item if it was a CAT
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item than if it was a pretest item. Consider a Pool 3 item with b = 1.3 and ad = .70. A CAT
item with these propeities would be expected to have a C label 92.4% of the time in the ng =
500, ny = S00 condition and 54.7% of the time in the ng= 900, n,= 100 condition. The

corresponding percents for a pretest item were 45.9% and 24.9%.

5.3 Results of examinee ability estimation

In addition to determining DIF results for groups of items, it is useful to examine the
accuracy of estimation of examinee ability under various conditions. Table 21 gives, for each
item pool and popusation group, the median and interquartile range of the residual cbtained
by subtracting the true ability used in data generation from the CAT-based ability estimate
(8.,7). Table 22 provides the same information for the ability estimate based on responses to
all 75 items (8.5). Because ability estimates for examinees with infinite MLEs have been set
to +10, means and standard deviations would be misleading. Each cell of these tables is
based on 1,000 examinees. The standard error of the medians are about .02 for the CAT

ability residuals (Tabic 21) and about .01 for the 75-item ability residuals (Table 22).

Insert Tables 21-22 about here.

The most striking finding in Tables 21-22 is that all the median residuals were
negative. This appears to be the result of estimation bias due to the use of estimated, rather

than true item parameters. A CAT simulation based on the true item parameters showed that

use of our particular sct of item parameter cstirates led to a downward bias in the ability
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estimates for reference group examinees. In general, however, the size of the bias is not
easily characterized. The bias depends on the location of the populatibn distribution and on
the presence of DIF; therefore, it is not constant across the cells of Tables 21 and 22.

Another finding was that, as expected, the median residuals were nearly always closer
to zero for B, Only in the Pool 3, focal N(+.5, 1) cell was the median residual for Bcar
slightly smaller in absolute value than the corresponding value for 6,5. The item-level DIF
results, however, suggest that the slightly better ability estimation achieved by using all 75
item responses did not substantially improve the behavior of the DIF statistics. Certain other
results are difficult to interpret. For example, estimation appears to have bec;n better in Pool
2 than in Pool 1, which is surprising, given that Pool 1 is free of DIF.

Estimation was worst in Pool 3, particularly for the focal N(-1, 1) group, where ability
was underestimated by an average of nearly one tenth of a standard deviation (of true ability)
in the CAT and by about one sixth of a standard deviation on the nonadaptive test. For the
CAT, this is consistent with predictions, because, in Pool 3, the lowest-ability focal group
gets the easiest ‘items, which tend to have more negative DIF. The median residual was
closer to zero for the N(0, 1) population and still closer for the N(+.5, 1) group. Itis
interesting that in the nonadaptive administration, the pattern of median residuals for Pool 3
paralleled the pattern observed for the CAT: The N(-1, 1) focal group again had the largest
median residual, followed in order by the N(0, 1) and N(+.5, 1) groups. The explanation may
be that, even though all exami.nees receive all items in the nonadaptive administration, the
most informative items are those that have difficulties close to the examinee’s ability level.
In the N(-1, 1) focal group, for example, t};‘e. items that contribute the most to an €xaminee’s

t“ 2.4
0H
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score are the easier items, which, in Pool 3, are more likely to have negative DIF. Other
factors, such as the differential biases due to item parameter estimation, may have also

contributed to the large Pool 3 residuals.

6. Summary and discussion

Our study was based on modified versions of the MH D-DIF and STD P-DI™ statistics
for both computer-adaptive test items and nonadaptively administered "pretest” items. We
eliminated from consideration a proposed DIF method based on comparison of item percents
correct for examirees who received the items late in the CAT. A preliminary simulation
showed that this method did not lead to adequate matching of examinees.

Our findings, in general, appear to provide good news for testing programs that wish
to establish DIF screening procedures for adaptively administered items. The CAT-based DIF
statistics were found to be highly correlated with true DIF and with DIF measures based on
nonadaptive administration. The mean DIF statistics for each pool were close to their
nominal value of zero, although the CAT-based statistics showed a slight inflation,
particularly for Pool 3, in which DIF and difficulty were positively correlated. In general,
Pool 3 DIF statistics were not quite as well-behaved as the Pool 2 statistics. The values of
the DIF statistics for DIFless items in Pool 3 were not as close to zero and the detection raie
for nominal C items was lower.

The factors that affected the size of the MH D-DIF and STD P-DIF statistics, in

general, were the size of the true DIF, the item difficulty, and the interactions of item




54

difficulty and item discrimination, respectively, with the true DIF. Focal group distribution, .
item position, and sample size conditions had almost no effect.

A firding that was useful, although not directly relevant to CATs, was that in
nonadaptive administration of 75 items, matching on the expected true score based on the
MLE of ability led to essentially the same results as matching on numt:er-right score. The
similarity between these approaches, however, may be substantially less for shorter tests.

In most cases, examinee residual abilities for both the CAT and the 75-item
nonadaptive test had medians close to zero within a population group and pool. The major
exception was the focal N (-1, 1) group that received Pool 3 items; these examinees had a
median residual of about -.1 for the CAT and -.06 for the nonadaptive test.'’® (The standard
deviation of true ability was unity in each population group.) The differences between
median residuals for the CAT and those for the nonadaptive test were not large relative to
their standard errors; therefore, our findings did not support the conjecture that CATs might
be more disadvantageous than nonadaptive tests for lower-achieving groups when DIF and
difficulty were positively correlated.

Like the DIF statistics for CAT items, the pretest DIF statistics were well-behaved and

had high correlations with true DIF. The pretest DIF statistics tended to be very slightly

1945 noted earlier, both the DIF statistics and the examinee residuals tended to show
larger departures from their target values in Pool 3, in which DIF and difficulty were
positively correlated, than in Pool 2, in which they were uncorrelated. The interpretation of
this result is not clear-cut, however. The Pool 3 data set was created because of the empirical
finding that DIF estimates are sometimes positively correlated with item difficulty estimates.
This does aot imply, however, that the appropriate data-generating model is one in which the
true (and ordinarily unknown) DIF and difficulty parameters are correlated, In short, there is
no solid evidence for determining whether the Pool 2 or the Pool 3 dzia generating-model is
more realistic.
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smaller in magnitude than the DIF values for CAT items with the same item parameters. A
more striking difference between the CAT and pretest results was that the standard errors of
the MH D-DIF statistics tended to be larger for the pretest items than for the CAT items,
further reducing the power to detect DIF. Possible reasons for the larger standard errors
include the different method of co.nstructing the matching variable, the greater sparseness of
the data, and the occurrence of items with larger percents correct .than in the CAT. Previous
research has shown that all of these features can affect the size of SE(MH D-DIF).

There are many questions that our study did not address. For example, because we
used constant sample sizes in our simulation, we did not address the problem Qf insufficient
item data that may arise when conducting DIF analyses of adaptively administered items
(Miller, 1992). We did not consider methods for refining the DIF criterion by deleting DIF
items and repeating the analysis, nor did we evaluate the effects of using different procedures,
such as Bayesian methods, for estimating abilities or item parameters. Our conclusions apply
1o the case in which the data generation model and the estimation model are both based on
the 3PL function. Also, our results may depend on our use of the expected true score fo; the
item pool as our matching variable. Other types of scores may be of interest. For example,
in some actual CATs, an expected true score is computed for a set of reference items that are
not, in fact, included in the item pool. We did not consider CAT algorithms in which item
selection is .ot determined solely by information, but is constrained by requirements
conceming item type and content, nor did we examine the effects of complex starting
algorithms used in some CATs to control the "exposure” of items. Finally, our study could

not, of course, provide any data on the appropriateness of using itcm parameter estimates
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obtained through paper-and-pencil or nonadaptive computer administration to estimate item
information and examinee ability in a CAT setting. If administration mode (see Hetter,
Segall, & Bloxom, 1992; Wainer & Mislevy, 1990) or item order and context (see Zwick,
1991) affect the functioning of items, CAT-based ability estimation and hence DIF

estimation will be impaired.

