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ABSTRACT

Recent research in cognitive psychology has drawn attention to the imporiant role
that students’ personal understandings and representations of subject matter play in the
learning process. This paper briefly reviews some of this research. and contrasts the kind
of learning that results in an individual’s changed conception or view of a phenomenon
with the more passive, additive kind of learning assessed by most traditional achievement
tests. To be consistent with a view of learning as an active, constructive process,
educational tests are required which focus on key concepts in an area of learning, and
which take into account the variety of types and levels of understanding that students have
of those concepts. In these tests, scoring responses right and wrong is likely to be less
appropriate than using students’ answers to infer their levels of understanding. This will
require not only imaginative new types of test items, but statistical models that permit
inferences about students’ understandings once their responses have been observed.

Psychometric approaches are sketched to construct measures of achievement from such

tests.
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1. INTRODUCTION

Implicit in much of our current measurement theory and practice is a view of
learners as passive absorbers of provided wisdom. Most items on standard achievement
tests assess students’ abilities to recall and apply facts and routines presented during
instruction. Some require only the memorization of detail; they seek evidence that students
have absorbed factual details presented in class and are able to reproduce these on
command. Other achievement test items, although supposed to assess higher-level learning

cutcomes like “comprehension” and “application”, often require little more than the ability

to recall a formula (e.g., s = Vot + 1/2 at2) and to make appropriate substitutions to arrive at
a correct answer.

Test items of this type are consistent with a view of learning as a passive, receptive
process through which new facts and skills are added to a learner’s repertoire in much the
same way as bricks might progressively be added to a wall. The process is additive and
incremental: students with the highest levels of achievement in an area are those who have
absorbed and can reproduce the greatest numbers of facts and formulae. The practice of
scoring answers to items of this type either “right” or “wrong” is consistent with the view
that individual units of knowledge or skill are either present or absent in a learner at the time
of testing. Under this approach, diagnosis is a simple matter of identifying unexpected
holes or gaps in a student’s store of knowledge. These are subareas of learning in which
knowledge is “missing"’ and in which there is a need for remedial teachin to fill a deficit.

This approach to the measurement of achievement may be appropriate for some
forms of learning—as when the learner’s task is in fact to master a body of factual material.
In recent decades, however, significant advances have occurred in our understanding of the
ways in which students learn. In particular, ti.ere has been an increased awareness of the
active, constructive nature of most forms of human learning and of the important role that
students’ personal conceptions and representations of subject matter play in the learning

process. Rather than being a passive process of absorbing new material as it is
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encountered, meaningful learning is increasingly being recognized as an active process
through which students construct their own interpretations, approaches, and ways of
viewing phenomena, and through which leamers relate new information to their existing
knowledge and understandings. Under this view of learning, the difference between
beginning and advanced learners is seen not so much as a difference in amount of factual
knowledge (although this is usually an important aspect of competent performance), as a
difference in the types of conceptions and understandings that students bring to a problem,
and in the strategies and approaches that they use.

Support for this view of learning can be found in recent studies in a number of
areas of investigation. In cognitive science, comparisons of novices and experts in various
fields of learning show that expertise typically involves much more than mastery of a body
of facts: experts and novices usually have very different ways of viewing phenomena and
of representing and approaching problems in a field (e.g., Chi, Feltovich, & Glaser, 1981,
in physics; Chase & Simon, 1973, in chess; Lesgold, Feltovich, Glaser, & Wang, 1981, in
radiology; and Voss, Greene, Post, & Penner, 1983, in social science). Expert-novice
studies suggest that the performances of beginning learners often can be understood in
terms of the inappropriate or inefficient models that these learners have constructed for
themselves.

Similar observations have been made in the field of science education (see Driver &
Easley, 1978; Osborne & Wittrock, 1983; Posner, Strike, Hewson, & Gertzog, 1982).
Research into students’ science learning has drawn artention to the frequent mismatch
between intuitive understandings that students bring to the classroom and the conceptual
frameworks assumed by teachers. Caramazza, McCloskey, and Green (1981) observe that
the scientific “principles” that students abstract from everyday experience are often
strikingly at variance with the most fundamental physical laws. These misunderstandings
can go undetected by teachers if correct answers to test questions depend only on

superficial knowledge of formulae and formula mar:ipulation techniques (Clement, 1982).
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There is evidence tﬂat students can succeed in high school and even college science courses
while still maintaining many of their misconceptions and without acquiring an
understanding of underlying principles (White and Horwitz, 1987).

Related work in Sweden (Marton, 1981; Entwistle and Marton, 1984; Dahlgren,
1984; Salje, 1984) has used clinical interviews to exp..re the different understandings that

students have of key principles and phenomena in a number of fields of learning. These
interviews have revealed a range of student conceptions of each of the phenomena that the
studies have explored, and have illustrated the importance of forms of learning which
produce “a qualitative change in a person’s conception of a phenomenon” from a lower-
level, more naive conception to a more expert understanding of that phenomenon
(Johansson, Marton, & Svensson, 1985. 235).

Under this view of learning, a student is rarely considered to have no understanding
or no strategy when addressing a problem. Even beginning learners are considered to be
engaged in an active search for meaning, constructing and using naive representations or
models of subject matter. Rather than being “wrong”, these representations frequently
display partial understanding and are applied rationally and consistently by the individuals
who use them. In arithmetic, for example, “it has been demonstrated repeatedly that
novices who make mistakes do not make them at random, but rather operate in terms of
meaning systems that they hold at a given time” (Nesher, 1986; also see Brown & Burton,
1978).

