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Abstract

Tests of mean equality proposed by Alexander and Govern (1994) and Tsakok
(1978) were compared to the well-known procedures of Brown and Forsythe (1974),
James (1951) and Welch (1951) for their ability to limit the number of Type I errors in
one-way designs where the underlying distributions were nonnormal, variances were
nonhomogeneous, and groups sizes were unequal. These tests were compared when the
usual method of least squares was applied to estimate group means and variances and
when adopting Yuen's (1974) trimmed means and windsorized variances. In the former
case the procedures can be used to test for population mean equality, while in the latter
case they can be used to test for equality of the population trimmed means. Based on the
variables examined in this investigation, which included number of treatment groups,
degree of population skewness, and type of pairing of variances and group sizes, we
recommend that applied researchers utilize trimmed means and winsorized variances with
Tsakok's test, since its rates of Type I error were closest to the nominal level of
significance, ranging in value from 4.50% to 6.62%. However, it must be remembered
that by adopting this strategy one is testing for equality of population trimmed means not
the equality of population means.
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TO TRIM OR NOT TO TRIM: TESTS OF LOCATION EQUALITY
UNDER HETEROSCEDASTICITY AND NONNORMALITY

Introduction

Testing for mean equality in the presence of unequal variances has a long history
in the statistical literature dating back to the time of Behrens (1929) and Fisher (1935).
Since this early work, numerous authors have offered potential solutions to the problem.
Welch (1951) presented an approximate degrees of freedom solution for a nonpooled
statistic in the one-way completely randomized design. Two other solutions that are
frequently recommended in the literature are the James (1951) second order and Brown
and Forsythe (1974) approximation methods. The empirical literature indicates that all of
these procedures generally control the rate of Type I error when group variances are
heterogeneous and the data are normally distributed (e.g., Dijkstra & Werter 1981;
Oshima & Algina, 1992; Wilcox, 1988). However, the literature also indicates that these
tests can become liberal when variance heterogeneity exists in combination with unequal
group sizes and the ci.,a are nonnormal in form (e.g., Oshima & Algina, 1992). Thus,
these statistics have limitations, namely their sensitivity to the nature of the population
distributions.

Recently, Alexander and Govern (1994) pit posed another statistic that may be
applied to test for mean equality in the presence of variance heterogeneity; their solution.
like that of James (1951), is based on large sample theory and utilizes a x2 statistic. A
less well known alternative was suggested by Tsakok (1978). Tsakok's approach, which
involves the computation of multiple one sample t statistics is appealing because it
represents an exact solution. To date, neither of these procedures has been investigated
for the effects of nonnormality, nor for the combined effects of nonnormality and
variance heteroge eity, particularly when group sizes are unequal.

With regard to the effects of nonnormality, numerous authors have suggested
ways in which treatment groups may be compared when the underlying distributions are
nonnormal and variances are heterogeneous (See Wilcox, 1990; 1994). Specifically,
censoring or trimming the data, as suggested by Yuen (1974), can be utilized when
comparing groups for treatment effects when the treament group populations are not
normal in form (Yuen, 1974; Yuen & Dixon, 1973; Wilcox, 1992, 1993). This
procedure has generally been recommended in order to obtain a more powerful test for
group differences as compared to the traditional procedures which lose power when
distributions are nonnormal. However, little is known about the Type I error control
characteristics of Yuen's method, particularly when applied with the previously
enumerated statistical tests, and to treatment group data that is neither normal in form nor
equal in variability.

Therefore, the purpose of our investigation was to determine whether it may be
possible to use trimmed means and winsorized variances with the Alexander and Govern
(1994), Brown and Forsythe (1974), James (1951), Tsakok (1978), and Welch (1951)
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statistics in order to obtain a robust test for mean equality when the data are both
heterogeneous and nonnormal in form and group sizes are unequal.'

Definition of the Test Statistics

Suppose nj independent random observations Xil Xi2 ...9Xinj are sampled from

population j (j = 1, ..., J). We assume that the Xii's are obtained from a normal
population with mean pi and unknown variance cr? , with cr # crl, (j # j'). Then, let

iXijinj and E;(x, - 5ej)2/(nj 1), where R. is the estimate of ttj and sj2. is the

usual unbiased estimate of the variance for opulation j. Further, let the standard error of

the mean be denoted as Sj = (si2/ni)i and let wj = 1/S1/(Eil/Sp.