6.1 Opportunities for further research and applications

The data files we have created will facilitate further research on CATS at a relatively
low cost. First, since we generated responses to all items in all three pools, we can create
new CATS for thé examinees without repeating the step of generating examinee abilities and
item responses. Second, with the 2 x 2 x K tables of probabilities we generated for each of
the 3 (pools) x 71 (administered items per pool) = 213 CAT items, as well as for the pretest
items, we can create expected tables for any target sample sizes and compute DIF statistics on
these tables without further data generation. An additional application of our work may
involve the expected percent of s, B, and C results that can be computed according to
Appendix D. It is likely that this method could be successfully applied to any large data set,
such as the SAT. For example, the method could be used to predict the likelihood that an
item would be categorized as a C item for various combinations of reference and focal group
sample sizes. Viewing an item’s DIF status as probabilistic, rather than deterministic, may be

a fruitful way of evaluating DIF results.
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Iicm Information Table*®

Table A-1

61

Ability Level

Item
Position | 20 -18 -16 -14 -12 -10 -08 -06 -04 -02 00 02 04 06 08 10 12 14 16 18 20
1 40 40 43 43 43 43 46 45 45 52 52 56 56 60 60 69 65 69 74 74 U4
2 30 39 40 41 41 41 45 46 46 45 56 52 52 56 69 65 65 66 69 66 73
3 42 42 41 42 42 S0 SO 48 48 54 54 S4 60 S2 65 68 66 65 66 69 75
4 41 41 42 44 44 46 49 49 49 48 53 53 64 64 64 66 68 67 67 67 Tl
5 44 44 44 40 SO 44 43 S50 47 S6 S5 55 53 62 68 60 67 74 65 T3 67
6 43 43 39 39 46 42 48 47 S5 55 45 51 54 29 62 67 60 68 68 65 66
7 2 2 2 S0 49 49 41 S5 54 46 48 64 62 61 29 29 29 73 7173 71 69
8 1 1 8 8 40 45 47 43 S50 53 51 60 61 53 S6 64 64 71 71 TS5 65
9 5 S S0 49 39 48 44 54 52 47 46 45 55 59 61 62 62 60 75 68 68
10 3 8 1 46 8 47 42 4 51 49 47 57 63 63 52 61 74 29 70 70 72
11 4 7 2 45 8 55 SI 53 51 49 61 S1 54 59 59 61 715 60 72 70
12 8 9 9 9 48 S5 17 44 56 S50 57 48 29 28 66 28 59 62 29 32 32
13 7 6 6 1 47 17 54 42 57 57 22 62 59 65 28 63 28 70 32 35 35
14 6 11 7 6 9 40 S1 S3 43 22 24 63 24 68 63 26 71 64 72 36 36
15 9 so 11 7 17 39 8 17 17 17 50 24 28 26 26 56 26 61 62 60 38
16 11 4 10 5 2 15 15 57 22 24 63 22 23 58 58 58 70 59 35 29 33
17 10 3 49 11 6 14 57 15 15 15 23 23 26 55 67 52 63 28 64 62 34
18 50 10 46 10 55 9 14 52 41 25 61 47 ST 24 53 70 73 32 59 59 60
19 14 49 4 45 14 51 12 8 44 13 64 46 S8 51 54 53 58 35 61 33 29
20 18 14 3 14 15 16 16 22 13 63 25 59 22 69 24 35 35 26 36 64 59
21 16 4 14 17 7 12 53 14 42 23 17 49 45 23 23 54 32 63 28 34 62
22 49 16 15 15 10 54 13 12 25 43 62 S8 48 57 55 23 75 36 26 61 61
23 2 18 17 16 11 6 9 12 14 19 60 26 25 22 51 24 36 58 63 38 28
24 15 12 16 12 1 10 22 16 24 20 58 28 19 27 27 27 56 72 33 28 26
25 17 15 12 47 16 57 18 56 12 12 59 25 47 19 22 71 27 33 34 26 o4

IToxt Provided by ERI

b4

*For cach ability level, the table lists the 25 most informative items, starting with the most informative.
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Frequency of Item Parameter Combinations in Poolll (75 Items)

Table A-5

Ina
b =30 0.00
-1.95 5 2
-1.30 6 4
-0.65 7 6
0.00 7 7
0.65 6 7
1.30 5 6
1.95 2 5

&1
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Table A-6
Frequency of Item Parameter Combinations for Pool 2 (75 Items)
Ina=-030 d
b -0.50 -0.25 0. 0.25 0.50 Marginal
-1.95 0 2 2 1 0 5
-130 0 2 2 2 0 6
-0.65 0 2 3 2 0 7
0.00 1 1 2 2 1 7
0.65 0 1 2 2 1 6
1.39 1 1 2 1 0 5
195 0 0 1 1 0 2
Marginal 2 9 14 11 2 38
Ina=0.00 d
b -0.50 -0.25 0. 0.25 0.50 Marginal
-1.95 0 1 1 0 0 2
-1.30 0 1 1 0 4
-0.65 0 2 2 1 1 6
0.09 1 2 2 1 1 7
0.65 0 2 3 2 0 7
1.30 0 2 2 0 6
1.95 0 1 2 2 0 5
Marginal 1 11 14 9 2 37




Table A-7

Frequency of Item Parameter Combinations in Pocl 3 (75 Items)

Ina=-030 d
b -0.50 -0.25 0.0 0.25 0.50 Marginal
-1.95 1 2 1 1 0 5
-1.30 1 2 2 1 0 6
-0.65 0 2 3 2 0 7
0.00 0 2 3 2 0 7
0.65 0 1 2 2 1 6
1.30 0 1 2 1 1 5
195 0 0 1 1 0 2
Marginal 2 10 14 10 2 38
Ina=0.00 d
b -0.50 -0.25 0.0 0.25 . 0.50 Marginal
-1.95 0 1 1 0 0 2
-1.30 0 1 2 1 0 4
-0.65 1 2 2 1 0 6
0.00 0 2 3 2 0 7
0.65 0 2 3 2 0 7
1.30 0 1 2 2 1 6
195 0 1 1 2 1 5
Marginal 1 10 14 10 2 37