An implication of this view of learning for the assessment and monitoring of
student learning is that much greater cognizance must be taken of the understandings and
models that individual students construct for themselves during the leaming process. In
many areas of learning. levels of achievement might be better defined and measured not in

~ terms of the numbers €acts and procedures that a student can reproduce, but in terms of
his or her levels of uaderstanding of the key concepts and prinéiples that underlie a learning

area (Glaser, 1981; Glaser, Lesgold, & Lajoie, 1987; Greeno, 1976).
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An example of a study that has investigated students’ levels of understanding is
Carpenter and Moser’s (1984) study of children’s arithmetic skills. Carpenter and Moser
found that most children in the first to third grades of school are able to provide correct
answers to single-digit addition questions like 6+8=?. But children have a variety of
methods of answering questions of this kind (see Table 1). These different methods
indicate different levels of understanding and proficiency in single-digit addition. Some
children solve 6+8=? by counting out six objects and another eight objects, and then
counting all 14 (category 1). Later, children reach an understanding that counting does not
have to begin at the number one. They “count on”, although not necessarily from the larger
number (e.g., “6; 7,8,...,14”; category 2). Later still, children understand the commutative
property of addition (6+8 = 8+6) and consistently count on from the larger number (“8;
9,10,...,14”; category 3). Finally, by third grade, many children can solve 6+8=? using
number facts, without counting objects (category 4). To monitor developing competence in
single-digit addition, it is not sufficient to record only whether or not a child can provide
the correct answer to a question like 6+8=?. By keeping track of the strategy that a child

uses it is possible to infer the kinds of understanding that she or he has developed.

Insert Table 1 about here

+

This paper considers the problem of constructing measures of achievement that are
based not on tests of learners’ abilities to recall facts and apply memorized routines, but on
inferences about students’ levels of understanding of key concepts in an area of learning.
Particular attention is given to the requirements of an achievement testing methodology if it

is to be consistent with a view of learning as an active, constructive process.
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2. CONVENTIONAL ACHIEVEMENT TESTING

Techniques for constructing achievement tests have been developed and refined
over many decades. Most achievement tests begin with a statement of the instructional
objectives to be assessed by each test. According to Bloom, Hastings, and Madaus (1971,
28), these objectives should be stated as directly observable student behaviors which can be
reliably rc orded as either present or absent. They should be “stated in terms which are
operational, involving reliable observation and allowing no leeway in interpretation”. To
achieve this degree of reliability, test constructors are encouraged to write items to assess
students’ abilities to perform unambiguous, observable tasks such as “stating,” “listing,”
“naming,” “selecting,” “recognizing,” “matching,” and “calculating” (Bloom et al., 1971,
34).

This emphasis on specifying and testing precise student behaviors has led to the
construction of achievement tests composed of discrete items, each relating to a particular
behavioral objective. and each scorable as either right or wrong. Multiple choice items
have become especially popular in achievement tests because they can be scored quickly,
unambiguously, and even by machine. In some areas of education, machine-scored
multiple choice tests have become the principal mode of evaluating student learning. A
disadvantage of conventional achievement tests is that, through their emphasis on precisely-
defined student behaviors, they can encourage students to focus their efforts on relatively
superficial forms of learning (Frederiksen, 1984).

In paralle] with these developments in the practice of educational measurement,
psychometric methods have been developed for the analysis of students’ performances on
test items of this kind. These methods have been introduced to transform records of right
and wrong answers into measures of achievement, and to evaluate the reliability and
validity of these measures. The more complex analytical methods, based on item response
theory (IRT), take into account not only differences in the difficulties of individual test

items, but also differences in their discriminating powers and, in the case of multiple choice

11
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items, differences in their probabilities of being guessed correctly (Lord, 1980). Under
IRT as well as under classical test theory, however, examinees’ scores are essentially
summaries of their tendencies to make correct rather than incorrect answers.

The alternative to conventional achievement testing discussed in this paper begins
with a consideration of the key concepts, principles and phenomena that underlie a course
of instruction and around which factual learning can be organized. Rather than recording

students’ understandings of these concepts as simply “right” or “‘wrong”, this alternative

approach recognizes that learners have a variety of understandings of phenomena, and that
some of these understandiugs aze less complete than others. The purpose of assessment is
not to establish the presence or absence of specific behaviors, but to infer the nature of
students’ understandings of particular phenomena. Consequently, systems of observation
very different from collections of distinct and conceptually isolated multiple choice test
items are required.
3. BUILDING /# CHIEVEMENT TESTS AROUND KEY CONCEPTS

The construction of an achievement test usually begins with a table of specifications
with subject matter on one axis, and types of learning outcomes on the other. Items are
written to cover outcomes like “knowledge of terminology,” “‘knowledge of specific facts,”
and “principles and generalizations.” In the use of such a table, these outcomes are treated
as different but equivalent: the aim is to write items to cover each. However, because of
the requirement that itemns be based on observable behaviors that can be scored right or
wrong, and because it is easier to write items to assess students’ knowledge of facts and
procedures than to assess their understandings cf principles and generalizations,
achievement tests tend to be tests of students’ abilities to recall and apply factual
knowledge.

The method being proposed here begins by identifying key concepts in an area of

instruction and building assessment procedures around these. These are fundamental

principles, understandings, and approaches that a course of instruction aims to develop.

L
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The difference between this approach and the conventional practice of treating “knowledge
of principles” as an instructional objective of much the same status as “knowiedge of facts”
or “knowledge of terms” is that this approach makes the assessment of conceptual
understanding the primary focus of the testing procedure.

A second fundamental difference between this approach and the usual approach to
" achievement testing is the emphasis placed on understanding how gtudents view and think
about key concepts. Rather than comparing students’ responses with a “correct” answer,
the emphasis is on inferring the nature or level of understanding reflected in each student’s
response.

One area in which a great deal of work has been done to understand how students
think about and approach phenomena in that of physics education. Studies in several
countries have explored students’ understandings of such concepts as acceleration
(Trowbridge and McDermott, 1981), electric charge, enthalpy and entropy, force and
motion (Viennot, 1979), gravitation (Champagne, Klopfer and Anderson, 1980; Gunstone
and White, 1981), light and the transmission of heat, momentum, potential difference,
proportionality, torque, and such principles and models as Newton’s laws, conservation
laws, the atomic model, and electron flow models for circuits.