The procedures presented by Alexander and Govern (1994), Brown and Forsythe
(1974), James (1951), Tsakok (1978), and Welch (1951) for testing the null hypothesis
Ho: {Li = /22 = = in the presence of variance heterogeneity may all be obtained
from a single general result. That is, if we denote the variance weighted estimate of the

J _
grand mean as p =

j
a one sample t statistic can be computed for each group,

= S . (1)

This statistic is distributed as a t variable with v = nj 1 degrees of freedom. In
order to test the null hypothesis of mean equality, Welch (1951), James (1951), and

Brown and Forsythe (1974) derived statistics which relate to Ejt1 (see Alexander &

McGovern, 1994 for the definition of these approximate statistics). These test statistics
reference either the chi square or F distributions.

In Alexander and Govern's (1994) solution, a normalizing transformation is first
applied to each tj. These normalized values (i.e., z scores) are then used to derive a

statistic (Ej zi2) that is distributed as a chi square variable.

Tsakok (1978), on the other hand, demonstrated how one can obtain an exact test
within this context using the statistic presented in Equation 1. To test Ho, consider the

following j sub-hypotheses:

Ho: = 1, [liA, 1.1] j = 1, , J.

While, Tsakok did not indicate howµ should be estimated, we use the variance weighted
estimate of the grand mean. The statistic tj is distributed as a t variable so that
cxj = P( I tj I > t), and the probability that all Hoj will be accepted (assuming that they are
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true) is I:1(1 aj). The probability of making a Type I error in testing the set of

hypotheses that the have a common value u, is a = 1 I.1(1 aj) .

Similarly, the power of the exact test is given by 1 = 1 tifii, where

0.; = 1 P( I ti I < t Ho; is false). Type I error protection for the set of J tests can be
obtained by adopting a Bonferroni method. In particular, in this investigation, the
method due to Sidak (1967) was employed.

Another consideration in this paper was the application of robust estimates of the
group means and variances to these various test procedures. Since it is well known that
the traditional methods of analysis, e.g., the analysis of variance (ANOVA) F test or t
test, will lose power when the data are obtained from nonnormal distributions, numerous
authors have recommended that robust estimators be substituted for the least squares
estimators (Gross, 1976; Yuen, 1974; Yuen & Dixon, 1973; Wilcox, 1992, 1993, 1995).
However, little information is available regarding either the robustness of these esiimators
to assumption violations or the effect of these assumption violations on rates of Type I
error. In the present investigation, trimmed means and windsorized standard deviations
were utilized when computing the test statistics (See Wilcox, 1994).2 Specifically, we
utilized asymmetric trimming, trimming only in the upper tail (i.e., 20%) associated with
a particular group. Asymmetric trimming was examined since it is theorized to be
potentially advantageous when the distributions are known to be skewed (see Tiku, 1980,
1982; De Wet & van Wyk, 1979).

Method

In summary, twelve tests for mean equality were compared for their rates of Type
I error under conditions of nonnormality and variance heterogeneity in independent
groups designs. The twelve tests resulted from crossing the Alexander and Govern
(1994), Brown and Forsythe (1974), James (1951) second order, Tsakok (1978), Welch
(1951), and usual ANOVA F statistics with two methods for estimating the group means
and variances, Yuen's method, which uses a trimmed mean and winsorized variance (see
Yuen & Dixon, 1973; Wilcox, 1993), and the usual least squares estimators for the mean
and variance. The ANOVA F test was included only to serve as a baseline measure for
comparison of Type I error rates.

Three factors were varied in the study: (a) number of groups (2, 4, and 6), (b)

population distribution (x23 and x:), and (c) pairing of unequal variances and group sizes
(positive and negative).

We chose to investigate completely randomized designs containing two, four, and
six groups since previous research looked at these conditions( e.g., Wilcox, 1988). Most
of the investigated conditions were selected because they were employed in previous
studies (e.g., Dijkstra & Werter, 1981; Wilcox, Charlin & Thompson, 1986; Oshima &
Algina, 1992) and thus allowed us to compare the procedures under conditions which are
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known to highlight the strength and weaknesses of tests for location equality. Table 1
contains the numerical values of the sample sizes and variances investigated in this study
and the studies from which these conditions were obtained.