5J
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Table A-8
a, b, and d Parameters in Pool 2 and Pool 3
Pools 1,2, & 3 Pool 2 Pool 3
Item a b b-d d ad b-d d ad
1 074 -195 -160 -035 -0.26 -125 070 -0.52
2 074 -195 -160 -035 -0.26 -1.60  -035 -026
3 074 -195 -195 000 0.00 -1.60 -035 -026
4 074 -195 -195 000 0.00 -195  0.00 0.00
5 074 -195 -230 035 026 230 035 026
6 074 -130 -095 -035 026 060 -070 -0.52
7 074 -130 -095 -035 026 095 -035 -0.26
8 074 -130 -130 000 0.00 -095 -035 -0.26
9 074 -130 -130 000 000 -130 000 0.00
10 074 -130 -165 035 026 -130 000 000
11 074 -130 -165 035 026 -165 035 026
12 074 065 -030 -035 -026 -030 -035 -0.26
13 074 065 -030 -035 -026 030 -035 -026
14 074 065 -065 000 000 065 000 000
15 074 065 -065 000 000 065 000 0.00
16 074 -065 -065 000 0.00 065 000 000
17 074 065 -100 035 026 100 035 0.26
18 074 065 -100 035 026 -100 035 026
19 074 000 070 -070 -0.52 035 -035 -0.26
20 074 000 035 -035 -0.26 035 -035 -0.26
21 074 000 000 000 000 000 000 000
22 074 000 000 9000 0.0 000 000 000
23 074 000 -035 035 026 000 000 000
24 074 000 -035 035 026 035 035 0.26
25 074 000 -070 070 052 -035 035 026
26 074 065 100 -035 -0.26 100 -035 -0.26
27 074 065 065 000 000 065 000 0.00
28 074  0.65 065 0.00 0.00 065 000 000
29 074 065 030 035 026 030 035 026
30 074 065 030 035 0.26 030 035 026
31 074 065 -005 070 052 -005 070 052
32 0.74 130 200 -070 -052 165 -035 -026
33 0.74 1.30 165 -035 -0.26 130 000 000
34 0.74 1.30 130 000 000 130 000 000
35 0.74 1.30 130 000 000 095 035 026
36 0.74 130 095 035 026 060 070 052
37 0.74 195 1.95 0.00 0.00 1.95 0.00 0.00
38 0.74 1.95 1.60 035 0.26 1.60 0.35 0.26
39 1.00 -195 -160 -035 -035 -1.60 -035 -035
40 100 -195 -195 0060 0.00 -195 000 0.00
41 1.00 -130 -095 -G5S 035 -095 -035 -035
42 1.00 -130 -130 000 000 -130 000 0.00
(continued)
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Table A-8 (continued)

a, b, and d Parameters in Pool 2 and Pool 3

Pools 1,2, & 3 Pool 2 Pool 3

Item a b bd d ad b-d d ad
43 100 -130 -130 000 0.0 -130 000 000
44 100 -130 -165 035 035 -165 035 035
45 100 065 -030 -035 -035 005 -070 -0.70
46 100 065 -030 -035 035 030 035 -035
47 100 -065 -065 000 000 030 -035 -035
43 100 -065 -065 0.00 0.0 065 000 0.00
49 100 065 -100 035 035 065 000 000
50 100 -065 -135 070 0.70 -100 035 035
51 100 000 070 -070 -0.70 035 -035 -035
52 100 000 035 -035 -0.35 035 -035 -035
53 100 000 035 -035 -035 000 000 0.0
54 100 000 000 000 0.00 000 000 000
55 100 000 000 000 000 000 000 0.00
56 100 000 -035 035 035 035 035 035
57 100 000 -070 070 070 035 035 035
58 100 065 100 -035 -0.35 100 -035 -035
59 100 065 100 -035 -0.35 1.00 -035 -035
60 100 065 065 000 0.00 065 000 000
61 100 065 065 000 000 065 000 0.0
62 100 065 065 000 0.00 065 000 000
63 100 065 030 035 035 030 035 035

100 065 030 035 035 030 035 035
65 100 130 165 -035 -0.35 165 -035 -035
66 100 130 165 -035 -035 130 000 000
67 100 130 130 000 0.00 130 000 000
68 100 130 130 000 0.00 095 035 035
69 100 130 095 035 035 095 035 035
70 100 130 095 035 035 060 070 070
7 100 195 230 -035 -035 230 -035 -0.35
72 100 195 195 000 0.0 195 000 000
73 100 195 195 000 0.0 160 035 035
74 . 100 195 160 035 035 160 035 035
75 100 195 160 035 035 125 070 070
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Table A-9

Pretest Item Parameters

Item a b b-d d c
1 1.00 -1.30 -0.60 -0.70 0.15
2 1.00 -1.30 -0.95 -0.35 0.15
3 1.00 -1.30 -1.30 0.00 0.15
4 1.00 -1.30 -1.65 0.35 0.15
5 1.00 -1.30 -2.00 0.70 0.15
6 1.00 0.00 0.70 -0.70 0.15
7 1.00 0.00 0.35 -0.35 0.15
8 1.00 0.00 0.00 0.00 0.15
9 1.00 0.00 0.35 0.35 0.15
10 1.00 0.00 -0.70 0.70 0.15
11 1.00 1.30 2.00 -0.70 0.15
12 1.00 1.30 1.65 -0.35 0.15
13 1.00 1.30 1.30 0.00 0.15
14 1.00 1.30 0.95 0.35 0.15
15 1.00 1.30 0.60 0.70 0.15
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Table A-10

True and Estimated Item Parameters for Pools 1, 2, and 3

True Item Parameters Estimated Item Parameters
Item a b c a b c
1 0.74 -1.95 015 0.73 -2.06 0.14
2 0.74 -195 0.15 0.75 -191 0.14
3 0.74 -1.95 0.15 0.64 =231 0.14
4 0.74 -1.95 0.15 0.64 -2.18 0.14
5 0.74 -195 0.15 0.73 -2.08 0.14
6 0.74 -1.30 0.15 0.70 -1.45 0.14
7 0.74 -1.30 0.15 0.69 -1.53 0.14
8 0.74 -1.30 0.15 0.80 -1.25 0.14
9 0.74 -1.30 0.15 0.72 -1.36 0.14
10 0.74 -1.30 0.15 0.68 -1.35 0.14
11 0.74 -1.30 0.15 0.68 -1.48 0.14
12 0.74 -0.65 0.15 0.73 0.69 0.14
13 0.74 -0.65 0.15 0381 -0.47 021
14 0.74 -0.65 0.15 0.75 -0.81 0.14
15 0.74 -0.65 0.15 0.79 -0.66 0.14
16 0.74 -0.65 0.15 0.73 -0.73 0.14
17 0.74 -0.65 0.15 0.82 -0.63 0.14
18 0.74 -C.65 0.15 0.69 -0.76 0.14
19 0.74 0.60 0.15 0.79 0.07 0.18
20 0.74 0.00 0.15 0.67 -0.23 0.07
21 0.74 0.00 0.15 0.68 -0.06 0.12
22 0.74 0.00 0.15 0.83 -0.07 0.12
23 0.74 0.00 0.15 0.92 0.18 0.23
24 0.74 0.00 0.15 091 0.11 0.19
25 0.74 0.00 0.15 0.78 -0.07 0.13
26 0.74 0.65 0.15 0.89 0.62 0.15
27 0.74 0.65 0.15 0.73 0.56 0.12
28 0.74 0.65 0.15 093 0.64 0.18
29 0.74 0.65 0.15 1.08 0.74 0.22
30 0.74 0.65 0.15 061 0.47 0.06
31 0.74 0.65 0.15 0.59 042 0.04
32 0.74 130 0.15 0.83 141 0.19
33 0.74 1.30 0.15 0.69 1.22 0.14
34 0.74 1.30 0.15 0.66 1.31 0.10
35 0.74 130 0.15 0.79 122 0.16
36 0.74 1.30 0.15 0.75 1.29 0.15
37 0.74 1.95 0.15 0.54 228 0.13
38 0.74 195 0.15 0.6 1.94 0.13
39 1.00 -1.95 0.15 097 -2.02 0.14
40 1.00 -1.95 0.15 1.01 -2.01 0.14
. 41 1.00 -1.30 0.15 1.03 -1.37 0.14
1?2 1.00 -1.30 0.15 1.00 -1.44 0.14
o (continued)
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Table A-10 (continued)