A common technique in these studies has been to ask students to describe what is
happening in drawings of simple physical systems (e.g., to predict what will happen to an
object, to describe the forces acting on a body, or to draw the trajectory that an object will
follow). During these interviews, students are asked to explain their responses and their
explanations are tape recorded (Johansson, Marton, & Svensson, 1985; McCloskey,
1983). In other studies, students have been asked to manipulate an apparatus in a
laboratory to achieve particular effects (e.g., to apply a force to make a body move in a
particular direction), while their explanations and comments are tape recorded and later
rranscribed (MicDermott, 1984). Still other researchers (e.g., diSessa, 1982; White, 1983)

have developed interactive software for this purpose. In these studies, students are asked

i3
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to apply “forces” to simulated objects on a screen to make them move to specified
positions, to speed up, to slow down, and so on.

An example of the kind of question posed in these studies, taken from the work of
McDermott (1984), is shown in Figure 1. In this study, students were presented with a
drawing of a pendulum: and asked to draw the trajectory that the weight would follow if the
string of the pendulum broke when it was midway through its swing (i.e, in the vertical

position). Four of the trajectories commonly drawn by students are shown in Figure 1.

Insert Figure 1 about here

Drawings B, C and D are all incorrect, but they reflect different 'evels of
understanding. Drawings B and C show some understanding that the object will continue
moving to the right after the string breaks (Newton’s first law). Students who draw
trajectory D show no understanding of this and recognize gravity as the only influence on
the object’s trajectory. Drawing B is almost correct: these students do not understand that
the combination of a constant horizontal velocity and a vertical acceleration will be a
parabolic trajectory. Drawing C shows the object continuing in the upward path that it
would have followed had the string not been cut, and then falling under the influence of
gravity. This drawing suggests a naive “impetus” theory of motion, a commonly held
belief that an object will ~ontinue in its path (even a curved path) after the removal of the
force that kept it moving, ... that path, untl the object’s “impetus” dissipates.

The observations made in these studies suggest that students do not simply make
“random errors” but operate in terms of naive theories about physical phenomena. In the
area of force and motion, these theories can be “remarkably well-articulated, ... quite
consistent across individuals, ... and strikingly inconsistent with the fundamental principles
of classical mechanics” (McCloskey, 1983, 299). In his studies of students’ attempts to

control a simulated object on a screen, diSessa (1982, 38) found “a surprising structure of

14
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discrete and definite theories” about how forces influence motion. And, through their
interviews with Swedish students about aspects of science learning, Johansson et al.
(1985) arrive at a similar conclusion:

In our case, a discovery of decisive importance was that for each

phenomenon, principle. or aspect of reality, the understanding of which we

studied. there seemed to exist a limited number of qualitatively different

conceptions of that phenomenon, principle, or aspect of reality. (pp. 235-6)

A number of researchers have observed that the same naive conceptions can be
found among students of different ages and with different educational backgrounds.
McCloskey (1983), for example, found the same types of naive physical theories among
students who had never taken physics, high school physics students, and college physics
students. The only difference was in the frequencies of occurrence of these different
understandings. McDermott (1984) reports an identical observation in a Norwegian study
of high school physics students, future high school science teachers, and physics
graduates.

A significant finding of these studies is that some students can succeed on
traditional achievement tests and graduate from high school and even college physics
courses with their naive conceptions of physical principles largely unchanged. Through
their physics courses students are able to “master certain methods of calculation without
having adopted the conceptualization underlying them” (Johansson et al., 1985, 235).
Indeed, a misconception “may go undetected because a student’s superficial knowledge of
formulas and formula manipulation techniques can mask his or her misunderstanding of an
underlying concept” (Clement, 1982, 66). The result is that “many students emerge from
their study of physics and physical science without a functional understanding of some
elementary but fundamental concepts” (McDermott, 1984, 31).

These findings invite a reconside: ation of the way in which we think about and

attempt to measure science learning. Clearly, many students are succeeding on precise,

15
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operationally-defined objectives without developing an understanding of the material that
they are learning. For many science educators, the answer is to place greater emphasis not
on the learning of scientific facts and formulae, but on changing students’ ways of thinking
about scientific phenomena:

The formal learning of science can be viewed as involving, at least in part, a

shift from one set of beliefs about the physical world to another, one set of

conceptions to another. (Osborne and Wittrock, 1985, 81).

and
In our view, learning (or the kind of learning we are primarily interested in)

is a qualitative change in a person’s conception of a certain phenomenon or
of a certain aspect of reality. (Johansson et al., 1985, 235).

4. CONSTRUCTING ORDERED OUTCOME CATEGORIES

Having identified key concepts in an areé of learning and devised contexts (items)
through which students’ understandings of these concepts can be investigated, the next task
is to delineate a set of categories for each item, through which student’s observed
responses are related to unobservable states of understanding. In this section and the two
following, we address applications in which the most prevalent states of understanding can
be ordered. This notion of order is pasic to a view of learning as a “shift” in a student’s
understanding, with a shift constituting the desired “learning” when the change is from a
lower level, more naive understanding to a higher level, more expert conception of a
phenomenon.

This is not to say that all conceptions that students might bring to an item can be
ordered from best to worst. We return later in the paper to consider some ways to model
conceptions that differ but are not obviously more or less sophisticated. We begin here,
however, by assuming the existence of a set of ordered categori¢s for any given item (as
will be illustrated below). For some items this set of categories might be constructed by

grouping similarly sophisticated understandings. These constructed categories provide a

16
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conceptual framework for recording an individual’s response, and introduce the possibility
of basing measures of achievement on inferences about students’ levels of understanding.