Insert Table 1 About Here

With respect to the effects of distributional shape on Type I error, we chose to
investigate conditions in which the data were obtained from chi-square distributions. To

investigate the effects of skewness, we generated x23 and x26 variates. These particular

types of nonnormal distribution were selected since educational and psychological
research data typically have skewed distributions (Micceri, 1989). Furthermore,
Sawilowsky and Blair (1992) investigated the effects of eight nonnormal distributions
identified by Micceri on the robustness of Student's t test and found that only
distributions with extreme skewness (e.g., 71 = 1.64) were found to affect the Type 1

error control of the independent sample t statistic. For the x23 distribution, skewness and

kurtosis values are y, = 1.63 and 72 = 4.00, respectively. The x: distribution was
included in our investigation in order to examine the effects of sampling from a
distribution with moderate skewness. For this distribution, -yi = 1.16 and 72 = 2.00.

The third factor manipulated was the nature of the pairing of the group sizes and
variances. Specifically, we choose to investigate both positive and negative pairings. For
positive (negative) pairings, the group having the fewest (greatest) number of
observations was associated with the population having the smallest (largest) variance,
while the group having the greatest (fewest) number of observations was associated with
the population having the largest (smallest) variance. These conditions were chosen since
they typically produce conservative (liberal) results.

We investigated asymmetric trimming since symmetric trimming is based on the
removal of outliers from symmetric distributions, while asymmetric trimming has been
recommended by Tiku (1908, 1982) and others (e.g., See De Wet & van Wyk, 1979) for
nonsymmetric skewed distributions as a means of reducing the effects of deviant
observations in the longer tail.

To generate pseudorandom variates having a x2 distribution with three (six)
degrees of freedom, three (six) standard normal variates, generated using the SAS (SAS
Institute, 1989) generator RANNOR, were squared and summed. The variates were

standardized, and then transformed to x23 or x26 variates having mean Ai (when comparing

the tests based on the least squares estimates) or pit (when comparing the tests based on

trimed means) and variance cr. [See Hastings & Peacock (1975), pp. 46-51, for further

details on the generation of data from these distributions].
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Five thousand replications of each condition were performed using a .05
significance level. For all tests, with the exception of Tsakok's (1978), a Type ! error
occurred when the value of the observed statistic exceeded its .05 critical value. For the
Tsakok test, a Type I error occurred if at least one of the subhypothesis tests exceeded its
Bonferroni critical value.

Results

To evaluate the particular conditions under which a test was robust to assumption
violations, we use the criterion that the empirical rate must be contained in the 99%
confidence interval for a. According to this criterion, based on a = .05, in order for a
test to be considered robust, its empirical rate of Type I error (a) must be contained in the
interval .042 < ix < .058. We adopted this criterion as a means of identifying only those
procedures which could provide strict control of the error rate. Correspondingly, a test
was considered to be nonrobust if, for a particular condition, its Type I error rate was not
contained in this interval. In the tables, bolded entries are used to denote these latter
values. In discussing the results, the tests due to Alexander and Govern (1994), Brown
and Forsythe (1974), James (1951), Tsakok (1978), and Welch (1951) will be referred to
as the AG, BF, J, T, and W tests, respectively and the ANOVA F test will be denoted by
the abbreviation F.

The J = 2 results are contained in Table 2. As expected, the error rates associated
with F deviated greatly from a under both methods of estimation of means and variances,
and were predictably conservative and liberal for positive and negative pairings of
variances and group sizes, respectively. Among the remaining procedures, when the

simulated data were obtained from the x26 distribution and least squares estimates of
central tendency and variability were employed, the rates associated with all but the T test
were within the 99% interval when the variances and group sizes were positively paired
(Condition A); the T value was conservative. For negative pairings of variances and
group sizes (Condition B), the rates all exceeded the upper bound of 5.80%, with the T
procedure having the lowest ( 5.86%) of these liberal rates. Not surprisingly, the
corresponding rates using trimmed means and winsorized variances were closer to a.
Specifically, for positive pairings of variances and group sizes the T test was again
conservative, while for the negative pairing case, all values were within the interval of
4.20% to 5.80%.