True and Estimated Item Parameters for Pocls 1, 2, and 3

True Item Parameters Estimated Item Parameters
Item a b c a b c
43 1.00 -1.30 0.15 1.07 -1.20 0.14
44 1.00 -1.30 0.15 1.00 -140 0.14
45 1.00 -0.65 0.15 1.11 -0.58 0.17
46 1.00 -0.65 0.1 1.05 -0.69 0.14
47 1.00 -0.65 0.15 1.07 -0.59 022
48 1.00 -0.65 0.15 1.10 -0.55 0.20
49 1.00 -0.65 0.15 1.00 -0.70 0.12,
50 1.00 -0.65 0.15 097 -0.83 0.11
51 1.00 0.00 0.15 0.92 -0.15 0.10
52 1.00 0.00 0.15 1.20 0.04 0.19
53 1.00 0.00 0.15 1.02 -0.03 0.14
54 1.00 0.00 0.15 098 -0.08 0.09
55 1.00 0.00 0.15 092 -0.20 0.05
56 1.00 0.00 0.15 1.20 0.11 0.19
57 1.00 000 0.15 0.86 -0.16 0.10
58 1.00 0.65 0.15 0.82 0.52 0.10
59 1.00 0.65 0.15 0.90 0.65 0.12
60 1.00 0.65 0.15 1.13 0.69 0.16
61 1.00 0.65 0.15 0.95 0.59 0.12
62 100 0.65 0.15 1.02 0.64 0.15
63 1.00 0.65 0.15 0.86 0.49 0.09
64 1.00 0.65 0.15 1.05 0.60 0.16
65 1.00 130 0.15 1.26 1.20 0.15
66 1.00 130 0.15 1.33 1.33 0.19
67 1.00 1.30 0.15 1.27 1.38 0.19
68 1.00 130 0.15 1.15 1.17 0.14
69 1.00 130 0.15 142 1.23 0.18
70 1.00 130 0.15 .0.87 144 0.15
71 1.00 195 0.15 1.06 1.81 0.12
72 1.00 1.95 0.15 0.89 2.04 0.16
73 1.00 195 0.15 1.17 1.84 0.16
74 1.00 -1.95 0.15 1.53 1.81 0.17
75 1.00 195 0.15 1.09 192 0.16

53
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Appendix B

Varance of the ET Estimator of MH D-DIF*

*This variance was derived by Charles Lewis based on the work of Phillips and Holland
(1987).
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Let &;,, be the MH odds ratio computed on the adjusted table frequencies, and MH D-
DIF be the ET estimate of MH D-DIF based on the target sample sizes n; and pn.;. Then,

based on the results in equations 4 - 6,

SE,(MH D-DIF*) = 2.35~| Var(ln(a;,,,)),

where Var(ln(a;,,,)) is estimated by

T U VITY
k

2

2(2 A, D,/T,;)2

k

where

U =(A,D) + wrr (B C)
Ve = A, + D) + [ B, + Cy
ng n
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Appendix C

Investigation of the ET Estimation Procedure
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To check on the validity of the ET estimation procedure, we compared the results
obtained using the ET method to those that we would have obtained using a more standard
simulation procedure. We wanted to compare estiration procedures in the worst possible
case; therefore, we chose Condition 5, which has the less stable sample size condition (ng =
900, n; = 100), the largest between-group ability difference (the focal N(-1, 1) population),
and the most complex DIF structure (Pool 3). It would have been extremely expensive to
conduct this validity check with the CAT data, in which each record includes different subsets
of items. Therefore, we used the data from the 15 pretest items. (Note that the identity of
the item pool was therefore relevant only to the matching variable; the DIF structure within
the pretest items was the same in all conditions; see section 2.3.5). Because we had already
generated data for 60,000 examinees in each group, we could use existing data to create 66
independent replications of the DIF analysis. (This number is the result of dividing 60,000 by
900 and then rounding down to the next lowest integer.) Table C-1 gives a comparison of the
MH D-DIF results obtained from the 66 replications to the ET estimates reported in our
study. The STD P-DIF findings yielded a similar picture of the agreement between the two
estimation procedures. It is important to keep in mind that the two sets of results in Table
C-1 are alternative estimates of unknown parameters; neither set can be regarded as the

criterion. The main findings were as follows.

1. The values of the ET estimate of MH D-DIF were very close to the values obtained by
averaging over 66 replications. The standard error of the difference between the ET estimate

and the average over replications can be estimated using the standard errors from each
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replication and the standard errors of the ET estimate (Appendix B). The standard errors of
the averages over 66 replications were about .08 for these items; the standard errors of the ET
estimates were about .04. This yielded values of about .09 for the standard errors of the
difference between these two estimates. Only five of the differences between the two sets of
estimates were found to be greater than .09 in magnitude. This is consistent with what would
be expected if the differences were normally distributed, with a mean of zero. It is interesting
that the ET approach yielded a more precise estimate of MH D-DIF than the average over 66
replications. In fact, for the Condition 5 pretest items, about 316 replications would have

been required to match the precision of the ET estimate.

2. The distribution of MH D-DIF across items was examined. Based on the ET estimates,
the mean and standard deviation were .17 and 1.27, respectively. Based on the mean MH D-
DIF across replications, the across-item mean and standard deviation were found to be .12
and 1.32. The correlation across items between the two estimates of MH D-DIF was .997.

3. Estimates of the standard error of MH D-D.'F were also considerec.. .lere, three estimates
were available--the ET estimate SE{MH D-DIF), the average of SE(MH D-DIF) over
replications, and the observed standard deviation of MH D-DIF across replications.
Differences among the estimates were very small. The average SE(MH D-DIF) tended to be
slightly larger than the standard deviation of MH D-DIF, as found by Donoghue, Holland, and
Thayer (1993). SE.{(MH D-DIF) tended to be slightly smaller than the standard deviation.

The across-item correlation between SE{MH D-DIF) and the average SE(MH D-DIF) was

Jd
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.992. Each of these estimates had correlations of about .8 with the standard deviation of MH

D-DIF.

4. The estimated proportion of A, B, and C categorizations were examined. As shown in
Table C-1, agreement between the two estimation methods on the estimated proportion of
times the item would be labeled a "C," which was our main focus, were satisfactory for most
items. An exception is item 6, which also had the largest discrepancy between methods in

the estimated MH D-DIF statistics.