Grouping students’ responses to construct a set of categories of understanding is
part of the method used by Marton (1981) and his colleagues at the University of
Gothenburg. These researchers interview students to explore their understandings of
particular concepts and principles, transcribe tape recordings of these interviews, and then
carry out detailed analyses of transcripts. “The aim of the analysis is to yield descriptive
categories representing dualitativcly distinct conceptions of a phenomenon”. These
categories form an “outcome space” which provides “a kind of analytic map” of students’
understandings of each phenomenon. Learning is thought of as “a shift from one
conception to another” on this map (Dahlgren, 1984, 24-31).

Carpenter and Moser (1984) provide a picture of such a map. From their analysis
of students’ performances on single-digit addition tasks, they . constructed the five ordered
outcome categories shown in Table 1. Children in category O are unable to solve 6+8=7.
Children in category 1 understand that 6+8=? can be solved by counting the total number of
objects in two groups of sizes 6 and 8. Children in category 2 also understand that the
counting of objects does not have to begin at the number one, and 50 “count on.” Children
in category 3 understand the commutative property and count on from the larger numbér.
Children in category 4 have a level of understanding that enables them to use number facts
to solve 6+8=? without counting.

Figure 2 shows the proportion of a group of Wisconsin children in each of the five
outcome categories at each of eight time points during their first three years of school. At
the beginning of first grade (bottom of the map), about 15 percent of these children could
not solve problems like 6+8=7?, even with blocks (Category 0). Among those children who
could solve such a problem, by far the most comrnén étratcgy was to count out six objects
and another eight objects and then to count all fourteen (Category 1). By the beginning of

the second grade, almost all these children understood that counting does not have to begin
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a: the number one and were counting on (Categories 2 and 3), although some still did not
understand the commutative property and were not counting consistently from the iarger
number. By the eighth round of observations (top of the map), more than 70 percent of
this group of children could solve single-digit addition problems without having to count
objects. Carpenter and Moser provide similar outcome maps for other aspects of addition

and subtraction learning.

Insert Table 1 and Figure 2 about here

5. COLLECTING OBSERVATIONS

While conversations with students are probably essential for identifying the variety
of understandings that learners have of phenomena and for constructing sets of outcome
categories, interviews are not practicable as a basis for achievement testing. Alternative
observation methods must be found which will permit inferences to be made about
students’ levels of understanding. These procedures must go deeper than identifying
incorrect answers: they must attempt to identify the nature of the understandings and
models that individual students are employing. In general, this will require imaginative
new approaches to achievement testing.

One possible approach is the “rule assessment” procedure developed by Siegler
(1978, 1981). This approach uses a carefully constructed set of questions designed to
expose different levels of understanding of a concept. While each individual question
might be scored as right or wrong, neither the response to any one item nor total score on a
set of items are sufficient to differentiate students using different rules. Rather,itisa

student’s pattern of right and wrong answers that constitutes a basis for inferring his or her

level of understanding.
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Another approach is to use computer-administered tasks as the testing medium.

This approach introduces the possibility of matching each student’s response to a library of
common responses rather than to a single “correct” answer. In the pendulum task in Figure
1, for example, students might be asked to draw a trajectory on a screen and each student’s
drawing might then be referred to a library of common student responses. In this way, a
student’s response might automatically be assigned to one of several ordered outcome
categories for that task, and a record made of the student’s apparent conception or theory
concerning that phenomenon.

A decision about a student’s assignment to an outcome category might be based on
the students’ responses to several related questions, looking for, in Brown and Burton’s
(1978) terminology, consistent “bugs” in their solutions. The automatic generation of
hypotheses about students’ understandings might be followed by further questions aimed at
confirming those hypotheses. Does a student who draws trajectory C in Figure 1 also
believe that an object fired out of a curved tube will continue in a curved path for a short
time after leaving the tube? Through carefully designed hints and subquestions it may be
possible to emulate in a crude way the type of exploration that can be done through an
interview to trace a student’s misunderstanding to its source. Ordered outcome categories, -
for example, might then be defined in terms of responses to a set of related questions or
tasks.

In an achievement test of this type, tasks may bear little resemblance to traditional
achievement test questions. As diSessa (1982) and White (1983) show, a great deal of
information can be collected about individuals’ naive theories of force and motion by
asking them to move simulated objects on a screen. A computer can be used to keep
detailed records of when students apply forces, in which directions they apply those forces,
and how they respond to the motion that they produce. Automatic analyses of student
records might be used to infer students’ levels of understanding. Simulations of this kind

could be used in a wide variety of learning areas—for example, the use of simulated patient

15
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management problems to explore students’ levels of understanding of medical principles
and to expose inappropriate or potentially misleading ways of thinking about particular
phenomena (of course, the analysis of these data would be far more complex than the

simple examples given here).

6. CONSTRUCTING MEASURES OF ACHIEVEMENT

If the types of observations that result from these testing procedures are to provide a
basis for achievement measurement and are to be a viable alternative to conventional
achievement tests, then models and methods analogous to those that have been developed
for right/wrong test questions arc required to supervise the construction of the new
measures.

The starting point in the development of a method for ordered outcome categories is
a matrix of observations like the matrix shown in Table 2. This hypothetical data matrix
shows the responses of 32 students to 8 items (e.g., Carpenter & Moser’s single-digit
addition items). Responses to each item are recorded in one of five ordered categories
(labelled O to 4). Students’ scores on each item have been arranged in this matrix in an
orderly way with abrupt transitions between adjacent categories. (This can be seen by
reading down each column.) The consequence of ordering scores on each item in this way
is that it is possible to infer from the full data matrix in Table 2 an unambiguous order for

these 32 students on the single achievement dimension defined by these eight items.

Insert Table 2 about here

It is unlikely that a perfectly orderly pattern of scores on an item will occur in
practice. The transition from category x-1 to category x of an item is not likely to be sharp,
as depicted in Table 2, but to be gradual. Rather than expecting a person above a particular

level of ability in an area of learning to definitely score x rather than x-1 on an item, it is

)
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more realistic to imagine a score of x becoming more likely than a score of x-1 at higher
levels of ability. In other words, a probabilistic formulation will in general be more
appropriate than a deterministic representation (see Wilson, 1989a).