Insert Table 2 About Here

The more extreme case of skewness investigated (i.e., x23) resulted in rates that

were larger than those associated with a moderate degree of skewness. Thus, when
variances and group sizes were positively paired and least squares estimation was
employed, the rates associated wiLl all of the F alternatives, were within the bounds of
the 99% interval. On the other hand, all values were liberal when variances and group
sizes were negatively paired; the minimum value was 7.16% (T). The values obtained
when employing trimmed means an i winsorized variances were, with the exception of



Robust Tests for Treatment Group Equality
8

the T (3.42%) value, within the 99% interval for positive pairings of variances and group
sizes, while for the negative pairing case all values, except for T, were liberal. The BF,

W, J, AG, and T values were 6.26%, 6.26%, 6.24%, 6.26%, and 5.32%, respectively.

Table 3 contains the percentages of error for the four group design. When

sampling from the x6 distribution the BF, W, J, and AG values were liberal when least

squares estimation was employed and variances and group sizes were positively paired
(Condition C). Excluding the value for the BF test, all values were again liberal when the

variances and group sizes were negatively paired (Condition D). Once again, the rates
obtained when employing trimmed means and winsorized variances were generally
smaller than their least squares counterparts. That is, for positive pairings of variances
and group sizes only the BF procedure was liberal (6.76%), though the F and T resulted
in conservative tests, with rates of 4.06% and 3.74%, respectively. For the negative
pairing case, only the BF and T values were within the 99% interval. The F, BF, W, J,

AG, and T values were 12.44%, 5.68%, 6.44%, 6.04%, 6.42%, and 5.06%, respectively.

Insert Table 3 About Here

When the simulated data were from the x; distribution, the majority of empirical

values fell outside the bounds of the 99% interval. Thus, when least squares estimates
were utilized all but two liberal values [ANOVA F and T (Condition C)] were obtained
for both cases of pairings of variances and group sizes. This liberalness of values was
also generally present when trimmed means and winsorized variances were utilized;
however, for positive pairings, the F and T tests resulted in conservative rates of 3.64%
and 3.94%, respectively. Of all the liberal rates the T test produced the smallest empirical
value (i.e., 6.08%). For negative pairings of variances and group sizes (Condition D) the

F, BF, W, J, and AG values were 12.80%, 5.86%, 8.10%, 7.80%, and 8.08%,
respectively.

Table 4 contains the empirical rates of error when there were six treatment groups.
The pattern of values in Table 4 is similar to that found and enumerated in Tables 2 and
3. That is, when least squares estimation was employed, the values were rarely contained
within the 99% confidence interval and typically were very liberal. On the other hand, the
values obtained when utilizing trimmed means and winsorized variances were

considerably smaller. Additionally, the error rates obtained when sampling from the x26

distribution generally deviated less from a than those obtained when the simulated data

were distributed as x32 .

Insert Tables 4 About Here

With regard to the performance of the tests when utilizing trimmed means and
winsorized variances, with the exception of BF, all had rates which were well controlled

J
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when variances and group sizes were positively paired (Condition E) and the data were
only moderately skewed. However, for the negative pairing case and this same degree of
nonnornality, only T was not liberal (Condition F). Specifically, for condition F the F,
BF, W, J, AG, and T values were 13.76%, 6.80%, 7.00%, 6.48%, 6.50%, and 5.76%,
respectively.

When sampling from the more extreme chi-square distribution, the rates were
typically outside the 99% interval and were generally liberal in value regardless of the
nature of the pairing of variances and group sizes. The exceptions were the ANOVA F
and T values, which were within the interval for positive pairings of variances and group
sizes. In addition, of all the condition F liberal values, the T value (6.62%) was smallest.
The remaining tests, F, BF, W, J, and AG had values of 14.30%, 6.86%, 8.34%, 7.54 %,
and 7.54%, respectively.

Discussion

This investigation compared six procedures that can be used to test for location
equality among two or more groups when population variances are heterogeneous.
When utilizing group means and variances, these procedures test for the equality of
population mean equality, while the use of trimmed means and winsorized variances
results in tests of equality of population trimmed means.

Results from our study indicate that when the homogeneity of variances and
normality assumptions are not satisfied and the design is unbalanced, the use of trimmed
means and winsorized variances results in better Type I error control as compared with
the use of the usual least squares estimates of the mean and variance.