In summary, the ET method appears to give similar results to those obtained using more
conventional estimation methods. In our study of the 15 pretest items, the ET estimates were
much more precise than those that would have been obtained using an affordable number of

replications.
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Table C-1

Comparison of ET Estimates of DIF Statistics to

Estimates Based on 66 Replications

Estimated Pzrcents in

ETS DIF Categories

Item MH D-DIF SE (MH DIF) A B C
1 ET -2.12 .61 12.1 348 53.0
Reps. -2.12 65 (.65) 6.7 36.2 57.1

2 ET -1.06 62 712 227 6.1
Reps. -1.09 .65 (.58) 60.1 339 6.1

3 ET 0.08 .65 97.0 30 0.0
Reps -0.16 .68 (.68) 94.8 5.0 0.2

4 ET 1.25 N 71.2 19.7 91
Reps. 1.28 15 (.78) 57.7 325 9.8

N ET 2.55 .19 106 19.7 69.7
Reps. 2.66 85 (.79) 10.5 27.5 62.0

6 ET -1.46 .63 303 379 31.8
Reps. -1.72 .67 7 36.1 459 179

7 ET -0.74 .61 77.3 212 15
Reps -0.78 .64 (.61) 772 209 19

8 ET 0.02 .60 100.0 . 0.0 0.0
Reps 0.01 .62 (.59) 95.0 49 0.1

9 ET 1.01 .60 712 212 7.6
Reps. 1.00 62 (.63) 60.6 343 52

10 ET 1.98 61 12.1 424 455
Reps. 2.02 .64 (.66) 9.6 416 48.7

11 ET -047 .70 924 7.6 0.0
Reps. -0.46 13 (.78) 89.7 9.5 0.8

12 ET -0.20 68 93.9 6.1 0.0
Reps. -043 73 (.76) 94.0 5.8 0.3

13 ET 0.10 .67 95.5 4.5 0.0
Reps. 0.13 .70 (.65) 94.7 5.1 0.2

14 ET 0.54 .65 97.0 3.0 0.0
Reps. 0.39 .68 (.62) 86.8 12.3 09

15 ET 1.11 .63 69.7 28.8 15
Reps. 1.06 .66 (.58) 579 35.1 7.0

*The lefthand entry in the "Reps." row of this column is the average of the 66 values of SE(MH D-DIF)
from the replications. The parenthesized value is the standard deviation of the 66 values of AfH D-DIF from the

replications.

o
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Appendix D
Expected Proportions of A, B, and C DIF Results

Based on ETS Classification Rules

Jo
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Suppose that the MH D-DIF statistic, M, has a normal disuibution with mean u and
variance ¢>. Then estimates of the proportion of A, B, and C items (PROPA, PROPB and
PROPC) can be derived as follows, using the MH D-DIF and SE(MH D-DIF) for all available

data as estimates of p and ©.

1. First, estimate PROPBC, the proportion of times the item will be a B or C item:
P(MH chi-square > 3.84) = P((M/c)2 > 3.84)
= PM/c > 1.96) + PM/c < -1.96)
- A - Wi > (196 - wa) + Pp - i < (-1.96 - wo)
= P(Z > (196 - /o) + P(z < (-1.96 - p./c)))

where Z is a standard normal variable.

P(M| > 1) = PM > 1) + PM <
=P(( - o > (1 -p/cs) P( - o < (-1 “Ll)/c)
(-1 -

- Hz> (1 - wo) + Az < W)

K1BC = min(—1.96 - wo, (-1 - p)/c)
K2BC = max(1.96 - wo, (1 - p)/c)

PROPBC = P(Z > K2BC) + P(Z < K1BC).

Q Q'
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Next, estimate PROPC, the proportion of times the item will be a C item:

P(|M| > 1.656 + 1) = PM > 1650 + 1) + PM < -1.650 - 1)
= P((M - wlo > 1.65 + (1 ~ ) + P((M -wo < -1.65 - (1 + p)/o‘)

T Py s s ML

= P((M - wo > (1.5 - p)/c) + P((M - wio < (-1.5 - p)/c)
= P(Z > (15 - p)o ) + P(Z <(-15 - p)/O')

K1C = min(—l.es - (1 + pYo, (-1.5 - p)/c)
K2C = max(l.es +(1 - wo, (15 - p)/c)
PROPC = PZ > K2C) + P(Z < K1C)

Now calculate PROPB and PROPA by subtraction:

PROPB = PROPBC - PROPC

PROPA =1 - PROPBC

J3
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Tables

39




®pool 1: no DIF, Pool 2: DIF uncorrelated with item difficulty, Pool 3: DIF positively correlated with item

difficulty.

Table 1

The 18 Administration Conditions

Sample size per item

Condition Focal Population Focal Reference Pool®
1 NG-1,1) 100 900 1
2 N(-1,1) 500 500 1
3 N(-1,1) 100 900 2
4 N(-1,1) 500 500 2
5 N(-1,1) 100 900 3
6 N(-1,1) 500 500 3
7 NO,1) 100 900 1
8 N(,1) 500 560 1
9 N(,1) 100 900 2
10 N(,1) 500 500 2
11 N(O,1) 100 900 3
12 N@,1) 500 500 3
13 N(5,1) 100 900 1
14 N(5,1) 500 500 1
15 N(5,1) 100 900 2
16 N(.5,1) 500 500 2
17 N(5,1) 100 900 3
18 N(.5,1) 500 500 3
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Table 2
Means and Standa-d Deviations of In q, b, and d for Item Pools 1, 2, and 3

(Assuming a Multivariate Normal Distribution)

Pool
1 2 and 3
na
mean -.15 -15
s.d. 30 .30
b
mean 0 0
s.d. 1.5 1.5
d
meén 0 0 i
s.d. 0 .30

3n @ normal with mean -.15 and s.d. .30 corresponds to a log-normal with mean .9 and s.d. .28.
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Table 3

Correlation Matrices of In a, b, and d for Item Pools 1, 2, and 3

Pools 1 and 2

na b d
Ina 1 .40 0
b 1 0
d 1
Pool 3

Ina . b d
Ina 1 .40 0
b 1 40
d 1
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Table 4
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Correlations for True DIF (ad) and MH D-DIF Statistics Based on Three Types of Matching Variables *

Condition: 4 6 10 12 16 18

Type of Pool: 2 3 2 3 2 3
Variables Correlation Focal Group:  N(-1,1) N(-1,1)  N(0,1) N(,1) N(5,1) N(51) | Median
6-cAT  8-75 Uncorrected 83 88 .89 88 91 .89 .89
Corrected 93 1.00° 1.00 97 1.00° 99 9
8-CAT NR Uncorrected .85 87 89 86 .90 .88
Corrected 96 9 9 .96 1.00 1.00° 99
8-CAT ad Uncorrected 96 95 98 96 .96 96
Corrected 97 96 99 97 1.00 97 97
8-75 NR Uncorrected 99 99 99 99 99 9 99
Corrected 1.00° 1.00° 1.00° 1.00° 1.00° 1.00° 1.00°
8-75 ad Uncorrected 84 .86 .88 85 90 88 87
Corrected 93 97 98 93 98 97
NR ad Uncorrected 86 .87 .88 .84 89 .89 88
Corrected .95 98 .98 .92 99 .98 .98

*In this table, §-CAT, 8-75, and NR refer to the MH D-DIF statistics that result from matching on expected true

score based on the CAT, expected true score based on 75 item responses, and number-right score based on 75
items, respectively. Correlations are based on 71 items because 4 items were never administered in the CAT.