The psychometric method described here, the Partial Credit Model (PCM; Masters,
1982; Wright and Masters, 1982), proposes that the probability of a person scoring x rather
than x-1 on a particular item i will increase steadily with ability in an area of leamning such

that

Tpix expl0y-0ix) ’
Tnix-1+Tnix 1+ exp(9n~5xx) (1]

where Tnix is the probability of person n responding in category x

(x=1,2,....,m;) of item i, 8, is person n’s level of proficiency in the area of learnir.g
measured by this set of items, and ;4 is a parameter associated with the transition between
outcome categories x-1 and x of item i.

The consequence of applying the simple logistic expression [1] to the transition
between each pair of adjacent outcome categories for each item, is that a connection is
formed between the ordered categories for that item and the underlying variable that the set
of items is used to measure. It is this connection that enables performances on each item to
be used to estimate students’ locations on the underlying variable. The nature of this
probabilistic connection is illustrated in Figure 3, in terms of response probabilities for a

1ypothetical single digit addition problem.

Insert Figure 3 about here

Figure 3 shows how, under the PCM, the probability of a response in each

category of an item changes with increasing student proficiency. It has been drawn to

.,
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resemble Figure 2.‘ The difference is that Figure 3 does not show gbserved proportions of
students in each category, but modelled proportions. For any given level of 8, one looks
across the graph to determine the probabilities of a response in category at this level of
proficiency. The basic shapes of the five zones in Figure 3 are fixed by the PCM and are
the consequence of using the simple logistic expression [1] to model the transition between
adjacent categories of each item. The widths and locations of the zones for each item are
estimated from students’ responses to tﬁat item, and are expressed through the &
parameters.

The probabilistic partial credit model depicted in Figure 3 enables measures of
achievement to be constructed from inferences of students’ levels of understanding of each
of a number of concepts or phenomena in an area of learning. A student’s 6 parameter
indicates not simply a tendency to make correct responses, but tendencies to provide
answers reflecting the various levels of understanding on a coliection of tasks probing that
understanding. The model serves the same function in the analysis of responses recorded
in ordered outcome categories as the item response models that have been developed for
dichotomously-scored responses (Rasch, 1960; Lord and Novick, 1968; Lord, 1980),
summarizing, in terms of the task and person parameters, the patterns in the data that are
consonant with a conception of student proficiency. Estimation procedures and tests of
model-data fit for the PCM are described by Wright and Masters (1982). Tests of item fit
(which can be thought of as comparisons of the observed and modelled maps for an item as
shown in Figures 2 and 3) provide internal consistency indices analogous to traditional item
statistics like biserial correlations. Tests of person-fit flag occurrences of unusual response

patterns, as might occur when a student’s state of understanding is atypical, and requires

special attention.
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7. PARTIALLY-ORDERED STATES

The psychometric model just described can be used when a set of ordered
categories is defined for each item. However, attempting to order all conceptions of a
phenomenon from “worst” to “best” may not always be fruitful. In some cases, two or
more ways of visualizing a problem can be identified, none better or worse than another. If
these different conceptions have different implications for instruction, than maintaining a
distinction among them can be useful.

Norman’s (1983) and Gentmer and Genter’s (1983) studies of students’ models
for electrical circuits provides an example. These studies suggests that many students
visualize electric circuits in terms of more familiar physical systems. Some, for example,
see electric current as analogous to water flow. Batteries are visualized as reservoirs, and
resistors correspond to constrictions in water flow. This analogy facilitates the solution of
problems about power sources in paralle]l and series, but impedes solutions to problems
about paralle] and series resistors. Other students see an electrical power source as
analogous to a crowd entering a stadium, with resistors as tumnstiles through which they
must pass. This “teeming crowd” analogy facilitates problems about combinations of
resistors, but offers little insight ir to battery combinations.

Each of these models captures some aspects of electrical systems. Students using
either model] have a better understanding than students with no mode!. at all. On the other
hand, neither of these physical models provides a complete understanding of current flow
or of the operation of circuits. A higher level of understanding requires an appreciation of
th= limitations of the physical analogies as models for circuits. In this sense, students who
operate with either one of the two models can be thought of as being at similarly
intermediate levels of understanding.

From the point of view of traditional test theory and the maximization of test
reliability, it is difficult to justify distingnishing among students who use the water flow
analogy and those who use the teeming crowds analogy. Items that distinguish between

()
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these two groups are likely to contribute little to reliability, as their discriminating power is
among people at similar levels of overall proficiency. But further instruction might well
differ for the two groups—first explicating the model that a student’s responses suggest he
or she may be using (perhaps intuitively), exploring its uses and limitations, then
introducing the complementary model and its sphere of usefulness.

To develop a model for these situations, let us suppose that we can identify K states
of understanding in a learning area, subsets of which may be ordered, but others of which

| may not be. Items are characterized by identifiable features that determine their difficulties
within these states. In the electrical circuits example, for instance, resistor problems are
relatively easier than battery problems for students using the teeming crowds analogy,
while the battery problems are relatively easier for those using the water flow analogy.
From each student’s responses, we wish to infer his or her state of understanding (¢n,
which ranges from 1 to K) and degree of proficiency within that state (6p).

The essence of this approach is that while a single proficiency summary of
performance fails to characterize important differences among learners, it may suffice in
some applications to use a single proficiency to characterize differences among learners in
the same type of understanding, while further distinguishing among these qualitative states.
The fact that these variables can never be known with certainty is reflected by the nature of
the inferences that are drawn about students: probabilities that the student is in the possible
states, and an estimate of proficiency corresponding to each possibility.