Based upon the reported findings and the conditions investigated, we recommend
Tsakok's (1978) procedure since its rates of Type I error were closest to the nominal level
of significance. According to the criterion of robustness employed in this investigation,
all of the procedures generally resulted in liberal rates of error when variances and group
sizes were negatively paired, a condition known to adversely affect a test's rates of Type I
error. However, the rates associated with Tsakok's procedure were, for this condition,
always closer to the nominal five percent value than the other procedures' rates, ranging
in value from 4.50% to 6.62%. Thus, if a researchers goal is to employ a test statistic
that can limit the number of Type I errors across conditions known to produce
conservative or liberal tests (positive and negative pairings o: variances and group sizes)
then Tsakok's test with trimmed means and winsorized variances seems, at this time, best
to achieve this goal.
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Footnotes

1. Wilcox's (1989) alternative (H,) to the James (1951) second order test was not
included in this investigation as Hsiung, Olejnik, & Huberty (1994) show that the
procedure is not always valid.
2. When trimmed means are being compared the null hypothesis(ses) pertain to the
equality of population trimmed means, i.e., the /As. That is, Ho: = /./t2 = =

J
and Ho,: pti = Ict, [HA pd. Further, µ = EwiXe, and wi = 1/Si/(Ei 1/SY0,

i=1

where S2i is the standard error of the trimmed mean based upon the winsorized variance

(See Wilcox, 1994, p. 61).

11
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Table I. Investigated Conditions
Conditions Sample Sizes Population Variances

A 11,21 1,16
B 11,21 16, 1

C 8, 10, 12, 14 1, 4, 9, 16
D 8, 10, 12, 14 16, 9, 4, 1

E 8(2), 12(3), 14 1(2), 4, 9(2), 16
F 8(2), 12(3), 14 16, 9(2), 4, 1(2)

7Note:A,B,C,D-investigated by Wilcox, Charlin & Thompson (1986)
E,F-investigated by Dijkstra & Werter (1981)
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Table 2. Empirical Percentages of Type I Error (J = 2)
2

X6

Condition F BF I Wii I AG j T

Least Squares Estimation
A 1.90 5.62 5.62 5.62 5.48 3.44

B 16.50 6.80 6.80 6.80 6.80 5.86
Yuen's Trimmed Means

A 1.62 4.46 4.46 4.52 4.44 3.28

B 15.72 5.22 5.22 5.22 5.22 4.50
2

X3

Condition Least Squares Estimation
A 2.40 6.16 6.16 6.18 6.06 4.22

B 17.52 8.32 8.32 8.32 8.32 7.16

Yuen s Trimmed Means

A 2.00 5.64 5.64 5.64 5.38 3.42

B 16.80 6.26 6.26 6.24 6.26 5.32
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Table 3. Empirical Percentages of Type I Error (J = 4)
F I BF I W ) J AG T

Condition X6

Least Squares Estimation
C 4.84 6.68 7.00 6.94 6.78 5.32

D 11.74 5.72 7.76 7.52 7.52 6.66
Yuen's Trimmed Means

C 4.i16 6.76 5.68 5.60 5.52 3.74
D 1244 5.68 6.44 6.04 6.42 5.06

X3

Least Squares Estimation
C 4.50 6.08 7.14 7.10 7.02 5.36
D 11.94 6.64 10.16 9.86 9.96 8.22

Yuen's Trimmed Means
C 3.64 5.76 6.12 6.02 6.04 3.94
D 12.80 5.86 8.10 7.80 8.08 6.08

1 6
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Table 4. Empirical Percentages of Type 1 Error (J = 6)
F JBF WIJIAGIT

Condition
2

X6

Least Squares Estimation
E 4.64 6.70 6.50 6.28 6.50 6.08

F 12.58 6.74 8.54 8.14 8.14 8.26
Yuen's Trimmed Means

E 4.60 6.46 5.80 5.44 5.68 5.12

F 13.76 6.80 7.00 6.48 6.50 5.76
2

X3

Least Squares Estimation
E 5.06 7.06 8.70 8.40 8.42 7.80

F 13.34 7.10 11.50 10.88 10.42 10.96

Yuen's Trimmed Means
E 4.88 6.68

6.86

6.76 i 6.34
8.341 7.54

6.46
7.54

5.20
6.62F 14.30
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