®Corrected value was greater than unity.
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Table 5

Correlations for True DIF (ad) and STD P-DIF Statistics Based on Three Types of Matching Variables®

Condition: 4 6 10 12 16 18

Type of Poot: 2 3 2 3 2 3
Variables Correlation Focal Group:  N(-1,1) N(-1,1) N(@,1) N(0,1) N(.5,1) N(5,1) | Median
8-CAT 8-75 Uncorrected .80 .80 .87 .88 91 86 .86
Corrected 29 91 96 97 1.00° 95 95
8-CAT NR Uncorrected 81 .80 88 87 91 87 87
Corrected 93 94 99 96 1.00 95 95
6-CAT ad Uncorrected 96 93 .98 96 99 96 96
Corrected 97 94 99 96 99 96 97
8-75 NR Uncorrected 95 95 98 98 98 99 98
Corrected 1.00° 1.00° 1.00° 1.00° 1.00° 1.00° 1.00°
8-75 ad Uncorrected .82 .19 87 87 91 88 87
Corrected 90 88 95 96 1.00 97 95
NR ad Uncorrected .83 81 88 87 90 88 87
Corrected 94 93 98 95 99 96 95

'In this table, H-CAT, 8-75, and NR refer to the STD P-DIF statistics that result from matching on expected true
score based on the CAT, expected true score based on 75 item responses, and number-right score based on 75
items, respectively. Correlations are based on 71 items because 4 items were never administered in the CAT.

®Corrected value was greater than unity.
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Means and Standard Deviations of DIF Statistics for Three Types of Matching Variables®

Table 6

94

Condition: 4 6 10 12 16 18
Matching Number Pool: 2 3 2 3 2 3
Variable of Items® Focal Group: | N(-1,1) N(-1,1) N(@,1) N(0,1) N(.5,1) N(.5,1) Median
MH D-DIF

8-CAT 71 mean .00 02 02 .03 01 .05 0
s.d. 96 .89 99 94 1.02 96 96

8-75 71 mean -2 01 -.01 .00 -01 -.04 -.01
s.d. 97 90 92 96 1.02 97 97

NR 71 mean -02 -02 -02 -2 -02 -08 -0
s.d. 97 88 93 99 1.03 97 97

NR 75 mean 01 .01 01 00 02 -04 01
s.d. 96 87 93 98 1.02 97 97

STD P-DIF x 10 .

8-CAT 71 mean 01 02 01 02 .00 02 01
s.d. 75 72 79 6 9 a7 a7

8-75 71 mean -09 -.05 03 02 03 04 17)
s.d. 66 62 62 .64 62 65 63

NR 71 mean -07 -.05 .00 -.01 02 01 .00
s.d. il 67 64 65 62 65 64

NR 75 mean -.04 -.02 03 02 .05 04 02
s.d. 70 66 65 65 63 65 65

39-CAT, 6-75, and NR refer to the DIF methods that match on expected true score based on the CAT, expected true score based on 75
item responses, and number right score based on 75 items, respectively. Correlations are based on 71 items because 4 items were never
administered in the CAT.

YFor conditions 4, 10, and 16, the mean value of ad across 71 items is -.004 and the standard deviation is .293. For conditions 6, 12, and
18, the mean and standard deviation are -.001 and .293, respectively.

“This column gives the number of items on which the tabled means and standard deviations are based.

[Kc

wll Toxt Provided by ERIC
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Table 7

Pool 1:

Average MH D-DIF for Each Value of b in the 500, 500 Sample Size Condition®

Item
Difficulty
(b)

Value of
ad’
0

-1.95

-130

-.65

65

1.30

1.95

0.0
(0.09)
21

0.0
0.07
30

0.0
0.06)
39

0.0
0.11)
39

0.0
(0.06)
33

0.0
0.09)
33

0.0
0.10)
18

Average

0.0
0.08)
213

95

*The first entry in each cell is the average MH D-DIF for the indicated values of ad and b, the second entry is the aveiage standard error
of the estimate, and the third entry is the number of item results over which the averages were computed.

®ad = 0 for all items in Pool 1.
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Table 8

Pool 2:
Average MH D-DIF for Each Combination of ad and b in the 500, 500 Sample Size Condition*

Item Value of
Difficulty ad
(b) -70 -.52 -35 -26 0 26 35 52 .70 Average
-1.95 -1.3 -09 0.0 1.0 03
0.07) {0.08) (0.10) (0.10) (0.09)
3 6 9 3 21
-1.30 -13 -0.9 0.0 09 1.3 _ 0.0
(0.05) (0.08) (0.06) 0.09) 0.06) 0.07
3 6 12 6 3 30
-.65 -13 -0.9 0.0 0.8 1.2 24 0.0
(0.04) (0.08) (0.05) 0.10) (0.04) (0.05) (0.06)
6 6 15 6 3 . 3 39
0 -2.1 22 -1.2 0.1 0.0 09 1.2 1.8 2.5 0.1
(0.04) (0.30)° 0.04) (0.58)° 0.04) (0.05) 0.04) (0.08) (0.05) 0.11)
3 3 6 3 9 6 3 3 3 39
65 -1.2 -0.9 0.0 1.0 12 0.0
(0.06) 0.06) (0.08) (0.05) 0.04) 0.07)
6 3 15 3 6 33
1.30 -1.8 -09 0.5 0.0 1.0 1.1 -0.1
(0.10) 0.06) 0.16) (0.10) 0.11) 0.06) 0.09)
3 6 3 12 3 6 33
1.95 -0.7 0.0 1.1 08 03
(0.09) 0.09 (0.20) 0.06) (0.10)
3 6 3 6 18
Average -2.1 2.0 -1.1 -0.7 0.0 09 1.1 1.8 2.5 0.0
0.04) (0.20) (0.05) (0.14) 0.07) 0.09) (0.05) (0.08) (0.05) (0.08)
3 6 33 27 78 30 27 3 6 213

*The first entry in each cell is the average MH D-DIF for the indicated values of ad and b, the second entry is thc average standard error
of the estimate, and the third entry is the number of item results over which the averages were computed.

*The average standard error is large because of the sparsity of data for Item 19.

“The average standard error is large because of the sparsity of data for Item 20.
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Table 9
Pool 3:
Average MH D-DIF for Each Combination of ad and b in the 500, 500 Sample Size Condition®
Item Value of
Difficulty ad
(b) -.70 -.52 -35 -.26 0 26 35 52 .70 Average
-1.95 -1.6 -09 -0.7 03 1.3 -0.3
(0.08) 0.07) (0.09) 0.09) 0.09) ‘ (0.09)
3 3 6 6 3 21
-1.30 -14 -0.9 -0.6 03 12 1.6 0.0
0.07) 0.05) 0.07M 0.06) (0.08) (0.06) (0.06)
3 3 6 12 3 3 30
-.65 =22 : -1.0 -0.7 0.2 10 1.5 -0.1
0.04) 0.04) (0.08) 0.05) (0.09) 0.04) (0.06)
3 6 6 15 6 3 39
0 -1.1 -0.6 0.1 10 1.3 0.1
0.04) 0.46)° (0.04) (0.06) 0.04) 0.11)
6 6 15 6 6 39
.65 -14 -1.0 -0.1 0.8 1.1 -0.1
(0.06) (0.06) 0.08) 0.05) (0.05) 0.07m
6 3 15 3 6 33
1.30 -1.1 -13 -0.3 0.6 09 1.6 21 0.2
(0.05) (0.09) (0.11) (0.08) 0.05) 0.11) (0.08) (0.09)
3 3 12 3 6 3 3 33
1.95 -1.1 -0.5 0.6 0.0 15 03
(0.08) 0.11) 0.17) 0.06) (0.06) (0.09)
3 3 3 6 3 18
Average 2.2 -1.5 -1.1 -0.7 0.0 0.9 11 1.6 1.8 0.0
0.04) (0.08) (0.05) 0.15) 0.07) (0.09) 0.05) 0.11) 0.07) (0.08)
3 6 30 30 78 27 30 3 6 213

aThe first entry in cach cell is the average MH D-DIF for the indicated values of ad and b, the second entry is the average standard error
of the estimate, and the third entry is the number of item results over which the averages were computed.