The details of such models are given by Mislevy and Verhelst (1990). In the case

of items scored right or wrong, the probability of a correct response to Item i from Person

n, who is in state k of understanding (¢n=k) and has proficiency 6y, is given as:

P(xni =11 05, On=k, Bik) = fk(On,Bix) 2]
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where Bjy characterizes such features of Item i as its difficulty and fx is a function relating

examinee and item parameters to probabilities of correct response—both as pertzin to
persons in level k only. When persons from only one level are under consideration, [2] is
a standard IRT model. The item parameters ;i can be expected to vary from one level of
understanding to the next, however—and indeed they must vary if the model is to be
practically useful for distinguishing students at one level from those at another.

To illustrate the approach, we present highlights of a one of many aspects of an
analysis carried out by Wilson (1984), using Robert Siegler’s (1978, 1981) data and rule-
acquisition perspective. For additional examples, the reader is referred to Mislevy and
Verhelst (1990), Mislevy, Wingersky, Irvine, and Dlann (in press), and Wilson (1989b).

Figure 4 shows two of Siegler’s six balance beam problem prototypes. InE
(“Equal”) items, both the weights and distances are the same on the two sides of the scale,
and the correct answer is that the beam will balance. In S (“Subordinate”) items, the same
numbers of weights are on both sides, but on one side they are further from the fulcrum.
That side will tip down. Following Piaget (Inhelder & Piaget, 1958; Piaget, 1960), Siegler
posits that children typically exhibit distinct stages as they acquire competence in
proportional reasoning, adding to their repertoire the increasingly sophisticated rules listed -
in Table 3. Children can thus differ as to their stage of understanding, or their proficiency
in using the rules they currently command. In particular, a qualitative shift occurs when a
child apprehends the salience of distance in balance beam problems. Before this
realization, children see no systematic, relevant, differences between E and S items, and

tend to predict the beam will balance in both situations.

Insert Table 3 and Figure 4 about here

Among other analyses, Wilson (1984) analyzed responses to four E and four S

items from two perspectives. The first was based on the Rasch IRT model for right/wrong

N
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items. Under the Rasch model, the prot..oility that Person n will respond correctly to Item
i is a function of the person’s proficiency parameter, 8y, and the item’s difficulty

parameter, B3

P(xni=110n,B) = ﬂ(ﬁ)_ .
1+ exp(en-[}i) a3l

(Note the similarity of [3] to [1]; the Rasch model for right/wrong items is a special case of
the PCM). Figure 5 illustrates the results. The relative positions of an item and a person
on the scale (By-f3;) determine the probability of a correct response thx“ough [3]. Not
surprisingly, S items are seen to be harder than E items. If the Rasch model were correct,
increasing competence would be reflected in similar increases in the chances of correct
response to both E and S items. But analyses of person-fit to the Rasch model revealed
relatively fewer correct answers to S items from many children who did well on E items,
and relatively fewer incorrect answers to E items from children who did well on S items,
than would be expected under the Rasch model.

Wilson resolved these anomalies in the second analysis, based on his “Saltus”
(Latin for “leap”) model for development that occurs in stages. Saltus extends the Rasch
model by incorporating stage membership parameters for persons and “Saltus parameters”
that allow for discontinuities such as the transition from Rule I to Rule II. In this analysis,
children who had not experienced the transition were modeled in accordance with [3]; those
who had were modeled by a model of the same form, but with the Saltus parametcr ©
subtracted from the difficulty parameters of S items. In terms of Equation [2], f1 and fg
both have the functional form given in [3], Biii=Bii for E items, and Bi=Pi1 -t for S items.
Figure 6 illustrates the effect. In effect, T measures the quantitative effect on performance

associated with a qualitative change in understanding.
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Insert Figures 5 and 6 about here

8. OTHER APPROACHES

The psychomertric literature has begun to offer models that might be used to guide
the construction and analysis of achievement tests of the kind proposed here. Some are
mentioned below. |

Wilson’s (1984, 1989b) Saltus model for hierarchical stages of development
(illustrated above) provides a stochastic framework for psychological models such as
Piaget’s (1960) and Siegier’s (1978, 1981) that posit predictable discontinuities in
proficiencies as development occurs, and educational models such as Gagné’s (1968) and
Riley’s (Riley, 1981; Riley, Greeno, & Heller, 1983) that posit detectable patterns of task
difficulties as students progress through successive levels of competence.

Latent class models (e.g., Haertel, 1984, 1989; Haertel& Wiley, in press;
Macready and Dayton, 1980) accommodate nonordered states of competence and
reconfigurations of proficiencies, without further differentiating students within a state.
Computational limitations to less than about ten items per student have all but precluded
their use for measuring individual achievement. Recent developments by Paulson (1985)
and Yamamoto (1987) enable the use of these models with up to sixty items, opening the
door to precise estimation for individual students and even potentially adaptive testing
(Macready & Dayton, 1989).

Yamamoto (Yamamoto, 1987; Yamamoto & Gitomer, in press) has also introduced
a “hybrid” model for a mixture of latent classes and an IRT class No claim is made that
such a mixture accurately reflects the psychological reality of students’ behavior, but a
practical advantage is emphasized: Explicit classes can be defined to correspond to

available instructional options while an amorphous IRT class accounts for potentially large
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numbers of remaining classes, distinctions among which are irrelevan: to the decision that
must be made.

Another approach that leans on IRT to handle bookkeeping tasks in complex
problems is Kikumi Tatsuoka’s (K.K. Tatsuoka,1983, 1989; K.K. Tatsuoka & M.M.
Tatsuoka, 1987) “rule space” procedure. A standard IRT model is first fit to item
responses. If the IRT model were correct, estimates of persons’ proficiency would account
for all systematic patterns within the data. But Tatsuoka then calculates an index of lack of
fit from the IRT model, and studies the joint distribution of proficiency estimates under the
IRT model and indices of lack of fit from that model. 1he ordered pairs of proficiency
estimates and fit indices often suffice to identify systematic patterns of response that
correspond to particular solution strategies, thereby identifying users of particular
erroneous rules as well as correct rules.