*The average standard error is large because of the sparsity of data for Item 20.
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Table 10

Pool 1:
Mverage STD P-DIF x 10 for Each Value of b in the 500, 500 Sample Size Condition®

Item Value of
Difficulty ad®
()] 0
-1.95 0.00
0.07)
21

135 .0.01
(0.06)
30

-.65 0.00
(0.05)
39

0 -0.01
(0.08)
39 '

.65 0.01
(0.06)
33

130 0.01
(0.08)
33

1.95 0.02
0.09)
18
Average 0.00
0.07)
213

*The first entry in each cell is the average STD P-DIF, multiplied by 10, for the indicated values of ad and b, the second entry is the
average standard error of the estimate, multiplied by 10, and the third entry is the number of item results over which the averages were
computed.

bad = 0 for all items in Pool 1.
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Table 11

Pool 2:

Average STD P-DIF x 10 for Each Combination of ad and b in the 500, 500 Sample Size Condition*

Item Value of
Difficulty ad
(b) -.70 -.52 -.35 -26 0 26 35 .52 .70 Average
-1.95 -0.70 -0.74 0.04 0.72 -0.19
0.04) 0.07) (0.08) 0.07) 0.07)
3 6 9 3 21
-1.30 -0.92 -0.83 0.02 0.81 0.84 0.00
0.04) 0.07) (0.05) (0.08) 0.04) (0.06)
3 6 12 6 3 30
-65 -0.98 -0.78 -0.04 0.64 0.89 1.70 0.01
(0.03) 0.07) (0.05) (0.08) 0.04) 0.03) 0.05)
6 6 15 6 3 3 39
0 -1.83 -1.27 -091 0.08 -0.03 0.76 0.81 1.49 2.02 0.07
(0.04) (0.20)° (0.03) 0.36)° (0.04) 0.04) (0.03) (0.06) (0.04) (0.08)
3 3 6 3 9 6 3 3 3 39
65 -1.00 -0.75 -0.01 0.80 097 0.00
0.05) (0.05) 0.07) (0.04) 0.04) (0.06)
6 3 15 3 6 33
1.30 -1.66 -0.72 041 -0.02 0.82 0.90 -0.09
(0.09) (0.05) (0.14) (0.09) (0.10) (0.06) (0.08)
3 6 3 12 3 6 33
195 -0.58 0.00 097 0.63 0.28
0.07) (0.08) (0.18) (0.05) (0.08)
3 6 "3 6 18
Average -1.83 -146 -0.85 -0.64 -0.01 0.77 0.84 149 1.86 0.01
(0.04) (0.15) 0.04) 0.11) 0.06) (0.08) 0.04) (0.06) (0.04) 0.07)
3 6 33 27 78 30 27 3 6 213

*The first entry in each cell is the average STD P-DIF, multiplied by 10, for the indicated values of ad and b, the second entry is the
average standard error of the estimate, multiplied by 10, and the third entry is the number of item results over which the averages were

computed.

*The average standard error is large because of the sparsity of data for Item 19.

“The average standard error is large because of the sparsity of data for Item 2(.
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Table 12

Pool 3:
| Average STD P-DIF x 10 for Each Combination of ad and b in the 500, 500 Sample Size Condition*
1 Item Value of
Difficulty ad
() -.70 -52 -35 -.26 0 26 35 .52 .70 Average
-1.95 -1.35 -0.49 -0.55 0.21 0.98 022
0.07) 0.04) (0.08) (0.06) 0.07) (0.07)
3 3 6 6 3 21
-1.30 -1.28 -0.66 -0.54 0.22 1.09 1.04 0.00
(0.07) (0.04) (0.06) (0.05) (0.08) (0.04) (0.06)
3 3 6 12 3 3 30
-.65 -1.74 -0.78 0.62 0.18 0.35 112 -0.06
0.03) 0.04) 0.07) (0.05) (0.08) (0.04) (0.05)
3 6 6 15 6 3 1 39
0 -0.87 -0.38 0.07 0.84 1.05 0.13
(0.03) 0320 (0.04) (0.06) 0.04) (0.08)
6 6 15 6 6 39
65 -1.17 -0.85 -0.09 0.65 091 -0.11
(0.05) (0.05) 0.07) (0.04) (0.04) (0.06)
6 3 15 3 6 33
1.30 -0.88 -1.13 -0.22 0.49 071 1.25 1.60 0.17
(0.04) 0.09 . (0.09) (0.08) (0.04) 0.09) 0.07) 0.07)
3 3 12 3 6 3 3 33
195 -0.87 -046 0.60 0.45 1.20 0.23
0.07 (0.10) 0.16) (0.05) (0.05) (0.08)
3 3 3 6 3 18
Avcrage -1.74 -1.31 -0.85 -0.62 0.03 0.80 0.84 1.25 1.40 0.02
(0.03) 0.07) (0.04) 0.12) (0.06) (0.08) (0.04) (0.09) (0.06) 0.07)
3 6 30 30 78 27 30 3 6 213
*The first entry in each cell is the average STD P-DIF, multiplied by 10, for the indicated values of ad and b, the second entry is the
average standard error of the estimate, multiplied by 10, and the third entry is the number of item results over which the averages were
computed.
*The average standard error i large because of the sparsity of data for Item 20.
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Average Expected Percent of C Results for Each Value of b*

Table 13

Pool 1:

Item
Dufficulty
(b

0

Value of
ad®

-1.95

-1.30

-.65

.65

130

195

0.0
0.2
21

0.0
0.1
30

0.0
0.1
39

0.0
0.1
39

0.0
0.1
33

00

0.1
33

0.0
0.1
18

Average

0.0
0.1

213

101

*The first entry in each cell is the average expected percent of C results for the indicated values of ad and b in the 900, 100 sample size
condition, the second entry is the average percent for the 500, 500 sample size condition, and the third entry is the number of item

results over which the averages were computed,

®ad = 0 for all items in Pool 1.
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Table 14

Pool 2:

Average Expected Percent of C Results for Each Combination of ad and b

102

Item Value of
Difficulty ad

(b) -.70 -52 -35 -26 0 26 .35 52 .70 Average
-1.95 10.3 36 0.2 42 32
15.1 33 0.0 39 3.6

3 6 9 3 21
-1.30 119 34 0.1 34 11.1 37
19.5 29 0.0 2.7 18.7 49

3 6 12 6 3 30
-.65 114 35 0.1 22 98 .67.2 8.6
18.7 32 0.0 14 15.5 973 12.3

6 6 15 6 3 3 39
0 60.5 49.6 8.2 0.5 0.1 37 7.8 383 783 19.9
93.9 83.0 11.6 0.1 0.0 31 11.6 75.3 99.5 302

3 3 6 3 9 6 3 3 3 39
.65 8.5 2.7 0.1 43 8.7 38
120 1.8 0.0 40 12.8 5.0

6 3 15 3 6 33
1.30 443 4.1 0.8 0.1 5.2 8.1 6.9
814 4.0 0.2 0.0 5.7 11.5 10.8

3 6 3 12 3 6 33
195 2.0 0.1 7.5 33 2.7
1.2 0.0 11.3 2.8 3.0

3 6 3 6 18
Average 60.5 472 8.1 2.8 0.1 40 7.7 38.3 7217 79
939 822 11.7 23 0.0 39 11.1 75.3 084 11.5

3 6 33 27 78 30 27 3 6 213

*The first entry in cach cell is the average expected percent of C results for the indicated values of ad and b in the 900, 100 sample size
condition, the second entry is the average percent for the 500, 500 sample size condition. and the third entry is the number of item
results over whith the averages were comnputed.
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Tatle 15
. Pool 3:
Average Expected Percent of C Results for Each Combination of ad and b*
Item Value of
Difficulty ad
_ ® -.70 -.52 -35 -.26 0 26 35 .52 70 Average

-1.95 26.8 32 1.2 04 12.5 6.6
521" 25 0.5 0.1 219 1i.1

3 3 6 6 3 21
-1.30 17.6 3.6 09 03 100 220 5.6
34.1 31 02 0.0 15.3 450 9.8

3 3 6 12 3 3 30
-.65 63.8 42 1.7 0.1 5.5 18.8 82
952 4.0 0.9 0.0 6.2 37.8 119

3 6 6 15 6 3 39
0 6.4 26 0.1 5.0 14.2 44
8.0 26 0.0 53 260 6.4

6 6 15 6 6 39
.65 15.6 4.6 0.1 23 7.0 48
27.7 44 0.0 12 9.1 7.2

6 3 15 3 6 33
1.30 8.6 12.1 0.3 0.8 36 26.3 54.7 10.1
12.0 194 0.1 0.2 32 55.1 924 169

3 3 12 3 6 3 3 33
1.95 8.4 0.7 12 10 27.1 6.6
11.8 01 0.4 03 48.1 102

3 3 3 6 3 18
Average 63.8 222 7.6 3.0 02 53 93 26.3 409 6.6
952 43.1 109 32 0.0 69 16.0 55.1 703 104

3 6 30 30 78 27 30 3 6 213

*The first entry in each cell is the average expected percent of C results for the indicated values of ad and b in the 900, 100 sample size
condition, the second entry is the average percent for the 500, 500 sample size condition, and the third entry is the number of item
results over which the averages were computed.
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Table 16

Pretest Items (Pool 1):

Average MH D-DIF for Each Combination of ad and b in the 500, 500 Sample Size Condition’

Item Value of
Difficulty ad
(3] -.70 -.35 0 35 .70 Average
-1.30 24 -13 0.0 12 2.5 0.0

0.04) 0.04) (0.04) (0.05) (0.05) 0.05)

0.03) (0.03) (0.03) (0.03) 0.04) (0.03)

1.30 -1.0 -0.6 0.0 0.7 1.6 0.1

(0.03) 0.03) (0.03) (0.03) (0.03) (0.03)

Average -1.8 09 0.0 10 2.1 0.1

0.0 (0.04) 0.04) 0.04) 0.09) 0.04)

'The first entry in each cell is the average MH D-DIF for the indicated values of ad and b and the second entry is the average standard
error of the estimate. Fach cell average is based on 3 item results.
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Table 17
Pretest Items (Pool 1):

Average STD P-DIF x 10 for Each Combination of ad and b in the 500, 500 Sample Size Condition*®

Item Value of
Difficulty ad
) -.70 =35 0 35 .70 Average
-1.30 -1.33 -0.65- -0.03 0.47 0.90 -0.13

(0.03) (0.02) 0.02) 0.02) 0.02) 0.02)

0 -141 0.71 -0.01 0.75 147 0.02

(0.03) (0.03) (0.03) 0.03) (0.03) 0.03)

130 -0.73 -0.40 0.05 054 1.20 0.13

0.03) (0.03) (0.03) (0.03) (0.03) 0.03)

Average -1.16 -0.59 0.00 0.58 1.20 001

0.03) (0.03) (0.03) (0.03) (0.02) (0.03)

*The first entry in cach cell is the averagz STD P-DIF, multiplied by 10, for the indicated values of ad and b and the second entry is the
average standard error of the estimate, multiplied by 10. Each cell average is bascd on 3 item results.
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Table 18
Pretest Items (Pool 1):

Average Expected Percent of C Results for Each Combination of ad and *

Item Value
Difficulty cfad
() -.70 -35 0 .35 .70 Average
-1.30 65.5 10.0 04 74 419 250
935 15.5 0.0 10.5 820 403
0 414 43 0.1 6.3 53.8 212
79.6 46 0.0 8.1 88.9 36.2
1.30 3.0 11 0.1 19 28.3 79
9.8 0.3 0.0 09 49.2 12.1
Average 38.3 5.1 0.2 52 414 180
61.0 6.8 0.0 6.5 734 29.5

*The first entry in each cell is the average cxpected percent of C results for the indicated values of ad and b in the 900, 100 sample size
condition and the sccond entry is the average percent for the 500, 500 sample size condition. Each cell average is bascd on 3 item
results.
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Table 19
Pretest Items (Pool 2):

Average Expected Percent of C Results for Each Combination of ad and &*

Item Value
Difficulty of ad
() -.70 -.35 0 .35 .70 Average
-1.30 65.3 9.6 04 7.4 418 249
93.7 149 0.0 10.3 82.2 402
0 434 51 0.1 6.5 534 21.7
814 6.3 0.0 8.5 89.2 371
1.30 7.7 1.0 0.1 18 27.6 7.6
9.6 03 0.0 09 472 11.6
Average 38.8 52 02 52 40.9 18.1
61.6 7.1 0.0 6.5 72.8 29.6

*The first entry in each cell is the average expected percent of C results for the indicated values of ad and b in the 900, 100 sample size
condition and the second cntry is the average percent for the 500, 500 sample size condition. Each cell average is based on 3 item
results.
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Table 20
Pretest Items (Pool 3):

Average Expected Percent of C Results for Each Combination of ad and b*

Item Value
Difficulty of rd
(b) -.70 -.35 0 .35 .70 Average
-1.30 53.6 52 0.6 115 520 24.6
872 6.5 0.1 194 91.2 409
0 404 34 0.1 9.0 61.5 229
78.8 32 00 143 942 38.1
1.30 10.5 1.5 0.1 1.4 249 7.7
134 0.5 0.0 0.6 459 12.1
Average 348 33 0.3 73 46.1 18.4
59.8 34 0.0 11.5 77.1 30.3

*The first entry in each cell is the average expected percent of C results for the indicated values of ad and b in the 900, 100 sample size
condition and the sccond cntry is the average percent for the 500, 500 sample size condition. Each ce'y average is based on 3 item
results.

1313




Table 21
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Median and Interquartile Range of Examinee Residuals (gm - e) for Samples of 1,000°

Group Pool 1 Pool 2 Pool 3
Reference ' -0.032
0.450

Focal: N(-1,1) -0.038 -0.032 -0.099

0.515 0.523 0.569

Focal: N(0,1) -0.031 -0.014 0.4

0458 0.487 0.502

Focal: N(0.5,1) -0.036 -0.048 -0.011

0.445 0472 J.488

* Standard errors of medians are approximately 0.02.
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Table 22

Medi~n and Interquartile Range of Examinee Residuals (@75 - e) for Samples of 1,000°

Group Pool 1 Pool 2 Pool 3
Reference -0.030
0.379

Focal: . N(-1,1) -0.006 -0.003 -0.063

0421 0425 0413

Focal: N(0,1) -0.025 -0.009 -0.037

0333 0.337 0.391

Focal: N(0.5,1) -0.028 -0.026 -0.013

0.382 0.331 0.360

* Standard errors of medians are approximately 0.01.