Embretson’s (1985, in press) model for multiple strategies requires identifying
different sequences of component subt. ks that can be used to solve problems. This
approach can be applied when it is possible to observe the results of subtask operations as
well as a global result, and, as such, is amenable to procedures described above which
enable the definition of levels of understanding for identified composite tasks. If levels of
understanding are ordered, the results of microanalyses using Embretson’s model could
serve as input to achievement measurement via the partial credit model.

Our discussions and examples have addressed relatively simple situations, with a
single developing concept with just a few stages. As such, however, they constitute
building blocks for characterizing students’ knowledge with respect to larger systems of
interconnected concepts. The interested reader is referred to Mislevy, Yamamoto, and
Anacker (in press) on the possibility of constructing Bayesian inference networks for this

purpose.
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9. CONCLUSION

Recent developments in cognitive and educational psychology reveal that most
meaningful learning contrasts markedly to the type of learning implied by standard
psychometric procedures—those based on item response theory as well as those using
classical true-score test theory. The difference is characterized by the discontinuities of
real-world learning, as learners reconfigure their knowledge, combine existing skills in
new ways, and develop alternative strategies for solving problems.

It is possible to build achievement tests that measure learniag of this kind. It is not
possible to do so with traditional item writing rules, test construction procedures, and
scoring formulas. To operationalize the new approach, the structure of learning is integral
at each step along the way, from writing items through reporting achievement. In return
for this greater investment in the psychology of the learning area, one can expect a greater
utility: a measure of achievement which, by reflecting the nature of competence as attained

thus far, sets the stage for further learning.
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Table 1

Outcome Categories for Single-Digit Addition

(e.g.,64+8=17)
Category Description

4 Does not need to count objects, but uses number facts to
solve 6+8 = 14.

3 Always counts.on from the larger number (“8; 9,10,...,14”).

2 Counts on, but not consistently from the larger qﬂiyiser
(“6; 7,8,...,14").

1 Counts out 6 objects and 8 objects and then counts them all
(“1.2,...,14™).

0 Unable to solve.




Table 2

Hypothetical Data Matrix for Single-digit Addition

Items

Students

44332222111110000000000000000000
43333322222222211111111100000000
44333333322222222222211111000000
44444443333333332222222110000000
444443333333222222211111111lannUnU
44444444443333333222221111111000
44444444444333333333222222211100
44444444444444333322222222221110
KRad

12345678901234567890123456789
heAMDID SRS e O R S W B Ka o Ko N ot o Na No | o

Note: Table entries are observed outcome categories, coded from 0 to 4.
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Table 3

Hierarchy of Rule Acquisition

Rule

Description

Rule 0

Rule I

Rule II

Rule III

Rule IV

Salience of neither weight nor distance recognized; answers depend on
personal factocs.

If the weights on both sidrs are equal, it will balance. If they are not
equal, the side with the heavier weight will go down. (Weight is the
“dominant dimension,” because children are generally aware that weight
is important in the problem earlier than they realize that distance from the
fulcrum, the “subordinate dimension,” also matters.)

If the weights and distances on both sides are equal, then the beam will
balance. If the weights are equal but the distances are not, the side with
the longer distance will go down. Otherwise, the side with the heavier

weight will go down. (A child using this rule uses the subordinate

dimension only when information from the dominant dimension is
equivocal.)

Same as Rule II, except that if the values of both weight and length are
unequal on both sides, the child will “muddle through” (Siegler, 1981,
p.6). (A child using this rule now knows that both dimensions matter,
but doesn’t know just how they combine. Responses may be based on a
strategy such as guessing.)

Combine weights and lengths correctly (i.e., compare torques, or
products of weights and distances).

3y
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Figure 1
Common Responses to a Physics Task
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Grade

0 2 4 .6 8 1.0
. Observed Proportion

Figure 2

Observed Proportions of Children in Each of Five Ordered
- Outcome Categories on a Single-digit Addition Item
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Ability (logits)

0 2 4 . 6 .8 1.0
Model Probability

Figure 3

Modeled Probabilities of Responding in Each of Five Ordered
Outcome Categories on a Single-digit Addition Item




Will the beam tip left, tip right, or stay flat
when the gray blocks are taken away?

Item Type Sample Item

Figure 4

Prototypical Balance Beam Items
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Easier , Harder
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Figure 5

Rasch Mode!l Representation
of Balance Beam Items
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Figure 6

Saltus Modei Representation
of Balance Beam Items

45
ERIC

Aruitoxt provided by Eic:




Q

ERIC

Aruitoxt provided by Eic:

Champaign, IL 61801

Dr. James Algioa
1403 Norman Hall
Uaniversity of Florids
Gainesville, FL. 32605

Dr. Evz L. Baker

UCLA Center for the Study
of Evalustion

145 Moore Hall

University of California

Los Angeles, CA 90024

Dr. Laues 1. Barnes
Coliege of Education
University of Toledo
2801 W. Bancroft Street
Toledo, OH 43606

Dr. William M. Bart
University of Minnesota
Dept. of Educ. Paychology
330 Burton Hall

178 Pilsbury Dr,, S.E.
Minnespolis, MN 55455

Dr. lsasc Bejar

Mail Stop: 10-R
Educational Teating Service
Rosedale Rosd

Princeton, NJ 08541

Dr. Menuchs Birenbsum
School of Educstion

Tet Aviv Univensity
Ramat Aviv 69978
ISRAEL

Dr. Artbur S Blaiwes

Code N712

Naval Training Systems Center
Orlando, FL 32813-7100

Dr. Bruce Biosom
Defense Manpower Duta Center
99 Pacilic St

Suite 155A
Moaterey, CA 93943-301

Cd. Amold Bohrer

nzo Bﬂnuh BELGIUM

Dr. Robert Breaux

Code 281

Neval Training Systems Center
Oriando, FL. 328243224

Dr. Robert Brennan
American College Testing

Programs
P. O. Box 168
fows City, IA 52243

Dr. Gregory Candell
CTBMcGraw-Hill
2500 Garden Rosd
Monterey. CA 93940

725 South Wright St
Champsign, IL. 61820

Los Angeles, CA 90089-1061

Director, Manpower
Center for Naval Analyses
4401 Ford Avenue

P.O. Box 16268

Alexandria, VA 223020268

Director,
Manpower Support and
Readiness Program
Center {or Neval Analysis

* 2000 North Besuregard Siceet

Alemndeie, VA 2311

800 N. Quincy Su'vd

Benjamin Bidg. Rm. 4112
University of Maryland
College Park, MD 20742

4b

Dr. Lou DiBelio

CERL

University of Lilinois

103 South Mathews Avenue
Urbana, 1L 61801

Uoiversity of lows
lows Cay, IA S22

Dr. Richatd L. Fergimon
American Coliene Teet
P.O. Box %8

tows City, 1A 5243
Dr. Gerard Fischer
Lisbiggasee 573

A 1010 Vieona
AUSTRIA

Dr. Myron Fischl

US. Army Hesdquarters
DAPE-MRR

The Pentagon

Wasbington, DC  20010-0300

Prol Doneld Fizgerald
Armidale, New South Wales 2351
AUSTRALIA

Mr. Paul Foley

Navy Personnel R&D Center
San Drego, CA 921524800

BEST COPY AVAILABLE




Q

ERIC

Aruitoxt provided by Eic:

Dr. Paut W. Holland
Educstional Testing Service, 21-T

Dr. Paul Horst
677 G Street, #1414
Chuls Visa. CA --2010

Dr. Lioyd Humphireys
University of llinow
Deparument of Peychrslogy
603 Esat Deniel Street
Champeign, 1L 61520

Dx. Steven Hunka
3104 Educ. N.
University of Alberta
Edmonton, Alberta
CANADA TéG 2GS

Columbia, SC 29208

Dr. Kusnar Joeg-dev
University of Itinois
Department of Statistics
101 liai Hall

TS South Wright Street
Champaign, IL 61820

Dr. Dougiss H. Jones
1280 Woodfern Count
Toms River, NJ 08753

FPO New York 09510-1500

Prol Joun A- Kests

Deparument of Peychology
University of Newcastie
NSW, 2308
AUSTRALIA

University of kinois

139 Engneeting & Math Bidg
Wright State University
Deyton, OH 45438

Dx. Leonard Kroeker
Navy Personnei RAD Center

Code 62
Sen Diego, CA 921526800

4

»

Dr. Jerry Lehous

Delense Manpower Duta Center
Suite 400

1600 Wikson Bivd
Rossiyn, VA 22209

Dx. Thomss Leonard
Univecsity of Wisconsin
of Statistics
1210 West Dwyton Street
Madisoa, W1 5325

Dr. Michsel Levi
Educational Peychology
210 Bducation Bidg
University of Likinois
Chasspaign, 1L 61801

Dx. Chacies Lowis
Educstional Testing Service
Prinoston, NJ 085410001

Mr. Rodaey Lien
University of liinois
Department of

60 E. Daniel &
Champaign, IL 61820

Dr. Robert L. Lion
Campus Box 249
University of Colorado
Boulder, CO  $0309-0249

Dr. Robert Lockman
Center for Naval Analysis
4401 Ford Avenue

P.O. Box 16268
Alemndria, VA 223020268

Dx. Frederic M. Loed
Educational Testing Service
Prinoeton, NJ 08341

Dr. Richard Luecht

ACT

P. O. Box 168

fows Caty, 1A 5220

‘lar.GmpB.Nnrndy

10/10/90

BEST COPY AVAILARLF




E

Q

RIC

Aruitoxt provided by Eic:

! Testing

M. Al Mesd
</o Dr. Michael Levine

ZIOMBU&
University of liinos

wn.‘l&)l

Dr. Timothy Miller

ACT

P. O. Box 168

Jowa Caty, lA 5220

University of Delaware
Newwck, DE 19716

Dr. Harold F. O'Neil, Jr.
Schoololﬁdoauoo WPH 801
of Educational
W&Tm
University of Southern Calilormia
Los Angeles, CA  90089-0031

Dr. James B. Olsen
WICAT Systems

1875 South State Street
Orem, UT 84058

OEDT.w;Savm.Swum
One Dupont Circle, NW
Waahington, DC 20036

Dr. James Paisieon
Department of Peychology
Portiend State University
P.O. Boz 751

Portlend, OR 97207

Dr. Mark D. Reckase
ACT

P. O. Box 168

lows City. 1A 5243

Dr. Malkolm Ree
AFHRI/MOA
Brooks AFB, TX 78238

University of Tennessee
3108 Austin Pewy Bidg,
Knomtie, TN 37916-0900

Mr. Drow Sands
NPRDC Code 62
San Diego, CA 921526800

DEST COPY AVARABLE

1010/90




B o e maes

101090
Teating Sec y

Depastment of Peychology
Los Angeies, CA 900891061

German Military Representative
ATTN: Wollgang Wildgrube
Streitkrae{toam

¢
D-5300 Bone 2

4000 Brandywioe Street, NW

Washington, DC 20016

Dr. Beuce Williame
Depactment of Educstional

Pwychology
Univecsity of lllinois
Urbena, IL 61801

1275 York Avenue
New York, NY 10021

Dr. Walisce Wulfeck, [Tl
Navy Personnel R&D Center
Code 51

Sen Diego, CA 921524800
Dr. Keniaro Yemamoto
@T

Educations! Testing Servioe
Rosedale Roed
Prinoston, NJ 04541

Room 320
1800 G Street, N.W.
Waabington, DC 20550

Mr. Anthonry R, Zars

National Coundil of Sute
Boards of Nucsing, inc.

€25 North Michipsn Avenue

Suite 1544

Chicago, IL 60611

49 rET COPY AVAILE™

O

ERIC

Aruitoxt provided by Eic:




