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PME XVI PROCEEDINGS
Edited by William Geeslin and Karen Graham
Mathematics Department
University of New Hampshire
Durham NH
USA

PREFACE
The first meeting of PME took place in Karlsruhe, Germany in 1976. Thereafter different
countries (Netherlands, Germany, UK., U.S.A., France, Belgium, Isracl, Australia, Canada,
Hungary, Mexico, Italy) hosted the conference. In 1992, the U.S.A. will again play host to PME.
The conference will take place at the University of New Hampshire in Durham, NH. The
University was founded in 1866 as the New Hampshire College of Agriculture and the Mechanic
Arts. The state legislature granted it a new charter as the University of New Hampshire in 1923,
The University now has about 800 faculty members and more than 10,000 students enrolled in 100
undergraduate and 75 graduate programs, The University's Mathematics Department has a strong
history of commitment to research and service in mathematics education. We are pleased to be the
host site for PME XVI.

The academic program of PME XVI includes:
¢ 92 research reports
* 4 plenary addresses
¢ 1 plenary panel
« 11 working groups
* 6 discussion groups
+ 2 featured discussion groups
« 31 short oral presentations
* 40 poster presentations.

The short oral presentations represent a new format for sessions at PME.

The review process

The Program Committee reccived a total of 181 research proposals that encompassed a
wide variety of themes and approaches. Each proposal was submitted to three outside reviewers
who were knowledgeable in the specific research area. In addition, one or more program
committee members read each paper. Based on these reviews each paper was accepted, rejected,
or accepted as a short oral presentation or poster. If a reviewer submitted written comments, they
were forwarded to the author(s) along with the Program Committee's decision.
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HISTORY AND AIMS OF THE P.M.E. GROUP

At the Third Internaticnal Congress on Mathematical Education (ICME 3, Karisruhe, 1976)
Professor E. Fischbein of the Tel Aviv University, Israel, instituted a study group bringing
together people working in the area of the psychology of mathematics education. PME is affiliated
with the Intemnational Commission for Mathematical Instruction (ICMI). Its past presidents have
been Prof. Efraim Fischbein, Prof. Richard R. Skemp of the University of Warwick, Dr. Gerard
Vergnaud of the Centre National de 1a Recherche Scientifique (C.N.R.S.) in Paris, Prof. Kevin F.

Collis of the University of Tasmania, Prof. Pearla Nesher of the University of Haifa, Dr. Nicolas
Balacheff, C.N.R.S. - Lyon.

The major goals of the Group are:

* To promote international contacts and the exchange of scientific information in the psychology
of mathematics education;

* To promote and stimulate interdisciplinary rescarch in the aforesaid area with the cooperation of
psychologists, mathematicians and mathematics teachers;

* To further a decper and better understanding of the psychological aspects of teaching and
learning mathematics and the implications thereof.

Membership

Membership is opeis to people involved in active research consistent with the Group's aims, or
professionally interested in the results of such research.

Membership is open on an annual basis and depends on payment of the subscription for the current
year (January to December).

The subscription can be paid together with the conference fee.
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WORKING GROUP ON :
ADVANCED MATHEMATICAL THINKING (A.M.T.)

Organizers: Gontran Ervynck, David Tall

s SESSION I: INTRODUCTION TO THE PROCESSES-OBJECTS THEME
Four initiators will present different approaches to what seems to be basically the same
theory.

~ Michéle Artigue (France): Tool and Object status of mathematical concepts; the
case of complez numbers.

~ Anna Sfard (Israel): On Operational-structural Duality of Mathematical Concep-
tions.

~ Ed Dubinsky (U.S.A.): A Theoretical Perspective for Research in Learning Math-
ematics Concepts: Genetic Decomposition and Groups.

— David Tall (U.K.): The Construction of Objects through Definition and Proof, with
emphasis on Vector Spaces and Group Theory.

¢ SESSION II: DISCUSSION
Discussion of the contribution of the initiators. All discussion has to come from reflec-
tion on the content of the presentations. Disagreement is to be seen as a vehicle not for
attempting to convince others of one’s own view but of trying to find out the source of
the disagreement.

o SESSION III: CONTINUATION OF THE WORK ON RIGOR AND PROOF
The initiators are:

~ Dick Shumway (U.S.A.): The Role of Proof and Definition in Concept Learning.
The intention is that a link should be established with the subjects discussed in
Sessions I and II.

~ John Selden (U.S.A.): Continuation of the work on rigor in mathematics .
Three aspects of rigor in undergraduate mathematics will be discussed: (1) Is it
possible to construct objects through definition and proofs ? (2) What can be said
about understanding the concept of proof itself ? (3) How can students learn to
construct proofs and what kind of background knowledge is needed ?

e SESSION IV: PREPARING THE FUTURE
Discussion of the work of the AMT Group at PME-17, Japan 1993,

CH
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Working Group on Algebraic Processes and Structure
Coordinat~r: Rosamund Sutheriand
Institute of Education University of London

Durin\g the Assisi meeting, the group aimed to characterize the multiple “jumps”/shifts that appear
to,be involved in developing an algebraic mode of thinking and to investigate the role of
symbolizing in this development. Other concerns of the group are the role of meaning in algebraic
processing; the potential of computer-based environments and implications for classroom practice.
Key issues were discussed and worked on in small groups with the aim of producing a set of
questions and working hypotheses for future collaboration.

Ji




A.
. In their research all the participants of this working group have encountered similar

1-5
Classroom Research Working Group

Problems, standpoints and purposes of the working group
Problems

methodological problems arising from their developmental approach to classroom research.
One of the problers is how to collect and to analyze the classroom data within the working
group.

An important aspect of our research is the defining of new variables for each new set of data.
Different standpoints for ‘good’ research arise: doing classroom research for the data
themselves, for the research methods involved, for enrichment mathematics education, for
psychologic phenomena, for theoretical considerations.

. Our research has raised many questions including:

-ways of collecting data (video tapes)
-repeatability

-generalizability

-falsification

-objectivity

-qualitative/quantitative aspects

-reduction of collected data

-developing new research methods and techniques

Standpoints
The following perspectives are implicit in our research:

. Classroom Descriptors

As well as describing the data collected from various activities presented to and/or undertaken
by the children, we record key classroom descriptors. In particular, details of actual instruction
given by the teachers is noted. This is not common in research where any instruction involved
is mostly described in global terms. We have found, however, in all our work that the type of
instruction given by the classroom teacher can be a distinguishing feature in the data collection
from the children.

/
(VA




1-6

. Mood conditions

One of the key issues to be considered by the group will involve searching for education
conditions which produced a suitable mental climate for the children to work towards their own
productions. They have to bring the children into the mood to do so. These conditions are
mostly of a social character and help to legitimize the particular children’s activities; the
activities make sense to the children.

. Source

We consider the educational setting in the classroom (the manner of teaching, and so on) to be
a source of techniques and methods for the researcher.

. Muwual nasure of the research
Our focus is on miztual research situations in which the children can recognize themselves

(c.g. as a writer, as an author, etc.). This is scen as important as it helps to justify the research
objects (children).

Purposes of the working group Classroom Research

. To become aware of methods we use in the classroom, their possibilities and their constraints
(watching video tapes)

. To collect and develop methods and techniques which can be categorized under one of the
standpoints mentioned above.

. To collect and develop different mood conditions.

4. To criticize these methods, techniques and conditions and indicate their constraints.

. To prepare a booklet to support researchers working in the area of classroom research and
closely connected with the practice of teaching.

Contact person: A

Dr. F. Jan van den Brink,
Freudenthal Institute

State University of Utrecht,
Tiberdreef 4

3561 GG Utrecht

The Netherlands

Tel. 31-30-611611

Fax. 31-30-660430

E-mail jan@owoc.ruu.nl

Language: English
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Working group on
CULTURAL ASPECTS IN MATHEMATICS LEARNING

Although the process of learning mathematics takes place in the school
environment, this ediicational process cannot be isolated from the effects of
the child's cultural context.

In other words, mathematical knowledge is a product of schooling filtered
through culturally conditioned individual characteristics.

Our new Working Group has grown out of the Discussion Group Learning
Mathematics and cultural context, which has been active since PME 13.

At PME 13, we explored the main interests of the participants in this area.
The following themes were touched on: minorities in mathematics
education, social pressures in mathematics education, the role of language
in the acquisition of a given mathematical concept, learning and teaching in
multicultural classrooms, teachers’ conceptions of mathematics, problems
of cooperative research in math education using a comparative approach for
different cultures.

PME 14 and PME 15 represented our first attempt to focus on the following
question: "What is the meaning of culture in the learning of mathematics?”
Presentations of some research results in various areas led to a discussion
about whether these cultural aspects are to be considered a starting point or
an end-product. :

At this point, we have identified and are working on several types of studies
related to the cultural field:

1. Informal education and formal mathematical knowledge.

2. The effects of language and cultural environment on the mental
representa-tions of students and teachers.

3. Cognitive processes in learning mathematics, using a comparative
approach for different cultures.

The objectives of our working group consist of the following:

1. To exchange views on the impact of cultural context on the fearning of
mathematics.

2. To ensure that contact between conferences is maintained through the ex-
change of information about relevant research.

3. To contribute to the formulation of a methodological and theoretical
framework by presenting original research at PME conferences. These
contributions may be interdisciplinary in nature, possibly by making use of
the fields of psychology, mathematics education, art education, and didactics
of geography.

4. To identify the areas relevant to this approach where further research is
desirable. '

At PME 16, more specifically, we will invite participants to discuss the
problématique of our working group as they are reflected in research
situations presented by selected group members. At the request of last year's
participants, a combined session of this working group and the Social
Psychology of Math Education working group will be held at PME 16.

Bernadette Denys
Q
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GEOMETRY WORKING GROUP
Helen Mansfleld
Curtin University of Technology, Western Australia

At the Assisi meeting, the Geometry Working Group had the overall theme Learning and
Teaching Geometry: a Constructivist Point of View. This theme was chosen because the
committee of the Geometry Working Group believes that it is timely to examine constructivism as a
theoretical framework for research into aspects of teaching and leaming geometry.

Within this overall theme, two sub-themes were discussed. These were What Constructivism
has to say about Learning and How Teaching can Promote Learning in Geometry;
and Helping Students to Construct Knowledge in the Geometry Classroom.

In the first session of the Geometry Working Group, there were introductory presentations
concerning the first subtheme followed by a discussion. The focus in the second session was on
the role of computer environments in the learning and teaching of geometry.

The third session provided opportunities for group members to present brief papers on their current
research. These papers did not have to report on work that was completed, but provided
opportunities for the presenters to discuss work in progress, to seek feedback from other
participants, and to discuss with colleagues collaborative research projects.
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PME XVl Working Group

Psychology of Inservice-education
with Mathematics Teachers:
a Research Perspective

Group Organizers: Sandy Dawson--Simon Fraser University, Canada
Terry Wood--Purdue University, USA
Barbara Dougherty--University of Hawaii, USA
Barbara Jaworski--University of Birmingham, UK

This is the fourth year the group has been studying the role of the teacher
educator in doing inservice with mathematics teachers. Last year at PME XV in
italy, the group critically examined a proposed conceptualization of a framework
for inservice education of mathematics teachers. These discussions gave rise
to a revised draft of the framework. This draft was circulated and reactions to it
were sought during the spring of 1992.

The organizers of the working group see the revised framework as a basis for
the creation of a working manuscript (and thence a book) about INSET.

The preparation of a book is in line with the aim of the working group which is:

- to extend knowiedge regarding the psychology of mathematics teacher
inservice education, in order to broaden and deepen understanding of
the interactions among teachers and teacher educators.

The group will meet for four sessions during PME XVI. The first two sessions
will centre on collecting reactions to the revised framework, examining issues
arising from this discussion, and to hearing accounts of how others on the
international scene have attempted to handle the issues raised. The first half of
the third session will be devoted to laying out the chapters for the manuscript.
The latter portion of the third session will address the group’s presentation at
ICME?, the detailed planning for which will take place during the fourth session,
a joint meeting with the other two Teacher Education working groups.

Though the work of the group is a carry over from discussions at the Italy
meeting, new members are most welcome to join. The preparation of the
manuscript will require input from participants representing a broad spectrum of
the international mathematics education community served by PME. Hence,
new participants are not only weicomed but are needed if the manuscript is to
truly cover the spectrum of experiences lived by PME members.

When participants leave PME XVI they will have contributed to the preparation
of an outline for a manscript on INSET, and will have made a commitment to
write a chapter for the book based on their taken-as-shared experiences.

c"
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Ratio and Proportion
F.L. Lin, KM. Hart and J.C. Bergeron

Is the research topic ‘ratio and proportion’ dead or alive?
To tackle this question, this group have tried to define what is proportional reasoning abilities
and found that what we have known is incomplete.

In the Mexico meeting, the group worked on some very fundamental questions, such as
(1) what is fractions? Is 1/2 a fraction?

(2) what is ratio? Is a:b = 3:4 a ratio?

(3) what is the relation between ratio and fraction?

In the Assisi meeting, the group addressed these questions during one of their time slots.

The group also worked on advanced proportional reasoning. Discussion on some recent
developments and problems for further investigation occurred.

In the remaining time slot, the group worked on questions such as,
(1) what is the origin of fraction/ratio concepts?
(2) how to develop a diagnostic teaching module on beginning fractions/ratio? ... etc.

Welcome to ratio and proportion group.
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The PME Working Group dn Repressntations

Representations are key theoretical constructs in the psychology of mathematics education. For
the purposes of our working group, the meaning of this term is quite broad. It includes:

* External, structured physical situations or sets of situations, that can be described
mathematically or seen as embodying mathematical ideas. External physical
representations range from peg-boards to microworlds.

External, structured symbolic systems. These can include linguistic systems, formai
mathematical notations and constructs, or symbolic aspects of computer environments,

Internal representations and systems of representation. These include individual
representations of mathematical ideas (fractions, proportionality, functions, etc.), as

well as broader theories of cognitive representation that range from image schemata to
heutistic planning.

inciuded in the scope of the Working Group are many kinds of issues. The following are just a
tew of the questions we have been addressing:

What are appropriate philosophical and epistemological foundations of the concept of
representation?

How are internal representations constr:ucted? How can we best describe the
interaction between external and intzmal representations?

What are the theoretical and practical consequences for mathematics education of the
analysis of representations?

How can the creation and manipulation of external representations foster more
effective internal representations in students?

What are the roles of visualization, kinesthetic encoding, metaphor, and othar kinds of
non-propositional reasoning in effectively representing mathematical ideas?

How can linkages between representations be fully developed and exploited?

Can individual differences be understood in relation to different kinds of internal
representation?

Our group was guided during its first years by Frances Lowenthal (Mons, Beigium). | began
coordinating it after the 1989 meeting in Parie, with the help of Claude Janvier (Montreal,
Canada). In Mexico in 1990 we had 42 participants, and in ltaly in 1991 we had 47. Some
detailed notes from these two meetings will be available thie year to participants; those who are
not at the meeting are welcome to write for copies. We continue to aim toward publishing a
special volume of the Journal of Mathematical Behavior devoted to the topic of *representation”.

- Gerald A. Goldin, Center for Mathematics, Science, and Computer Education,
Rutgers University, New Brunswick, New Jersey 08903, USA

Q
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RESEARCH ON THE PSYCHOLOGY OF MATHEMATICS
TEACHER DEVELOPMENT
The Working Group Research on the Psychology of Mathematics Teacher Development was first
convened as a Discussion Group at PME X in London in 1986, and continued in this format until
the Working Group was formed in 1990. This year, at PME XVI, we hope to build on the
foundation of shared understandings that have developed over the last five years.

Aims of the Working Group

- The development, communication and examination of paradigms and frameworks for research
in the psychology of mathematics teacher development.

- The collection, development, discussion and critiquing of tools and methodologies for
conducting naturalistic and intervention research studies on the development of mathematics
teachers' knowledge, beliefs, actions and thinking. ¢

- The irﬁplememation of collaborative research projects.

- The fostering and development of communication between participants.

- The production of a joint publication on research frameworks and methodological issues within
this research domain.

Research Questions
At the Working Group sessions in 1991 it was decided that the focus for the 1992 Working
Groups sessions would be the sharing of examples of the practice of mathematics teachers and
teacher educators that inform our notions of what constitutes good pedagogy in general, and the
role of assessment, in particular. The format of the sessions will include the presentation and
discussion of brief, anecdotal vignettes. The following research questions may help to mould the
thinking of researchers interested in contributing an anecdotal vignette to one of the sessions.

- Should professional development programs for teachers of mathematics be basically the
same, the world over?

- Do we have examples of professional development programs that help practising teachers
build confidence in their mathematical ability and in their ability to teach mathematics?

- Can the tension between constructivist ideas recommended in mathematics teacher
development programs and assessment practices and pedagogy in the programs be reconciled?

Proposed Qutcomes of the Working Group at PME XV

1. Collaborative Research Projects: Members of the Working Group have overlapping
research interests, and it is hoped that collaborative research projects can be mounted.

2. Publication of an Edited Collection of Research Papers: The Working Group
plans to publish a collection of research papers.

3. Preparation of the Working Group's Presentation to ICME 7: A session at
ICME 7, combined with the other two Working Groups involving teacher education, has been
scheduled. At least one session at PME will be devoted to planning this session.

Nerida Ellerton, Convenor
o 39
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" Alan J. Bishop, Organizer

All mathematics leaming takes place in a social setting and particularly within the PME community,
we need to be able to interpret, and theorize about, mathematics leamning injerpersonally as well as
intrapersonally. Mathematics learning in its educational context cannot be fully interpreted as an
intrapersonal phenomenon because of the social context in which it occurs. Equally, interpersonal
or sociological constructs will be inadequate alone since it is always the individual leamer who
must make sense and meaning in the mathematics. Therefore, it is vitally important to research the
ways this intra-interpersona complementarity influences the kind of mathematical knowledge
acquired by pupils in classrooms. In order to pursue this research it is therefore necessary to
analyze and develop both theoretical constructs and methodological tools.

This is what the SPME working group has concentrated on. At PME 10, the first official mecting
of the group, we tried out various small group tasks amongst ourselves and discussed their value
as rescarch 'sites’ and also teaching situations. At PME 11, we moved to other social determinants
of mathematics leaning, particularly thinking about influences of other pupils and of the teacher.
At PME 12, we focused on the idea of "bringing society into the classroom” and the issues of
justifying research which might conflict with what "society", considers education should be doing.
At PME 13, we worked on two areas, firstly the ways in which the construct “mathematics” is
socially mediated in the classroom, and secondly, the use of videos of classroom interactions, and
their analyses. At PME 14, we considered the situation of bi-cultural leamners, the social setting of
the nursery-school, and the leaming values of cooperative games. At PME 15, we considered the
following: (1) bi-cultural leamers - particularly ideas from the evidence of Guida de Abreu from
Brazil, (2) the relationships between the social contexts of mathematics and the child development
wodel, led by Leo Rogers from UK, (3) social issues of assessment, led by Luciana Bazzini and
Lucia Grugnetti from Italy, and (4) aspects of cultural and social 'difference’ which may be of
significance in mathematics learning.
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Working Group:
co-convenors: Steve Lerman and Judy Mousley

The group has been meeting annually since 1988 and as a working
group since 1990. The aims of the group are to review the issues
surrounding the theme of teachers as researchers in mathematics
education, and to engage in collaborative research.

The stimulus for the notion that classroom teachers can and should
carry out research whilst concerned with the practice of teaching
mathematics comes from a number of sources, including: teachers as
reflective practitioners; teaching as a continuous learning process; the
nature of the theory/practice interface; the problems of dissemination of
research when it is centred in colleges; research problems being
generated in the classroom, and finding solutions within the context in
which the questions arise. These themes are seen to be equally relevant
to the teacher education situation, and provide a focus for the reflective
activities of ourselves as teacher-educators.

Since the meeting in Assissi in 1991, we have established a network
amongst members and circulated papers, ideas and questions. The
programme in New Hampshire will centre around the issue that was
raised in Assissi, namely what constitutes research in the context of
teachers researching their/our own practice. We will also review the

work of present and new members in this field and report on research
carried out during the year.
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DILEMMAS OF CONSTRUCTIVIST MATHEMATICS TEACHING:
INSTANCES FROM CLASSRCOM PRACTICE.

Bolt, Beranek, and Newman 10 Mouiton St.
Cambridge, MA 02138

The NCTM Curriculum and Professional Standards (NCTM 1989) and the California
Framework (California Departent of Education 1991) iay out a vision of how
mathematics learing and teaching should happen. This vision is in strong contrast to what
one finds in the vast majority of standard classrooms. This new vision is becoming
common in the mathematics education community. Researchers have written about their
own attempts to transform the classrcoms they work in and the difficulties they have
encountered (Lampert (1990), Ball (1990), Cobb (1991)). The NCTM's Professional
Standards are full of classroom vignettes, and there are ¢ven some videotapes that show
exemplary practices. Yet, there has been little written about what it means for regular
classroom teachers 1o try to make the transition from traditional mathematics teaching to the
vision of inquiry leaming articulated in these documents. In this paper we present some of
our own efforts to help classroom teachers make this transition and some of the enduring
dilemmas these teachers have encountered.
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MEANINGFUL CONTEXTS FOR SCHOOL. MATHEMATICS

Luciana BAZZINI, Dipartimento di Matematica, Universita di Pavia, (Italy)
Lucia GRUGNETT], Dipartimento di Matematica, Universita di Cagliari, (Italy)

A Discussion Group explicitly devoted to the analysis of meaningful contexts for school
mathematics had its first meeting at PME 15 in Assisi last year.

A primary reason leading to the establishment of this group was the growing interest in the
role of contexts in mathematics education , as shown by recent research (for a basic bibliog-
raphy, sce the presentation of this Discussion Group in the Proceedings of PME 15, Vol. 1,
pag. XXIX).

The two sessions of the Discussion Group took into account the role of context from a
- general point of view. It was noticed that the word "context” can have different meanings,
related to socio- cultural or ethno-anthropological factors, or to the conditions in which teach-
ing-learning processes take place. For our purposes, we defined context as the set of environ-
mental conditions and experiences created to evoke thinking in the classroom in order to give
meaning to mathematical constructions. Evidence suggests that the ability to control and
organize cognitive skills is not an abstract context-free competence which may be easily
transfered across diverse domains but consists rather of a cognitive activity which is specifi-
cally tied to context. This is not to say that cognitive activities are completely specific to the
episode in which they were originally learned or applied. However, it is of vital importance to
be able to generalize aspects of knowledge and skills to new situations. Attention to the role of
context focuses on determining how generalization can be stimulated or blocked. A specific
context ca represent a powerful opportunity for mathematical investigation but also a potential
obstacle to abstraction.

In this perspective, we propose two main foci for the two sessions of this Discussion Group
at PME 16. They are:

- analysis of how mathematical activity can be contextualized in experiences taken from
children’s extrascolastic knowledge;

- analysis of how school mathematics can be lirked to other school disciplines, in view of a
meaningful contextualization of mathematics itself.

In our opinion, special attention to the interaction of school mathematics and the world
outside and of school mathematics and other domains gives rise to important questions related
to the meaningfulness of a given context: meaningful for children, for mathematics or other.

Finally, questions related to how mathematical constructions can be contextualized and
de-contextualized according to a spiral process can be discussed and investigated hereafter.
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PARADIGMSLOST: WHAT CAN MATHEMATICS EDUCATION LEARN
FROM RESEARCH IN OTHER DISCIPLINES?

BRIAN A. DOIG The Australian Council for Educational Research

Many researchers appear to work in isolation from their brethren in related fields.
Nowhere is this more true than in educational research. Language research has had
little to say about the language of mathematics, yet the mathematics research
literature is replete with references to ‘the language of mathematics’. This ‘language
of mathematics’ though, seems not connected to the notions of language generally
used in language research. There are two questions here. First, why does this
disconnection occur, and second are there indeed any benefits to be had from
looking at other disciplines? Ido not propose to enter the debate regarding to the
former question, but do in regard to the latter.

Mathematics education research may benefit from looking at some related
disciplines, but which? Let us look at one related discipline, namely science.
Although science appears to be similar to mathematics to the uninitiated, and indeed
historically was so, the end of the twentieth century sees two quite distinct research
areas defined. Where previously researchers like Piaget investigated both science
and mathematical concept development we now see separate studies. Scanning the
relevant journals gives the impression that mathematics is about content and how it
may be best taught, while a similar overview of science journals reveals an emphasis
upon development of concepts. How this divergence has occurred is of no
importance here, but rather that it exists.

Mathematics is supposedly about concept development, so can we use the science
research as a guide to better research efforts in mathematics? Ibelieve we can. An
example of science research exploring children’s conceptual development and
providing information for teachers to better plan their students’ further learning, is a
study recently undertaken in Australia (Adams, Doig and Rosier, 1990). This survey
of children’s science beliefs used novel assessment instruments collectively entitled
Tapping Students’ Science Beliefs (TSSB) units. Children were asked to rdle play,
complete a short story or comment upon the activities of characters in a cartoon strip.
By the use of modern psychometrics the data was collated and analyzed to produce
continua describing the development of concepts over a number of scientific areas.
Descriptions of students’ likely scientific beliefs at various points along these
continua make the planning of future experiences for these students much simpler
and more likely 1o match the students’ needs.

It is my contention that mathematics education can learn from these current efforts in
science. For example, is it possible to construct assessment instruments that engage
students and measure their underlying beliefs about mathematical concepts? The
answer must be ‘yes’ if we are to attempt to create any sort of constructivist
curriculum — one based upon the student’s needs and perceptions, and not solely on
the received wisdom of previous generations, which is apparently what we have.
Ask yourself ‘How different is my curriculum from that of my grandparents?’

REFERENCE

Adams, R. J., Doig, B. A. and Rosier, M. (1991). Science Learning in Victorian
SlChQQlﬂﬂ.?ﬂ Melbourne: The Australian Council for Educational Research.
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Discussion Group

PHILOSOPHY OF MATHEMATICS EDUCATION

Paul Ernest

In mathematics education epistemological and philosophical
issues are gaining in importance. Theories of learning are
becoming much more epistemologically orientated, as in the case
of constructivism. A number of areas of inquiry in the
psychology of mathematics education, including problem solving,
teacher beliefs, applications of the Perry Theory, and
ethnomathematics, all relate directly to the philosophy of
mathematics. Researchers in mathematics education are becoming
increasingly aware of the epistemological assumptions and
foundations of their inquiries. This is because any inquiry
into the learning and teaching of mathematics depends upon the
nature of mathematics, and teachers' and researchers'
philosophical assumptions about it. Whilst many of these issues
have been raised before at PME, none have been or can be

resolved. This suggests that a continuing discussion would be
useful and timely.

In fact, the most central of the philosophical issues, the
philosophy of mathematics, has been insufficiently addressed at
PME. Although reference has been made to it in a number of
plenary and other presentations, there has not been sufficient
recognition that it is undergoing a revolution, and the
absolutist paradigm is being abandoned. Publications by
Lakatos, Davis and Hersh, Kitcher and Tymoczko, for example,
are pointing towards a new fallibilist paradigm. This has
profound implications for the psychology of mathematics
education. For if mathematics itself is no longer seen as a
fixed, hierarchical body of objective knowledge, then what is
the status of hierarchical theories of mathematical learning or
of subjective knowledge of mathematics? One outcome is sure.
They can no longer claim to be representing the logical
structure of mathematics.

The aim of the group is to provide a forum for a discussion
some of these issues, including:

1. Recent developments in the philosophy of mathematics.

2. Implications of such developments for the psychology of
mathematics education.

3. The epistemological bases of research paradigms and
methodologies in mathematics education.

This discussion group was first offered at PME-14 in Mexico.
This meeting will continue the discussion begun there, and
consider bacoming a working group.
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RESEARCH IN THE TEACHING AND LEARNING OF UNDERGRADUATE
MATHEMATICS: WHERE ARE WE? WHERE DO WE GO FROM HERE?

Organizers: Joan Fen-ini-Mund? University of New Hampshire, Ed Dubinsky, Purdue
University, and Steve Monk, University of Washington

There is growing interest, particularly in the community of mathematicians, in
questions about the teaching and learning of mathematics at the undergraduate level,
Professional organizations such as the Mathematical Association of America and the American
Mathematical Society have begun to encourage attention to this ererging research area within
their conference and publication structures. This discussion session is or%anized by members
of the Mathematical Association of America's Committee on Research in Undergraduate
Mathematics, to promote a more sustained focus on this area of research. We will address the
following questions:

Can we summarize major research areas and methodologies conceming the leaming and

teaching of undergraduate mathematics, and what are the most appropriate vehicles for sharing
this work with a wider audience?

How can mathematicians and researchers in mathematics education collaborate to formulate and
investigate significant questions about the teaching and leaming of undergraduate mathematics?

How can we encourage more systematic and widespread interest in this area of research, while
also maintaining high levels of quality for audiences of mathematicians, mathematics education
researchers, and others?

What mechanisms can be developed for sharing work that has implications for practice, in
terms of instruction and curriculum, with the community of college mathematics teachers?

Is it viable to propose a PME Working Group on the Teaching and Leamning of Undergraduate

Mathematics? What might be the relationship with the Advanced Mathematical Thinking
Working Group?

A wide range of research has been undertaken conceming the teaching and learning of
undergraduate mathematics. There are serious challenges in considering how this work might
be summarized and organized so that it can be accessible and helpful to interested researchers
and practitioners. Several working reference lists and bibliographies will be assembled for this
discussion session, and participants are encouraged to supply additional material. Certainly the
monograph produced by the PME Working Group on Advanced Mathematical Thinking -
provides a very useful organization. Additional compilations and formats might be helpful to
various communities.

College and university teachers of mathematics often have serious and important
uestions concerning issues in student leamning and in teaching.Communicating Among
ommunities, the final report of a fall, 1991 conference sponsored by the MAA, includes as

one of its recommendations that “those faculty whose professional work is devoted to research
in mathematics education, as well all those whose work centers on curriculum development or
educational practice" should be appropriately rewarded. Issues in this area also will be raised.

Beyond the relatively well-developed body of work in advanced mathematical thinking,
there certainly are other research directions and emphases in the area of undergraduate
mathematics leaming and teaching. These include various intervention-type studies to test
curricular innovation or instructional strategies, studies of teaching processes, and studies
about the mathematics preparation of preservice teachers. We hope to expand the discussion to
determine the ways that these other lines of research, many of which have rnore profound
implications for practice, may be extended and communicated.
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VISUALIZATION IN PROBLEM SOLVING AND LEARNING

Maria Alessandra MARIOTT], Dipartimento di Matematica, Universita di Pisa, (Ttaly)
Angela PESCI, Dipartimento di Matematica, Universitd di Pavia, (Italy)

When we had the idea, last year, to start a discussion group on this theme we did not expect
so large a presence. There were 45 participants from the following countries: Australia,
Canada, Spain, Finland, Germany, Israel, Italy, México, Portugal, Sweden, UK and the USA.

Today many people are very interested in this topic and the related studies are multiplying.

i On this subject T. Dreyfus, last PME, gave a lecture "On the status of visual reasoning in

i mathematics and mathematics education”. Our theme also intersects some aspects that are

) widly discussed by the Working Group on Representations, guided by G.A. Goldin. In the last

three years the growing number of participants has made evident the growing interest in these

problems. On the basis of last year’s discussion, we think it opportune to direct our work
along the following lines.

Since visualization, that is the action "to see” mentally, can be the result of different visual
stimuli, among these we plan to deal in particular with graphical representations. By graphical
representation we mean every graphical sign different from the written word: from a pictorial
drawing to a schematic and symbelic one, up to the most specific mathematical signs. The
graphical sign can be produced by a pupil, a teacher, a textbook, a computer and so on. During
a lesson of mathematics, geometrical figures, symbols, schemes, tables, tree diagrams, arrows,
... are frequently used. Often they are not only didactic aids but visual messages which are
crucial in building the "meaning” of a concept or in schematizing a problematic situation. In
several instances these representations play a very important role: perhaps they are able to
suggest mental images which are very effective and functional (for instance, in some memory
tasks, in associations useful in producing cognitive acquisitions, in partially new resolution
processes and so on). We consider very important to study the dislectics between graphical
representations and internal cognitive processes and to discuss how this study can be faced.

Therefore we consider important that our group try to discuss the following problems:

a - To what extent and how are internal images influenced by external ones in arithmetic,
algebra, geometry and analysis?

b - How are intemal images used to generate extemal ones (diagrams, pictures, skeiches,...) for
example during problem solving processes?

¢ - Which graphical representations are particularly effective? In which conceptual contexts?
For which ages? Which could be the reasons of their effectiveness?

d - Which are the most common misunderstandings in using external representations? How
can we find a remedy for them? How can we be sure that the meaning of a graphical
scheme is completely determined without ambiguity?

¢ - How to face the analysis suggested by the previous points? By which tools and methods?
In which theoretical frames?
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APPROACHES TO RESEARCH INTO CULTURAL CONFLICTS
IN MATHFMATICS LEARNING

Guida de Abreu - Department of Education / Cambridge University, UuK®
‘Alan J. Bishop - Department of Education / Cambridge University, UK
Geraldo Pompeu Jr. - Catholic University of Campinas, Braz

With the aim of discussing alternatives approaches to research into cultural
conflicts, some results from two research projects are presented. The first is concerned
with clarifying the cultural conflict as rienced from the child’s ggrspective. when her
home mathematics is substantially different from the school matics. The second
analyses changes in teachers’ attitudes in the transition from a culture-free approach to
mathematics teaching. to an approach that acknowledyes the cultural-conflict.

The recent constructivist framework, as exemplified by Saxe (1990), focuses on a
level of mathematics learning where culture and cognition are constitutive of one
another. Saxe developed his empirical studies in an out-of-school setting, candy selling
on tue street, and found evidence that the children gradually interweave their school
mathematics with the mathematics generated by the participation in the out-of-school
practices. A considerable amount of research describing the mathematical competence
of people out-of-school, in contrast to in-school, is also available. e.g., (Carraher, 1988:
Lave 1988), but little is known about the interactions occurring when children are
confronted by the two sets of mathematics cultural pracuces, in a school setting. That
seems a crucial area to clarify when developing new dpproaches to teaching in
situations where the school mathematics culture is markedly different from that
demonstrated outside school.

A second crucial area in such situations is that of the attitudes of teachers
concerning the relevance of children’s out-of-school knowledge for classroom teaching.
There is a body of research on teachers' attitudes in mathematics teaching in general.
but none which focuses on this specific aspect. This paper will be a report of ongoing
research in both of these areas. illustrating as well the enormous research challenges
facing mathematics educators working in cultural conflict situations, where ‘cultural
conflict means the conflict the children experience in terms of contradictory
understandings generated through their participation in two different mathematics
cultures. one outside school, linked to their everyday practices, and the other at school.

+ - Guida de Abreu 's research is sponsored by CNpq / Brazil
Geraldo Pompeu's research is sponsored by Capes / Brazil
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Children's culiural conflicts

The assumption that mathematical knowledge is cultural implies that its learning
Is associated with values, heliefs, rules about its use, etc. Therefore, the traditional
belief that school mathematics is a culture-free subject is questionable. and there is a
growing feeling that it should be treated as a specific school mathematics culture which
Is not taking into account the mathematics practiced in the out-of-school culture. That
split between the two mathematics cultures is the source of conflict for children. By the
nature of human cognition they should build their knowledge upon their previous
understandings. but because of the cultural gap they are being faced with
contradictions, which appear in different ways, such as: (a) beliefs : (b) performance;’
{c) representations (dj self-concepts. To exemplify these aspects some results from an
empirical investigation developed among Brazilian children, aged between 8 and 16,
from primary schools in a sugar cane farming community, will be reported. This is a
development of the research reported in Bishop and Abreu (1991).

(a) Bellefs: When investigating children's beliefs a great imbalance was found in
terms of the value that they give to the outside mathematics, used in the predominant

activity of the local economy, sugar cane farming and the in school mathematics (see
Table 1).

Table 1: Percentage of children's answers related to their beliefs about
mathematics (n=26)

Children believe that: %
. People working in an office use mathematics 95
- People working in sugar cane farming do not use mathematics 72
. The puplls, who performed best in school mathematics,

work in offices 81
. The puplls, who performed worst in

school mathematics, work in sugar cane farming 73
. People working in an office are schooled 100
. People working in sugar cane farming are unschooled 77
- Sugar cane workers can work out sums without being schooled 73
- Sugar cane workers cannot do sums without being schooled 27

On the other hand they also acknowledged that sugar cane workers cope
successfully with their everyday sums. This seems to be one area of cultural-conflict,
which apparently they resolved in terms of contextualization, that is school
mathematics is different from sugar cane mathematics. However, in practice they are
copiag with contradictions such as: their parents can do sums better than them. but
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they believe that people who are in sugar cane farming do not have proper knowledge:
they need to rely on their parents' mathemattcs to get help to cope with difficulties in
their school mathematics homework. Severina, 14 years old, a sugar cane worker’s

daughter. described by the teacher as an unsuccessful pupil. gives evidence of the
contradictions: '

I {nterviewer) - Why doesn’t that man [in a picture} on the tractor know
mathematics?
S (Severinal - He doesn’t know. He doesn’'t have a job. He works in sugar cane.
I - Is it possible that some people [in pictures] had never been to school?
S - [Among pictures with people in offices, markets. school and sugar cane she
choose a man working in sugar cane.] Yes, this. I think that {f he has been to
school, he would not be working in that place.
I - Any more?
IS - w‘l‘;:es?e {again peaple in sugar cane).
- wiy
S - It {s the same. If they had studied they will not be working in that place. This is
an exw?}:le of those who had never been to school. like my father.
I- (.. You told me that g{our father doesn’t know to write, but for oral sums he is
the best. How does he help you in your mathematics homework
S - Lask him, for example: how much is 3 times 7 or 8 and he answers. How much
is 3 plus 12? He answers all.
I - {On another intervier] Can é,you tell what ggu think about the way your father
did the sums, is it the same or different from the way you learned in school?
S - It is a different way, he does it in his head. mine is with the pen.
I - Which do you think ts the proper way?
S - School.
I - Which do you think gtves a correct result?
S - My father.
I- Why?
S - Because I just think so.

{b) Performance: Analysing children's performance in group tasks. on which
they were asked to imagine they were farmers. to allow them to bring their out-of-
school knowledge to solve the task. no differences were found related to their school
mathematical performance, but there seems to be a relation with gender (see Table 2).

Table 2: Number of answers according to children's performance in school and

gender

How the child Number of answers given by pupils:

understands the =~ ----eo-e- - --

inverse relation Successful Unsuccessful Boys Girls
l at school  at school !

Only qualitatively 11 15 | 1 25

Both qualltatjvel{ ‘

and quantitatively 25 25 31 19
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The mathematics concept involved was the inverse proportional relation between
the size of the unit of measurement and the total number of units needed in four tasks:
halving and doubling the size of a stick used to measure length: halving and doubling
the size of a square to measure area. Children show two types of understandings: (a)
only qualitatively. e.g., if it is half the size of the unit. then I will need more units, but
they show difficulties in the calculations, (b) qualitatively and quantitatively, e.g., this
is half, then I need twice the number I have.

Again, these results brought more cultural conflicts into question. One is related
to the contradiction in the child's performance in school arid out. of which they seem to
be aware, as for example, a 5th grade girl. unsuccessful in school who said: “Sometimes
my sister comes to my house, brings the money and I go shopping for her. They give me
the note {account). I check and get it correct. But. in school there is no way, I cannot
learn." Another is related to the contradiction between child-specific experiences and
the task presented. e.g. this community has specific social roles for girls and boys.
allowing boys to have jobs in agriculture or in the market. but which are improper for
girls. Perhaps that difference between girls and boys could account for their
engagement in different social practices outside which lead to specific mathematics
understandings.

(c) Representations: When confronting the children with school-like tasks. the
first thing that was obvious was the difficulty of the children of that community in
coping with written languag.. This make sense since in the children's homes there is
mainly an oral culture. They mention about their fathers that: only 37% can read. but
77% can do sums orally and 70% in writing. For the mothers, 57% can read. but only
47% can cope with sums orally or writing. Analysing the resuits of twenty pupils in four
school tasks they succeed on 89% of the sums when solving them orally, but only 38%
succeed in representing it in a written way acceptable in school {these findings agree
with Carraher, Carraher and Schliemann, 1987, who described the oral strategies
accounting for success). However, in the research presented here, the focus is on the
process of producing a written representation for their oral solution. It seems as if they
are mixing their oral system of representation with the written system, which is
being taught in school. For example 50% of the third grade pupils in writing the sum of
the sides of quadrilaterals. put more than one side in the same line, as in the following
examples:

Example 1: After measuring a sguarc with 5 (em) each side. and answering orally that
the total is 20, the cglld produced the following written representation

38

10 10
Reading the written answer: “ It is twenty. Because 5 plus 5 is 10, with 5 plus 5 is
10."
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Example 2: Adding the sides of a parallelogram 3 by 4 {cm).
33
44
77

Reading the written answer: " It is seventy seven.”

Both of these children wrote in the same way. but in the firs: example the child
seems to follow the oral reasoning and give a correct result, while in the second the
child reads the number following the rules of written numbers and giving an incorrect
answer. This seems to be another way of experiencing the conflict, that is, children
appear to be very confused when asked to choose which answer is correct. A child
argued in one problem that the written sum is correct "Because this one here (written)
we did getting the numbers from here, working out, and checking'. while in fact the
correct result was the one he did orally. On another problem the same child chose as
correct the oral result.

(@) Self-concepts: Comparing children's self-judgements about their
performances in mathematics with their teachers’ judgements it was found that they do
not agree in 55% of the cases. That high rate of disagreement between children's self-
concepts and teachers seems to be another source of cultural conflict. The majority of
the children who disagree with their teachers are the ones judged as low achievers by
the teachers. The child's self-concept seems more coherent to their mathematics
abilities in general, than the teacher's judgement based on the scores from school tests.

Educational approaches to cultural-conflict

Cultural-conflict between in and out-of-school mathematics is being reflected in
different kinds of contradictions that affect children mathematics leaming, as
exemplified by research results like those described above. There appear to be, from
an educational perspective, two broad approaches to this conflict. one which ignores it
and keeps the traditional mathematics teaching approach. and the other which
acknowledges it. Following the second. different alternatives are followed in terms of the
extent to which the home culture of the child will be taken into account in the school
context. We refer to these as: assimilation: accommodation: amalgamation and
appropriation. The way the school culture will interact with the child's home culture
will vary according to the four alternatives, therefore raising different questions about
children' learning: teacher's attitudes; school curriculum, etc, (see Table 3)
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Table 3: Different approaches to cuiture-conflict

Approaches Assumptions | Curriculum | Teaching Language
to culture
conflict
Culture-free No culture Traditional No particular | Official
Traditional conflict Canonical modification
view
Assimilation | Child's Some child's | Caring Official,
cuiture cuitural approach plus
should be contexts perhaps with | relevant .
useful as included I some pupils contrasts '
examples < in groups and :
: remediation ;
: for second |
I language |
| learners }
Accommodation Child's Curric um | Teaching Child's home |
, culture restructured | style language :
; should due to modified as accepted in
i influence child's preferred by class, plus
education culture children offici
language
support
Amalgamation | Cuiture's Curriculum Shared or Bi-lingual,
adults Jointly team Li-cultural
shouid organised by | teaching teaching
share teachers and
significantly community
in education
Appropriation | Culture's Curriculum Teachin% Teaching in
community organised entirely by home
should take wholly by community's community's
over community adults referred
education anguage

To {llustrate one aspect of research into those approaches. some results from a
study of teachers' attitudes are presented. This research, also in Brazil, investigated
changes in attitudes occurring during the implementation of an ‘accommodation’
approach - specifically in the transition from traditional teaching, called ‘canonical-
structuralist', to one called ‘ethnomathematical', which took into accourt the children's
social and cultural knowledge and values. This work is the culmination of the research
described in a preliminary form in Bishop and Pompeu (1991).

The iesearch study was designed in three main phases: in the first, the
theoretical background for the Ethnomathematical approach was introduced to the
teachers: in the second phase, the teachers planned and developed six ‘Teaching
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Projects {TPs)' based on the Ethnomathematical approach; finally. in the third phase.
the teachers applied the TPs with their pupils. Nineteen teachers were involved. in
twelve ordinary state schools, teaching the six projects lasting between three and five
weeks, to a total of 450 puptils. In order to monitor and assess the changes in teachers'
attitudes. a questlonna!xe was applied, as an attitude ‘thermometer’, in three different
points in the research study: at the beginning, after the theoretical phase, and after the
application of the TPs (for details of procedure. see Bishop and Pompeu, 1991). The
teachers also wrote about their attitudes and were interviewed. Three conclusions
about the effects of the different phases of the implementation strategy upon the
teachers' attitudes are relevant here:

From the general perspective of mathematics as a school subject. and in terms of
the intended, implemented and attained levels of the mathematics curriculum, the
theoretical phase signific.atly affected the teachers' attitudes towards the first two of
these perspectives. That is, the introduction of the Ethnomathematical theoretical
background to the teachers, substantially changed their attitudes towards the general
perspective of mathematics as a school subject, and towards the intended mathematics
curriculum (why mathematics occupies an important place into the school curriculum).
According to the data, the emphasis on mathematics as a school subject most
increased in relation to the ‘particular’ and the ‘exploratory and expianatory' features of
the subject. and most decreased in relation to its ‘universal' and ‘logical’ features.
Similarly. the emphasis on the reasons why mathematics occupies an important place
into the school curriculum, most increased in relation to the 'social and cultural basis

of the subject’. and most decreased in relation to its ‘informative’ aspects. For example,
one teacher wrote:

“What a big mistake it was to think {nitially that the ‘cultural and social’ basts of
mathematics has so little importance. Mathematics is basically a product of the
culture of each race. It grows from the needs of each society, and the experience of
each one, These are the bases of its truth.”

The planning and development of the TPs, as well as their application with the
pupils, most substantially changed the teachers’ attitudes towards the attatned level of
the mathematics curriculum. In other words, the teachers' action as ‘designers of
curriculum (TPs in this case), and guides to learning', as suggested by Howson and
Wilson (1986). most substantially changed their attitudes in relation to ‘what abilities
pupils should have after they have learnt mathematics'. According to the data, for
example, after the application phase, the emphasis on pupils’ ability to ‘analyse
problems' was the one which most increased its importance in the teachers' view.

ERIC 56

Aruitoxt provided by Eic:




1-32

Interestingly, the attitude questionnaire did not reveal any major change in
teachers' attitudes towards "how mathematics should be taught' (the implemented level
of the mathematics curriculum). However, by the end of the study, the emphasis on a
‘debatable’ approach to the teaching of mathematics was the perspective which had
most increased its importance frora the teachers' point of view. In contrast, the
emphasis on a ‘one-way'and a ‘reproductive’ approach to the teaching of mathematics
were the aspects which most decreased in their importance for these teachers. In
addition, from some teachers comments, it was also possible to see other changes in
teachers' attitudes at this level of analysis. One of these changes is related to the

assessment procedure adopted in mathematics, and at the end of the research study, a
teacher wrote about this:

"I was not expecting the kind of reaction which some of the pupils had (some pupils
manifested disagreement about the final results of the assessment - researcher
observation). On the other hand, (...} I learnt that the assessment procedure s too
complex to be so little discussed. (...) After all, I believe that an assessment
procedure should take into consideration the individual aspects of each pupil,
demanding from each one of them a proportional response to his/her earlier
experiences.”

{More data will be presented at the conference)

Conclusion

Cultural conflicts are increasingly being recognised as a source of mathematical
conceptual, and attitudinal obstacles for pupils and teachers alike. The analysis,
research approaches and findings reported in this paper indicate some promising
directions which research in this area could take, and demonstrate the educational
complexity which must be appreciated if progress is to be made.
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RHETORICAL PROBLEMS AND
MATHEMATICAL PROBLEM SOLVING: AN EXPLORATORY STUDY
Verna M. Adams
Washington State University
Abstract
This investigation examined ways in which a theory of knowledge telling
_and knowledge transforming from written composition might be relevant to
mathematical problem solving. Rhetorical problems were identified in problem
solving interviews as subjects attempted to understand the problem statement.
These problems generally dealt with understanding language and wefe
sometimes resolved as a result of expectations of text forms for mathematical
problems. Revisions of text during mathematical problem solving occurred
when the problem solver modified diagrams, charts, equations, etc. Revisions

often occurred at critical times in the solution process.
Introduction

Although solving a mathematics problem and writing a composition are
very different activities, from one perspective they have much in common. Like
skilled writers, good problem solvers in mathematics must use and exert
control over complex cognitive activities such as goal setting, planning, and
memory search and evaluation. Some researchers on writing (Bereiter &
Scardamalia, 1987; Carter, 1988; Flower & Hayes, 1977) consider writing to be
a problem-solving activity. This view of writing has led researchers in
mathematical problem solving and in writing to rely on some of the same
sources in building theories in the two domains. Bereiter and Scardamalia
developed a theory of written composition that involves two modes of mental

processing called knowledge telling and knowledge transforming.
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In this study, the investigator examined Bereiter's and Scardamalia's
theory of written composition (1987) from the perspective of a mathematics
educator interested in mathematical problem solving. The investigator, in
effect, first stepped outside the domain of mathematics to acquire an
understénding of the theory of knowiledge telling and knowledge transforming as
it applies to written composition. That understanding was then brought back
into the domain of mathematics to ground the theory in data on mathematica!
problem solving. This paper reports on the component of the investigation of
knowledge telling and knowledge transforming in mathematical problem solving
(Adams, 1991) that identified rhetorical problems.

Theoretical Background

The idea of two modes of mental processing has its roots in theories from
cognitive psychology (Anderson, 1983). According to Anderson, one mode of
cognitive functioning is "automatic™ and "invoked directly by stimulus input.”
The other mode "requires conscious control . . . and is invoked in response to
internal goals” (pp. 126-127). Bereiter and Scardamalia (1987) identified the
characteristics of these modes of processing within the domain of written
composition and labeled the first mode of processing knowledge telling and the
second mode knowledge transforming.

Bereiter and Scardamalia (1987) proposed that, when a writer is engaged
in knowledge transforming, the writer creates a rhetorical problem space and a
content probiem space. These problem spaces are not created it the writer is
engaged in knowledge telling. The rhetorical problem space is tied to text
production and contains mental representations of actual or intended text. One
of its functions is to put thoughts into a linear sequence for output as written
text. The content problem space is tied to idea production.
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To make the transition from written composition to mathematical
problem solving, the investigator viewed the representation of a mathematical
problem created by the problem solver as "text.” Examples of text forms in
mathematical problem solving include charts, tables, and proofs. Knowledge of
how to structure a mathematical proof is an example of knowledge of a way of
forming text. Because mathematical problems are often presented in written
form, the function of a rhetorical problem space in mathematical problem
solving was assumed to include the interpretation of text as well as the
creation of text. This assumption has a basis in literature on reading and
writing: Birnbaum (1986) suggests that reflective thinking about language is a
common thread between reading and writing. Readers and writers share the
common goal of constructing meaning (Dougherty, 1986; Spivey, 1990).

The origins of the concept of problem spaces lie in theory related to
computer simulations of human thought (see Newsli, 1980; Newell & Simon,
1972; Simon & Newell, 1971). Simon and Newell (1971) describe a problem
space as "the way a particular subject represents the task in order to work on
it" (p. 151). Newell (1980) proposes that problem spaces are mental constructs
*which humans have or develop when they engage in goal-oriented activity” (p.
696). Whether or not these mental constructs were created was of interest in
this investigation as one means of distinguishing knowledge telling and
knowledge transforming. For that purpose, it was useful to think of a problem
space as setting boundaries on the knowledge structures used in finding a
solution to the problem. .

Although the concept of problem spaces is not new té research on
mathematical problem solving (e.g., Goldin, 1979; Jensen, 1984; Kantowski,
1974/1975), the idea of a rhetorical problem space has not been proposed for
mathematical problem solving. Researchers in mathematics education,

however, have been interested in issues dealing with mathematics, language,
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and leaming (e.g., Cocking & Mestre, 1988; Pimm, 1987). Pimm (1987)
identified features of the muathematical writing system and the complexity of
the syntax of written mathematical forms. He suggested that the same
difficulties that children have with natural language are evident in learning
mathematics.

Research Perspective on Mathematical Problems

in this investigation, a problem solver was described as experiencing a
problem if a direct route to a goal was blocked. Because a task that is a
problem for one person may not be a problem for another person, a mathematical
task cannot be labeled a problem until after the problem solver has worked on
the task. Thus, in order to characterize the task as a problem, an observer must
evaluate the mental activity of the problem solver by making inferences about
that mental activity from what the problem solver says and does.

The mathematical tasks used in the investigation were written word
problems. Problems were identified as compositional prablems if the problem
solver suspended attention to the problem goal identified in the problem
statement in order to create his or her own goals for understanding and solving
the problem. Mathematical tasks may be problems without being compositional
problems.

As problem solvers work on mathematical tasks, they construct mental
representations of the tasks. The mental representation may be thought of as a
cognitive structure constructed on the basis of the problem solvers domain-
related knowledge and the organization of that knowledge in memory (Yackel,
1984/1985). As the problem solver deveiops the mental representation, the
problem solver's mathematical concepts and problem-solving processes may
undergo change (see Lesh, 1985). Kintsch (1986) suggested that the problem

61




1-37
solver builds a mental mode! of the text (problem statement) and a mental
model of the situation described in the text. The mental model of the text "is
built from propositions and expresses the semantic content of the text at bot_h a
local and a global level” (p. 88). _

For this investigation, | assumed that the mental model of the text is part
of the rhetorical problem space and the mental model of the problem situation
is part of the content space, which | refer to as the main problem space. The
contents of each problem space must be inferred from analysis of the problem
solver's written representation of the problem and what the problem solver

does and says while soiving the problem.
Design and Procedures

A theory developed in one domain cannot be expected to manifest itself in
exactly the same ways in a second domain. Thus, the main purpose of the the
study was to generate theory for mathematical problem solving and was not
approached as a verification study. A general method of comparative analysis
(Glaser & Strauss, 1967) was used throughout the investigation. In order to
examine potentially different situations in which a grounded theory might
manifest itself, purposeful sampiing (Bogdan & Biklen, 1982) was used to select
data from the mathematics education literature and to coliect additional data.
This procedure made it possible to compare "novices® and "experts” solving a
variety of mathematical tasks.

A total of 21 interviews of subjects solving problems were coded and
analyzed. Three levels cf protocol analysis were used: (a) coding and
categorizing of idea units in order to identify characteristics of the theory as it
related to mathematical problem solving (b) identification of problem spaces

created by the problem soiver, and (c) characterization of the problem solving
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episodes as primarily knowledge telling or knowledge transforming.
Consistency between the levels of analysis was monitored.

The identification of rhetorical problems proceeded in two ways: (a)

Situations involving difficulties with language were examined. If the problem
solver appeared to be pursuing a particular goal, explicitly or implicitly, and
appeared to be purposefully working toward the goal, the activity was

identified as taking place in a rhetorical problem space. (b) Situations in which
text was moditied were examined.

Results

The first problematic situation for many problem solvers occurred as they
attempted to understand the problem statement. For example an eighth-grade
student read a problem and stated: "Okay . . . You have 19 coins worth . . . worth
a dollar. How many of each type of coin can you have? ... 19 coins worth a
dollar. Well 1 . . . 1 don't know if all 19 coins are worth a dollar each or just one
doilar.” The student resolved the problem in this way: "but | guess if it was
worth a dollar each they'd tell you." In this case, the student relied on her
expectations of text forms for problem statements to make the problem
situation meaningful.

Revisions of text were identified in the problem solving process and
appeared to be undertaken for different reasons. For example, one subject,
solving the coin problem above, modifiec:! a chart he was creating: "Um. | am
going to put a column over here for the total s» that | can keep a running total.”
Moditications of this type seemed replace creating a plan before beginning the
problem solving process. One problem solver working a problem involving
similar triangles modified a drawing in order to make the drawing more

consistent with the problem solver's knowiedge of similar triangles. The
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revision, in this case, seemed to be part of a process of reformulating the
problem. Revisions also occurred after the problem solver observed an error in
earlier work.

In summary, rhetorical problems were more easily identified auring the
pracess of understanding the problem statement than at other times during
individual problem solving. Although revisions of text did not seem to indicate
the same types of problematic situations that language presented in
understanding the problem statement, revisions of text often occurred at

critical points in the problem solving process.
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ACTION RESEARCH AND THE THEORY-PRACTICE DIALECTIC: INSIGH‘fS
FROM A SMALL POST GRADUATE PROJECT INSPIRED BY ACTIVITY THEORY

Jill Adler, University of the Witwatersrand. S Africa.

Action research is a context and a process by which practising mathematics teachers enrolied in
post graduate stidy can expiore and explsin the relationship between theory and practice. From
this starting point | develop the srgument that action research is enhanced by teachers’ prior
engagement in theorsticsl debate on learning and teaching. In particiar, key concepts in activity
theory' provide teacher-researchers with useful tools to explors, change and reflect on their
practice. These arguments are explored in this paper through the work of one particular
mathematics teacher during Ns post graduate study. | wil describe how his understandings and
use of activity theory both shape, and are shaped by, his classroom practices. This view from the
toacher-researcher as post graduate student /s complemented by my own reflections as the
suparvisor of his work. Through the latter, a third thrust emerges as 1 becoms aware of the
covnplexity of the questions provoked by the project, the kmitations of activity theory and the
constraints on such resesrch within post graduate study.

ACTION RESEARCH, THEORY-PRACTICE AND THE B ED DEGREE.

As an educational method concerned to break the research-practice divide, action
research has spawned many different interpretations and practices. Differances
can be linked to the assumptions and interests underlying the projects (Grundy,
1987), and to whather projects focus inwards towards the classroom or also
outwards towards the broader social structure (Liston and Zeichner, 1990).
Common to all projects is & concern with improvement of classroom practice
through the involvement of teachers-as-ressarchers in their own classrooms.

Action research is distinguished from good practice (what many teachers do
anyway) in that it is systematic, deliberate and open to public scrutiny (McNiff,
1988; Davidoff and Van den Berg, 1990; Walker, 1991) and, while enhancing
reflective teaching (Liston and Zeichner, 1990), is distinct from it in that reflective
teaching, is not always conscious (Lerman and Scott-Hodges, 1991). Action
research involves a continuous cycle of planning, acting, observing, reflecting and
replanning instances of classroom practice. Through critical reflections, teachers
not only develop their practice but also their theoretical understanding of that
practice. Action research thus provides for a constant interplay between theory,
research and practice.

!

as developed in the Soviet school of thought.
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Recently | have encouraied mathematics teachers enrolled for post graduate study
at the Bachelor of Education (B Ed) level at the University of the Witwatersrand
{Wits) to turns the research reguirements of their degree towards small scale action
research projacts. There is no particular innovation in this: in-service education,
directed as it is towards curriculum change, has long drewn on the methods of
action research. Currently, action research is being explorad for its possibilities
within pre-service teacher education (Liston and Zeichner, 1991) and Ni Sc study
{Lerman and Scott-Hodges, 1991). Their motivation is not dissimiiar to the two
inter-reiated reasons for my advocating action research within tha B ED: (i) The B
Ed degree has a predominantly theoretical thrust. Whiie students are generally
excited by new ideas and ways of looking at education, these oftsn have littie
impact on their educational practice. Action research can ground theory in
practice. (i) More broadly, practising teachers in Scuth Africa, by and large,
remain alienated from educational research and educational theory. They tend to
perceive themselves as users and not producers of knowiedge. In particular,
mathematics teachingis characterised by a rather slavish adherence to a prescribed
iyllabus and its related prescribed text book {Adler, 1991). Action research offers
possibilities for shifting such curriculum processes.

ACTION RESEARCH AND ACTIVITY THEORY.

Embedded in action research is a view of learning as an active process. Teacher-
researchers learn through action, and reflection on that action. Action research
thus shares assumptions about learning with constructivist theories, be they naive,
radical or ‘socio-constructionist’ {i.e. drawing on activity theory) (Bussi, 1991).
All see knowledge, not as given, but as constructed through activity. It is thus
not surprising that current research into mathematics teaching and learning from
constructivist perspectives (eg Bussi, 1991; Jaworsky, 1991; Lerman and Scott-
Hodges, 1991) are within an action research traditon . Whiie radical
constructivists and activity theorists share their rejection of knowledge as
transmitted, they differ crucially in the importance they attach to the sociai
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madiation of learning. | do not wish to debate the pros and cons of these theories.
In fact, like Confrey {1991), 1 would look to ‘steering a course between Vygotsky
and Piaget’. However, activity theory, with its emphasis on social mediation,
provides useful concepts like the Zone of Proximal Development (ZPD) and the
intorpersonal becoming the intrapersonal with which mathematics teachers can
examine social interaction and its impact on learning in their classrooms.

The focus of the rest of this paper is tha work of one such teacher, Mark?. Mark’s
action research projact(i) illuminates the theory-practics dialectic in the context of
the B Ed course and (ii) provides particular insights into how key concepts in
activity theory can be useful tools for a teacher attempting to reflect on,
understand, and change his teaching practices.

MARK’S RESEARCH - A BRIEF DESCRIPTION AND SOME ANALYSIS.

While enrolled in the B Ed, part-time, during 1990 and 1991, Mark was teaching
mathematics in senlor classes in a middie-class state (still segregated, whites-only)
school, and bogged down yet again by ‘word problems’ in Std 9 (Grade 11).
During his studies, he was inspired by the Piaget - Vygotsky debate on cognition.
After engaging with some theoretical extrapolations from activity theory to
mathematics teaching and learning, he wrote:

Various authors, including Christiansen and Walther (C & W) (1985), and
Mellin-Oisen (1986) have provided an elaboration of this theoretical
framework (activity theoty) into mathematical learning. Tha relationship
between educational ‘task and activity’ is analysed in detail by C & W,
whereas Mellin-Olsen locates activity within a broadar socio-political
context. Givan that the focus of this project is specifically syllabus-related
in terms of teaching word-problems with less emphasis on socio-political
problems, | will draw primarily on the work of C & W.

There were thus two interacting starting points for Mark’s project: (i) a problem
identified in his own ciassroom, and, (ii) a desire to develop his interest in activity
theory and knowledge es socially constructed. He acknowledged and then rejected
socio-political concerns as outside the scope of his project. His selection from
elements of activity theory is pragmatic and clearly shaped by his understundings

2 gSee Phillips, M (1991)
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of the scope of his project and the constraints of his practice. Right from the
start, Mark'’s project is an interaction of theoretical and practical concerns.

C & W's product-process framework and their characterisation of ‘drilling of
problem-types’ resonated with what Mark perceived as inadequacies in his (and
others’) practice. He transiated C & W‘s contrast of typical and novel problems
and their argument for internalisation through learning in two dimensions (action
and reflaction) into & series of tasks structured around the solving of ‘word
problems’ related to quadratic equations. These were to be tackied by Std 9 pupils
ina sociaIfy interactive setting so as to incorporate key activity theory concepts

such as ‘mediation in the ZPD’ and the ‘interpsychological becoming the
" intrapsychological’.

To facilitate both his own and others’ critical reflection and interpretation of his
strategies for changed practice, and because of his focus on mediation and
interaction, Mark tape-recorded a group of learners, his interactions with them, and
their interactions with each other. Mark’s detailed self-critical reflections are not
possible to reproduce in fuil here. Some of the most significant are captured in the
following extracts and descriptions.

Despite his intent at establishing both pupil-pupil and teacher-pupil interaction
Mark'’s transcript reveaied that: ‘l did most of the taiking ... each pupil tended to
interact predominantly with me’.

On the question of establishing inter-subjective meaning for the tasks, he noticed
that

‘... 1 often asked the question "do you all agree?” without actually
confirming whether they did ... ‘
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As regards his mediation of activity, close scrutiny of the transcript revealed that:

*...1 provided a great deal of help, but my domination prevented pupils from
collactively or independently solving the problams without my interference

More specifically,

‘... | effectively mediated Grant's and Robert’s activity... 1 failed to
effectively draw others into the process of interaction ... | concentrated far
more on the boys than on the girls ...’

And reflecting most criticaily on the last point he says:

‘A hidden assumption that the boys are automatically more successful than
girls at solving word problems seemed to prevail.’

Anastasia: | don’t understand
Teacher: OK, Robert, see if you can explain to her

Yeacher: ... good Robert ... (and later)
Teacher: Help Anastasia, Grant.

Page 8

Teacher: ...that's great. Look at Grant's attempt everybody.
Anastasia: Gee wiz, kif hey. )

Teacher: ... show the others what you did.’

Examining who entered tasks, how, why, he observed that many different methods
emerged, revealing a ‘virtue’ of his new approachin encouraging pupils to use their
own methods rather than simply adopting a ‘correct-method’ mentality and that:

*_.. Grant and Robert were the most actively involved on the tasks and came
closest to solving all the problems... this seems to have a bearing on their
acceptance of the tasks and their willingness to communicate in the group
setting...The girls tended to be demotivated ... none of the girls ware able
to effectively solve any of the problems ... A reason for the girls’
demotivation...might well be related to my ineffectual mediation ...Another,
more subtle reason, which C & W overlook and which Mellin-Olsen
addresses more adequately, is that ~irls’ failure to solve the problems could
be ... that they did not adequately accept the tasks as part of their own
activity...
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in addition, hae concludes that more tima was neaded for all to gat at each task,
and that in their construction, the tasks did not facilitate or provoke sufficient
pupil-pupil interaction. He draws his insights into his conclusions:

‘Although there were flaws in the tasks ... the approach adopted was by far
an improvement ... Pupils were more positive ... and | was provided some
interesting "revelations™ about my own teaching of which | was not aware.
My mediation was unwittingly sexist ... | dominated the activities ... With
these insights ... | can further improve my teaching approach so that more
pupils will benefit in the future ...’

and finally,

‘By researching my own methods of teaching word problems in the context
of ‘task and activity’, | have been able to provide an example of how
research and practice can be integrated so teaching is enhanced ... the
teaching process is truly a continual research one.’

REFLECTIONS

There is no doubt that Mark gained tremendous insight into his practice. In his
conscious attempt at preparing for socially interactive learning, he came to see that
his practices were such that not only did he dominate classroom interaction, but
his mediation was exclusive {focused on only two pupils) in general and gendered
in particular. Without some systematic method of observing his mediating
processes,' he would still be unaware of how much he actually talks in class and
to whom. This specific project, therefore, speaks volumes of the powerful impact
of action research with an activity theory framework. However, the weakness of
activity theory in relation to the ‘process of internalisation of collective activity and
the conditions of its functioning within the 2PD’ (Bussi, 1991) is reflectad In
Mark’s focus. His emphasis on the gender dimensions of the procass of
internalisation of collective activity fails to open up the difficulties attachad to
mediating a whole group all at once. What does the ZPD mean in whole class
interaction? Commenting on this, Bussi (1991) notes that this is still an ‘open
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problem in activity theory...(and) mathematics classrooms are suitable settings for
further research.’

Mark’s observations and reflactions are explicitly theory-laden. The structure of
his analysis fits the framework he established for his research. His discussion
foregrounds tasks, madiation and interaction and, through this focus, Mark is able
to develop and share detailed insight into with whom he interacted, how and to
what effect. However, his failure to mediate all pupils, and in particular the
demotivation of the girls in the class, required a reconsideration of his theoretical
framework. C & W do discuss goal-directed activity, but (as Mark says above)
this does not address the gendered outcome of his teaching. Gendered practices
need to be interpreted in relation to wider social practices and Mark is pushed to
reconsider the worth of Maellin-Olsen’s location of activity in a socio-political
context i.e. to alter and expand his initial theoretical frame. The interaction of
theory and practice evident at the beginning is thus just as evident at the end of
Mark's project. ‘

An important question at this point, both for Mark and for teacher-educators, is -
how to sustain the ‘symbiotic relationship between teacher as theory maker and
teacher as developer of prastice’ (Jaworsky, 1991) outside of the supporting
structure of the B Ed degree? The need for strategies such as support networks
for past B Ed students becomes importzant if the gains made by Mark during his
formal study are to be consolidated and developed. Within such networks, action
research as the structured and rigorous activity described in my paper, can become
a continuous part of a teacher’s reflection on their practice.

The more serious challenge, however, lies in linking issues such as gender bias in
the maths classroom to deeply rooted social practices. Once this link becomes
clearer, as it did to Mark, the solution to the problem becomes less obvious. Mark
will be able to draw from a large and growing body of literature on gender in
mathematics education. The experience gained and the analytical and
methodological tools developed in the research component of his B Ed should

enable him to act, reflect and deal creatively with these issues. But whether and
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how this rational method of noticing, analysing and acting will get at deeply seated
social practicés, e.g. gender, remains a question.
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STUDENTS' UNDERSTANDING OF THE SIGNIFICANCE LEVEL IN
STATISTICAL TESTS

M.A. Vallecillos; M. C Batanero and J. D. Godino

University of Granada (Spain)

ABSTRACT

In this paper the initial results of a theoretical- experimental study
of university students' errors on the level of significance of
statistical test are presented. The "a priori" analysis of the concept
serves as the base to elaborate a questionnaire that has permitted the
detection of faults in the understanding of the same in university
students, and to categorize these errors, as a first step in
determining the acts of understanding relative to this concept.

INTRODUCTION

One of the key aspects in the learning of the test of hypothesis, is the concept
of the level of significance, which is defined as the “probability of rejecting a
null hypothesis, when it is true". Falk (1986) points out the change of the
conditional and the conditioned as a frequent error in this definition and the
mistaken interpretation of the level of significance as "the probability that the
null hypothesis is true. once the decision to Teject it has been taken”. Likewlse,
White (1980) describes several errors related to the belief of conservation of the
significance level value «, when successive tests of hypothesis are carried out on

the same set of data, that is, relative to the so called “problem of the multiple
comparisons".

In this paper the concept of level of significance in a test of hypothesis is
analyzed, determining different aspects related to its correct understanding. The
analysis of the components of the meaning of mathematical concepts and procedures
should constitute a previous phase to the experimental study of students’
difficulties and errors on the said objects. The study of the interconnections
between the concepts enables us to know their degree of complexity and to determine
the essential aspects that should be pointed out to achieve a relational learning and

not merely an instrumental learning of the same (Skemp, 1976).

This report forms part of the Project £590-0246., DGICYT. Madrid
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Likewise, we describe the results of an exploratory study carried out on a

sample of 35 students, that shows the existence of misconceptions related to each one
of the aspects identified in the conceptual analysis. The errors of ‘the students when
faced with specific tasks indicate fauits in the understanding of the concepts and
procedures, and so, this analysis “should be considered a promising researching

strategy for clarifying some fundamental questions of mathematics learning” (Radatz,
1980, p.16).

CONCEPTUAL ANALYSIS OF THE LEVEL OF SIGNIFICANCE

In the classical theory (see for example, Zacks, (I1981)) a parametric test of

hypothesis is a statistical procedure of decision between one of the two

‘com; 'ementary hypothesis Ho and Hl. hypothesis that refer to the unknown value of a

population parameter, starting from the observation of a sample. To carry this out, a
statistic @(x) whose distribution is known in terms of the value of the parameter,

is used. The set of possible values of the statistic, supposing that the hypothesis

'Ho is verified, is divided into two complementary regions, acceptance region A and

critical region C, in such a way that having observed the particular value of the
statistic in the sample we decide to accept the Ho hypothesis if this value belongs
to the regiorn A and reject it if it belongs to C. We will only consider the case HO:
0860 of simple null hypothesis, to facilitate the discussion.

The application of a test can give rise to two different types of errors: to
reject the hypothesis Ho when it is true (type | error) and to accept it when it is
false (type Il error). Although we cannot know whether we have committed one of
these errors in a particular case, we can determine the probability of type I error
as a function of the value of the parameter, that is called the power function of the

test:

Power {0) = P (Rejecting H0|o)

In the case of o=00 . we obtain the probability of rejecting Ho with the chosen
criteria, supposing that Ho is true, the so- called probatility of type 1 error, or
level of significance a of the test:

« = P (Kejecting Ho |00) = P (Rejecting H0|H0 is true)

The contrary event of rejecting the hypothesis Ho consists of accepting it and

its probability can also be expressed as a function of the parameter:

o (f

S]]
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B(8) = P (Accepting Holo)

In this case and whenever ¢ is different from the supposed value oo, a type 11
error is being committed. As we can see, in the case of a simple null hypothesis,
while the type 1 error has a constant probability, the probability of type {1 error
is a function of the unknown parameter. Finally, and taking into account that the
events to accept and to reject the null hypothesis are complementary, we see that the

relationships between these probabilities are given by the following expression:
a= 1-3(00)

In the understanding of the idea of level of significance, we can as a result of
this, distinguish four differentiated aspects, that we have used in the elaboration
of a questionnaire that enables us to identify and classify the misconceptions
related to this understanding. This classification constitutes a first step in the
categorization of the acts of understanding of synthesis of the said concept
(Sierpinska, 1990), that would be added to the acts of identification, discrimination

and generalization of the objects that intervene in its definition. Theue aspects are
the following:

a) The test of hypothesis as aproblem of decision: between two excluding and

complementary hypothesis, with the possible consequences of committing or not one of

the types of error that are incompatible but not complementary events.

b) Probabilities of error and relation between them: understanding of the conditional

probabilities that intervene in the definition of « and B, of the dependence of 8 in

terms of the unknown value 8 of the parameter, and of the relation between « and B.

¢c) Level of significance as the risk of the decision maker:

The values « and B determine the risks that the decision maker is willing to

assume in his decision and will serve, along with the hypothesis, for the adopticn of
the decision criteria.

d) Level of significance and distribution of the statistic; interpretation of a

il oo il &L —

significant resuit:

o 7
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The level of significance is the probability that the statistic chosen as a

decision function takes a value in the critical region, in the case that the null
hypothesis is true. Obtaining a significant result leads to the rejection of the null

hypothesis, although this does not necessarily imply the practical relevance of this
result.

EXPERIMENTAL STUDY OF MISCONCEPTIONS

Description of the sample

The study was carried out on a group of 35 students studying Statistics in their
2nd year of Civil Engineering in the University of Granada. Seventy five per cent of
these students had not studied Statistics or Probability before and the rest had only
studied it in some previous course. These students had studied Infinitesimal Calculus
and Algebra in their first year of studies, so they can be considered to have an
excellent previous mathematical base. The subject of Statistics, which includes the
basis of descriptive statistics, probability theory and inference has been given

three hours per week throughout a whole course, and the test having been carried out
at the end of the same.

Questionnaire used.

The questionnaire used consists of 20 questions, and was elaborated by the
authors to study conceptual difficulties of the test of hypothesis. Due to the
limitations of space we will only present the results obtained in four of the items,
whose distracters have been chosen by trying to detect errors in the acts of

understanding of synthesis referred to the level of significance. These items are the
following.

ITEM 1:

The probabllity of committing both type | and type Il errors in a test of hypothesis is:
A 13 B8: 0; C: a + b; D: ths product ab , since the errors are indepsndent

This item asks about the possibility that the two types of error can occur
simultaneously. Since by carrying out a test of hypothesis we have a oroblem of
decision, the null and alternative hypothesis are complementary like the events of

accepting and rejecting the null hypothesis. However, the events of committing type 1

Q .
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error or type Il error are incompatible but not complementary.

ITEM 2:

A sclentist alwayz chooses to use 0.05 as the level of significance in his experiments.
This means that In the long run:

£: 5 % of the times he wiil reject the null hypothesis.

B: 5 % of tha times that he rejects the null hypothesis he will have made a mistake.
C: He will have mistakenly rejected the nuil hypothesis only 5 X of his experiments.
D: He will have accepted a false null hypothasis 95 X of the times.

In this item the definition of the level of significance appears as a
conditional probability and the distracters refer to the incorrect interpretation of
the same. lh particular, in the classical inference, it is not possible to know the
probability of having committed one of the types of error once the decision has been
taken, although we can know the probabilities of type I or I} error "a priori”. That
is, although we cannot perform an inductive inference about the probability of the
hypothesis referring to the population, once the particular sample has been observed,
we are able to make a deducive inference from the population of possibie samples to

the sample that is going to be obtained before having extracted it (Rivadulla, 1991).

ITEM 3:

when we change from a level of significance of 0.01 to one of 0.05 we have:
A: Less risk of type 1 error.

B8: More risk of type | error.
C: Less risk of type Il error.
D: Both B and C.

In this item we study the interpretation of the level of significance as a risk
of error as well as the relationship between the probabilities « and 8, which implies

that it is not possible to simultaneously reduce the two risks, when the sample size
has been fixed.

ITEM 4:

what can be concluded If the result In a test of hypothesis Is significant?:
A: The result is very Interesting from the practical point of view.

B: A mistake has been made.

C: The alternative hypothesis s probably correct.

D: The null hypothesis is probably correct.

The level of significance determines the critical and the acceptance regions of
a test, together with the null and alternative hypothesis and the test statistic. The

problem of carrying out a test of hypothesis has been transformed into that of

BEST COY AVAILABLE
)
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dividing the population of possible samples in two complementary subsets: those who
provide evidence in favour or against the null hypothesis. So, the level of
significance is the probability that the statistic take a value in the critical
region. One statistically significant result does not necessarily imply the
significance (relevance) from a practical point of view.

RESULTS AND DISCUSSION

The frequencies and percentages of responses to the different items are
presented in Table 1. The relative difficulty of the same have been quite
homogeneous, although somewhat higher in item 4 which refers to the interpretation of
resuits and the difference between statistical and practical significance. From the
analysis of the distracters that have been chosen by the students in the different
items, we obtain a first information about the conceptual errors, that we classify in

accordance with the previous conceptual analysis, in four sections:

Table 1
Frequencies (and percentages) of responses in the {tems

OPTIONS
item Al7) B(%) C(7) D(%) R. Correct

5 (14.3) *16 (45.7) 5 (14.3) 6 (17.1) 16 (45.7)
4 (11.4) 9 (25.7) *17 (48.6) 4 (11.4) 17 (48.6)
4 (11.4) 12 (34.3) 1 (2.9) *16 (45.7) 16 (45.7)
6 (17.1) 2 (57 *12 (34.3) 14 (40.0) 12 (34.3)

SWN -

® Correct optlon,

Misconceptions in the identification of a test of hypothesis as a problem of
decision: .

- Consideration of the type I and Il errors as complementary events that are
shown in the four responses to distracter D of item 2 and in the 5 responses to
distracter A of item l.

- Errors type 1 and 1l are not perceived as incompatible events. (5 responses to
distracter C and 6 to D of item 1).

o 79
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Misconceptions in the interpretation of the probabilities of error and their
relations:

- Confusion of the two following conditional probabilities in the definition of
\ the level of significance
« = P (reject Holﬂotrue) and a =P (H0 true | H, has been rejected)

shown by the 9 responses to distracter B of item 2, that is the error mentioned in
Falk's research (1986).

- Interpretation of « as P (reject Hol. that is to say , the suppression of the
condition in the conditional probability, in the 4 responses to distracter A of item
2. '

- Not to take into account the relationship between the probabilities of type 1|
and II error (12 responses to distracter B of item 3).

Misconceptions in the interpretation of the level of significance as the risk of the
decision maker:

- A higher level of significance gives less probability of type 1 ervor. 4
responses to distracter A of item 2).

- By changing the level of significance the risk of type 1 error does not change
{1 case, in distracter C of item 3).

Misconceptions in the interpretation of a significant result:

- A statistical significant result is also significant from a practical point of
view, {6 responses to distracter A of item 4).
- Since the level of significance is a very small value of a probability, it is

associated with an incorrect result {2 responses to distracter B of item 4).

- Confusion of the significant resuit as one that corroborates the nuil
hypothesis, this is confusion of the critical and acceptance regions (14 responses to
distracter D of item 4).

CONCLUSIONS

In the analysis of the responses to the questions put forward, the existence of

El{fC‘ 30
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a great dlversity of misconceptions has been shown in the interpretation given by the
students of the sample to the concept of the level of significance, thus completing
the results of Falk (1986) and White's {1980) research. Although in an exploratory
way, this study constitutes a first step towards the search for the structure of the
components of theAmeaning of the test of hypothesis and the identification of
obstacles in the learning (Brousseau (1983), that without doubt can contribute to an

improvement in the teaching and application of statistical methods.
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Students’ Cognitive Construction of Squares and Rectangles in Logo Geometry'
Michael T. Batt L H.C
Kent State University State University of New York at Buffalo
It has been argued that approptiate Logo activities can help students attain higher levels of geometric
thought. The argument suggests that as students construct figures such as quadrilaterals in Logo, they will
analyze the visual aspects of these figures and how their component parts are put together. encouraging the
transition from thinking of figures as visual wholes t0 thinking of them in terms of their properties.
Rescarch has demonstrated that this theoretical prediction is sound; appropriate use of Logo helps students
begin to make the transition from van Hiele's visual to the descriptive/analytic level of thought (Battista &
Clements. 1988b; 1990; Clements & Battista, 1989; 1950; in press). The current report will extend the
previous findings by giving a detailed account of how students’ Logo explorations can encourage them to
construct the concepts of squares and rectangles and thc relationship between these two.
The Instructional Setting _

Students (n = 656) worked with activities from Logo Geometry (Battista & Clements, 1988a;
Battista & Clements, 1991a; Clements & Battistz. 1991), which was designed to help students construct
geometric ideas out of their spatial intuitions. Control students (644) worked with their regular geometry
curriculum. After introductory path activities (e.g., walking paths, creating Logo paths), students engaged
in off- and on-computer activities exploring squares and rectangles, including identifying them in the

environment, writing Logo procedures to draw them, ar:d drawing figures with these procedures (Fig. 1).

Figure 1. “Rectangle: What can you draw?”
Students are asked to determine if each figure could
or could not be drawn with a Logo rectangle

procedure with inputs and to explain their findings. @ D
They are permitied to turn the turtle before they O

draw a figure. From Logo Geomery.

LS =

Data came from two sources—case studies and relevant items from the Geometry Achievement
Test that was administered to all students involved in the Logo Geometry project (Clements & Battista,
1991). None of the items from this test were related to Logo. The case studies were conducted by the
authors, who observed and videotaped four pairs of students from grades K, 2, and 5 (two pairs) every
day they worked on the materials.

* Preparation of this material was supporicd by the National Scicnce Foundation undes Grant Nos. MDR-865 1668 and
8954664, Any opimons, findings, conclusions of reccommendations expressed in this publication are thase of the authors and
do not necessartly reflect the views of the National Scicnce Foundation.
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Resutts
Paper-and-Pencif Items
The first item, adapted from (Burger & Shaughnessy, 1986), ﬁ Q Q
asked students to identify rectangles. One point was given for each / % V

correct identification. Note that good performance on this item requires Q &
knowledge not only of the properties of rectangles, but of the fact that

squares are rectangles. %\ A Q

Directions: Write the numbers of all the figures below that are rectangles.

b~

There was a significant treatment by time interaction (E(1, 1030) = 21.83, 2 <.001). The Logo
posttest score was higher than al other scores (Logo pretest, control pretest and posttest) and the control
posteest scores were higher than hoth pretest scores (g < .01). Itis noteworthy that Logo students
showed dramatic growth between the pre- and post-tests for the squares (shapes 2 & 7). Control groups
also showed growth on these items, but nowhere near as strong as did the Logo groups. For both of these
shapes the most striking growth occurred in grades 4, 5, and 6. This may be due to students’ increased
knowledge of the properties of shapes or to the thinking engendered by the “Rectangles: What Can You
Draw?” activity and class discussion. It is also relevant that the Logo group outperformed the control
group on the purallelogram items; therefore, there was little indication that the students were simply
overgeneralizing all quadrilaterals as rectangles. In a similar vein, students were asked on a separate item
to identify all the squares in the same group of figures. Logo students significanty outperformed control
students. There was no indication of an overgeneralization that “ail rectangles are squares.”

On another paper-and-pencil item, students were asked which geometric properties applied to
squares and rectangles. Logo Geometry students improved more than control students. Thus, students’
knowlcdge ot properties was increased by work with Logo Geometry. According to the van Hiele theory,
this lays groundwork for later hierarchical classification.

The increased attention that Logo students gave to properties, however, sometimes made it seem
like their performance declined compared to control students. First, Logo more than control students
claimed that rectangles have two long sides and two short sides. While not mathematically correct, this
response indicates an increased attention to properties of figures—students consider it to be a property of
rectangles.  Logo students also claimed more often that rectangles had “four equal sides,” possibly an
overgeneralization from squares to rectangles or a misintcrpretation of what the property states.

On the other hand, Logo students leamned to apply the property “opposite sides equal” to the class
of squares in much greater numbers than control students. Logo instruction may have helped students
understand that the property “opposite sides equal” is not inconsistent with the property “all sides cqual in 1

length.” Most students could apply both propertics to the class of squarcs, demonstrating flexible
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consideration of multiple properties that may help lay the groundwork for l;iemrchical classification.

In conclusion, Logo explorations helped students move toward van Hiele level 2 by focusing their
atrention on properties of figures. Explorations of relationships between shapes might have provided
important precursors for hierarchical classification. Indeed, on the paper-and-pencil task in which students
identified rectangles, the Logo Geometry group showed a strong increase in the frequency of identifying
squares as rectangles, compared to the control group. This effect was particularly strong in the
intermediate grades. No evidence of overgencralization was found (¢.g., that “all rectangles are squares™).

There are several possible reasons why Logo Geometry instruction helped substantial numbers of
students to identify figures consistent with the hierarchical relationship. First, when Logo Geometry
students succeeded in identifying squares as rectangles on the rectangles item, they could have done so by
asking themselves if a “Rectangle” procedure could have drawn esch of the given shapes. Second,
increased knowledge of properties of shapes and movement toward level 2 thinking may have enabled
students to see squares as rectangles because squares have all the properties of rectangles. Class
discussions of the classification issue may have suggested to students that squares should be classified as
rectangles. Some students may have simply accepted this as a fact to be remembered. As we will see
below, others made sense of this notion by using visual transformations.

Case Studies
What i . , ification o

Most of the students fell intq either level 1 (visual), level 2 (property-based), or the transition
between the two levels in the van Hiele hierarchy. The two student responses below illustrate these leveis
of thinking when classifying figures as squares. A second grader was examining her attempt to draw a

tilted square in Logo. Although not really a square, she reasoned as follows:

Int: How do you know its a square for suse?
M: It's in atilt But it's a square becausc if you turned it this way it would be a square.

M does not refer to properties in making her decision; it is sufficient that it looks like a square.
Contrast this visual response with that of two fifth graders who had drawn a tilted square.

Int: Is it a squarc?
Ss: Yes. a sideways square. (Int How do you know?] It has cqual edges and equal tums.

So. what criteria do students use to judge whether a figure is a square? M was operating at the
visual level: a figure is a square if it looked like or could be made to look like a square. The Sth graders
required a figure to possess the properties of a square, demonstrating level 2 thinking in this instance.
Squares as rectangles

Students also dealt with the relationship between squares and rectangles in different ways. The

first example of a kinderganen student illustrates an unsophisticated visual approuch to judging the identity
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of shapes. Chris is using the Logo Geometry “Shape” command to draw figures of various sizes. He
types S (for Shape), then types the first letter of the shape he wants (e.g., S for Square, from a menu),
and finally receives a prompt to type 2 number for the length of each side of the shape. After first being
puzzled that pressing R for rectangle required two numbers as inputs, Chris enters two 5s.

Int:
Chris:
Int:
Chris:
Int:
Chris:
Int:
Chris:
Int:
Chris:
Int:
Chris:

Now what do the two Ss mean for the rectangle?
1 don’t know, now! Maybe I'll name this a square rectangle!
That looks like a square.
It’s both,
How can it be both?
‘Cause 5 and § will make a square.
But how do you know it is still a rectangie then?
‘Cause these look a litte loager and these look a little shorter.
Would this square [drawing a square with Logo] also be a rectangle, or not?
No.
Even though I made it with the rectangle command?
It would te a rectangle square,

Even though Chris uses a terminology (“square rectangle”) that suggests that he might be thinking

of a square as a special kind of rectangle, his response of “No” indicates that he is not making a
hierarchical classification. He also judges the figure to be a rectangle, not because it was made by the
rectangle procedure, but because of the way the sides “look.”

Int:
Chris:
fnt:
Chris:
Int:
Chris:
Int:
Chris:

So is a square a special kind of rectangle?

Yeah, if you pushed both numbers the same.

How about 10 on two sides and 9 on the other two? Would that make a square? Or a rectangle? Or both?
{t’s both [a square and a rectangle].

1s it a square”

Yes.

How come it's a squarc?

*Cause 9 is close to 10.

Again, we see the strength of visual thinking in Chris’ judgraents. He is willing to call the

rectangle with side lengths of 9 and 10 a square, presumably because his visual thinking causes him to
judge 9 close enough to 10 as side lengths. Contrast this with the second grader M's thinking about

squares. It too was visual, but it was more sophisticated because of her use of visual transformations.

Robbie, another kindergartner, already indicated that he understood why two numbers must be

input for a rectangle and only one for a square.

Int:
Robbie:
int:
Robbic:
Int:
Robbie:
Int:
Robbic:
Int:
Robhic
it
Robbie:

O
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What about this? Whatif IputinSRSS.

That would be a rectanglc for R.

Right, and then § tell it S and §.

R draws on paper what he thinks it would be (a square) and calls it a squarc.

How did that happen?

Because if § goofed...and 1 think { put some number the same, { got a square, and { wanted a reciangle.
Why is that?

{ can go wrong on the rectangles. Becausc the rectangle is like a square, except that squares aren't fong.
What clsc do you know about a rectangle? What docs a shape need to be to be a rectangic?

All of the sides aren’t cqual. These two |opposite) and these two [other opposile) sides have 19 be cqual.
How about 10 on L1wo sidcs and 9 on the other two? Would that make a squarc?

Kind of like a rectangle.
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Int: ‘Would it be a square 100?
Robbie: [Pause.) Ithink may... . (Shaking head negatively.] It's nota square. ‘Cause if you make a square, you
wouldn't go 10 up, then you tum and it would be 9 this way, and turn and 10 this way. That's not a square.

Robbie too is not using any type of hierarchical classification. He thinks of squares and rectangles
in terms of visual prototypes— “the rectangle is like a square, oxcept that squares aren't long.” And
according to his past experiences, he, like most students, decides that rectangles have opposite sides equal,
but not all sides equal.

In conclusion, the Logo microworids proved to be evocative in generating thinking about squares
and rectangles for these kindergartners. Their constructions were strongly visual in nature, and no logical
classification per se, such as class inclusion processes, should be inferred. Squares were squares, and
rectangies rectangles, unless—for some students—they formed a squarc with a Logo rectangle procedure
or they intended to sketch & rectangle, in which case the figure might be described as a “square rectangle.”

The comments of another second grader illustrate how visual thinking is used by some students to
make sense of relationships between figures (Battista & Clements, 1991b). This student, who had

previously discovered that she needed 90° tumns to draw a squarc, used 90s on her first atempt at making a
tilted rectangle, reasoning as follows:

C: Because a rectangle is just like a square but just longer, and all the sides are straight. Well, not straight, but not
tilted like that (makes an acute angic with her hands). They're all like that (shows a right angle with her hands)
and so are the squares.

Int: And that's 90 [showing hands put together at a 90°)?

C: Yes.

She then stated that a square is a rectangle.

Int: Does that make sense to you?

C: It wouldn't to my [4 year old] sister but it sort of does to me.

Int: How would you explain it to her?

Cc: We have these streichy square bathroom things. And I'd tell her to streich it out and it would be a rectangle.

1t “sort of made sense” that a square is a rectangle because a square could be stretched into a
rectangle. This response may be more sophisticated than one might initially think, for C had already
demonstrated her knowledge that squares and rectangles are similar in having angles made by 90° turns.
Thus, she may have understood at an intuitive level that all rectangles could be generated from one another
by certain “legal” ransformations, that is, ones that preserve 90° angles.

A fifth grader was working on the square in the “Rectangie: What Can You Draw?" activity.

Jon: This one [pointing to the square] is not a rectangle, It's a square. [t has cqual sides,

Int: Can you do it with yowr rectangle procedurc?

Jon: No. because the sides are equal. So that would be 2 “no.”

Int: So, no matter what you tricd. you couldn't make it with your rectangle procedure? ‘
Jon: You couldn’t no, because the sides are cqual,

[[[TH On your rectangle procedure, what docs this first input stand for?

Jon: The 207 These sides.

Int: What docs the 40 stand for?

Jon: Yca. you could do it, §f you put like 40, 40, 40, and 40. lagain. mouons]

Int: Ok, uy it
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Jon: So that wouid be 2 square?
Int: Can you deaw a square with your rectangle procedure?
Jon: You could draw it, but it wouldn't be a rectangle.

Even with prompting, Jon is resistant to calling the square a rectangle. In his conceptualization, one can
draw a square with the rectangle procedure, but that does not “‘make it” a rectangle.

Here is another fifth grader discussing the issue.
Teacher: Why do you think a square is not a rectangle, Jane?
Jane: - Each side is equal 10 each other. But in a reciangle there are two longer sides that equal cach other and the other

two sides equal each oiher but they're short.

This response is typical. Jane has simply elaborated the essential visual characteristics of the set of figures
she thinks of as rectangles. So, because almost all of the figures that she has seen labeled as rectangles
have two long sides and two short sides, she includes this characteristic in her list of charactetistics or
properties. The teacher asked how she could make & square with the RECT procedure.

Jane: Because you put in two equal numbers. And that's the distance (length) and the widih. If they are the same
amount, then it will come out 10 be a square.

Teacher: So it did come out to be a square? Tha is a square you're telling me?

Jane: Yes, and a rectangle. Butil’s more a square, because we know il more as a square.

The second grader below tries to deal with the problem by inventing new language, much like one
of the kindergartners that we discussed.

Int: Is everything that RECT draws a rectangle?

Bob: That’s (points 10 square on the screen) not a rectangle.

Int: How come?

Bob: Because the sides are the same size?

Int: So ... this square (pointing to the square on the sheet] is not a rectangie?
Bob: [ think it’s a special kind of rectangle.

Int: So is this (pointing to the square on the screen) a rectangle?

Bob: It’s a special kind of rectangle.

So Bob dealt with the conflict of a square being drawn by a rectangle procedure by inventing a language
that allowed him to avoid the uncomfortable statement that a square is a rectangle by saying that a square is
a special kind of rectangle but not a rectangle.

Other fifth graders trying to come to grips with the same question in a class discussion.

Lisa: [ have a different question. Why can't we call squares equilateral rectangles?

Keith: A square classifies as a bunct: of things. Equilateral rectangie doesn't classify as all the things that are square.
Teacher, Give me an exampie of a square that isn't an equilsieral rectangle.

Keith: Well, like a diamond.

Teacher: [Draws one and has Keith clarify that he means a diamond with 90° tums. Keith still maintains that the drawing
is not an equilatcral rectangle.)
Lisa: All you have todo is tum it and it would be both a square and an equilatcral rectangle in my definition.
Intcrestingly, and illustrating his lack of hierarchical classification, Keith does not think a square
and an equilateral rectangle are the same. Lisa, who does, still uses visual thinking to support her
argument. In the episode below, the teacher has asked the students whether a variable square procedure

(SQUARE :X) can be used to mike a variable rectangle procedure.

K: No. There are two longer tines on a rectangle. They are longer than a squarc. Al the hiacs are not equal n a
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tectangle; they ace in a square. So if you think that, you can't deaw a rectangle with a square procedure.

P: In the sense that the 10 or whatever yci pmdownfordaesqmmpcmuaﬂﬁmesndu.whthﬂdntwork
because all the sides would be equal. So you'd have 10 make a new procedure for it.
¥ You have mentioned that opposite sides are paraliel and equal. 1’s the same way with a square except that all

sides arc equal. So that the two sides that are paralie] are still equal. So a squarc in the sense that you're saying
is a still a rectangle, but a rectangle is not a square.

Teacher: Can we build any rectangle with the square procedure?

I H Yes youcan.

Teacher: Can I build a rectangle with sides of 20 and 40?7

J: No. sorry. You can't build every single rectangle with the square procedure, but you can build one rectangle
with the square procedure.

In pairs, students now move on to the Rectangle;: What Can You Draw? activity. As they get to the square
on the sheet, J says “It’s a square.” P illustrates his confusion over classification, saying “A square can be
arectangle, wait. A rectangle can be a square but a square can’t be a rectangle.” J starts to correct him “A
square can be a rectangle. P interrupts, “Oh yeah {laughs].”

In this episode, all of these students see that the square procedure cannot be used to make
rectangles. J, however, is the only student who seems capable of comprehending the mathematical
perspective of classifying squares and rectengles. However, her comment “in the sense that you're
saying"” suggests, that she has not yet accepted this organization as her own. The episode below further
illustrates that she has not yet adopted a mathematical organization in her classification of shapes.

Int: 1f T typed in RECT 50 51, what would it be (before hitting return)?

P: Probably about a square.

J: A rectangle but it wouldn't—

P: 1t would be a rectangle but sorta like—

IH 1t would be a rectangle, but it wouldn't be a perfect square. {They hit retum.}
J: You see it's not a perfect square.

P: {Measures the top side (the longer) with his fingers.] ICs only one step off.

Even though P and J say that the 50 51 rectangle is a rectangle and not a square, their language
seems to indicate their belief in such a thing as an “imperfect square™—that is we presume, a figure that
looks like a square but does not have all sides equal. They cling to an informal rather than logical
classification system, one that still contains remnants of their visual thinking.

Finally, we examine the comments of a 6th grader during a class discussion of the square/rectangle
issue raised by trying to draw the square with the rectangle procedure. Kelly asked “Why don't you call a
rectangle a square with unequal sides?" After the teacher defined a rectangle as a shape that has four right
turns and opposite sides parallel, however, Kelly stated “If you use your definition, then the square is a
rectangle” (Lewellen, in press). Kelly's comments, like those of the 5th grader J, clearly indicate an
ability to follow the logic in the mathematical classification of squares and rectangles. But neither student
has yet made that logical network her own—cach still clings to the personal network constructed from
previous experiences. As van Hiele says, “Only if the usual (as taught in the classroom] netwaork of
relations of the third level has been accepted does the square have to be understood as belonging to the set
of thombuses. This acceptance must be voluntary; it is not possible to force a network of relations on
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someone” (van Hiele, 1986, p. 50). For Kelly or J to move to the next level requires them to reorganize
their definitions of shapes in a way that permits a total classification scheme to be constructed. That is, the
attainment of level 3 does not automatically result from the ability to follow and make logical deductions;
the student must utilize this ability to reorganize her or his knowledge into a new network of relations. In
this network, “One property can signal other properties, so definitions can be seen not merely as
descriptions but as a way of logically organizing propenties” (Clements & Battista, in press). Normally

this entails making sense of and accepting the common definitions and resulting hierarchies given in the
classroom.

Conclusions

Logo environments can promote students’ movement from the visual van Hiele level to the next
level in which students think of shapes in terms of their properties. Logo explorations of relationships
between shapes such as squares and rectangles differentially affect students at different levels of thinking.
For some students such as second-grader C, such explorations cause their visual thinking to become more
sophisticated, incorporating visual transformations that express their knowledge of these relationships.
For several of the fifth graders, the explorations engendered analysis and refinement of their definitions for
shapes in terms of propertics, further promoting the attainment of level 2 thinking. And finally, for somc..
such explorations promoted the transition to level 3 thinking—first they understand a logicat organization
of properties, and finally they adopt it. '
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ARITHMETICAL AND ALGEBRAIC THINKING
IN PROBLEM-SOLVING!

Nadine Bednarz, Luis Radford, Bernadette Janvier, André Lepage
CIRADE, Université du Québec & Montréal

The fact that students have difficulty acquiring and developing algebraic procedures in problem-solving,
considering the arithmetical experience that they have acquired over years, calls for a didactic re‘lection on
the nature of the conceprual changes which mark the transition from one mode of treatment to the other. In
this perspective, our study seeks to characterize the spontaneous problem-solving strategies used by
Secordary Il levet students (14 -and -15-year-olds), who have already 1aken one algebra course, when
solving different problems. The analysis of the problem-solving procedures developed by these students
reveals the differences between the conceptual basis which underlie the two modes of thought.

The difficulties experienced by students learning algebra have been the subject of many studies which have
shown that certain conceptual changes are necessary to make the tmansition from arithmetic to algebra
(Booth, 1984; Collis, 1974, Kieran, 1981; Filloy and Rojano, 1984; Hercovicz and Linchevski, 1991;
Arzarello, 1991...). In the area of problem-solving, which is one of the important heuristic functions of
algebra (Kieran, 1989) and which proves very difficult for students (Lochead, 1988; Kaput, 1983;
Clément, 1982; Mayer 1982), the analyses examining the passage to an algebraic mode of thinking have
either focused on a certain dialectic between procedural and relational thought (Kieran, 1991; Arzarello,
1991), or on the symbolism and/or the solving of equations. With regard to the latter, the history of
mathematics shows that algebra began to develop well before symbols were used to represent unknown
quantities. Rhetoric was an important stage in this development among the Arabs, for whom language was
the natural means to represent the (known and unknown) quantities of a problem to be solved and to
express the solution process. The studies carried out among students atso show that most of them, from
high school to university, solve algebraic problems in an “abridged" style (natural syncopated language)
rather than in a symbolic style (Kieran, 1989; Harper, 1979). Few studies, however, have focused on the

students' reasoning in solving the problems.

| This study is pan of a larger project undcrtaken by a group from CIRADE. subsidized by
the FCAR (Quebcc), which is researching the conditions for the construction of algebraic
rcasoning amd representations, with regard to the situations which allow for their
emcrgence and development.

Aruitoxt provided by Eic:




E

1-66

In our didactic perspective, the main objective of our analysis was to gain a better understanding of the
conceptual basis which underlie the arithmetical mode of thought on one hand, and the algebraic mode of
thought on the other, as well as the possible articulation-conflicts which are possible in the transition from
one mode of treatment to the other.

From a didactic point of view, because of the previous experience acquired by the students, problem-
solving appears to be an interesting terrain for examining the two modes of thought and the conceptual
changes which mark the passage from the arithmetical to the algebraic thinking. Morcover, from the
historical point of view, the solving of problems played an imporant role in the development of al.gebra. It
is at the heart of the algebra of Diophantus and of the Arabs, and is explicit in Vieta's objective of
developing a method that could solve every problem. Thus, problem-solving is a doubly interesting terrain
for the examination of the emergence of the algebraic mode of thought and its characteristics. This
historical analysis is now being carried out, and is the object of investigation of some of the members of
our team (Charbonneau, 1992; Lefebvre, 1992; Radford, 1992).

Objective of the Study

By examining the ways in which secondary school students (Sec. III, 14-and-15-year-olds who had
already taken an algebra course) spontaneously solved different types of problems, this exploratory
rescarch project, carried out with a small group of students, aimed to analyse the solution processes of the
students. In the characterization of the arithmetical and algebraic procedures used, the accent was placed
not on the use of symbolism, but rather on the students® capacity to grasp the known and unknown
quantities in the problem, and their way of solving it.

Method

In order to delineate, on an exploratory basis, the procedures used by students, and, through these, to
better elucidate the differences between the conceptual basis which underlie the arithmetical and the
algebraic thinking, 54 students from two regular classes in a Montreal area public high school (Secondary
I11, 14-and-15-year-olds) were given a paper-and-pencil test with five different written problems to

solveZ. The choice of the students’ level (they had taken an introductory course in algebra) made it

2 The different problems presented, involving complex relations. could all bc solved a
priori by ecither arithmetical or algebraic reasoning, even if some of the methods appear
morc complicated than others.
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possible for us 1o show the conflicts that can arise for students at this suge when facing two possible
modes of solving the problems.

Analysis of the Results

Our analysis centered on one of the problems, which read as follows: “588 passengers must travel from
one city to another. Two trains are available. One train consists only of 12-seat cars, and the other only of
16-seat cars. Supposing that the train with 16-seat cars will have eight cars more than the other train, how
many cars must be attached to the locomotives of each train 7

In this problem, different solution processes were possible. These took into account a certain implicit
mental representation of the data and the relations which linked the elements involved, a representation
which evolved during the solution process. How can we distinguish between the arithmetical and the
algebraic procedures in the ways that this data and these relations were dealt with ?

A preliminary analysi; of the above problem brought out the key elements around which the solution will
be organized: “the total number of passengers: 588", the existence of “‘two trains”, of “16-seat cars”, “12-
seat cars”, and the “cight cars more” that one kind of train had in relation to the other.

How ever, the resolution of the problem required the use of other elements which made it possible to *“build
bridges™ between the different data, elements which were not at all explicit in the problem: the number of
16-seat cars and 12-seat cars, the relation between the two types of quantities involved: the number of cars
and the number of passengers, which must be built from the rates given in the problem, the number of
passengers 1n each train... This a priori analysis brought to light important reference points which guided

the subsequent analysis of the students’ ways of solving the problem.

SOME ARITHMETICAL PROCEDURES

It was easily observed that certain elements were retained by the students, and that these were used as a
kind of point of entry , or engagement, in the organization of their solution procedures: a) the two trains:
b) the whole: the 588 passengers: ¢) the difference between the number of cars of one type and those of
other type; d) the data: “16-scat cars” and “12-seat cars™.

In general, the arithmetical procedures were organized around these four known elements, in attempts

10 build bridges between them to be able to work with known data. The unknown quantity therefore
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appeared at the end of the process. Two types of entry points, or engagements, were distinguished. In the
first case, the first two clements (a and b) frequently gave rise to a numerical strategy which we call
equitable partition, which consisted in dividing the number of passengers by the number of trains (in
this case, two) to obtain the number of passengers in each train (see Procedure 3). Another less frequeni
type of engagement was the adjustment of the difference between the two trains (c) at the beginning,
to obtain two trains having the same number of cars (see Procedures 1 and 2).

1. Procedure taking the difference into account at the beginning:

Student: Comments:

8 x 16 = 128 passengers Numbers of passengers in the 8 extra cars

588 - 128 = 460 passengers By eliminating the extra cars, the number of cars in each train is equal
460 + 28 = 16.4 12 seats + 16 seats = 28 seats

(one 28-seat car train)

Answer:
17, 12-seat cars and 25, 16-seat cars

This strategy clearly showed the modifications which occurred in the representation of the problem during
the solution process: this representation was not at all static. The problem, and the relations linking the data
had to be transformed by the students into a new configuration of the whole, which made it possible for
the calculations to progress. The arithmetical procedure used here, which only dealt with the known
elements, could not advance without those necessary modifications, because at the beginning there was no
relation directly linking the known quantities provided in the problem.

2. Another procedure taking the difference into account at the beginning,

followed by partition:

Student: Comments:

16x8=128 Numbers of passengers in the eight extra cars

588-128 =460 Madification of the initial representation into a new configuration of
equality of cars (see previous strategy)

460 + 2 = 230 The equitable sharing strategy

{230+ 12 =19, 230 + 16 = 14) Number of cars of each type

12-seat car train -> 19 cars

16-seat car train -> 14 + 8 = 22 cars Re-utilization of the difference

Just as in the first procedure, the representation of the problem was modified during the solving process.
The change from the initial representation of inequality to one of equality authorized the use of equitable

pastition schema.
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3. Procedure with partition at the beginning:

Student: Comments:

588 + 2 =294 Division by two of the given total

294+ 16 =19 Calculation of the number of 16-seat cars

19 + 8 =27 The use of the difference

27 x 16 =432 Number of passengers in the 16-seat car train

588 - 432 = 156 Calculation of the number of passengers in the 12-seat car train
156+ 12=13 Number of 12-seat cars

The more frequent recourse to the equitable partition schema at the beginning suggested a less complicated
representation than the preceding one, in which the inequality of the number of cars had to be taken into
consideration. The students’ errors in all of the arithmetical procedures occurred precisely in the

coordination of the equitable partition schema and the inequality of the number of cars.

PROCEDURES BETWLEN ALGEBRA AND ARITHMETIC (revealing a process in formation)
In the following strategy (see Procedure 4), after undertaking an arithmetical method, the student
subsequently abandoned it, and wrote an equation. The solution of the equation was used immediately

afterward in a step which went back to an arithmetical procedure.

4. Student: Comments:

Arithmetical trial: 16 x 8 =128 previous procedure which took the difference into account at the
588 - 128 = 460 beginning

Algebraic step: x + 8x = 588; 9x = 588; x = 65

Arithmetical procedure:

65+2=32 equitable partition schema: the number of cars is divided by two
32-8=24 use of the difference

24x 12 =288 passengers travelling in the 12-seat cars

In this example, the student began by adjusting the number of passengers to arrive at two trains having an
equal number of cars. In this arithmetical engagement, there is a2 semantic control of the situation and the
relations which link the elements involved. When the student left this procedure in favour of an algebraic
one, the continuation shows that there was no longer any control over the rates (which appear to be
completely ignored) or the difference, although the algebraic treatment of the equation is correct. There
was a complete loss of contro] over the situation. But as soon as the student returned to arithmetic, the
control was regained. This and the following examples clearly show the distinctions effected by the

student in the transition from one mode to the other. The passage to algebra requires the construction of a
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more global representation of the problem, which is in opposition to the sequence of dynamic
representations which are the basis of the arithmetical reasoning.

§. Student:
Arithmetical trial: 16 x 8 =128; 588 - 128 = 460; 460 + 2 = 230 (Control of the situation)

Algebraic wial: 588 4+2+124+16=16+8x

578 = 16 + 8x

562 = 8x

Note that the order of the terms of the equation followed that of the presentation of the numbers in the text
(oss of control - the student did not take into account the meaning of the quantities and of the problem).
6. Arithmetico-algebraic strategy:
Student:
8 x 16 = 128; 588 - 128 = 460 (difference taken into account)
Then the student switched to an algebraic mode, with the equation: 12x + 16x = 460, and ended by
solving the problem.

ALGEBRAIC PROCEDURES

In contrast to the arithmetical procedures, in the aly;:raic procedures, the representation of the problem
and the calculations do not generally undergo a parallel development. The solution process - which in
urithmetic is based on a necessary transformation of the representation of the problem, in relation to
meaning of the numbers obtained in successive calculatie ns - needs ai the beginning a representation of the
relations between the data. It requires then for the stude.t ¢ global representation of the problem, from the
start of the procedure, to infer an external symbolic representation modeling these relations, in the form
here of an equation. Once the equation is expressed, the algebraic calculations often proceed independently
of this representation of the situation. If the semantic control of the problem is re-established, it only
happens at the end of the process. This type of engagement, totally different in its management of the data,
is based on an element which is not present in arithmetic, that is, the introduction of precisely that quantity
which is sought, the unknown quantity. We find there the analytical character of algebra so important to

Vieta,
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Student:

stx 12

2nd (x+8)12 588 = x.12 + (x+8)16
588 = 12x + 16x + 128
-12x - 16x = 128 - 588

-28x = -460

28x = 460

x = 1642
1st => 16.42 x 12 =197.04 20d => (16.42 + 8) 16 = 390.72
13t 197.04 2nd 390.72

The equality -28x = -460, for example, cannot be interpreted in the context of the problem. This distance
from the probleim, necessary to proceed with the algebraic operations, makes it impossible, at this point, to
verify if the results obtained concur with what is sought in the problem. A further effort must be expended
to reinterpret the results from the symbolic operations.

The analysis of the students’ errors in constructing their equations, th}oughout their procedures, showed
that they did not take certain elements, such as rates, into account. Their symbolizations only retained

certain aspects of what had to be represented.

CONCLUSION

This analysis brought out differences between the conceprual basis that underlie the arithmetical and the
algebraic modes of thought.

Arithmetical reasoning is based on representations which are particular to it, and involves a particular
relational process. The successive calculations which work with known quantities are effectively based
upon the necessary transformation of the relations which link the elements present, requiring a constant
semantic control of the quantities involved and of the situation.

In algebraic reasoning on the contrary, the relitions expressed in the problem are integrated from the
beginning into a global “static” representation of the problem, nevertheless requiring specific necessary
representations for this. This engagement, which is quite different in its management of the data, is based
on the introduction of the unknown quantity at the very beginning of the ptocess, and requires a
detachment from the meaning of both the quantities and the problem to solve it.

Our results suggest that the difficulty experienced in the transition from arithmetic to algebra occurs

precisely in the construction of the representation of the problem.

96

O

RIC

Aruitoxt provided by Eic:




1-72

References
Arzarello, F. (1991) Procedural and Relational Aspects of Algebraic Thinking. Proceeding of PME XV,
Assisi, Ital p. 80-87.

Booth, L.R. (13’84) Algebra Children's strategies and errors. Windsor, U.K.: NFR-Nelson.
Charbonneau, L. Q punme) Du raisonnement Iaissé A lui-méme au raisonnement outillé: 1'algebre depuis
Babylone jusqu’d Vidte Bulletin de I'Association Mathématique du Québec.
‘ Clement, J. (19‘18?) Algebra word problem solutions: Thought processes underlying a common
i misconception. Journal for Research in Mathematics Education, 14, pp. 16-30.
Colhs. K_.F. (1974). Cognitive development and mathematics learning. Paper presented at the Psychology
of Mathematics Workshop. Center for Science Education, Chelsea College, London.
Filloy, E., Rojano, T. (1984). From an arithmetical to an algebraic thought. Proceedmgs of the sixth
annual meeting of PME-NA, Madison, pp. 51-56 .
Harper, E.W. (1979). The child's interpresation of a numerical variable, University of Bath, Ph. D.
Thesis, 400 pages.
Hercovicz, N., Linchevski, L. (1991). Pre-algebraic thinking: range of equations and informal solution
proces;es gsed by seventh graders prior to any instruction.Proceedings of PME XV, Assisi, Italy, II,
Pp. 173-180. ‘
Kaput, J. Sims-Knight, J. (1983). Errors in translations to algebraic equations: Roots and implications.
Focus on Learning Problems in Mathematics, 5, Jap 63-78.
Kieran, Ci ; lggé) Concepts associated with the equality symbol Educarwnal Studies in Mathemarics, 12,
p. 217/
Kieran, C. (1989). A perspective on algebraic thinking. Actes de la 13e corﬂrence internationale
«Psychology of Mathematics Education», 2, pp. 163-171.
Kieran, C. (1991). A procedural-structural perspective on algebra research. Proceedings of PME XV.
Assisi, Italy, 2, pp. 245-253.
Lefebvre, I. (3 paraitre). Qu'est I'algebre devenue? De Vidte (1591) a aujourd’hui (1991), quelques
changements clefs. Bulletin de ' Association Mathématique du Québec.
Lochead, J., Mestre, J. (1988). From words to algebra: Mending misconceptions. The /deas of Algebra,
K-12, NCTM Yearbook.

Mayle;.9 RzE (1982). Memory for algebra story problems. Journal of Educational Psychology, 74(2), pp.

RadgordQ L. G panuue) Diophante et 1'algébre pré-symbolique. Bulletin de I' Association Mathématique
u Québe

El{llC 97

Aruitoxt provided by Eic:



E

CONSULTANT AS CO-TEACHER:
PERCEPTIONS OF AN INTERVENTION FOR IMPROVING
MATHEMATICS INSTRUCTION

David Ben-Chaim. Miriam Carmeli, & Barbara Fresko
The Weizmann Institute of Science

Abstract. A form of co-teaching was utilized as one mode of intervention in
a project to improve mathematics instruction in Israeli secondary schools.
Initial reactions of pupils, teachers, school principals, and co-teaching
consultants suggest that, on the whole, this is a viable in-service approach for
demonstrating instructional strategies to teachers and for increasing their

involvement in reflection and planned instruction.

Introduction

For the past two years, a project for improving mathematics instruction
has been on-going in six c.omprehensive secondary schools in the Northern
Negev region of Israel. The project, which will continue for at least another
year, was undertaken following a needs assessment survey which revealed
that many teachers lacked proper teaching credentials and that few pupils
were taking and passing national matriculation examinations in mathematics
and the sciences at the end of Grade 12 (Ben-Chaim & Carmeli, 1990). The
project is concerned in its entirety with improving mathematics and science
teaching and learning in Grades 7 through 12. Attacking the problem from a
holistic perspective, different forms of activity are being carried out at the
various levels of instruction which include: 1) weekly workshops and
individual consultation for Grades 7-9 teachers, 2) individual assistance for
Grades 10-12 teachers, and 3) co-teaching of some-Grades 10-11 classes. All
modes of activity are explicitly geared towards helping teachers with average
and above-average pupils, i.e. those with the ability to matriculate. Project
consultants have extensive prior experience as teachers and as consultants in’

their subject arca.
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The co-teaching mode was undertaken primarily in mathematics classes.
It has been selected as the focus of the present paper insofar as, compared to
workshops and individual consultation which are somewhat common teacher
in-service activities, co-teaching as an intervention mode is generally
unknown. This form of activity was adopted in eight Grade 10 mathematics
classes in 1990-91 and in nine Grades 10 and 1l classes in 1991-92. Four

teachers have been involved in this activity for two years.

Co-teaching

Co-teaching may be viewed as a form of team teaching in which two
teachers are responsible for the educational advancement of a single class.
As reported by Goodlad (1984), team teaching was extensively tried out in
different schooiz in the United States during the 60’s as one solution to the
teacher shortage problem. Accordingly, qualified and experienced teachers
were expected to work together with new and under-qualified teachers. thus
ensuring both maximal use of personnel resources and the supervision of the
less-qualified.

Co-teaching as a means for altering teaching behaviors in the context of a
project is uncommon. However, the rationale behind such an approach is
similar to that described by Goodlad. By pairing a project consultant with a
particular ‘teacher, expertise knowledge can be shared as both take
responsibility for the instruction of a single class. In such manner, teachers
are provided with an intensive, site-based, in-service experience: they are
thus offered the opportunity to directly view expert teachers in action and to
learn their strategies and approaches through joint-planning and coordination
of lessons.

The co-teaching mode has been used in the project schools in the
following manner. Throughout the course of the school year. on one set day

every week. the consultant comes to give a regular classroom lesson in the

O

RIC |
99




E

1-75

co-teacher’s class. The class teacher observes the lesson and often assists the
consultant. Following the zonsultant's weekly lesson, co-teaching pairs meet
to discuss the lesson and to plan the next week’s teaching schedule. During
these discussions, consultants endeavor to raise pedagogical and didactical
issues relevant to the mathematical topic being taugllt. Since topics t'aught in
the consultant's lessons are an inisgral part of the regular instructional
curriculum, careful coordination must be made with the classroom teacher.
Teachers and consultants try to plan their lessons and adjust their pace of
instruction so that the consultant's lesson can be a natural continuation of the
material taught by the teacher during the week. Accordingly, the consultants
make suggestions to the teachers as to how to continue the teaching of the
material and try to define for them what students need to accomplish in’
order to enable their own next planned lesson to be cairied out smoothly.

By teaching actual classes, consultants are able to directly demonstrate
different methods of instruction, to show how they cope with learning
problems, and to demonstrate how to integrate material. They also become
familiar with the needs of the specific class which enable them to give better
advice to the teacher concerning appropriate materials, level of instruction,
and pacing. Their intimate knowledge of the pupils and their demonstrated
teaching skills are furthermore intended to enhance their credibility in the
eyes of the teachers.

Classroom teachers are exposed to new ways of dealing with the
curricular material and are able to view these methods in action in the
natural environment of the class. In addition, they are given the opportunity
to participate in collective efforts to plan instruction and to learn about
teamwork. It should be noted that this mode of activity has involved only
those teachers who are relatively new to teaching the grade level in question

or who lack experience teaching it using up-dated materials.
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On occasion, a change is made in this co-teaching schedule such that the
regular teachers conduct the class on the day of the consultant's visit and the
consultant observes the lesson. Observation enables the consultant to view
the teacher in action, to diagnose the teacher's weaknesses and strengths in
the classroom, and to concentrate activity with the teacher in the areas
particularly requiring assistance.
Pupil progress in these classes is monitored through periodic

examinations, some of which are specific to the class, prepared by the teacher

and consultant together, and some of which are general, prepared by the -

Weizmann staff for all participating schools. Dates for the latter tests are set

in advance which is intended as an external incentive to the co-teachers in

their preparation of the pupils.

Intervention of this kind inevitably encounters numerous organizational
problems along the way. One of the major difficulties is the problem of
adjusting teachers' schedules to fit project activities. It means that each
participating class must be studying mathematics on the day the consultant
comes to teach and that their teachers have at least one free period for
discussion and , 'anning after viewing the consultant's lesson. Difficulties are
also encountered regarding the coordination of teacher and consultant
lessons. Classroom teachers are not always able to accomplish all that was
planned for the week (often due to the cancellation of classes for school
purposes) and the consultant is forced to change his/her own planned lesson
accordingly. The co-teaching pair maintains telephone contact during the
week so that the consultant is kept abreast of class progress and can make
alterations as required.

The 1vpe of difficulties which particularly interested project directors

were those whose source was  psvchological rather than organizational in
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nature. With regard to co-teaching, three questions were of special interest:
1) How do the teachers accept the consultant as a co-teacher? 2) How do tﬁe
pupils respond towards having two teachers, one of whom is external to the
school? and 3) How do the consultants themselves feel about their intensive
involvement in someone else's classes? The centraL issue is whether or not
the teacher's status in the classroom is undermined by the fact that an
outside expert shares with him/her the teaching responsibilities for the class.

As the project progresses, information is being gathered on the reactions
of the different parties to co-teaching as a form of intervention. This
information is being collected through questionnaires to pupils, consultants,
and teachers as well as by means of interviews with teachers, consultants,
and school principals. Results from the first il years of project operation are
cited below; results from the full two years will be presented at the

conference.

R ions - in

Pupil reactions. At the start of the school year, it was carefully explained
to pupils in the designated classes that both co-teachers would be responsible
for their mathematics learning and that the teacher from the Weizmann
Institute would be teaching them once a week on a regular basis. The
general impression obtained froin teachers and consultants was that pupils
easily accepted this situation. Open-ended questionnaire responses from
pupils in three classes indicated that, in two of the three, reactions were very
positive and many pupils showed great enthusiasm, commenting that having
two teachers was more interesting, made the matgrial easier to understand,
and reflected a more serious attitude in the school towards the importance of
learning mathematics. In the third class, pupils also had positive comments
to make but many of them complained that the pace of instruction was too

quick for them and expressed a preference for their own teacher who they
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felt was sufficiently capable to teach them on his own (a comment supported
by the consultant herself). . )

Mﬁm Teachers who were interviewed towards the end of
the first year expressed satisfaction with the arrangement. They commented
that working together increased creativity and resulted in better worksheets
and examination forms. They felt that by working with a co-teaching
consultant they had learned to better apportion instructional time among
curricular topics.

Teachers felt that observing the consultant in the classroom was
particularly useful. On a questionnaire administered to all project teachers,
the observation of a lesson given by a consultant was the highest rated
project activity, receiving an average rating of 4.22 out of 5 on usefulness.
Teachers commented that observing the pupils from the side made them see
the class differently and gave them greater insight into classroom dynamics
and individual pupil difficulties. In addition, many of the teachers, after
watching tne consultant give a lesson, expressed amazement at seeing their
pupils achieve higher levels of comprehension than they had previously
thought them capable of reaching.

It is particularly significant that all teachers who were asked to
participate for a second year raised no objections; rather they expressed
satisfaction with the idea. One teacher, who co-taught with a consultant last
year in Grade 10 and this year in Grade 11, has already requested to
continue next year with a consultant in Grade 12. She feels that if she co-
teaches once at each grade level, then she will be prepared to work on her
own in these classes in the future.

Consultant reactions. On the whole, consultants felt comfortable with the
co-teaching approach and were very satisfied with their close involvement in
classroom instruction.  Only one consultant expressed some discomfort

insofar as «he felt that the teachers she was helping were already good
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teachers and really did not require such intensive assistance. Talks with
consultants revealed that they strongly believed in this form of intervention,
noting that teachers with whom they had co-taught during the first year had
made significant improvement which carried over into the following year.
Changes occurred particularly with respect to lesson planning (greater
thought given to goals, structure, and pacing) and the ability to design better
worksheets.

Consultants felt that several factors made their entry into the classes as
co-teachers acceptable to both teachers and pupils. First of all, explanations
given to both groups at the start of the school year emphasized the joint
responsibility of the co-teachers for the class. The pupils easily accepted this
situation as natural and teachers did not feel that their self-esteem had been
harmed. Secondly, most of these classes were plagued by severe discipline
problems and the addition of another teacher was generally viewed with
relief by most regular teachers who were only too happy to share their
problems with someone else.

Although teachers were presented as equal, pupils however sometimes
perceived the consultant as the more expert and saved up questions to be
asked during the consultant's lesson. The consultants did not feel, however,
that this was a problem for the teachers. They reported that since many of
these teachers were relatively new to the profession or to teaching these
grade levels with an up-dated curriculum, they tended to feel unsure of
themselves and help from the consultants was welcomed.

As noted by Fullan (1982), Sarason (1982) and others concerned with
educational change, resistance to change efforts-is to be expected and
perfectly natural in the transition to new modes of behavior. Moreover,
teachers who are normally left alone in their classrooms do not usually take
favorably to direct interference in the management of their “territory”.

Under the circumstances. it is almost surprising that the responses have been
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thus far so positive to the co-teaching form of intervention which entails

intensive "meddling” in the teachers' territory.
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THE REDUNDANCY EFFECT IN A SIMPLE ELEMENTARY-SCHOOL GEOMETRY TASK:
AN EXTENSION OF COGNITIVE-LOAD THEORY AND IMPLICATIONS FOR TEACHING

Janette Bobis, Ma“.in Cooper, John Sweller
University of New South Weles, Sydney, Austrelia

The results of three experiments indicate the inadequacy of some
conventionally formatted instructional material and emphasize the
debilitating effect redundant material can have during initial instruc-
tion. Elementary-school children learning a simple paper-folding task
learned more effactively from instructional material using diagrams
alone than from material containing redundant verbal material, and
self-explanatory diagrams with redundant material eliminated were
superior both to instructions containing informationally equivalent
taxt and to instructions consisting of redundant diagrams and text.
This redundancy effect was evident not only when text was redundant
to diagrams, but also when information was conveyed solely by means of
diacrams. These findings extend the generality of the redundancy
effect and have important implications for teaching.

Background

Printed instructional material in subject areas such as mathematics and physics
typically use text and diagrams. Traditionally, eapecially in textbooks, the text
and the illustrations are presented in a separated format, usually side-by-side. It
has been shown in a number of subject-ersas that integration of text end diagrams
snhances learning. (Chendler and Sweller, 1991; Sweller, Chandler, Tierney end
Cooper, 1990; Tarmizi and Sweller, 1938; Ward end Swaller, 1990). In terms of
cognitive load theory, the ect of splitting ettention betwesn and then mentelly
integrating textual end diagrammaticel material preaented in the traditionel format
imposes an unnecessary cognitive load end reducea cognitive resourcea aveileble for
learning. Comparison with modified instructional material incorporeting phyaicelly
integrated text and illustrations generetes the split-ettention effect.

The effect occurs only when the text end illustrationa ere unintelligible in
isolation. Both text and diagram are necesaary for the information to be
understood. Sometimes, however, a procedure can be learned from diegrams alone, any
accompanying text being irrelevant, or “redundant”. In such caaes, atudenta tend to

ignore the redundant text, and pay ettention aclely to the diegrams. Through
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integration of text with diagrams, however, students can be forced to pay attention
to the redundant text even though diagrammatic material is sufficient by itself. It
has been shown in several contexts (Chandler and Sweller, 1991) that in such cases
learning is less efficient than when students are able to ignore the text. This is
referred to as the redundancy effect.

Procedure

In the three experiments reported here, the effect on learning of both redundant
text and redundant diagrams (each with respect to diagrams) was examined in the
context of a paper-folding task. This task is found in the “space” strand of many
elementary-school curricula and consists of folding a circular paper disk according
to a sequence of instructions until a triangular shape is obtained. Each experiment
consisted of two phases: an acquisition phase in which subjects learned the task by
maans of the instructional material provided, and a testing phase in which they
carried out the task without aids. The only difference bstween the treatment groups
was the format of the instructional material used in the acquisition phase.

In each experiment, children were treated singly. Each subject was asked to use
the instructional material as an aid to learning the task. The time needed for this
acquisition was recorded. The subject was then given a paper disk and asked to
carry out the task without aids, the time taken to complete the task and the
accuracy with which it was performed being recorded. In each phase, a time of ten
minutes was recorded for subjects who over-ran this time.

Experiment 1  Two sets of instructional materials were used in the acquisition
phase: a sequence of diagrams intelligible by themselves (“diagrams-only” format),
and the same sequence of diagrams accompanied by written instructions that referred
to the diagrams (“redundant” format) [see Figure 1). These written instructions
were redundent to the diagrams but, unlike the diagrams, were unintelligible in
isolation. Because LeFevre and Dixon (1988) have indicated that subjets are
inclined to rely on example information (especielly if it 1s in diagrammatic form)

and to ignore written instructions, it was stressed to each subject in the
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“redundant” group thct the written materials must be read. It was thought that
children using integrated instructional material with extraneous information
eliminated (red’t) would leern more effectively than those using a format that
includes redundant, but not self-sufficient, written material (non-rd).

The mean times in seconds, and the percentages of subjects corrgctly completing

the task, are presented for both phases in the following table.

acquisition phase AkJ testing phase

N=15 for mean time X correct mean time
each group

non-rd{red’nt {non-rd|{red’nt{non-rd}red’nt

X correct

non-rd|red’nt

369.9] 463.7{ 68.7 | 33.3 | 277.8 457.6l 60.0 | 26.7

The values of t for the comparisons of mean times were t=1.23 (ns) for the
acquisition phase and t=1.90 (p<0.05) for the testing phase. Comparison of
percantages correct by means of Fisher's exact test with Overall’s correction
yielded & significent difference (p=0.03) for the acquisition phase, but not for the
testing phase. The superiority of the non-redundant group provides evidence for the
redundancy effect.

Experiment 2 In this experiment, the effect of self-sufficient diagrams alone and
self-sufficient verbal instructions alone were compared. In addition, instructions
for a “redundant“ third group were constructed by presentation to students o% both
diagrammatic and textual material. Since the third step in Experiment 1 had proved
difficult for many children, it was subdivided into three steps for Experiment 2,
the accuracy of the representation being important if children are to construct an
accurate mental image (Johnson-Laird, 1983). Thus, three experimental groups were
used, each using a different set of instructions: diagrams-only format, text-only
format, and diagrams-and-text format [see Figure 2], the latter heing a “redundant
format" becauss the parts wore intelligible alone. Cognitive load theory postulates
that the use of the redundant format will heve a debilitating effect on learning in

comparison with the use of a diagrams-only format. Both textual informetion and the
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redundant format are difficult to process for different reasons and no expectation
could be stated with regard to their relative efficiency. It was expected that
children using diagrams only (d7ag) would learn more effectively than those using
informationally-equivalent written instructions (text) and those using a format in
which the same diagrams are accompanied by redundant, informationally-equivelent
written instructions (red), and that children using text only would learn better
than those having redundant information.

The mean times in seconds, and the percentages of subjects correctly completing

the task, are prasented for both phases in the following table. There were fifteen

acquisition phase | testing phase

mean time X correct mean time X correct
diag | red jtext |diagired [text{diag | red |text |diagired |text

387.3]462.6|518.5]66.7{33.3{33.3{253.3]|455.1)424.5/66.7{26.7{33.3

subjects in each group. The data were anelyzed by means of planned orthogonal
contrast tests using Ftests in the cese of the mean times and a test for
homogeneity of binomial proportions (Marascuilo, 1975) in the case of the
percentages correct. For the acquisition phase, the values of F were 3.07 (ns) for
the diag vs combined redttext contrast and 0.03 (ns) for the red vs taxt contrast;
for the testing phase, the respective F-velues were 5.29 (p<0.05) and 0.11 (ns).
The values of the test statistic for the same contrasts based on percentages correct
were respectively 5,00 (p<0.05) and 0.00 (ns) for the acquisition phase, and
respactively 6.10 (p<0.05) and 0.16 (ns) for the testing phase. These results
indicate that the diegrams-only format was superior to the other formats.
Experiment 3 To date, investigations of the redundancy effect have concentrated on
redundant text. Experiment 3 wes designed to examine the effect of redundant
diagrams. The diagrams-only instructional materials of Experiment 2 were compared
with a modified varsion of these materials, in which "back views" were provided for

some steps [see Figure 3). Although it might be thought intuitively thet this extre
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information would enhance learning, it may be hypothesized from cognitive load
theory that the inclusion of these extransous, redundant diagrams imposes extra
cognitive load and has a debilitating offect on learning. It was thought that
children using diagrams only (diag's) would learn more effsctively than those using
a format in which the same diagrams are accompanied by redundant diagrams (red’nt).

The following table shows mean times in seconds, and percentages

acquisition phase l testing phase

mean time X correct ‘mean time X corract

diag’s|{red’'nt|diag’s red’nt|diag’s{red’ntldiag’s red'iit

244.6| 396.0| 90.0 | 60.0 | 108.9 314.8} 90.0 | 60.0

of subjects correctly complating the task for both phases. The valuas of t for com-
parisons of mean times were t=1.92 (p<0.05) for the acquisition and t=2.12 (p<0.05)
for the iesting phasa. Thus, the diagrams-only format was superior to the format in
which the same diagrams were accompanied by redundant diagrams. Compartison of
percentages correct using Fisher’'s exact test with Overall’'s correction yielded no

gsignificant difference for either phase.

Discussion

The results indicate the inadequacy of conventionally formatted instructional
material and emphasize the debilitating effect redundant material can have during
initial instruction. Experiment 1 demonstrated the advantage of presenting
information with redundant material removed. The additional text provided for the

group studying the redundant format had an inhibitory effect rather than assisting

comprehension, as is the normal intention.

The findings of Experiment 2 suggest that self-explanatory diagrams with
redundant material eliminated are supsrior to instructions containing
informationally equivalent text and to instructions consisting of redundant diagrams

and text.
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Experiment 3 demonstrated that the redundancy effect is evident not only when
text i3 redundant to diagrams, but also when information isg conveyed solely by means
of diagrams; this extends the generality of the redundancy effect. Providing
additional diagrams datailing a perspective necessary for the successful completion
of the task proved to inhibit rather that facilitate learning.

For teaching and learning, the implications of these findings bear on the manner
in which initial instructional material is presented. Teachers should exercise
extreme care when providing students with additfonal and seemingly useful
information. If the processing of additional 1nforma1;.10n (whether it be textual or
diagrammatic) with essential information imposes an extraneous cognitive load, it
may have a detrimsntal rather than beneficial effect on learning. For optimum
effect, the usefulness of additional information must outweigh the consequences of

processing it,
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Figure 1: Redundant format instructional material for Experiment 1
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ON SOME FACTOPS INFLUENCING STUDENTS SOLUTIONS IN MULTIPLE OPERATIONS PROBLEMS:
RESULTS AND INTERPRETATIONS
Paoto Bocro, Lora Shapiro - Dipartimento di Matematica , Universita di Genova

The report concems the outcomes of 1023 pupils , aged 9- 13 from two different instructional settings,
on a problem involving several variables and solution strategics. Quantitative and qualitative analyses
have been performed to assess the dependence of the strategies produced by pupils onage x
instructionand numerical data. The findings from this study have led to some interesting intefpretations
regardiilg the students® transition 10 pre-algebraic strategies and the associated mental processes.

1. Introduction

In recent years there has been an extensive array of studies which have investigated students’ problem solving
strategies in considerabie depth (see Harel & C.. 1991; Hershkovitz & Nesher, 1991; Lesh, 1985 ; Nesher &
Hershkovitz, 1991: Reusser, 1990; Vergnaud, 1988)

In an attempt to add to this body of research , the study to be reported on has explored the mental processes
underlying the strategies produced by students aged 9-13 when solving a non- standard contextually realistic
problem involving multiple variables, operations and solution strategies ("trial and error” strategies, mental
calculation strategies, "pre-algebraic strategies” - fora definition, see pard-.... ).

The analysis of data focuses on quantitative and qualitative aspects of the evolution of strategies on the same
probiem, with respect to age and instruction, and the dependence of strategies on the numerical data.

A preliminary review of data suggests that pupils who are encouraged to perform a variety of strategies (“trial and
ervor”, hypothetical seasoning...) without rigid formalization and schematization requests reach the point of transition
to "pre-algebmic™ strategies earfier than those following more traditional instruction.

These results, along with some additional qualitative analyses of the protocols, bring to light some understanding of

the roots of “pre-algebraic” strategies (with connections with research findings in the domain of pre-algebraic
thinking: sec par.5 ).

2.The research problem

The purpose of this study was to better understand the mental processes (i.c. planning activities, management of
memory ...), underlying students’ problem solving strategies ina “complex” situation. Towards this end the
following problem was administcred:

“With T liras for stamps one may mail a letter weighing no more than M grams. Maria has an envelop weighing E
grams: how many drawing sheets , weighing S grams each. may she put in the envelop in order not to sumount
(with the envelop) the weight of M grams 7"

Various numerical versions have been proposed to different classes:

money maximum weight of the weight of cach
needed (C) admissible weight(M) envelop(E) sheet of paper (S)
(50,7.8) 1500 50 7 8
(100,14.16) 2000 100 14 16,
(100,7.8) 2000 100 1 8
(250.14.16) 3800 250 14 16
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This problem was chosen because it represented a realistic situation for most of the students in this age range
(interviews with a sample of Vth graders showed that over 75% of them think that the “cost™ to send a letter must

depend on its weight). In addition, it was possible to choose numerical values which kept into account the feasibility”
of mental calculations and the number of iterations needed to reach the result through progressive approximation from

below. For example.in the transition from (50.7.8 ) to (100,7,8) there is an increase of iterations needed in an
“approximation from below" strategy . but mental calculations are still easy .In the transition from (50.7.8) to
(100,14.16 ) the mental calculations become more difficult, but the number of iterations needed remains the same.In

the version with values (250.14,16) the mental calculations are yet more difficult and the number of iterations is
increased. Finally, the problem format was similar to "evaluation problems™ proposed in the Italian primary and
comprehensive schools (multiple choices tests are not frequently utilized), but no such problem had ever been
proposed to the students before.

3. Mcthod

A pilot study was conducted at the end of 1990 with two classes of students in grades IV, V and VI11. The rescarch
problem with different numerical versions was administered and the findings were utilized to make subsequent
choices. regarding the appropriatedness of the numerical versions with respect to grade level. In particular. the
(250.14,16) casc was excluded for the IVth-graders , due to the difficulties encountered by many subjects: and the
(50.7,8) case was not given to the ViII-graders, due to a great number of solutions written without any indications
of the strategies performed .

Forthisstudy 63 1V,V.Vland VIII grade classes were chosen from schools in the north -west region of Ialy, and
this resultes in a total of 1023 participants. The study was conducted in October and early November 1991 (aftcr
about 4/6 weeks from the beginning of the school year) . The classes were divided into two groups and were chosen
in otder to assure a similar sociocultural environment between them and suitable conditions for the experiment .In
addition. in these classcs age comesponded well with the grade level.

The classes in Group I, hereafier called the “Project” classes, included grades 1V and V which are currently
involved in a fong term instructional innovation in the Genoa Group for primary school . The characteristics of this
project which are relevant for this research, are presented in Boero{ 1989)and in Boero & Femari & Ferrero (1989)
and are summarized below:

- the written calculation techniques are progressively costructed , under the guidance of the teacher. starting from
the strategies spontancously produced by pupils. This allows a great deal of “trial and error” numerical strategics to
be performed by pupils, cspecially at grade Il and grade 111

- students,from the end of grade I, are required to provide verbal writen representation of their strategics

- algebraic notation for an arithmetic operation is introduced only when the meaning of the particular arithmetic
operation is mastered by majority of the class.No direct explicit pressure is exerced by teachers for the students 10
give formal representation of operations with algebraic signs (" words and numbers” resolutions are admitted up to
the end of the primary school )

- in situations in which the students perform different strategies. comparisons of strategics (and formalizations) are
organized and discussed (sce Bondesan & Ferrari, 1991) : and.

- problems involving more than orie operation are proposed without intermiediate questions.
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The classes in the second group were compos=d of grades VI and VIII where the VIth graders come from
"iraditional” primary school classes . Here "traditional” instruction means:

- multiple operations problems guided by intermediate questions are widely proposed from the 11 to the V grade,

- “trial and ervor " or other case-by-case strategics are not encouraged.

- standard written calculations techniques are introduced early, and

- early formalization of arithmetjc operations {with +,-,x, : signs} is introduced and rapidly demanded as &
standard code in problem solving {for single operations).

In Group 11 we have decided to selectonly VI and VI grade classes with mathematics teachers affiliated to the
Genoa group and working on a parallel, similar research project for the comprehensive school forthe following
reasons, emerging from our pilot study:

- difficulty to propose our problems at the beginning of the IV grade in “traditional™ classes (because the
“subtraction and division" problems are normally proposed. during the grade 111, only as two-steps problems)

- difficulty to entera “foreign” class and get completely verbally explicited resolutions (thisis not frequent in ltaly:
it is requested only to indicate the most important calculations performed).

- for the comparison between VI graders' and VIII graders’ performances. it was suitable to keep sociocultural
variables unchanged

-the VIIIth graders of the chosen classcs had not yet explicitely been involved with equations

The following table shows the distribution of the population involved in the study:

GROUP 1 GROUP2
n. of classes n. of pupils n. of classes n. of pupils
grade IV 9 145 - -
grade V 24 396 - -
grade VI - - 26 406
grade VIII - - 4 76

A sample analysis of the primary school copybooks of V grade and V1 grade pupils belonging to the classcs
involved in this research  showed these relevant differences

- the written calculation techniques were introduced 6-8 months in the primary school “Project” classes later than in
parallel “traditional” classes ]

- algebraic notations were introduced in the “Project” classes 10-15 months later than in parallel “traditional “classes
(for instance, the sign ” - "was not introduced in the project classes before the second term of grade II ; the sign ™"
was not introduced  before the second term of grade 111, and after at least one year of work on division problems)

. 201025 “subtraction- division problems" were proposed  in the "project” classes before the V grade (generally
without an intermediate question ) while 40 to 52 subtraction/division problems were proposed in “traditional™
classes from grade 111 to grade V ( 18 to 34 problems with the two step Struciure : first question asking for a
substraction. second question asking for a division).

The problem was proposed by the teacher. with an “observer” present in the classroom .Up to the day of the study.
the problem was unknown to the teacher . In order to avoid any difficulties in the classrcom, if a pupil met with
serious problems and insistently asked for help . he was helped by the teacher who provided written suggestions on
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the paper (this fact remained registered on the pupil's sheet of paper and these protocols were excluded from the
following analyses).Pupils were asked 10 use only the sheet of paper on which the text of the problem was written.
Some short intetviews were performed (after the resolution of the problem) by the observer with pupils who had
written very concise text, and with pupils who had adopted the “pre-algebraic” strategy in the cases (50.7.8) and
(100,7.8), in order to understand their reasoning and motivation .

4. Results

The students’ strategies resolutions have been analysed according to a classification scheme suggested by the data
from pilot study, and corresponding to the aim of exploring mental processes underlying strategies.
Strategies were coded in the following manners:
“Pre-aigebraic " strategies (PRE-ALG.). In this category the strategies involved taking the maximum admissible
weight and subtract the weight of the envelop from it. The number of sheets is then found multipiying the weight of
one sheet and comparing the product with the remaining weight, or dividing the remaining weight by the weight
of a sheet of paper , or through mental estimates.If the problem would be represented in algebraic form, these
strategies would comrespond to transformations from :

Sx+E =M to : Sxs M-E, up to: x= (M-EYS
For the purposes of this research, we have adopted the denomination “'pre-algebraic™ in order to put into evidence
two important , strictly connected aspects of algebraic reasoning, namely the transformation of the mathematical
structure of the problem ("reducing” it to a problem of division by perfurming a prior subtraction) ; and the discharge
of information from memory in order to simplify mental work . This point of view is connected to researches
performed in recent years in the domain of pre-algebraic thinking (see par.5)

“Envelop and sheets” strategies (ENV&SH).This "situational” denomination was chosen by us because it best
represented students’ production of a solution where the weight of the envelop and the weight of the sheet arc
managed together . These strategies include “mental calculation strategies™, in which the result is reached by
immediate simultaneous intuition of the maximum admissible number of sheets with respect to the added weight of
the envelop; “trial and error” strategies in which the solution is reached by a succession of numerical trials , keeping
into account the results of the preceding triats ( for instance , one works on the weight of some number of sheets and
adds the weight of the envelope , checking for the compatibility with the maximum allowable weight ) ; “systematic
approximation from below strategies”.in which the result is reached progressively incrementing the number of
sheets, adding the weight of the envelop and checking if the maximum allowable weight is reached or not:
“hypothetical strategies”, in which one keeps into account the fact that the weight of one sheet is near to the weight

of the envelop. and thus hypothesizes that the maximum allowable weight is filled by sheets, and then decreases the
number of sheets by one....... andso on

UNCLASSIFIED .While almost all of the strategies fit well in the above two categories, there were some which
were difficult to interpret .For example, the transition from ENV&SH. to PRE-ALG. strategies during the
resolution process (especially with the numerical versions (100,14.16) and (250,14.16 ) (¢example : 16 + 14230,
30+16=36 . 100-14~86, 86:16 =5......." : mixed strategies : " 16+14=30 ; 100-30=70;70:16=4 4+]=5
sheets™ . etc. These “"ambiguous” cases were thus coded as “unclassified"( the whole number of unclassified proafs
was about 3% of'the whole group).
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INVALID.Another problem concemed the classification of incorrect resolutions

in which solutions were lacking. or completely incorrect (for instance. sml'egia involving the amount of money
... divided by the weight of a sheet of paper) ; forgetting the weight of the envelope: or when numerical mistakes
affected the final result in a relevant manner { more or less than 10 times the correct result ).

in the case of numerical mistakes affecting only the final result ina “reasonable™way . or acritical presentations of
the results (for instance. under the form : 43:8=5.375 sheets) protocols were classified (on the basis of the adopted
strategy) .

The following tables represent a breakdown of the data:

TABLE |: (M.ES)=(50.7.8)

ENV&SH. PRE-ALG. UNCLASS. INVALID
GROUP 1 /GR. IV 71 (49%) 26 (18%) 6 (4%) 42 (29%)
GROUP i1/GR.V 35 (38%) 35 (38%) S (S%) 18 (19%)
GROUP 2/GR.VI 33 (34%) 24 (25%) 2 (2%) 37 (39%)

TABLE 2:(M.E.S)=(100.7.8 )

ENV&SH. PRE-ALG. UNCLASS. INVALID
GROUP 1/GR.V 52 (39%) 50 (38%) 4 (3%) 26 (20%)
GROUP 2/GR.VI 43 (34%) 34 (27%) 3 (2%) 46 (37%)

TABLE 3: (M.ES)=( 100.14.16)

ENV.&SH. PRE-ALG. UNCLASS. INVALID
GROUP 1/GR.V 24 (28%) 36 (42%) 4 (5%) 21 (25%)
GROUP 2/GR.VI 25 (25%) 32 (32%) 2 (%) 42 (41%)

TABLE 4: (M.E.S)=( 250.14.16 )

ENV&SH. PRE-ALG. UNCLASS. INVALID
GROUP 1/GR.V 13 (15%) 42 (49%) 6 (M%) 25 (29%)
GROUP 1/GR.VI 1t (13%) 34 (41%) U (19) 37 (45%)
GROUP 2/GR.VHI 9 (12%) 57 (75%) 0 10 (13%)
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Tt is interesting to note from the analysis of the protocols that the students in the ENV&SH. strategies group who
probably derived their solutions from a mental global estimation of the situation represent (in grades V and V1) about
17% of the sirategies performed in the (50.7,8) case, 13% in the (100,7,8 ) case ,while they are less than 3% inthe
(100,14,16) case .However.it is not easy to distinguish these strategics from the others (for instance in a protocot like
this: "5x8=40, 40+7=47 "), especially for the students in the GROUP 2, who might not have derived their
solutions from mental evaluation , but from a succession of mental trials not reported on the sheet. Some interviews
confirm the ambiguous character of these kinds of protocols . It is also interesting to observe that many usually
successful problem solvers in each age group applied these strategies for (50,7.8 ) and (100,7,8) , while almost
all of them were categorized as PRE-ALG. in the version with the numerical data (250,14.16).

A qualitative analysis of the data suggested the following:

- generally, the text of the PRE-ALG. strategies is linear, with subsequent declarations about the subtraction and the
division and the result .For exampie :

1 subtract the weight of the envelop : 250 -14 = 236 , and I find the weight that may be filled with Hmwing sheets:
then I divide : 236:16 = (calcvlations) = 14,75, and 1 get the number of sheets: 14"

- frequently, the text of the ENV&SH. strategies is involved, especially in the (100,14,16) and (250, 14.16) cases
(where a global, mental estimation of the resultis more difficult) . These are typical texts :

"I multiply the weight of a sheet (16 gramns) for a number chosen by chance, but not surmounting 10. and according
to the result 1 multiply 16 fora lower ora greater number. When I get a number which works well 1 add the weight of
the envelop (that is 14 grams). if the result exceeds 100 1 make other trials, if the number does not exceed 100 1
have solved the problem... (rtrials)";

"1 multiply the weight of one sheet by a number of times such that their weight is contained in 250 8 .but I cannot
exceed the weight of 250 g if ] add the weight of one envelop to the weight of the sheets admissible with the 3800
liras fare . and so I mustadd a certain number of sheets 1o the weight of the envelop (+1gials) "

-many ENV&SH. protocols from the students in the “Project” group reveal the students are in close proximity toa
transition toa PRE-ALG. strategy .For exampie:

I must find the number of sheets which can be set in the envelop in order not to overcome 250 g , but with my
sheets 1 must not arrive to 250 g, in order to be able to add the weight of the envelop and not to overcome 250. 1
must stop before. (+trials up to 224)

The same kind of protocols is infrequent with students in the "traditional” classes

- there were 3 solutions in which students began with PRE-ALG and moved to ENV&SH. strategies , while
transitions in the contrary direction were observedin 21 solutions

1t should be noted, however.that it was not easy to evaluate and compare the protocols from different classes.because
of the influences of different teaching styles , both past and present . This is especially true in the case of Vith
graders.who had only for weeks of instruction with the same teacher.

5. Conclusions and discussion

A preliminary review of the results  shows that there is a clear evolution with respect to age X instruction from
ENV&SH. . strategies towards PRE-ALG strategies within and between numerical versions (this is found in
homogeneous groups of pupils: transition from IV grade to V grade: and from V1 grade to VI grade . both with
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classes of the same schools, and teachers working in analogous manne. Another interesting finding relates to the
(50.7.8) case, where we find strong increase of PRE-ALG. strategies forstudents from grades IV to V in Group
1; this increase has occurred despite the fact that a PRE-ALG. resolution may be more expensive (in terms of
calculations to perform) than some convenient ENV&SH. strategies.Some interviews performed with pupils in
different classes (after the test) showed plausible reasons for their passage to PRE-ALG. strategies (also in cases
asking for easy mental calculations), and these included they felt more secure, it helped avoid confusion.and it gave
greater evidence: “security”, “avoiding confusion”, ‘greater evidence”....are  expressions frequently utilized by
pupils to explain the motivation of their choices.

If we also look at the protocols of pupils who appear to be ready to make the transition towards a pre-algebraic
sirategy ina more difficult problem , for example the students who write :

" [ repeat 16 grams (which is the weight of a drawing sheet) till I reach 100, and then I subtract 14 grams (the weight
of the envelop) and so I must consider one sheet lfess™;

"I reason : 16 x ... about 86 because 86+14=100 ; I count: 16 x4 =64 , too little; 16 x 6 = 96, too much: 16 x &
=80 : letus try: 80+14=94 ";

"I subtract 16 grams from 100 many times. cach time checking if it remains 14 grams foc the envelop : 100-16
=84, yes: 84- 16=68, yes; 68- 16=52, yes; 52-16= 36, yes: 36-16=20, yes - and I stop, because the envelop weighs
14 grams...",
we sce that the motivations and access to pre-algebraic strategies may be different: but in all of them there isa
form of reasoning that may derive from awide experience involving production of “anticipatory thinking" (see

also Boero, 1990) . That is to say , under the need of economizing efforts, pupils plan operations which reduce the
complexity of mental work . This interpretation provides a coherence amongst different results, conceming the
evolution towards PRE-ALG. strategics with respect to age, as shown in the solutions produced in grade 1V t0
grade V and in grade V1 to grade V1L, as well as with respect to the results involving more difficult numerical data.
Indeed. in the (100,14.16) and (250.14,16) cases we saw the difficulties encountered by students when attempting
to manage the weights of the shects and the envelop together (see par.4) .

All this may explain also why the large experience of subtraction/division problems presented as two steps
problems (withan intermediate question) in “traditional” classes does not scem to produce all the desired effects:
experiencing time separation of tasks, according to the suggestions contained in the text of the problem. may not
effectively develop planning skills in the same direction.

Conceming rescarch findings in the domain of pre-algebraic thinking. we may observe that there is some coherence
between:

- our results , conceming an applied mathematical word problem ( Lesh.1985) . proposed to students prior to any
experience of representation of a word problem by an equation and prior to any instruction in the domain of
equations; and

- Herscovics & Linchewski's (1991) results . conceming numerical equations proposed to seventh graders priof to
any instruction in the domain of equations. For instance. they find that an cquation like 4n + 17 = 65 is solved
performing 4n= 65-17 and then n= 48 :4 by 41% of seventh graders, whilc an equation like 13n + 196 = 9lis
solved in a similar way by 77% of scventh graders .This dependence of strategics or: numerical values is similar to
that shown in our tables (compare data conceming sixth graders in the cases (£0.7.8) and (250.14 16)).

o 120

RIC

Aruitoxt provided by Eic:




E

RIC

1-96

Filloy & Rojano define (for pumerical equations® the “didactic cut ™ “as the moment when the child faces for the first
time linear equations with occurrence of the unknown on both sides of the equal sign™ ; for applied mathematical
word probleins, a "didactic cut” might be considered when the child faces for the first time a problem where a
separation of tasks (through an inverse operation) must be performed in order to simplify mental work and avoid
“trial & error” methods . Our study gives some indications about the consequences of two different long term
instructional settings on students’ cfforts to overcome the obstacle represented by such a "didactic cut™.
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MULTIPLICATIVE STRUCTURES AT AGES SEVEN TO ELEVEN

Studies of children’s conceptual development and diagnostic
teaching experiments

Gard Brekke Alan Bell
Telemark Laererhogskole Shell Centre for Mathematical Education

ABSTRACT: The conceptions of children aged 7-11 of various multiplicative
problems were studied using interviews and Written tests. In four-number
porportion protlems, changes from easy integer ratios to 3:2 and 5:2, caused only
small falls in facility in a familiar context (price), but considerable losses in a less
familiar context . arrency exchange). Geometric enlargement problems .gave rise
to the wrong additive strategy. A diagnostic teaching experiment showed

successful use of the method and materials by 10/16 teachers after 2 days’
training.

Introduction

This study has two parts. One consists of an analysis of primary school children’s
conceptions of multiplicative word problems in different contexts. The second
part was a study of the effectiveness of a diagnostic responsive teaching method
(Bell et al, 1985) and associated teaching material developed from pilot studies.

The 16 teachers involved attended a two days in-service course. They were then
free to choose how to implement the teaching activities, and which activities to
pick from the teaching material. The period of teaching in each class was two
weeks. At least two lessons of each class were observed by the researcher to assess
the teaching style being used.

Results concerning childrens concepts and misconceptions

This paper presents the resuits of one group of problems. For further details see

Brekke (1991).
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The four-number. problems (see below) vary with respect to numerical

relationship (3 or 4 to 1 and 1.5 or 2.5 to 1) and structural context, rate (price),

currency exchange, measure conversion and geometrical enlargement:

AL2: 3 sweets are sold for 9 pence. How much for 12 sweets?

BL2: 4 sweets are sold for 6 pence. How much for 10 sweets?

ALS:  German money is called Mark. John changed £3 and got 9 Marks.

Sarah has £12 to change for Marks. How many Marks will she get?

AU6: John changed £4 and got 6 dollars. Sarah has £10 to change for dollars.
How many will she get?

BL5: Jane measured her book using her short pencil. It was 3 pencils long.
lan used his rubber to measure the same book. It was 9 rubbers long.
Jane measured the table with her pencil. It was 12 pencils long. lan also
measured the table with his rubbet. How many rubbers long will the table
be?

(This text was accompanied by an illustration).

AL12: A triangle is 3cm wide and 12cm high. A copy is made of this triangle, it
should be 9cm wide. How high must the copy be to have exactly the same
shape as the triangle? (This text was accompanied by an illustration).

Table1
Pcrcentage of correct answers and wrong additive strategies for the
four-number problems

AlL2 BL2 ALS BL5 ALI2
Correct 266 192 308 159 9.3
Wrong additive strategy 14 19 121 322 107

AU2 BU2 AU6 BU6 AUN
Correct 596 493 193 442 339
Wrong additive strategy 13 9.6 564 288 83
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There are not  big differences in facilities when ratios are changed from 3:1 or 41
to 1.5:1 or 2.5:1 for the most familiar context of price, but when this change is
combined with a less familiar context of currency exchange there is a considerable
drop in facilit)". Children regress to more primitive ideas, in this case the wrong
alditive strategy. (Compare Hart, 1981; Karplus et al, 1983). Note also the
widespread use of the wrong additive strategy for the measure conversion
problem, which maybe compared with Karplus’ “Mr Short and Mr Tall”.

The idea of geometrical enlargement was not well understood. When asked to
make a larger copy of the same shape as a given triangle, the children drew
triangles which were roughly the same shape but without calculating or
measuring. The problem of making an enlargement involves more than the
pure numerical relationship. Young children lack the experience of linking
numerical relationships with geometrical objects.

There are only small variations in use of a building up strategy across problem
structure for the four-number problems for the younger children, and correct
answers were equally distributed between multiplicative and additive answers.
The exceptions were the problems with ratios 1.5 and 2.5 where building up
strategy using the internal ratio was the most common correct method.

The context influences the choice of scalar or functional operator, with scalar
procedures being dominant for rate and currency exchange problems, while the
majority of correct answers to the measure and enlargement problems are
obtained by a functional operator. Children tend also to start by considering the
relationship between the two units used to measure the book, and applying this
to the table. They are working within each object (book, table), while they in the
previous items were working within the same measure (sweet, pence & £, $).
Thus the dominant strategy of BU6 might be categorised as scalar. In AU11 the
starting point is the relationship established between the shortest sides of the two
triangles, and is thus a functional operator, though in this case it is also a scalar,
since the unit of measurement (cm) is the same for the small and the large
triangles (compare Bell et al, 1989). This preference for the functional
relationship for geometrical enlargement problems is also reported by
Friedlander, Fitzgerald and Lappan (1984). The dominance of the scalar operator
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is also reported in other studies (e.g Vergnaud 1983, Kurth 1988 and Karplus et al
1983). Around 85% of the wrong additive answers used the external difference as

a constant for addition.

New diagnostic teaching tasks

The teaching unit is based on carefully chosen problems from different structural
contexts.

2
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The puzzie should be enlarged 10 that Uve #des of piece C will become bam Alter they
onlarged.

Talse ane peace asch 30 snlarge. use dotied papar,

Cut out the pueces and bring wogerhar 19 make the bost.

Write down wiat was done snd showr this sad the enlarged boat 10 your
waciar.

{f anythung went wrong. dlacuss if thare are Othar ways. Try agaun, wnee down
what was done this wme. Dlscuss with your waacher.

The main objective of the activities in Figure 1 is to focus on the
inappropriateness of adding a constant difference in geometrical enlargements.
The fuil set of activities also exemplifies the principle of starting with a difficult
problem (5L) to bring out the expected misconception and following with an
easier activity (6LZ) to give practice in using the correct strategy.

The purpose of the ‘price-line’ activity
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is to emphasise the need to interpret multiplication (or division) as a
dimensionless scale factor along the double number line or as a rate across the
number line.

Success and communicability of the teaching method

The classroom observations formed the basis for assigning the teachers to one of
three categories according to the types of interventions leading to different levels
of reflection on key aspects. These were: 1) the amount to which discussions of
misconceptions were generated to bring key issues to the children’s awareness, 2)
the demand for explanations and justifications of statements, 3) the amount to
which problem solving strategies were discussed, 4) the amount of discussion of
problem structure, (classifying and making problems of the same structure) and 5)
elements of generalisation. Teaching style A was described as highly concept
intensive with a high level of reflection, where the elements described above
were observed frequently. In a category B style these elements were observed
sometimes and in category C scarcely. Of the teachers of the lower primary school
classes, three were classed as style A, three as B and four asfof the upper primary
teachers, 3 were classed as A, 1as B, 2 as C.
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Thus we may conclude that the 2 day training course was sufficient to enable 10 of
the 16 teachers to acquire the method and to use it at A or B levels, and that these
classes made clearly significant goins.

Further evidence of success of diagnostic teaching when done fairly well.
Table 2 shows mean gains from pre to post test for the lower primary classes (max 22)

Class 1 5 7 2 6 8 3 4 9 10
Style A A A B B B C C C C
Pre Mean 107 78 80 : 57 87 9.7 47 108 74 147
Mean Gain 23 55 31 ! 19 37 36 9 6 27 13

p value * * * b e0 v * 255 612 010

(* indicates a p value < 0.002)

A ONEWAY test applied to compare gains by teaching style showed significant
differences between group C and the rest of the sample and no significant
difference between group A and B. Significant improvements from pre to post
test for every A and B class, and maintenance of scores through to the delayed
post test, showed the long term effect of the teaching activities.

As expected the teaching activities have had various impact on problems from
different categories.

Some findings are

1) The material has assisted a transition from employing the wrong additive

strategy to delivering correct answers (few children used this strategy for the rate
items). The shift was larger for style A and B classes than for style C.

2) The teaching activities have contributed to a change from several wrong
categories to correct answers, but also from naive answers, which do not take into
consideration the structural relationship between all the given numbers, to the

wrong additive strategy, demonstrating that this strategy is a natural intermediate
level of understanding of suchproblems.
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3 The activities have not preventcd children from employing the wrong additive
strategy as a fall-back strategy when the number relationship has become more
difficult combined with an unfamiliar context.

4) The errors children make in four number enlargement problems are clearly
attributed to inexperience of geometrical enlargement, and secondly a failure in
relating this to application of an appropriate number relationship. The activities
in the material do not centre much around the first aspect.

The progress is considerable for all cartesian product items, showing that when
children are helped to organise and represent the information in a systematic

way, so that a repeated addition model can be employed, such problems are not
particularly difficult.
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MIDDLE GRADE STUDENTS REPRESENTATIONS OF LINEAR UNITS
DR. P, LYNNE CANNON
MEMORIAL UNIVERSITY OF NEWFOUNDLANO

Students in Grades § and 7 were interviewed with a senes of linear measurement tasks. The tasks

were designed o investigate two aspects of students thinking about units of fangth: (aj the

consistency with which they idantity or construct units of length as line segment, and (b) the

extent fo which they reason appropriately about rélationships between different sized units. It

was found that many students appkaed a direct, point counting process to define units. However,

the extent to which this occurred depsnded on the task situation. Point counting occurred with

more students when numarals wers juxtaposed with points- a phenomena which has instructional

implications for the use of the number line for representing mathematical relationships.

Children's conceptions of units initially deve\lop in situations which involve enumerating, comparing and
operating on sets of discrete objects. Regardiess of variations in the physical attributes of the objects in a set, all
objects represents equivalent units. Through years of counting experiences, chiiiren eventuaily learn to
establish a one-to-one correspondence between their serial touching of or attention to each object and their
simultaneous utterances of unique number names. If the one-to-one correspondence is not viclated and the
number names are uttered in a standard order, then the last number name uttered invariably determines the
cardinal value of the set (Gelman & Gallistel, 1978). As such, chiidren eventuaily construct a schema in which
synchronous counting actions directly determine the number of units represented.

Iniinear measurement situations, the process of iterating linear units still conforms to the direct counting
schema deveioped through the experiences of cointing discrete units, However, when partitioning a line to
represent linear units or when interpreting units represented as line segments, a direct relationship between
synchronous counting actions and the number of units represented by the count is not invariant. Variations
between the results of a counting process and the number of line segments implied by the count depend on a
number of factors. These factors include whether one attends to line segments or points as the salient feature to
be counted, and the plan of action fofiowed. if line segments are the salient teature to which one attends then a
direct relationship between the count and the number of units pertains. if points are the salient feature to which
one attends, then the number of line segments are defined indirectly through the count of the points. For
example, depending on whether one counts (1) ali beginning and end-points, (2} only end-points, or (3) only
internal points between fine segments, 6 line segments wouid be represented by a count of 7, 6, or 5 points.
It is necessary to develop a flexible counting schema in order to construct or interpret linear units adequately in

such measurement situations. Students must incorporate notions of the geometric refationships between points

and line segments, alternative pians of action implied by these relationships, and a means of evaluating the
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number of linear units impiied by different couring procedures. Conceptions of counting de.veloped in discrete
unit situations are not sutficient. This paper explores the extent to which students in Grades 5 and 7
accommodate to these ditferent measurement situations and construct altérnative views of how units are
determined. The results reported here are a smali part of a larger study on students’ representations of units and
unit relationships in different mathematicat domain§ {Cannon. 1991).
Pian of the Study

Fifteen students from 2 schools participated in the study: 6 in Grade 5 and 9 in Grade 7. These students
represented a range in mathematical achievement in each grade. A Measurement Concepts Test was
administered, and later, each student was interviewed individually on a selection of the linear measurement tasks

(See Figures 2). The tasks were designed to investigate two aspects of students thinking about units of iength:

A Rulertask (Interview & Test Task)

This ancient ruler measures fengths in "FLUGS." One "FLUG" is the same as
two centimetres. Draw a line above the ruler that is 6 centimetres long.

! | | ! | ! I
I 1 2 3 4 5 6

B. Aggregate unittask (Interview & Test Task)
The line below is 4 units long. Draw a line thatis 12 units long.

C. Partitioning tasks (Interview & Test Task)

This pathis S units long. a) Mark the 5 units on the path.
b) Draw another path J.units long.

Fiqure 2 Linear measurement tasks with explicit reference to units and number.
(a) the consistency with which they identify or construct units of length as line segment. and (b) the extent to
which they reason appropriately about relationships between ditferent sized units. Students were required to

represent units in different problem situations. !

1 |n addition. tasks were used In which students were required to compared the lengths of two “paths” which
were made up of difterent sized line segments placed in iregular contigurations These comparison tasks were
derived from Bailey (1974) and Babcock (1978). The nature of students reasoning strategies was Investigated
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Students’ responses o the tasks reported in this paper were analyzed in terms of (a) the salient features
to which they primarily attended when defining units. (b) how they interrelated units of different sizes. In the latter
set of categories, with bi-relationat thinking students accounted for the simple ratio between ditferent sized line
units, whereas with mono-ralatioﬁal thinking they treated ditferent sized units as equivalent. Not ali categories
were applicable to all tasks. Distinctions in students' reasoning with multiple units (mono-relational versus bi-
relational thinking) did not apply to the partitioning task. Only one unit was referenced in this task: all of the

responses were necessarily mono-relational.

Jask Response
|
|
. I I I
Units Line Discrete Undefined
Segments Points |
— PR S —
) | . | |
Reasoning Numerical Transformational Perceptual
Strategy | -1
| | |
| Actual imagined
| |
unit Bi- Mono-

Relations Relational Thinking

Eigure 3  Analytical categories used to classity student responses to tasks.
Besults

Table 1 is designed to expiore students' representations of units in response to the tasks in Figure 2 in
several ways. First, it permits us to determine the general extent 1o which students constructed units which were
aither discrete points or line segments. Second, it aliows us to compare each of the tasks with regard to the extent
to which discrete points or line segments were constructed by students. And finally #t reveals the extent to which
their reasoning about the reiationship between ditierent units was mono or bi-relational. The students have been
grouped in Table 1 according to the extent to which they represented units as discrete points or line segments.

(a) predominantly discrete points, (b) predominantly line segments, and (c) consistently line segments.

through these tasks (See Figure 3). Students' thinking about units and the comparisons of length in these
situations are not reported here because of limits of space.
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Ruler Task Aggregate Unit Task Partitioning Task

Test Interview Test Interview Test Interview

)\
Response
Groups D MiL D MilL D MiL D MilL D Mi L D MiL

Discrete
Jameg ..
Marlene <. ?
Lolande
Connie
Fanya

Dexek

<4

w
w
w
<4
<4

M -->

\’W%g
W@ ww Y-
;
<4
<4

Dominantiy
Line Segments
Edwin
Dahlia
Tammy
- Lara
Kasey

womoww
W wmw -
wwwww-
www%w
TIIITI
TIITI ;

Line segment
Brock
Kit
Coran
Pete

ww ww
wwww
o www
wwww
TIII

TII

Nata.  The names of the students in Grade 5 arg underiined.

Units Unit ralations

D = discrete points M = mono-relationai

Mi = mixed, points & line segments MB = mono- then bi-refationai
L =line segments B8 = bi-relational

? = no defined units
NR = no response

As can be seen in Table 1, most students represented units as discrete points in one or more tasks.
However, none did so exciusively and a few never did so. There was a marked difference in the pattems of
responses batween different tasks. Students who represented units predominantly as discrete points, did so

most consistently with the partitioning tasks. With the aggregate unit and ruler tasks, the form of their units was
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more variable. However, the ruler task was the situation in which the greatest number of students were
inconsistent in the nature of their representation of units. This suggests a significant ditterence in the nature ot
students’ thinking strategles in different linear measuremant situations. A closer examination of how students

responded to the partitioning and ruler tasks, in particular, reveals further ditterences in situational responses.

Inthe partitioning tasks, some students appeared solely 1o attend to a direct relationship of counting
points to determine the number of units as in Lolande's case (See Figure 4). Others incorporated attributes
normally associated with linear units as in the case of Derek and James who both appeared to consider equal
spaces between the points to be important, but varied ir: their attention to points and line segments as the salient

feature for determining the number of units.

1. (Lotande. Grade 7) B B .

2.  (Derek, Grade 5) Yrmsammefermoeeefr e e

3.  (James, Grade 5) I s s et |

Fiqure 4 Examples of students’ use of discrete points as units to partition a line into five units then
drawing a ling of three units.

When discreta units were used with the ruler task the reasoning behind these responses ditfered (See
Figure 5). In the first example. the relationship batween the size of the centimetre and flug was ignored. The
points with each numeral determined the length of the line drawn. In the second example, the student attended
to the 2:1 relationship between centimetres and flugs but counted the beginning and end points of the line
segments as the units, beginning with the point associated with the 1 on the ruler. In the third example, the
student converted centimetres to tiugs using mental arithmetic and then represented the 3 flugs to correspond

with the numerals on the ruter and not the number of line segments units.
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1. (James, test)

|
| 1 2 3 4 5 6
Lfugs

2. (Kasey, test) I T U S |
| | | | | | |
| 1 2 3 4 5 6
Lfgs

3.  (Edwin, interview)
I | | | | | |
| 1 2 3 4 5 6 .
L fhgs

Eigure 5 Students' use of discrete points as units with the ruler task.
Point/Ling S Conflict: Dift A Task { Solution § .

Difterent procedures for constructing units influenced some students’ attention to line segments'
or discrete points as units. Students who represented units predominantly as discrete points defined
units as points when then used a partitioning process to resolve the aggregate units task. However,
those in this group who solved the aggregate unit task by iterating line segments taced no ambiguity
about how to determine the measure by the counting. The partitioning process led students to attend to _
the points rather than the line segments. With the ruler task there was the additional perceptual
feature that points were juxtaposed with numerals. This juxtaposition further emphasized a counting
relationship between points and the enumeration of units. All students who used discrete points as units
and some who used iine segments as units interpreted the *1* as the beginning marker of their
representations of 6 centimetres. not as the end marker of the first “Hug® unit. The structure of the e
ruler and the normal meaning of the numerals did not guide students' representation of 6 centimetres. .

Qiscussion

Ditferences in the representation of units of length often lay not in students' inltial responses to the tasks,

but in their reflection on the consequences of their first responses. For example, initial partitions of a line often

were based on an assumption that the number of points determines the number of units. Upon reflection, many
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students revised their discrete counting plan a-d redetined their representation of units as kne segments.
However, the discrete counting schema predominated initially.

The representation of units as points or line segments appears to be influenced by perceptual
and conceptual factors. The points are perceptually salient to the ruler and partitioning tasks.
Attention necessarily is centred on points with the partitioning task and often centred on points during
the ruler task. They are the component of the representation acted on synchronously with the verbal
count, exactly the same actions as counting discrete units. However, it is indirectly through the points
that line segments are defined as linear units and a conceptual understanding of this is necessary in the
reflactive process. One has to attend to the points, think about line segments. and keep track of the
relationship between the count of points and the number of line segments. Even for students who in
other situation focussed invariably on appropriate relationships between the count of points and the
resultant number of line segments, the ruler situation generated additional attention to points. The
common use of the ruler reinforces the notion that there is a direct relationship between the count ot
points and the number of units. Once a ruler is placed correctly, only the points and numerals have to
be attendad to "to read” the length. The discrete counting schema appears more likely to predominate
regardiess of a student's understanding of geometric relationships between the points and lines because
the numerals and points are juxtaposed. The need to attend to other factors besides the points when
representing or interpreting units is not recognized universally by the students.

it is insufficient to conclude, as Hirstein, Lamb, & Osborne. (1978) do, that a child who
assumed that the count of points determines the nuimber of linear units, *had no sense of a linear unit*
(p.16). Students who attend only to points in one measurement situation did not necessarily do so in
others. Eventually children must construct a conception of counting which admits to variable
relationships between what is counted, how it is counted and the implication of such on the number
units, a conception of counting that ditfers from their experiences in discrete situations.

Imptications

it has been reported extensively that the number line is a significantly difficult form ot

mathematical representation for students to interpret and use in a v.riety of instructional contexts

(Behr, Lesh, Post, & Silver, 1983; Dufour-Janvier, Bednartz & Belanger, 1987: Eri.>st, 1985; Hart, 1981; Novillis-
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Larson, 1980, 1987; Payne, 1975; Vergnaud, 1983). The tendency for the discrete counting schema to
dominate when numerals are juxtaposed to points along a line may be one of the factors contributing to
studants aiternative interpretations of mathematical relationships represented with a number line.
This study was limited to students in the middie grades, but the author has observed the same
appiication of a discrete counting schema when linear representation were constructed by pre-service
teachers. It would appear that a fully flexible counting schema appropriate to the representation of

linear units is long in deveioping.
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CHOICE OF STRUCTURE AND INTERPRETATION OF RELATION
IN MULTIPLICATIVE COMPARE PROBLEMS

Enrigue Castro Martinez
Luis Rico Romero
Encarnacién Castro Martinez

Departamento de Didactica de la Matemética
Universidad de Granada. Espafa.

ABSTRACT

In this paper we present the results of a study about the processes used by 300 Primary School
Children, in the 5th and 6th levels (11 and 12 years old), when they carry out conipare pro-
blems. The analysis of written protocols has been made taking into account two qualitative solver
variables: the choice of structure (additive or multiplicative) and the interpretation of the relation
(direct o reverse) which pupils consider witen they solve this kind of problems. The obtained
results show that pupils’ erroneous processes are related cither to an inadequate choice of
structure or (0 a reverse interpretation of the relation.

Muitiplicative word problems crcatc many difficultics to children. There arc scveral reasons for this
but we arc convinced that onc of the most important is that pupils arc normally confrontcd with a very scarce
varicty of standard multiplicative situations in their daily school work.

Multiplication and division concepts arc usually taught having into account modcls which arc deeply
rooted in scttied cultural clements. Multiplication is initially presented as a “repeated  addition”, cven though
this idca was temporally abandoncd by the Cartesian product model. Therc is, howcver, no unanimity in the
way to introducc the division concept.

Hendrickson (1986, p.26) stated that division is usually taught as a repeated subtraction, but this
could be in Amcrican curriculum, becausc in Spain the main model is partitive division (cf. Castellanos, 1980,
p.l6).

Although these concepts arc taught with the same basic model, pupils arc cxpected to solve any kind of onc step
word problems of multiplicative structurc, with the meaning Vergnaud has given to this term. Very often pupils
cannot transfcr what they have Icarnt from a specific standard word problem toanothcr of the same conceptual ficld
but diffcrent wording, and they will prabably not be able tosolve these problems by themselves, if there is not expli-
cit tcaching. It is uscful therefore to cstablish the different modcls within the muitiplicative conceptual ficld so that
pupils could have specilic instruction to overcome this gap. This is in linc with the cxhaustive investigation program
Vergnaud proposed tostudy conceptual ficlds. Vergnaud (1990, pp.23-24) establishes six different points to carry
out this cmpirical and theoretical work systematically. The two first arc:

- Analyse and classify the variety of situations in caclt conceptual field:
- Descrihe preciscly the varicty of behaviour, procedures, and reasoning that students exhibit in
dealing with each class of situations.
Vergnaud (19%): p.24) says that:

We lave only bits and picces of information on these complementary lines of inquiry.
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Both points have been widely treated in relation with additive structure conceptual field (cf. Carpen-
ter, Moscr, Romberg, 1982; De Cortc & Verschaffel, 1987). This rescarch has distinguished the very well-
known semantic categorics of problems.

Classification and analysis on multiplicative structure problems has been done from different
points of view (Hart, 1981; Vergnaud, 1985. 1988; Schwartz, 1988; Nesher, 1988; Bell ct all, 1988). Though
in most of these studies multiplicative comparc problems have not been considered, now the number of
researchers considering this semantic category are increasingly growing (Hart, 1981; Nesher, 1988; Greer, in
press).

Semantic Factors in Compare Problems.

In relation with addition and subtraction word problems, two semantic factors have been identificd as
the oncs which may influence children’s strategy when solving word problems: the static or dynamic character
of the situation and the position of the unknown.

Multiplicative compare problems are static cntities located at a time Tg. They can be mathematically
described as a scale function between the sefercnt set R and the compared sct C.

f
R— > C
X—————> f(x) =~ ox

The scalar « may be used in a dircct o reverse way, and so we have two possibilitics:

Xot la
R—— >C R———>¢C
X——————> ax X————————> X
If we work only with natural numbers, the scalar shows an increasing or decreasing comparison, respectively.
In Spanish increasing comparison are usually rcferred to with the following relational expressions: "x
veees mds que” (x times more than) and "tantas veces como” (times :s.many as).
Deccreasing comparison, in turn, are referred to with relational expressions such as "x veces menos
quc” (x times less than) and "como una partc de” (as a part of). Similar cxpressions can also be found in the
litcrature in other languages. For examplce, Harcl, Post, Behr (1988: pp. 373-74) usc the followiag relational

cxpression:

“Ruth has 72 marbles.
Ruth has 6 times as many marbles as Dan has.
How many marbles does Dan have?”

Hendrickson (1986, p. 29) usces this other onc:

“There are 12 girls and 16 havs in a room.
The number of girls is what part of the number of boys?”

The relationship "n morc than” can be inteepreted in two diffcrent ways:
(1) as the additive rclationship A=n+B (i.c,n=A-B) or
(2) as the multiplicative rclationship A =n*B (i.c., n=A/B).
In the latter situation it is gencrally referred to as "n times as many™. (Lesh, Post and Behr: 1988, p.101).
¢
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Vergnaud also considers relations such a< "threc times more™ and "threc times less” with a multiplicative
mcaning, cxpressing ratios { Vergnaud: 1988, p. 156). We have also found these relations in Spanish and French in
old arithmetical text books:

_*Se dice que dos cantidades variables son proporcionales cuando haciéndose una de ellas

2,3,4,... veces mayor o menor, la otra se hace ai mismo tiempo 2,3,4,... veces mayoro menor”
(Sdnchez y Casado: 1890, p. 85). ’

*Deux quantitiés sont inversement proportionelles lorsque la premiére devenant 2,3,4... fois plus
grande ou plus pelite, la dewxiéme devient au contraire 2,3,4... fois plus petite o plus grande.
Exemple:

On a eu pour 100 francs 24 méires d"étoffe; si on veut une éioffe 2,3,4... fois plus chére pour la
néme somme de 100{r., on aura 2,3,4...fois moins de métres” (Leyssenne: 1904, p. 240).

Greer (in press) points out another important semantic factor on the compare multiplicative pro-
blems: the cultural dimension. Some performance differences with compare problems between English and
Hebrew-speaking students can be explained because the simplicity of the Hebrew compare expression: P-3
instcad of "3 times as many as".

All this makes us think that the relational expression used to build the comparison verbally is highly
responsible for children’s successful or unsuccessful performanc: when solving problcms.

MacGregor (1991) has also pointed out the influcnce of this cultural and linguistic component and
has analyscd the misundcrstanding between the relational expressions "times” and "times more”.

HYPOTHESIS
In our study we arc going to usc four diffcrent propositions to establish comparison in multipli-

cative comparc problems: "veces més que”, *veces menos que”, "tantas veces como” and "como una parte de”.
parc pl

Every onc of these four cxpressions can be uscd in three different onc-step multiplicative compare word
problcms. Thesc three types differ in the unknown quantity (referent, scalar, or comparcd) of the comparative

relation.

The relational term  and the unknown quantily arc both task variables, in the sensc which Kilpatrick
(1978) gives to them.
Having into account these two task variablcs, we cstablish twelve different multiplicative comparison
word problcms (sce table 1). We claim the following hypothesis:
Error paliems need to be explained having into accoiunt not only the relational term orthe
unknown quantity but paying attention bollt to the two variables simultaneously and to

their mutual influence.

METHOD
Subjects
The subjccts were 300 pupils from 4 groups of fifth-grade (11-ycars-old) und 4 groups of

sixth-grade (12-ycars-old) in four Spanish schools at Granada. The project was donc at the end of
the academic year. According to the math curriculum, the notions of multiplication and division are
introdduced in the third grade.
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Tools and Procedure
In this rescarch we have worked on twelve multiplicative comparison word problems. These
twelve problems arise from considering the task variable R (refational comparative proposition)
with four values:
R1="timcs morc than"
R2 ="times less than”
R3 ="limes as many as”
R4 ="as onc part of"
together with the task variable Q (unknown quantity on the relation) with three valucs:
Q1 ="compared unknown”
Q2 ="scalar unknown"
Q3 ="rcfercnt unknown”
We have controlled the following task variables: syntax, class of numbers and class of quantities. We

uscd natural numbers and discrete quantitics. To control learning cffccts, three  homogeneous paper-

and-pencil tcsts consisting of 4 onc-stcp problems werc prepared. In every test the items were
problcms that incorporated a diffcrent term of comparison in their statcment. In all the problems
we have used the static verb "to have”. In the three tests the number size and the contexts used were
controlled variablcs. The number triples used in the problems were (12, 6, 72), (18, 3, 54), (15, 5,
75), (16, 4, 64). Every pupil solved onc 4-itcm test in a free-response form. All pupils completed the

test in class. There was no time-limit to answer the test.

Table 1
Six different types of the problems used in the study

Increase comparison Decrease cowparison
Compared unknown Daniel has 12 marbles. Haria has 72 marbles.
G Hirfa has 6 times as many Daniel has as many marbles as
marbles as Daniel has. one of the 6 parts that Marfa has.
How many marbles does Marfa have?. How meny marbles does Daniel have?.
Scale unknown Har1a has 72 marbles. Daniel has 12 marbles.
Danfiel has 12 marbles. Harta has 72 marbles.
How many times as many as What part are Daniei's marbles in
Daniel does Mar1a have?. comparison to Marfa's.
Referent unknown Marfa has 72 marbles. Oanfel has 12 marbles.
G Marfa has 6 times as many Daniel has as many marbles as one of
marbles as Dan has. the 4 parts that Maria has.
How many marbles does 0aniel have?. Howe many marbles does Danfel have?.

Note. Originally problems were in Spanish.

RESULTS

Wc have classificd pupils’ answers 1o the twelve multiplicative comparc word problems in three
groups: right, wrong, and not answered. Answers arc right when the pupil’s process leads 1o the right solution,
but wc have not paid attemtion 1o small mistakes with operations. When the pupil has not given any solution,

we have considered it a “not answered” reply.
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We have received 1200 different answers to our problems; 694 were  right answers (58%), 453 wrong
(38%) and 53 "not answered” (4%). The right answers have been analysed in Castro et all (1991), and thercfore
we will only present here the analysis of wrong answers.

We present in table 2 the number of all the different processes which led to wrong answers found in
everyone of twelve problems and in table 3 the number of the different processes leading to right answers. As

we can see there is a great number of different wrong processes for cvery problem but only a few of the right

ones.
Table 2 Table 3
Number of different processes Number of different processes
leading to wrong answers . leading to right answers
Ry | Ry | Ra | Ry Ry | Ry | Re | Ry
Q 6| 6 5| 5 Q 2 1] 2
QZ 5 6 7 6 QZ 3 3
Qs 6 9 7 4 Qs 1 1 1 1

1f we add up both the wrong and right processcs we can appreciate the varicty of all the diffcrent

processcs which pupils have used to solve cvery problem (tablc 4).

Table &

¥g¥bg£eg§ ;H)bigg different processes
R1 R2 R3 R4
Q1 8 7 7 7
Q2 8 9 11 11
Q3 7 10| 8 s

DISCUSSION
After the obscrvation and analysis of pupils’ written protocols we think that the most frequent mistakes
can be cxplaincd under two basic crror patlcrns:

1. Change of structure: the pupil understands the problem as if ithad an additive structurc (with thc mca-

ning Vcrgnaud gave this tcrm).

For cxamplc, in the problem

Maria has 54 marblcs.
Danicl has 18 marblcs.
How many timcs as many as Danicl docs Maria have?.

change of structure means that the pupil scts up as solution 54-18 or 54+ 18.

2. Reversal of relation: The pupil solves the problem using the reversal relation of the onc which appears in
the statcment.

For example, in this problem:

Marfa has 54 marblcs.
Maria has 3 timcs as many marblcs as Danici has.
How many marblcs docs Danicl have?.

O
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The reversal c'.rror means that the pupil proposes as solution 54x3 = 162.

In some problems the errors were mainly caused by only one of these patterns, but in others the
crrors were based on both patterns indistinctly. In table 5 we prescnt the main error pattern for every one of
the twelve problems; the wrong answers percentage over all the solutions (right, wrong, and not answered);
and the most usual crror pattern percentage over all the wrong answers. .

We try to show that pupils’ errors have been mainly produced by the same pattern, and although

there are morc diflerent patterns, these appear with a very low percentage.

Table 5
Most frequent error patterns and percentages over all the
solutions and over all the wrong answers in every problem.

Ry Ry Ry Ry
Change of Change of Ch. of str. Reversal
structure structure 5% (50%) of relation
Q _____________
1 9% (60%) 20% (61%) Rev. of rel.| 11% (70%)
(*) (**) 3% (30%)
Change of Change of Change of Change of
structure structure structure structure
Q
2 59% (92%) 60% (90%) 32% (80%) 32% (91%)
Ch. of str. Ch. of str. Reversal Reversal
15% (46%) 23% (56%) of relation | of relation
Q __________________________
3 Rev. of rel.| Rev. of rel. 49% (84%) 30% (86%)
20% (56%) 18% (39%)

(*) percentage over all the solutions.
(**) percentage over all the wrong answers.

The causes behind the error patterns detected in table S can be summariscd in the following:
a) Errors in the four Q, problems arc basically duc to change of structurc. This type of error is cven bigger in
Ry and Ry problems, where we find the words "morc™ and “less”, respectively.
b) Inthe four Q3 problems, crrors arc mainly of reversal rclation, whercas in Ry and R variables we find
both types of crror pattcrns with a very similar pereentage.
c) Qy problcms has a very low percentage of crrors.
d) Ry and Ry problcms arc mainly causcd by a change of structurc crror pattern, but, as we have said in (b), in

Q3 problems we find reversal crror pattcrn with a similar percentage.

143

O

RIC




1-119

CONCLUSIONS

After the analysis of pupils’ crrors we can state the following conclusions:

1) The pupils in this study use two basic modcls to solve multiplicative comparison verbal problems.
The two basic models have been: cither they have used an addtitive structurc pattern or they misplacc the
unknown in the compared (Q problems). This is consistent with Fischbein theory of implicit models
(Fischbein ct all., 1985) and with the guiding frame model for understanding word problcms, proposed by
Lcwis and Mayer (Lewis & Maycr, 1987).

2) Errors in Scalar unknown problems arc mainly causcd by a change of structure. Pupils usually iden-
tify this class with additive comparison problcms, and so they give the a-b solutions instcad off the a/b oncs.
This crror paltcrn has also been detected with ratio problems by Piaget, Karplus and Hart (Hart, 1981).

3) Errors in referent unknown” problems arc bascd on the reversal pattern. Problems are solved as
multiplicative structurcd but as if they werc simplc "comparcd unknown" mo;:lcl. Lewis and Mayer arrive at the
same conclusion using the rclation “timcs as many as” on consistcnt (comparcd unknown) and inconsistent
(rcferent unknown) compare probicms.

4) The two previous conclusions should be assessed considering the distracter cffect produced by
the relations “veees més que” (times morc than) and "veces menos que” (times lcss than). Problem statements
with thesc two terms lead to errors of change of structure, For this rcason when we find these terms "scalar
unknown" problems (which causc the same crror pattern) the cffect of both variablcs is reinforced, and this is
why in both cascs RyQq and R;Q, we have the greatest percentage of crror duc to changc of structurc pat-
terns. When these relational terms appear in "unknown referent” probicms we find both typcs of crror pat-
terns indistinctly.

Our conclusions have to be understood in the controlled variables frame. That is, as Bell et all. have
explaincd (1984, 1989), number sizc, class of numcrs and the rolc of the numbers involved in a multiplicative
relation: could have influcnced in the operations choicc on multiplicative word problems. Our results could

always have been affected by the change of these variablcs.
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PERSONAL EXPERIENCE IN MATHEMATICS LEARNING AND PROBLEM SOLVING

Olive Chzpman

The University of Calgary

This paper is based on a study involving three female first year junior college students,
enrolled in a business mathematics course, to identify and understand the meaning of
any uncharacteristic problem solving behaviour, from their perspective. The study is
framed within a social perspective of mathematics. The paper discusses the studenis’
use of a unique process of sharing "stories" of personal experiences which led to a
“connection of knowledge" which was used to obtain a final solution to problems that
had a consext they could relate to their personal experiences. Based on this process, a

conception of mathematics as experience is proposed.

From my experience as a mathematics teacher, it became evident that many students
engaged in problem solving processes or displayed learning behaviours that could not be
meaningfully explained within a traditional conception of mathematics or the teaching of it. Such
uncharacteristic behaviours seem to require educators/researchers to look beyond the "purely
cognitive" (Cobb 1986) and pedagogical processes (Easley 1980) to understand the deeper meaning
of their existence. This paper reports on a study in which I investigated the problem solving
behaviour of three female first year junior college students, enrolled in a business mathematics
course, to identify and understand the meaning of those aspects of their behaviour that scemed to
fit this uncharacteristic label.

The study focused on word problems, specifically business math problems because of
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the students’ circumstances. This focus became important because of my experience with students
who often paid more attention to the social context instead of the mathematical context of these
problems when trying to solve them. The literature also suggests that many students, particularly
poor problem solvers, display the formerbehaviour. Traditional approaches to problem solving tend
tofavour the focusc_m mathematicalcontextand discourage a focus on social context. Consequently,
in this study, the latter behaviour was investigated to understand the implications of mathematics
learning embodied in it.

The body of literature which provided a frame for this study falls in the category of a
social perspective of mathematics where belief, personal meaning, culture, ... are important
considerations(Fasheh 1982, Gordon 1978, Cobb 1986, Schoenfeld 1985, D’ Ambrosio 1986). Within
this framework, the social circumstances of the students play a significantrole in their learning. In
the case of females, some attempt has been made to explain the social implications of their
treatment of problem context in terms of a preferred way of knowing rooted in relationships and
connectedness (Belenky et al 1986, Buerk 1986). Thus, for example, they are likely to respond to
problem context in terms of its humane qualities instead of its abstract ideas. However, by itself, this
does not provide an understanding of the nature of the problem solving process these students
engage in, from a social perspective. This study provides a way of beginning to fill this gap.

In thisstudy data was collected through interviews, classroom observations, group and
individual problem solvingsessions, andjournals. The analysisinvolvedvarious levelsof comparisons
between the students’ social biography, math biography and problem solving behaviour in terms of
teacher-student relationships, peer interaction and problem solving strategies. Because of the
limitation on the length of this paper, only the unique aspects of their problem solving strategy as

a group and the conception of mathematics embodied in it will be presented.
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A DIFFERENT VIEW OF PROBLEM SOLVING

Theunique problem solvingbehaviour of these studentsoccurred whentheywere able

torelate the context of the problems to their personal experiences. Their solutions of such problems

presented a different way of viewing problem solving in math. The approach was notto focuson the

mathematical context of the problem to understand it, but on the social context. It involved an

exploration of the problem in a social or experiential mode instead of a cognitive mode. The process

consisted of three stages: a sharing of "stories” of personal experiences, which led to a "connection

of knowledge", which led to a final solution of the problem and a reflection on the consistency of

their answer in the context of the connected knowledge. It seemed to be a different way of

interpreting Polya's(1957) problem solving model. The following problem andexcerpt ofthegroup’s

solution of it will be used to discuss these aspects of the approach.

O
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Problem: A bookstore buys used books and sells those that zve slightly damaged at 20%

below the cost of a new book. If a customer paid $45 for a used * 2ok, how much did she
save? '

Solution:

()
J:  Butit says you get 20% for slightly damaged books and the customer bought a used
book, we don't know if it's slightly damaged. ... What if it's more than slightly damaged?

L: Thatcould be, which is why it's not working out. ... I don’t usually buy used books, like
school books, because 1 find they sell them for too much, even when they are more than
slightly damaged....

M: Well I always buy my books used ..., but it's from other people selling theirs and Idon't
take the price they give even if it's slightly damaged. ... No, but it's true. One time
somebody was giving me a price and I just ..., I asked somebody else to give me a better
price and I did. I got lots of sh-- from the first person but I still took it.

J: Butsome people prefer to get the price they want than to take what they can get, which
is so stupid if you don't need the book anyways. I know people like that.... Like this guy
wanted to sell me a book for $30, he paid 35 for it. I said, "20". He said, "forgetit.” ...

L: Iknow.... But what you said makes sense because it could be more off if it is damaged
a lot. But they don't give us that information. So ...
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M:  Butwe are dealing with a bookstore here. So they would want to sell it to make a
profit too.

(--.) [p-s-t.Nov.88]

In solving this problem, the students’ first approach was not to look for a formula,
recall a method illustrated by their teacher or usr; one from the text book, as they did with problems
with abstract or “irrelevant” context. They started from scratch, depending more on their real life
personal experiences toarrive ata solution, instead of an abstract connection towhat they had learnt
in class.

The "storying" stage started when their initial, individual attempts at a solution failed.
To resolve the situation, they resorted to a special type of sharing. It wasn't a sharing of isolated
opinions of what was wrong and how to fix it. It wasn’t a cause-effect analysis of something that
happened on their page. It was a different personal encounter, one involving a sharing of personal
experiencesdirectlyand indirectly related to the problem context. "J" noted a "social” concern about
the problem. She pointed out that the problem stated thatbooks which were slightly damaged would
be sold at a 20% discount, but it did not say if the book that a customer purchased was slightly
damaged. It only said that the customer bought a used book. This generated a "discussion" of this
"defect” in the context.

This "discussion" portrayed a different voice in relation to traditional problem solving
processes; a voice that would likely be silenced in a traditional classroom because of its obvious
deviation from the "norm". The discussion was not centered around "why didn’t the math make -
sense”, but"why didn’t the context make sense". It also did not deal with the contextin a general way
or as a hypothetical situation. Instead, it personalized the context; integrating it into each
participant’s personal experiences.

The formatof the discussion looked more like a narrative process as each person took

turn at sharing a "story" of a personal experience related to the context. "M" and "J* shared an
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experience of buying used books while "L" talked about why she didn’t buy used books. But these
weren't just any "stories”, they were biographical. They contained personal information that the
others might not have known. For example, “M" talked about buying only used books, about not
buyipi, 2t "Eatons”, about not allowing customers atwork to take advantage of her, about notto give
deals but to get them, about not to sell for aloss.... These were all reflections of her personal world
as revealed in her "social biography". They were manifestations of her bargaining tendencies that

defined the way she was and made sense of her world; a behaviour rooted in her childhood

experiences. Soshe and the others seemed to be contributingsomethingvery personalinthissharing
stage.

The outcome of this "story sharing" stage was a social construction of a reality of the
problem as it was experienced by each of them. In particular, the "merging" of their personal
experiences resulted in a "unique" type of knowledge used to solve the problems; a "personal
connected knowledge".

I conceptualized "Personal connected knowledge" as the knowledge drawn out of the
personal experiences of the individual members of the group by real images in the problem context
and provides a concrete connection to the abstraction embodied in thatcontext. Itisan experiential
reconstruction of the context of the problem. Itis a reconstructed version of the original problem
based on the "truths” extracted from their experience instead of those given in the problem. Thus
it reflects what they care about; their meaning; their reality.

Oneway in which these qualities were manifested in the business problems theysolved
was through the group’s concern about the negative implications of the context -- the
unreasonablenessof the business practices in the given situations, for example, the highcost of used

books. Such concerns were usually "restoried” to create a context consistent with their perceived

reality.
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Once the "personal connected knowledge" was established, the students were ableto
get to a solution that was meaningful to them, but "correct" only when the "personal connected
knowlege" did not conflict with the intended context of the problem. Howe\}'cr, they seemed to be

able to resolve such conflicts with appropriate teacher intervention.

A DIFFERENT VIEW OF MATHEMATICS

The problem solving approach and other rejated mathematics learning behaviour of
these students suggest a different conception of mathematics, a conception that is necessary to
reflect its qualities when viewed from within a context of human experiences. The conception that
emerged portrays mathematics, notas a dehumanized process or skill to be mastered, but a situation
that is experienced in terms of human intention, fear, triumph, hope, .... One does not abstract the
cognitive meanings from the human context, but deals with them holistically. These students’
learning of mathematics was not an impersonal application of algorithms or problem solving
strategies to some phenomena (real or fictitious) embodied in the problem, external to themselves.
Instead, it was a sharing and connecting of personal experiences, a sharing and connecting of "self
stories”. This suggests that for them, the experience that is shared and connected is mathematics. In
the business math problems they solved, mathematics became shopping, bargaining, selling ..., not
the manipulation of the numbers abstracted from the experience. Consequently, from this
perspective, not only the learning of mathematics, but mathematics itself is experience; an event in
their life story.

This conception of mathematics provides a different way of viewing problem context
and the way these students treated it. For them, it was not custom made clothing for some abstract
concept, it was an event already "storied”, or a "restorying” of one, in their life experiences. Thus

“context" is viewed as the "storying" or "restorying" of a personal experience. Consequently, to talk
rying rying pe Xp q Y,
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about mathematics as embodied in the context is to talk about "self’; to talk about personal
experiences.
This summary of this conclusion drawn from the study, does not do justice to the
underlying conceptual considerations of the perspective being proposed. The goal, however, is to
draw attention to an important dimension in considering what is mathematics, to understand some -

of the seemingly "bizarre" problem solving behaviour of many students and to deal with them

meaningfully for the students.

CONCLUSION

The outcome of this study is suggesting recognition of a dimension of mathematics
that tends to be under-represented in the school curriculum thus denying studentswho understands
mathematics in this mode the only opportunity to engage ina meaningful learning process. Given
the current shifts in philosophy in mathematics education, this seem tobe a timely outcome to be
included in the broadened definition of mathematics in the school curriculum. Although the
NCTM's Curriculum and Evaluation Standards (1989) have considered mathematics as problem
solving, reasoning, connectio.ns, communications ... they do not seem to go far enough to include or
explicitly recognize mathematics as experience in the context that emerged in this study. Similarly,
the writingand cooperative learningmovementsin mathematics education have notgonefar enough
in terms of what is considered as personal experience in written and oral communication in the
learning of maths. More attention is needed to the social autobiographical perspective ina narrative

context to facilitate the way of knowing implied in this study.
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INTERPRETATION AND CONSTRI'CTION OF COMPUTER-MEDIATED GRAPHIC
REPRESENTATIONS FOR THE DEVELOPMENT OF SPATIAL GEOMETRY SKILLS

G. Chiappini - E. Lemut
Istituto per l]a Matematica Applicatadel CN.R - ViaL.B. Alberti, 4 - 16132 Genova - Italy

In this r we analyse the role that the computer may play in the development of the geomeiry skills that
control representation by parallez;:specrive and orthogonal views. The study involved studewss of 12-13
years of age. Software especially designed by us was used to test problems of representation by orthogonal
views of a poly-cube structure shown in parallel perspective, or vice versa. The a priori analysis of the
teaching situations concerns the conc?aul aspects inherent in the use of software with respect to problem-
solving strategies that may be applied by the studemss. The discussion of the observations made concerns
;c'::o mlledof computer mediation in the development of the students’ strategies with respect to the involved
wiedge.

1. Introduction

Various studies carried out during the last few years stressed the difficulties that arise in the mastery of the
projective system underlying parallel perspective and orthogonal projection drawings {1] (2] [3] (6] [8].
The difficulties that have been found concem the geometric conceptualization involved in the development
of such notions as projection, change of point of view, and adoption of a reference system. Such notions
are fundamental to permit an active control over the subject's perception with reference to the meaning-
significant contents of the graphemes of perspective drawing or for the coordination of the points of view in
the drawing of orthogonal projections. It is difficult to overcome these difficulties because in teaching
practice, especially at comprehensive school level, there is a dearth of effective and tested paths towards
development of skills of reading and of representations of the real physical space according to parallel
perspective or orthogonal views.
The research about which we are discuassing in this paper concems to what extent the computer may help
the growth of this type of skills, encouraging the development of the concepts that the subject has about the
projective system underlying these types of graphic represeatation [5]. The research that we carried out is
circumscribed within the graphic space to tasks of reading and construction requiring the transition from a
parallel perspective drawing to the corresponding orthogonal view, and vice versa.

Regarding the software specifications and the development of an a priori analysis of teaching situations, we
availed ourselves of the collaboration of Claire Margolinas; the software implementation was developed by
M.G. Martinelli for the thesis she wrote for her mathematics degree.

2.  General Characteristics of the Software Implemented and Used

The software, written for the Autocad environment, exploits the potential of the Autolisp language. It
permits to address the following two types of problems:

i) given a representation of a poly-cube structure in orthogonal views, construct the parallel perspective
representation of the same structure;

ii) given a particular parallel perspective representation of a poly-cube stricture, construct the corresponding
orthogonal projections.
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The second type of problem may be addressed in two different ways:

- constructing on each view the projections corresponding to any number of cubes before passing to the
representation in another view (MOD 1);

- constructing on each view the representation corresponding to only one cube at a time (MOD 2);

The software was designed to structure the student's solution process in three distinct phases:

(1) the students make their observations on the statement of the problem and gather the information that they
think may be useful for the implementation of their problem-solving strategy (solution anticipation phase);
(2) the students implement their problem-solving strategy exploiting the operational features of the software
environment used (problem-solving strategy construction phase); )
(3) the students have the possibility to carry out a validation of the problem-solving strategy that they have
implemented, checking the correctness of the results obtained with respect to the proposed problem (stage
of validation of the implemented strategy).

Each type of problem requires that the students work in both environments (orthogonal views and paraliel
perspective), using them respectively as starting and validation environment, and as working environment,
and viceversa. ’

The basic geometrical elements manipulated by the used software are squares with unit side (working on
orthogonal views), and cubes with unit edges (working on parallel perspective).

3. Learning Situations Proposed
Here below we shall give the statements of the problems tackled by the students during the experiment. The
three texts were introduced by a verbal question of the experiment leader, such as: "What you see on screen

is a representation of the structure of an object. You must find what is the structure and represent it in this
new environment”.

Prob A Prob B (MOD 1) Prob C (MOD 2)
For problems B and C, specific commands are available with the visualization of the statement of the

problem. These commands give to the student the possibility of exploring the poly-cube structure from
three different points of view. Here below is an example relevant to problem C.

Q 3
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C1 Cc2

The drawings illustrated here represent the object according to a non-transparent perspective view. Actually,
by default the software represents the objects according to a wireframe (ransparent) view, but a specific
command permits to select also the non-transparent view of an object. We should also notice that in test B,
the non-transparent representation does not permit to detect the presence of a fifth cube, that may be
perceived in the transparent view, and is made more explicit by the reading and coordination of the other
three available points of view.

Notice that in the views displayed on screen both the planes of the trihedron and those of the orthogonal
views are grids and coloured 50 as t0 help the student see the correspondence of the parts.

The problem-solving strategy for test A is developed by inserting the cubes in the work-space defined by a
tri-rectangular trihedron identical to the one represented in tests B and C. The cubes are inserted using the
mouse to implicitly define on the horizontal plane the coordinates of a privileged vertex of the cube (the
vertex whose projection on the horizontal plane is the nearest to the intersection of the three planes of the
trihedron), and assigning to the cube an integer between O and 5 to define its height in relation to the
horizontal plane, expressed in the units of measurements implicitly defined by the grids of the planes of the
trihedral.

Underlying this way of working and representing is a conceptin of space that identifies the cube by means
of the pair of coordinates of its projection on the horizontal plane, (seen as intersection of the row/column
on the grid) and of the coordinate according to the axis orthogonal to it. It is also necessary to notice that the
construction of each cube is possible only by specifying the coordinates of its projection only with respect
to the horizontal plane; therefore, the three directions of the trihedron are not equivalent.

The construction of the solution strategy for tests B and C employs a mouse t0 insert the desired projections
on the grids in the view planes. The use of software encourages a concept of space according to which each
cube is identified by the pairs of coordinates of its projections on the three planes of a tri-rectangular
Euclidean reference system, seen as intersection of row/column on the grids of the planes.

It should be noticed that in the solution strategy used for problem B (MOD 1), the demands made on the
students to put into correspondence such pairs of coordinates are not pressing, as the construction of each
view may be done independently from the others, even chronologicaily; on the other hand, in the solution
of problem C (MOD 2) the coordination of such pairs of coordinates is necessary and should be performed
with respect to the parallel perspective representation, in order to permit the unambiguous identification of
each cube whose orthogonal view is desired.
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By selecting a specific command, the students have the possibility of automatically accessing the orthogonal
view or the parallel perspective representations corresponding, respectively, to the parallel perspective or
orthogonal view constructed by them. This permits the validation of the employed solution strategies {7).
Finally, we should notice that the test of a problem, the students’ solution and the representation
automatically offered by the computer never can be simultancously visualized on the screen. The students
can pass from each one to another, selecting specific commands.

4. Experimentation Context and Methodology

Up till naw the experimentation was carried out on S pairs of students of 12-13 years of age, of the 2nd
year of comprehensive school (Grade 7). Four pairs of students are in the same class. The teachers of these
students belong to our research group; according to their opinions, these students belong to the upper haif
of their classes.

The problems were given to the students in the same sequence in which they are presented in this paper. To
become familiar with the characteristic of the software, before attempting each of the three problems
proposed, the students worked on three simple problems concerning the representation of only one cube.
‘Also those problems constituted study situations.

Before starting the software activity, we asked each student to draw by her/himself on a blank sheet of
paper the parallel perspective image of a cube and the three corresponding orthogonal views (top, front, and
side).

No student had any difficulty in performing the task.

The students were instructed to use, during the tests, the blank sheets available to take notes. The entire
work session of each pair of students was recorded by means of a tape recorder.

The authors of this paper, working respectively as experimenter and as observer, along with one of the
students’ mathematics teacher, assisted to the tests of each pair of students.

The analysis of the results is based on the transcription of the recordings made on tape, on the notes made
by the students on the sheets of paper, on the printouts (made on a plotter) of the various validations
performed by the students, and on the notes taken by the observer during the activity.

§.  Our Hypotheses on the Role of the Cemputer

Our work endeavours to verify whether, and to what extent, the computer:

- may carry out an active mediation role in the students' leaming process;

- may encourage the implementation of actions oriented towards the pursuit of a goal meant as anticipation
of the future outcome of an action;

- may affect the inner mental processes of the subjects and the nature of the communication between them.
Within this framework, we formulate the following hypotheses:

a) the interaction with the computer may take the form of a social interaction in which action and
communication may integrate dialectically;
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b) the computer may have this important role in the leaming process of the student only if the learning
situations that the student tackles with the mediation of the computer permit the validation of the problem-
solving strategies implemented by the pair of students;

¢) a context permitting an interaction between "equals” affects the role that the computer may play in the
leaming process of the stuu:ts involved.

Our hypotheses take in account the research findings according to which the use of computers may giveto
the concept of "proximal development zone", introduced by Vigotskij, a new perspective, ie., "the child
may do, with the aid of computer technology; things that he could not do alone or with the assistance of an
adult” {7]. :

6. A Priori Analysis of the Learning Situations

The a priori analysis concems the conceptual aspects of the use of the software in relation to the possible
problem-solving strategies that the students may employ to solve the assigned problem situations, and also
the conceptual aspects of the changes of strategy in the course of the computer activity.

The considered objects are abstract geometrical configurations (cubes and/or poly-cube structures), whose
shape and location within the environment displayed on screen are not subject to any balance limitation.
Since these are not objects characterized by a specific function, the shaping of a mental image of the
represented object cannot be based on the identification of a known shape: the students have to construct it
every time.

6.1 - Problem A requires the interpretation of a system of views and the production of the corresponding
parailel perspective representation.

The strategies implemented by the students may correspond to quite different levels of knowledge and of
anticipation, and may be linked with the information that they establish before acting.

A priori, we identified four possible first approaches to the soiution:

- proceeding without taking notes, trying to construct the representation trusting one's memory;

- reproducing the views on a sheet of paper, even if in different ways: sketch of the outlines alone, without
reproducing the positions on the views' planes; position sketches, by means of coordinates; complete
sketch of outlines and grids;

- sketching on a sheet of paper a parallel perspective representation of the object, with or without indication
of a spatial location;

- drawing only one view (mainly from above) with 2 number placed over each square to indicate the number
of cubes "present” at that position.

Generally speaking, we may expect that:

a) the behaviour of the students in implementing their solution strategy depends not only on the notes they
take, but also on their knowledge of the system of the views. For instance, if the students never worked
with orthogonal projections and do not know the geometrical rules that govern them, they may decide to
draw three different objects corresponding to the three views as seen from wbove or three objects
corresponding to the views as seen from the front.
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b) at first the attention of the students js drawn mainly on the reconstruction of the object’s shape; only later
do they tackle the problem of the cormect location of the object in the measured and oriented Euclidean
speace, apechﬂyif.hdniuuicipuim.dwmofmobjeahdmbemmuedh any way.

6.2 - To solve situations B and C, the students must understand what is the shape of the object and in
which way it is placed within the trihedral space. They must gather the necessary information to be able to
reproduce the views, considering that the single representation given in the statement of the problem is not
sufficient.

A priori we identified four possible first approaches towards a solution:

- proceeding without taking notes, trying to construct the representation trusting one's memory;

- drawing the orthogonal projections directly after analysing the four paxallel perspective representations
offered by the software, recording or not the location of the object:

- reproducing the parallel perspective drawing on a sheet of papei’ to remembe: its shape, taking for granted
the gbility to obtain from it all the information necessary to the representation o', the views;

- drawing the view from above, with a number placed over each square to indicate the number of cubes
present at that position,

Generally speaking, we may expect that:

4) the initial strategies of the students are quite not different with regard to the construction modality to be
used (MOD 1, MOD 2); they tackle problems B and C with the same spirit. Only later they may feel the
need to conform their strategy to the operational characteristics of the available environment;

b) the solution method affects the setting up of an optimum strategy for the solution of the two types of
task. When it is possible to insert all the projections on a view, and later on the other views (prob. B), the
optimum strategy is based on the second approach, since there does not appear any strong necessity to link
the object to the views . If it is necessary to insert the projections corresponding to one cube at a time
(prob. C), the optimum strategy requires, beside the second approach, also the third or the fourth one; in
fact it is necessary to remember the shape of the object, since for each projection it is necessary to recognize
to which cube the projection corresponds, in order to be able to coordinate them coherently.

6.3 - Inall the types of problem tackled, the possibilities of leamning offered by the software are linked to
the students’ development of strategics and knowledge in the course of the activity. During the process of
construction of the solution strategy, the effect of every action performed by the students is visualized on
the screen, yet without any indication whether it is adequate to the assigned task. The validation of one's
own strategy or of a particular action, can be performed later, by comparing the test of the problem with the
representation automatically produced by the computer in relation with the solution proposed by the
students. The differences that students can possibly observe can induce them to go back to the performed
actions, hence starting a dynamic process between anticipations and validations, that we believe meaningful
for understanding the rules related to the representation by means of views and in parallel perspective.

This software, hence, offers a possibility of validation, but the decision whether , when, and how to use it
belongs only to the students. Since we did not put any limitation on the number of validations that the
students can perform during an exercise, we expect that this can influence the way they use it, hence that
this can finally contribute to characterize the role of the computer in the students’ leaming process. We
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intend to evaluate a posteriori the students’ belaviour in relation to the visual feedback offered by the
computer.

7. Discussion of Some Results of this Study
The role of the computer as mediator in the smdents’ leaming process emerged from an analysis of the
promabywhkhﬂnmwwdmwemomp&mmwmmdnwdifymnmlm
" strategy.
In our context we note that the computer-mediated activity allows an immediate actualization, by means of
images, of the students’ actions which can be judged based on the possibility of the available validation.
During our experimentation, we have observed that the visual feedback connected with the possibility of
validation has been used in different ways by the students.
In same cases, overcoming past exrors (as well as constructing a correct solution) has been based on atrial
and error practice. The visual feedback connected with the validation allowed a correctness test of the
involved actions. In these cases the students’ actions depended on the way they perceived the visual
feedback related to the past action.
For example, in problem A, all pairs of students have used a trial and ervor practice to develop a 3-D
reference system conception suitable to the software operation.
We observe that the trial and error practice requires many validations and is characterized by the low level
of the cognitive processes that students put in action.
Even though in some contexts, such as those linked with the discovery of the software operation, a trial and
error practice very ofien can be the only useful approach for the students, we observe that in the task
solution such approach is scarcely productive for the students’ leaning process.
We have observed that only a pair of students has been captive of the action - validation cycle that is typical
of the trial and error practice; in the various tasks this pair has continued to perform actions based on
successive approximations, relying every action upon the memory of the last visual “eedback, without
never carring out a global anticipation of strategy. We note that only this pair was unable to solve problem
C, for which Was necessary to work out a more articulate strategy than the trial and error one.
In all other cases the trial and error practice was used only at the very begining; subsequently we have
observed that the actuslizations through images offered by computer have allowed the students to observe
“regularities” in the operation of the projection system underlying the use of the software, and to work out,
in relation to them, behavioural schemes which have allowed the students to single out more articulated
objectives for the problem solution.
For example, the observed "regularities” concem the comrespondence between the position of a cube in the
tribedral space and the localization of its projections onto the view planes, or the direction of the cube's
edges with respect to the knots of the grid of the trihedral planes in the different possible points of view.
We observed that the elaboration of a behavioural scheme connected with regularities observed by the
students is the result of a non formalized analysis produced by the dialectic between anticipation - action -
actualization by means of images - validation, which is realized through the dialogue with the computer. A
peculiar characteristic of the non formal analysis performed with the help of the computer is the binding
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that is established, while students of a pair ccmmunicate with each other, between the observed "regularity”
and one or more "key words” taken from the vocabulary of both of them. Examining dialogues between
students, results that, through the mediation of the computer, they have been able to give to these words
patticular meanings connected to the geometrical properties related with the observed regularities; such
words tend to be implicitly trmsformed, during a work session, into "conceptual words" related to the
geometrical knowledge which is requires by the problem solution. At the same time, also actions and
controls.thumesmdelmhavepuinacﬁonindheovaingamg\duity.nquireaunimynuningmhedto
the naming process. This process leads to the construction of a behavioural scheme related to the observed
regularities, and places at disposal tools that allow students to stop and reflect upon their own solution
strategy, and possibly elaborate new anticipative hypotheses for the proposed problem.

Hence, we observed that, in these cases, the computer mediates the individual and Ppair activity of the
students, influencing at the same time both the elaboration capabilities of each student snd the Quality of
their communication.

The observations made during this experimentation raise two important problems.
The first problem is whether low level strategies, like trial and error, are intrinsic in any software with
graphic feedback, hence in some cases avoidable only with teacher's assistence, or can be overcome by

adding bindings to the dialogue between student and computer, suitably modifying the software
characteristics.

The second problem concems how to formalize the non formal analysis conducted by the students with the
mediation of the computer, transforming what actually is an in-progress knowledge into a conscious
leaming of the geometric knowledge under consideration. We believe that this problem is closely correlated
to the elucidation of the role that the teacher may play during and after the students’ activity with the
computer, that has not yet been studied in our work.
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RESPONSES TO OPEN-ENDED TASKS IN MATHEMATICS:
CHARACTERISTICS AND IMPLICATIONS

David J. Clarke and Peter A. Sullivan
Mathematics Teaching and Learning Centre
Australian Catholic University (Victoria) - Christ Campus

Surnmary

The classification of the types of responses provided by primary and secondary schoolchildren to
a particular form of open-ended mathematics task has enabled the investigation of the effects of
factors such as collaborative work, age, instruction, question formct, and culture or school
system. The demonstrated reluctance of pupils to give multiple or yeneral responses has been
investigated through the distinction between the inclination to give such answers and the ability ;.
do so. Comparison has been made with pupil responses to open-ended tasks in disciplines other
than mathematics. Study has been made of pupils’ accounts of their thinking while attempting
such tasks and their justifications for their answers. Preliminary findings are reported of an on-
going study into the learning outcomes of a teaching program based solely on the use of such
open-ended matheinatics tasks. The implications of this research are discussed with respect to the
use of open-ended mathematics tasks for the purposes of instruction, assessment and as a
research tool.

INTRODUCTION
This paper constitutes a progress report on an extensive and continuing program of
research into the use of a particular form of open-ended mathematics task for the purposes of
instruction and assessment. The task type has been given the title “Good Questions”, and the
characteristics of these Good Questions have been discussed elsewhere (Sullivan & Clarke,
1988; Clarke and Sullivan, 1990, Sullivan and Clarke, 1991a and b, Sullivan, Clarke and
Wallbridge, 1991). Examples of 'good' questions are as follows:

A number has been rounded off to 5.8. What might the number be?
Draw some triangles with an area of 6 sq cm.

Find two objects with the same mass but different volurne.
Describe a box with a surface area of 94 sq. cm.

The questions are different from conventional exercises in two major ways. First, these
questions engage the students in constructive thinking by requiring them to consider the
necessary relationships for themselves, and to devise their own strategies for responding to the
questions. Second, the questions have more than one possible correct answer. Some students
might give just one correct response, others might produce many correct answers, and there may
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be some who will make general statements. The openness of the tasks offers significant benefits
to classroom teachers because of the potential for students at different stages of development to
respond at their own level.

THE STUDY
The following is a report of a five-stage project which sought to identify the way
schoolchildren respond to Good Questions. The discussion of results is structured around the
specific research questions addressed at each stage of the project.

General Method - Task administration

In a typical administration, a set of four questions was given to participant classes of
schoolchildren. The criterion for selection of classes was the willingness of their teachers to
participate. Even though no teacher declined the invitation no claiins are made about
representativeness of the results for other schools.

In the first administration of tasks, the questions asked, the procedure for administration
and the response coding system were as follows:

Subtraction
Last night I did a subtraction task. I can remember some of the numbers.
1

4
What might the missing numbers have been?
A number has been rounded off to 5.8 What might the number have been?
Arca
FA rectangle has a perimeter has of 30 m. What might be the area?
Fraction as operator

%of the pupils in a school play basketball. How many pupils might there be in the school and
how many might play basketball?

The format for administering the questions was the same in each class:

i) Thequestion: "___ + ___ =10 What might the missing number be?" was posed, and
the responses suggested by the pupils were written on the chalkboard. The pupils in the
class were asked to comment on what was different about this task from common
mathematics questions. The response sought was that there are many possible answers.

ii) The first two questions were distributed (subtraction, rounding).

iii) The papers were collected and the answers reviewed. Again the possibility of multiple
answers was discussed.

iv) The second two questions were distributed (area, fraction as operator)
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The responses of the pupils to the :asks were coded. The coding was as follows:

0 meant no correct answers

1 meant only one correct answer

2 meant two or three cotrect answers

3 meant all or many correct answers

4 meant that a general statement was given

To illustrate the way that this code was applied to the rounding question, the following is
the meaning of the codes. Individual correct answers were numbers such as 582and 5.78. A
code of 3" was given to a response like "5.75 5.76 5.77 5.78 5.79 5.80 5.81 5.82 5.83 5.84".
Examples of responses which were considered to represent a general statement, 4", were "5.75
" ... right up to 5.84999..." or "between 5.75 and 5.849".

RESULTS
Stage 1.
Stage 1 of the project addressed two questions:

What types of responses do primary and secondary schoolchildren give to such

open-ended tasks?

Do the responses of the pupils vary depending on whether they work together

or individually?

The purpose of this stage of the investigation was to ascertain the proportion of the
pupils who gave each of the types of responses and to compare the responses of pupils in the
different groups; individual, combined, and pair/ind. There were 39 pupils who completed
individual responses, 49 students worked in pairs but submitted individual papers, and there
were 39 pairs of students who gave combined answers. It was confirmed with the respective
teachers that all of the concepts which are pre-requisite to these questions had been taught
during the year prior to this study.

No clear differences between the groups emerged. The proportions who responded at
cach level did not appear to be influenced by whether they worked individually or with a partner.
It had been anticipated that the pupils who had worked together would be more likely to give
multiple or general answers. It was presumed that two minds might view each task differently
and produce at least two responses, as well as alerting the pairs to the possibility of more than
one correct answer. Whatever thinking or expectation is necessary to stimulate multiple or
general answers appeared to be no more available to pairs than to individuals. Or conversely,

whatever preconceptions limited the potential to give multiple answers affected both pairs and
individuals alike,
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Stage 2
Stage 2 of the project addressed the questions:

What effect dues age or school experience have on the types of responses given

to ‘good’ questions?

Does the distribution of pupil response types differ according to culture or

school system?

The same four questions were given t0 99 year 10 students at two outer suburban high
schools in Melbourne, to 97 year 10 students at a specialist mathematics/science school in Penang
State, Malaysia, and to 86 year 10 students in two high schools in the USA. The questions were
translated into Bahasa Malaysia for the Malaysian students. Subsequent independent re-
translation of the Malaysian questions into English verified the accuracy of the translation. The
protocol for the delivery of the questions was the same as in stage 1, and was followed in each
case. The year 10 students worked individually.

The ycar 10 pupils were able to give better responses to each of the questions than the
year 6 pupils. Fewer year 10 pupils made errors, and there were more who gave multiple and
general responses. While noting that the pre-requisite content is prescribed at the primary level in

curriculum documents, it was pleasing that most year 10 students were able to give satisfactory
answers to the questions.’

The profile of the responses of the year 10 students from Penang was marginally different
from the year 10 Australian students. In each question a higher proportion of the Penang students
were technically accurate in their responses to the four questions than the Australian students, but
fewer gave general responses. The responses of the American students resembled the Malaysian
sample on the first two tasks, the Australian sample on the third, and was quite distinctive with
regard to the basketball question.

Overall, while there were more students at year 10 level than at year 6 who gave muitiple
and general responses, there was still a significant number of year 10 students who gave a single

response even though it seemed to the researchers that a request for multiple answers had been
implied by the wording of the question.

Stage 3

Stage 3 addressed the following research questions:
Does instruction increase the number of pupils who give multiple or general
responses?
Does question format affect the number of pupils who give multiple or general
responses?
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This third stage was an attempt to investigate the cueing inherent in the questions. On one
hand, it was hypothesised that the pupils may have had too much experience at the single-answer
type of question, and would need more experience than that provided in the protocol of stage 1.
On the other hand, it was possible that the woed "might" in the question may not, in a
mathematical context, imply that more than one possible answer was required.

Although the two research questions for this stage are to some extent separate they were
investigated concurrently. Three of the grade 6 classes who had participated in stage one were
given instruction and another three of the grade 6 classes were asked the questions in a different
format. .

The lesson taught to the three classes aimed to broaden the pupils' view of what such
questions are seeking. The first step in the lesson was to focus on the word "might". Questions
relating to both everyday and mathematical sitvations were used to discuss both multiple and
general answers. These classes are called the “instruction” group.

The other three classes were not taught a lesson but were given the same mathematical
tasks in a slightly different format. Instead of phrasing the question like "What might the answer
be?", words similar to "Give as many possible answers as you can" were used. This was
intended to alert the pupils directly to both the possibility of multiple answers and to the
requirement to give as many answers as they could. These classes are called the "question
format" group.

There was a clear trend that the classes which responded to the questions with the revised
format gave more multiple responses than the classes which had had instruction. It appears likely
that there are pupils who are able to give multiple responses but who do not consider that the
"might" questions invite such replies.

There was some indication that pupils’ responses to particular questions were
disproportionately influenced by the specific concept or concepts invoked. Because of the
extended nature of open-ended tasks, the form of the individual question assumes greater
significance than is the case with conventional closed tasks.

Stage 4.
Stage 4 involved the implementation of a teaching experiment employing Good Questions and
addressed the question:
What are the learning outcomes of a teaching program based solely on the use of such
open-ended mathematics tasks?
Stage 4 was conducted in a suburban Catholic primary school. The school had a high
proportion of students from non-English speaking backgrounds and served a predominantly lower
socio-economic community.
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The experimental group was taught a unit on length, perimeter and area over seven one-
hour lessons. The control group was taught the same topic. The teacher of the control class was
instructed to follow the program presented in the most commonly used text. This was to simulate
a standard approach to the topic. Data collected included attitudinal data, achievement data and
observation data regarding classroom practices. ' .

There were two interesting results. First, the experimental class were able to respond to
the skill items as well as the control group, even though there had been no teaching or practice of
skills in that class. Second, even though there more students in the experimental groub who
could give one correct response to the Good Questions than in the control, no students in either
group attempted multiple or general answers. The meaning of this is unclear. During the
program, many students in the experimental group were willing and able to give multiple and

general responses to 'good' questions. It is not clear why they did not give such responses 1o the
test items.,

Stage §
Stage 5 sought to address the questions:

Is the reluctance of pupils to give multiple or general responses to open-ended

mathematics tasks replicated with open-ended tasks in other disciplines?

Docs the use of open-ended tasks for assessment purposes disadvantage any

identifiable groups of students?

For stage 5 of the project, students at years 7 and 10 from three schools (one
single-sex boys, one single-sex girls, and one co-educational) were asked to respond to
open-ended items from a variety of academic contexts.

For instance, one question was:

In a Victorian country town, the population fell by 50% over a period of 5 years.

Why might this have happened?

The protocol guiding the administration took two basic forms derived from that for
stage one. The administration varied task order and whether or not the requirement of
multiple answers was made explicit in the task format.

Analysis disregarded the cormrectness of student response in applying the coding of
stage one. As a consequence, the discussion which follows documents student intended
response levels.

Order of task administration did not affect student response types.
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Inferences which might be drawn from these results included:

« that the inclination to give singie responses (or the reluctance to give multiple
responses) is a product of schooling, and not peculiar to mathematics. Both year 7 and
year 10 pupils were similarly recluctant to given multiple answers in all four academic
contexts;

« that the explicit request of multiple responses produces a significant increase in the
response level in other academic contexts, but not necessarily mathematics;

« that the ability to give multiple responses increases significantly with age, except in the
context of literature.

CONCLUSIONS

Mathematical power has been identified with the capacity to solve non-routine problems
(NCTM, 1989), and open-ended tasks are seen as an appropriate vehicle for instruction and
assessment of students' learning in this regard. Further justification for the use of open-ended
questions for instructional purposes can be found in the work of Sweller and his associates (se,
for instance, Sweller, 1989), where the use of goal-free tasks was associated with effective schema
acquisition.

Are students' responses to open-ended tasks constrained unduly by their preconceptions
about the nature of an acceptable response? It would appear that students in both year 7 and year
10 possessed a comparable reluctancs to provide multiple responses. However, when multiple
responses were explicitly requested, there was a significant increase in the propertion of multiple
responses offered by pupils in Literature, Science and Social Science, but only to some items in
Mathematics. This finding may be task-specific and wasrants further investigation.

Are students’ responses to-open-ended tasks necessarily indicative of either mathematical
understanding or capability? Certainly it appears that young children find it substantially more
difficult than older children to provide multiple answers to mathematics tasks. This suggests that it
may be inappropriate to ask primary school age children to give multiple responses. The legitimacy
of relating student responses to non-routine and open-ended tasks to curricular content currently
being studied continues to be the subject of research. Given current curriculum initiatives which
employ open-ended tasks for assessment purposes (for example, CAP, 1989, VCAB, 1990), the
results of this research assume some significance. Substantial additional research is required if we
are to understand the significance of the meanings constructed by students in responding to open-
ended tasks. Such research must address those student conceptions of legitimate mathematical
activity on which their response inclinations are predicated (Clarke, Wallbridge & Fraser, 1992,
and this research), and issues of cognitive load or working raemory capacity and related
developmental theories of leaming outcomes which determine student response capability (for
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example, Collis, 1991; Sweller, 1989). These associated matters of inclination and capability must
be understood if we are to employ such tasks with success in mathematics classrooms for the
purposes of either instruction or assessment.
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OVER-EMPHASISING PROCESS SKILLS IN SCHOOL MATHEMATICS:
NEWMAN ERROR ANALYSIS DATA FROM FIVE COUNTRIES

n) ents Nerida F. Ellerton
Faculty of Education Faculty of Education
Deakin University (Geelong) Deakin University (Geelong)

The Newman procedure for analysing errors on written mathemasical tasks is Summarised,
and data from studies carried out in Australia, India, Malaysia, Papua New Guinea, and
Thailand are reported. These data show that, in each country, the initial breakdown poins for
a large percentage (more than 50% in Jour of the five countries) of the errors analysed
occurred at the Reading, Comprehension or Transformation stages - that is to say, before the
students had applied process skills such as the Jour operations. Additional data showing that
Irdian primary school students perform significantly better than Australian students ofa
similar age on straightforward computational exercises, but significantly worse on arithmetic
word problems, raises the question whether there is an over-emphasis on process skills with
insufficient attention being given 1o the role of language faciors in mathematics learning.

The Newman Hierarchy of Error Causes for Written Mathematical Tasks

Since 1977, when Newman (1977a,b) first published data based on a system she had
developed for analysing errors made on written tasks, there has been a steady stream of research
papers reporting studies, carried out in many countries, in which her data collection and data
analysis methods have been used (see, for example, Casey, 1978; Clarkson, 1980, 1983, 1991;
Clements, 1980, 1982; Marinas & Clements, 1990; Watson, 1980).

The findings of these studies have been sufficiently different from those produced by other
error analysis procedures (for example, Hollander, 1978; Lankford, 1974; Radatz, 1979), to attract
considerable attention from both the international body of mathematics education researchers (see,
for example, Dickson, Brown and Gibson, 1984; Mellin-Olsen, 1987; Zepp, 1989) and teachers of
mathematics. In particular, analyses of data based on the Newman procedure have drawn special
attention to (a) the influence of language factors on mathematics learning; and (b) the
inappropriateness of many "remedial” mathematics programs in schools in which there is an over-
emphasis on the revision of standard algorithms (Clarke, 1989).

The Newman Procedure
According to Newman (1977a,b; 1983), a person wishing to obtain a correct solution to an

arithmetic word problem such as "The marked price of a book was $20. However, at a sale, 20%
discount was given. How much discount was this?", must ultimately proceed according to the
following hierarchy:

1. Read the problem;

2. Comprehend what is read;

3. Carry out a mental transformation from the words of the question to the selection of an
appropriate mathematical strategy;

4. Apply the process skills demanded by the selected strategy; and

5. Encode the answer in an acceptable written form.
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Newman used the word “hierarchy” because she reasoned that failure at any level of the above
sequence prevents problem solvers from obtaining satisfactory solutions (unless by chance they
arrive at correct solutions by faulty reasoning).

Of course, as Casey (1978) pointed out, problem solvers often retum to lower stages of the
hierarchy when attempting to solve problems, especially those of a multi-step variety. (For
example, in the middle of a complicated calculation someone might decide to reread the question to
check whether all relevant information has been taken into account.) However, even if some of the
steps are revisited during the problem-solving process, the Newman hierarchy provides a
fundamental framework for the sequencing of essential steps.

Interaction Between the Question
and the Person Attempting it

Characteristics
of the Question

[T encoDNG

3
[ PROCESS SKILLS CARELESSNESS |

MOTIVATION |

QUESTION
FORM

[T FEADNG

Figure 1. The Newman hicrarchy of error causes (from Clements, 1980, p. 4).

Clements (1980) illustrated the Newman technique with the diagram shown in Figure 1.
According to Clements {1980, p. 4), errors due to the form of the question are essentially different
from those in the other catcgories shown in Figure 1 because the source of difficulty resides
fundamentally in the question itself rather than in the interaction between the problem solver and the
question. This distinction is represented in Figure 1 by the category labelled “Question Form” being
placed beside the five-stage hicrarchy. Two other categorics, “Carclessness” and "Motivation,”
have also been shown as separate from the hicrarchy although, as indicated, these types of errors
can occur at any stage of the problem-solving process. A careless error, for example, could be a
reading error, a comprehension error, and so on. Similarly, someone who had read, comprehended
and worked out an appropriate strategy for solving a problem might decline to proceed further in the
hierarchy because of a lack of motivation. (For example, a problem-solver might exclaim: "Whata
trivial problem. It's not worth going any further.")

Newman (1983, p. 11} recommended that the following “questions” or requests be used in
interviews that are carried out in order 0 classify students’ errors on written mathematical tasks:

1. Please read the question to me. (Reading)

2. Tell me what the question is asking you to do. (Comprehension)

3. Tell me a method you can use to find and answer to the question. (Transformation)
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4. Show me how you worked out the answer to the question. Explain to me what you are
doing as you doit. (Process Skills)

5. Now write down your answer to the question. (Encoding)

If pupils who originally gave an incorrect answer to a word problem gave a correct answer
when asked by an interviewer to do it once again, the interviewer should still make the five requests
in order to investigate whether the original error was due to carelessness or motivational factors.

Example of a Newman Interview

Mellin-Olsen (1987, p. 150) suggested that aithough the Newman hierarchy was helpful for the
teacher, it could conflict with an educator’s aspiration “that the learner ought to experience her own
capability by developing her own methods and ways." We would maintain that there is no conflict
as the Newman hierarchy is not a learning hierarchy in the strict Gagné (1967) sense of that
expression. Newman's framework for the analysis of errors was not put forward as a rigid

informatior: processing model of problem solving. The framework was meant to complement rather
than to challenge descriptions of problem-solving processes such as those offered by Polya (1973).
With the Newman approach the researcher is attempting to stand back and observe an individual's
problem-solving efforts from a coordinated perspective; Polya (1973) on the other hand, was most
interested in claborating the richness of what Newman termed Comprehension and Transformation.
The versatility of the Nswman procedure can be seen in the following interview reported by
Ferrer (1991). The student interviewed was an 11-year-old Malaysian primary school girl who had
given the response "All" to the question "My brother and I ate a pizza today. I ate only one quarter
of the pizza, but my brother ate two-thirds. How much of the pizza did we eat?" After the student
had read the question correctly to the interviewer, the following dialogue took place. (In the
transcript, "I" stands for Interviewer, and "S" for Student.)

O
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: Uhmm. .. It's asking you how many . . . how much of the pizza we ate in total?
: By drawing a pizza out ... and by drawing a quarter of it and then make a two-thirds.

. A problem sum!

Ll 7 B 7 T B 7 B < A

What is the question asking you to do?
Alright. How did you work that out?

What sort of sum is it?

: Is it adding or subtracting or multiplying or dividing?
. Adding.

Could you show me how you worked it out? You said you did a diagram. Could you
show me how you did it and what the diagram was?

: (Draws the diagram in Figure 1A.) 1ate one-quarter of the pizza (draws a quarter*).
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A B

Figure 1. Diagrammatic representations of the pizza problem.

I: Which is the quarter?
S: This one. (Points to the appropriate region and labels it 1/4.)
I: How do you know that's a quarter?
S: Because it's one-fourth of the pizza. Then I drew up two-thirds, which my brother ate.
(Draws line x - see Figure 1B - and labels each part 1/3)
1: And that's 1/3 and that's 1/3. How do you know it's 1/3.
S: Because it's a third of a pizza.
(From Ferrer, 1991, p. 2)

The interview continued beyond this point, but it was clear from what had been said that the original
error should be classified as a Transformation error - the student comprehended the question. but
did not succeed in developing an appropriate strategy. Although the interview was conducted
according to the Newman procedure, the interviewer was able to identify some of the student's
difficulties without forcing her along a solution path she had not chosen.

Summary of Findings of Early Australian Newman Studies

In her initial study, Newman (1977a) found that Reading, Comprehension, and Transformation
errors made by 124 low-achieving Grade 6 pupils accounted for 13%, 22% and 12% respectively of
all errors made. Thus, almost half the errors made occurred before the application of process skills.
Studies carried out with primary and junior secondary school children in Melbourne, Australia, by
Casey (1978), Clements (1980), Watson (1980, and Clarkson (1980) obtained similar results, with
about 50% of errors first occurring at the Reading, Comprehension or Transformation stages.
Casey's study involved 116 Grade 7 students, Clements's sample included over 700 children in
Grades 5 to 7, Watson's study was confined to a preparatory grade, and Ciarkson's sample
contained 13 low-achieving Grade 7 students. In each study all students were individually
interviewed and with the exception of Casey, who helped interviewees over early break-down
points to see if they were then able to proceed towards satisfactory solutions, error classification
was based on the first break-down point on the Newman hierarchy.

The consistency of the findings of these Melbourne studies involving primary and junior
secondary students contrasted with another finding, also from Melbourne data, by Clarkson (1980)
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that only about 15% of initial errors made by 10th and 1 1th Grade students occurred at any one of
the Reading, Comprehension or Transformation stages. This contrast raised the question of whether
the application of the Newman procedure at different grade levels, and in different cultural contexts,
would produce different error profiles.

Some Recent Asian and Papua New Guinea Newman Data

Since the carly 1980s the Newman approach to error analysis has increasingly been used outside
Ausiralia. Clements (1982) and Clarkson (1983) applied Newman techniques in error analysis
research carried out in Papua New Guinea, and more recently the methods have been applied to
mathematics and science education research studies in Brunei (Mohidin, 1991), India (Kaushil,
Sajjin Singh & Clements, 1985), Indonesia (Ora, 1992), Malaysia (Kim, 1991; Kownan, 1992,

. Marinas & Clements, 1990), Papua New Guinca (Clarkson, 1991), the Philippines (Jimenez,
1992), and Thailand (Singhatat, 1991; Sobhachit, 1991).

Rather than attempt to summarise the data from all of these Asian studies, the results of four
studies which focused on errors made by children on written mathematical tasks will be given
special attention here. The four studies, which have been selected as typical of Newman studies
conducted outside Australia, are those by Clarkson (1983), Kaushil et al. (1985), Marinas and
Clements (1990), and Singhatat (1991). Pertinent features of these studies, conducted in Papua
New Guinea (PNG), India, Malaysia, and Thailand, respectively, have been summarised in Table
1.

Table 1
Background Details of the Asian and PNG Studies

Study Country Grade Sample Number Language oftest Was the interview in

level size of errors & of Newman student's language
analysed  interview of instruction?

Clarkson (1983) PNG 6 95 1851 English Yes

Kaushil et al. (1985) India 5 23 327 English Yes

Marinas & Malaysia 7 18 382 Bahasa Yes

Clements (1990) Malaysia

Singhatat (1991)  Thailand 9 72 220* Thai Yes

* Note that the 38 crrors attributed by Singhatat to “lack of motivativn" have not been taken into account for the
purposes of this Table.

The percentage of errors classified in cach of the major Newman categories in these four studies
is shown in Table 2. The last column of this Table shows the percentage of errors in the categories
when the data from the four studies are combined.
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From Table 2 it can be seen that, in each of the studies, over 50% of the initial errors made were
in one of the Reading, Comprehension, and Transformation categories. The right-hand column of
Table 2 shows that 60% of students' initial breakdown points in the four studies were in one of the
Reading, Comprehension, and Transformation categories. This means that, for most errors,
students had cither not been able to understand the word problems or, even when understanding
was present, they had not worked out appropriate strategies for solving the given problems.

Table 2
Percentage of Initial Errors in Different Newman Categories in the Four Studies

Study Clarkson Kaushil Marinas & Singhatat
Error (1983) ctal. (1985) Clements (1990)  (1991) Overall
Type (n=1851cmrors)  (n=329errors)  (n=382cmors)  (n =220 errors) %
% % %
Reading 12 0 0 0 8
Comprehension 21 24 45 60 28
Transformation 23 35 26 8 24
Process Skills 31 16 8 15 25
Encoding 1 6 0 0 1
Careless 12 18 21 16 14
Discussion

The high proportion of Comprehension and Transformation errors in Table 2 suggests that
many Asian and Papua New Guinea children have considerable difficulty in understanding and
developing appropriate representations of word problems. This raises the question of whether 700
much emphasis is placed in their schools on basic arithmetic skills, and not enough on the
peculiarities of the language of mathematics.

Further evidence for a possible over-emphasis on algorithmic skills was obtained in the Indian
study (Kaushil et al., 1985) when the performances of the Dethi Grade 5 sample on a range of
mathematical problems where compared with those of Australian fifth-grade children on the same
problems. It was found that the Indian children consistently and significantly outperformed a large
sample of Australian children on tasks requiring straightforward applications of algorithms for the
four arithmetic operations (for example, 940 - 586 = Q). However, on.word problems, the
Australian children invariably performed significantly better (see Table 3). Clements and Lean
(1981) reported similar patterns when the performances of Papua New Guinea and Australian
primary school students were compared on tasks similar to those shown in Table 3.

Interestingly, Faulkner (1992), who used Newman techniques in research investigating the
errors made by nurses undergoing a calculaucn audit, also found that the majority of errors the
nurses made were of the Comprehension or Transfonaation type.
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Table 3

Percentage of Indian and Australian Grade 5 Children Correct on Selected Problems
(from Kaushil et al., 1985).

Question % Indian % Australian
sample correct sample correct

940 - 586 =0 96 75
273+7 =0 76 55
A shop is open from 1 pm 10 4 pm. For how 44 87
many hours is it open?

It is now 5 o'clock. ‘What time was it 3 hours ago? 47 88
Suniti has 3 less shells than Aarthi. If Suniti has 5 shells, 42 73

how many shells does Aarthi have?

The high percentage of Compkhension and Transformation errors found in studies using the
Newman procedure in the widely differing contexts in which the above studies took place has
provided strong evidence for the importance of language factors in the development of mathematical
concepts. However, the research raises the difficult issue of what educators can do to improve a
leamner's comprehension of mathematical text or ability to transform, that is to say, to identify an
appropriate way to assist leamners to construct sequences of operations that will solve a given word
problem. At present, little progress has been made on this issue, and it should be an important
focus of the mathematics education research agenda during the 1990s.
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REVISED ACCOUNTS OF THE FUNCTION CONCEPT USING MULTI-
REPRESENTATIONAL SOFTWARE, CONTEXTUAL PROBLEMS AND STUDENT
PATHS

Jere Confrey and Erick Smith, Cornell University, Ithaca, New York

umn, current curriculum based on formal definitions of function restricts both the conceptual
operational understandings students need to develop. We argue that building an understanding
of functions through multiple representations and contextual problems provides an alternative
epistemological approach to functions which suggests that experience working in functional
situations, in doing functions, is more important than learning static definitions which mask its
basis in human activity.

Introduction. The importance of the function concept in the secondary curriculum is virtuaily

lndgisuraperwcargucﬂmwhile the function concept should play a central role in the secondary
CUITIC!
and

undisputed. Calls for the reform of mathematics place it at the center of the curriculum as an integrating
concept and locate its importance in its modeling capacity. Moreover, with the increased power of
computers and graphing calculators to display multiple and dynamic representations, one might expect the
treatment of the function concept in the curriculum to be modified; however, there is little evidence that a
theoretical framework for these changes has been carefully specified. In this paper, we outline the
conventional educational view of functions and then suggest a three-part framework based on the use of:
1) dynamic multi-representational software, 2) contextual problems and 3) student interviews.

The Conventional View. In the conventional treatment of functions, the definition typically given is
“a function is a relation such that for each element of the domain, there is exactly one clement of the
range." Such a definition does not necessarily preclude a muitiplicity of approaches to functions;
however, in textbooks and on assessment measures, one sees that a restricted view of functions emerges

in which the algebraic presentation dominates the underlying assumptions about functions. These

restrictions, which are overlapping, include an undue emphasis on :

1) the algebraic presentation with graphs as secondary and with tables a distant third.

2) a cotrespondence model which requires one to treat a function as a relationship between x and a
corresponding y, rather than, for example, a covariation model where one can describe how the y
values change in xghtion to each other, for given x changes (or vice-versa);

3) a functional format of "y=" so the equation is solved for y, and

4) a directionality of the relation, so that one can predict a y value for a given x.
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Although there is nothing formally erroneous about such & concept of function, we wish to

demonstrate that it is insufficient for approaches 1o functions which emphasize the use of multiple
representations and contextal problems. We also wish to suggest that it makes it difficult 1o discuss,
describe and evaluate the complexity and richness of a student’s goal-directed investigation of functional
| situations.
1. An Epistemology of Multiple Representations. - When one works in an environment that
allows students to explore multiple representations of functions, one must learn to legitimize the use of a
variety of forms of representation to describe functions. In Function Probe® (Confrey, 1991), a muld-
representational software using graphs, tables, calculator buttons and algebraic approaches to functions,
the student must coordinate a variety of representational forms. Meanings of the concept of function vary
across these forms. To illustrate, we will work with the exponential function and demonstrate
characteristics of the function which are more easily visible in different representations.
The Gragh. A problem we have used with students involves setting up a time-line for a list of events
which occurred over the carth's geologic history. We prepared a list of ‘events’ with dates. These events
wrned out to have a fairly uniform distribution when plotied on a log scale. One student tried plotting the
number of vears ago on the y-axis and the log of that number on the a-axis. The points lie on the graph of
y=10%. An idealized simulation of her gra h(u{i’l‘h.:i?ffeﬁng y-scales) is shown below:

11meee 2150

°E oé

féwon : %%IMO 3%’“

HE 5 3

> > >

ixseee irse0 e

. Lot A bt
log(yrs age) ‘;zgjrsl ago) loglyrs age)

While scaling the y-axis, she noticed two things: First, no matter what value she used as the high y-
value the graphs had the same shape. Geometrically, they were congruent. Second, the points were

always bunched together near the origin, spread out near the top, and nicely spaced around the ‘curve'.
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Thus she suggested that with appropriate scaling, she could have 'nicely-spaced' points for whatever

period she wanted. Seeing multiplicative self-similarity as characteristic of the exponiential graph can help

students form a number of insights, including the equivalence of vertical stretches and horizontal

transiations, or the equivalency of half-life or doubling time. This quality of similarity is also easily

recognizable in other visualizations of the exponential function and is a powerful way to recognize when

an exponential funtion will prove an appropriate modeling device (sunflowers, nautilus shells, rams

homs etc.).

The Table, When students encounter a table for the exponent'al for the first
time, they will often apply the strategies they have leamed about polynomial
functions, for example looking at the differences in the y's as the x values
change at a constant rate. For polynomials looking at differences and

differences of differences, eic. eventually leads to a column of constant

y=x<i ay |aay)

x

o o],

AT

3] of S
Fig. 2

differences and this is often what students expect (figure 2). When they do

this with the exponential function, they may also see a repeating pattern emerging. However, if they are

seeking to find a difference column that becomes constant over repeated application, they quickly leam of

its impossibility, for all difference columns maintain the original constant ratio between terms (figure 3a).

x| y=2X{ ay | a(ay)|]y=2%| ®y [[y=2X{1+2y
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a e ® 16 | 16 |32

Fig. 3a 1g. 3b Fig. 3¢

In Function Probe, we added a new resource, the
ability to take ratios as well as differences and

created a notation for doing so. Students learn to
see a constant ratio as indicative of an exponential

relationship (figure 3b). A verbal description, that

for a constant change in x, the y values change by a constant ratio, is another signal foe recognizing

exponential situations. A second resource of Function Probe is the accumulation command. When one

accumnulates the exponential function, an exponential is produced(figure 3¢). Between the accumulate and

difference command, we can anticipate why the derivative and the integrai of the exponential produce the

exponential.
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The Calcuiator, Logarithms often provide difficulty for students. We would attribute this both to their
formal treatment in the curriculum and to the Limitations of tables and most calculators which restrict
students to either base 10 or base ¢. Thus they must invoke the somewhat mysterious change-of-base
formula whenever they build an exponential or logarithmic model where the base (i.e. constant ratio) is not
10 or e. For example, in a situation where $100.00 is invested at 9% interest, students will work out the
annual multiplier (constant ratio) of 1.09 and eventually model the situation as an exponential function, P
= 100(1.09)t. If they have made a table of graph for the probiem, they leamn quickly that they can
‘inverse’ the function by changing the order of the table columns or reflecting the graph. However when
wrying to inverse the equation, they can casily write it as P/100 = (1.09)', but then are faced with the 'log
problem’. Taking the log of both sides is a procedure that somehow works but has no apparent connection
10 their original way of making the equation. Because of this particuiar concer, we built two features into
the calculator of Function Probe, a way to save procedures as user-defined buttons, and a button that takes
any base as the input for either an exponential or a log function. Figure 4a represents a string of calculator
keystrokes which calculates the amount accumulated after five years. By placing the 'varisble’ over the

5@ 1.09=*100= |153.86 51: @@ 1.09=+100= |0
Fig. 4a Fig. 4b

five in figure 4b, the user has designated this as a button, j1, that can now take any value for time as an
input. If the student now wants to calculate what input creates the output of say 325, she can imagine

undoing the button from right 1o left. Thus she might enter the set of keystrokes shown in figure 5a:
325+ 100 =09 1.09= [13.67 j2: @ + 100 = (ogp) 1.09 = |( 12)
Fig. 5a Fig. 5b

After dividing 325 by 100, they have to decide how to undo 1.09%. The "logax” key becomes a key that
undoes the action of an exponential. This ability to build and unbuild procedures and to ‘undo’ an
exponential allows the log to play a sironger and more intuitive role in student's problem-solving. In
addition the process of building algebraic equations from the linear procedures represented by calculator
keystroke reconds and also building keystroke records from algebraic equations can provide strong
assistance in helping student come to better understand the operational basis of algebra.
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Integration of the Representations, In developing this example, we are not arguing that the traits of the
exponential that are displayed cannot be seen across representations. In fact, searching for how to see
them and leaming to recognize them independent of the other representations is a valuable leaming
experience on the software.

IL The Impact of Placing Functions in Contextual Situsations. The treatment of functions
within multiple representations such as those described above ignores the question of how the function is
generated, and/or where its application is witnessed or warranted. Others have argued for the value of
contextual problers on the grounds that they are more socially relevant, realistic, open-ended, data driven,
and inviting to students (Monk, 1989; Treffers, 1987; deLange, 1987) In addition to these important
qualities, we see the value of placing functions into contextual situations as a challenge to the belief that
abstraction requires one to decontextualize the concept from its experiential roots. Instead we sce
abstraction as the integration, reconciliation, juxtaposition of multiple schemes of action for a given
concept.

In our work, we have chosen the contextual problems to highlight aspects of the function that are
grounded in human actions. Piagetian research stressed the importance of the evolution of human schemes
through the actions and operations one carries out on those actions. Reflective abstraction is the process
by which the practical usefulness of those actions is acknowledged and the actions and operations become
part of our mental repertoire in the form of schemes.

Accordingly, we stress the development of an operational schemes for understanding functions. For
instance, to recognize contexts in which the exponential scheme is useful, we have postulated an
underlying scheme called "splitting". Splitting, we suspect, has its roots in early childhood in sharing and
congruence, primarily the binary split, and forms a basis for division (and multiplication) that is not well
described by repeated subtraction (or addition). Doubling and halving are the simplest instantiations of it,
and contrary to repeated addition views of multiplication, the split is a primitive multiplicative action which
is often embedded in a repeated division and multiplication structure. The invariance in the operation is the

' constant ratio of 1:2 01 2:1. We witness students solving problems such as 426/18 by going 18, 36 (2
tallies), 72 (4 tallies), 144 (8 tallies), 288 (16 1allies), 476 (32 tallies) and then adjusting 10 get the exact
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result (Confrey, 19922). The children understand that they can “reunitize” (Confrey, 1992b) from the unit
18, 36.... . to the unit 288, to reach their goal more quickly. We have also argued for the coordination of
the splitting structure with similarity as an underlying basis for the exponential function.

Such an approach to the concept of function locates a function within a family of functions and
examines how that prototypic function is fit to the existing data or situation (Confrey and Smith, 1991).
Thus, in a compound interest function, the principle is multiplied times the constant rase of growth factor
multiplied by itself a times. In such an approach, a prototypic function might operate metapharically. If
the initial situation were of bunnies reproducing, then the principle functions as the initial number of
bunnies and the reproductive rate is cast as the interest rate. It is not so much the specifics of the situations
that remain invariant as the charscters required in various contextual roles and the actions they each carry
out in relation to each other.

The impact of such a view on the multiple representations is that one is encouraged to seek out how the
actions, operations and roles are carried out and made virible (more oc less) in the different
representations.

III. Functioning as a Human Activity, Many mathematics educators prefer to speak of
“mathematizing” to emphasize the role of the student(s) and/or teachers in doing mathematics. The reasons
for this switch in language is that the process of doing mathematics is emphasized rather than the
acquisition and display of traditionaily accepted responses. We too find this shift to aid us in the
understanding of mathematical ideas, for when we try to answer the question, 'what is a function?', our
answers vary dramatically from when we seek to explain, ‘what is the experience of understanding
functions like?'

An Ilustration. To illusteate this, consider one student's path! through ihe following problem: The
tuition of Comnell University is $ 11,700. For the last five years, the average tuition hike has been 11.3%.
What can you expect to pay when your children wish to attend the University? When will the tuition

exceed 1 million dollars?

1 This is a manufactured exampie, but is representative of the kinds of approsches we have witnessed repeatedly by students
working on this problem.
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‘The student, Ann, inputs 11,700 into the table. She calculates .113 x 11,700 and adds this to 11,700.
Finding this tedious, she builds a button to carry out the actions. Her keystrokes for the button look like
this: Cornall tuition: @ * 113+ @ = |(GD, To figure out how many times to hit it, she figures,
she'll have chikdren in ten years, and then in cighteen years they will go to the University. So, she hits the
button 28 times. To her astonishment, she sees the value over $234,000. To answer the second question,
she wants a table, so she opens that window. She types in 11,700 in a column she then names, "cost”
informally and c in the formal label. She uses the fill command and types in fill from 11,700 %0 1,000,000
and chooses multiplication by .113. The computer gives her a warning that she has filled 50 entries and
asks if she wants to continue. Her values have gone down and only the first entry is what she wanted it to
be. After answering 1o, she goes over 1o the calculator and types 11,700 hits the button, J1, and sees
13022.10. She thinks she has figured out the problem and then goes to her table and types in n (for new)
=c + 11,700. She realizes this produces only the correct first value, anc feels frustrated as still not getting
the other values, but persists long enough to create a column which has the values she gets from the
calculator button listed next to the column labeled n.

Analysis. ‘The description shown above describes the richness and complexity of the evolving function
concept. Some characteristics of the functioning experience for Ann are: 1) it is embedded in a goal-
directed activity of predicting cost as a function of time for t=28; 2) a covariation approach is used
describing how cost changes as time increments by years; 3) an entry through numeric calculations is
easily accomplished and she uses the repetition of the operation to create a button; 4) the results of the fist
question surprise her and give her firsthand experience with the rapid growth of the exponential; 5) she
seeks out the table to create a record of her interim values a:id to be able to seek out the $1 million figure;
6) she thinks her method of filling by multiplication of .113 is the same as her calculator actions; 7) she
recalculates the first value to sct herself a specific goal; 8) she diagnoses her problem as needing to add the
value $11,700; 9) she achieves her local goal but not her longer term goal; and 10) she cannot find a path
immediately, and sets an interim goal of writing down her desired values.

. The concept of function which emerges allows the specification and inclusion of:

1. epistemological obstacles such her experiences of failing to curtail 11,700*.113+ 11,700 into a single
expression of (11,700)*1.113 to allow the use of the fill command and see the repeated addition.
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2. affect into one's epistemological investigations, such as the surprisc at the rapid growth rate, or her
sense of ownership of the problem;

3. goal-directed behaviors, goals and subgoals, such as matching previous values or creating records;
4. inquiry skills whete strategies for finding are expressed along with basic assumptions; and

S. contrasting, conflicting and supportive uses of multiple representations demonstrating the sequence and
purpose of each representation.

The result of a revision of the function concept to incorporate such data would be 1o include in the
function concept the idea of it representing a set of coherent stories to capture the evolutionary paths of
student investigations.

Conclusions. In this paper, we suggest that the formal definitional approaches to the descriptions of the
function concept fail to present a rich sid complex enough framework for guiding the development of
instructional methods. We explain how that framework must be revised to include the use of multi-
representational approaches, to allow for the action-based schemes and conceptual roles that can result
from placement in contexts and to describe the "functioning” experience as a personal cr social experience.
‘We suggest that such an approach is akin o the idea of a "concept image” expressed by Vinner (1983),
and that a richer description of mathematical concepts is necessary to create the knowledge base for more
effective forms of assessment.
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APPLYING THEORY IN TEACHER EDUCATION: CHANGING PRACTICE IN
MATHEMATICS EDUCATION.
Kathryn Crawford
The University of Sydney

Earlier research has supported the relationship between the setting in which learning occurs and the
cognitive processes used as students approach tasks, and the quality of the resulting learning. Early
school experience ‘often traditional) forms the basis of student-teachers’ ideas about teaching and
Mathematics and has a powerful influence on their initial classroom behaviour. The results of an
educational intervention aimed at providing experiences as a basis for an alternative rationale are
reported. Initial results suggest that many pre-service student teachers are able to develop a rationale
for teaching practice based on their knowledge of how learning occurs and apply their developing
rationale in practice.

Introduction

Earlier research on children's learning (see Crawford 1983,1984,1986,) supported the ideas of Luria
(1973, 1982), Vygotsky (1978) and Leont'ev (1981) of the relationship between the social context in
which learning occurs and the qualities of the cognitive processes used as students approach tasks and
the resulting learning outcomes. In particular, the results indicated that the major cognitive demands of
traditional teacher-centred instructional settings were for cognitive processes associated with
memorization of declaritive knowledge and imitation of teacher demonstrations. In contrast,
mathematical problem solving and enquiry made demands on students' metacognitive processes and
higher order intellectual processes (simultaneous processing in Luria's model) associated with the
formation of abstract concepts. All undergraduate student-teachers ‘have many years of experience of
instruction in school. In many schools in Australia, educational practice in mathematics is "little

different from what it was 20 years ago" (Speedy, 1989:16).

Experience as a student in schor] forms the basis of student-teachers’ ideas about being a teacher,
about how learning occurs and even about Mathematics. Research (Crawford,1982;Ball,1987)
suggests that these early experiences powerfully influence the classroom behaviour of beginning

teachers. In particular, there is evidence (Crawford 1982, Speedy 1989) to suggest that traditional
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forms of teacher education have been largely ineffective in changing teaching practice or even student

teachers’ beliefs about teaching and leaming.

Pressures for changes in teaching practice have never been so great. Cobb (1988) has described the
present tensions between theories of learning and modes of instruction. In Mathematics, the advent of
information technologies has significantly changed the role of Mathematics in societies and the roles of
humans as mathematicians. The mechanical routines that have played such a large part in traditional

mathematics curricula are now largely the function of electronic machines. As Speedy suggests:

To be skilled in mechanics is no longer sufficient. To skilled in applying mathematical
knowledge across the whole of real life situations is imperative.(Ibid)

The report below describes an attempt to apply theories about learning to the education of teachers.

A Theoretical Description of the Problem.

According to Leont'ev's (1981) activity theory, cognitive development occurs as the result of.
conscious intellectual activity in a social context. The actual thinking that occurs during activity
depends on the perceived needs and goals of an individual or group and the resulting ways in which
they approach the tasks at hand. Leontev distinguishes betwee.. activities and operations. An activity
involves conscious reasoning that is subordinated to a goa!, operations are largely automated,
unavailable for review and usually used unconsciously as a means to an activity., The quality of the
learning outcomes reflects the quality of activity involved. The ways in which these factors effect
learners is also described by Lave (1588:25) when she writes ¢ out a “setting™ as a dynamic relation
between the person acting and the arena in which they act. Engestrom (1989) extends the idea of
Activity as proposed by Leont'ev with his notion of an “activity system"”. That is, a group of related
people working together each bring with them their own needs and goals. In addition, any
institutionalised system, such as a school, has an established set of cultural expectations about the
relationships between the peopie who act within it. Like Lave (1988), Engestrom focusses in his

system on the dynamic relationships between the actors and the context in which they act Thus a
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school, or more specifically a Mathematics classroom, may be thought of as a very complex activity
system or "setting" in which a large number of people interact according to largely subjective

perceptions of expectations, needs and goals.

Student-teachers have long experience of teaching and learning in school. The Activity in the
classrooms that they have experienced was largely directed by the teacher. The teacher did most of the
higher order intellectual activity...the posing of questions, the planning, the interpretation and the
evaluation. As students they have leamed ABOUT Mathematics from the teacher and "how to" carry
out selected techniques. What they know about being a teacher is the result of their experiences.
Many of them have chosen to be teachers on the basis of such knowledge. They are attached to it and,,
understandably, many resist reviewing and modifying their beliefs in the course of their pre-service

education.

At universities, a similar "setting” often persists in relation to their teacher education. Lecturers tell
them about educational theories..they select the theories, set the assignments and evaluate them.
Successful students Iearn to talk (and write) ABOUT teaching and learning in the appropriate ways. In
Mathematics they generally learn the mechanics of using existing techniques to solve problems.
Because teaching practice in Mathematics has changed little, student-teachers' practical experience in

schools tends to support their initial perceptions about the role of the teacher.

In order to break the cycle, it seemed essential to provide student-teachers with a wider range of
experiences both as learners and teachers. It also seemed important to construct a "setting” for their
leamning which facilitated a shift of attention away from preconceived notions of teaching towards an
examination of the learning of the children in their care. The “setting” should also encourage
intellectual activity directed towards the development of a practical rationale for teaching practice that is
centred on a working theory of how leaming occurs. To this end a teaching experiment was

conducted with final year students at the university.
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The teaching experiment and outcomes

'All final year students {n=45) of a Primary Bachelor of Education course were provided with
information in the form of readings and tutorials about recent theories of learning. In the beginning,
tutorial sessions focussed student discussions on the possible implicaticns of research on learning for
classroom practice in Mathema.ics. Thus a beginning was made in mapping knowledge about theory
onto a known practical situation. Then students were then required to work in groups of three or four
to pian, implement and evaluate a mathematical leamning enviroament in which autonomous leaming
behaviour was enzouraged and pupils were involved in investigation and enquiry for a large part of
each session. Students worked in a local inner-city school one moming a week for seven weeks. The
morning routine involved a half hour planning session involving all students, an hour in charge of a
class (working in groups of three), and a review session of approximately 45 minutes. Tertiary staff
were available for consultation and advice and observed student work in the classroom. Student-
teachers met in working groups for an hour between sessions to plan and discuss. School staff agreed
to negotiate with each group of students about the content and scope of activity in each class and to
thereafter take a low profile and allow the students to take responsibility for the implementation of their
planned projects. Students were advised to take turns at being "teacher”, facilitator and observer.

They were later required to conduct a similar project alone as part of their practicum experience in

another sch.ool.

Initially all student-teachers were enthusiastic about the prospect of allowing children a more active
role in Mathematics learning. Many had negative memories of their own mathematics education and
expressed a commitment to ensuring that pupils in their care did not have the same kind of experience.
All had written at length about recent research based learning theories in other parts of their course.
All except one had studied Mathematics at matriculation level with some success. Despite this positive

beginning. the process of applying theory in practice was fraught with tensions and inconsistencies.

Some of these are listed in point form below:
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1. Without exception student-teachers were confronted by deeply held beliefs about the need to

always tell pupils about Mathematics before allowing them to begin an investigation. This
belief dominated their behaviour for several sessions in spite of their awareness of the

inconsistency of their behaviour in terms of their stated aims.

. Despite a specific focus in tutorials on the use of open ended questions and instructions as

stimulus material and for evaluation purposes, all began with an expressed need for all

children to complete the set tasks in the “correct” way.

. Most initally failed to distinguish between their needs, expectations and goals and those of

the children.

. Allinitially found it difficult to shift their attention away from the intentions of the teacher

to the responses of the children.

. All found working collaboratively in a group for a common goal difficult. They

empathised with the similar difficulties experienced by children doing group projects at the

school.

By the end of the first three weeks most were very frustrated. They were still taking charge of activity

in the classroom and the children were colluding. School staff also believed that the children needed to

be "told what to do”. Many children appeared to lack the social skills to work effectively in groups.

The discontinuity between their behaviour in the classroom and the facilitative role that was implied by

learning theory was troubling most student-teachers.

Allowing the children ownership of the activity became a major focus of review sessions. Student-

teachers experimented with gains and role-play as a means to help children take more assertive and

socially collaborative roles. Gradually, for all groups of student-teachers there was a change in the

dynamics of the classroom. One spoke of the initial experience as follows: “It felt like coming through

a gate into a place that 1 didn't know existed.” As the children became confident that their ideas were
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respected and a more active role in the Mathematics projects was appropriate, most responded
enthusiastically. Both student-teachers and school staff "were amazed” at the knowledge of the
children. The stdent-teachers,paradoxically, also became much more confident about choosing to
take a directive role when it was perceived to be advantageous. Many also began to recognise the

scope and limitations of modelling materials as aids to learning.

A survey was carried out at the end of the course. All students responded Some of the results are
summarized below:

97% indicated that they intended to use group leamning.

95% indicated that they would use modelling materials.

94% said they were likely to use games.

92% said they would encourage self directed leaming.

These are real options for the student-teachers after experience in applying the strategies in two
different school contexts. They also indicate very different expectations of leaming in mathematics
from those they remembered from their own schooling.

89%indicated that they would develop programs of work in mathematics.

87% indicated that they would use direct instruction in some circumstances.
86% said they would use enquiry based leaming techniques.

It was clear from the responscs that the student-teachers had not merely adopted a new "method™. All,
with varying degrees of confidence, felt that they were able to use a range of teaching techniques as

different situations and different learning needs required. One student commented:

“] not only understand what to do in different situations, I also know how to do it and can
explain why to anyone who asks™.

Many had experimented with a wide range of activities in their efforts to facilitate an active role for ail

learners.

65% felt they would hold excursions in mathematics
70% felt they would set writing tasks in mathematics.
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73% felt it was likely that they would become involved in school policy making and curriculum
development in Mathematics.

Despite their apparent confidence and demonstrated ability to facilitate active involvement in
Mathematics classes, many were less positive about their own leaming experience.

40% found working in a group difficult.

42% indicated that the tertiary support for their pracncum assignment was unsatisfactory. Many more
commented on the lack of support for investigative and enquiry based leaming in schools (We now

hold workshops for pracucum supervisors and are taking steps to ensure their active mvolvemem in
supporting practicum in mathematics.

The discomfort and confusion that occurs during a major review of attitudes and beliefs is well
recognized. (Mandler (1980), Gibbons & Philiips (1978)) These students were jusi beginning to gain
confidence as teachers when their basic beliefs about what a teacher is and how learning occurs were

called in question. They had wrestled with a very difficult educational task. It was not all enjoyable.

In contrast, 87% rated the practicum assignments positively. They recognized the value of the practical
assignment which gave them a chance to explore the implications of what they had learned in a second

school setting.

Interestingly, there was a significant (p>.025) positive correlation between formal achievement in
mathematics and positive attitudes to group work in the classroom. Students found that they needed to
be very clear about the mathematics involved in a theme to consult effectively with a number of smail

groups.

The experience of teaching this course suggests that providing opportunities for students to revise their
beliefs about Mathematics Education is an effective way of enhancing the range and adaptability of
their teaching practice. An opportunity to confront and review their strongly held beliefs about
learning and teaching Mathematics is at least as important for student-teachers as a range of learning

experiences in Mathenatics. Perhaps the most important change for our students was the recognition
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of the practical implications of the fact that children come to the classroom with knowledge of their
own and that they can use this as a basis for further learning. This understanding, seems a necessary
prerequisite for a child-centred teaching style which responds to the needs, knowledge, purposes and
priorities of the leamners. In the process of schooling the teacher is a powerful element in the “activity
system” of a classroom. Thus teacher perception of their role, their expectations of students and their
necds and goals are major influences on student approaches to leaming — influences on the quality of
learning outr~mes. In addition to knowledge of mathematics, it seems highly desirable that teachers
leave pre-service education with a range of teaching strategies. Most importantly, as educators they
need to have a strong professional rationale as a basis for deciding which teaching strategiés are
appropriate for different students and an understanding of the leaming outcomes that are to be expected

when particular “settings” are facilitated.
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SCHOOL MATH TO INQUIRY MATH:
HOVING FROM HERE TO THERE

Linda Davenport and Ron Narode
Portland State University

The transition from a traditional clessroom to an inquiry classroom is
exceedingly problematic for most teachers. This study builds on an eorlier study
designed to examine the kinds of questions asked by three mathematics teechers
attempting to adopt an inquiry approoch o mathematics instruction. The focus of

this paper is on qualitative changes in the questioning practices of these three
teachers aver that same yeor.

Ushering in a new paradigm is never an easy task. Recent attempts to institute the
instructional shift in mathematics education advocated by the NCTM Curriculum and Evaluation
Standards for Schoo! Mathematics ( 1989) abound, but the transition from the traditional
classroom which presumes a transmission view of knowledge to a classroom where students
construct know ledge from genuine mathematical inquiry and discourse fs exceedingly
probiematic.

It is our observation that inquiry-based curriculum and methods of instruction do not
necessarily result in inquiry math discourse. In spite of the efforts to encourage teachers to
foster such discourse, instruction may still bear many of the characteristics of school math. In
an ear ifer paper (Davenport & Narode, 1991) we described the questioning practices of three
teachers as they attempted to engoge students in mathematical inquiry. We found that although
the teachers in our stuc, religiously eschewed the didactic approach to fnstruction in favor of

fnquiry, an analysis of the frequency and types of questions asked {ndicated that the ensuing

discourse, at least during the first half of the year , was largely “school math”. This paper
attempts to look more carefully at patterns among the types of questions asked by these teachers
over the entire course of the same year.
Resserch Framework
The constructivist view of mathematics learning (von Glasersfeld, 1983; Steffe, Cobb,

& von Glasersfeid, 1988; Richards, 1991) asserts that discourse is 8 universal and critical
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feature of concept development in mathematics. The construction of knowledge is idiosyncratic
in that it is individual; it is.consensual tn that knowledge cannot stand slone, it is mitigated
through social interaction and mediated through langusge. For discussion to occur, there must
first develop 8 discourse community whereby the discussants implicitly acknowledge shared
assumptions which gives the appearance that the discussants are acting in accord. Individuals
exist in communities where, according to Richards ( 1991), membership is developed through 8
"gradual process of mutually orienting linguistic behavior”. The shared community of the
mathematics classroom presupposes that students and teachers accept implicit assumptions as to
their roles ang responsibilitjes. These form the basi§ of their linguistic behavior.

Richards ( 1991) distinguishes four mathematical communities where qualitatively
different mathemativ. .. discourse occurs. The four different discourses are resesrch math, or
the spoken mathematics of professional mathematicians ang scientists; inquiry math, or the
mathematics of "mathematically literate adults”; jousnal math, or the language of
mathematical publications which feature “reconstructed logic” which is very different from a
logic of discovery; and school math, or discourse consisting mostly of "initiation-reply-
evaluation” sequences (Mehan, 1979) and "number talk" which is useful for solving "habitual,
unreflective, arithmetic problems.” Bauersfeld ( 1988) also draws similar distinctions
between what might be characterized as school math t;nd inquiry math and identifies a
funneling pattern of interaction that often comes into play when, in school math, teachers
attempt to lead students to correct solutions. The distinction between inquiry math and school

math is fundamental in appraising the success of present reforms in mathematics education.

Ressarch HMelhodology \
The subjects in this study are three teachers who are part of an on-going project
involving an effort to impiement many of the recommendations contained in the NCTM Standards

( 1989) through the use of a curriculum developed with support from the National Science
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Foundation. The teachers participated in 90 hours of staff developrﬁent during the Spring and
Summer in which they explored many of the activities included in the curriculum. Since this
initia) staff development, teachers have continued to meet with project staff on a regular and
frequent basis to discuss issues relevant to implementation, with much of the focus on
explorations of student thinking.

Two sources of data-are examined in this study: (1) classroom transcripts and (2)
teacher journals. Transcript analysis focused on the first two days of a three~day period of
videotaping in the Fall and Spring. All 6th-grade teachers were teaching approximately the
same lessons. Sequences of questions were examined for patterns which were suggestive of
school math or inquiry math for a1l three teachers over time.

Journal analysis focused on passages pertaining to questioning and classroom discour.a.

The journals included refiections by teachers throughout the yeer as well 8s resporises to more

structured questions posed during staff development, including questions designed to be
addressed as teachers reflected on the videotaped lessons of their classroom practice.
Results and Discussion
In the Fall of 1991, sequences of questions asked by all teachers were highly
reminiscent of “school math® s described by Richards { 1991) and Bauersfeld ( 1988).

Representative sequences include the following:

T#1. (After placing the first three pattern block train on the overhead) What
will the fifth one look like, Marci?

SA: It will have 2 trapezoids and a hexagon then 2 trapezoids . . .

T#1. It will have how many pairs of trapezoids? . . . It will have 6 pairs of
trapezoids and how many hexagons?

$B: (A student responds quietly.)

T*1. OK, so the Sthone will look like 3 sets of trapezoids and 2 hexegons. con
we say anything else sbout that? Maybe so we know how (o arrange thern? -

SC: It would be a trapezoid then hexagon then . . .

T# 1. What word did we use yesterday (o describe things that go back and forth?
SD: Alternating.

T#1. Alernating. Con we use that word to describe this? ( Writing on the
overhead as he speaks) 3 sets of trapezoids will alternate with two hexsgons. . .
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T#*2: Do you guys all agres that (the pattern block train) would start with a
triangle? What would it end with?
SA: mumble
T#*#2. 0K, here's what you guys cando. . . Here's the first train. The second train
looks kind of like this. Can somebody describe it for me? Who wants to describe
the second one? Trisha?
SB: Another red one.
T*2: How many sets of squares?
SB: Three )
T#2. OK, the first train is 2 sets of squares and a8 trapezoid.
T#3. (Asking student to build the fifth pattern block train made up of
trapezoids). Yeah. What do you have there?
SA: Two and a half.
T#3. Doyou see two and 8 half?
SA: Um.
T*3. [t's five trapezoids, isn't it?
SA: Uh-huh,
T*3. How many trapezoids meke a hexagon?
SA: Two.
T*3. 0K, so for every two you're going to make a hexagon. 1s that right?
SA: | don't know.
T#3. Look at it. For every lwo trapezoids, do | have 8 hexagon?
SA: Yeah.
T#3. (walking up to the overhead projector) We have how many?
SA: Two.
T*#3: Two?
SA; Two and a half.
T#*3. How meany trepezoids?
SA: Two?
T#3. Trapezoids! Count.
SA: Five.
T*3. Count by two's. Pull them aside, go ahead.
SA: Two, four, six.
T#3. Count by two's, pull two 8side. So how many two's did you lake out of five?
SA: Two.
T#*#3. How many two's can you take out of 7? Go ahead, count.
SA: 2,4,6.
T#3. How many whole ones?
SA: Three and a haif.

This sequence is reminiscent of the traditional discourse in which teachers initfate, students

respond, and then teachers evaluate for closure. Although there are some open-ended questions i
asked that might be suggestive of inquiry, on the whole, the discourse was tightly controlled and

displayed, to some extent a funneling pattern of interaction. This is especially the case of in the
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dialogue with teacher #3 who worked very hard to lead a student to a correct solution,
This observed pattern of guestioning is contrary to the ways teachers write sbout their
practice in their journals. In the Fail, one teacher described the ideal classroom &8s follows:
T#1 (Sept): Activities are structured so that students interact with the
materials and have opportunities to explore and make connections. Process is
emphasized over content and the teacher facilitates the learning with guestioning
and discussion rather. than dispensing procedural knowledge. . . Lesson “plans”
are by necessity more fluid and open-ended. . .
Journal entries for this time of year from other teachers contain similar remarks.

While teachers can describe their “ideal classroom” using language that is suggestive of

mathematical inguiry, they acknowledge that such guestioning practices are problematic for

them. Teachers felt that students were not well-prepared for responding to more open-ended
gquestions which probed their thinking:

T#2. (Oct) These kids are not used to dealing with open-ended questions. it
makes it tough for classroom management when you move to a setting that allows
for a more open-ended approach. . . | think | am discouraged from &sking these
kinds of questions from the poor quality of response | often get on them.

T#3. (Oct) | ... saw that too many kids were not having success. . . 1 can't buy
the idea that kids don't feel bad starting off with what they perceive to be failure.
. The kids need to succeed very badly. . . Once the kids have success, they will
try harder and it won't need to be structured the same way.

Arguing the importance of providing students with success, the teachers justified a need to

provide more structure for ectivities and explorations included in the curriculum. Structure

was often interpreted by teachers to mean the use of questions which were leading and “set up”
so that students were 1ikely to respond correctly.

By Springof 1991, the sequence of questioning had changed in some important ways for
two of the three teachers, showing some movement from school math to inquiry math:

T#1. (Two students at overhead sharing their solution to a problem they had all

»;v:;:eeg on in small groups.) Can you explain & little bit about what you did

SA & 58: (Mumbling about 550's and 3) .
T#1. What were you trying to do there? What was the purpose for doing that?
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SA: Add them all up.

T*1: Why did you multiply 550 times 32

SA & $B: (Mumble)

T#*1: OK, and what if you had gotten a number like 2150. What would you have
known?

SA & SB: (Mumble)

T*1: OK, any questions for whot their mathod is here? (Students ask questions
and the teacher goes on to ask for other solutions which are then discussed. )
T#2: Would you please look at Casey's that she has in front of her? It's 4 cubes
tall and 3 cubes long and 2 cubes wide. You should all have that in front of you. . .
Once you've got that, count up the surface areo.

SA: | know what it is.

T*#2: 0K, can you give me an explanation of how you got it? Also, find the
volume. How meny cubes are in that thing?

SA: 1 gotit. | know the volume.

T*2: What is it?

SA: 24,

T#2: There are 24 cubes in it, aren't there? So its volume is 24. Now, ! heard
somebody say 46 on the surface yrea. That's close, but you'll went to check again.
( Students have been working on problems in small groups. The teacher
announces that she would like them to discuss the second probiem. A student

volunteers to come to the overhead and explain his solution.)

SA: (At the overhead) First | draw a circle and divide it into S parts. So there is
5 parts and | put 20% in each of them, OK ... 1 put $1000 at the top and | put
$200 under each of them (drawing as he talks) and that equals $1000.

T*3. Robby, did you immediately think to draw a circle when you read the
problem? What did you think?

SA: Acircle.

T*3: Does anybody have any questions? Go ahead and call on peaple.

SB: [ don't understand { mumble).

SA: "Cause there's 208. He made 208 of each painting and you wanted to know
how much the painting cost. Get it? ... You get it now?

SB: No, I still don't understand why you put 20% in each space.

SA: You are making it very hard for me.

T#3. Maybe he doesn't understand your question.

SB: 0K, you know how it says (mumble)? The part | don't understand is
(mumble).

T#*3: OK Robby, how did you know to put S parts lo your circle? Why didn't you
put 3 parts and put 20% in each part? or 10 parts?

SA: ‘Cause, it's iike, it equals a thousand.

( The teacher continues to ask for questions, then invites other students to share
their solutions which are then aiso discussed.)

Here, in the discourse of Teachers *1 and 3, we begin to see festures of inquiry mathematics.

The discourse seems more genuine. Teachers are asking students to explain their thinking, to
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talk about their ideas, to explain their reasoning. Other students are encouraged to participate
in the discourse and seem willing, even eager, to ask questions or share their observations. on
the other hand, the discourse of Teacher *2 seems to have grown even more 1ike school math
over the year.

An examination of teacher journals over the yesr suggests a growing awareness of the
limitations of their questioning:

T#1: (Mar) 1 think | am trying to do more probing but that sometimes | miss

opportunities to do so. ! have tried to increase the questions phrased “What

caused you to try that?“, “what was in the problem that prompted you to do

that?*, etc. . . | need to be more alert to students who don't respond a Iot in class

and take advantage of their responses and questions to probe their thinking.

T#2. (Feb) | was asking lots of questions. But as 1 wrote down the questions it

seemed that almost none of them were probing student thinking. Rather, on many
of them 1 had a specific answer in mind.

T#3. (Nov) i think | probably become more directive if kids are off task or not
responding the way ! want them too. | am willing to risk empowering the kids
with their own learning but | take back tha power, not really consciousty,
whenever things don't go my way. That is not truly empower ing the kids and
believing that they can succeed, that they have ideas. . . if 1 really believe that
the kids are capable, | will stop reverting to teacher-directed every time | feel
insecure. . . 1 need to trust my kids more, They will learn. (Mar) This yeer |
have really struggled with the questioning. 1 tell myself | am going 10 ask better
questions, be less directive. At first | wasn't that aware of my questions but now
{ cringe sometimes at the questions | ask. 1'm asking more genuine questions
now, but not as many as | need to do.

Teachers * 1 and 3 wrote extensively in their journals over the course of the year, looking
critically at their own practice and talking with colleagues and project staff about the nature of
their classroom discourse. Teacher-#2, on the other hand, wrote little and seemed to be less
engaged in looking critically at his own practice. In addition, Teachers #1 and 3 often spent
class time helping students learn the behaviors that one might associate with inquiry math:

shar ing ideas, explaining one's thinking, asking questions, and looking for multiple solutions.
Teacher *2 engaged students in thess kind of discussions to & much lesser extent, and, one might

note, did not actually support these behsviors in his classroom.
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Cenclusion

The shift from “school math” to "inquiry math” is 8 challenge to instruction. Even in

cases where teachers are working with curricular mater ials designed to reflect
recommendations contained in such documents as the NCTM Standards (1989), genuine
mathematical inquiry and discour se are problematic. Questions are not in themselves evidence
of inquiry. One happy observation is that the teachers are becoming more aware of the
problems surrounding their practice and some are making significant changes in their
questioning. A better understanding of how that change occurs is central to the reform
movement in mathematics education. Further discussions with teachers who ere rﬁoking those
changes, as well as with those who are not, cannot help but inform our efforts to help teachers
create an environment which supports genuine mathematical inquiry and discourse.
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CUTTING THROUGH CHAOS: A CASE STUDY IN MATHEMATICAL PROBLEM SOLVING
Gary DAVIS: The Institute of Mathematics Education, La Trobe University, Melboune

I detail a case study of problem solving in an advanced mashematical senting. The study shows clearly
the false starts and detours that occurred prior 10 a solution. It also shows the interactive caralytic
effect of a group in problem solving. The study is presented in part as a counter-example to the notion
thar good problem solving abilities can be equated with the automarion of domain specific rules. Such
automation is important and, in most cases, necessary; it is however far from sufficient.

INTRODUCTION  In this article I detail the background to the solution of an elementary but
important result in dynamical systems. The technical solution of this problem wiil appear in the
American Mathematical Monthly (Banks er al, to appear). In what follows I have referred to the five
authors of the Banks er gl articie as “A, B, C, D, and E” in a random order. I will consider the attributes
of this group and its individual members that seemed to contribute to a successful solution to the
problem. 1 have presented an account that attempts to reconstruct a successful group attempt at
mathematical probiem solving. The problem posed was novel for any person to whom it was posed.
This is because it was at the time not only an unsclved probiem but, as far as we are aware, one that had
not even been previously posed because the connections it established were not suspected (a possible
exception is evidenced in the articie by Peters and Pennings, 1991, in which they speculate on the
interdependence of the three conditions for chaos that we outline beiow). :

The problem stems from a mathematical definition of chaos given by Devaney (1989). In order to
discuss the problem, and the steps 1o its solution, a modicum of notation and basic concepts from dy-
namical systems is necessary. In Devaney's book a dynamical system is determined by a continuous
function on a suitable topological space. In fact, in order to state the most important condition for chaos,
Devaney assumes that he has a continuous function defined on a metric space. This is a topological
space in which measurement is possible in very general terms, subject only to a few axioms, the most
important of which is the triangle inequality. These axioms say that when we have a method for assign-
ing to all pairs of points x, y from our space, a “distance” d(x.y), then the function d satisfies the fol-
fowing laws:

+ d(x.y) 2 0. with equality exactly when x=y

* d(x.y) =d(y.x)

e d(x.y) S d(x.2) + d(zy)

Probably the best known example is the metric d defined on the Euclidean plane by :

dix.y) = \)(a-c)2+(b-d)2, where x = (a.b) and y = (c.d).

A discrete dynamical system is then determined by a continuous function f on a metric space X. A
good example to bear in mind for ali that follows is the case when X is the Euclidean plane consisting of
all pairs (a.b) where a, b are real numbers, d is the metric described above, and f is the function defined
by f((a.b)) = (fal-b+1,a ). This very simple function has quite complicated dynamics in the plane,
Devaney (1983, 1988). These dynamics can be investigated empirically with a small computer and a
simple programming language (as simple as Basic, for example).

CONDITIONS FOR CHAOS  There are three conditions that Devaney (1989) requires for chaos. 1
will adumbrate these conditions in relation to the specific function f defined above.

The first condition is that f is fransirive. In its simplest from this means that there is a point (a,b) for
which the orbit of (a.b) - that is the set of points (a,b), f(ab), f(f(a,b))) = f2(a.b), f(f2(a.b)) = f3(ab), ...,
and so on - passes arbitrarily close to any prescribed point of the plane. The example f that I described
above is nof transitive in this sense. It is however transitive on the set X shown in black below.
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This set X. indicated in black. is imvarianr under f - that is. if (a.b) is a point in X then f(a.b) is also a
point in the region X - and f is t-ansitive on this invariant set. It is not immediately obvious that f is
transitive on the set X shown. but in fact any point (a.b) in that set where a and b are irrational numbers
will have a dense orbit - that is. an orbit that passes atbitrarily close to any point of the invariant set.
Devanzy (1984).

The second condition on the function f to define a chaotic dynamical system is that arbitrarily close
to any point there is a periodic point. A periodic point is one that eventually returns to itself, under the
action of the function, after a finite number of steps. For example the point (1.1) is a fixed point of the
function f above ¢since f(1.1) = (1,1)), and the point (0.0) is periodic with period 6. Devaney (1989. p.
500 refers to the above condition -that is. density of periodic points - as “an element of regularity.”

The final condition is widely thought of as the essential ingredient of chaos: the function f should
have “sensitive dependence on initial conditions™. This means, roughly.-that there is some constant K so
that if we take two distinct points x 2nd y and iterate them under the function f sufficiently many times.
we will get points at least a distance K apart. It is this condition that says that in a chaotic dynamical
system small experimental errors are eventually magnified to large errors.Technically. the condition is
as follows: there is a constant K > 0 so that if x is any point and n is a positive integer then there is a

point y whose distance from x is i or less. and an integer p so that the distance from fP(x) to fP(y) is K or
more.

This third condition, of sensitivity to initial conditions. is different trom the other two conditions in
that it depends on the metric. and is not entirely a topological property. In the development of dynamical
systems this creates a difficulty. The difficulty is that the best notion of equivalence of dynamical
systems seems to be topological equivalence. and not the stronger notion of metric equivalence. The
reason is simply that attracting behaviours such as those shown below are commonly thought to de-
scribe part of the same dynamical behaviour: however such dynamical systems can. in general. only be
topologically equivalent. and not metrically equivaient.

7R -
)1;\( 8 g\

SPECULATION ON A BASIC QUESTION A question arose in the mind o1 B whether chaos. as the
conjunction of Devaney s three conditions. is a topological property. If it were not this would be most
unfortunate. because it would say that chaos was a metric but not a topological property, so that a dyn-
amical system could be chaotic whilst another dynamical system esszntially the same as it. from the
topological point of view. might not be chaotic. This is a basic consideration in all structural math-
ematics: to determine what sort of mappings preserve a given property. B gave a nice simple argument
to show that chaos is a topological property in the case that the underlying metric space X is compacr
(that is. when every sequence in X has a convergent sub-se quence). This includes such important metric
spaces as closed intervals and closed discs: in general it includes all closed and bounded subsets of
Euclidean space. of any finite dimension. However in many examples of chaotic dynamical systems the
underlying metric space is not coinpact. so the more general question remained open.

O
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FIRST STEPS TO A THEOREM  As a result of B's problem. A speculated that the metric property of
sensitivity to initial conditions might be a logical consequence of the other two properties for chacs.
This conjecture seemed surprising and somewhat naive to some other members of the chaos study group
when it was presented. A proved. via a remarkably short and transparent argument, that his conjecture
was correct in the special case when the space X is unbounded - that is when the set of distances d(x.y),
with x and y points of X, is an unbounded collection of real numbers. This is a sort of opposite case to
that when the space X is compact.

CONVICTION  A's argument, presented at a seminar, stimulated D to give a general proof by reduc-
ing the bounded case to the unbounded case. This is an opposire procedure to what is a common trick in
analysis. so the idea came from a resonance with bounded-unbounded and seemed highly plausible. acc-
ompanied by a strong feeling of “I've seen this before.” Consequently. D presented his proof to B.only
to realise that the proof worked in detail only for those bounded spaces in which the diameter of the
space is not achieved: spaces such as the open disc below, but not the closed disc. nor the half closed
disc.

An open. closed, and half-open disc. respectively. The points shown in the closed and half-open dises are
as far apart as the diameter of the disc. There are no such points i the open disc.

However it now seemed highly likely to B.and D that A’s conjecture was indeed true. and that the
condition of not achieving the diameter of the space was a technical hitch that could be patched up.

A BREAKTHROUGH IDEA A day or so fater C. in contemplating A s argument, presented the out-
line of an argument to show that the conjecture was true. at least in a fairly general and natural setting. |
present below the first sentence of Cs statement because it shows the intuitive feel for being on the
right track that characterizes creative problem solving in mathematics. It also shows too how one makes
a leap of faith:

“In the following f:X— X is continuous and X is some topological space with enough
properties to make everything work (a suivre ... "

What were the sufficient properties “to make everything work™ and which were to (eventually)
follow!? C’s idea. stemming form his work in differential geometry, was to show, by way of conwradic-
tion. that if the first two conditions for chaos held in conjunction with the negation of the third
condition. then the period of any given periodic point would be forced to be arbitrarily long - a
contradictory situation. His idea was to base an argument on volume estimates, assuming that volume
could be measured in X in some way (for example. so that for each d > 0 the collection of balls By (x) =

{y 1 d(x.y) < b } had a measure that was bounded over x. the least upper bound for which tended to 0 as
5 approached 0.)

CRITICAL SIMPLIFICATION Unfortunately it was not clear to which classes of metric spaces
with well-defined notions of volume this argument would apply: in other words. it was not clear how
general the argument would be. However it seemed then. and still does seem. a very potent idea that
shed considerable light on the question. Then E. in trying to understand C"s written demonstration.
concluded by a most pertinent but elementary argument that we could dispense with any idea of volume
simply by interchanging the order of two operations. and we could simplify a technical part of the
argument by an elementary but subtle use of the triangle inequality.

THE FINAL ARGUMENT  The one catch was that Devaney (1989) actually had a somewhat more
general notion of transitivity. of which the dense orbit notion is an important specialisation. We had
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therefore. in writing down a version of the proof of the conjecture for publication. to make an ass-
umption that the metric space X had a special. but important. property (technically. it had to be a
separable Baire space). After submission of the article for publication we woi.:ed individuaily. and as a
group. for some time to rid ourselves of this restriction. A seminar visitor pointed out to us that over any
metric space X there lived a separable Baire space to which a function on X could be lifted. This seemed
to offer the hope we were after when the grim news arrived that the editor of the American
Mathematical Monthly had rejected our article! The referee’s remarks appear below. They are of
interest here for two reasons. First because these remarks. in part, stimulated A to find an even better
proof. Second. the referee’s remarks indicate a genuine gap between a certain sort of applied
mathemnatics, where one may use words in a somewhat loose way, and what is commonly thought of as
“pure mathematics” where precise definitions are de rigeur.

“The paper is a reasonable remark. which I believe is correct. I have read through the paper but not with a magaifying
glass. and § can more-or-less imagine a direct proof. The writing is fluent (both in the sense of fluency of language -
which shouldn't surprise us - and of fluency of exposition). I am not aware of any published proof of the theorem. 1
even suspect that 1t will be ofi 10 a number of Monthly readers.

Sowhy am I unentbusiastic? I think it’s the first two pages. which seem to put the wrong stress on (sic). The popular-
1ty of Gleick's book (and [ hope soon Stewart's book) and the wonderfully evocative buzzword “chaos™ has inspired 4
lot of armchair scientists. and in in particular it seerns to be the “in” thing to try to argue about the definition of the
buzzword. chaos. (Imagine trying it with "art” or “democracy” or “truth” - you get chaos.) In order to make their
comment weighty, the authors spend two pages discussing the “definition” of “chaos™. I tend to yawn at such discus-
stons, but 1 also wonder at their reliance on Devaney's text for the authoritative statement of such a definition. What

do Collet Eckmann or Mané say? If you're going to discuss the “usual” definition, point to more than on: source for
it!

{ think, 1f' it were pulled together a bit, the paper could be a perfectly rensonable note for the Monthly. The discussion
motivating the theorem should be shortened considerably. and I suspect the proof can be done without invoking con-
tradiction

1 think you could reasonably either refuse the paper or ask for a rewrite. I don't favor publication as is.”

Our paper had been deliberately written with the provocative title “What is Chaos?” We did this to
hightight what seemed to us to be a fact: namely that no one yet had apparently come up with a satisfac-
tory mathematical definition of chaos. This title, we concluded, had upset the referee, so we answered
the remarks by changing the title and attending to a few other minor matters. Some of us were puzzled
by what the referee referred to in the statement “the proof can be done without invoking contradiction™,
since logically, if not psychologically. a proof by contradiction is as direct as any other proof (simply
change the statement of the result). The referee was aiso operating in a different theatre to us: he was
apparen:ly taking “chaos” as an intuitive undefined term in mathematics. This would be a revolutionary
idea indeed, so we preferred to stick with the usual mathematical practice of making precise mathemati-
cal definitions. The definition of Devaney (1989, p. 50) was, as far as we know. the only general
mathematica! definition of chaos in print at that time, and we believed we had established an elementary
but important result that showed an appropriate definition of chaos was still not yet clear. That is, our
theorem was a marhemarical criticism of Devaney’s definition.

However A was moved. in part by the referee’s remarks. to re-consider the entire proof and. using the
same circle of ideas. came up with a shorter. more direct. and competiing argument in which we could
use Devaney's more general condition of transitivity. The final argument had the compelting features of
technical simplicity and complete generality. We sent the revised paper to the (new) editor. and were
relieved to hear that it was accepted for publication.

REFLECTIONS ON THE PROBLEM-SOLVING PROCESS

Group work. 1t would appear. even to a casual observer. that we understood the benefits of group
work. We also seem to understand how to implement group work in practice. Indeed surges of
excitement came in waves as we got deeper into the problem and the excitement of one member of the
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group spurred others on to better things. How did we cooperate - by writing, by talking, or both ? The
answer is. of course, both. Our habitual way of working is to let one member-of the group talk until we
have a serious criticism. a misunderstanding that needs clarification, or until the speaker dries up. This
speaking is not nrdinary conversation: it is more like thinking aloud and is usually done at a blackboard
This talking is almost always done in a room other than the speakers’ room. The reason is that the
speaker has an idea and an urge to talk about it. He goes looking for an audience, and so the talking
begins. The listening is never passive, and sometimes it can be difficult to talk easily, especially if the
ideas are onty half-formed: at that stage the talker wants a critical but sympathetic audience.

When talking is temporarily done it is time for writing thoughts down carefully in a mathematical
format, and time for reflection - on ideas just conveyed or on new ideas forming. In practice we seem to
form most ideas alone, after much cogitation. or calculation, or both. This time is essentially time spent
in finding quality data pertinent to the problem and the arguments we have used, or intend to present. -
But precious ideas need to be subjected to a searchlight of criticism. and that is where talking is essen-
tial, to us at least.

False leads  There were three obvious false leads that were important in the problem solving process.
The first was the result that said the theorem is true for bounded metric spaces in which the diameter of
the space is not achieved. Although this did not appear anywher= in the final theorem, nor did the ideas
used there assume any importance later in the argument, this result on the way was a catalyst that
stimulated us to look for a proof of the main result, which a number of us now believed to be true. In
other words this subsidiary result, which we abandoned, gave us the feeling that we had to finda general
argument for a palpably true result. This is a situation that mathematician’s delight in, because feelings
run strongly positively that success will soon follow.

The second false lead was the excursion into volume arguments. This involved a beautiful circie of
ideas that gave us great exultation at the time. but they rapidly became superseded by a very elementary
argument. based simply on on the triangle inequality. As irrelevant as the volume idea was to the final
proof it buoyed us up enormously, because we now felt that we had a deeper understanding of a reason
why our hoped-for theorem was true. and we had a water-tight proof for some important special cases.

The third false lead was the simpiification of the transitivity condition to that of the important sub-
case of a dense orbit, and the necessary assumption that we were working in a separable Baire space.
For a long time we could not see how to weaken this condition, and it was, in part, the referee’s
comments which stimulated us to reflect sufficiently to give a proof in which these restrictive conditions
were completely removed.

Whilst these three paths were eventually abandoned, they were each important in leading us to a
completely general, simple. proof.

Critical reflection Much of our time after the volume argument was spent critically examining our
assumptions. and the restrictions we had imposed in order to get a moderately general result. In this per-
jod many original. and some fantastic, ideas were dreamed up to try to remove all restrictions in the
statement of the theorem. All but two were abandoned as being without sufficient import. Only the sug-
gestion of our seminar visitor. alluded to above, and the final argument of A resolved the matter, the
latter most decisively.

Some individuul reflections on critical steps in the problem solving process

I present below the re-collections of A, C, znd D about the probiem-solving process. The other
members of the group either could not recall how they came to the argumezits they did, or were not
available for interview. :

A: “My argument came out of B's question of whether topological equivalence was the appropriate
equivalence for chaotic dynamical systems. or whether the conjunction of Devaney's three conditions
was the appropriate notion. This was an obvious probiem to answer - the whole notion of chaos in the
sense of Devaney depended on the answer. After B gave his proof for the compact case I was looking a:
unbounded spaces as a sort of opposite to compact one. it was the resuit for the unbounded case that
made me conjecture the result was true in general. | think T was just basically trying to produce some
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simple-minded proof that the three conditions taken together were preserved by conjugacy. It just
popped out of that.

All the way through 1'd been unhappy about the proof by contradiction. ! didn't think it gave you
much intuitive insight into what was going on. I tried to go through the proof by contradiction and con-
vert it into a more direct proof. Arthur (@ colleague) had said if you've got a fixed point then the map
stays near there for a while (thinking of flows). I thought : yes. but that doesn't give you a number. On
the other hand if you had nvo fixed points you'd be O.K! So I wrote the argument for the special case of
two fixed points first.. I'd been investigating another matter related to periodic orbits. It occurred to me
then that if you set things up the right way you could get the otbits separating properiy.”

C: “I'm not sure what started me off on volume -1 was trying to capture what was inherent in A’s

argument. I remember it was an interesting problem. The book had been around for a long time and it

seemed that the other guvs (A, B and D) might be right. My initial attitude was to find a counter-

example. There was something similar in my past, but 1 wasn't conscious of it at the time. In my PhD |

was looking at the problem of whether paracompact spaces are regular: the obvious argument didnt

| work. but a more delicate analysis - refining the ideas - did. I was just trying to make A’s argument
more subtle.”

D “When A gave his argument in a seminar he made what seemed to me to be a very strange assu-
mption: that the metric space was unbounded. This was the opposite sort of assumption to that normally
made in analysis. As he talked | immediately had the realisation that a standard trick of passing from un-
bounded to bounded metrics could be used in reverse. Ali I had to do was to check that the three condi-
tions for chaos passed from one case to the other. This I did very easily that evening. Unfortunately. B
pointed out to me next morning. when [ presented my argument to him. that I got an unbounded metric
from a bounded one only when the diameter of the space was not achieved. Still, I had substantiaily
broadened the spaces to which A’s conjecture applied, and I now believed it to be completely true.”

Automation of domain-specific rules

Sweller (Swelier, Mawer and Ward, 1983: Owen and Sweller, 1989: and Sweller. 1990: see aiso
Lawson. 1990) has argued that. good mathematical probiem solvers are good principally because they
have access to relevant schemas anud they have automated domain specific rules. so reducing cognitive
load. My own view is that Sweller, like many psychologists who venture into a mathematical domain.
may not be talking about probiem solving in the way in which mathematicians and the mathematics
education community in general understand probiem solving. In one sense probiem solving skills and
strategies are what apply when automation of domain specific skills no longer helps. However let us
look at what schema and domain specific skiils may have helped in solving the problem reported here.
En rowte certain specific techniques were imponant. First there was the idea that the bounded case could
be related to the unbounded case via a specific trick in analysis. Then there was the idea of using
volume estimates. with which one of us was quite familiar. to get a reasonably general argument. Then
again there was a standard analytic technique of bounding a finite set of points away from another finite
set. It is eminently reasonable therefore to argue that knowledge of specific analytic techniques proved
very useful en route to a solution.

The results of this study are entirely in accord with Kilpatrick (1985). who said:

“Studies of expest problem solvers and computer simulation models have shown that the solution of a complex
problem requires (1) a rich store of organized knowledge about the content domain, (2) a set of procedures for
representing and transforming the problem. and (3) a control system to guide the selection of knowledge and
procedures It 1s easy to underestimate the deep knowledge of mathematics and extensive expenience in solving

problems that underhie proficiency in mathematical problem solving. On the other hand it 1s casy to underesimate the
control processes used by experts 1o monitor and direct thew problem -solving activity = (pp. 7-8)

Our experience also supports the remarks of Thompson (1985) when he says:

¢ =Several studies in cogmitive psychology and mathematics education have also shown the importance of structure 1n
one’s thinking 1n mathematical problem solving ™ (p. 195)

This is evidenced by the emphasis on such structural features as the distinction and connections be-
tween bounded and unbounded metric spaces. the role played by compact metric spaces. the réle of
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volume in providing estimates on size. and the réie of fixed points of continuous functions. The remark
of C. quoted above, also emphasized heavily a structural approach to the probiem.

So there is a sense in which Swelier's argument cannot be easily dismissed by this exampie of
probiem-solving at an advanced level. indeed. in many respects it supports Sweller's thesis: knowledge
of a subject and ready recall of pertinent skills can be of great assistance in soiving mathematical prob-
lems. In practice however the converse is most often encountered: without the ready recall of pertinent

_ skills the solution of genuine mathematical probiems wiil usually be impossible. A terrible catch is: how
do we know beforehand what is pertinent, or useful?

The problem considered in this study had a particularly simple conceptual scheme: A &B—C.
However this logical formulation of the probiem was of no assistance in telling us why we should expect
the condition of sensitivity to initial conditions to be a logical consequence of the conditions of
transitivity and density of periodic points. What we needed were useful ideas .

When we. as teachers. set difficult or challenging mathematical probiems for our students we think
we know what is pertinent. Davis® (1984) long term study suggest strongly that whilst for most students
we are right. for highly capable students we are wrong. Pertinence is especially difficult to judge when
the probiem is unsoived: that is. when. as far as we are aware. no one knows a solution. Browder and
MacLane (1978. p.) comment on pertinence. or usefuiness:

“The potential usefulness of a math ical pt of technique in belping to ad scientific understanding has
very little to do with what one can f before that pt or technique bas appeared. ... C pts or techniq

are useful if they can be eventually put in a form which is simple and telatively easy to use in a variety of contexts.

We don't know what will be useful (or even essential) until we bave used it. We can’r rely upon the conceprs and

rechniques which have been applied in the past, unless we wanr o rule our the possibiliry of significant

innovanon.™(My italics)

However this question of pertinence. or usefuiness. is of critical importance. It is a variable that
needs to be considered deeply because it is at the heart of the process of creative probiem-solving. Once
the usual ideas and domain-specific rules seem to be exhausted. how is it that successful problem-
solvers proceed? | believe they create. They create new ideas and concepts which they hope will be
useful in solving the problem. The processes of concept creation. and its dual of concept annihilation
due to the constraints of the probiem and the critical comments of colleagues. is 1 believe. an example of
evolution in microcosm. This it seems to me. is where mathematics is born. ever new. and this. |
believe. is where we should concentrate our efforts on understanding the problem-solving process in
mathematics.

Finaily, the problem we worked on was a universal probiem: it was a problem for every person to
whom it was posed. The mathematics education literature has often had difficuity with the relative na-
ture of “problems™ - for whom is a problem a problem? - and many of the examples elucidated in Silver
(1985). for example. are problems only for reiative novices. 1 suggest that as a research community we
will learn more about the important creative processes involved in probiem solving when we concen-
trate on student/group interaction with universal probiems: those that are known not to have been solved
at a particular time. An exampie is the following:

- A small boat has travelled 2 kilometres out to sea from a straight shore line. Fog descends. and visibility is almost
nil. There is 0o wind and 0o current. The people on the boat do not know in whick direction the shore lies. They decide
to Uravel at constant speed to conserve fuel. What are the shortest path or paths they could take so as to be certan that
they will reach the shore? =

This was an unsolved problem at the time of writing (Croft er a/ . 1991.pp. 40-41). Such problems.
capable of being stated in elementary terms. are useful in that they largely dispense with the notion of
utility or pertinence of an idea to a solution. since no one knows whar will be pertinenr.. The probiem
poser - usually a mathematics teacher - cannot then occupy a position of knower in respect of a solution
1o the problem. The advantage of such a situation is that it forces a teacher to Judge proposed solutions
for appropriateness to the problem at hand and for inventiveness, rather than scrutinise them as
approximations to a “correct” solution. Since we don't know what will work we are obliged to take

EI{ILC 208

Aruitoxt provided by Eic:




E

1-184

students ideas seriously and consider them carefully. 1 think by focusing on such problems we will learn
much about mathematical concept creaticn in individual brains. and much about teachers critical
facuities.

REFERENCES

Banks. J.. Brooks, J.. Caims, C., Davis. G. and Stacey. P. (to appear) On Devaney's definition of chaos.
The American Mathematical Monthly.

Browder, F. and MacLane, S. (1978) The relevance of mathematics. In L. Steen (Ed.) Mathemarics
Today. Twelve Informal Essays. p. 348. New Yotk: Springer Verlag

Croft, H.T., Falconer, K.J. and Guy, R.X. (1991) Unsolved Problems in Geomerry. Problem Books in
Mathematics. Unsolved Problems in Intuitive Mathematics. volume 2. New York: Springer Verlag.

Davis. R.B. (1984) Learning Mathematics. The Cognitive Science Approach to Mathemarics Education.
London: London: Croom Helm

Devaney, R, L. (1984) A piecewise linear model for the zones of instability of an area-preserving map.
Physica 10D, 387 - 393.

Devaney. R.L. (1988) Fractal patterns arising in chaotic dynamical systems. In H.-O. Peitgen and D.
Saupe (Editors) The Science of Fractal Images ., pp. 137-168. New York: Springer Verlag.

Devaney, R. L. (1989) An Imtroduction to Dynamical Systems. Second Edition. Redwood City,
California: Addison-Wesley.

Kilpatrick, J.( 1985) A retrospective account of the past 25 years of research on teaching mathematical
problem solving. In E. Silver (ed.) Teaching and Learning Mathematical Problem Solving: Multiple
Research Perspectives, pp. 1-16. New Jersey: Lawrence Erlbaum.

Lawson. M. (1990) The case for instruction in the use of general problem-solving strategies in
mathematics teaching: A comment on Owen and Sweller. Journal for Research in Mathematics
Education, 21, 401-410.

Owen, E. and Sweller, J. (1989) Should problem - solving be used as a learning device in mathematics?
Journal for Research in Mathematics Education, 20, 322-328.

Peters, J. and Pennings, T. (1991) Chaotic extensions of dynamical systems by function algebras.
Journal of Mathematical Analysis and Applications , 159, 345-360.

Silver. E. A. (Ed.) (1985) Teaching and Learning Mathemasical Problem Solving: Mutiple Research
Perspeciives Hillsdale, N.J.: Lawrence Erlbaum.

Sweller. J. (1990) On the limited evidence for the effectiveness of teaching general problem solving
strategies. Journal for Research in Marhematrics Education, 21, 411-415.

Sweller. J.. Mawer, R.F. and Ward. M.R. (1983) Development of expertise in mathematical problem
solving. Journal of Experimenial Psycholagy: General, 112, 639-661.

Thompson, P.W. (1985) Experience. problem solving, and learning mathematics: Considerations in
developing mathematics curricula. In E. Silver (ed.) Teaching and Learning Mathemarical Problem
Solving: Multiple Research Perspectives, pp. 189-236. New Jersey: Lawrence Erlbaum.

209

O

RIC

Aruitoxt provided by Eic:




1-185

THE DEVELOPMENT OF PROBLEM-SOLVING ABILITIES:
ITS INFLUENCE ON CLASSROOM TEACHING
by
Linda J. DeGuijre
California State University, Long Beach (U.S.A.)

Teachers’ perceptions of the development of their own problem-solving abilities during a
course on problem solving ssem to be reflected in their perceptions of their students'
development of problem-solving abilities. The data were collected during a 15-week
course on the teaching of problem solving and consisted primarily of journal entries of
refiections during the course. The subjects were all 6 students in the course (out of 18)
who were also teaching full time. The results are presented in groups of 3 subjects each in
which the subjects in each group were similar at the beginning of the course and during
the course in their conceptions of problem solving and levels of confidence, and reported
similar developments within their students in their own classrooms.

Within the literature on mathematical problem-solving, few studies have studied
the role of the classroom teacher in deveioping students’ problem-solving abilities. Clark
and Peterson (1986), after extensive review of studies in the broader educational literature
on teacher thinking and decision making, concluded that teachers' theories and beliefs
provide a frame of reference for planning and interactive decisions which affect their
actions and effects in the classroom. Thompson (1985, 1988) reported a study in which
teachers’ baliefs about problem solving were changed and the changes in some subjacts
positively affected their abilities to teach problem solving. The purpose of the present
paper is to explore the possibility that teachers’ perceptions of the development of their
own problem-solving abilities during a course on problem solving will be reflected in their
perceptions of their students’ development of problem-solving abilities. The data were
drawn from a larger data set gathered to study the development of metacognition during
mathematical problem solving (DeGuire, 1987, 1991a, 1991b).

Method
The Course and Data Sources

The data were gathered throughout a semester-long course (one 3-hour session
per week for 15 weeks) on problem solving in mathematics. The course began with an
introductory phase, that is, 3 sessions devoted to an introduction to several problem-solv-
ing strategies. The course then progressed from fairly easy problem-solving experiences
to quite complex and rich problem-solving experiences, gradually introducing discussions
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of and experiences with the teaching of and through problem solving and the integration of
probiem solving into one's approach to teaching. Throughout the course, subjects dis-
cussed and engaged in refiection and metacognition.

A variety of data sources were used—journal entries, written problem solutions
with explicit "metacognitive reveries,” optional videotapes of talking aloud while solving
problems, and generai observation of the subjects. Subjects also wrote a journal entry
each week. The topics of the journal entries were chosen to encourage reflection upon
their own problem solving processes and their own development of confidence, strategies,
and metacognition during problem solving. Each subject chose a code name to use for
their journal entries. The code names of the & subjects for this paper were Apple, Euclid,
Galileo, Hobie, Simplicius, and Thales. The data for the present paper were taken primari-
ly from the journal entries, though their other sources of data were used secondarily.
Subjects )

The subjects in the entire data set were 18 students, all inservice and preservice
teachers of mathematics, mostly on the middle-school leve! (grades 6-8, ages 11-14), but
with some teachers on the intermediate levei (grades 4-6) and some on the secondary
level (grades 9-12). The subjects had chosen to take the course as part of degree pro-
grams in which they were involved.

The subjects for the present paper were all 6 students in the course who were also
teaching full time. Of this subset, 4 (Apple, Hobie, Simplicius, and Thales) were teaching
on the middie-school level and 2 (Euclid and Galileo) were teaching on the secondary
jevel: all had substantial teaching experience, with 8 years being the minimum. Regarding
their mathematics backgrounds, 2 (Galileo and Simplicius) had completed Masters in
mathematics, 1 (Euclid) had completed an undergraduate major in mathematics, and 3
(Apple, Hobie, and Thales) had completed enough mathematics to be certified to teach
mathematics in the middle grades (that is, about 7 courses on the coliege lavel, including
at least 1 course in calcuius and perhaps one course bayond caiculus). All came to the
course with some exposure to problem solving through inservice workshops varying in
length from 2 to 10 contact hours, sessions at professional meetings, or professional
reading; none had taken a problem solving course before. (Throughout this paper, direct
quotas are from the subjects’ journal entries.)

Q
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Results

Apple, Euclid, and Thales
The stories of Apple, Euclid, and Thales begin similarly in that each felt some
apprehensiun about problem solving and a lack of confidence in their own problem-soiv-
ing abilities. However, each also exhibited some growth in confidence ‘quite early. Apple

expressed her apprehensions and budding confidence as follows:
When | first entered this class on problem solving, 1 was very apprahensive. . . .
Now that class has been in session for two weeks, soma of my fears have been
alleviated. . . . |feel a certain excitement when | leave class, and my first inclination
is o hide somewhere and work on the problems. . .. With every new technique and
problem, my enthusiasm has increased.

Thales expressed feelings similar to Apple. "l consider my problem solving abiiities to be
n"linimal but increasing. In the past, when confronted with a problem solving task. . [
wouid] panic. . . . My frustration levels are decreasing somewhat.” Euclid summarized
similar feelings in an interesting way. He said that "I felt somewhat that problem solving
had to be caught rather than taught. . .and | seemed to not catch it frequentlyi”

All 3 subjects also began the course with very fimited conceptions of problems
and problem solving, conceptions that were rapidly expanded. In his very first journal

entry (the second week of class), Euclid explained his expanded conceptions as follows:
I'm not sure that | had the appropriate definition and understanding of the nature of
problam-solving at the beginning of class. . . . My horizons have already been
broadened and enriched from the distinction made between exercises and problem
solving and the practice that we have had in problem solving. .. . My prior percep-
tions of problem solving centered on the word probiem experience.

Thales expressed a similar conception of problems before beginning the course.
My experiences with problem solving have been very similar to those discussed in
this class as a misconcaption. As a student, | can remembaer many occasions when
we weare asked to solve a series of "problems” where the operations and proce-
dures were evident. . . . | have had little experiance solving actual "problems”.

Thales soon realized in the course that, if she saw an immediate solution to the task, then it
was not really a problem. Thus, her conception i problems had expanded. Apple initially
expressed a similar misconception of "problem” by describing problems as "textbook word
problems used to teach one basic particular skill; formulas with ditferent arrangements of
addition, subtraction, multiplication, and division; geometry and algebra word problems.”

As the course progressed, each of the three grew in confidence and enthusiasm in
their own problem-solving abilities. Apple chronicle her growth as foliows:
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{ About a third of the way through the course:] | {eel much more femiliar with some of
the problem solving techniques. Also | don't feat "not finding the answer” as much
as | have in the past. | concentrate more on my attack to the problem. [About half-
way through the course:] ! am definitely more aware of the process going on in my
head. [Towards the end of the course:] 1 understand a lot more than | did before. . . .
| fee! much more qualified to solve a problem now than 1 did. [After the final exam:]
The answer that I'm about to write for that question {How confident are you now?}
surprises me. Even one month earlier or possibly one week earlier, my answer
would have been different. After having worked with the final exam, | feel a fot more
confident. For some reason, ideas that | thought | had learned did not really
become whole until that exam.

Apple's growth chronicled above was mirrored in the changes in her problem solutions;
they became progressively richer in appropriate strategies and metacognitions and correct
solutions, as well as in alternative and generalized solutions. Thales' development of
confidence in her own problem-solving abilities is similar to Apple’s but not as thoroughly
chronicled in her journal entries. Her change in emotional response moved from "panic” at

.the beginning of the course to "enjoyment”. Her confidence also grew.

[About haltway through the course:] [ think that during the last few weeks, my prob-
lem solving skills have improved. . . . This course is. . .making me a more confident
probiem s..Ilver. [Towards the end of the course:] I'm sure that my problem solving
skills have increased over the last few months. However I'm still not an overly confi-
dent problem solver. There have been problems on each of the problem sets which
| found to be particularly frustrating. However at least now | don't panic when | read
the problem and a method for solving it isn't immediately obvious. [After the fina!
exam:] My first reaction upon seeing the exam was panic. . . . Howaever, as | began
to more carefully study the problems, | became more confident. . . . | enjoyed work-
ing on the problems which | selected.

Euclid admits to some confusion on certain aspects of the course (especially me*=cogni-

tion), a confusion that was not completely cleared up even at the end of the course.

[About haliway through the course:] | think | have become more aware of cognitive
processes since the beginning of the course. However, | am not sure that | really
understand yet. . .what | am trying to be really aware of. . . . Some of the early prob-
lems seem quite simple now. [After the final exam:] [ fee! as though | am definitely
a better problem solver. . . . [Yet] | feel quite a bit of frustration. . . . | feei fairly com-
fortable with my success on the exam. . . . [Yet] | am still not as clear as | should be
about the distinctions between teaching problem solving, teaching a problem, and
teaching through problem solving.

His confusion was evident in his exam responses, both in his solution of problems (even
though he had a mathematics major in college) and in his essay responses to items such
as distinguishing teaching problem solving, teaching a problem, and teaching through
problem solving.
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By about a third of the way through the course, each of Apple, Euclid, and Thales
began to report attempts to introduce problem solving into their own classrooms. The
parallel of their perceptions of their students’ success in and reactions to problem-solving
experiences and their reports of their own development (as above) are striking and are
aven explicitly referred to by both Apple and Thales. Apple reported the following on her

attempts to introduce problem solving into her classroom:

[About a third of the way through the course:] One real effect that this course is hav-
ing is that my reaction to my students has changed. I'm far more concerned with
thair attack on the problems than with their answers. .. . The students in my classes
are experiencing a change in their success rate in solving problems. . . . [About
two-thirds of the way through the course:] Lately, my students expect to be solving
problems as a regular part of the routine. . . . Some very positive results seem to be
happening. . . . | have to use different problems in different classes because the
students get excited and tell each other all about the problems. [At the end of the
course:] More than aver, | feel that | see a real difference in "understanding"” as it is
applied to me personally and in "understanding™ as the work is taught. . . . Ican see
my strategies and my attitudes (enthusiasm!) picked up by the students. ... My stu-
dents have become very enthusiastic about problem solving. And successful too!

Thales admitted to mixed success in initial attempts to introduce her students to “real”

problem solving. Several of har comments (underiined below) consclously mirror her own

development:

{About a third of the way through the course:] | have used some of the problems we
have discussed in class with my seventh graders, with mixed results. . . . I'm sure
that they have mixed emotions about their abilities now, iust gs | often have about
mine. . . . ltis not uncommon for many of my students to read the problem and
immediately say, "l don't understandi” | know that what they are really saying is that
they don't see an obvious solution and they're not sure where they shouid begin, a

i certaj . [About halfway through the course:] At the

I { problem solvi i ‘1t wari |

beginning of this course, L vi ol
now see in my students.

Thales did not make further comments in her journal about the success or enthusiasm of
her students in problem-solving. Euclid did not comment in his journal on attempts to

introduce problem solving into his classes until about a third of the way through the course.
For years, the extent of my problem solving activities in the classroom invoived word
problems. | have taught a plan to try to solve these problems. Most students seem
to have a great deal of trouble and difficulty with word problems. . . . | have consis-
tently thrown in to the classes some problem solving activities. | have found that
students enjoy them and gives {sic] a different pace to the classroom. Howaever,
success rates are mixed.
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Euclid only very briefly included further journal references to his students' problem-solving
experiences. They seemed to indicate mixed success and many reservations about the
possibility of success for all students. Euclid's perception of his students’ mixed success
mirrored his own mixed success in the course.

Galileo, Hobie, and Simplicius

Note: The stories of Galileo and Simplicius ‘have been chronicled and their jour-
nal entries quoted extensively in at least two other places (DeGuire, 1991a, 1991b). Thus,
due to space limitations here, conclusions about these 2 subjects will be cited here but
supporting quotes will bs limited. Hobie's story will be chronicled more thoroughly.

The stories of Galileo, Hobie, and Simplicius are aiso somewhat similar but quite
different from those of Appie, Euclid, and Thales. Unlike the earlier 3 subjects, Galileo,
Hobig, and Simplicius all began the course feeling quite confident about their own
problem-soiving abiiities and very enthusiastic about problem solving. Galileo and Simpli-
cius had extensive mathematics backgrounds and some previous problem-solving experi-
ance; they were both immediately very successful with the problems in the course. Their
confidence, enthusiasm, and richness of solutions and metacognitions grew throughout
the course. Hobie had the least mathematics background of ail 6 subjects in this paper but
had had some previous experiences in problem solving in a mathematics methods course
the previous semester. She began the course feeling quite confident in problem solving
but soon realized the limitations of her knowledge. She also consistently racorded enjoy-

ment of the problem-soiving experiences. She reported:

[At the beginning of the course:] | felt okay about problem solving before this class
or at least | thought | did. It is amazing what one can leam from just one class. | can
already tell that my problem solving strategies were somewhat weak. . . . [About a
third of the way through the course:] The more we get into the class, the more | re-
alize how little | really did know. . . . Before the class, | had pretty much confidence
in myself as a problem solver. After the first night, | had lost some of that. However,
as each class ends and as | solve more problems and read more articles my confi-
dence moves up a step again. .. . | am thoroughly enjoying these activities. [About
halfway through the course:] 1 find that writing the metacognitive reveries in solving
the probiems has really helped me. . .to become a better problem solver. [Towards
the end of the course:] | know | have become better at problem solving, mostly be-
cause | can take a problem apart, and concentrate on the process. [After the final
axam:] | felt pretty good about the exam. it is amazing to me how sitting down and
working on something can be so rewarding. . . . | feel like my problem solving skills
have really improved.

215

Q

ERIC

Aruitoxt provided by Eic:




E

1-191

Though Hobie's problem solutions were never as mathematically rich as Galileo's and
Simplicius’, they did exhibit mathematical richness in line with Hobie's more limited
mathematics background. All three subjects also began the course with conceptions of
*problem” and "problem solving” that were essentially congruent with the widely-accepted
meanings of the words.

Just as all 3 of these subjects—Galilgo, Hobie, and Simplicius—were consistently
confident and successful in their own problem solving, so their perceptions of their stu-
dents' confidence and success in problem-solving experiences was consistently positive.
Hobie had already begun to implement some of problem-solving experiences into her
classroom as a result of her experiences in the methods course the previous semester.
Even at the beginning of the course, she reported her students' excitement about problem
solving. Several of her journai entries make explicit statements (underlined) that con-

sciously reflect her own development:
[At the beginning of the course:] We have already gone over the problem soiving
strategies and have used severai of them. So far, my students as well as me are
very excited about it. [About a third of the way through the course:] | hope to

tiecome so confident when the class is over that some of it will spill over to my
students. ... So, far, | feel my students are really enjoying doing the problem solv-
ing, just as t am. [About halfway through the course:} Beginning this quarter, 1 am
going to baegin having my students write down their metacognitive reveries. . . . 1
think that this will really help them, just as it has me. [Atthe end of the course:} Not
only has this course helped me, but it is doing wonders for my classroom.

From the perceptions that Hobie reports in her journal, it would appear that her students
have become successful and enthusiastic problem solvers. Both Galileo and Simplicius
make ‘explicit references to the influence of the course on their teaching, with Galileo
providing evidence of his students’ development reflecting his own. In commenting on
implementing a problem-solving approach to teaching, Galileo observes, "This almost
becomes contagious to the student. | have noticed students beginning to imitate the very
same processes which | utilize in confronting problems.” As Simplicius expressed in her
journal, "I feel that. . .my ability as a teacher has blossomed. 1 have definitely made more
effort to incorporate problem solving into the curriculum. . . . 1| feel that this course has
fundamentally changed my attitude toward teaching and what the focus of my teaching
should be.”
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Conclusion
The parallels between the subject's development of problem-solving abilities,
confidence, and enthusiasm and their perceptions of their students’ development of
problem-solving abilities, confidence, and enthusiasm is quite interesting. The present:
conclusions have been va.3d on self-report data. As with all self-report data, one must
assume that, to a certain extent, the subjects reported what they feel the researcher wants
to hear or read. Such data has many deficiencies and problems and is not here triangu-
lated with other data sources. The problems and issues with self-report data have been
discussed well in Brown (1987). It is unfortunate that it was not possible to follow these
teachers into their classrooms to obtain independent, observation data on what problem
solving they incorporated into their classrooms and how they did so. However, the data
seem to present an interesting hypothesis for further exploration, that is, that students’
development of problem-solving abilities, confidence, and enthusiasm will mirror their
teachers’ development of these qualities.
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SELF-DIRECTED PROBLEM SOLVING:
IDEA PRODUCTION IN MATHEMATICS

M. Ann Dirkes
indiana University-Purdue University at Fort Wayne

A study of productive thinking in elementary school and college students
suggests (a) longitudinal effects of current traditional teaching methods
on thinking habits and (b) the effacts of self-directed strategies on
thinking. A program was designed to diversify thinking by helping
students produce ideas in a search for understanding; multiple formats,
and connection-making. Research supporting the program includes
studias on problem solving as a constructive enterprise, learning as a
generative process, thinking perspectives, and metacognition.

AUTONOMY

For Students to develop insight and transter knowiedge to new contexts, they
need to manage thinking consciously and stretch their own development. In this
sense they share the direction of thinking with teachers.

For me to construct ideas, | must be in charge of my own thinking.

For me to use my uniqueness to do your mathematics, | need
to monitor the leaming strategies | use.

We know little about what students are able to do in this domain, especially
through a deliberate cultivation of self-directed thinking. The work has begun,
however. Notable examples of groundwork include the research of Feuerstein (1980)
on student generation of new knowledge, Schoenfeld (1985) on student beliefs and
Whimbey and Lochhead (1982) on collaborative problem solving that helps students
use what they know. From a different perspective, Vosniadou and Ortony (1991) bring
together diverse studies that reexamine the roles of analogical reasoning in learning
for children and adults. This work includes self-direction insofar as it treats individual
plans and goals, and thinking that students can initiate, e.g., the identification of
surface features as cues to underiying structures.

Before children are introduced to academic learning, they use a global
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approach to learning language and certain quantitative relationships. With a sense of
thinking autonomy during the early years (Kamii & DeClark, 1985), students engage in
spontaneous quatitative activity to gain enough understanding to connect symbols to
the world (Piaget, 1973). Although we do not expect young children to analyze
thinking. strategies, we do expect them to think in the ways that they are abie. Children
in the second grade, for example, can learn to strengthe'n their beliefs about the
importance to conforming to the solution methods of others (Cobb et al, 1991).
Teachers giving informal reports describe children who create ideas freely and decide
consciously to use self-help'aids'instead of asking for help unnecessarily. These
teachers say that they emphasize self-help because they cannot know the precise
dimensions of thinking possible for every student at a given time.

Projecting self-direction to later stages of development, we might expect that
children and adults would select different learning strategies for themselves. Children
would choose to manipulate objects and interact with peers as aids to understanding
mathematics and adults would use an even larger array of thinking strategies,
including the manipulation of objects, drawing, and analysis represented by spatial
patterns and symbolic equations. Yet we know that in school students rely on very few
strategies, largely memory and speed that suppresses informat thinking (Resnick,
1989).

A LEARNING BASE

This study emanates from three integrated research directions: (a) problem
solving as a constructive enterprise (Stetfe, 1990; Confrey, 1985), (b) thinking
perspectives (Greeno, 1989) and (c) self-direction or metacognition {Schoenteid,
1987, Lester, 1985).

As problem soivers, individuals interpret mathematical content, context,
structure, and heuristics (Hatfield, 1984) and manage a repertoire of strategies to meet

challe.iges. Performance weighs heavily on accessing learned content (Silver, 1982)
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and on searching and elaborating extensively (Mayer, 1985). This generative process
is characteristic of learning (Wittrock, 1977; Dirkes, 1978) and of the.thinking that
students do to understand and soive problems. There is an expectation that students
will construct possible models of reality without allowing perceptions of predetermined
absolutes to restrict their thinking. (Glasersfeld, 1984).

According to Robert Davis (1984), the true nature of mathematics involves
processes that demand thought and creativity. Doing mathematics means confronting
vague situations and refining them to a sharper conceptualization; building complex
knowledge representation-structures in your own mind; criticizing these structures,
revising them and extending them; analyzing problem, employing heuristics, setting
subgoals and conducting searches in unlikely corners of your memory. If this is so,
students must assume an active role, one that they initiate and monitor.

Treating mathematics as an ill-structured discipline is a step toward both the
dispositional and cognitive changes required for the construction of meaning (Resnick,
1984). -For students working in familiar situations, algorithms and heuristics fit neatly

into a structure. For unfamiliar and complex situations, however, students must not

only create a plan to help them organize data and select mathematical strategies
(Kulm, 1984), they also accept ambiguity, set aside time for problem solving, and find
connections among possibilities that they produce.

Choosing to think and claiming the authority to produce ideas are commitments
that rely on the development of metacognition, the awareness of mental functions and
executive decisions about when to use them (Flavell, 1979; Sternberg, 1984).
Metacognitive functions help students regulate (a) cognitive operations, e.g., recall,
infer, and compare; (b) strategies, e.g., draw and list possibiiities; and (c)
metacognitive action to plan strategy, monitor it, and aliocate time for thinking. These
functions supplement what teachers do, beginning with the regulation of thinking

unique to individuals.
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A STUDY AND A RESPONSE

SELF-DIRECTION IN MATHEMATICS (SDM) is a program designed to engage
students productively in active problem solving from elementary school through
college. Ten groups of college students enrolled in methods courses for teaching
mathematics experienced the entire program for a semaester and ten groups of
students in grades two through seven participated in two or three sessions on idea
listing. Numerous one-on-one interactions with students in public schools were also
recorded for study.

Six components integrate the program.

‘ 1. MATHEMATICS Students construct meaning and problem solutions in

‘ response to a wide range of challenges, and teachers use oral techniques

| to prompt student connections. Current local and national recommendations
direct the choice of mathematical topics and instructional strategies.

2. ROUTINE AND SELF-DIRECTED THINKING Students monitor and regulate
thinking strategies and beliefs. They allocate time for thinking; produce
alternate interpretations; and make connections among ideas, drawings and
contexts.

3. IDEA LISTING Students produce ideas freely to tackie novetty and
complexity, to clarify concepts, and create problem solutions. Resources
inciude recall, observation, imagination and peer interaction. A checklist
guides their thinking into mathematical concerns and informal prompts
develop a climate for problem solving.

4. PROCEDURE For challenge problems students (a) list many ideas about
given facts; (b) restate questions to insure meaning; (c) list many ideas in'
drawings, words and symbols that might lead to solutions; and (d) setect
their best ideas. They' solve given word problem and those in which they

add facts and a question. A modified version of this plan helps them
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respond to social situations and, when needed, divert their efforts to skill
development. _

5. MATERIALS Diverse materials and technology stimulate thinking and
muiltiple representations. )

6. ASSESSMENT Productive thinking described in Components 3 and 4
reach beyond most paper-and-pencil instruments to support self-directed
problem solving. Portfolios and two-stage tests show the development of
thinking strategies, dispositions, and mathematica! knowledge.

An examination of many idea lists shows that students in elementary and
middle school can learn to access what they know and use ideas in new ways. With
appropriate strategies, coilege students begin to use self-uirection for thinking in
mathematical situations and for managing learning. At first, their lists generally do not
demonstrate miore ideas. or more quality ideas than younger students. Checklists that
cue mathematical concerns and other strategies, however, improve the quality of their
thinking and enlarge their perceptions of the nature of mathematics.

ATTITUDES AND THINKING POWER

The SDM program uses self-direction because it is a term more familiar than
metacognition and also suggests specifically that students be the ones to examine and
regulate cognitive operations, strategies and metacognitive action. Monitoring their
own thinking, students decide when to probe long-term memory and when to combine
ideas into new inventions.

To optimize thinking that encompasses physical and social contexts as well as
personal beliefs and understanding about cognition (Greeno, 1989), students
construct concepts and solutions by connecting ideas within mathematics, other
disciplines and life outside the classroom. An active assimilation of ideas prepares
them to elaborate on what they know and develop representations that communicate

their knowledge and problem solutions to others. Implications extend to what students
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believe about mathematics and themseives.

SDM activities center on an autonomous production of ideas in a search for
new con sciions that develop concepts anc solve word problems The word, idea,
suggests that students expect to produce possibilities for answers or for the direction of
complex problem soiutions. Whereas answers are to be correct, the immersion of
ideas into subject matter (Prawat, 1991) introduces problem solving that encourages
growth and revision. What is your idea, Susan? What else might be important? List
many possible ideas. What do you want to revise? Thé discourse created builds
understanding (Lampert, 1989). Where expectations for a uniform development of
meaning do not interfere, students take intellectual risks that reach beyond minimal
prescriptions and perceive that an extensive generation of ideas is as much a part of
school performance as the reproduction of definitions and algorithms,

Mathematical power comes with the direction of strategies. Students search for
understanding by producing alternate interpretations stating questions and
interpretations in their own words, and producing ideas as they reread to construct
meaning. They demonstrate a willingness to think by speaking extensively, drawing
and writing, and organizing ideas for future reference. Producing muttiple ideas that
might be connected is a process that complements long-term recall and making sense
of mathematics. This is the kind of thinking students do outside of school.

Whan understanding is not forthcoming, a flexible production of ideas under
deferred judgment, alone and in groups, breaks down barriers and suggests
connections. Producing prior knowledge and new inventions, students unify their
consciousness of facts, questions, and solution. Self-direction and understanding
reinforce positive attitudes toward thinking so that they face novelty and complexity
with a sense that / can think and / always know how to begin.
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PROJECT DELTA: TEACHER CHANGE IN SECONDARY CLASSROOMS
" Barbaral Doughenty

University of Hawaii - Manoa

This project investigates teacher change in intermediate and secondary classrooms. Using methodology
consisting of interviews and observations, movement (o & process teaching model is documented. Data

have revealed that teachers can make behavioral changes but the richness of those changes is related 1o the

maich b teacher philosophical structures and the teaching approach. Additionally, materials
supporting both the philosophy and specific pedagogical actions is an important contributing factor in the
change process.

Project DELTA (Determining the Evolution of the Leaming and the Teaching of Algebra) is a research
program investigating teacher change. The project focuses on teachers at the intermediate and high school level as
they implement curricular materials and an associated teaching style. These materials were developed by the Hawai
Algebra Leaming Project (HALP) (NSF grant MDR-8470273) and incorporate a process approach to teaching.

Back-ground and Premises

With recommendations that teaching : ove from a traditional or lecture approach to one with more student

involvement, many descriptors such as process teaching, inquiry-based approach or problem-solving instruction

have been tossed about, each with specific characteristics. Since mathematics educators, practitioners and

reseaschers atike. do not agree on what secondary classrooms would specifically look like using nontraditional
justuctional methods, DELTA first sought to identify characteristics of process teaching to ease communications
and to establish specific arcas that are different from traditional instruction. These areas would then be associated
with those most related to teacher change. This preliminary work was conducted in classrooms using the HALP
curriculum (Algebra I: A Process Approach, Rachlin, Wada, and Matsumoto, 1992) as a means of assuring
consonance between the process teaching methbd and materials supporting that method.

‘The HALP materials are intended to be a complete Algebra I curriculum for intermediate or high school
grades. They were developed through a seven-year intensive classroom-based research program conducted with
ninth-grade students. Curriculum developers served as classroom teachers and piloted draft materials in their
classes. After each class, individual students were interviewed on a regular basis to “think-aloud™ as they solved
problems that would appear in the next lesson’s problem set. These problem sets were constructed to model
Krutetskiian problem-solving processes (Krutetskii. 1976). Combining these problem sets with a Vygotskian
perspective on lcarning (Vygotsky, 1978). the HALP created an algebra curricutum that included materials and an

intertwined tcaching approach (process teaching)
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In past curriculum projects, teachers have been afforded little of no implementation support. Because this
curriculum presents algebra content in a different way and is based on a nontraditional teaching style, a 45-hour
workshop was designed to help teachers use the curriculum. While it is required for those planning to use the
curriculum, other teachers may also enroll.

During the workshop, participants read current articles about algebra, problem solving, and teaching.
Homework assignments from the text are given to involve participants in thinking about algebra through a
problem-solving context rather than an algorithmic one. Participants experience the problem-solving processes of
generalization, flexibility. and reversibility by solving problems that exemplify each process. Most importantly.
videos of individual high school students with varying abilities and of secondary classrooms are shown to
stimulate participants to question their beliefs about algebm.and its instruction. Even though instructors model
process teaching through the workshop pedagogy, no explicit teaching methods are given to participants.

Methodology and Resuits

The methodology was designed in three phases. Phase one focussed on ascentaining charactenstics of
process teaching and instrumentation. Phase two's purpose was pilot testing and phase three is currently
concemed with study redesign. .

Phase One: Process Teaching Characterization and Instrumentation

Methodology of phase one. A member of the HALP team was chosen for pilot classroom
observations. Her ninth grade, heterogeneous class was observed bi-weekly in consecutive three-day periods for
two months. Scripted field notes and audiotapes were used to record class proceedings. The relatively set pattern
of instruction and lesson format in raditional classes did not hold for process classes; they were much more
complex. Even with éudiomping it was difficult to script everything that was occurring. An observation coding
mnstrument (OCI) was constructed to ease data collection.

Its construction first required characterizing process teaching based on the pilot observations. The feature:
of process teaching could be divided into quantitative and qualitative aspects. The quantitative features included
time and frequency. The amount of time spent on the lesson segments of content development. seatwork. and
management was particularly relevant. These three lesson segments appeared to be dramaucally different from
traditional lessons in that & much larger portion of the class period (42 minutes of 45 minute penods) is spent on

content development and negligible time on seatwork.

l{fC‘ 227

Aruitoxt provided by Eic:




1-203

Frequency collection documented the number of factual (ie.. what is 3x + 2x 7), process (ic., is the
answer unique and how do you know that?), and managerial (did everyone tum in a paper?) questions asked and
answered by teacher and students. In traditional classes questions tend to be factual but in the process classes.
process questions are more frequent. The person responding to questions was also different. In process classes
students tend to respond more often than the teacher due to the active student participation.

It is not. however. just measurable aspects: the quality of responses and of content discourse is even more
important. The OCI was constructed to allow for this documentation. Actual dialogue could be captured during

. observation periods or reconstructed with audiorapes of those sessions. Particular attention is given to the
dialogues of each problem discussed during the lesson because the mathematical content that evolves in the
dialogue comes from students and is. therefore, reliant upoi\ the teaching method that allows for and encourages
student input. This mathematical content could not be neglected since it affects, and is affected by. the teaching
approach. The descriptions of developing algebraic ideas enhanced snapshots of the classrooms in the way in
which students discussed particular ideas. For example. in one lesson, generalizations now carried the student’s
name that “discovered™ it. These development ideas suggested richer views of the classroom culture and of the
construction of mathematical knowledge.

While teacher and classroom behaviors are certainly one way to document changes, all teachers
confronting change may not demonstrate it through their teaching behaviors. Based on previous work (Grouws.
Good, & Dougherty, 1990). a semi-structured interview was considered to ascertain attitudes and beliefs about
mathematics, algebra. their instruction, and individual and school demographics. The protocol questions clustered
about four main research areas: (1) teacher views of algebra and mathematics. (2) teaching strategies and/or style.
(3) student aspects including teacher expectations. and (4) enhancements 0 the change process.

Results of phase one. Preliminary data were analyzed with particular attention to characterizing
process teaching and validating the appropriateness of the instruments. Important features of process teaching
inciuded: (1) class periods devoted to active discussion of mathematics. (2) "teacher talk™ kept to a minimum. ()
questions from teacher and students were more related to “why” than to “how", (4) students assumed leadership
toles in the leaming process. and (5) mathematical content developed from a concept level to skill.

The instruments were modified slightly after in.itiul data analysis. The methodology was reviewed by an

externa! consuitant and was determuned to be appropnate for this stage of the study.
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Phase Two: Pilot Testing
Methodology of phase two. Phase two began with an HALP workshop offered in Honolulu,
Hawaii. Teachers from across the United States were enrolled and those that indicated they were using the HALP

materials in the next school year were asked to participate in the study. Six teachers volunteered and represented

" intermediate and high school grade levels, varying class types (ie.. high ability. hetémgencous. and accelerated).

E

and a range of teaching experience (3 to 18 years).

At the beginning of the school year (October) each teacher was interviewed with the protocol. Their
responses were audiotaped and transcribed for later data analyses. At the same time their Algebra I classes were
observed using the OCL Classes were observed again in December and March. The last ob_scrvation period also
included administering the interview protocol again.

Results of phase two. Data analyses using Hyperqual showed interesting patterns within and across
teachers. When both data sets were analyzed. teacher beliefs and teaching actions did not necessarily match. Ther
were three cases: ( i) beliefs were more traditional and teaching was process oriented. (2) beliefs were process
oriented and teaching was more traditional, and (3) beliefs and teaching were process oriented. There were also
noticcable differences in the ease in which teachers adapted to process teaching and the depth to which they were
able to im.plement it in the classroom. These findings motivated a look beyond :eacher beliefs and actions after the
workshop.

Phase Three: Study Redesign

Methodology of phase three. Data collection design was restructured to allow for captuning
information about teachers prior to any workshop intervention. Two sites where workshops would be held in the
summer were selected. Teachers pre-enrolled in the workshop in those locations were contacted. Thirteen teacher
from a Midwest city and five from an Eastem site agreed to be involved in the study.

A graduate student from the University of Missouri worked with this phase in the Midwest as part of her
dissertation. At the beginning this phase, she came to University of Hawaii where we viewed classrooms and
videotapes of classrooms to establish observer reliability (.52). In May of the spring semester prior v/ the
workshop, sample teachers were visited. Their Algebra classes (or another class if they were not teacing Algebra
were observed over three consecutive days. These observations were anticipated to involve classes taughtin a

traditional manner and required the OCI be altered slightly to accommeodate both traditional and process instruction.
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Also, an interview protocol that had been adapted from phase two was administered during these pre-workshop
observations. The pre-workshop interview protocol was to be used prior to any workshop intervention so that
questions related to how teachers were implementing workshop ideas were not asked.

Phase three also involved the workshop itself. Since explicit implementation strategies are not given in the
workshop, we wanted to determine if workshop instructors were teaching in a way similar to what was expected o
teachers after the workshop. The graduate student observed and audiotaped the Midwest workshop, including
interviewing the instructors with the pre-workshop interview protocol.

The school year following the workshop, project teachers were observed in November and March for
consecutive three-day periods in Algebra and other mathematics classes as available. The postworkshop interview
protocol was also administered in March. This protocol was identical to the pre-workshop form with the inclusion
of questions related to the workshop and to the implementation of the workshop ideas or materials.

Results of phase three. Analyses of data sets from both sites are currently being conducted but
preliminary analysis on data from the Eastem site is avail.ablc. Pre-workshop observations documented that all but
one of the sample teachers taught in a traditional manner. At the Eastem site the amount of time spent on content
development averaged 3.5 minutes in a 45-minute period and the average time spent on seatwork (starting the next
day's homework) was 24 minutes. Student talk time to the whole class and student-student interaction was
negligible. Questions involved students telling the teacher what “to do next.” That is, students would give a step
in the problem or answer a factual question such as "what is three times 217" The mathematical content was
introduced at the skill level and received developm_cntal attention for one class period and again on the next day
when homework answers were given.

Pre-workshop interview responses also indicated traditional views about mathematics, algebra, and their

instruction. Teacher responses emphasized skill aspects with reference to rules, procedures, and application of
those in appropriate ways. Expectations for the students except for one teacher focussed on the retention of skills.
Problem solving was a separate topic included in the lesson as determined by the textbook's presentation of word
problems.

One teacher, even though she discussed mathematics and algebra in a procedural manner, taught ina
slightly different way than the others. She engaged the students in active discussion of topics and made an effort tc

connect the new material with something that students had previously done in class. Questions emphasized studem
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.n:asoning and altenative ways of approaching a problem. The cﬁssman atmosphere was student~centered in that
student ideas were regarded with respect by the teacher and other students.

Postworkshop observation data indicate varying levels of implementation of workshop aspects. Two of
the project teachers are using the HALP materials. In one Algebra classroom. there was use of cerain questions
such as "did anyone do it a different way" or "is the answer unique.” There was. however. a fack of depth in
natural questions that arose from mathematical discourse. Students and teacher were discussing content, led
predominantly by the teacher. While these instructional strategies do not precisely fit the process teaching model.
there was a definite movement from the traditional style used prior to the workshop, albeit superficial. Her
responses to interview questions related to belief structures were less rigid than comparable pre-workshop
comments.

In the other teacner's classroom. her teaching style was more open than before the workshop. Previously
she had encouraged student interaction under her direction but now students assumed more leadership in initiating
questions and responses. She aliowed the mathematical content to develop over longer time through the
exploration of techniques and strategies in the developmental siage of new concept formation. Using prior
knowledge 1o solve problems was encouraged. Her interview responses indicated movement (o the creative
aspects of mathematics and algebra.

Postworkshop observations of teachers in classes not using the HALP materials such as general
mathematics or geometry are not consistent with the HALP classes, There is a tendency for all teachers toteach
more traditionally, especially those that are not concurrently teaching any HALP classes. Teacher rationales vary:
for some. they feel their students in those classes are different from those in the HALP classes. This is especially
true for those teaching where students are tracked. Others commented that it is 0o time consuming and too
difficult to change existing materials to fit a problem-solving approach to instruction. Restructuring homework
assignments so that development over time can occur and students are exposed to new ideas through problem
solving requires an expertise teachers felt they did not have.

Discussion of Resuits

All data have not been anaiyzed. but the results from the second and third phases of the project suggest

some interesting ideas about teacher change. The superficiality of changes in teaching strategies. while not an ideal

application of the process teaching model, appears to be an important link in substantial changes. Using Hall,

O
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Loucks, Rutherford, and Newlove’s levels of use (1975), one can find evidence of teachers at level ITI (uses new
strategies while struggling with problem of classroom manageinent related to implementation). However, there is
more to change than the physical implementation of strategies. Teachers must also cope with the philosophy that
underlies the specific teaching strategies. The crux of process teaching )ies with students as they construct
meaningful ideas about mathematics and teachers incorporating those ideas into the lesson. The use of student
ideas that may be different from what has been accepted as conventional or traditional algebra content appears to be
the most difficult aspect of implementing process teaching. The unpredictability for teachers not knowing what
direction the lesson is heading challenges them to be flexible enough to recognize mathematical ideas used in
creative ways. And, the worth of student ideas or their mathematical validity is almost inconceivable for those
teachers who have constructed their own mathematical kndwledge in a rigid fashion, especially as the amount of
time increases since their workshop exposure.

Teachers are capable of using questions that are consistent from lesson to lesson such as "did anyone do
the problem a different way?" but struggle with creating questions when mathematical opportunities present
themselves in the lesson. HALP teacher materials have attempted to suggest appropriate questions but again,
student experiences vary and often novel ideas appear in discussions. Some teachers have commented that their
inability to perceive pattems quickly of to note subtle references 10 other mathematical ideas may account for
difficulties in asking higher—level questions so they resort to factual ones.

The comfortableness teachers feel with the mathematics they are teaching is also another consideration.
For example. in one classtoom, students suggested that it may be possible to have three axes when graphing
instead of two. The teacher ignored that suggestion because, as she indicated later, she was unfamiliar with three-
dimensional graphing and could not think of how to pursue their ideas since she could not discuss it. Additonally
if the teacher's mathematical knowledge is limited, it is difficult to assess the validity of student arguments. Rather
than cope with that, some teachers opt to force the discussion in the way they feel most comfortable to handle.
This may create an ambivalent classroom setting: at one time it is appropriate for students to guide the discussion
and other times it is very directed by the teacher.

This ambivalence also occurs when teachers only implement the strategies and do not change other
classroom aspects that support those strategies. The most common occurrence is to have student evaluation based

wholly on tests and quizzes while ignoring other means. On the one hand, student discussion is encouraged. but i:
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ignored in the evaluation process. This slows student adaptation 10 a different classroom environment and
frustrates the teacher when students do not respond as they had expected.

Our study supports the obvious: if teacher beliefs are similar to the philosophy of a new curriculum. it is
easier to implement change. But what about the teachers whose philosophy is diametrically opposed with that of a
new curriculum? Thc day-to-day coping with the classroom forces a mechanistic application of strategies while
teachers begin to bridge the chasm between the curriculum and their own beliefs. To a casual qbscrver it would
appear that implementation was well underway but closer inspection indicates a superficiality that may precede a
retum to previous teaching methods or movement toward a closer match with the process teaching model.

Three factors seem to influence the perseverance to move to a richer application of process teaching. Most
important is the use of materials that support the instructional approach. More than ever, we are aware that
pedagogy and content must be tightly intertwined. Secondly, 4 philosophical shift to match the teaching approach
must occur. Finally, an integration of classroom practices into a global entity rather than isolated segments such as
instruction and evaluation provides a cohesive environment that allows students to change and adapt to the
classroom environment as teachers change.

Workshop data have not been fully analyzed at this point. However, aspects of the workshop will be tied
to teaching actions and philosophical issues documented in postworkshop daca collection. It is hoped that through

this data analyses. workshop features can be modified to encourage greater success in the implementation stage.
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REASONING AND REPRESENTATION IN FIRST YEAR
HIHIGIT SCHOOL STUDENTS
Laurie D. Edwards

University of California at Santa Cruz

Ten first vear high school students were asked 1o judge simple statements
abows combining odd and even numbers as true or false. They were also asked to
give justifications or explanations for their decisions. All of the studens initially
reasoned purely inductively, appealing to specific cases and justifying their
answers with additional examples when presses. However, three students went
beyond this empirical reasoning and created idiosyncrasic, personal arguments for
their decisions. None of the students used algebraic notation in any of their
reasoning. Two of the students used a visual representation of odds and evens in
making their arguments.

Introduction
Generalization, and testing the limits of generalization through proof, may be said to be at the heart
of mathematics. An acknowledgement of the importance of this kind of thinking in the mathematics
curriculum can be found in the Curriculum : . Evaluation Standards for School Mathematics, published
recently in the United States by the National Council of Teachers of Mathematics ( 1989). In the
Standards, mathematical reasoning is set forth as a goal for all students of mathematics, at all ages and
levels. This term, "mathematical reasoning” is defined to include a range of capabilities. According to the
Standards, students should be able to:
" » recognize and apply deductive and inductive reasoning:
» understand and apply reasoning processes,with special attention to spatial reasoning...
+ make and evaluate mathematical conjectures and arguments;

* formulate counterexamples;

+ formulate logical arguments:
* judge the validity of arguments ..."

(NCTM. 1989, p. 81 and 143)
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These skills have often been addressed only in geometry classes. in the context of carrying out formal,
two-column proof on triangles. circles and other figures. Yet it has long been acknowledged that the
teaching of proof in such classes is often unsuccessful, and may lead to shallow, syntactic knowledge
rather than deep understandings of the mathematics involved (Schoenfeld, 1988; Hanna, 1983).

The study described here was concerned with mathematical reasoning and expianation outside of,
and prior to, formal instruction in a2 geometry class. Instead. the focus was on the reasoning skills of ten
first-year high school students, who were volunteers in a project on the use of computer-based
microworlds for mathemadcs. In order to understand some of the difficulties involved in leaming and
teaching proof, it may be useful to look at the cognitive precursors to formal proof; that is, the kind of
informal explanations that students offer when confronted with mathematical patterns or regularities. Such
an approach, which takes a constructivist or genetic stance toward the development of students' reasoning
abilities, may clarify difficulties and suggest instructional strategies for assisting students in learning this
specialized kind of thinking.

Objectives of the Research

The results reported here were gathered as part of a study of high school students' interactions with
a computer microworld for transformation geometry (Edwards, 1990; 1991). The objectives of the
research project as a2 whole were to investigate the kind of reasoning which high school students applied to
situations involving composition of reflections. a task which had been previously investigated with
middle-school students (Edwards, 1988). This task was determined to be useful in eliciting students’
strategies for discovering and testing hypotheses, using the computer microworld. and for engaging in
mathematical generalization (for a report of research addressing similar questions. using a different
computer environment, the Geometric Supposer. see Chazan, 1990).

One of the research questions was whether the opportunity to use a computer microworld to
generate and test hypotheses and conjectures would improve the students’ abilities to reason
mathematically. In order to test this, a simple task-based interview was carried out before and after the

students' experience with the microworld. The objective of the interview was to discover the kind of
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reasoning the students already employed. in a domain unrelated to transformation geometry. If there wasa
change in this reasoning at the conclusion of the study, then it could be argued that the microworld was
effective in helping the students to learn how to reason mathematically.

Methodology

The students who participated in the study were 10 first year algebra students, ages 14-15,.
including four girls and six boys. The students worked ina small research lab at the university for a
period of § weeks. During the first and last session, the students were interviewed individually using the
task described below; for the remaining sessions, they worked in pairs with the microworld (written in
Boxer). )

The task used to assess the students’ reasoning consisted of a set of statements printed on cards of
the form:

*Odd plus odd makes even”

The students were asked to decide whether the statement was true of false, and then to tell the investigator
why they made their decision. A final card was presented, showing the following pattern:

1+3=4

1+43+5=9

For this card. the students were asked to add two more lines which showed the same pattern, andto

explain the pattern.
The sessions were video- and audio-taped, and transcribed. A full analysis of the protocols is still
underway, but the initial analysis, which showed some surprising and intriguing results, will be presented

- here.

236

O

ERIC

Aruitoxt provided by Eic:




1-212

Resuits

The pretest consisted of the following statements, two of which are true and one false:

"Even x odd makes even”

"0dd + odd makes odd”

"Even + even makes even”
The post-test consisted of the following statements:

"0Odd + even makes odd”

"Even x odd makes odd"

"0Odd x odd makes odd”
One unexpected outcome was that a few students (3 or 4) had some difficulty in establishing the truth or
falsity of the first statement. This seemed to be attributable to two factors: first, many students answered
very quickly, apparently without much thought. When they were asked, "Are you sure?” they quickly
self-cotrected. The other source of error on the first item, "even x odd makes even” was to interpret "even
times odd makes odd” as a misapplication of the "rule” for positive and negative numbers: “positive times

negative makes negative.” For example, one student, when asked for a justification, stated:

NR: A positive and a positive makes a positive and a negative and a négative makes
a positive, uh, something like that, I don't know...

{t tumed out that the students had recently been studying positives and negatives in class. and that
this "rule” was salient in their memories. This evidently interfered with their interpretation of the “odd and
even” questions.

This result in itseif was interesting, in that it indicated the syntactic nature of these students'
leamning in mathematics - while they might have remembered the form of a rule, they did not pay attention
to its meaning. Nor did *hey attend to the meaning of the items presented in the pretest. [nstead, they
seemed to make a cognitive mapping, associating "even” with "positive” and "odd” with "negative,” and

then applying a rule they had recently memorized.
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The experimenter modified the introduction to the pretest after this error appeared in the first two
subjects. The interview was started with the statement, "These questions are about odd and even
numbers. What are some odd numbers? What are some even numbers?” This prompt was effective in
orienting the students to the question at hand, and the “positive/negative” error was thereafter not repeated.

. A more significant pattern of responses was found in the students’ explanations, provided after
they had correctly decided whether a particular statement was true or was false, It was expected that at
least some of the students, after a year of algebra, would use their algebraic knowledge in simple proofs
for the swatements which they stated were true. For example, when asked why "0dd plus odd makes
even,” it was anticipated that some students wouid present a proof such as the following:

"Odd numbers can be written as 2n+1

(2n+1) + (2n+1) = 4n+2 = 2(n+])

2(n+1) is divisible by 2 and therefore even.”

None of the 10 students offered an algebraic proof of this kind. In fact, all of the students initially
offered a purely inductive or empirical rationale for their decisions. When asked why a statement was
false, they would offer a counterexample. When asked why a statement was true, they would reply with
statements to the effect of, "I tried it. and it works.”

When pressed to justify their answers, most of the students simply tried more cases. For example,

the following dialogue took place after the first item had been answered correctly:

JG: ..um, so even times odd makes even.
LE: Is there anything else you want to say or add about that,
or any way you could explain or prove to somebody that it was true?

JG: The only thing that | could do is just try a few...

In total. 7 out of the 10 students reasoned in a way which could be described as purely inductive or

empirical.
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Beyond empiricism, before formal proof

The three students who offered explanations which went beyond simple induction did not use
algebraic notation or appear to be using specific knowledge gained in their algebra class. Instead, each
offered an idiosyncratic argument, which in two cases was based on a change in representation of the
problem. )

1n one case, the student, CM, answered all of the questions quickly and accurately, working out
examples mentally and only writing down the specific numbers he tried when asked to by the investigator.
When pressed to give a reason or explanation for the fact that "Odd + odd makes odd" is false, CM offered
an explanation based on sketches of tick marks corresponding 10 odd and even numbers, as indicated in

Figure 1.

(1)
+ D

Figure 1: CM's sketch/explanation

CM explained that odd numbers always had one "left over”, and showed with his sketch that when
two odd numbers were combined, the “left overs” made up pairs, so that the sum would be even (a set of
pairs).

This visual and verbal explanation indicated that CM was willing to go beyond empirical
justification, and actually look at the structure of even and odd numbers in order 1o generate a valid

argument for his decision. He useda similar argument for a number of the other items in the test.
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In the second case, the student also used a visual tepresentation to support her reasoning. She
created 2 number line, and used a similar argument as that made by CM, involving “jumps” with gaps of

two, or gaps of two and one more.

The final case involved a somewhat more complicated verbal argument, presented to justify the

statement "Even + even makes even.” In this argument, the student noted that all two-digit even numbers
end in 0. 2. 4. 6, or 8, and since the sum of any pair of these single digit numbers is even, then the sum of
any pair of even numbers must be even. This student did not present anything like this argument on any

of the other items, instead appealing only to examples.

Conclusions

Hanna has pointed out the importance of differentiating between "proofs that prove” and “proofs
that explain” (Hanna, 1989). Before students are taught to prove, they can be provided with the
opportunity to engage in less formal mathematical reasoning, by being asked to explain simple
mathematical regulasities. A well-noted difficulty encountered in this area is for students to see the need to
g0 beyond empirical or inductive reasoning at all (Chazan, 1990).

The study described above suggests that some students at the beginning of high school, even
without instruction in formal proof, will go beyond empirical reasoning and offer informal proofs or
explanations of their findings. The results reported here are extremely limited in scope, and in fact, plans
for the next phase of research are to extend the study both in duration (a school year) and population (two
first year high school classes) in order to more fully investigate reasoning among students of this age.
However, the results are consistent with previous findings for British students, working with a written test
(Bell, 1976). 1tis interesting that for two of the students in this study, coming up with an explanation

involved a change in representation of the problem. Each student *translated" the problem into a visual
form in order to build his or her argument. This may have helped them to see better the structure of the

_ mathematics underlying the simple regularities involved in combining odd and even numbers. In this

sense, these were "proofs that explain,” or at least. held explanatory power for the students concerned: In

future research, the cognitive territory which comes before formal proof will continue to be explored. in
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order to provide a better understanding of how more sophisticated and powerful kinds of mathematical
reasoning might be learned by students in secondary school.
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PROBLEM-SOLVING IN GEOMETRICAL SETTING: INTERACTIONS
BETWEEN FIGURE AND STRATEGY
Pier Luigi Ferrari
Dipartimento di Matematica - Universita di Genova

Summary

The analysis of the role of figure may explain some differences in problem-solving between the
arithmetical and the geometrical setiing. The aim of the study I am reporting Is to begin an analysis
of the interactions between figure and strasegy in the resolusion of problems in geometrical setting,
with pam‘cular regard to problems related to the notions of area and perimeser of plane surfaces.
The analysis of the protocols suggesisthat the perception of the figure as an object, autonomous
from the graphic constructions performed, is achieved after a difficult and contradiciory process. It
suggests aiso that the ability at mentally trasforming figures may help pupils in planning and
describing complex strategies in geometrical setting, since a figure may embody part of a complex
procedure and thus contract its temporal dimension. It is aiso pointed out that a procedure may be
grounded in a particular time without necessarily losing its generality.

LINTRODUCTION

1.1. Object of the research

In Bondesan and Ferrari (1991) some data are given that seem to stress the role of the figure in the
resolution of problems in geometrical setting. In fact, it is reported that in geometrical problems children
are more willing to scarch for alternative strategies and a larger amount of pupils who do not master
verbal language in order to organize their reasoning can build effective strategics; moreover, the
comparison of strategies, carried out in the classroom, gives rise to the diffusion of the ability at planning
(or, at least, performing) complex strategics and the increase of the number of strategics produced for
cach problem. It is argued that the figure is crucial on account of its heuristic role in the search for a
strategy, as pupils may ‘manipulate’ it (cutting, superposing, measuring, ...) by means of suitable
representations. Moreover, it allows pupils to effectively represent the problem-situation (as far as it
allows them to simultancously perceive multiple relationships) as well as the resolution procedures (as far
as it may embody the sketch or the record of a procedure). This seem to fit very well with learning
processes based on verbal interactions among pupils.

The goal of the study I am reporting is to proceed deeper in the explanation of these phenomena, with
particular regard to the interactions between figure and the construction of a strategy. In particular I was
interested at testing the likelihood of my hypotheses, stating more precise ones and focusing some aspects
of the subject. More systematic research is needed to validate the results presented here. The whole
subject obviously concerns problem-solving in geometrical setting, but it may have implications for
problem-solving in other settings, such as arithmetic. where representations seem to strongly affect the
performances of pupils (in particular, low-level pupils).
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1.2. Theoretical frame
In the last years the role of visualization in mathematics and mathematics learning has been widely
analyzed (sec for example Dreyfus (1991) for a review). The status of visual reasoning is not yet clearly
explained, but a lot of studics has stressed the ci icial role of figures in geometry. Figures are regarded as
complex units, with both conceptual and spatial properties (such as Fischbein's ‘figural conbepts') and
thus distinct from both pure concepts and drawings. Recently, research has pointed out the complexity of
the interactions between different symbolic systems (such as verbal language and spatial representations)
which have been regarded as a characteristic feature of learning processes in geometrical setting (see for
example Arsac (1989), Caron-Pargue (1981), Laborde (1988), Parzysz (1988)). Computer models have
been regarded as intermediate objects, different from both figures and drawings (sce for example,
Striisser and Capponi (1991)).

Related to the study I am reporting the results of Mesquita (1989, 1990, 1991) are quite interesting, in
particular as far as they concem:

= the analysis of status of a figure (figures that are ‘objects’-or models- in the sense that the geometrical
propertics used in their construction may be evinced, and figures that are only ‘illustrations’ if it is not
the case)

= the analysis of the role of a figure (figures may only describe a problem-situation, as far as they supply
a simultaneous insight of the properties involved, or may also promote the construction of a resolution
procedure)

= the stress on pupils’ representations of algorithms in geometry; three fundamental kinds of
representation (figural, functional and structural) are recognized that do not depend upon age.

1.3. The role of figure: some hypotheses
Related to the issues mentioned in 1.1. 1 have stated the following hypotheses about the aspects of the
status of figures that may affect performances in geometrical setting:

= a figure is an autonomous object on which pupils can operate and reflect; it can simuitancously
represent complex systems of spatial relationships;

= a figure can represent complex resolution procedures; the temporal dimension of the procedures
represented is contracted; this means that pupils who master mental manipulation of figures are
expected to manage complex procedures better and more generally;

= pupils may perceive a figure and operate on it at different levels (material manipulation, measurement,
symbolic manipulation, ‘game of hypotheses’,...; see also Mesquita (1991)); these levels may be
simultancously present (a pupil may use, at the same time, measurement arguments or more abstract
relationships in order to discover or verify a property).

2, THE ORGANIZATION OF THE RESEARCH
The rescarch that is reported is not a large-scale systematic one; | have gathered a large amount of
protocols from 2 classes of grade 5 (about 40 pupils). These classes have experienced the Genova
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Group's Projeét since first grade. The materials 1 have analyzed are normal working materials (pupils’
copybooks, papers and so on) or assessment tests usually administered during the school year and
concern the following tasks:

= find the arca and the perimeter of a polygon (not necessarily regular nor convex) drawn on the paper;

= find the area of a region on a scale map (the pupils were given the mapona blank sheet);

= explain to some friend of yours how to fulfil the previous task.

For a general information on the Genova Group's Project see for example Boero (1989), Boero (1991) or

Ferrari (1991). The concepts of area and perimeter have been introduced during grade 5 according to the
following steps:

= discussion in the classroom of the meaning of words such as area, surface, extension in everyday-life;

= cutting (with scissors) or drawing on a squarcd sheet different shapes with the same extension,
comparison of extensions by superposition and so on;

= doubling or halving the extensions of triangles and rectangles;

= measurement of the extension of rectangles by counting of the squares and using different units;
= construction of an arca unit of one square meter,

= formula for the area of a rectangle;

= different ways to compare the extensions of plane surfaces: counting of squares, superposition,
transformation, formulas;

= boundary of a plane surface; perimeter as the measure of the boundary of a plane surface;

= comparison of the boundaries of a planc surface;

= change of units of area and length;

= comparison of strategics in problems of area and perimeter;

= formula for the area of a triangle (by means of material and graphic transformations); heights of a
triangle;

= measures with decimal fractions; change of decimal units;

= area of polygons (not necessarily regular nor convex) by (exact) covering with triangles;

= approximate area of geographic regions by approximate covering of a scale-map and balancing;

= formulas for the area of regular polygons (by means of graphic transformations) and of the circle.

The problem of the reliability of written reports related to the Genova Group's Project has been discussed
in Ferrari (1991). For a general discussion of this issue see Ericsson and Simon (1980).

Throughout the paper by ‘good problem-solvers’ 1 mean pupils who are able to give acceptable solutions
to most of the problems (cither contextualized or not) they are administered during the year, not regarding
too much the quality of the resolution processes or the reports. By *poor problem solvers’ I mean pupils
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Nevertheless, 1hese limitations do not seem to damage the skills at transformating the figure even
mentally and planaing complex strategies. Thore is also a number of pupils (about 20%) who manage to
transform the figure (for example by decomposing it, or including it in other figures), but cannot use their
constructions in order to solve a problem.

3.2, Figure and strategy
From a general analysis of the protocols concerning the approximaie covering of a scale-map of a region
with triangles or rectangles in order to estimate the area of the region, we have noticed three different
kinds of constructions:
S1. the strategy is built according to some previous

mental schema, without taking into account the

specificity of the figure, in spite of contrary

statements (for example, pupils who use only

rectangles to cover a scale-map of Great Britain,

or only triangles in order to cover a scale-map of

Portugal or Sardegna);

$2. the strategy is built according to some previous
mental schema which can be adapted to the
specific needs (for example, pupils who change
their strategy according to the map they want to
cover, or who use both rectangles and triangles
with the explicit purpose of reducing the
calculations or the errors);

§3. the resolution is built by means of graphic
operations without any strategy or schema
previously thought (for example, pupils who
cover the map with a large number of small
triangles drawn at random, or who do not take
into account the need for reducing the errors).
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who almost never are able to design some strategy to solve complex melcms and often meet with
difficulties even when solving simple probleius.

3. SOME FINDINGS

3.1 Figure as an object

Pupils succeed in perceiving a figure as an autonomous object only after a difficult process. At first they
perccive the figure as the record of sequence of the graphic operations they have petformed tc L.ild it.
They write, for example: "'/ change this triangle by pusting another one at the side; so it is now a rectangle
.. Only few pupils (less than 20%), in the first problems on triangles, scem to identify the figure as a
product of their constructions, equipped with relations, which does not entirely depend upon the graphic
operations performed. The clements of the drawing preserve the functions they have had in the graphic
construction or in the manipulation, and are not included in a system of relationships. The height of a
triangle is perceived (by about 90%) as “the thing that allows me 1o divide the drawing...” and the
operation of drawing it is regarded as a transformation of the figure (as it is a transformation of the
drawing). To the question “why the area of a triangle is b x hi2 and not b x (2" they (about 80%) give
answers based on calculations of counting of the square (“because b x  gives a wrong number...”). In
the successive problems, even if more complex, the figure as an object, with some relationships among it
elements seems to appear.

When searching for the area of a trapezium most pupils work
without any difficulty on the figure transformed by adding a
smali triangle on the left; this triangle (which allows pupils to
regard the trapezium as a part of a rectangle) loses its procedural
function of graphic construction and becomes a stable clement
of the new figure.

Some pupils (about 50%) begin to recognize some relationship among the components, such as the
congruence of the small triangles, even if only few (less than 25%) explicitly recognize that the sides are
pairwise equal.

Analogously, in the figure on the left, the operation of adding
the triangle on the left-upper part is regarded by more than 60%
of the sample as an operation on the trapezium, not on the whole
figure.

Moreover, many pupils state (about 70%) that the quadrilatera!
they have built at1he bottom is a rectangle, but very few use the
fact that the short sides are equal when calculating the area of the
external small triangles. Many of them (more than 50%)
measure either side and someone even finds different values.
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Pupils belonging to groups S1 or 2 seem to perform the graphic operations on the drawing according to
some figural schema previously thought; in the whole sequence they have given significantly better results
in tasks requiring mental transformations of figures.
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Asked to deal with the error in their approximation, the following behaviours have been noticed in the
first problems:

El. pupils who do not realize the need for estimating the error;

E2. pupils who deal with the problem from a geometrical point of view, and try to improve their
approximation by means of progressive refinements of the covering;

E3. pupils who deal with the problem from an arithmetical point of view and modify their covering
according to calculations previously made (explicitly or not).

In the following problems of the sequence almost all pupils adopt this last procedure: they mainly use

rectangles to approximate the area, and only few keep on using triangles; in the last problems no pupil

use more than three polygons to cover the region.

The task "write down to a friend of yours how to find out the area of a geographic region by the
approximate covering of a scale map, and to estimate the error” has provided some interesting data. All
pupils have obviously given descriptions steadily grounded on time and organized as sequences of
suggestions (or prescriptions) temporally structured by connectives such as ‘before’, ‘afterwards’ ‘next’
and 5o on; beyond this common feature, three different kinds of text may be recognized:

T1. pupils who reconstruct the procedure in a particular situation and time (about 20%); they use verbs
and connectives that put the stress on the reconstruction of their own experience ( “suppose we muist
find the area of Argénu‘na; now I draw two triangles here, I call this poins A and this B; now [ draw a
line here...”); all these pupils belong to the group $3 described above and their descriptions are
always incomplete; no pupil in this group is 2 good problem -solver;

T2. pupils who reconstruct the procedure in a particular time (“...now we draw,...and now we have
almost get it...) but do not r fer to any particular situation (about i5%); they use verbs and
connectives like T1 but the procedure is described in general; in this group have been found both
good and poor problem-solvers;

T3. pupils who reconstruct the procedure as a process with the temporal dimension but place it in an
abstract time (about 65%); they use connectives such as ‘before’, ‘after’ but never ‘now’ or ‘at
present’; in this group there are also the pupils who in the description of the procedure put some
stress on aspects different from the temporal structure of the steps, taking into account the ‘logical’
organization or some constraints involved in the problem-situation; also in this group there are both
good or poor problem-soivers.
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FINAL REMARKS

= Pupils’ representations of a figure are undoubtedly relevant related to the planning of a procedure; the

one described in T1 (which seems roughly correspond to the attitude called ‘figural® by Mesquita
(1991)) seems correlated to a low ability at mentally transformating the figure. Nevertheless, the
transition from a kind of representation to another is not clear-cut; it seems likely that a lot of pupils
femain quite long in a level similar to the one called *functional’ by Mesquita and connected with the
notion of ‘schéma’; the emergence of the ‘structural’ (or ‘algorithmic’) perception of the figure is
anyway difficult and contradictory;

the ability at mentally transforming figures and regarding them as objects seem to affect the ability at
representing and managing complex procedures, which become much simpler as far as figures may
embody sequences of operations and substantiaily reduce their temporal complexity; good problem-
solvers sometimes manage to go on even without it, but it seem crucial for weaker pupils, related to
their problem-solving performances in geometrical as well as in arithmetic setings;

pupils with a rigid (‘geographic’) perception of the figure meet with difficulties when asked to
reconstruct some procedure in a general position; nevertheless the opposition between the figure (with
jts supposed specificity) and the algorithm (with its supposed generality, see Mesquita (1991)) is not
entirely satisfactory; there are pupils who perceive algorithms in a close connection with time, and
when describing them they seem to run over the steps again in a sort of identification; among these
subjects there are also some very good problem-solvers; this way of perceiving algorithms does not
seem an intermediate level between the understanding ‘by examples’ and ‘structural’ understanding,
but a characteristic feature of a particular learning (and thinking) style, which does not seem to prevent
the achievement of high level of abstraction.

the trend of almost all pupils is to give simpler and simpler answers from the computational point of
view (using mainly rectangles, and often only one) is most likely a consequence of the too rapid
transition from area as a magnitude to area as a real number (see Douady and Perrin-Glorian (1989));
pupils’ behaviour becomes more and more similar to their behaviour in arithmetical problems (very few
alternative strategies, one strategy which spreads over the classroom, ...see Bondesan and Ferrari
(1991)); even the lack of distinction between area and perimeter (which is more frequent among pupils
wha cannot transform figures mentally) may be explained by similar arguments.

REFERENCES

Arsac, G.: 1989, ‘La construction du concept de figure chez les eleves de 12 ans’, Proceedings PME 13,

vol.1, 85-92.

Boero, P.: (1989), ‘Mathematical literacy for all: experiences and problems’, Proceedings PME 13, -

vol.1, 62-76.

Boero, P.: (1991), *The crucial role of semantic fields in the development of problem-solving skills’,

Q

Proceedings of the NATO Seminar on Problem-Solving and Information Technology. Springer-
Verlag (in press).

248

RIC

Aruitoxt provided by Eic:




L L UAR BN

E

1-224

Bondesan, M.G. and Ferrari, P.1.: 1991, ‘The active comparison of strategies in problem-solving: an
exploratory study’, Proceedings PME 15, vol.1, 168-175.

Caron-Pargue, J.: 1981, '‘Quelques aspects de 1a manipulation - manipulation materielle et manipulation
symbolique’, Recherches en Didactique des Mathématiques, 2/3, 5-35.

Dorfler, W: 1991, ‘Meaning: image schemata and protocols’, Proceedings PME 15, vol.1, 17-32.

Douady, R.: 1986, ‘Jeux de cadres et dialectique outil-objet’, Recherches en Didactique des
Mahématiques, 7/2, 5-31.

Douady, R. and Perrin-Glorian, M.J.: 1989, ‘Un processus d'gpprentissage du concept d'aire de surface
plane’, Educational Studies in Mathematics, 20, 387-424.

Dreyfus, T.: 1991, ‘On the status of visual reasoning in mathematics and mathematics education’,
Proceedings PME 15, vol.1, 33-48.

Ericsson, K.A. and Simon, H.A.: (1980), ‘Verbal reports as data’, Psychological Review, vol.87, 215-
251.

Ferrari, P.L.:1991, *Aspects of hypothetical reasoning in problem-solving', Proceedings of the NATO
Seminar on Problem-Solving and Information Technology, Springer-Verlag (in press).

Fischbein, E.: 1987, Intuition in Science and Mathematics, Dordrecht, Reidel.

Johnson-Laird, P.N.: (1975), ‘Models of reasoning’, in Reasoning: representation and process in
children and adults, R.J.Falmagne and N.J.Hillsdale eds., Lawrence Erlbaum ass..

Johsua, M.A. and Johsua, S.: 1987, ‘Les fonctions didactiques de I'expérimental dans I'cinsegnement
scientifique’, Recherches en Didactique des Mathématiques, 8/3., 231-266

Laborde, C., 1988, ‘L'cinsegnement de la géométrie en tant que terrain d'exploration de phénoménes
didactiques’, Recherches en Didactique des Mathématiques, 9.3, 337-364.

Mariotti, M.A.:1991, ‘Age variant and invariant elements in the solution of unfolding problems’,
Proceedings PME IS, vol.2, 389-396.

Matos, J.M.:1991, *‘Cognitive Models in Geometry Leaming’, Proceedings of the NATO Seminar on
Problem-Solving and Information Téchnology, Springer-Verlag (in press).

Mesquita, A.L.:1989, ‘Sur une situation d'éveil a la déduction en géométrie’, Educational Studies in
Mathematics, 20, 55-77.

Mesquita, A.L.:1990, ‘L'influence des aspects figuratifs dans le raisonnement des eleves en géométrie’,
Proceedings PME 14, vol.2, 291-296.

Mesquita, A.L.: 1991, ‘La construction algorithmique: niveaux ou stades?’, Proceedings PME 15, vol.3,
1-8.

Parzysz, B.:1988, ‘““Knowing” vs “sceing”. Problems of the plane representation of space geometry
figures’, Educational Studies in Mathematics, 19, 79-92.

Presmeg, N.C.:1986, * Visualization in High School mathematics’, For the Learning of Mathematics, 6.3,
42-46.

Rogalski, J.: (1982), ‘Acquisition de notions relatives a la dimensionalité des mesures spatiales
(longueur, surface)’, Recherches en Didactique des Mathématiques, 3/3, 343-396.

Strisser, R. and Capponi, B: 1991, ‘Drawing - Computer Model - Figure. Case studies in student's use
of geometry-software’, Proceedings of PME XV, vol.3, 302-309.

O

RIC 249

Aruitoxt provided by Eic:




1-225

A SEQUENCE OF PROPORTIONALITY PROBLEMS: AN EXPLORATORY STUDY
R.Ganuti, .M.A. -CN.R..Genova: P. Boero, Dipantimento Matematica l}niversitfa. Genova
The report concems an exploratory study performed about a sequence of 6 propoitionality problems
proposed in two classes by the same teacher over a period of about ten months. The problems
concem different settings (geometrical setting and, afier, arithmetical setting) and difYerent coniexts .
The purpose of the study was to explore the transition to a multiplicative model , the conditions

which may enhance itand the difficulties connected with the transfer of a model costructed in the
geometrical setting to an arithmetical one .

[.Introduction
The studies and surveys of the past decade conceminig problem-solving have posed the question of the relationship
between "laboratory” rescarch on problem-solving and the study of the possible implications for teaching (in
general, see Lester & Charles, 1991 as regards, in particular, proportionality problems, see Karplus &C.,1983;
Tourniaire and Pulos, 1985; Grugnetti, 1991). We believe that this is a relevant question, as the research findings
on proportionality problem solving do not seem in the least to have affected the most widespread teaching
methods {consisting, in Italy and other countries, of training students to mechanically apply the A:B=C:X scheme).
This is an exploratory study of 7 teaching situations presented in two classes by the same teacher over a period of
approximately 10 months. These teaching situations concemn "paper and pencil explanation missing valucs
_ proportion problems” (see Tourniaire and Pulos, 1985). The study invoives the complete knowledge by the
teacher-rescarcher-observer of the teaching activities carried out during the whole period considered. For this
reason, we believe that it may provide reliable elements on which to base further studies concerning the
"engineering of teaching” relevant to proportional reasoning and on the leaming processes involved, even
considering the limits ensuing from the small number of students and from the singularity of the experience.
This study is characterized by the following aspects:
- The first five situations concem geometrical proportionality problems referring to physical situations
(sunshadows) evoked or directly experienced in real life (at first through problems without explicit numerical
data). These problems, requiring a physical knowledge in addition to their proportional content. pemmit us to view
separately, to a certain extent, students’ difficulties and behaviours due to numerical values from their mastery of
the relationships between the physical variables (see Harel & C, 1991). This choice appears to be significant in
relation to the hypothesis that working with numerical values and the meanings of division may constitute in itself
an element of difficulty. The problems posed permit, in particular, an exploration of the transition from the
qualitative concepe of dependence between proportional quantities ("'if one grows then the other grows, too”) to the
quantitative concept ("if one goes into the other a certain number of times, then the other, t0o...")
The other two situations involve a change of context, the first one (body proportions; see Hoyles & C,1989,1991 )
still in the physical-geometrical setting (Douady, 1985); the second in the asithmetical setting. These problems were
proposed to explore the difficulties encountered by students in transferring, to more or less similar contexts, the
models established in the first context. It should be noted that, in this sequence, the work-in the geometrical setting
precedes that in the arithmetical setting, and that numerical data never suggest easy, exact proportionality
relationships (from this point of view, these problems may be classified as "difficuit” , according to Han, 1981)
In this study our focus ha been, above all. to the short- and long-term effect of particular teaching choices
on the emergence and evolution of problem-solving strategies, and to the nature of such cvolution. In panticular, we
have studied: 1) the effects of the presence of a real physical-gcometrical situation, initially, and over a long period.
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experienced directly, referred to as an “experience field"( Boero, 1989) that provides meaning and consistency to
the problem posed (determination of a height that cannot be directly measured); 2) effects of initially proposing
problem situations without explicit numerical data; 3) the role of classroom discussion and of the active comparison
of strategies (Ferrari, 1991) in overcoming the additive model and realising a conscious transition to the
multiplicative model in the geometrical setting:4) the steps involved in this transition: and 5) the problems inherent
in the subsequent transfer of the multiplicative model to other contexts and settings (especially to the arithmetical
setting).

In our findings we have observed (see par.5) that real physical-geometrical situations directly experienced are not.
in themselves. able to lead students (at the age of 1 1) to constructing proportionality relationships between the
geometrical-physical variables involved, but that {if appropriately handled by the teacher) they may have an
important role for many students in constructing such relationships(cfr. Karplus & C., 1983). However. a
complete mastery of the multiplicative model - transferable to other geometrical contexts and well established over
time - seems to require also the mastery of the link between geometrical proportionality relationships and
arithietical operations on the numerical values that represent the measurements.

Anissue that we deem important and that remains an open question is the role of additive-type rcasdning inthe
transition to multiplicative strategies. This problem appears to be more complex and. in pant, different from what
has been highlighted so far by the rescarch on proportional reasoning. Another important question concems the
interpretation of the difficulties that students have in transferting strategies outside the geometrical setting.

2.Mecthod

The study examined 37 students. of Grades 6 and 7, most of whom (30 out of 37) were between 11 and 12 years
old at the beginning of the study. They were enrolled in two classes, of average level. of a school in Carpi (North
ltaly). The study was conducted from March. 1991 (Grade 6) to January, 1992 (Grade 7). It has also been possible
to compare some of the data resulting from the observation of these two classes with data obtained from other
classes of the same grade. All the classes we are considering are involved in the project of the Genoa Group for
an intcgrated teaching of mathcmatics with the experimental sciences in the comprehensive school . The foilowing
characteristics of the project are relevant to this study :systematic work in “experience fields” (Boero, 1989) inthe
construction of mathematical concepts and skills as "knowledge tools”; systematic recomse to verbalization in
problem.solving, and in comparing problem-solving strategies : extended work on the (open) applied mathematical
problems. including some problems in which numerical values are not made explicit:altemation between periods of
individual work (¢.g. during the resolution of mathematical problems) and of class discussions (¢.g. during the
comparison and cvaluation of problem-solving strategies proposed in the classroom); systematic exclusion of the
“automation” of the solution to proportionality problems through the adoption of such models as A:B=C:X.

The observations concem: individual solution of open questions, some asked as “story problems™ (as in Situations
5.6.7): recorded discussions (in particular in Situations | and 2); reports by individual students (sce Sit.2 and 4).

1-226

3. The sequence of teaching situations

These were the sole situations in which the two classes tackled the problem of the height of an object that cannot be
tncasured directly. and of an additional situation of arithmetical type. During the period of the study (from March
1991 to January 1992) no other proportionality problems were posed,

El{fC‘ 251

Aruitoxt provided by Eic:




E

K K =il 7 A an Ousll (06 iviaitiy

students go on a one-hour outing to observe sun ws. During the outing the teacher poses the problem of
determining the height of a street-lamp (almost 4 meters), whose shadow is seen on the ground. Near the street-
lamp the students observe various shadows cast by objects of accessible height. in particular by fence-posts. just
over onc metre high; the teacher brings these shadows to the students’ attention. This is a verbal arithmetical
problem, without explicit numerical data and with the presence of a physical - geometrical reference that pemmits
the students to tackle the problem without worrying about the actual calculation of the numerical resuit.

This problem situation falls within the teaching unit devoted to the phenomenon of sun shadows, which constitutes
one of the most important parts. both in terms of content and of the time invested, of the Mathematics and Science
activities of the project for Grade 6. In particular. the problem is posed after some observation and discussion of
the “fan” of shadows during the day. During these activities, the students realize, among other things. that “when
the sun is high in the sky. shadows are short; when it is low, shadows are long”. and that “longer objects cast. at
the same point in time, longer shadows”.

In the process of “rationalization™ of the shadows phenomenon, this problem situation represents the introduction
to its quantitative analysis. If. with qualitative observation, a crisis was triggered with the model “strong sun - long
shadow” that most of the students hold, with this situation we move to the quantitative aspect of the relationship
“longer object - longer shadow™.

Situation 2: the problem of the height of the street-lamp, in the classroom (the day after the outing):
*On 4 March. between 11 AM and 1 PM we went out to determine the height of a street-lamp. Recount what
happened and find a way to determine the height of the street-lamp. " (individual work) .

Later. the teacher moves to the analysis and “active comparison™{ Ferrari, 1991) of the solutions produced:she
selects two of the solutions produced by the students, one of multiplicative type {correct) and the other of additive
. type (incorrect). and asks the students first to determine which of these solutions their own strategy followed, then
to follow the other strategy. and finally to evaluate both of them. Only after these activities are completed. are the
measurements of the shadows and of the fence-post used to verify the different results produced by the two
strategies and discuss in depth their correctness. Situation 2 required over three hours of work.
The work on shadows continues, with activities concerning parallelism and the movement of shadows on the
ground (angles. and so on).

ituation 3: t of the two nails (as ap evaluation test , a few days later

“The drawing represents, ffom above, the shadows cast at 11 AM and at 12 noon in Genoa by an 8-cm nail placed
at position A. At position B there is another nail. 6 cm in fength. Do you think you can draw precisely the shadows
cast by the nail at position B, determining their lengths and positions? Explain your reasoning.”

A
FIG. 1 (here reduced in scale) \
B

‘The problem was posed to explore the difficultics the students experienced because of the presence of numerical
data. and the text evoked the situation which they had previously expericnced. The “a priori” analysis of the
problem identified as additional difficulties thosc ensuing from the presence of a decimal ratio and. above all. from
the fact that the unknown fength was less than the known length.

o 252

RIC

Aruitoxt provided by Eic:




1-228

The work on shadows continues, with activitics concemning the (angular) height of the sun in the sky. the
movement of the sun in the sky, andsoon .

tion 4: indivi t the wi
During the summer holidays the students were asked to find and to reconstruct the main stages of the teaching unit
devoted to the phenomenon of sun shadows (February - June), making explicit the knowtedge gained and the
difficulties encountered. so as to evaluate -in particular- whether the students are able to comrectly “reconstruct™ the
experience of the street-lamp and the strategies that emerged from the discussion.

ituatjon S: of the height of the clock tower of i 91
*Yesterday I was in the square at Carpi and met one of the masons that are restoring Pio Castle. While we were
talking he told me that the documents conceming the buikding of the castle tower (the clock rawer) had been lost.
Then. a little worried. he told me: I have to call a crane, but it would be better to know io what height it must
reach, to enable us to work on the clock tower.” "If you want to know the approximate height of the tower.
without measuring it directly, you can measure its shadow: that is much easier to measure! But you must also know
the lehgth of something clse and of the shadow it casts. at the same moment” I told him."Really?." he asked me.
astonished, “let’s try it, then!™ We started to take measurements and chose. for comparison. my height. These are
the measurements found:teacher's height: 1.60 m; length of the teacher's shadow: 2.08 m; length of the shadow
cast by the tower: 32.5m.

Can you detérmine the height of the clock tower? Explain and give the reasons for the method used.

The problem was proposcd to verify the medium-term persistence of the mastery of the multiplicative model ina
problem situation given in the text. very similar to the "street-lamp problem”, but with numerical data made explicit.
this time.

Situation 6: the Jem of the height of the statue (December 1991, grade VIl

“A recent archacological excavation in Calabria found the remains of a Greek statue, probably of a warmior. that had
stood in front of a temple. The only intact part of the statue is 2 foot. approximately 76 cm in length. We would like
10 know approximately how zall the statue was. We know the dimensions of Michelangelo's David. which are: foot

length 54 cm.height of the statue 432 cm.
Try to find how tall the statue was. Explain your hypotheses and your method”.

The problem was proposed in order to verify the possibility of transferring strategies of the multiplicative type to
geometrical situations that are partially different from previous ones. due to the different context. The elements of
diversity essentially consist in the fact that they are proportional parts of the same “object”, and not length
relationships between different “objects” (object that casts a shadow. and its shadow). as in the previous cases.
Moreover. the context of the problem may bring to mind a “natural” idea of proportionality to which the students
may refer (see also Hoyles, Noss. Sutherland. 1989 and 1991).

Situation 7: the problem of the iam (Yanuary 1992, during the four-monthly evaluation* - Grade V11

“Last year Mrs. Pina made plum jam. She had 13 kg of plums. from which she obtained 5.5 kg of jam.

This year she wants to obtain 8 kg of jam. What quantity of plums does she need?
Explain and give the reasons for your procedure”.

The problem was proposed to verify the tra isferability of multiplicative strategics to arithmetical problems without
any immediate physical-gcometric reference. Both the context of reference of the problem and the nature of the
variables concemed are thus modified with respect to the previous problems.

Situations 3. 4, 5, 6 were proposed without any sitbsequent comment and explicit evaluation of the work done by
the students. After Situation 7, abproximatcly 6 hours of work were carried out (altemating between individuat
work situations and discussions). that lead the students to think (under their teacher's guidance ) about the nature of
the problemis proposcd. so as to recognize cotnmon aspects and possible common problem-solving strategics.

Q
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4. Analysis of the students’ behaviour and evolution of their strategics
This table summarizes the results of the analysis performed on students’ strategies:

MRS | Sit. 1 |Sit. 2 Si.3 | Sit.4 | Sit.5 | Si.6 | St 7

I Ma [Ma D Ma RV M ™M Mu
A D A K M M A

3 A A A A A
3 A D Ma RV M ™M A
3 A B M M *
(4 B B R A M A
T A A A A A
3 A D[ Mb RV M M Mu
) A D[ Mb R B A Mb
10 Ma D| Ma RV ™ M Mb
1 A D A M M A
V] A D A R M M Mu
K] A Mb RV ™M M A
Y | A A B A A
3 Ma D| Ma RV Ma M Mb
11 A A R A M *
17 A A A A *
¥ A D| Mb R ™ A A
5 A MEB 33 A A A
20 A D MB R M A Mu
b]] A D[ Mb R M A A
2 B B B B A
3 A D A M M A
pL} M D| MB RV M M Mb
25 B Mb R A B Mu
26 B B A B ™Mb
A A A M A

a |Ma D Y RV M M B

) B B A M A
30 A A R A A A
ki A M3 33 A A A
32 A M B A A
k] M D Ma RV M M A
k? | A B K A A A
—33 A A R A B A
k{3 A MB R M A A
37 A D1 ™Mb A A A

A = additive : M= multiplicative complete: Ma=
building up (Hart. 1981): Mu = reduction to unity; Be= blockage: M-B=
then blockage: : R V= remembers and verbalizes exaustively: R= only

two strategics ; * = absent
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4a. Further information about students’ strategics

(i) In Sit.2 , only 6 students proposed a correct strategy: purely multiplicative (M).or partially additive (Ma)-
probably influenced by the strategies proposed verbally by their classmate in Sit. 1.In Sit. 3, notwithstanding a more
difficult problem than the previous one, 19 students seemed to have a clear idea of the proportionality relationship
between the quantities.In other classes, in which no active comparison and evaluation of the strategies for* the
“problem of the street-lamp” took place, less than 20% of students produced proportional reasoning in the
“problem of the two nails"”.

(i) In Sit.3, the analysis of the multiplicative strategies, complete or not. clarifies the nature of the difficulties
foreseen in the “a priori” analysis: 7 students, (M) or (Ma), solved the problem correctly and completely; 7 students
(Mb) clashed with the decimal value of the shadow/nail ratio (19:8=2.3). They calculated it, made explicit that it
was “the times that the nail goes into its shadow at 11 AM". but did not identify the arithmetical procedure to be
used. To solve the problem, they give “a bit more than twice" the length of nail B (for instance 6+6+1.5. or
6+6+2). This type of strategy is similar to that described by Hart (1981) and Lin (1989) called the “building up”
method.Five students (M-B) followed again the strategy of the “street-lamp™ problem and calculated the ratio
between the two nails (8:6=1,3). made it explicit that this was "how many times nail B goes into nail A", after
which they did not manage to correctly use this ratio. They would need to use the inverse scalar operator
(Vergnaud, 198 1).but the students did not succeed to give a meaning to "divide fora certain number of times™.

(iii) In Situation 7 only 10 students solved the problem correctly: S by using a strategy of “reduction to the unit*
(Mu), calculating the weight of the plums needed to make 1 kg of jam (no strategy of this kind was performed
before) : and 5 by "building up” strategies (Mb)

(iv ) Ananalysis following the evolution in time of the students’ strategies in the geometrical setting is particularly
interesting:for six students the multiplicative model is present from the start {in Situation 2) and remains well
established over time; for 8 students there is a progress, without lapses, from the additive model used at first to the
multiplicative model. All these students (6+8) were able to recognize the model adopted for the solution of the first
problem, and made explicit in this occasion. or later, the reasons why the other model was not valid.For ten
students the progress from the additive model to the multiplicative model does not appear to be stcady . Among
these students. 5 had not been able to recognize with clarity, during the comparison of the strategics.the one they
had used.neither had they been able to explain why the additive model“does not work™. For seven students that
had initially adopted an additive model.no progress is found:they were not able to recognize their strategy as
analogous to the strategy sclected by the teacher.and so much the less® to acknowledge that it was not correct.

(v)It may also be noticed that all the problems posed would permit to proceed both with strategies of the “"Between
or scafar ratio” type and with strategies of the “Within or function ratio” type (according to Vergnaud, 1981- scc
also Katplus & C..1983). The choice between one and the other seems to depend on the context and on the relative
size of the objects to be considered : in Situation 5 all the students except for 2 caiculated the ratio between two
shadows . while in Situation 6 the problem-solving strategies denote a different perception of the problem
situation: 12 students out of 14 that had correctly s slved also the previous problem pass from the evaluation of how
many times a shadows goes intv another to the evaluation of the ratio between the statuc’s foot and its height, while
only one pupil operates the opposite change. and a second one applies the same type of strategy (o both problems .
{vi) An interesting fact emerged in relation to the evolution of strategics: several students combined (Ma) additive
and multiplicative (of “'scalar” and “function” type Jconsiderations, in a step that may be considered as a transition
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to a coherent and completely multiplicative stzategy. In the situation of the observation of shadows, the two

students that identified a correct strategy, explained it to their classmates as follows:

“There is a difference between  the fence-post and its shadow as between the street lamp and its shadow, but in the
street-lamp case the difference’ must be longer, since the strect lamp is fonger. To make the street lamp equal to the
shadow that it casts, 1 must take away a greater difference than in the post's case. I sce approximately how many
times the post goes’ into the street lamp. I take away from the shadow of the street Iamp the difference between the

postand its shadow as many times as the post goes into the street lamp, so the shadow and the street lamp are equal
and I cun measure the shadow.™

This process is probably foroed by the actual experience in which the students observe the "more™ that makes the

shadow different from the object that casts it. In Situation 2 this strategy is changed by two students, who replace it

with 2 fully multiplicative one. In Situation 3, on the other hand, where the conflict with the arithmetical aspects of
the problem is strong (the length to be determined is less than the given one), the correct strategies  were of the
type described above (except for two other students). In Situations 5 and 6 the correct strategies are all of the
completely multiplicative type, save fos one (in Sit. 5).

5.Discussion

The analysis that we have carried out shows how problem situations considered as such by the sudents. and
relevant to a context in which the gecometrical-physical aspect experienced directly is paramount, may be used by
the teacher to motivate students’ transition from an additive model toa multiplicative one.In this respect the
“experience field” of the sun shadows, according to the analysis of the protocols produced, seems to have certain
intrinsic characteristics appropriate to “force” the construction and the development of the students’ strategies: the

sun is the “cause” of the shadows: the relationship between the object that casts the shadow and the shadow itself
cannot be modified by the observer. The system comprising the sun, the objects that casts the shadows and the
shadows themselves is very "rigid™; it evokes “contemporaneous” and "same-type™ relationships between the
heights of the objects and the lengths of the shadows cast by them, and therefore suggests the existence of the ratio
as “invariant” (compare also Karplus&C.,1983). This aspect is particularly clear in several texts produced by the

stdents in Situation 2:

"The street lamp is much bigger than the fenve-post, and its shadow must be much longer than the fence-posts.
The difference between shadow and fence-post cannot be the same because the sun does not play favourites! Then I
should know how many times the street Jamp is higher than the fence-post: I have the shadows and I can know it
dividing the shadow of the street lamp by the shadow of the fence-post”.

“Everything has its own shadow and the difference between object and shadow changes from object to object. |
cannot leave from the street-lamp’s shadow the difference fence-post shadow because if | change the fence-post,
for exampie, if I take amuch smaller fence-post, this difference changes, and then also the height of the street-lamp
changes. and this is impossible”.

The lack of explicit numerical data in the first two situations scems to have important effects, particularly as regards

the necessity to graphically represent the problem-solving strategies, with positive consequences on the
development of the reasoning based on "how many times.

gocs into ..."In this regard very cffective representations ) \ 2.5
were those given on the right, that were later taken up K\
also by students other than those that had produced them, &_ga . B-

The study reinforces the hypothesis ( Kuchemann. 1989) that the presence of numerical values superimposes
specific difficulties inherent in the arithmetical processing of the data to the difficulties inherent in the
conceptualization of proportionality as a ratio between quantities. In particular, a fact that stands out is that the
“how many times a shadow gocs™ into another, or a fence-post into its shadow.does not correspond to the: fact that
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the number of times may be determined caloulating a division between the measurements. All this is evident when
the problem is to determine the height of an object that is smaller than the object that casts the shadow(Sit.3)X(see ii).
The role of social activities in overcoming the additive model in the geometrical problems seems to be very
important . In particular, the active comparison and the evaluation of strategies permit to overcome the limits
inherent in the pure reference to “vision™:in effect, even in the presence of other students that suggest recourse to
multipticative models and of a direct experience of "vision” of the fence-post and of the sireet lamp, only 6 smdents
in Situation 2 produced a coherent and correct problem-solving strategy (while 26 propose a coherent additive
model!). The situation improves considerably when the problem situation and the problem-solving strategies are
represented and argued, and the students have to follow and evaluate the reasoning of their classmates. The
reasoning and representations of the "best” students “mediate” the transition to more appropriate strategies.(see ii).
The analysis also brings to light various probiems:
- (see iii)For most students there is no transfer of the multiplicative strategy acquired in the geometrical setting to
the arithmetical setting of Situation 7, and, when a transfer seems to take place, there is a change of strategy. This
may be due, beside than to the lack of correspondence between arithmetical operations of multiplication and
division and meanings of proportionality between quantities, also to precise characteristics of the "physical-
geometrical” situation. In particular, in the "arithmetical” problem the reasons that induce some students to carry out
the transition from the qualitative model "to grow with...” to the quantitative mode! of “equality of the number of
times that...” fail (as may be noticed in the protocols mentioned before with reference to Situation 2, there appear
extrinsic reasons of “balance” with respect to the mathematical structure of the problem and linked to the particular
situation observed). Another failure that occurs is that of the direct perception of the simultaneity of the
relationships between the elements compared. Another diversity is linked to the difficulty to produce appropriate
extemal representations (like those produced for geometrical problems).
- Role of the additive strategies in overcoming the additive model and in approaching the multiplicative model .
Although numerically limited and not long-lasting, some cases of interweaving (supported by external
representations) between additive considerations and multiplicative considerations such as those exemplified at the
end of paragraph 4 (see vi), suggest the idea (to be analysed on a wider scale and with a more appropriate
methodology) that the multiplicative model in the geometrical setting may, at least in centain instances, result from
an operation of “contraction” of additive reasoning, that would not thus constitute only an intermediate stage linked
to the mental ripening of the subject , but a fundamental clement of the transition to multiplicative strategies.
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DISCREPANCIES BETWEEN CONCEPTIONS AND PRACTICE: A CASE STUDY
Linda Ganuso
College du Vieux Montréal

Recent work suggests that teachers’ conceptions of the nature of
mathematics, its teaching and learning, are not always consistent with their practice.
This study is concerned with the reasons for these discrepancies. Inspired by
Schon's Reflective Praciitioner (1983), the author examined her own teaching
practice while experimenting with a problem-solving teaching approach with college
students. Tape-recordings of the teacher in class and a teacher-journal provide the
basis for qualitative analysis which was conducted together with a second researcher.
Partial results suggest thut although class preparation follows teacher-conceptions, in
class, spontaneous reactions differ. Subsequent analysis will look for explanations of
these differences. On the basis of these results, the possibility of using reflection as
a way of improvirg consistency between in-service teachers’ conceptions and their
practice will be examined.

(This paper will be presented in English at the conference).

Le probi¢me

Les résuliats de recherches en didactique n'atteindront la classe de mathématiques
que si 'on passe également par l'un des principaux intervenants du systeme didactique,
l'enseignant. C'est ce dernier qui en bout de ligne controle les choix didactiques et qui dans
]a mesure o il est maitre de ses actes d'enseignement définit le cadre d'apprentissage de
l'élave. Or ces choix, c'est I'avis de nombreux auteurs (Clarke, Peterson, 1985; Vergnaud,
1988; Ernest, 1989; Thompson, 1984), sont commandés par les conceptions de I'enseignant
au sujet des mathématiques, de leur apprentissage et de leur enseignement.

Certaines études (Cooney, 1985, Thompson, 1984, Kaplan, 1991) laissent voir-que les
conceptions telles que déclarées par l'enseignant ne se transmettent pas toujours dans la
pratique. La possibilité de prendre conscience de ses conceptions et de réfléchir sur sa
pratique amenerait l'enseignant 3 améliorer la cohérence entre les conceptions et la
pratique. Plusieurs interventions visant la formation des maitres particulierement, les
maitres en service ont expérimenté divers moyens pour susciter cette réflexion mais, la
plupart des approches utilisées bien que fructueuses, demandent une organisation
extérieure et ne se transportent pas nécessairement dans le quotidien des enseignants.

Nous avons donc voulu savoir

-Jusqu'a quel point la pratique reflete les conceptions exprimées?

-Comment expliquer les écarts, les divergences?
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Et par la suite voir

-Quels moyens peut-on suggérer aux enseignants pour organiser leur réflexion en
vue d'améliorer la cohérence entre leurs conceptions et leur pratique?

Notre objectif était d'ébaucher une méthode d'auto-analyse des actes
d'enseignement qui permettrait & I'enseignant, de prendre conscience de ses conceptions et
d'observer jusqu'a quel point sa pratique est cohérente avec ses conceptions.

Les hypothéses
Au point de départ, nos lectures et notre expérience d'enseignante nous

suggéraient certaines réponses que nous avons résumé en trois hypothéses que nous
avons voulu vérifier.

H1) Certaines réalités comme les contraintes environnementales, les réactions
des éléves ou encore, les modes de comportements habituels ou anciens
sont plus fortes que les conceptions avouées et génent la réalisation de
l'enseignement tel que précongu.

H2). 1l est possible pour un enseignant d'analyser sa pratique.

H3) Le fait de réfléchir sur la pratique de fagon quotidienne par la rédaction
d'un journal ameéne des modifications 2 la pratique et aux conceptions de
sorte A tendre vers un équilibre entre les deux.

L'approche méthodologique choisie: sujet-chercheur
L'exploration de ce probléme demandait une approche méthodologique originale.
C'est l'interprétation des conceptions qui d'abord était questionnée. Cooney (1985) avait
suggéré que des différences d'interprétations entre le chercheur et l'enseignant était peut-
étre ce qui expliquait les divergences entre les conceptions et la pratique. En choisissant
d'étre le sujet et le chercheur, nous pouvions interpréter sans biais nos conceptions. Nous
les avons établies A partir d'écrits préalables a I'expérimentation.
De plus, le questionnement et l'observation par un tiers n'est pas sans influences.
Nous avons voulu limiter autant que possible ces interférences dues au cadre de recherche
pour mieux cerner les interférences entre les conceptions et la pratique. Nous avons
remplacé la présence d'un observateur extérieur par l'utilisation d'enregistrements
sonores et la rédaction d'un journal de bord. La lecture du journal de bord pourrait en
plus, faire apparaitre les modifications de nos conceptions en cours d'expérimentation.
Pour assurer la validité de la recherche, nous avons fait appel a la collaboration de
d'autres personnes a différentes étapes du travail d'analyse. Une deuxiéme chercheure a
travaillé en paralléle avec nous. Ayant pris connaissance de nos conceptions par la lecture
de nos écrits préalables, ayant écouté et codé les enregistrements de l'expérimentation, elle
pouvait corroborer notre analyse aux diverses étapes. En dernier lieu, deux autres
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personnes, l'une chercheure et l'autre enseignante ont vérifié si nos interprétations
étaient soutenues par les données fournies. Nous étions de notre cdté assurée d'une
bonne connaissance du milieu et d'une présence suffisamment longue sur le terrain.

L'expérimentation

L'expérimentation avait été précédée d'une exploration et d'une pre-
expérimentation. L'exploration a permis de mieux cerner le contexte de notre
expérimentation. Les éldves étaient des éleves ayant eu des difficultés avec les
mathématiques auparavant, c'était en fait leur seul point commun. Les classes étaient
non-homogénes quant I'dge, la provenance, la habileté d'apprentissage, les acquis et la
motivation. Le cours devait combler les lacunes de ces éléves en passant 2 travers ce que
l'on convient d'appeler les mathématiques de base: algébre, fonctions, trigonométrie.

Forte des connaissances acquises lors de cette exploration, nous avons mis sur pied
une approche pédagogique suivant nos conceptions de l'enseignement des
mathématiques. Cette approche misant sur la participation active des éléves demandait la
création de matériel didactique particulier. La période de pré-expérimentation nous donné
l'occasion de construire ce matériel et de le tester auprés des éleves (Gattuso, Lacasse, 1989).

Nous avons pu par la suite passer 2 I'expérimentation elle-méme. La clientle
étudiante était sensiblement la méme et le matériel didactique utilisé a la
pré-expérimentation a été repris aprés de légers réajustements. Pour les besoins de la
recherche, nous avons ajouté l'enregistrements sonores des cours et la rédaction d'un
journal de bord.

L'analyse

L'analyse s'est déroulée en plusieurs étapes dont nous tragons ici les grandes
lignes. 1l a fallu d'abord établir nos conceptions afin de pouvoir construire une grille
d’analyse. C'est ce que nous avons fait en utilisant comme source de données certaines de
nos publications antérieures a I'expérimentation. '

Nous sommes ensuite passée 2 l'analyse de la pratique en fonction des conceptions
établies dans la grille. A cette étape, les données étaient tirées des enregistrements sonores
et du journal de bord. Aprés le découpage et le codage des données, nous avons pu faire
une compilation qui nous a menée aux résultats.

Nous avons par la suite examiné les réflexions notées en cours d'analyse afin de
examiner si les conceptions se modifiaient en cours d'expérience.

En dernier lieu, nous avons regardé de fagon critique le cheminement parcouru

pour en tirer un cadre de travail que nous suggérons aux enseignants pour organiser leur
réflexion sur leur pratique.
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Conclusions

Nous voulions en premier lieu mieux connaitre les liens entre les conceptions et
la pratique d'un enseignant de mathématiques et par la suite voir s'il était possible de
mettre en place de fagon profitable cette réflexion sur la pratique. Si nous regardons nos
hypothéses de départ, nous avions prévu que certaines interférences dues a
'environnement, aux éléves et aux habitudes de l'enseignant interviendraient dans la
réalisation de nos conceptions. Nous pensions également qu'il était possible pour une
enseignant d'analyser sa pratique et que la réflexion quotidienne améliorerait la cohérence
entre les conceptions et la pratique. Les conclusions auxquelles nous sommes arrivées
nous amenent A préciser ces hypotheses.

Des conceptions a la pratique

Ce travail nous a permis de faire un pas en avant dans la compréhension des
éléments qui interviennent dans la mise en pratique des conceptions dans le cadre de
I'enseignement des mathématiques.

Les résultats de I'analyse ont montré qu'il y avait une trés bonne cohérence (82%)
entre les conceptions telles qu'exprimées au départ et les actes d'enseignement observés.
Ce résultat est sans signification si nous ne tenons pas compte des particularités de notre
expérimentation. Nous avions voulu au point de départ alléger autant que possible les
contraintes extérieures qui selon les auteurs consultés seraient des causes de discordances.
La grande liberté dont nous jouissions au moment de I'expérimentation a surement joué.
Nous avions pu définir l'approche pédagogique, choisir jusqu'a un certain point le
contenu du cours et construire le matériel didactique en fonction de nos conceptions au
sujet de l'enseignement des mathématiques. Notre expérience en enseignement et notre
formation premitre en mathématiques nous garantissaient l'assurance nécessaire pour
entreprendre une telle innovation. Mais il reste que certains obstacles demeurent.
Certains sont exogenes et d'autres plus personnels 2 I'enseignant sont endogenes.

Nous avons pu voir que certains éléments dépendant de l'organisation scolaire
génent. Les plages horaires extrémes, des locaux trop petits en sont des exemples. Le
matériel didactique et le contenu mathématique am2nent aussi quelques difficultés. Les
protocoles d'activités comportaient encore certaines ambiguités et le contenu
mathématique était parfois trop simple ou trop difficile pour les éleves. C'était alors
difficile d'aller dans le sens prévu, c'est-a-dire, conduire les éléves & explorer les concepts et
A déduire les connaissances a partir de leurs résultats.

D'autres entraves se trouvent chez les éléves eux-mémes. C'est surtout leur
manque de préparation au niveau des mathématiques et de la méthode de travail en
général qui a contrarié la réalisation des conceptions qui visaient plus 2 soutenir la
recherche de solutinns qu'a expliquer comment faire le probleme. Le temps pris par ces
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élaves moins préparés était trop important et génait notre gestion du travail de l'ensemble
du groupe. .

Enfin, notre systéme de conceptions lui-méme était en quelque sorte porteur de
difficultés. Ce n'est pas que les conceptions se contredisaient mais elles pouvaient dans les
cas limites &tre en conflit. Les conceptions concernant l'activité mathématique, ouverture,
exploration, autonomie ont pris, sans que nous nous en rendions compte, le dessus sur les
conceptions touchant a l'organisation du cours et a Fencadrement des éleves. Soulignons
ici que la réflexion et le bilan qui s'en est suivi ont permis cette constatation dont nous
avions jamais pris conscience auparavant. Signalons enfin que nous avons constaté que
notre état d'esprit, fatigue, inquiétude, bonne humeur joue également sur nos actes
d’enseignement.

En résumé, nous pouvons conclure que les liens entre les conceptions et la
pratique sont forts et que s'il y a prise en charge consciente des conceptions et des moyens
pour les mettre en oeuvre, le transfert des conceptions dans la pratique se produit.

L'auto-analyse comme outil de réflexion

L'auto-analyse telle que nous l'avons pratiquée s'est avérée un outil de réflexion
profitable et réaliszole.

L'auto-analyse a donné lieu a un bilan professionnel qui a permis une prise de
conscience intéressante et utile. Les résultats ont révélé certaines de nos faiblesses, ils ont
exposé certains succés encourageants et indiqué des modifications dans nos positions. A la
lumiere de ces constatations, nous avons pu dans notre pratique déja distinguer ce qui
concerne l'encadrement des éleves et ce qui concerne la gestion de lactivité
mathématique. Le fait de comprendre ce qui se passait a énormément facilité ces
modifications. C'est un résultat important qui nous permet maintenant d'étre plus précise
dans nos demandes aux éleves, ce qui est profitable pour nous et pour les él2ves.

Ayant réalisé le succes de nos efforts particulidrement ceux visant 2 amener I'éleve
a verbaliser ses démarches et A évaluer son travail, nous sommes encouragée a poursuivre
dans ce sens et A rechercher de nouvelles solutions & d'autres points moins réussis comme
le travail d'équipe par exemple.

Les hypothéses qui nous avaient conduites au départ a développer cette approche
d'enseignement se rapportaient beaucoup a l'aspect affectif de l'apprentissage. Notre
centre d'intérét s'est déplacé, nous sommes maintenant beaucoup plus préoccupée par
J'activité mathématique elle-méme, les contenus, les activités de résolution de probleme,
le matériel didactique. En effet, l'activité- mathématique se doit d'8tre intéressante et
stimulante pour 1'éléve si l'on veut qu'il y prenne plaisir et quil l'attaque avec confiance.

Le fait d'avoir dégagé certains obstacles exogeénes renforcera nos demandes auprés
de l'administration scolaire au sujet d'horaires, de locaux et de regroupement des éleves
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par exemple, par ce que nous serons plus en mesure de les expliquer.

Soulignons finalement que cette prise de conscience n'aurait pas été complete sans
I'étape de l'auto-analyse. La lecture du journal de bord a exposé certaines réactions comme
la nécessité de plus encadrer les éleves. Mais la réflexion a travers l'action n'était pas
suffisante et n'amenait pas une prise de conscience aussi compléte. On peut lire dans le
journal de bord des remarques par rapport aux problémes vécus dans la classe et des idées
pour tenter d'y rémédier mais, il n'y a pas d'analyse approfondie, faute de temps et de
recul, ce qui fait qu'il n'y a pas de compréhension de la situation, on ne fait que la
constater. L'analyse qui a suivi a eu tout autre résultat parce qu'elle a permis de voir ce qui
se passait. Nous pensons particulitrement aux chevauchements parfois problématiques
entre les conceptions qui ont été soulevés. C'est pourquoi ce qui est avancé dans notre
troisiéme hypothese est a compléter: la réflexion quotidienne est nécessaire mais il faut
prendre un certain recul et faire un bilan pour arriver 2 une meilleure compréhension des
phénomeénes en jeu.

A la suite de cette expérience, nous pouvons dire qu'il est possible a4 un enseignant
d'auto-analyser sa pratique. Le travail a parfois été difficile car il fallait constamment
trouver des solutions aux problémes méthodologiques qui se présentaient. Il fallait
inventer et se réajuster. Nous avons pu 2 la suite de l'examen critique de notre démarche,
sixggérer des moyens que pourrait adopter un enseignant sans trop perturber sa pratique
réguliere et nous croyons que la démarche que nous proposons est considérablement
simplifiée et tout aussi efficace. Nous avons congu un inventaire de conceptions afin
d'aider I'enseignant 2 établir une grille de conceptions qui lui permettra d'analyser ses
actes d'enseignement 2 partir de l'enregistrements de ses cours. Nous proposons
également une méthode simplifiée de compilation pour faciliter le travail d'analyse.

11 faut toutefois se garder d'attendre des résultats identiques chez toute personne
qui s'engagerait dans une auto-analyse. Le terme l'indique, 'analyse est personnelle et les
résultats seront surement en fonction du cheminement personnel de la personne qui
'entreprend. Toutefois le fait de s'engager dans une telle entreprise dénote une volonté
de remise en question qui ne peut que se traduire par un avancement personnel.

Implications

Bien que l'enseignant soit maitre d'un grand nombre de choix didactiques, certains
éléments sont hors de sa portée immédiate. L'administration et l'organisation scolaires
devraient tenir compte des impacts de leurs décisions sur l'enseignant, l'éleve, la classe et
l'apprentissage du savoir. On devraient également apporter plus de soins aux questions
qui touchent le regroupement des éleves. Sans viser nécessairement 'homogénéité des
classes, il faut tenir compte de certains facteurs, notamment le nombre d'éleves dans la
classe, le support didactique dont bénéficie I'enseignant.
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Encore beaucoup de recherches doivent &tre menées en ce qui concerne les
mathématiques de l'enseignement post-secondaire, particulidrement en ce qui est relatif
au matériel didactique. Il y a peu de matériel disponible pour l'enseignant qui veut
proposer a ses éleves des activités d'exploration ou des problemes allant au dela de
I'exercice de routine. Nous avons pu voir que le matériel didactique joue un réle
important dans les choix de l'enseignant, or, on ne peut exiger que chacun crée un
matériel & sa mesure. Préalablement, 1'étude d'un point de vue didactique des
mathématiques enseignées apras le secondaire est nécessaire et ensuite, il faudra faire faire
appel aux enseignants pour expérimenter en classe des approches nouvelles et en
examiner les résultats.

] Cette recherche montre par ailleurs qu'il est possible d'innover en matiére de
recherche pour arriver A observer la classe de l'intérieur. Il faut de plus en plus s'assurer
de la participation des enseignants 2 la recherche et profiter de ce point de vue différent.
Les enseignants gagneront de leur c6té une meilleure compréhension des phénomeénes en
jeu et seront plus disponibles pour expérimenter les modeles proposés par les didacticiens.

De plus, les résultats de l'auto-analyse portent a croire qu'il faut favoriser ce type de
réflexion et la soutenir. Il faudrait poursuivre le présent travail et étudier les effets de
l'auto-analyse chez d'autres enscignants. La nécessité de ce travail de réflexion pour
amener une meilleur adéquation entre ses conceptions et sa pratique ne diminue en rien
le besoin qu'ont les enseignants d'dtre plus informés sur les recherches spécifiquement en

. ce qui les touche de plus preés, la didactique des mathématiques. Beaucoup de travaux sort

menés sur les difficultés d'apprentissage des éleves, les causes d'échecs entre autres mais
les enseignants ont peu de sources d'informations en ce qui concerne les approches, les
présentations et les difficultés des contenus mathématiques qui sont enseignés au niveau
post-secondaire.

En dernier lieu, on peut encore se demander ot commence la boucle doit-on tenter
de modifier les conceptions des enseignants pour finalement influencer leur pratique ou
encore essayer de les inciter & modifier leur pratique pour susciter des évolutions dans
leurs conceptions. Certains apports extérieurs peuvent influencer. Les informations sous
forme de lecture, de présentations ou encore de formation peuvent agir sur les conceptions
de l'enseignant et I'implantation de nouveaux outils, tel que l'ordinateur ou encore des
manuels soutenant une approche innovatrice peuvent amener certaines modifications
dans la pratique de l'enseignant. Cependant, le présent travail montre clairement les
interactions entre les conceptions et la pratique. La clé qui selon nous peut intervenir dans
cette interaction est la réflexion-sur-la-pratique qui suscite la confrontation entre les
conceptions de l'enseignant et sa pratique. Nous nous devons de poursuivre les
expérimentations en ce sens.
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ANALYSIS OF STUDENTS’ ERRORS AND DIFFICULTIES IN SOLVING
COMBINATORIAL PROBLEMS

V. Navarro-Pelayo, J. D. Godino and M.C.Batanero and

Untversity of Granada (Spain)

ABSTRACT

The preliminary results of a systematic study of the dif ficulttes and
errors in solving a sample of combinatorial problems in two groups of
pupils of secondary education are presented in this work. The analysis
of the task variables of the problems constitutes a first approximation
to the classification of the simple combtnatorial problems and likewise
enables the attrtbution of a content validity to the {nstrument

developed, in order to assess the capacity to solve this kind of
. problems.

INTRODUCTION

In accordance with Piaget and Inhelder (1951), the development of the
combinatorial capacity is one of the fundamental components of the formal thinking
and can be related to the stages described in their theory: after the period of
formal operations, the subject discovers systematic procedures of combinatorial -
construction, although in the case of the permutations, it is sometimes necessary to
wait until they are 15 years of age.

However, more recent results, as Fischbein (1975) indicates, sustain that the
combinatorial problem solving capacity is not reached in all cases, not even in the
level of formal opserations without specific instruction. Fischbein and Gazit (1988)
study the reiative difficulty of the combinatorial problems in terms of the type of
combinatorial operation and nature and number of elements, in addition to the effect
of the instruction on the combinatorial capacity. Other authors who in addition to
those mentioned have investigated the difficulties of different types of
combinatorial problems, are, Mendelson (1981), Green (198i), Lecoutre (1985) and
Maury (1986).

In this work, we describe the results of a study of the effect on the relative
difficulty of different combinatorial problems of several task variables of the same.
Although the study carrled out to date is limited, we consider it to be of interest
to describe the classification carried out of the errors and the differences found in
this distribution, between one group of pupils who have not had any previous

instruction and another group that has. As an additional consequence we have a first
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version of a psychometric instrument available. This enables us to measure the
"combinatorial reasoning capacity” of secondary students, and to diagnose the
intuitions and types of error that should be taken into account in teaching. As
Borassi (1987) affirms "errors can be used as a motivational device and as a starting
point for the creative mathematical exploration, involving valuable problem solving

and problem posing activities” (page 7.).

DESCRIPTION OF THE PROBLEMS PROPOSED

The test consists of 9 problems some with several sections, in total 12
questions. As an example in Table I, the statements of three of these problems are
included that :vill serve to describe the different types of errors that the students
have had during the solving process. The description of the characteristics of the
problems, that are of two types: of enumeration and calculus. are presented
schematically in Table 2.

TABLE 1

1. Three boye ara sent to the haadmaeter for stealing. Thay hava to line up In a row outeide the
haad’e room and wait for their punishment. No one wante to be first of couree!

{a) Suppoae the boye are called Andree, Benito y Carloe (A, B, C for short). We want to write down
all the poseible ordere In which they could iine up.

For example A ] c we write ABC as shown below:

2. Calculate the number of different waye a claes of 10 etudents can be divided up into two groupe,
one of them with 3 etudente and the other with 7.

ANSWER: There are different waye.
Briefly explain the method you have used.

3. An lce cream shop eelle five different kinde of Ice creem: chocolate, iemon, strawberry, apricot
and vanilia. How many tube of three different kinde of ice cream can be bought?

ANSWER: There are different tube.
Briefiy explain the procedure that you have useed.

lnventory Problems:
We give the name problems of Inventory to those problems like la) taken from

Green’s research (1981). in which the student is asked for an inventory of all the
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possible cases produced by a certzin cowbinatorial operation, in this case, the
permutations of three eiements. These problems are fdeal for our purpose of knowing
the combinatorial capacity of the students before the instruction; on the other hand,
in Navarro-Pelayo (1991) the little emphasis put on this type of exercise in the
school books, has been pointed out.

Problems of calculation of the number of possibilities

In these statements, as in problems 2) and 3) the student is asked the number of
possibilities without expiicitly asking him for the inventory of the same, thus
having to identify the combinatorial operation. This is one of the difficulties

described by Hadar and Hadass (1981) to solve combinatorial problems.

Task variables considered

The task variables that have been taken -into consideration for the choice of
problems have been the following:

a) Type of combinatorial operation (permutations, combinations....). This variable
has been one of the determining factors of the difficulty of the problems in
Fischbein and Gazit's research (1988).

b) Context. Likewise, the previous authors distinguished the context of letters,
numbers, people and objects; we have also included a problem in which
undistinguishable objects are considered, since Lecoutre (1985) indicated the greater
difficulty in employing these types of objects. Likewise, we have included a
geometrical context, in item number S.

¢) Value given to the parameters m and n that have also been a factor of difficulty
described by Fischbein and Gazit (1988).

d) lmplicit mathematical model. According to what Dubois states (1984}, the simple
combinatorial configurations can be classified in three models: selections, that
emphasize the model of sampling, distributions, related to the concept of mapping and
partition or division of a set into subsets. We have considered these three models,
in addition to that of simple ordering (arrangement) that can be considered as a
particular case in any of them.

e) Help provided. To give an example or not in the statement, and in the case of

glving it, whether a table or a tree diagram is used. This type of help was provided
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in items 1, 4, 5, 7 and 8.

The context, model, values of the parameters and combinatorial operations used
in each one of the items appear in Table 1. The numeration of the problems does not

correspond to the order of presentation in the questionnaire.
RELATIVE DIFFICULTY OF THE PROBLEMS: EFFECT OF THE TASK VARIABLES

For this first pilot study we have preferred to choose an intentional sample
that has been made up of a total of 106 pupils: S7 pupils from the 8th course of
Primary Education "EGB" (14 years of age) who had not had any specific instruction in
Combinatorics when the test was carried out and 49 pupils from the 1st course of
Secondary education "BUP" (1S years of age) after the period of Combinatorics
teaching. The percentages of the correct answers to each question of the two groups
of pupils are presented in Table 2.

TABLE 2
Percentage of correct answers in the different problems

Problem Context Combinatortal Percentage correct answers

Operation 8th EGB Ist BUP
1a Arrange peopile P3 89.5 95.9
1b " P4 17.5 51.0
1c " PS .0 46.9
2 Partition (people) Clo,a .0 6.1
3 Select objects C5,3 8.8 20.4
4 Throw coins VRZ.Z S6.1 67.3
S Select paths Product Rule 43.9 26.5
6 Select people V4.3 1.8 49.0
7 Distribute objects V4'2 38.6 67.3
8 Select numbers VS.Z 38.6 51.0
9a Arrange letters PS 7.0 53.1
9b Arrange letters PRS.l.l.l.Z [o] 12.2

We can observe that in practically all the items the percentages of correct
answers are higher in pupils of "BUP". There is an exception in item S, corresponding
to the rule of the product, a type of probiem that in our study (Navarro- Pelayo
(1991)) we saw was little used In the text books. In this case one of the formulas
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corresponding to the combinatoriai operations cannot be directly applied because it
is dealing with the cartesian product of the two different subsets. The pupiis of 14
{8th "EGB") who, in theh:_ majority have tried to solve the problem directly using an
inventory, have obtained better resuits than the pupils of "BUP" who have tried to
apply one of the formuias known for this case.

By considering the magnitude of the parameters we can clearly see the difference
in difficulty when the vaiue of the number of elements to be selected is 2 or 3. In
all these cases there has been an important percentage of correct answers, even in
pupils who have had no instruction, from which a good combinatorial capucity can be
deduced when the number of objects is smail. When this number grows the pupil of
"EGB" has not been capable of satisfactorily completing a procedure and as he did not
know the formula, has been unable to deduce in many cases. It is here where we can
appreciate a greater effect of the instruction and the age.

Another item where there have been a significant number of correct answers, in
spité of using value 4 for the parameter m, has been item 7 where a tree diagram was
given as help. This agrees with the importance that Fischbein and Gazit (1988} give
to the tree diagram as a model to solve the combinatorial problems. In generai,
providing the pupil with ‘an example, has supposed a greater facility of the problem,
especially in item 1a) where the percentage of correct answers has been surprising in
the pupils of "EGB", taking into account, that Piaget's and Fischbein's theories
point out the permutations as the most difficult combinatorial operation known before
instruction. However, this percentage drops drastically when we pass to the
permutations of 4 and 5 people, and it even drops (aithough not as drasticaily) in
the pupils who have received instruction. The pupils of the first group lack the
recursive capacity to form the permutations of 4 elements once those of 3 have been
formed.

The difference of di~’Iuity due to the type of combinatorial operation does not
seem as big in our study as that due to the size of the parameters, since before

instruction this has been the main determinant of success and after there is not a

very clear difference.

By considering the mathematical model under which the combinatorial operation is
presented, we do not observe important differences in the model of selection (items
3, 4, 5, 6 and 8), arrangement (items la, 1b, Ic, 9a and 9b) and the positioning or
application (item 7), except in the case of the permutations with repetition that
have turned out to be much more difficult. In this case, the main determinant of the
difficuity is the fact that distinguishable objects appear mixed  with

indistinguishable ones. However, we have found quite an accused difference in item 2
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referring to a context of partition of a set into two subsets in which only 14% of
correct answers have been found after instruction, in spite of being a typical
combinatorial statement. )

TYPES OF ERRORS IDENTIFIED

Error of order

This mistake, described by Fischbein and Gazit (1988) consists of confusing the
criteria of combinations and arrangements. For example, in item 3, when the pupil
considers different tubs “chocolate with lemon and strawberry" and "chocolate with
strawberry and lemon”. This mistake has been found in 35 of the total of the problems
solved by the children in "BUP", representing 16.5% of the total errors in this group
and only in 8 of the pupils of "EGB" (2.6% of errors). From thls result a greater
relative incidence of this type of error can be induced in the pupils who try to

apply one of the combinatorial formulas, which oniy occurs in the group who have
received instruction.

Error of repetition and exclusijon

We have given this name to the case of the pupil who does not consider the
possibility of repeating the elements or when there is no possibility to do so, the
pupil uses it. For example, in item 1, when the pupil uses the formula of variations
with repetition or repeats an element within the permutation.

In the case of item 9b), that deals with the permutations of S letters, two of
them being the same: A, B, C, D, D, another option followed by some pupils is to
exclude the repeated letter and form the permutations of the remaining ones, thus
taking PRM.M.2 =P‘. We have called this mistake exclusion error. Letter D is
considered to be fixed and its permutation with the remaining ones is not considered.
This error has been committed mainly by the pupils of "EGB" (17 cases; 5.67% of their
errors) and acquires special importance since it has only been given when associated
to a particular problem, and thus seems typical of this type of problem.

In total there have been 53 errors of repetition in "BUP", which represents 257
of the total errors as opposed to 8 in EGB (2.6% errors), due to the fact that the
first group prefer the use of formulas. We must also point out the greater Importance

of this error as opposed to the error of order, in the group of pupils with
instruction.

Non systematic epumeration
This type of error described by Fischbein and Gazit, consists of trying to solve

o 271

RIC

Aruitoxt provided by Eic:




1-247

the problem by an enumcration using trial and error without a recursive procedure
that leads to the formations of ail the possibilities. It has been one of the most
frequent mistake in both groups, 24 cases in *BUP" (11.3% of errors), 96 (31.62) in
“EGB". This error has occurred specially before instruction, since the students have
used the enumeration as the most frequent strategy in solving the problems.

We must point out that in our work (Navarro-Pelayo; 1991) we“showed that the
enumeration exercises are not usually proposed to the pupils since it is considered
this is an ability that they have already acquired. However, we think that the
results of this first sample confirm those of other authors like Mendelsohn (1984)
that many pupils, although in the stage of formal operations, have difficulties with
systematic enumeration. We have even seen that these difficulties continue in some of

the students after their period of instruction in the first course of Secondary
education "BUP".

Error in the arithmetic operations used

The pupils of "BUP" have studied combinatorics and in some cases have identified
the operation correctly, using the formuia to solve the problem. On other occasions
this operation has not been identified - or at least it has not been indicated
explicitly - and they try to deduce the series of arithmetic operztions necessary for
the solution using a direct combinatorial reasoning. That is they try to find a
formula, not valid for the general case, but that can be used in the given problem.
This strategy is also quite frequent in the pupils of 8th of "EGB". In the case that
a correct formula has not been found with this procedure we will say that there is an
error in the arithmetical operations. This type of mistake appears in a total of 20
problems solved by the pupils of "BUP" {9.47% of the errors) and 56 for those of "EGB"
{18.8% of the errors).

Mistaken jntyitive response

This error identified by Fischbein (1975), consists of not Justifying the
response, only giving a mistaken numerical solution. The frequency of this type of
error has been 82 cases: 27% of the errors in "EGB" as opposed to 17.9% in "BUP";
this type of response is still important in "BUP".

Qther errors
- Badly applied formula, due to not remembering it, although the combinatorial
operation has been correctly identified: 11 cases in secondary school pupils.

~ Confusion of the parameters when applying the formula: S cases In secondatry school
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pupils.

- Not remembering a property of the combinatorial numbers.

This error has appeared as associated to item 2, in which the pupil should realize
that by considering 10 students, the same number of groups can be formed with 3 as
with 7, so once one of these groups is formed the other one is determined. The pupils
who do not identify this property add C10,3 + Cl10.7 to give the solution.

- Incorrect interpretation of the tree diagram (6 pupils of "BUP" and 9 of "EGB"). In
spite of the importance given to tils didactic resource by Fischbein as an aid in
combinatorial probiem solving, we have found ourselves with cases of bad

interpretation of the diagram given in exercise 7, even in pupils who have been
instructed in the use of this resource.
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PROCESSES AND STRATEGIES OF THIRD AND FOURTH GRADERS
TACKLING A REAL WORLD PROBLEM AMENABLE TO DIVISION

Susie Groves °

Deakin University - Burwood Campus

A random sample of 55 grade 3 and 4 children from six schools were observed while
tackling five versions of a real world problem based on quotition division. The chiidren were
provided with simulated bottles of medicine (in tablet and liquid form), which showed the
total contents and the amount to be taken each day, and were asked how many days the
medicine would last. Calculators and concrete materials were provided, as well as pencil and
paper. For all but the two most difficult questions, children overwhelmingly chose mental
computation as their calculating device. Children predominantly used repeated addition (or
subtraction) rather than division, which was almost always only used in conjunction with a
calculator. Difficulties encountered by the children who used calculators confirm the
mathematical sophistication required to interpret the answers thus obtained.

Introduction

There is now a substantial body of research into children's understanding of multiplication and
division. Among major factors fouad to influence children’s success in selecting the appropriate
operations for word problems requiring division are the extent of familiarity of the context and the
structural nature of the problem, with partition problems producing a higher rate of success than quotition
or rate probiems (Bell, Fischbein, & Greer, 1984; Fischbein, Deri, Nello & Marino, 198S). Prior to a
study involving grade 5, 7 and 9 children, Fischbein et al hypothesised that children have intuitive
models of division, based on both partition and quotition, which they can evoke as appropriate. Not only
did partition problems prove easier than quotition, but grade 5 children performed considerably worse on
quotition questions than older children. For example, for the question “The walls of a bathroom are 280
cm high. How many rows of tile are needed to cover the walls if each row is 20 cm wide?", although
44% of grade 5's correctly chose 280 + 20 as the operation required, 41% chose 280 x 20. The success
raie for grades 7 and 9 were 77% and 80%, respectively. This led the authors to conjecture that partition

is the only intitive primitive model, with children acquiring the quotition modzl with instruction.

* The interview referred to in this paper was developed and conducted in collaboration with Ron Welsh
and Kaye Stacey (Melboume University) and Jill Cheeseman (Deakin University), with support from the
Victoria College (now Deakin University) Special Research Fund, a Mclbourne University Special
Initiatives Grant and the Melboumne Uni versity Staff Development Fund.
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Fouba (1989) analysed the solution strategies of grade 1 to 3 children. She proposed three intuitive
models for partition - sharing by dealing, repeated subtraction and repeated addition (using guesses for
the addend). It is well known that children frequently resort to informal addition based strategies for a
variety of problems (Hart, 1981, p.47; Bergeron & Herscovics, 1990, p. 32). Kouba found that children
employed repeated subtraction and repeated addition for both partition and quotition problems, and hence
questioned the separation of the intuitive models for these types of division.

Procedural knowledge without conceptual knowledge and the ability to use it in meaningful
situations is of little use. This is particularly true in an age when reliable mental methods and an ability to
use calculators (together with an understanding of the meaning of the operations and the real world
problems which they model) are sufficient for all practical purposes (Hart, 1981, p.47; Bell, Fischbein,
& Greer, 1984, p.130; Bergeron & Herscovics, 1990, p. 34). Yet many children are being taught to do
calculations without being abic to describe situations in which they are applicable and consequently do
not find "real world" possibilities reflected in school mathematics (Greer and McCann, 1991, p. 85;
Graeber and Tirosh, 1990, p.583).

Carpenter (1986) points out that "before receiving instruction, most young children invent informal
modelling and counting strategies to solve basic addition and subtraction problems” (p. 114). Neuman
(1991) reports on children’s “original” informally developed conceptions of division, commenting that
"young children who have not been formally taught division seem to believe that it is possible to solve all
problems in some way” (p.76). Children were again found to use repeated addition and repeated
subtraction for both partition and quotition problems. She questions the early introduction of tl:c division
algorithm as opposed to the tlaboration of children's own informally developed thoughts.

Results obtained from a large sample of grade 5 and 6 children, using a pencil and paper test of
problem «olving (Stacey, Groves, Bourke & Doig, in press), indicate that most upper primary children
do not use learned multiplication and division skills, with large numbers of these children still using
repeated addition to solve a problem based on quotition (Stacey, 1987, p. 21).

While there is no centralised curriculum in Victoria (Australia), most primary schools base their .
mathematics policy on the state guidelines (Ministry of Education, Victoria, 1988). At grade 3, children

are expected to learn number facts including division by 2, 3, 4, § and 10, as well as use calculators for
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computation, while at grade 4 they are usually introduced to division of 2 and 3 digit numbers by 1 digit
numbers (p.97-8). Pencil and paper "long division” has not been included in guidelines for over 6 years.
This paper reports on the extent to which 55 grade 3 and 4 children, who were observed while
tackling a “real world" problem based on quotition division, as part of a longer interview, were able to
find correct or reasonable answers, the calculating devices they chose to use and the extent to which they

made sensible and efficient use of calculators.

Method

For the past three years, as part of the Victoria College Calculator Project and the University of
Melbourne Calculator-Aware Program for the Teaching of Number, children entering six schools have
been given “their own” calculatér to use at all times. Teachers have been provided with a program of
professional support to assist them in using calculators, not just as “number crunchers”, but also as a
means to create a rich mathematical environment for children to explore (see, for example, Groves, 1991;
Groves, Cheeseman, Clarke, & Hawkes, 1991, Welsh, Rasmussen & Stacey, 1990).

In 1991, as part of an investigation of the long-term learning outcomes of the projects, over 430
grade 3 and 4 children at these six schools were given a written test and a test of calculator use. These
children, who have not been involved in the c;alculator projects, form the control group for the study. In
addition to the tests, a random sample of 55 of the grade 3 and 4 children were given a 25 minute

interview, designed to test their understanding of the number system; their choice of calculating device,

for a wide range of numerical questions; and their ability to solve “real world"” problems amenable to
multiplication and division, with or without calculators. Throughout the interviews, children were free to
use whatever calculating devices they chose. Unifix cubes and multi-base arithmetic (MAB) blocks were
provided as well as pencil and paper and calculators. Many of the questions were expected to be
answered mentally. The tests and interviews will be carried out again at grade 3 and 4 level in 1992 and
1993, Among the hypotheses for the long-term study is an expectation that children involved in the
calculator projects will perform better on the “real world” problems, selecting appropriate processes more
frequenily and making better use of calculators.

This paper focuses on interview results from the “real world” problem amenable to division - a

simplified version of the question from the problem solving test referred to carlier (Stacey, Groves,
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Bourke & Doig, in press). The question consists of five parts, each with the same structure. In the first
two parts, children were presented with clear bottles containing the appropriate number of white,
.medicine-like tablets (actually sweets). The bottles were attractively labelled with the contents and the
amount to be taken cach day - for example, in M1 the label clearly displayed “15 tablets take 3 cach day”,
as well as the distractor "$7.43". For the remaining three parts, accurate volumes of coloured liquid were
used with information such as "120 ml take 20 ml each day" and a price. For this example (the first using
liquid "medicine”), 20 ml was poured from the bottle into a clear medicine measure. In each case,
children were asked how many days the medicine would last. (For further details, see Welsh, 1991.)

As well as their answers, children's choice of calculating device were recorded. These were
classified as calculator, written algorithm, Unifix or MAB, mental (which was further sub-classified to
indicate automatic response and use of fingers) and other (such as drawing or the use of non-standard
algorithms). Wherever possible, the mathematical processes used were also recorded. Original
classifications of the processes included division, counting on {repeated addition), repeated subtraction,

multiplication and other less frequently used processes.

Results

Frequencies of correct and incorrect answers, use of calc .lating devices and solution processes for
each of parts M1 to M5 of the medicine question are shown on the "double-sided" Table 1. The left side
shows choice of calculating device against correctness of answer, while the right side shows solution
processes. In those parts of the question where remainders occur (M2, M4 and M5), an extra category of
answer is included to indicate answers which, while incorrect, give the correct number of whole days
(or, in the case when the answer is 7.5 days, give 8 days). The categories for choice of calcul_aling device
and solution proéésses have been collapsed. Categories rarely used are included under "other” - ¢.g.
standard written algorithms (which were never used successfully) and the (rare) attempts to use an

incorrect algorithm (such as a single subtraction).

Correctness of answers. Table 1 shows the dramatic decrease in correct answers when
remainders are involved. Even for the relatively easy problem of “21 tablets, 4 per day”, less than 45%

of children give a cormect answer such as “S 14 days" or “S days with | tablet left over®, although a
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Table I: Frequencies of correct and incorrect answers,
use of calculating uevices and solution processes

Question | Device! ]| M. C__O NA|Toal [ AR CO DI UM O NA| Process”
Ml V3 38 2 6 O0f 46| 3 17 2 17 71 Of <3
15 tablets,
3 per day X3 7 0 1 0 g8} 0 1 0 6 1 0Of x3
How
many NA3 0 0 o0 1 ] 0 0 0 0 0 1} ya3
days? Total 45 2 7 1} 55 3 18 2 23 8 1] Toa
v 17 4 3 0] 24 3 12 4 4 1 O v
M2
21 tablets, x4 5 3 3 of nlf o 3 2 2 4 o] =4
4 per day
How X 1 o 3 o 13} 0o 4 0 6 3 o0 x
many
days? NA o 0 0 7 7 0 0 0O 0 O 77 NA
Total 32 7 9 71 55| 3 19 6 12 8 7| Toa
M3 v 26 5 1 of 32| 5 13 6 7 1 o
120 ml,
20 mi /day X m 2 3 o 16 0 2 0 9 5 of X
How
many NA 0O 0 0 7 71 0 0 0 0 O 7] NA
days? Total 37 7 4 71 55| 5 15 6 16 6 7| Total
v 6 8 1 o 150 6 7 2 0 O v
Ma
300 ml, .5 s 5 0 o w| 0 5 5 0 0 O] 5
40l /day
How X i8 2 4 o 22 0 5 1 11 7 0o X
many
days? NA 0 0 0 6 6 0 0 0 O 0 6} NA
Total 29 15 s 6/ 53| 0 16 13 13 7 6f Toal
y o0 13 0 o 13{ o o 13 0o o0 of ¥
M5
375 ml, x6 i 7 0 0 g} 0 1 7 0 0 0| =«s
24 ml /day
How X 7 10 8 o 25 0 s 4 71 9 O x
many
days? NA 0O 0 0 9 9] o o 0 o0 0 9 NA
Total g 30 8 9} 55| o 6 24 7 9 9| Toa

T M - mental; C - calculator; O - other (e.g. drawing, blocks); NA - no answer given

2 AR - automatic response; CO - counting onvback (repeated addition/subtraction); DI - division;
UM - unknown mental process; O - other ( ¢.g. multiplication, single subtraction)

3 v - correct answer; X - incorrect answer; NA - no answer given
4 * . incorrect answer with integer part correct (e.g. 5, S+, 5 remainder 3, 5 remainder 25)
s * . incorrect answer with integer part correct (e.g. 7, 7+, 7 remainder 80, 7 remainder 2) or 8
6 * - incotrect answer with integer part correct (e.g. 15, 15+, 15 remainder 2, 15 3/,)
O
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further 20% give an answer involving 5 days. Incorrect answers for M2 range from 2 to 15 days, with 5
children giving answers of over 10 days. Given the provision of concrete models and the familiarity of
the situation, these results confirm that many children find it difficult to relate school mathematics to real
world problems. While the liquid medicine problem involving a whole number answer, M3, produced a
high rate of success, it was anticipated that M4 and M5 would be much more difficult, as children would
be unlikely to have the skills to find a solution except by using a calculator. (In fact, these parts were
included specifically to determine the extent to which children can successfully use calculators to solve
such problems.) The results from these parts confirm our expectations, with over half of the children
who achieve a correct or reasonable answer for M4 using a calculator, and only one child succeeding

without a calculator for the more difficult M5.

Uise of calculating devices. For all but M5, children showsd an overwhelming preference for
mental computation. Even for M4, where we had expected children to use calculators, 29 of the 49
children who attempted the problem chose to do it mentally. For all parts, approximately half of the
children who used mental computation augmented it with the use of fingers. Only three children gave
responses automatically to any questions - including one child who gave immediate correct answers to
the first four parts and then used his calculator to incorrectly read the answer to M5 as “15 remainder
point 625". Four children successfully used drawings or concrete materials for some or all of M1 to M3,

but only one of these was successful in either of the other two parts - M4 asing a calculator.

Processes used. Only a small handful of children were observed giving "automatic responses”
to the first three parts. For M1, a large number of children gave the correct answer after pausing to
calculate mentally. It was often impossible to determine the mental processes used as time constraints did
not allow for extended probing - hence the classification “unknown mental process”. For the first three
parts, counting on or counting back (repeated addition or subtraction) outnumbered all other known
processes almost two to one. Children only began to use division when the numbers dictated the use of a

calculator. In fact for MS the only correct answers were obtained using division on a calculator.

Effective use of calculators. While the first requirement for effective calculator use in

problems such as these is to recognise the operation as division, it is also necessary to be able to make
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sense of the answer displayed. The difficulties were particularly apparent in M5, where 30 of the 46
children who attempted the problem used a calculator, but only 13 found the correct answer. Of the
remaining 16 children, 9 were tinable to read the number displayed correctly. Such difficulties are further
highlighted by an carlier question on the interview. Children were shown 278 + 39 and “the answer
found by someone using a calculator” - i.e. 7-1282051. They were asked firstly to read the number and
then to say "about how big" it is or give a "number close to it". Only 14 children were able to read the
number correctly (i.c. say the words "seven point one two ..."), with 16 passing the question and the
remaining 25 giving answers like "7 point 12 million ...". In response to the size of the number, 15
answered in the range 5 to 9, with 20 passing and 18 giving very large answers (¢.g. 7 million). Wh.ilc
this level of understanding is to be expected, it highlights the fact that calculator use will only increase
children's facility with division if it is accompanied by considerable change in children’s mathematical

sophistication and overall number sense.

Conclusion

These results confirm the fact that children are able to devise their own means of solving problems
based on quotition - provided- the numbers are not too difficult to handle. Their methods are
predominantly based on repeated addition or subtraction. Wherever possible, children used mental
computation in preference to calculators, with almost no attempt to use pencil and paper, except to draw
diagrams. Neventheless, the fact that several children consistently used completely inappropriate
operations, such as a single subtraction, to arrive at blatantly incorrect answers such as 351, days,
indicates the extent to which school mathematics is seen as completely divorced from the real world. Bell
et al had predicted that calculators would allow a wider range of numbers to be considered earlier in
primary school, but wamed that “this still leaves tt.2 question of what meanings the pupils can attach to
the operations” (Bell, Fischbein, & Greer, 1984, p. 130). The results obtained here confirm not only the
importance of attaching meaning when using calculators, but also the necessity to develop skills such as
estimation and approximation and a strong intuitive understanding of aspects of the number system such
as decimals. Future results to be obtained from children with long-term experience of calculators will

hopefully demonstrate the extent to which this can realistically be achieved.
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the lecture dominated mathematics classroom that many teachers and
students have experienced. The Atlanta Math Project (AMP), a four-
year National Science Foundation sponsoréd project in the second year
of operation, is implementing a research-based teacher education model
which assists teachers in constructing new knowledge about the
teaching and learning of mathematics. AMP is studying how these

teachers change their instructional practices over four years.

grounded in the theories of constructivism and social constructivism
(von Glasersfeld, in press: Wertsch & Toma, 1991) and of metacognition
(Flavell, 1975). A more thorough discussion of the theoretical
perspective of AMP and the framework for studying teacher change can

be found elsewhere (Hart, 1991).

- environment and in teacher knowledge for one teacher, Margaret, now in
her second year with AMP. In particular we will discuss the following

questions about change in classroonm discourse and beliefs;
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PICTURES IN AN EXHIBITION: SNAPSHOTS OF A
TEACHER IN THE PROCESS OF CHANGE

Lynn €. Hart
Deborah H. Najee-ullah
Georgia State University

As teachers change their pedagogical practices to reflect
current research on teaching and learning, the mathematics
education research community has a unique opportunity to
study this process of change. This paper will present
results from one teacher, Margaret, in one project, the
Atlanta Math Project (AMP), for one year, 1990-1991, as she
attempts to modify her instructional environment to reflect
current recommendations for reform. This pilot work lays
the groundwork for future research on teacher change in AMP.

Learning enyironments are emerging that are quite different from

Theoretical Orientation

The theoretical orientation of the Atlanta Math Project is

Studying Teacher Change

This paper will explore aspects of change in the learning

282



1-258

Whose ideas are being explored in Margaret’s classroom?
What types of questions are being asked?

How is conflict resolved?

How is student thinking encouraged?

Is mathematical thinking modeled?

Who are students talking to?

Row do Margaret’s beliefs ahout learning mathematics and teaching
mathematics change in year one?

How do Margaret’s beliefs about mathematical tasks and content
change?

Methods
The data chosen for this report are two videotapes of Margaret
teaching her grade 6 class in September and May of her first year with
the project and responses to a project instrument completed by
Margaret before and after year one. A research team composed of the
two project directors, the assistant project director, a research
associate and three graduate students have met regularly during year
two to analyze and discuss the process for studying change. We have
used Margaret as a first attempt to refine our methods. We will use
this paper as an cpportunity to share our struggles and achievements
and to solicit feedback on our work.
Margaret
Margaret is a sixth grade teacher in a rural middle school near
Atlanta, Georgia. Identified by the mathematics coordinator for her
school system as a strong teacher with leadership ability, she
attended five days of staff development with AMP during the summer of
1990. She was intro&uced to the theories of constructivism and
metacognition, the positions on reform set forth by the National
Council of Teachers of Mathematics, and she experienced planning,

teaching and reflecting from these perspectives.
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Margaret is fairly new to teaching. Her first year with AMP
(1990/91) was her third year of teaching. A mature woman with a
family of her own, she turned to teaching later in her life. Margaret
showed a great deal of maturity and intuitiveness during the summer
workshops. She demonstrated caution in accepting without question the
ideas we explored, but displayed a willingness to learn and try new
approaches.

one:

At the beginning of the AMP summer workshop, Margaret was asked
to respond to a set of statements designed to elicit her current
beliefs. She was asked to describe a good mathematics teacher, a good
nmathematics supervisor, a good mathematics student, and a good math
problem. Finally she was asked, how do middle school children learn?
Her responses provided an opportunity to gain insight into some of her
professed beliefs about teaching mathematics, about learning
mathematics, and about worthwhile mathematical tasks.

Bg1igf5_ghQn;_;gagning_mn;hgmg;igi. Margaret stated that a
teacher should be flexible in her/his thinking, creative, open, and
display an enjoyment of mathematics. She felt having a background
strong in content and knowing a variety of instructional strategies
were important. She said teaching should be organized and relevant.
Teachers should demonstrate respect for students and their ideas and
should exhibit joy and interest for mathematics to students.

Beliefs about learning mathematics. Margaret gave a description
of the learner which included inquiry, thoughtful, creativity, and
enjoyment for mathematics. She said a "good" learner has a
recognition for the relevance of mathematics. She said learners need
to engage in both individual and group problem solving that relate to

common, everyday experiences. Learning occurs through listening and
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discussing mathematics with others and when students reflect and
organize their knowledge and use their knowledge about math in
different ways.

Beliefs about worthwhile mathematical tasks. Margaret felt tasks
should be relevant and require students-to inquire. Tasks require
discussion. Tasks should provoke thought, require reflection and
synthesis of math knowledge, and tasks should cause students to think
about and solve problems in more than one way.

Snapshot two: September 20, 1990

The first videotape of Margaret is of her teaching a lesson on
estimation. The students are sitting in double-wide desks facing the
front of the room in rows and columns. The class discusses the
problem with Margaret at the overhead and students responding to
questions by raising their hands and being called on one at a time.

The nature of the mathematical task. Margaret uses an experience
of renting lockers the children had engaged in the day before. She
poses the following questions, "Yesterday, about 700 students rented
lockers. The lockers cost $2 each. How did that make you feel?" The
students expressed strong feelings (e.g., it was too crowded, it was
confusing, etc.) and this dialogue opened the floor for further
discussion. Margaret continued, "How much money did the school take
in?" sSince lockers could be shared and exact numbers of students had
not been determined, there were numerous opportunities for estimation.

The nature of classroom discourse. The direction of
communication was always the same. Margaret would ask & question, a
student would respond to the question, and Margaret would respond to
the student. If a student disagreed with a statement made by another
student the opposition was directed toward Margaret--not the other

student.
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Margaret’s questions were a mixture of one-right-answer questions
and more probing questions such as "Why?" or “Anything else?" Thought
provoking questions were also raised by students. Very little time
was given to think about questions. Margaret did not explore any of
these questions in depth, but accepted partial thoughts and did not
require justification, elaboration or explanation. The students did
not talk to one another and were not asked to listen to the responses
of others. Although presented, alternative ideas were not explored
and as a result conflict was not explored or resolved. Some students
were éalled upon more frequently than others. Not all members of the
class were included in the discussion.

Snapshot three: May 3, 1991

Margaret’s classroom had changed during the school year. The
double-wide desks were now arranged with two desks facing each other
forming small seating groups of four. The overhead remained at the
front of the room.

Ing_ga;ym3Lg{_;ng_Jmnnumm;iggl_;aﬁk. The tasks presented in
this second lesson explored division of fractions. The children were
first asked to contrast the division problem, 1/2 divided by 1/4,
written with a division symbol and as a complex fraction. This was
followed by four word problems that involved dividing with fractions.
They were instructed to solve these by writing mathematical sentences.
Finally the students were asked to count the number of "halves" and
wfourths" in two inches, three inches, five and one-~half inches, etc.,
to determine the pattern and ndiscover" the algorithm for division of
fractions.

cl S . Margaret used a cooperative
learning technique of think-pair-share to begin each phase of the

lesson. Students were asked to think about the problem(s), to share
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their thinking with a partner, and then to share their thinking with
the class. Margaret’s questioning was still a mixture of one-right-
answer and more thought-provoking questions. Students still directed
their responses and questions to her, but Margaret had begun to act
more as a facilitator of the discussion. Consider the following
dialogue about contrasting the two division problens.

Brian If you reverse the order of the numbers you get the

same thing.
MARGARET (repeats his comment)

Brian yeah

Matt No you won’t
MARGARET You don’t agree Matt?
Matt No you won‘t

MARGARET Brian says if you reverse the order you get the same
thing, Matt says no you won‘’t. What do you think?
Margaret did not, however, explore conflict in depth. As soon as a
third student, Jennifer, suggested that jyou cu.il not reverse whoie
number division, Margaret seemed satisfied that the argument was
settled. Brian was not convinced and suggested fractions might be
different. A comment was then made by John that you can reverse
addition and multiplication, but not subtracti- and division.
Margaret disregarded these conflicting positicne and simply turned to
Brian and said "These properties [John just mentioned] knock this
out." That was the end of the discussion.
t four:

At the beginning of the second summer staff development, Margaret
was asked to respond to the instrument described ir snapshot One.
Following is a summary.

Beliefs about teaching mathematics. Margaret stated that a good
teacher is flexible in approach and content, open to new ideas,
methods and challenges, creative, a good planner, and efficient user

of time. They are well versed in current teaching strategies and

O
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materials and seek new avenues for exploring their own knowledge of
teaching strategies and content. A good teacher is responsive to the
needs of students by providing feedback. Good teaching requires being

skilled at diagnosing student abilities and levels of mathematical

knowledge.

Beliefs about learning mathematics. Margaret described the
learner as being confident in ability, not afraid to fail, able to see
relationships, prepared for class, open to new ideas from others, and
motivated by questions or problems. She felt that students learn by
doing mafhematics, solving problems, listening to others, talking
about mathematics. They need to find the mathematics relevant to
their lives and investigate situations requiring mathematics.

Beliefs about worthwhile mathematical tasks. Good problens
require creativity and may stimulate an extension in thinking. They
should have a variety of strategies possible for finding the solution.
They may have nore than a simple solution and may prompt connections
to other problems and/or life situations.

Discussion

An analysis of the four snapshots of Margaret reveal many
consistencies in her behaviors and her reflections. While the
consistencies are of interest and necessar: as we attempt to interpret
the data, e.g., her consistent reference to mathematics needing to be
relevant to real life, the brief space allowed here will only permit
some discussion of change.

The beliefs Margaret expressed in Snapshot One, e.g, teachers

need to respect student ideas, students need to work in groups, tasks

need to provide opportunities for reflection and . mthesis by the
student, were not consistent with the classroom discourse observed in

Snapshot Two. On the contrary, Margaret had the students working
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alone. She listened courteously, but did not explore student

thinking. And, while the task certainly provided the opportunites

described, they were not pursued. Margaret appeared to be focusing
primarily on the lesson and on her teaching behaviors.

What is of interest, then, is the careful analysis of Snapshots
Three and Four at the end of the year. It is here we notice more
careful attention to student thinking and student organization.
Margaret is displaying more of the characteristics she described at
the beginning of the year. She is respecting students ideas and is
open to their thinking. Students are more frequently working in
groups. They are listening and discussing ideas, albeit they are
still passing through the teacher.

This careful analysis of Margaret has confirmed informal
observations the research team has made. Initially teachers acquire
knowledge about alternative ways of teaching. As they put this
knowledge into practice they focus on themselves and their behaviors.
Overtime, they are more able to direct their attention to the student
and student thinking. They begin to consider alternative solution
paths. The quality of classroom discourse improves.
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*CANCELLATION WITHIN-THE-EQUATION" AS A SOLUTION PROCEDURE

Concordia University, Montreal
Liora Linchevski, The Hebrew University, Jerusalem

Solving a firat degree equation in which the cnkoova appears oo both sides of the
equal 3ign by formal sethoda 1avolres two major cognitive obstaclen. the first
one is the studeats’ imability to operate spootanecusly ob or with the uokoowa:
the second one, perbapa even sore complax, i the atudests’ difficalty wth
cperating on ao equation s a mathematical object. The objective of the teaching
experinent teported here wam to overcone the second obstacie by i procedure based
oo decomposition of a ters into a sus or a difference of terma (e.§. So 4 41 =f
4550+ 4123045 +5) folloved by cancellation of idestical teras on
both sides of the equal sign. While this procedure was adequate when a ters
vas replaced by a sum, sajot obataclen were fovnd jo the caze of decomposizg a
ters ioto 3 differeace.

In a previous paper (Herscovics & Linchevski, 1991(a)) we have tried to trace
the upper limits of solution processes used by seventh graders prior to any
formal instruction in algebra. Our investigation has shown that the students
were able to solve .successfully most of the first degree equations in one
unknown. However the solution methods they used clearly showed that the notion
of the didactic cut is valid (Filloy & Rojano, 1984).

The solution procedures which the students used were based exclusively on
operating with the numerical terms , therefore when given equations in which
the unknown appeared twice on cne Side of the equation or on both sides (ax +
bx = ¢ ; ax + b = cx) the preferred mode of solution was that of gystematic
substitution. Therefore we proposed viewing the didactic cut in terms of
cognitive obstacle (Herscovics, 1989) and defining it as the students’
inability to operate spontaneously with or on the unknown.

Preliminary considerations.

Viewing the didactic cut as a cognitive obstacle led us to coasider various
ways to overcome it. While students can develop meanings for an equation and
for the unknown sizply in terms of numerical relationship, this does not
extend to operating with or on the unknown. Such operations have to be endowed
with specific meanings of their own. This is what is achieved when the
classical balance model is introduced to represent an equation. One can add or
take away Specific numerical quantities as well as quantities involving the
unknown. Another model based on the equivalence of rectangular areas has been
proposed by Filloy and Rojano {1989). The authors have pointed out that all
physical models contain inevitable intrinsic restrictions regarding their
applicability to various types of numerical operations ca the unknova (Filloy
& Rojano, 1989). One camnnot represent 50 - 3 = 27 ca the balance because of
the subtraction. The area model representation of 7an - 12 = 9n - 24 becomes
quite sophisticated.

While obviously lacking tha relavance of physical models, aumerical models do
not have such restrictions (Herscovics & Kieram, 1980). In a teaching
experiment based on the use of arithmetic identities, Kieran (1988) found that
students who tended to focus on inverse operations had difficulties in
accepting the notion of an equivalent equation obtained by operating om both
sides of the initial equation. Perhaps these difficulties are even more

Research fudded by Quebec Ministry of Education (Fonds FCAR BQ2923)
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complex than those identified with the didactic cut, as operating on an
equation implies keeping track of the entire numerical relationship expressed
by the equation while it is being subjected to a transformation. These
considerations led us to design an individualized teaching experiment which
would give us the opportunity to study the cognitive potential of an
alternative approach (Herscovics & Linchevski, 1991 (b)). We prepared a
sequence of three lesmons, each lesson was semi-standardized. The lessons, as
well as the pre-test and the post-test, were videotaped, and an observer with
a detailed outline recorded all students respouses. We chose six seventh
graders, as described in the introduction, from three levels of mathematical
ability: Andrew and Daniel were the top students, Andrea and Robyn average,
and Joel and Audrey were weakest., The first lesson was aimed at overcoming
the students’ inability to spontanecusly group terms involving the unknown on
the same side of the equal sign. In the paper "Crossing the didactic cut in
algebra : grouping like terms" (Herscovics & Linchevski, 1991 (b)) we gave a
detailed description of this lesson. The teaching intervention was based on
the students natural tendency, which had ‘been found in our previous
investigation, to group terms involving the unknown without any coefficient (n
+n=76, n+5+n=>55)., We assumed that this tendency can be exploited by
increasing the number of terms (e.g. n +n +n +n = 68) and relating this
string of terms to the multiplicative term (e.g. 4n = 68). The teaching
experiment was successful. However, a problem of an arithmetic nature
occurred. In jumping over terms in order to group , students were influenced
by the operation following the term they started with.

In this paper we will describe and analyze lessons 2 and 3 which deal with
equations in which the unknown appears on both sides of the equal sign.

The Cancellation principle.

The notion of grouping like terms can be extended to decomposition of a term
into a sum or a difference. Grouping and decomposition can then be used to
introduce a relatively simple solution procedure based on tranformation-
within-the-equation. For instance terms in 5n + 17 = 7n + 3 can be
decomposed into Sn + 14 + 3 = 5n+ 2n+ 3. One can then appeal to a
cancellation principle to simplify this to read 14 = 2n, an equation that can
eacily be solved by all the students. Of course, the decomposition of terms
can also deal with difference. For instance 13n - 22 = 6n + 41 can be
expressed as Tn + 6n -22 = 6n + 63 -22 and cancellation reduces the equation
to 7a = 63.

From a cognitive perspective, the cancellation procedure which we refer to as
*Cancellation-Within-the~Ecquation” might prove to be easier than the other
procedures since the transformatiocs are local, terms are grouped or
decomposed into equivalent sums or differences without any operation on the
equation as a whole.

Preliminary assessment of comparison and cancellation prccedures

Frior to introducing cancellation procedures in an explicit form, we wanted to
verify the existence of a pre-requisite procedure, the comparison of
corresponding terms. The first three questions given to the students were
similar in form to those found in Filloy and Rojano {1984). The atudents were
asked : "Just by looking at this equation can you tell me something about the

solution?
1) n+25=17+25
2a) n+19=n+n 2b) Do you think that the other n mast
have the same value or can it be different?
Q
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3a) n+ 24¢=n+2n 3b). Do you think that the other n must have the same

’ value or can it be different? ’
For equatiop (1) all the students except Audrey compared corresponding terms
to conclude that n = 17. In {2a) 4 out of the 6 equated n to 19 and
indicated that all the occurrences of n must be 19. This is in contrast to the
results obtained by Filloy and Rojano. As for equation (3a) it was solved by
comparison by S students.

In order to assess whether the students would use cowparison to avoid
unnecessary arithmetic operations we asked them: "What do you think would be
a fast way of checking if the two sides of : 82 + 27 + 79 - 57 = 82 + 27 +
37 - 15 are equal?" All six compared the two sides by simply performing the
last indicated operation. This provides some evidence that the students can
use comparison and develop procedural shortcuts.

The last two equations preceding the instruction were aimed at verifying if
the presence of identical terms ou each side of an equation might induce
spoataneous cancellation.

The students were asked: *"If you read the left side and then the right side
of the equal sign what is the first thing you would do to solve the equatioa?"
1) Ta+29=4n + 36 + 29 2) 3n + 4n + 21 = 3 + 57

Andrew spontaneously cancelled the identical terms im both equatioms. Joel
cancelled 29 in equation (1). The other four grouped the numerical terms in
{1) and the terms in the unknown in (2). Hence we can conclude that apart from
Andrew, the cancellation process had not yet been acquired.

Lesson 2 - Cancellation of additive terms.
Part 1: Introduction of the balance model.

We first presented the students with the equation 5n + 3n + 11 = 5o + 11 + 39
and asked them if they could think of an equation as cne side balancing the
other. We then introduced little cutouts of each part of the equation which
were put on the respective arms of a scale drawn oa a workaheet, Students
were then asked if removing the same weight on each side would leave it
balanced, and if the same would be true with numbers. We used this model to
introduce the principle that "Equals taken away from Equals leave Equals”. We
then suggested that they look at the scale and asked if they noticed any equal
terms on both sides. They pointed at 11 and Sn. When asked if these could be
taken away, 5 out of the 6 removed both 11 and Sn, while Joel removed only 11.
The students were left with 3n and 39 and "solved" this "equation®. Then the
question of whether or not the solution they found (n =13) would also be the
solution of the initial equation was raised. All six were comvinced that it
was.

This introductory model had the distinct advantage of condensing the whole
cancellation procedure and of offering the students a type of "inactive" mode
of representation. However, as mentioned in the introduction, we did not want
to build oun this model because of its restriction (Filloy & Rojano 1989).
Hence we proceeded to justify the whole process of cancellation on the basis
of an "arithmetic" model (Herscovics & Kieran, 1980).

Part 2 : Introduction of the arithmetic model.
We showed the students the equation 7 x 9 + 11 = 74 and constructed from this
arithmetic egqwation an algebraic equation by hiding a number in turn by

finger, place holder and finally by letter as in Herscovics and Kieran (1980).
We repeated this transformation with the number 13 in 8 x 13 + 11 =5 x 13 +
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50 in order to obtain an algebraic equation with the unknown on both sides:
8n + 11 = 5n + 50. After pointing out that none of the procedures theay knew
could efficiently solve this type of equation, we told them that we would
develop a new procedure and verified each step in this development by
operating simultanecusly on the algebraic equation and the aritlmetic equation
which we rewrote as : 8x 13 + 11 =5x 13 + 50 to remind ourselves that
we have to imagine that the solution was hidden.

Part 3 : The cancellation procedure.

In introdacing the cancellation procedure, we had to choose between starting
with the cancellation of the numerical terms or the terms in the unknown. The
advantage of the latter is that the equation obtained can be solved Ly inverse
operations (e.g. 3n + 11 =50). The disadvantage is that cancelling the
terms in the unknown might seem arbitrary since it meant cancelling a
generalized number before justifying the procedure with a specific number,
Rather than creating the possibility of such a cognitive problem we decided o
the longer process of starting with the first choice.

Cancellation of identical numerical terms.

We started by asking the following questions: "When I look at the equation
8n + 11 = 5n + 50 can I write itas 8a+ 11 = Sn + 39 + 11 ? 1Is this
equation still balanced out ? Will the solution be the same ?*
We wish to point out that for all the transformations we introduced in the
cancellation process, each one was accompanied by questions regarding the
maintenance of numerical equilibrium and the iavariance of the solution.
These were always followed by a verification of the corresponding
transformation on the arithmetic equation, whether the students agreed and
responded affirmatively to each of the questions, or thought that tle equality
or the solution would be affected by the tranformations, or were not sure.
Then we asked the following question: "What if I take away 1l on both sides,
do you think that both sides will still be equal ?... What is the new
equation we get?... Do you think the solution is the same for both equations?®
Five out of the 6 thought that removing 11 on both sides would maintain the
equality. Regarding the invariance of the solution only two were sure. At
this point with the help of Andrea we realized that they referred to another
interpretation of the word "solution®, the cne usually used in arithmetic, the
"answer" on the right side of an arithmetic equation.
We justified the transformation by showing the steps on the algebraic
equaticn: 8n + 11 =51 + 11 + 39
- 11 - 11

8n = Sa + 39
The students could check the validity of their operation by verifying it oca
the arithmetic equation.,
After the justification and the verification we suggested a shortcut saying
"Let me show you a short way of doing what we just did. We start with the
equation 8n + 11 = S5n + 50 split 50 and replace it by 11 + 39, We get
8a + 11 = 5n + 11 + 39 and we simply cross out 1l on both sides :
8n + 11 = 5n + 11 + 39. We called it "Cancelling 11 on both sides" or
"Cancelling the addition of 11 oo both sides”.

Cancelling the terms in the unknown.
After reducing the initial equation to 8a = 5n + 39 we repeated the steps and

the questicns described above regarding the replacement of 8a by 5n + 3n and
subtracting Sn from both sides. Two students felt that splitting 8n would

Q

RIC 293

Aruitoxt provided by Eic:




E

1-269

change the balance. Verifying their assumption on the corresponding arithmetic
equation caused a change in their initial conception. We again suggested the
shortcut 5n + 3= S5n + 39 calling it "cancellation of the same term on
both sides". A summary of this lengthy introductiom provided the opportunity
to put together all the steps and to ask the students how would they choose
the terms to be split up for eventual cancellation. They all used the
¢riterion of "bigger" term to indicate their choice.

Following this reflection on the cancellation procedure we asked each student
to solve 12n + 79 = 7n + 124, All of our students except of Audrey solved it
without any problem. Three started by replacing 124 by 79 + 45 and
cancelling 79. They then rewrote the equation and split 12n into 5a + 7,
cancelled 7n, rewrote S5a = 45 and divided 45 by 5. The others started by
replacing the unknosm, cancelling and then splitting up the numeric term.
Audrey, the weakest student, had to be shown the introductory example again,
following which she rewrote the given example by decomposing 12n to 5a + 7n,
cancelled 7n, rewrote 5n + 79 = 124, and then used inverse operations. The
next equation was 12n + 109 = 18n + 67. All of the students used the same
procedure they had used before. Audrey had to be guided in how to re-insert
12n + 6n into the equtiom.

Flexibility in the choice of sub proced.res.

In order to verify if the student could solve the equation using other sub
procedures, and in order to raise the question of the invariance of the
solution, we asked the students to solve the same equation (12n + 109 = 18n +
67), but to start by decomposing a term other than the term they started with
before. All of them were able to, and stated their coaviction that the order
of cancellation did not affect the solution. When asked to solve 109 = én +
67 using ancther procedure, they used inverse operations.

More equations: The students were asked to solve :
(1) 19n = 13n + 72 (2) 57 +8n=¢6n+ 71 (3) 120 + 30 =13n + 19
(4) 6n + 23 =n + 88 (5) 71 +12n + 38 = 13n + 67 + 5n
Equaticn (1) was solved by all the students. In equation (2) Robyn
spontanecusly decomposed into sums both 8o and 71  and used double
cancellation. Audrey split up 71 but did not know where to replace it, so we
used an arrow to help her to remember the term she wanted to replace. In
equation (3) to our surprise, all of the students split 13n into 12n + 1n, and
Andrea joined Robyn in double cancellation. Audrey, when ending up with 11 =
in stated that it did not make sense. She had to be shown that 1n was the same
as n just as 1 x 3 is the same as 3. In equation (4) Andrea and Audrey
got 6n = n + 45, and were perplexed by the presence of a singleton. They
overcame this obstacle when asked to write 6n as a string of additions
(Berscovics & Linchevski 1991 (b)).
The last equation was intended to verify if students would first group and
then decompose or would start by splitting up.  Andrea and Audrey started by
splitting up followed by immediate cancellation, while the others grouped
first. Andrea, Robyn and Joel used a double cancellation in the solution
process.

We ended lesson 2 with a short review. We presented the students with some
equations, asking them to indicate which procedure ahould be used to solve.
Lesaon 3 started in the same way but this time we asked them also to solve
the equations. Only Audrey had difficulties regarding rewriting the equation
after transformations.

0 294

RIC

Aruitoxt provided by Eic:




1-270

Lesson 3. Preliminary considerations.

As in lesson 2 we chose to start by introducing the cancellatica of the
numerical term. In the pretest we had found that our students experienced
some difficulty with the composition of consecutive subtractions. Some of the
students did not perceive that 189 - 50 - 50 was the same as 189 - 100. Thus
we decided to steer our students toward numerical situations which avoided
this problem. We tried to achieve this by focusing their attention on the
decomposition of a numerical term that was added. This also brought us to
limit the scope of this teaching experiment to forms involving subtraction
only on one side of the equation of either a numerical term or a term in the
unknown as in 190 - 8n = 18n - 18.

Part 1 : Decomposition of a numerical term.

As in lesson 2 we built oa an arithmetic model. The student constructed an
algebraic equation from an arithmetic equation by hiding a number, but this
time with subtraction on one side : 6én + 17 = 8n - 11. We used decomposition
of 17 into 28 - 11. The stages of instruction were exactly as in lesson 2.
This enabled us to highlight the basic principle "Equals added to Equals give
Equals". We called this principle "Cancelling the subtraction of 11 <a both
sides".

During the summary review of this procedure we discussed with the students how
to choose the term to be expresued as a difference. To assess how well our
students had grasped our instructions we asked them to solve :

19n + 23 = 24n - 22. The two top studeats figured out mentally the
decomposition and immediatelly wrote : 19 + 45 - 22 = 24n - 22 and solved
the equation using two cancellations. However the other 4 students needed
some guidance as 3 of them decomposed 23 into 22 + 1, The next equation was
solved by 4 students, and the two others needed some help in splitting a term
into a difference. At this stage we presented our students with the equation
17n - 48 = 13n. We wondered if after cancellation of 13n they would experience
any problem. The results confirmed our conjecture, as four of the 6, after the
cancellation of 13n, did not know how to re-write the equation. Andrew,
looking at 4n - 48 = stated : "All the weight is on cne side and you don’t
have a solution". We reminded them that cancellation was justified by the
subtraction of 13n from both sides.

Part 2 : Restrictions on cancellation.

In order to verify if the students perceived the importance of nst ounly
"cancelling out" the sams number but also the same operatiom, we presented the
equation 15n + 18 = 17n - 18 asking if we could cancel 18 on both sides.Five
out of the 6 explained "If you want to cancel out, you must make sure it’'s the
same operation”. We reczll that in the first equation when they were asked to
solve 19n + 23 = 24n -22 three of them split 23 into 22 + 1 and at that time
we pointed out to them that cne could justify cancellation only if the same
operation on the term is involved.

Part 3 : Decomposition of a term involving the unknouwn.

At this stage we began to observe some of the foundation problems we had
observed at the beginning of the teaching experiment, which we previously
called “"a detachment® of an operation sign from the term (Herscovics &
Linchevaki 1991 (a) (b)). W gave them the equation 155 - 6n = 3n + 11,
which 4 of the 6 re-wrote as 155 -3n + 3n = 3 + 11 in order to cancel 3n.
Our teaching intervention was based cu numerical examples, and on pointing
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explicitly at 3n to be split up. Oualy in the third equation of that type were
all 6 students able tc express a term in the unknowm as a difference. The
last equation to be solved was rather complex : 77 - 8n + 113 = 13an ~ 18 + Sn.
Andrew, Robyn, Joel and Audrey first grouped and then deccsposed. Robyn and
Joel reordered the equation before grouping. Robyn and Audrey used inverse
operation when obtaining an equation with only a numerical term ou ane side.

Poat test.

The post test took place cne month after the last meeting. The students had
not done any algebra since the last lesson, and therefore we thought that some
of the procedures would not come spontanecusly to their mind. We thus had
prepared two triggers, in order to jolt their memory and place them again in
the framework needed for the solution, to be used o ly if wnecessary. The
first trigger was a list with the procedures’ names, énd the second cne was a
ready-made right and wrong cancellation procedures.

We will discuss only the items of the post- test which are directly relevant
to lessons 2 and 3.

iso ebraj uati :
We gave the same items as in the preliminary assessment of comparison. This
time all of the students mentioned cancellation as the first procedure they
would use except for Joel. In : 7n + 29 = 4p + 36 + 29 he first grouped the
numerical terms.

Solving equatiouns.
Due to space limitations we will nmot go into detailed description of sub
procedures used by the students, but will comment that many interesting
individua)l differences have been found. The equations were given cne at a
time.

A) Single occurrence of the uonknowg.
(1) 13n + 196 = 391 (2) 16n ~ 215 = 265 (3) 12n - 156 = 0
All the students solved by using inverse operations.

We must note how stable this procedure has remained over a period of 7 momths
(Herscovics and Linchevski, 1991(a)). Even after learning the decomposition
of numbers into a sumor a difference, this new method did not interfere
with the inversing procedure.

Results from parts (B) and (C) “grouping like terms" are given in
Herscovics and Linchevski 1991(b).

(1) 4n + 39 = 7n (2) S5n + 12 =32n + 24 (3) 12n + 79 = Tn + 124
(4) 71 +12n + 38 =13n + 67 + 5n

In equation (1) (2) and (3) Aodrew, Daniel, Joel and Robyn imnediately
decomposed terms and solved successfully all of the equations while Andrea and
Audrey had to be shown triggers (1) and (2). Evidenced by the comparison part
of the post-test, both of them remembered cancellation. 80 probably they had
forgotten the decomposition part. .

The students had not lost their mastery of notation and could efficiently
write down their steps. Also they were taught to cancel one term at a time.
In the post-test Daniel, Andrea and Joel used double cancellation and Robyn
and Audrey, after cancelling the term in the unknown, used inverse operations.
Only Andrew stayed with the procedure we taught. As for equation (4) we saw
grouping first and then double cancellation, as well as splitting up from the

‘llC 296




S

E

1-272

very beginning. The students who started by splitting, after being prowpted,
willingly solved by first grouping and then splitting.

E) Unknown on both sides involving also subtraction.
(1) 19n + 23 =24n - 22 (2) 155 -6n= 3 + 11 (3) 17a - 48 = 13n
(4) 89 ~5n=M+5 (5) 77 - 82 +113 =13n -~ 18 + 5n
It is in this part that most difficulties emerged. Also some of the students
avoided the need to decompose a numerical term into a difference by cancelling
first the term in the unknown and then using inverse operations. All the basic
problems mentioned previously, the detachment of the minus sign and jumping
off with the posterior operation were cbserved.
The students tended to decompose "the bigger mumber™ regardless of its sign
(e.g. in equation (2) 155 - 3n + 3n = 3n + 11) in order to obtain
cancellation, or split a number into two numbers when the operation
preceeding the new numerical term on the left was not the same as the
operation preceeding the correspooding number cn the right.

Conclusion.

"The Cancellation Within the Equation® was accepted by the students as a
sgooth extension of their spontaneous ability to use cosparison in the coatext
of some specific mathematical equalities. This tendency was supported by both
the balance model and the arithmetic model for Jjustifying cancellation. The
decomposition of a number was a natural complementary process to that of
grouping like terms. Moreover, it was evident that the students were able to
go beyond the instruction by themselves, inventing more efficient procedures.
However, when a decomposition into a difference was involved, the cognitive
obstacles we have mentioned in previous papers were found; the detachment of
the minus sign and jumping off with the posterior operatiom. For some students
expressing a number as a difference when the subtrahend is a given constraint
was not a trivial problem. Although this procedure was addressed during the
lesson, in the post-test they experieaced the same difficulties. Some of them
kept splitting the "bigger® number into two "smaller” ones. This seems to put
in question the benefit of extending the cancellation procedure beyond
replacing terms by equivalent sums.
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EMERGING .RELATIONSHIPS BETWEEN TEACHING
AND LEARNING ARITHMETIC DURING THE PRIMARY GRADES
James Hiebert and Diana Wearne
University of Delaware

In this study, we examined relationships between instruction, students’
understanding, and students’ performance as they begen to acquire computational
strategies in multidigit addition and subtrection. We were interested in how
conceptuel understanding interacted with skillful performance es students roc;ivod
instruction on addition and subtraction with regrouping, end in how these
interactions were influenced by different kinds of instructionel activities. The
results indiceted thet instructional ectivities which emphasized mathematicel
connections through the discussion of problems and alternetive solution strategies
were more closely related to the development of both understanding and skilled
performance than were activities that emphasized procedural skills through paper-
and-pencil practice. However, the relationships are not streightforward and
several clusterings of individual cases are presented to reveal some of the
complexities.
Background

The current reform movement in mathematics education in the United States is
based, at least in part, on the belief that instruction should be redesigned to
facilitate a higher level of conceptual understanding and to decrease the emphaeis
on drill-and-practice. Although such alternative approachee are widely preeumed
to promote a more flexible ugse of knowledge and better problem solving skills, we
still have little evidence on the way in which understanding and performance
interact and on the way in which alternative instructional approaches influence
theee interactione.

The notion of understanding has a rich history in mathematice education.
Many of the psychological descriptions of understanding mathematics (e.g.,

Brownell, 1947) are based on the idea of establishing relationships between facts,
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procedures, representations, and so on. Our view of understanding is consistent
with this perspective and with more recent discussione cof building cognitive

connections (e.g., Hiebért & Carpenter, in press). We believe that understanding

develops as students establish connections of many kinds: between familiar ideas
and new material, between different forms of representation (e.g., physical and
written), between procedures and underlying principles.

In this study, we followed students during the first three years of school
and examined the dovolopmoné of understanding and performance in multidigit
arithmetic. We focused on the way in which different instructional approaches
influenced this development. We were especially interested in the influence of
approachee that emphaeizaed the construction of connections.

Method

Sample. Data were collected from an initial gohort of about 150 students
during their first, second, and third years of school. Many new students entered
the classrooms during the three years and some left, so the number of students and
their instructional history depend on the time of assessment. The students attend
suburban-rural public achools.

Instruction. Several different instructional approaches for place value and
addition and subtraction were observed. During the first year, two of the six
classrooms followed the textbook using relatively conventional instruction. The
other four classrooms implemented an alternative approach during the five weeks of
place vzlue and addition/subtraction topics. The alternative approach was
characterized by greater student use of physical representations, increased
emphasis on translating between different kinds of representations (e.g.,
physical-verbal-written symbols), greater use of story problem situations, and
fewer problems covered but increased time spent per problem during class
discussions. Class discumnions usually involved analyses of problems and sharing
alternative solution strategies. (See Hiebert & Wearne, in press, for a more

complete description of these classrooms.)
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The following year the studente were reassigned to eix second-grade

classroome. Four of the six classrooms followed the textbook in a relatively

‘ conventional way and two classrooms used the alternative approach. The
alternative instruction classrooms contained only students who had received
alternative instruction in year 1. The alternative approach, an extension of that
used during first grade, emphasized mathematical connections through class
discuesions of problems and solution strategiee and through the use of different
forms of representation. As in first grade, problems were situated in story
contexts. Both approaches daevoted about 12 weaeks to place value and
addition/eubtraction instruction.

puring the third year. the initial cohort plus about 75 new students were
assigned to nine classrooms. Three classrooms used the alternative approach and
six classrooms used varying textbook approaches. The majority of students who
receivad lltorn?txvo instruction during years 1 and 2 were in the alternative
instruction classes in year 3. The classrooms devoted 10-14 waeks of instruction
to place value and addition/eubtraction.

Assaessments. All students were given written tests three timae each year--<
near the beginning, middle, and end of the school year. At the same time, about
half the students were interviewed individually. The interviewees were randomly
selected at the beginning of year 1--12 atudents from each of the six classrooms-=-=
and the same students were interviewed throughout years 2 and 3.

The tests and interviews were constructed to measure (1) students’
understanding of grouping-by-ten ideas and of the positional nature of the written
notation system; (2) students’ skill in adding and subtracting with and without
regrouping; and, (3) students’ understanding of the computational procedures they
used. ‘

classroom gbgervations, buring years 1 and 2, all of the classrooms were

observed once or twice a week during instruction on place value and

addition/subtraction. buring year 3. all classrooms were observed for three
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consecutive days during relevant instruction. Field notes were taken on classroom
activities and the sessions were audiotaped and transcribed.
Results

We will focus on the data from years 1 and 2; at the time of writing, the
data from year 3 had not been completely gathered nor analyzed. vYear 3 data will

b= included in the conference pPresentation. Given space limitations, we will

summarize the results; more detailed presentations are available from the authors.

Between-group performance differences. 1In general, students who engaged in
ths alternative instruction for two years performed better on all types of written
test items. Specifically, they scored higher on items measuring (1) knowledge of
place value and the tens-structure of written notation, (2) computation on
instructed problems, (3) computation on noninstructed or novel problems, and (4)
story problems. For most items, the differences in percentage c)rrect between the
two groups at the end of the second year ranged from 10% - 40%.

of em n mpetgnce. Within-subject profiles helped to

characterize the nature of the between-group differences in performance and probed
further into the relationships between understanding and performance under
different instructional conditions. For illustration purposes, we can consider
two very different groups of students--those who entered the second year with a
comparatively rich understanding of grouping~by-ten ideas and how these connect
with the positional symbol system and those who still understood little about
these ideas. Nine of the 65 students interviewed at the beginning of the second
grade were relative experts, pecforming Successfully and giving meaningful
explanations. They all were highly successful on most addition, subtraction,and
missing addend story problems during the second year, but their construction and
choice of computation strategies showed several distinct patterns. Four students
created decomposition strategies in which thsy dealt with the larger digits (e.g.,

hundreds) first, regardless of regrouping demands, and used these strategies even

after they had been exposed (at home or 8chool) to the algorithms. Three students
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developed the same decomposition strategies but switched to the standard
algorithms once they had been exposed to them and used them successfully on all
problems. Three students showed less evidence of using self-generated strategies
consietently, switched to algorithms as socon as they saw them, and made some of
the classic regrouping errors on the more difficult problems.

In contrast, 23 students began second grade with very little understanding of
grouping~by-ten and place value ideas. Again, several different patterns of
performance and understanding emerged. Some students were uniformly unsuccessful
throughout the year, some students showed a sharp rise in computational
performance after learning the algorithms (independent of understanding), and a
third group showed more gradual increase in performance, based on invented
strategies, that seemed to keep pace with their increasing understanding.

Interestingly, cases of these profile patterns occurred in both kinds of
instruction. However, their frequency of occurrence differed. More students in
the alternatjive instruction classes constructed and used their own computation
strategies and depended less on the standard algorithme. For example, at the
middle of the second year, before instruction on the standard algorithm for
addition with regrouping, 81% of the correct responses of the alternative
instruction interviewees were generated by self-~constructed strategies compared to
39% for the textbook instruction interviewees. Standard algorithms (learned at
home according to their users) accounted for most of these students’ correct
responses. Fewer students in the conventional classas used the understanding they
possessed, even Lf it was substantial, to develop their own strategies or adjust

taught procedures to solve new problems.
in betwee ct understandin n erform . In order to link

learning with instruction, we were interested in the observed differences in

instruction that might explain these different learning profiles. Both content

and pedagogical differences were investigated. Content differaences were not found

in the scope of the curriculum but rather in the nature of the activities. Hore
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of the activities in the alternative instruction involved connecting procedures
with conceptual underpinnings and connecting different waye of solving problems.
For example, a great deal of time was spent in year 2 asking students to share
invented ;trntoqicl and then asking them to explain why the proceduree worked and
how they were the same as or different than other procedures.

Pedagogical differences are more difficult to summarize. 1n year 1, the
alternative instruction (compared with the more conventional irstruction) used
fewer materials and used them more consistently as tools for solving problems
rather than for demonstration; solved fewer problems but devoted more time to
solving each problem; and delivered more coherent lessons. Details of these
results are presented in Hiebert and Wearne (in press). In year 2, differences
were found again in use of materials and the time spent per problem. The same
material {base-~10 blocks) was used consistently in the alternative instruction
classrooms and was always available; a few different materials were used in the
more conventional classrooms but only for one or two lessons each. bDuring 40
minute lessons, the two alternative instruction classes averaged 12 problems per
lesson in one class and 14 problems per lesson in the other class. The four more ’
conventional classes averaged 24, 29, 36 and 38 probleme par leeson. Finally, in
the alternative instruction classrooms, students talked much more relative to the
teacher and the teachers asked many more questions that requested analyses of
probleme, description of alternative solution strategiee, and explanations of why
procedures worked.

Conc [<)

Relationships between teaching, understanding, and performance are excremely
complex. Neverthelees, this brief summary of data hints at several links. First,
the development of understanding seems to affect performance through the
construction of robust strategies that are applied succesefully acroes a range of
problems. That is, understanding doee not tranelate automatically into improved

performance; the impact of understanding on performance ie mediated by the kinds
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of strategies students use to perform tasks. If students are encouraged to invent
and analyze strategies, it ;l likely their understanding and performsnce will be
closely linked. This appears to be true for high and low achievers alike.

Second, instruction may be related most importantly to learning in terms of
whether it affords opportunities for students to use their understandings to
develop and modify procedures. It is clear that the relationship between
undsrstanding and performance can be fragile in the face of instructional demands.
The data indicate that understanding does not hecollarily translate into, or even
inform, procedural skill, Further, taught procedures can take students well
beyond their level of understanding. If students are to engage in productivs
interactions between understanding and procedural skill, instruction may need to
focus on supporting students efforts to construct, analyze, and modify a variety
of procedures.

A third conclusion, of a somewhat different kind, is based on the finding
that routins procedural skills developed just as well or better in the alternative
classes as in the more conventional drill and practice environments. Even though
students in the alternative classes spent less time practicing routine skills on
fewer problems, their performance did not suffer. This may be the most salient
finding for immediate classroom application because it frees teachers to try their
own alternative approaches, even if they are still accountable for high
performance on routine tasks.

References
Brownell, W. A. (1947). The plcce of meaning in the teaching of arithmetic.

Elementary School Journal, 47, 256-265.

Hiebert, J., & Carpenter, T. P. {in press). Learning and teaching with
understanding., In D. A. Grouws (Ed.), Handbook of re on_mathem

teaching and learning. New York: Macmillan.

304

O




1-280

Hiebert, J., & Wearne, D. (in press). Links between teaching and learning place
value with understanding in first grade. Journal for Research in Mathematics
Educatjon.

erlc 305

L Aruitoxt provided by Eic:




E

1-281
PRESCHOOLERS' SCHEMES FOR SOLVING PARTITIONING TASKS

ing, Kristine L. Pepper, & Sandra J. Gibson
The Institute of Mathematics Education
1.a Trobe University

We wanted to know what enabled young children to solve challenging dealing tasks in which
perceptual cues were restricted. A sequence of partitioning tasks designed to progressively limit children's
access to percetual cues was administered to 30 preschool children aged three to five years. An analysis of
strategies used by both successful and unsuccessful children suggested that development of a stable
pattern of operations having an iterative structure is critical. F\ ‘wrther, reliance on sensory feedback as a
means of monitoring commencement of internally regulated cycles seemed to constrain solution success.

Young children have considerable informal and intuitive mathematical concepts before entering school
(Gelman & Gallistel, 1978; Irwin, 1990; Miller, 1984; Resnick, 1989; Wright, 1991). One particular
cognitive skill is an ability to equally divide a set of discrete items (Davis & Pitkethly, 1990; Hunting &
Sharpley, 1988; Pepper, 1991). A common task used with preschoolers is a collection of 12 items -~
sometimes food such as jelly beans -- which are to be shared equally between three dolls. Various names
have been used to describe the process observed or infered from the behavior of the subjects studied:
partitioning, sharing, dealing, or distributive counting. A feature of successful efforts to distribute items
equally is a powerful algorithm leading to the creation of accurate equal fractional units. Three nested
actions comprise the basic algorithm: (1) allocation of item to a recipient, (2) iteration of the allocation act
for each recipient to complete a cycle, and (3) if iterns remain, repetition of the cycle (Hunting & Sharpley,
1988). The ability of young children to solve tasks of this kind is important for mathematics education
because such actions can form a meaning base for the notation and symbolism of division, and for
fractions and ratios. As Saenz-Ludlow (1990) says, "It seems that fraction schemes spring out of iterating
schemes that lead to partitioning schemes" (p. 51).

Subsequent examination of children’s partitioning behavior showed that some young children who
used systematic methods varied the order in which items were allocated for each cycle of the procedure
(Hunting, 1991). Also, some children were able to maintain the dealing procedure as they were carrying
out a conversation with the interviewer, or re-establish the order of allocation after being distracted or
interrupted. Pepper (1991) found that preschoolers' ability to succeed with dealing tasks was not related to
their counting competence. In a follow up study, Pepper (1992) attempted to limit young children's use of
pre-numerical skills such as subitizing (Kaufman, Lord, Reese, & Volkmann, 1949), visual height
comparisons, and pattern matching, by including a task called Money Boxes, in which items to be
allocated - coins -- became hidden from view once placed in opaque containers. Of a sample of 25 four
and five year old children studied, 16 succeeded with the Money Box task; and werc evenly distributed
across three categories of counting competence (tho=0.11, p=0.58). The most commonly observed
strategy was a systematic dealing procedure where each cycle began with the same doll and money box.
Two strategics were suggested by these results. First, a particular position of doll and/or money box
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served as a sign post to mark the commencement of a new cycle. Second, mental records of lots of three
were used to regulate items as they were being distributed.

In summary, when given sharing tasks involving discrete items, in which the items are visible at all
stages of the solution process, young children seem able to use different schemes as they work towards
creating equal shares. These schemes include comparing heights of stacked piles, placing items in lines
and comparing lengths or matching one-to-one across shares, successive comparison of items in each
share using subitizing as items are allocated, counting, using one recipient as a marker, and mental records
of lots corresponding to the number of recipients. Table 1 lists these schemes. Of interest was whether
young children, if denied access to perceptual cues needed to use a particular scheme, could adapt by
using a different scheme which relied on intemal regulation of actions. We also wanted to explore more
deeply by what means children succeeded with tasks such as Money Boxes where schemes seeming to
depend on perceptual feedback, such as pattern matching, could not be used. We decided to examine in
more detail the strategies used by successful and unsuccessful children on the Money Box task, and
compare these with their methods for solving tasks that preceded and followed the Money Box task.

Cognitive Scheme Behaviora! Indicator
Pattern matching/subitizing organized display of items replicated
across recipients
Measurement of height stacks items, lowers heads to visually
. compare, moves stacks together
Measurement of length sets out items in corresponding lines
Counting counts in process, able to say how many

in each pile at the end as verification

Mental grouping and monitoring of  begins cycle at different points,

represented items organizes number of items for each cycle
in advance, pauses in process/tolerance
of distraction

Recipient as sign-post or marker begins cycle at the same place

Table 1: Possible schemes used to solve partitioning tasks

Method

Thirty children attending the La Trobe University Child Care Centre were individually interviewed
during November 1991. Children interviewed were from three age groups. Six children were from a three
year old group, with mean age three years two months (3.2), median age 3.3, mode 3.3, and range 3.0-
3.4 years. Fifteen children were from a group of four year olds. with mean age 3.11, median age 3.10,
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mode 3.10, and age range 3.6-4.4 years. Nine childzen were from a group of five year olds. Their mear
age was 4.11, median age 4.11, mode 5.1.‘ and their age range was 4.6-5.2 years. Children were selected
on the basis of parents’ consent to having their children participate. The children’s parents were either
students or academic staff of the University.

A set of partitioning tasks involving distribution of discrete items was administered. These differed in
difficulty according to particular schemes it was thought children might employ in the course of their '
solutions. All interviewed children were given an initial task, called "Stickers”, followed by the first
Money Box task involving 15 coins and three dolls. The sequence of tasks which followed varied for each
individual according to whether that child was successful or not. Figure 1 shows the flowchart governing
task administration. The triplet of numerals in brackets represents the numbers of children from each age
group who succeeded for each task - the first numeral represents the number of youngest children.

. ~No(3,2,0) —»
m -0 (5,7,1)-»{ Teafor Two m
- — Yes (2,4,0) > -

Yes (1,8,8)
Money Boxes | _ -— No(0,3,1) =
No(1,6,4)y> Teafor Thee ) _ ves (1,0.3)
Yes (0,2,4)

Mom;gﬂoxes —No(6,2,1) —»

Yes (0,0,3)
2

Wl_m ©0,1) >

Yes (0,0,2)
Morey Boxes )~ No(0,0,2) —
Yo ©o0
- Figure 1: Flowchart of interview tasks

The interviews were conducted in a smail room adjacent to activity rooms that the four and five year old
groups used. All intetviews were video taped for later analysis.

A description of the tasks of interest in this report now follows.

Stickers. The child is invited to observe a sock puppet, operated by the interviewer, distribute 12
monochromatic stickers between two dolls. After prelimirary discussion designed to put the child at case,
the child is asked to observe Socko give out the stickers to the dolls "so each doll gets the same.” The
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interviewer says, "SocIo isn't very clever at sharing out. I want you to watch what Socko does, and tell
me if each doll gets a fair share.” The puppet gives four stickers 1o one doll and eight stickers to the other
in a non-systematic way. The child is asked if the dolls get the same each, and whether the dolls would be
happy with their share. Regardless of the child's responses to these questions, she is then asked to teach
Socko how to distribute all the stickers so each doll gets the same. After the distribution concludes the
child is asked if the dolls got the same each, and for a justification.

Moncy Boxes (A). Three identical opaque money boxes are placed in a row on the table in front of each
of three dolls. A stack of 15 twenty cent coins are positioned near the money boxes. The child is told:
“Mum wants all the pocket money shared out evenly so each doll gets the same. Can you share the money
into the money boxes so each doll has the same? How? Show me.” The child is encouraged to distribute
all the coins into the money boxes, and when the task is completed is asked: "Has each doll got an even
share? How can you tell?”

Money Boxes (B). A similar task 1o Money Boxes (A) except for this task 17 coins are to be
distributed.

Moncey Boxes (C). Five identical opaque money boxes are placed in a circle on the table. Nineteen
coins are to be distributed.

Money Boxes (D). Five identical opaque money boxes 2re placed on a circular rotating platform known
as a "lazy susan”. The child is shown how the tray works, and it is explained that the tray will be rotated
sometime during the allocation process. Again, 19 coins are placed in a stack for distribution.

Tea for Three. On a table are placed 18 items to be distributed between three dolls. On an adjacent table
is a toy cook top with pot and spoon. In the pot are 12 white "crazy daisy" plastic items. The interviewer
says the dolls are going to have their dinner, and indicates the items in the pot on the toy stove. The
interviewer then says: "The meal is cooked and the dolls are very hungry. Can you serve out the food so
all the food is given out and each doll gets the same amount?” If the <hild stops before all the items are
distributed, the interviewer says: “Has all the food been given out? Remember the dolls are very hungry”.
The child is then asked to consider the allocation outcome with the question “Do you think each aoll has
the same amount? How do you know?" If the child disagrees she is asked: "Can you fix it up?”

Tea for Two. Children unsuccessful with the Stickers task are invited, in pairs, to set a table for two
dolls, and distribute 12 items of "food". Results not reported in this paper.

Results

Seventeen of the 30 children succeeded with the Stickers task. Of these, six succeeded with the first
Money Box task. We first consider solution strategies observed for children who succeeded with the first
Money Box task, and their behavior on subsequent variations. Then, we will examine solution strategies
typified by children unsuccessful with the first Money Box task, and compare these with their solution
strategies on the Tea for Three task, where items remained perceptually accessible.
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Solution strategies of successful children

The first Money Pox task r:quired children to share 15 coins equally between three dolis. Two solution
strategies were obs:rved. The first is exemplified by Sharlene (3.7) and is represented by the following
table, in which A, 13, and C nipresent cack of the money boxes, and the bullets, +, represent coins. The
flow of action proceeds is~m lei: to righr.

A . . . . .
B . . . . .

Coe . . . .

Figure 2: Sharlene’s cyclic and regular solution strategy

Sharlene's strategy shows (1) cycles of three, in which each box is visited just once, and (2) the same
money box used at the commencement of each cycle. The second solution strategy is exemplified by Jim
(5.1). His strategy also involves cycles of three, but different money boxes mark the commencement of
each cycle. Sharlene's strategy is cyclic and regular; Jim's strategy is cyclic and irregular.

A . . . .
B . . . . .

C ¢ o . . .

Figure 3: Jim's cyclic and irregular solution strategy

Of the six successful children, three showed cyclic and regular strategies (Sharlene (3.7), Aaron (4.9),
Elise (4.7)); the other children cyclic but irregular strategies (Jim (5.1), Kalhara (5.1), Sophie (4.2)).
Kalhara and Sophie showed at least three regular cycles of allocation.

For Money Boxes (B), in which 17 coins were to be distributed to three boxes, three children, after
distribution, said the dolls did not receive a fair share (Jim (5.1), Elise (4.7), Kalhara (5.1)). Elise and
Kalhara used the cyclic regular method: Jim used a cyclic irregular method as before. Shatlene (3.7) and
Aaron (4.9) showed cyclic regular solutions but said the dolls got the same. Sophie (4.2) was
unsuccessful. Her allocations followed a cycle of C, B, A, except for the second, which was C, C, B.
She chattered to the interviewer during the allocations. Hesitation in fluency of her actions seemed to
coincide with the onset of utterances.

Money Boxces (C) involved five identical boxes arranged in a circle. Nineteen coins were o be shared.
Jim (5.1) and Elise (4.7) succeeded on this task; Elise on the second attempt. She was very uncertain on
her first attempt, repeatedly asking the interviewer if she had placed a coin in a particular money box. She
used a different approach the second time, taking piles of six, seven, three, and three.coins from the stack
in her left hand as she proceeded. The interviewer also advised her not to talk while she was working.
Kalhara (5.1) said all the money boxes got the same. All children showed a one coin-one box, one coin-
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next box sequential strategy beginning at th» box nearest them on the table, thus: A, B,C, D,E, A, B, C,
D, E....

Jim and Elise were given Money Boxes (D) where five money boxes were placed on a "lazy susan”.
The lazy susan was spun 2.4 times after the tenth coin had been placed. Jim commenced placing the 11th
coin in the "right” box and continued sequentiaily; at the end saying "there's only four more left." Elise
placed two coins in the third box even before the tray was rotated. After rotation she changed direction,
using a one coin-one box sequential strategy. She was not successful.

A follow-up interview was given to Jim in which a task similar to Money Boxes (D) was given. The
tray was rotated 1.8 times after the ninth coin was posted. There were 22 coins in all. Jim placed the tenth
coin in the next box, despite the intervening rotation. He indicated the boxes did not receive the same
number of coins, saying,"because this one didn't have any” -- as he touched the next box in the sequence
after the last coin had been posted.

Solution strategies of unsuccessful children

Three pattemns of response were observed in the children who were unsuccessful with the Money
Boxes (A) task. The first pattem was cyclic like that observed in the successful children. However,
children who did this were not consistent in its use (Joshua (4.4), Vanessa (5.2)). The second pattern was
to piace a sequence of three or more coins in the same box. Six children did this (Leo (3.3), Anton (3.10),
Blake (4.1), Julian (4.2), Tim (4.10), Carla (4.11)). Carla was the only child whose solution was
exclusively of this sort (see Figure 4). A third pattern was to place a coin in the box adjacent to the box
previously visited, like a zig-zag (see Figure 5). Three children's responses were predominantly of this
sort (Justin (3.10), Tess (4.3), Brian (5.0)). Other responses were non-cyclic and irregular.

Ae o o o o

B e o o o o o

C L] L] L] L]
Figure 4: Carla's solution strategy

Figure 5: Tess's solution strategy
Tea for Three was given to children who were unsuccessful solving the first Money Box task. A
significant degree of consistency of response was observed across these two tasks. Table 2 summarizes
strategies used for each task. Tim and Brian were the only children who had success with Tea for Three.
Tim counted the items onto the dishes. He knew each dish contained six items. Since he did not count all
the items before, his estimate for the first dish was a good one. Brian was successful because his strategy
was wholly systematic.
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Child Money Boxes (A) “lea for Three
Leo(33)  Non-cyclic, imegular Non-cyclic, imegular: not
Anton (3.10) Non-cyclic, irregular Task not given

. . Adjacent dish strategy
Justin (3.10)  Adjacent box strategy predominantly: not successful
Blake (4.1) Sequence of coins in each box,  Sequence of items for each dish:

) inantly not successful
Julian (4.2)  Sequence of coins in each box Task not given
Tess (4.3) Adjacent box strategy Task not given
. First four cycles irreguiar: not
Joshua (4.4)  First three cycles irregular successful
Tim (4.10) Sequence of coins in cach box,  Sequence of items in each dish
) predominantly exclusively: successful
Sequence of coins in each box,  Placed handfuls of items on each
Carla (.11)  exclusively dish: not successful
Brian (5.0)  Cyclic with adjacent box strategy %clic and regular: successful
" R clic mixed wi jacent dish
Vanessa (5.2) Cyclic predominantly strategy: not successful

Table 2: Relationship between responses across Money Boxes (A) and Tea for Three tasks
Discussion

A set of tasks involving Money Boxes was used to study partitioning schemes used by young children.
These tasks restricted children's use of schemes dependent on perceptual cues such as comparison of
heights of shared items, comparison of lengths, one to one matching across shares, and successive
comparison using subitizing. What internal regulations of actions made it possible to succeed in these
circumstances? The first requirement would seem to be a mechanism for monitoring "lots" or units of
multiple allocations. Internally constructed units consisting of & temporal sequence of discrete counts or
tallies replayed again and again could be needed. Alternatively, ability to visualize a spatial configuration
corresponding to the number of Money Boxes, which can be "scanned" iteratively. Such internal
constructions can be considered empirical abstractions (von Glasersfeld, 1982). Empirical abstractions
occur "when the experiencing subject attends, not to the specific sensory content of experience, but to the
operations that combine perceptual and proprioceptive clements into more or less stable patterns. These
patterns are constituted by motion, either physical or attentional, forming "scan paths” that link particles of
sensory experience. To be actualised in perception or representation. the patterns need sensory material of
some kind, but it is the motion, not the specific sensory material used, that determines the pattern's
character” (p. 196). The difference between Jim's and Sharlene's scheme for solving the first Money Box
task was Sharlene's use of one box exclusively as a marker. This behavior indicates she relied more on
sensory feedback located in the physical presence of the three boxes. In contrast, Jim's ifregular starting
points for his allocation cycles suggests greater confidence in a represented cycle and some cycle counter
independent of the boxes. Jiin's performance on more challenging tasks involving five boxes arranged in
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acircle showed he was capable of keeping track of the next box to receive a coin and monitor position
reached in a cycle consisting of five elements.

The critical difference between successful and unsuccessful children on the first Money Box task was
the development of a stable pattem of operations having an iterative structure. The role played by temporal
or spatial representations of perceptual lots is unclear, as is the interaction between representational and
direct sensory experience in the process of solving these kinds of tasks.
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The Emancipatory Nature of Reflective Mathematics Teaching

Barbara Jaworski, University of Birmingham, UK.

Critical reflection on the act of teaching may be seen to be liberating for the teacher, who,
as a result, has grearer knowledge and control of the teaching act. This paper supporis
suck contention where the teaching of mathematics is concerned by drawing on research
with one teacher who might be seen 10 exgage in critical reflective practice. It considers
ailso how the researcher might influence the liberating process through which teacher-
emancipation occwrs.

Bondage

If the term emancipation - a state of being set free from bondage (Chambers’ Engiish Dictionary) -
is applied to teachers, it might be inferred that the teacher who is not emancipated remains in

some form of bondage - for example, the constraints of an imposed curriculum.

Anecdote abounds to support the frequency of statements from mathematics teachers in the vein
of “I have taught them blank so many times and they still can’t get it right”, or “I should like to
teach more imaginatively, but if I did I should never have time to compliete the syllabus”. Such
statements typically come from teachers who are bound by tradition, convention or curriculum,
and who fail to perceive their own power to tackle constraints. The result for pupils is likely to
be a limited or impoverished mathematical experience.

Reflective practice

Many educationalists have advocated reflective practice as a means of emerging from such
shackles. I must make clear that the term reflection as I use it here has a critical dimension and is
more than just ‘contemplative thought’. Van Manen (1977) defines reflection at three different
levels, the third of which, critical reflection, concerns the ethical and moral dimensions of
educational practice. Boud, Keogh and Walker (1985) speak of “goal-directed critical reflection”
which concerns reflection which is “pursued with intent”. Smyth (1987) advocates “a critical
pedagogy of schooling which goes ccnsiderably beyond a reflective approach to teaching”,
suggesting that the reflective approach is not itself critical. However, Kemmis (1985) brings these
two elements very firmly together, as in

We are inclined to think of reflection as something quict and personal. My argument here is that
reflection is action-oriented. social and political. lis product is praxis (informed. committed
action) the most eloquent and socially significant form of human action (p 141)
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It is reflection in Kemmis’ sense which ! address in this paper. [ will make the case that reflective
practice in matnematics teaching, which is critical and demands action, is a liberating force, and
that teachers engaging in such reflection are emancipated practitioners.

Teachers’ voice

The emancipated teacher may be seen to be in theoretical control of the practice of teaching. This
implies that the teacher explicates theories, or gives them ‘voice’.

Cooney (1984) refers to teachers’ “implicit theories of teaching and learning which influence
classroom acts”, saying further,
1 belicve that teachers make decisions about students and the curriculum in a rational way
according to the conceptions they hold. (My italics)
Although the classroom act itself may be seen as an explication of theory, teachers’ thinking is
often not explicitly articulated, and it is left to researchers outside the classroom to give voice to
teachers’ conceptions. Elbaz (1950) suggests that it has become important that researchers into
teachers’ thinking “redress an imbalance which had in the past given us knowledge of teaching
from the outside only” by encouraging expression of teachers’ own voice.
Having ‘voice’ implies that one has a language in which to give expression to one’s authentic
concems, that one is able 1o recognise those concems, and further that there is an audience of
significant others who will listen.
Smyth (1987) goes further in speaking of teacher emancipation, that only by exercising and
“intellectualising’ their voice, will teachers be empowered in their own profession.
To reconceptualise the nature of teachers’ work as a form of inteliectual labour amounts to
permitting and encouraging teachers to question critically their understandings of society,
schooling and pedagogy.
These notions pose a dilemma for theorists, researchers or teacher-educators proposing teacher
emancipation, because to be truly emancipated teachers themselves must be their own liberators.

My experience as a teacher. and in working with teachers, suggests that critical reflective practice
(which [ discuss further below) can be a liberating process, but that it is actually very difficult to
sustain if working alone. In my research with teachers I believe that I have, to some extent,
facilitated their reflective practice by being there and by asking questions. 1 propose, therefore,
that researchers working with teachers can be catalysts for liberation, through their encouraging
of questioning of practice, and provision of opportunity for teachers to exercise their voice.
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The role of the researcher

Elbaz (1987), while acknowledging the “large gap between what researchers produce as
reconstructions of teachers’ knowledge ... and teachers’ accounts of their own knowledge”,
nevertheless expresses the hope,

I would like to assume that rescarch on tcachers’ knowlcdge has some meaning for the teachers

themselves, that it can offer ways of working with tcachers on the elaboration of their own

knowledge, and that it can contribute to the empowerment (of] teachers and the improvement of

what is done in classrooms. (p 46)
The purpose of my own research with teachers was to attempt to elicit the deep beliefs and
motivations which influenced their teaching acts. My methodology involved talking extensively
.with the teacher both before and after a lesson which [ observed. Fundamental to any success I
might have had in this was the development of a level of trust between teacher and researcher
which would allow sensitive areas to be addressed. For the teacher cooperating in my research,
and attempting seriously to tackle the questions [ asked, a consequence was a making explicit of
theories of teaching which could then be used to influence future practice. It was not part of my
research aims to influence the practice of the teachers with whom I worked, it was an inevitable
consequence that it did. However, change was effected by the teacher, and in this respect the
researcher acted as a catalyst.

An example of developing practice related to teacher-researcher discussion

The teacher was about to teach a lesson on vectors to follow up his introduction of vectors to his
year-10 class (15 year olds) in a previous lesson I had asked him to tell me what he would do in
the coming lesson, and he replied that he wanted to “recap what a vector AB is”. He referred to
notes which he had prepared with plans for the lesson. The following piéce of transcript records

part of my conversation with the teacher before that lesson. (T - teacher, R - researcher, myself)

1 R What do you mean by ‘recap'? You recap?

2T Me recapping - well - me asking questions. “Now, what’s meant by adding vectors?
What's meant by taking away a vector, or a minus vector?” And then asking, “what's the
difference between those three - the vector-AB, AB, and BA?”

3 R Now is it your cxpectation that by asking appropriatc questions you will get all that
information from them?

4 T Hopefully yes. And what | wanted to do today was not really concentrate too much on
vectors, but say, "1f we've got a vector (3.4) can we find the length of AB? Hello - we're
back into Pythagoras - ha ha ha!”

5 R Right

6 T Okay?
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9 R
10T
Il R
12T
I3 R
14T
ISR
16 T

17 R
i8T

Yes

And then give them some questions, and then get them to check over their homework after
they’ve sorted out - oh - one bit I've missed on here (referring to his notes) 1 want them to
say what 2AB is - something clse we talked about, and I want to talk about AB and BA as
vectors, and AB and BA as lines.

Right

We're really talking about notation, aren't we, now?

Right. - You said, give them ten questions. What sort of questions?
They're going to be qdite straightforward.

To do what?

Find the lengths of vectors.

So, for example, "Find the length of a vector ...

.. AB, if AB is 3.4."

... (slight digression here on what the 3,4 notation looks like)

Or you could get them to invent some for themselves.

Yes. that would be quite interesting, wouldn't it.

The conversation proceeded to more general aspects of teaching and learning, and at one point
the teacher offered an anecdote from one of his lessons with lower-attaining pupils in which they
had been invited to invent ‘think of a number’ games for each other.

19T

20 R
21T

22 R
23T

24 R
25T
26 R
21T

I started playing the game, like. “I'm thinking of a number. I double it and add three, and
my answer is seven. What was the number I started with?” After a bit of practice, no
problems. But the things they were asking each other were out of this world. If /'d asked
them they'd have gone on strike!

How do you mean?
Well, they were saying *I'm thinking of a number, I've halved it, I've added three to it,
I've multiplied by three, I take two away, I divide it by seven and my answer is twenty onc.

What number did [ start with?" And they could actually solve them. Now if I went in and
put that on the board for a bottom ability group thcy would go on strike.

Yes, right.

And when you actually got back to it, they had this inverse relationship all sorted out. They
couldn’t write it down, but they had it all sorted out. That's what, yeah, it’s there isn't it,
them setting their own levels. 1 don't do it often enough. 1 must do it more often.

You can have that for what it is!

Thank you! How about doing it there (I pointed to his notes for the vectors lesson)?
What, getting them to sct their own?

Get them to sct their owr.

(Pause) 1"l trv.
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28 R 1t'll be interesting to sce if they only come up with questions of a particular type, because
that will tell you something about the way they are thinking.

30T Can | say, “Be inventive?"

31 R Sure!

32T OK. We'll do that.

At statement 8, the teacher said he would give the class some questions. He then returned to
talking again about his general lessons plans. ! was interested in what the questions would look
like and so I asked him (statement 11). His reply that they would be straightforward, was
followed by a digression into forms of notation. I brought him back to the questions again with

my statement (17) that he could get them to invent some for themselves. He acknowledged this,
but little more at that point.

1 was interested in what his questions would be, because ! wondered what they would contribute
to the pupils’ perceptions of vectors. My remarks were a focusing device where our
consideration of these questions were concerned. If | had not pursued them, the teacher may not
have provided any more information. | had great power to focus in this way, although I did not
at the time select explicitly this focus in preference to others. My suggestion was spontaneous. It
was not my, or our, pre-planned intention to focus on pupils’ inventing of their own questions.
It arose in and from the context of the conversation, which was about the teacher’s concerns.

As part of the continuing conversation, the teacher came up with the anecdote about pupils in
another class setting their own challenges, and the value that he saw in this. It is my speculation
that this was triggered by my suggestion, and that certain associations were set up in response to
our talk. This analysis came some time after my work with the teacher, so I was not able to check
its validity with him. However, his telling of the anecdote gave me opportunity to reiterate my
suggestion (statement 24), and for the teacher to agree to try it out (statement 27). His questions at

the end recognise that this is a suggestion from me, and seek in some way my clarification of the
extent of invention ! envisage.

Thus, ! influenced the teacher’s planning and execution of the vectors lesson more overtly than
had been my intention. However, ! feel that he was able to set pupils an open task of inventing
their own questions because he could see this in the context of other open tasks which he had set,
and which had been successful. Moreover, his style of working with the pupils was such that an
“activity of this kind was not unfamiliar territory to them. It is interesting to consider the extent
to which my suggestion depended on my knowledge of his practice, and the extent to which his
acceptance of it depended on his reciprocal knowledge. The developing trust between us made a

significant contribution to our joint understanding of what was passible in his classroom.
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In the lesson itself, he introduced that task with the words: ”I would like you to make your own
questions up and write your own answers out and then <hare your questions with a neighbour.
Could you be inventive please. Don’t put up a whole series of boring questions”. 1 discussed
aspects of this, and pupils’ responses to it, in Jaworski (1991b) in another context, so 1 shall not
repeat those details here. However, the outcome in terms of some pupils’ questions and
responses was very satisfactory. It opened up areas which the class had not yet addressed: for
example, the special nature of parallel vectors, and the related notations for vectors of equal
length albeit of different directions in different positions, both arose from pupils’ own
investigations. 1t provided the teacher with opportunity to address such questions in a way
meaningful to pupils because they had arisen from the pupils’ own thinking. Our retrospective
reflection on this lesson, acknowledged the value and success of the activity.

Critical reflection influencing the teaching act

1 believe that this episode charts a stage in this teacher’s own development as a teacher. For him,
in this case, critical reflection! involved making explicit the value of occasions where he asked
pupils to be inventive in setting their own challenges. It resulted in his becoming more aware of
opportunities where he could encourage pupils in this. Three weeks later I saw a lesson in
which he returned to pupils some tests which they had done and he had marked. Rather than
present a set of correct solutions for them to compare, he offered a set of ‘answers’ of his own, all
of which had errors in them. Their task was to spot the errors, and to explain, in discussion with
neighbours, what would be correct. In this way he hoped to challenge them to work dynamically
on their own solutions and errors, rather than passively to accept the teacher’s ‘correct’ solutions.

I believe that enabling the pupils to take more responsibility for their work and thinking through
setting their own challanges was an aspect of this teacher’s philosophy and operation which
developed during the time that I was working with him. I propose that this speaks to the
emancipation of this teacher, in that he was actively seeking ways of enhancing pupils’ learning,
which brought hita into a more acute knowledge and control of the teaching situation, and thus
of his own direction and purpose. In this he was engaged in a process of self-liberation.

Our conversation often focused on the liberating process itself. On one occasion we discussed
different sorts of decisions which the teacher had made in various lessons which I had seen, and

the difference between responding to a pupil instinctively, and making a more informed

! I have explicated in some detail the stages of critical reflection which formed part of my analysis of
coversations with teachers in my wider study. This is included in a paper “Reflective practice in
mathematies teaching™ which is currently submutted for publication.
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response or judgment. The teacher commented, “I feel that responses are judgments that have
proved right in the past and been taken on board.” He went on,

You've been through a lot of these situations before your responses. Don’t they actually come

from things which happen in the past and you're saying, I made a judgment then that was 2 good

one, or saw someone do something that was good. And you actuaily take that on board. Isn't

that what developing as a teacher is all about?”
Some manifestation of this general principle might arise after the vectors lesson and the asking
of pupils to invent their own questions. Perhaps in some other lesson later, the teacher would
recall aspects of this activity, and our subsequent analysis of it, and it would influence his
teaching at that instant.

I have suggested (Jaworski, 1991a and b) that it is such in-the-moment recognition of choice of
reponse, based on previous experience made explicit, that is the action outcome of critical
reflection. I go further here in suggesting that this is the essence of the liberating process. The
more critical such reflection is, in being disciplined about identifying the issues in a particular
lesson, the choices taken, the decisions made, and their effect on learning and teaching, the more
able the teacher is likely to be to act appropriately to what arises on a subsequent classroom
occasion. Developing as a teacher is the result of such action. Such development is dynamic,
and, if recognised and used deliberately, it can be liberating and empowering,.

Teacher emancipation

Teacher emancipation, according to sources quoted at the beginning of this paper, arises
consciously from teachers becoming aware of their own knowledge and purpose through critical
enquiry into their practice. Emancipation seems to be a state within the liberating process of
action-oriented critical enquiry. In the case of mathematics teaching this involves questioning
both pupils’ perceptions of the mathematics on which a lesson is based, and the pedagogy to be
employed in developing this mathematics. Teachers have to know what they hope to achieve in
terms of the mathematical content of a lesson and their pupils’ constructions of this
mathematics, and also in terms of the teaching acts which will be employed. Although this
content and these acts will be designed to fit some prescribed curriculum, they do not need to be
conditioned or bound by it. The curriculum to which the above teacher worked required pupils’
understanding of the elements of vectors which were being addressed in the lesson. It did not
prescribe the means by which such content would be made available to the pupils, and it did not
preclude the pupils coming to aspects of that content through their own investigations. The
teacher’'s overt knowledge of mathematics and pedagogy, based on his own developing
experience, as well as a confidence in his own ability to make appropriate choices and judgments,

enabled him to construct suitable teaching acts. This meant that the teacher himself was in
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control of the learning environment of pupils in his classroom, and moreover that he could take

responsibility for what occurred rather than blaming: defects on pupils’ inability to remember or
retain, or on constraining effects of the curriculum. His awareness of this level of responsibility 2
and his overt exercise of control were indicators of his emancipated position. For the teacher 1
have described, encouraging pupil-emancipation might be seen as an element of his control.

I have indicated, where the above teacher was concerned, that my research presence had some
effect on his developing practice. How does teacher development and subsequent emancipation
depend on such presence, and how far is it possible for a teacher to achieve this alone?

I have no research evidence to present in order to address this question. The teacher group
working together, perhaps in small-scale action research, to support and encourage such practice
can be an effective sustaining medium (see for example, Kemmis 1985, Gates, 1989, Mathematical
Association 1990). However, further research is needed into the development of the
emancipated teacher through a liberating process of action-oriented critical enquiry, particularly
where the teaching of mathematics and its effect on pupils’ learning is concerned.

References

Boud, D., Keogh, R. and Walker, D. (1985) Reflection: turning experience into learning. London: Kogan
Page

Cooney, T.J. (1984) “The contribution of theory 1o mathematics teacher education® in H.G. Steiner et al
Theory of mathematics education (TME) Bielefeld, Germany: Universitit Bielefeld/IDM

Elbaz, F. (1987) *Teachers’ knowledge of teaching: strategies for reflecdon’, in J. Smyth (ed.) Educating
teachers. London: Falmer .

Elbaz, F. (1990) ‘Knowledge and discourse: the evolution of research on teacher thinking,’ in C. Day, M.
Pope and P. Denicolo (eds.) Insight into teachers’ thinking and practice. London: Falmer

Gates, P. (1989) ‘Developing conscious and pedagogical knowledge through mutual observation’, in P.
Woods (ed.) Working for teacher development. London: Peter Francis

Jaworski, B. (1991a) [nterpretations of a Constructivist Philosophy in Mathematics Teaching.
Unpublished PhD Thesis. Milton Keynes, England: Open University

Jaworski, B. (1991b) “Some implications of a constructivist philosophy of mathematics teaching for the
teacher of mathematics”, in Proceeding of PME XV, Assisi, Htaly.

Kemmis, S. (1985) ‘Action Research and the politics of reflection’ in Boud, D., Keogh, R. and Walker,
D.(eds.) Reflection: turning experience into learning. London: Kogan Page

Mathematical Association, (1991) Develop your Teaching, Cheltenham, UK: Stanley Thornes

Smyth, J. (1987) *Transforming teaching through intellectualising the work of teachers.” in J. Smyth (ed.)
Educating teachers. London Falmer

Van Manen, M. (1977) ‘Linking ways of knowing with ways of being practical’ Curriculum Inquiry
6(3), 205-228

2 Evidence of this may be found in Jaworski (1991a, Chapter 7, and 1991b. page 219) A detailed
account of the *vectors’ lesson is provided in Jaworski (1991a). and a curtailed account, more specifically
related 10 constructivist aspects of the teacher’s thinking. in Jaworski (1991b)

o 321

RIC

Aruitoxt provided by Eic:




1-297

REFERENCE, STRUCTURE AND ACTION: ELIMINATING
PARADOXES IN LEARNING AND TEACHING MATHEMATICS
Clive Kanes
- Institute for Learning th Mathematics and Language
Griffith University, Brisbane

This paper starts by discussing a number of paradoxes to have recently emerged in theories of
learning and teaching mathematics. These are found to make similar assumptions about the
nature of mathematical knowledge and its epistemology. A detailed analysis of a transcript,
recording the linguistic interaction between the researcher and a number of senior high school
students, follows. This analysis traces the breakdown of a didactic contract (Brousseau) and
its subsequent re-establishment; it also studies how the pedagogic sequencing facilitates
learning the artainment of learning goals. The transcript is also used to exemplify the occurence
of paradox in pedagogic situations. The paper concludes by adapting a model, drawn from the
field of genre studies, in order 1o provide a theoretical account of linguistic utterances
constitutive of pedagogic interactions and their epistemological implications.

§1 Introduction

In Plato's Meno (80¢), Socrates presents a paradox which shows that a student cannot
learn what he or she does not already know: For if the student had the knowledge there would
be no need to seek it, and if the student lacked knowledge, then how would the student even
know what to look for? The standard rebuttal of this paradox points to an apparent confusion
about the meaning of words, for instance,"having knowledge”. Nevertheless, paradoxes of
this kind - the learning paradox (Bereiter, 1985) is almost exactly similar - bedevil modem
theories of teaching and learning mathematics (Brousseau, 1986).

A motivating question for this paper therefore is: How may paradox free models of
teaching and learning be constructed? The paper presents an interim report of a study into the
meaning and use of words in pedagogical interactions in mathematics classrooms.

§2 Paradoxes in mathematics education and some remarks on epistemology

The constructivist view that learning is a process in which the learner is actively
engaged in a process of restructuring or organising knowledge schemata is widely held in
information processing psychology (Resnick, 1983; Bereiter, 1985). This model for leaming
is , however, prone to paradox. Bereiter (1985), for instance, réfers to the learner’s paradox
whereby

...if one tries to account for leamning by means of mental actions carried out by the
learner, then it is necessary to attribute to the leamer a prior cognitive structure that is as
advanced or complex as the one to be acquirﬁﬁ.é&)
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More significantly for educators, the mave to develop instructional broccdures consistent with
constructivist learning theory has also run into difficulties (Cobb, 1988, 1992: Kanes, 1991).
Cobb argues, for instance, that Resnick’s notion of "instructional representation”, violates the
autonomy of the individual constructor at a‘key stage in the pedagogic interaction. Resnick's
procedure therefore erroneously reinstates as constructivist, a variant of the absorption model
for leaming.

Occurrence of paradox has also been noted in work proceeding on more general
pedagogic grounds. Brousseau (1986) for instance argued that teacher and student enter a
didactic contract in which the teacher must ensure that the student has an effective means of
acquiring knowledge and in which the student must accept responsibility for learning even
though not being able to see or judge, beforehand, the implication of the choices offered by the
teacher. Brousseau argued that the contract is driven into crisis and ultimately fails, for

all that he [the teacher] undertakes in order to get the pupil to produce the expected
patterns of behaviour tends to deprive the pupil of the conditions necessary to
comprehend and learn the target notion: if the teacher says what he wants he cannot
obtain it. (p.120)

Similarly, Steinbring (1989) observes that the teaching process of making all meanings explicit

leads to the effect that by the total reduction of the new knowledge which is to be
learned to knowledge already known, nothing really new can be leamed. (p. 25)

Obviously, in a few short sentences one is not able to treat the issues represented by
these paradoxes exhaustively. However, it is interesting to note that the context within which
cach of these arise provides a similar epistemological stance. Each assumes that mathematical
knowledge is essentially a matter of consenr and that, as such, is capable of being made, in
principle at least, totally explicit. For instance, in the learner's paradox, knowledge is
individually constructed as a representation of a knowledge target, and therefore, in a sense, is
actually derived by the individual. It follows that this kind of knowledge can, and in pedagogic
episodes should, be made explicit. To illustrate by a metaphor: Constructing a clock means
being able, in principle at least, to make explicit each of the parts of the clock. When teaching
clock-making the detailing of the clock’s mechanism may, for the benefit of the apprentice,
need to take place at a fine level. In that case, the clock maker is actually engaged in a process
of re-presenting the clock to the apprentice as an articulation of its parts. In the same way,
constructed mathematical knowledge is re-presentational and explicatable. This view,
however, asserts an epistemology of reference over intention or transaction. For instance, the
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representational clockmaker is unable to convey the overall coherence of the form of the clock
or the degree and manner in which its structure complements a certain aesthetic economy or

-style (expressive or intentional characteristics); likewise, she is unable to convey the actual

experience of the actions of making a watch (transactional or pragmatic characteristics).

§3 Analysis and discussion of a pedagogic episode

In order to provide an illustrative focus for the theoretical statements of the last section and
those to come later in the paper, this section will present a linguistic analysis of a pedagogic
episode. The sequence studied is drawn from a stimulated recall (Keith, 1988;Parsons et al,
1983). This method involved video recording a lesson in a naturalist context and, immediately
after this, replaying the tape to a teacher-chosen subset of students. Students were asked to
respond freely to the tape, the researchers reserved the right to ask probing questions. Those
present include 6 students chosen from the class by the teacher, together with 2 researchers.
The classroom teacher was not present. The discussion between students and the researcher is
on the application of 'dummy variables’ as indices in expressions involving complex algebraic
manipulations.

In analysing this episode, it has been assumed that in order to recover the shifting
epistemological positions of the Researcher and of the participating students, each utterance
would need to be individually scrutinised for evidence of fine grain structure. The presumption

has been, that only as the fruit of such an endeavour, would nuances indicative of the shifts
sought, show themselves.

Note: In the following transcript ‘R’ represents the Researcher; Ms X is the regular classroom
teacher; L8, L9 etc refer to lines 8 and 9 etc of the transcript s shown. ’
1 R:  Now the very first step here, where you've got arg(z1/z2), Ms X wants you

to focus on 2y/z3, Now the first thing that she did was to write that out in a
trigonometric form, or a polar form. And she wrote on the top line, what did
she write?

Sarah: 1y ... (inaudible)

R:  Outside of?
Alice:  Inside the brackets, I think it's cos8) + isin9

~N W W

Assertions in L1-3 are followed by a single question in L4: in these, the researcher announces
the theme of the inquiry. Primary focus is set on the structure of the mathematical steps Ms X
performs, not their meaning or reference, nor any possible function they may perform.
Further, in these opening utterances the Researcher is both signalling the attention the students
give to Ms X as Teacher as well as displacing the Teacher in this triangular relationship of
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power. The utterance "Ms X wants you to focus ..." evidently means "I - the Researcher -
want you to focus ...".

8 R: Why did she say ry and 61?

In this utterance the Researcher inaugurates the main body of the episode. An inquiry
concerning Ms X's intentions is opened. There are two parts related to this task: content
(What is her meaning for ry and 61?) and function (How do the nominated subscripts function
in the mathematical procedures imptied?).

9Students:  (Several students exclaim at once) Because that's the modulus and argument
for zy!

Interestingly, a large proportion of the students answered immediately in this way. This
response, however, only picks up the content aspects of the utterance (L8). That is, the
students have only adopted the level at which the meaning, or reference of the symbols ry and
01 is signalled. A study of the relationship between this semantic content, and transactional
clements which could permit the capture Ms X's intentions is not considered, or if considered,
not pursued. The emphatic tones & °d chorus like response of the students may also indicate
growing resistance, even annoyance, on the part of the students. The Researcher has usurped
the role of the teacher (we saw this in L.1-7), but now seems unable or unwilling to take over
the didactical contract (see above) originally forged in class between Ms X and her students.
Once having gained admittance to the code, the Researcher seems to be consciously attempting
to disturb it, threatening to bring about its collapse. Apparently, with Ms X, it is part of the
didactical contract that teacher questions solicit information and that valid responses assume the
referential mode. But the Researcher, by asking such an apparently straightforward question,
now rejects in advance not only the answer presented by the students, but even the referential
form the answer takes. Crisis in the contract is deepened further by the apparent lack of
guidance to the students as to what altemative form a valid answer would take.

10 R:  Sorry, just explain? Sorry who's talking?

The two questions here reveal a great deal. Both acknowledge the impasse in which the
students have been placed by the Researcher, and hence each begins with "sorry”. The
repetition of “sorry”, however, raises the ironic questions: Who is sorry? Who ought to be
sorry? These signs also serve to reinforce a consensus view that the usurped contract has
collapsed; and they herald a new phase, described by Brousscau (1986, p.113) as the
interactive process of searching for a contract. In Brousseau's theory, knowledge arises

O
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precisely as the resolution of crises such as those described here. And indeed, in constructing a
new contract the Researcher has already taken a lead: In each question the Researcher begins to
suggest a new basis for interaction. In the first, “Sorry, just explain?", students are
encouraged to treat the symbols as a prompt to perform an action of some kind rather than as a
cue to passively provide information. The-second suggested premise of a new contract relates
to the form of admissible interactions within the social space of the episode: Researcher -
Student interactions are to be one-to-one.

11 Alan: Because, weil we've got subscript one, for z1, we sort of use the same
12 subscript, probably.

Alan, identified by the teacher prior to this intervention as a quiet, co-operative student, is the
first student to attempt to work within these shifting terms. However, as the colloquial
expression ("sort of") and the terminating ("probably") would indicate, Alan is not certain of
his ground, nor of the social topography defining the interaction. Alan has been very accurate,
however, in picking up the clue provided in L10 as to what might constitute a successful
response to the motivating question asked in L8. In his response, he switches away from the
semantic or referential content of the symbols, and attempts to focus on the mathematical
operations (actions) implied or controlled by the symbols. Nevertheless, Alan has only
glimpsed the choice between reference and action which has just offered by the Researcher, and
almost certainly has not yet grasped the consequences. The role of the Researcher in
confirming or disconﬁrming."thc validity of Alan's gesture is now crucial in the process of
establishing a new order in which this pedagogical crisis may be resolved.

13 R:  Would it have mattered what subscript? If she'd written '2’, would that have
14 been wrong? If she had written r2 would that have been wrong?

Alan's contribution is implicitly accepted by the Researcher as valid. The first question plays a
double role of reinforcing and extending the fledgling contract. Reinforcement is accomplished
by verbal cues such as adopting Alan's reference to “subscript”, the use of which had not
hitherto become explicit. Non verbal cues such as tone of voice and the absence of a wait time
(neither shown in the transcript) also implied Alan and the Researcher may be reaching
common ground. Extension of the contract is also achieved by this question. This is done by
switching attention from the action performed when using a given subscript, replacing this with
a question directly relating the intention lying behind the choice of a subscript: "Would it have
mattered what?" is made to read "Would it have been against her intention if?". This step in the
pedagogic sequencing, if accepted by the students, represents a final transformation of focus
which has travelled from reference to action and now setties on intention. Indeed, this is

Q
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precisely where the Researcher wishes 1o end up, for this is the perspective sought from the
students in L8 and either rejected or not observed by them in L9.

Note that the researcher is not modelling the ‘correct’ answer to the question posed in L8,
instead however, the student's responses are being scaffolded with respect to their
epistemological focus. Could the Researcher have been more direct here and merely asked
“Would this have violated her intentions?"? By this time it should be clear why the answer is
'no'. Some students may have still thought that this question sought information about her
meaning, whereas the question reaches much further than that, towards grasping the balance
between the knowledge of what the relevant signs mean and the knowledge of what their
functional significance in a mathematical procedure is ie a balance between epistemologies of
reference and action. Such a misunderstanding would provide an example of Brousseau's so-
called paradox of the 'devolution of situations' by virtue of which, the anxiety of the teacher to
give the students what they appear to want - need - forecloses the possibility of them being able
1o directly obtain it. Instead, by shifting the pedagogy through an epistemology of action the
teacher gains Teverage' which may be employed to refocus student attention.

The second and third questions could be construed as attempts to lead the students through
a thought experiment consisting of actions premised on a hypothetical condition. Note that
question two is more general (suppose '2' is the nominated subscript) than question three (it
would then follow that Ms X would have to write r). Each question requires the students to
consider the consequences for the mathematical procedure if Ms X had nominated 2’ as a
subscript. By asking whether or not this hypothetical choice would be wrong the Researcher is
asking whether or not the transactions implied by the symbols would disrupt the relationship
between the form and content of the underlying mathematics, in other words: Would they be
syntactically correct?

15 Alice: Only if she had have, it would have been confusing, because you've got z)

16 and z3, and then you've got, it would be easier to have r) and ) then they've
17 got, it makes a link there so you have, you say that it's with the same, the
18 same problem.

Alice, reported by the teacher to be a strong student, provides a relatively sophisticated
response to 1.13-14. Her first utterance, "Only if she had have" clearly implies her answer to
the second and third questions is in the negative. However, she does not leave the matter there.
Her attention has been focussed on function, whether such an operation would be facilitated by
a co-operation between the knowledée of form and content, as would be required by
unproblematic mathematical transaction. At this point she identifies a disjunction which would
arise between the form or structure of the mathematical statement and its content or reference:
“it would have been confusing”. An optimal match, facilitating action (eg mathematical
manipulation) - “it makes a link" - is obtained by matching subscripts. Alice has arrived at a

Q
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defence of Ms X's use of dummy variatles which employs both her knowledge of the form or
overall structure of the mathematics together with her knowledge of it as an event. Thus, she is
able to express Ms X's intention to obtain or maximise clarity. Both the form and the intention
of the utterance are co-incident. A response such as this was sought in L8.

§4 Reference, Structure and Action in mathematics pedagogy

Working within theories of genre (Bakhtin, 1986: Holquist, 1990; Smales, 1990),
Ongstad (1991) has provided a model which affords a starting point in understanding the
theoretical relationships apparent in the transcript analysis conducted above. Seminal in this
model is Ongstad's observation that in making an utterance

“you are doing three things all at once, you refer, act and structure.”
(italics added,p.13)

In the accompanying table, terms relating to the analysis of utterances are arranged in a 3x4
grid. Read in columns, the terms, taken pairwise, are contrastive. Read in rows, the table sets
out terms which correlate.

Grid, setti the | Ivtic categories i I ' . {
Ongstad's model
SYNTACTIC STRUCTURE INTENTIONAL FORM
(EXPRESSIVE)
SEMANTIC REFERENCE INFORMATIONAL CONTENT
(INDICATIVE)
PRAGMATIC ACTION FUNCTION

Since in Ongstad's model every utterance can be analysed in terms of structure,
reference and action (2ud column), each of the 12 terms set out in this grid can be brought to
bear on the analysis of any single utterance. The richness of this model allows us to trace the
shift in emphasis of these terms amongst utterances which constitute any given linguistic
interaction. Such an analysis was illustrated in the previous section.

Alternatively, the grid can be thought of as miap on which may be traced 'pathways’ for
the development (both effective and ineffective) of mathematical knowledge. Each of the three
sets of comrelational terms might be said to support an epistemological viewpoint. Learner's
normally need to have access to at least these three. For example, Cobb (1991) traces how the

reflexivity between the syntax and semantics is obtained or mediated by the pragmatics inherent
in consensual knowledge.
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Ongstad emphasises (p.12) that contradictions and paradoxes arise when the muiti-
dimensional character of utterances is denied. Analyses offered in this paper amply
substantiates this point. This does not mean, however, that utterances equally emphasise all the
elements capable of influencing them. On the contrary, the selective emphasis a sender or
receiver places on utterances lends a particular character to the interaction. Where, however,
the task of the interlocutor is to alter or direct the interaction, as is the case for a teacher, the
full range of perspectives is open in order to facilitate the development of a pedagogic strategy
and student learning. Once again, the analysis of §3 provides a rich example of such a process.

§5 Conclusion

In the last decade it has become more common for research to emphasise the consensual aspect
of mathematical learning and teaching processes. Matchiny this has been a growing sensitivity
towards epistemological questions. This paper firmly endorses both these developments. At
the heart of the present work has been the suggestion that within the dynamics of microsocial
interaction, epistemological shifts, as indicated by linguistic utterances, critically determine the
character of pedagogic interactions. Arising from this, the presence of paradox in certain
theories of learning and instruction may indicate an ‘epistemological cramping’ - or an over
reliance on one view about what qualifies as mathematical knowledge. Paradox free theories of
mathematical pedagogy depend, it would seem, on the disposition to retain, foster and protect a
certain epistemological dynamism.
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‘The Answer Determines the Question. Interventions and the Growth of
Mathematical Understanding

TomKieren  and _ Susan Pirje
University of Alberta University of Oxford

Abatrac: Our work over the past four years has jooked at the growth of mathematical understanding
as a dynamic, levelled but not linear; process. An aulline of our theory and its features is given in this
[paper befare it goes on to address the question of how a teacher can influence an environment for such
growth. We identify three kinds of intervention: provacalive, invocative and validating and use these
concepts in analysing interactions between a teacher and two students. Our contention is that for the
promation of growth the teacher needs to believe that it is the student response which determines the

nature of the question.

The task of education becomes a task of first inferring models of the students’ conceptual constructs and
then generating hypotheses as to how the students could be given the opportunity to modify their
structures so that they lead to mathematical actions compatible with the instructor’s expectations and
goals." M

“an organism has somehow to acquire the capacity to tum around on its own schemata and to construct
them afresh ... It is what gives consclousness its most prominent function. [ wish 1 knew exactly how
this is done.” (Bartlett in (2))

Over the past four years we have been building and testing a theory of the growth
of mathematical understanding which views mathematical understanding not as an
acquisition (e.g 3), nor as a developmental phase (eg, 4), but as a dynamic process. Using
this theory we have attempted to show that the growth of a person’s understanding of
any topic can be mapped on a model

comprising eight embedded levels of

ity

understanding moving from initial
primitive knowing through to
inventising, ( fig 1) We maintain that
growth through such levels or modes
of understanding is not in any way
monotonic but involves multiple and
varied actions of folding back to inner,
less formal understanding in order to
use that understanding as a

springboard for the construction
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of more sophisticated outer level understanding. We are, of course, still in the ongoing
process of elaborating the elements in such understanding. Our own understanding of
the emerging theory is, itself, subject to constant acts of folding back with a view to
gaining greater insight into the phenomenon of mathematical understanding.

The quotation from Bartlett, above, prompts us, too, to ask the questions, “how
might such re-construction happen?” and "what roles might teachers play in bringing it
about for their students?”. In this paper we wish to consider the nature of some teacher
interventions and their impacts on student understanding. More broadly, we also
illustrate that such interventions do not have to originate with the teacher, although it
seems likely that only the teacher is in a position to create such interventions
deliberately. Theoretical descriptions of such interventions , which we call provocative,
innovative and validating will be followed by analysis of an incident in terms of the
effect of certain questions on the growth of understanding of a single student.

We do not claim to be alone in the field, attempting to answer the questions posed
above, but to be taking a different stand point from which to analyse the phenomenon of
growth of mathematical understanding. For example, Maher et al (5) consider the
mathematical behaviour of one child sampled over four years and indicate in global or
macroscopic ways the nature of change in sophistication of such behaviour.Our work
differs from theirs in that it is driven by a particular, albeit developing, thec.n-y and tries to
comprehend the dynamics of growth as they occur in local situations. It allows us to
examine teaching strategies, interventions and effects in day to day classroom
environments. Edwards and Mercer (2) do look in detail at interactions between teachers
and students and their impact on understanding, but while our analysis shares with
them the idea that contexts in which teachers and students exist are best understood in
terms of their mental instead of physical features, our theory allows for a mathematical
rather than general pedagogical analysis of classroom understanding,

Ihe Theory
Before defining our categories of provocative, invocative and validating questions,

we will offer a very brief review of our general theory. Figure 1 offers a pictorial
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representation of the Ie‘vels of mathematical understanding.The nature of the levels has
been elaborated in {6}, (7), (8), as has the notion of mapping the pathways of individual
student growth, (9) but we would like to draw attention here to two of the key features in
the model. The first is the notion of folding back, discussed in detail in a previous PME

paper (10). This feature is crucial to the distinction between the types of intervention that
we will be considering later in the paper. An illustration of folding back would be the
student who, having spent some time working with physical shapes or accurate drawings
on squared paper (imagemaking, image having and property noticing), derives the
generalisation "length times breadth” for the area of a rectangle {formalising) but, on
being asked what the area of a triangle might be, replies “I don't know - Il have to go
back to drawing some to see if there is a formal way of doing that too”. The student is
folding back to an inner understanding (image making) in order to extend her outer,
formalised understanding. The second feature is the bold rings indicating ‘don't need’
boundaries. These are a vital element of the power of mathematics itself. They occur
when one functions in a mathematical way that ignores the origins of current
understandings If the student above subsequently derives the generalisation “a half base
times height" for the area of a triangle and then goes on to calculate areas using this
formalisation with no further reference to counting squares or consideration of
rectangles, then this student has crossed the don't need boundary between property
noticing and formalising.

We return to the question of how growth in understanding might be promoted.
Teachers have an important role to play in enabling students' personal construction of
knowledge to occur. We see three kinds of intervention, provocative, invocative and
validating, as crucial to the teacher’s task of hypothesizing student constructs and
proposing mathematical actions. A provocative intervention is one which points the
student toward outer or more sophisticated understanding. An invocative intervention
is one which makes students aware of the need to fold back to an inner level of
mathematical understanding . A validating intervention is one which establishes that a

student is working within some level of understanding with the effect of encouraging
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the expression, verbally, symbolically or figuratively, of current mathematical actions.
The interesting and perhaps critical feature of these interventions is that i is the student
response and not the teacher question which determines the nature of the intervention.
The teacher may well offer advice intended to move the student on to outer
understanding whereas in reality it can cause the student to fold back to earlier levels in
order to make sense of the new situation. Consider the student above The teacher may
have posed the question about the areas of triangles in the context of the generalisation
just formulated, with the intention of enabling the student to 'see' that the area will be
half that of a rectangie (provocative). The outcome, however, was to cause the student to
fold back and the intervention was therefore actually invocative.

Analyzing the Dynamics of [ntervention

We tum now to an example where we use this theory to analyse actual teacher-
student and student-student interactions. The class was working on the task of finding
relationships between the various different shapes in a set of “pattern blocks". The
shapes are all based on a common length of side and comprise a green equilateral
triangle, a red, 60 degree trapezium, an orange square, a blue, 60 degree,equilateral
parallelogram, a yellow hexagon, and a plain wood, 30 degree, equilateral
parallelogram.(Fig 2)

The 14-year old students were given some time to play with the shapes, before
being set the relationships task, as they had never previously seen or hardled them. The
task was introduced through the demonstration by the teacher that it was possible to
build fig 3b on top of fig 3a. They were given no other guidance.

Y]
\, tatee
wa

Figure 2 The Pattem Blocks Figure 3a  Figure 3b
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Sara and Jen spent about ten minutes image making through building battems
and sﬁapes beside and on top of each other. Their talk made it clear that they had the
image of the shapes as "fitable” (their word) without gaps, although they did not

| explicitly comment on the sides being of equal length, and they noticed and recorded
various properties such as “You can make a hexagon with a yellow or two reds or three
blues®. At this point the teacher came over to their table.

1 Teacher OK Sara where have you got to?

Sara So I've got: a red is 3 greens, a yellow is 6 greens a blue is 2 greens but the
orange and wood aren't anything. (said in a tone of finality)

2 T Can you say anything about the greens themselves?
S Well they are triangles, aren't they..
3 T Can you say anything about the triangles?
S What ... you mean their angles and things? ... Well .. um .. If you put 3

together to make the trapezium they make a straight line like this.
{draws fig 4a) and you get them together at the points so that is 180
degrees (adds drawing to produce fig 4b) so each angle will be 60 degrees.

* >
Figure 4a Figure 4b Figuredc Figure 4d
(the teacher moves away)

.50 the sides, the sides are s so the green goes .. (draws fig 4c)and the
red is ... (draws fig 4d) Triangles' areas .. um .. a haif base times height

AL {draws fig 53) SOQO0O .... SO . (writes area=1/2 s ) ..
s [ EE W OTL D AN
et une o ek (s 428)s w30
-k 86 30 R S XTI
v E st e 30 ';;_6‘5-150

Figure 5a Figure 5b
height , height what's the height?... s cos30 . so (writes scos30 =
1/25°cos30 (fig 5a)

Jen Sara what did you get forthe woods?

S Shush! I'm working...(writing fig 5b)..Looklook! It works! The green
area is a half s°cos 30 and the red is three halves cos 30! So three greens
make a red!

4 ] Oh sploti(a term of praise) Well splotted! .What do you get for the

woods? How many greens? They're too big aren't they?

Qo 3‘10
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You can't. You get orange plus green equals green plus two wood from
her example. (the teacher's: fig 3a and 3b). So mathematically an ovange
is two woods, but you can't make it. You . can . also .. get an orange
and a wood and a blue make a perspective cube (builds fig 6 with blocks)
but it doesn't help. ... or you can ..(building with blocks) give me some
more woods ... make a star with just the woods (finishes fig 7)..and
there's .{counting with her fingen. eleven, twelve, twelve of them,
twelve woads, twelve pointy bits make the middle ... wait a minute ._
360, 360 is twelve so one's angle is 360, twelves into _30. Each one is
30, and you could cut the wood in half and get two triangles and they'd
have area .. wait a minute ... (she then proceeds to write fig 8)

3“’75;:;“5
-/Z’x\ 6% 75 1S o
121"‘:4\75..6[5

Figure 7 . Fxgure 8
You've got a calculator, get a calculator, get a calculator...
Hang onl. It's some where...OK{Produces calculator)
Do cos 75..do 75, cos, times, 15, cos, equals..
(reading calculator display) Point two five
Times two....
Point five....
It's a half, it's' a half, it's half the squaref
Well it doesnt lock like it!

In section 1, one sees a classic validating situation. The teacher has observed Jen

and Sara working away with the blocks and suspects that they at least have an image of

the idea of relationships between the different shapes. Since they have also been writing

they have probably been recording some of the properties they have noticed. Sara's

response confirms this and shows her ability to articulate her findings.

In section 2, therefore, the teacher aims to provoke Sara on to more formal

comments on the relationships, BUT Sara treats the question as if it were a validating

intervention and confirms that she knows the mathematical names for the shapes and is

saying "greens" for convenience and not out of lack of mathematical understanding

O
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In section 3, the teacher rephrases her question and this time the effect is
provocative. Sara moves from thinking of the shapes as visible concrete objects whose
relationships to one another can be physically determined to a symbolic representation.
She is not concerned with the actual sizes of the shapes, nor does she even need accurate
diagrams; rough sketches suffice as her aide-memoire. She has crossed the ‘don't need’
boundary to formalised understanding, Indeed in some sense, she has ‘proved’
symbolically and formally the relationship she had earlier found by manipulation of the
concrete marerials.

In section 4, we see Jem, Sara's fellow pupil, Ain the role of instigator of an
intervention. Jem at this juncture is talking in the language of the materials and
referring to her physical inability to cover ‘woods' with ‘greens’. She has, in fact, covered
an area of paper with tessellated ‘woods' and built over this a tessellation of ‘greens’,
many of the ‘woods' sticking out from under the edges of the ‘greens’. One could infer
that Jem's intention was to provide a validating intervention She probably assumed that
Sara would have a legjtimate solution, albeit the negative one given in her first
response to the teacher. Sara, however, is no longer satisfied with her own null solution
and recalls the original construction suggested by the teacher. She does not reconstruct it,
but talks, one could say algebraically, producing as she says "mathematically” a solution
that cannot be physically represented. She is not content to leave it there, l;aowever,and
folds right back to image making again, building new figures, intent on finding a
solution for the ‘woods'. The intervention has been an invocative one for Sara. She
creates a couple of new constructions before finding a way of calculating the area of a
‘wood!, returns to a formalised level of working, and again ‘proves’ the physical solution
- to a sceptical Jem! ’

Summary

What is the nature of the dynamics in the growth of mathematical understanding?
What is the role of teaching interventions in this growth? Our theory has prompted us
to posit three kinds of interventions - provocative, invocative and validating - which

play a role in fostering the growth of mathematical understanding, Reflection on the
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incident given above suggests the power of our concepts of intervention in analyzing,
elaborating and understanding the complex interplay between student and teacher in a
mathematics classroom. That these are not isolated phenomena will be tllustrated in our
analysis of other incidents in our presentation. We hope that we haveindeed, shown,
through the fllustration of interventions and their intended and actual outcomes, that

from the point of view of the student's understanding, “the answer determines the

question”. :
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ENCODING DIFFICULTY: A PSYCHOLOGICAL BASIS
FOR ‘MISPERCEPTIONS’ OF RANDOMNESS!

Clifford Konold Ruma Falk
Scientific Reasoning Research Institute Department of Psychology
Hasbrouck Laboratory and School of Education
University of Massachusetts, Amherst The Hebrew University of Jerusalem

Abstract
Subjects’ ratings of the apparent randomness of ten binary sequences were
compared to the time required to memorize those same sequences.
Memorization time proved a better predictor of the subjective randomness
ratings than measures of the “objective” randomness of the sequences. This
result is interpreted as supporting the hypothesis that randomness judgmenis
are mediated by subjective assessments of encoding difficulty. Such
assessments are seen as compatible with the information theorists'
interpretation of randomness as complexity.

Take a look at the two sequences below. Which sequence, [1} or {2], appears to be
the most random? ’

O0X0OX0OX0X000XXXX0X0X00 : (1]
OXOXXXXX0X0000X000XXO0O 2]

Many will take objection to this question, and understandably so. A recent article
by Ayton, Hunt, and Wright (1989) along with a set of published responses in the same
journal (Vol. 4, 1991), include a range of arguments for those interested in exploring the
debate about the meaning, theoretical status, and psychological investigations, of
‘randomness’. We cannot address those issues here. -

1 To be presented at the Sixteenth International Conference for the Psychology of Mathematics
Education. Durham, New Hampshire (August, 1992). This research was s in part, by grant
MDR-8954626 from the National Science tion to Clifford Konold and by the Sturman Center for
Human Development, The Hebrew University, Jerusalem, Opinions expressed are those of the authors
and not necessarily those of the sponsoring agencies.
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Mathematically, [1] and [2] have the same probability (.521) as any other ordered
sequence of the same length of being randomly produced by, for example, flipping a fair
coin. On this basis, they could be judged equally random. However, if we consider
various attributes of sequences, more of the possible sequences are like [2] than they are
like [1]. In this sense, [2] might be considered more characteristic of a random process
than [1].

A One such attribute is the probability of altemation between the two symbois. For
every finite binary sequence, we can determine the relative frequencies of the two
symbols and the conditional probability of change (or continuity) after a given character
in the sequence. Given a sequence length of n, there are n-1 opportunities for a change in
symbolis. (All but the first character in a sequence can differ from a preceding character).
The probability of alternation in a particular sequence, denoted P(A), is obtained by
dividing the number of actual changes of symbol-type by n-1. The values of P(A) for [1]
and [2] above are 0.7 and 0.5, respectively. When the probabilities of the two symbols are
equal, the value of P(A) in large, random samples will tend toward 0.5. This result
follows from the principle of independence — regardless of what has already occurred in
the sequence, the probability that the next character differs from the previous one is 0.5.
Sequences with values of P(A) other than 0.5 oocur with less frequency. Additionally,
deviations from that modal value are equally probable in the two directions. Thus,
sequences with P(A) = 0.7, which contain more altemnations than expected, have the same
probability of occurring as sequences with P(A) = 0.3, in which there are fewer
alternations (longer runs) than expected.

Sequence [2] is considered more random than [1] also from the perspective of
information theory. Randomness, in this acoount, is defined as a measure of complexity
(Chaitin, 1975; Fine, 1973, chap. 5). Despite the sophisticated computations used in
information theory, the notion of randomness as complexity is straightforward: a random
sequence is one that cannot be significantly shortened via some coding scheme. This
notion can be illustrated with even a simplistic coding convention. For example, the

XO0X0X0X0OX0X0X0X0X0X0X Bl

perfectly alternating series above can be coded as 10X0 1X (10 repetitions of XO
followed by 1 X). By formirg the ratio of the number of characters in the code (where 10
is considered as one character) to the number in the sequence, we can express the
complexity (or compressibility) of this sequence as 5/21 = 0.24. Using the same
convention, [1] would be coded as 40X 304X 20X 20, for a ccmplexity measure of
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12221 = 0.57. There are 18 characters in the code for [2], only slightly fewer than the 21
original characters; its complexity measure of 18/21 =086 is much nearer the maximum
value of 1. Using this coding scheme, [2] would be considered more randoin than [1],
because compared with [1], it cannot be substantially compressed.

pritemdmnﬁmlr&soquconsideﬁngmmemndmndm[l],mch
has shown that most subjects hold to just the opposite. In selecting random sequences,
peopkp:derseqmﬁmindwenmaltemaﬁmsthantypimuym(&lh 1975,
1981; Wagenaar, 1972). The well-known gambler’s fallacy, according to which tails is
considered more probable than heads after a run of successive heads, may also be based
on the belief that symbols in a random sequence should frequently alterate.

Kahneman and Tversky (1972) have explained these results by suggesting that
people rely on error-prone “heuristics.” In their account, the judgment that [1] is more
random than [2] is based on an incorrect expectation that even small random samples will
resemble their parent population (Tversky & Kahneman, 1971). [2] is judged less random
because it contains longer runs (e.g., XXXXX) which do not capture or represent the
equal distribution of symbols in the population. Random sequences, because they are
random, must also avoid obvious patterns. The perfectly alternating [3] is accordingly
judged to be less random than [1]. For a sequence to be considered maximally random, it
must strike a balance between avoiding simple alternating patterns and maintaining a near
equal number of symbol-types in any of its segments.

In the account summarized above, human judgments of randomness are based on
the notion of similarity. Features of a sample are compared to the corresponding features
d‘apoptﬂaﬁon.andthe_nnmsinﬁlarasampleistoapopulaﬁon.themorelikelyitisto
have come from that population. Our research was designed to investigate an alternative
hypothesis — that peoples’ perceptions of randomness are based on assessments of
complexity.

People might assess the complexity of a sequence by gauging how difficult that
sequence would be to encode. We frequently are given information that must be copied or
memorized. If that information can be reorganized into meaningful “chunks” (cf. Miller,
1965), it can be more efficiently memorized or copied. Chunking isobviously a way of
compressing data. Therefore, assessments of “chunkability” are also judgments about
difficulty of encoding. We are suggesting that people might make use of this type of
assessment in judging the randomness of a sequence.
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In the study reported here, we used the time required to memorize a sequence as a
measure of encoding difficulty. We compared these times with results from prior research
in which subjects rated the perceived randommess of the same sequences. If randomness
Jjudgments are rooted in assessments of complexity, we would expect that those _
sequences which were hardest to memorize would be perceived as most random. Such
results would provide evidence of a psychological basis for people’s “misperceptions” of
randomness — that from the standpoint of human perception, sequences of P(A) = 0.6
are more complex, or difficult to encode, than sequences of P(A) = 0.5, and for this
reason they are judged as more random. Furthermore, if peopie base their randomness
Jjudgments on the difficulty of encoding, the complexity definition of randomness might
prove to be an intuitively compelling introduction to the concept.

Method
Randomness Ratings

Data concerning apparent randomness were obtained in prior research by Falk
(1975, 1981). Subjects were shown a set of 10 sequences, which included [1], [2] and [3].
These sequences were of length 21, and comprised two symbols whose frequencies
differed by 1. The P(A)s of these sequences ranged from 0.1,0.2,03.... . to 1.0, Subjects
rated each sequence on a scale that ranged from 1 (not at all random) to 20 (perfectly
random). Ratings were obtained from 219 subjects.

Memorization Task
Ten different subjects were individually presented with the same sequences as were

used in the rating task. The sequences were presented as shown in Figure 1 ona
Macintosh compuser.

XXXXXX000XX0000000XXX

1 2 3 4 8 6 7 8 9 101112 13 14 13 16 17 18 19 20 21

Figure 1. Screen display of target sequence P(A) = 0.2

Subjects were instructed to study each sequence until they could reproduce it from
memory. When a subject was ready to attempt recall, he or she hit the “retum” key. This
caused the target sequence to be masked. The subject could then enter a “response”
sequence in a field provided on the screen, as shown in Figure 2.
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1 2 3 4 %5 6 7 8 9 1011 12131415 16 17 18 19 20 21

1 2 3 4 %5 6 7 8 9 1011 12131415 16 17 18 19 20 2t

Figure 2. Screen display showing masked target sequence (above)
and field for entering response sequence (below).

After entering a response sequence, the subject again hit the return key. If the
response sequence was cofrect, both the target and response sequences were displayed
together. The next target sequence could then be displayed by clicking ona “next”’
button. If the response sequence was incorrect, it disappeared, and the target sequence
was again displayed. Subjects continued until they were able to enter the corect
sequernce.

Subjects were told the computer was recording the total time the target sequence
was displayed. They were also told that time spent entering a response sequence was not
being recorded and were shown how to use the delete key, which permitted editinga
response sequence up to the time the enter key was depressed. They were instructed that
the objective was to memorize the sequence as “efficiently” as possible, trying to
minimize total viewing time.

The order of presentation of the ten sequences was randomly determined for each
subject by the program. These ten experimental sequences were preceded by four practice
sequences. The practice sequences had P(A)s of 0.2, 09, 0.5, and 03 and were always
presented in that order. The subjects were rot informed that these were practice sequences.

Results
Randomness Ratings

The randomness ratings (denoted AR, for “apparent randomness”) for each
sequence were averaged over the 219 subjects, and then linearly transformed to range
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fromOto 1. Figure 3 shows these averages plotted as a function of P(A). This function
peaks at (A) = 0.6 and is negatively skewed.

]_0 -
09
081 N
0.7

06 1
05

041
0.3
021
0.1 I
008 + ‘ +

0.1 02 03 04 0S5 06 0.7 08 09 l
P(A)

Figure 3. Plotof EN, AR, and DE as functions of A).

axis of symmetry
of EN function

For comparison purposes, Figure 3 includes values obtained from an “obiective”
mmdmn&xnnssbosedonﬂw“mﬂ-adamm”(mdﬁwseqm(m
Attneave, 1959, pp. 19-21). This function peaks at 0.5, and is symmetric around P(A) =
0.5. As reported in the introduction, these data indicate that subjects select as most
random, sequences that include more than the expected number of alternations. Indeed,
these subjects tended to rate sequences with P(A)s of 0.6, 0.7, and 0.8 as more random
than the objectively most random sequence of 0.5,

Memotization Task

The times required to memorize each sequence were first standardized for each
subject. For each P(A), we computed the mean of the standard scores over the ten
subjects, and then linearly-transformed these to range from 0 1o 1. This value, which is
our measure of encoding difficulty (D)), is also plotted in Figure 3. The function of DE
peaks at P(A)=0.7.

1Since in the family of sequences we used there is a sequence with p(A) = 1, but not one with P(A) = 0,
the function in Figure 3 is not entirely symmetric.,
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If encoding difficulty mediates judgments of randomness, than we should expect
measures of encoding difficulty to be better predictors of the subjective randomness
ratings than are measures of objective randomness. Indeed, the correlation between DE
and AR is .89, whereas the correlation between EN and AR is .54. In addition, difficuity
of encoding, which was hypothesized to account for subjective randomness, is better
correlated with AR (.89) than it is with objective randomness (.71) .

Conclusion

The data presented here offer some support to the hypothesis that judgments of
randomness are mediated by subjective assessments of complexity, an assessment that
may be accomplished by judging how difficult the sequence would be to encode. The
results of the memorization task are preliminary in that they involve only ten subjects,
and these were not the same subjects who provided the randomness ratings. We are
currently conducting a larger study in which subjects first rate the randomness of various
sequences, and then either memorize or copy those same sequences. The copying task
allows subjects to enter a sequence in “chunks,” copying only what they can easily
remember , thus reducing demands on short-term memory. '

Though preliminary, our findings do suggest that human judgments of randormness
are based in part on the formally sound criteria of complexity. Such a finding could have
important implications for instruction. For example, introductions of randomness as a
blind process of selection, or as statistical independence, may be difficult to comprehend
because students lack prior intuitions into which these ideas can be integrated. Our results
suggest that an interpretation of randomness as complexity may have more intuitive
appeal to students, and therefore may provide the basis on which an initial understanding
of randomness can be constiucted. '
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EXPLORING BASIC COMPONENTS OF THE PROCESS MODEL OF UNDERSTANDING
MATHEMATICS FOR BUILDING A TWO AXES PROCESS MODEL

Masataka KOYAMA
Faculty of Education, HIROSHIMA UNIVERSITY

ABSTRACT

ﬂlepwvoaeo!misstudyistomkeclem'w?ntkindo!cimmca'istimamdelof
understanding mathematics should have 80 a8 to be useful and effective in mathematics
education. The models of understanding presented in preceding papers are classified
into two large categories, ie “aspect model”™ and “process model” . Focusing on the
process of understanding mathematics, reflective thinking plays an important role to
develop children’s understanding, or to progress children’s thinking from a level toa
higher level of understanding. As a theoretical framewark, a process model consisted of
two azes is presented for further studies The vertical axis in the model implies levels
of understanding and the horizontal axis implies learning stages At any level of
understanding, there is three stgges ie intuitive, reflective and analitic stoge.

1. INTRODUCTION

The word ~understanding” is very frequently used in the descriptions of aims of
teaching mathematics in the Course of Study (Ministry of Education, 1989) and in the
teaching practices of .mathematics in Japan. The putting emphsasis on children's
understanding should be desirable in mathematics education, but what it means is not
clear. Moreover, It is an essential and critical problem that what mathematics teachers
should do to help children understand mathematics and develop their understanding
have not been sufficiently made clear.

The key to the solution of these problems, in my opinion, is ultimately to capture
what does it mean children understand mathematics and to make clear the mechanism
which enables children's understanding of mathematics develop in the teaching and
learning mathematics. In other words, it might be said to “ understand *
understanding. It is, however, not easy and we need our great effort to do it. In fact,
as Hirabayashi (1987) describes, the American histary of researches in mathematics
education seems to be the struggling with interpretations of understanding. The
problem of understanding is still a main issue buckled down by some researchers.
especially from the cognitive psychological point of view in PME. As a result of their
works, various models of understanding as the frameworks for describing aspects or
processes of children's understanding of mathematics are presented (Skemp, 1976, 1979,
1982; Byers and Herscovics, 1977; Davis, 1978; Herscovics and Bergeron, 1983, 1884,
1985, 1988; Pirie and Kieren, 1988a, 1983b).

The purpose of this study is to make clear what kind of characteristics a model of
understanding should have so as to be useful and effective in mathematics education.

352

ERIC

Aruitoxt provided by Eic:




Q

2-18

In order to achieve this purpose, in this paper, the preceding researches related to
models of understanding mathemuuics are summarized and the fundamental conception
of understanding mathematics is described. Then, basic components subsetantially
common to the process models of understanding mathematics are discuseed. Finally, I
present as a theoretical framewark a process model consisted of two axes, what is called
"a two axes process model” .

0. FUNDAMENTAL CONCEPTION OF UNDERSTANDING MATHEMATICS

What do we mean by understanding? According to Skemp (1971), to understand
something means to assimilate it into an appropriate schema (p.43). Haylock (1982)
answers this question in the following: a simple but useful model for discussing
understanding in mathematics is that to understand something means to make
(cognitive) connections (p.54). These explanations of understanding are (cognitive)
psychological and imply that to understand something is to cognitively connect it to a
previous one which is called a schema or a cognitive structure. We could say that a
schema or cognitive structure is a model of a nerve net in the brain of our human
beings. In this sense, to understand something is substantially an individual internal
(mental) activity.

Moreover, comparing the Piagetian cognitive structures with the Kantian schemata
and categories, Dubinsky and Lewin (1986) describe that the Piagetian cognitive
structures are constructed from the outset and undergo systematic changes of
increasing differentiation and hierarchic integration (p.59). This suggests us that the
understanding defined above is not such a static activity as all-or-nothing but a
complex dynamic phenomenon which could change in accordance with the construction
and reconstruction of cognitive structures.

Therefore, accepting such fundamental conception of understanding mathematics as
an internal (mental) dynamic activity, we necessarily need some methods to externalize
children's understanding of mathematics. A retrospective method, an observation
method, an interview method, and a combination of these methods are promiging and
useful methods for externalizing it. It i, however, almost impossible far us to see
directly understanding as the mental activity. Therefore, we need some theoretical
framework. According to the definition of model by Gentner (1983), the theoretical
framework for making clear aspects or processes of understanding mathematios could be
called a model which has a mental activity of understanding as its prototype. In that
sense, any model is indispensable for making clear understanding and the significance
of building a model can be found in this point.

As already mentioned in the previous section, the various models of understanding
mathematics are presented in the preceding papers. These models are, for example,
including a discrimination of “relational and instrumental understanding” (Skemp,
1976), "a tetrahedral model” (Byers and Herscovics, 1977), "a 2#3 matrix model”
(Skemp, 1979), "=~ 2#4 matrix model ™ (Skemp, 1982), "a constructivist model "
(Herscovics and E e geron, 1983), “a two-tiered model”™ (Herscovics and Bergeron, 1988)
and “a transcendent recursive model” (Pirie and Kieren, 1889b). As Pirie and Kieren
(1989b) point out, models can be classified into two large categories. The one is “aspect
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model” which focuses on the various kinds of understanding and the other is “process
model™ which focuses on the dynamir processes of understanding,. The models presented
in Skemp (1976, 1979, 1982) and Byers and Herscovics (1977) belong to the farmer and
the models in Herscovics and Bergeron (1983, 1988) and Pirie and Kieren (1889) belong
to the latter. We need both aspect model and process model to develop children's
understanding in mathematics education. They seem to be build mainly to deacribe the
roal aspects and processes of children's understanding and are very useful for us to
grasp them.

It is, however, not sufficient to describe the real aspects or processes of children's
understanding. Because mathematics education in its nature should be organized by
both teaching activity and learning actvity. Therefare, a model of understanding
which is useful and effective in the teaching and learning mathematics should have
peescriptive as well as descriptive characteristic Namely, the model is expected to
have the prescriptive characteristic also in the sense that it can suggest us didactical
principles regarding to the following questions. What kind of didactical situations and
how them should we set up to help children understand mathematics? Which direction
should we guide children in developing their understanding of mathematics?

. BASIC COMPONENTS OF PROCESS MODEL
o,

In ocder to build such a model of understanding, we must elucidate the processes of
children's understanding in mathematics. In this section, focusing on a process model,
we explore basic components of it. For theoretically exploring them, wé examine process
models of understanding (Herscovics and Bergeron, 1983, 1888; Pirie and Kieren, 1989)
and a model of learning mathematics (van Hiele and van Hiele-Geldof, 1958; van Hiele,
1986).

Herscovics and Bergeron have been buckling down to the difficult task of building
and modifying a model of understanding in the processes of mathematical concept
formation. They built “a constructivist model = of understanding mathematical
concepts basing on the constructivist assumption that children will construct
mathematical concepts. The constructivist model is consisted of four levels of
understanding: the first one, that of intuition, a second one involving procedures, the
third dealing with abstraction, and a last level, that of formalization (Herscovics and
Bergeron. 1983, p.77). Then they modified this model and presented an extended model
of understanding. This extended model is called “a two-tiered model” , one tier
identifing three different levels of understanding of the preliminary physical
concepts, the other tier identifing three distinct constituent parts of the comprehension
of mathematical concepts (Herscovics and Bergeron, 1988, p.15). Their fundamental
conception underlying this model is that the understanding of a mathematical concept
must rest on the understanding of the preliminary physical concepts (p.20).

Pirje and Kieren (1988) stress that what is needed is an incisive way of viewing the
whole process of gaining understanding (p.7). And they present “a transcendent
recursive model  of understanding which is consisted of eight levels: doing, image
making, image having, property noticing, formalizing. obeerving, structuring, and
inventing. Their fundamental conception of understanding underlying the model and
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the important characteristic of the model are succinctly and clearly represented in the

following quoted passage.
Mathematical understanding can be characterized as levelled but
non-linear. It is a recursive phenomenon and recursion is seen to oocur
when thinking moves between levels of sophistication. Indeed each level
of understanding is contained within succeeding levels. Any particular
level is dependent on the farms and processes within and, further, is
constrainted by those without. (Pirie and Kieren, 1989, p.8)

We can see that these models of understanding are process models which have
prescriptive as well as descriptive characteristic and involve some levels of
understanding. There is, however, an objection to the levels of understanding. In fact,
examining the Herscovics and Bergeron model far understanding mathematical concepts,
Sierpinska (1990) demcribes that therefore what is classified here, in fact, are the
levels of children's mathematical knowledge, not their acts of understanding (p.28).
This criticism is based on the different notion of understanding that understanding is
an act (of grasping the meaning) and not a process oc way of knowing. It is worth
notice but in my opinion there must be some levels, even if those are levels of
children's mathematical knowledge, in the processes of children's understanding of
mathematics. The process model of understanding mathematics should involve some
hierarchical levels so as to be useful and effective in the teaching and learning
mathematics.

The hierarchy of levels of understanding can be typically seen in a transcendent
recursive model illustrated in Figure 1 (Pirie and Kieren, 1989, p.8). It remainds us of
the van Hieles' theory of levels of thinking in learning geometry which was presented
in their doctoral dissertation (cf. van Hiele and van Hiele-Geldof, 1858). In the theory
five hierarchical levels of thinking are identified and five learning stages for
progressing thinking from a level to a higher level are involved (van Hiele, 1986). We
notice that these models are very similar to each other in two respects. The one is
levels themselves set up and the other i8 the idea of progressing from a level to a outer
(higher) level.

The first similarity can be recognized more clearly by itlustrating the van Hiele
model in Figure 2 (Koyama, 1988). In fact, ignoring somewhat difference in the scope
and domain of learning mathematics, each two levels indicated by a thick circle in
Figure 1 could be corresponded to each level in Figure 2 respectively;

(Doing, Image Making) «—-~ (Concrete Objecte, Geometrical Figure)
(Image Having, Property Noticing) « ~—+ (Geometrical Figures, Property)
(Formalizing, Observing) «——— (Propertye, Proposition)
(Structuring, Inventing) «—-—-+ (Propositione, Logic)

[Note: The sign ~ — indicates the correspondence between levels and the sign »

indicates a object of thinking in each level.]

The second similarity is more important in a process model than the first, because it
is concerned with the crucial idea of developing children's understanding of
mathematics. The idea of developing children's understanding in the Pirie and Kieren
model is “recursion ", whereas in the van Hiele niodel it is * objectification or
explicitation™ . These ideas seem to be substantially same and might be said in other
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words reflective abstraction or reflective thinking. We can say that in the processes of
understanding mathematics refleccive thinking plays an important role to develop
children's understanding, or to progress their thinking from a level to a higher level
of understanding. Therefore these models suggest us that a process model should have
learning stages involving reflective thinking.

After all, we identify such two basic components of a process model as hierarchical
levels and learning stages. In the next section, a process model with these two basic
uomponents is presented as a theoretical framework for developing children's
understanding in the teaching and learning mathematics.

IV. A TWO AXES PROCESS MODEL

In order to build a process model which can prescribe as well as describe how the
process of children's understanding of mathematics should progress, we must give
serious consideration to the following questions. What levels shculd chiidren's
understanding progress through? How should children develop their thinking in any
level of understanding? Relating to the first question, as alreedy discussed, levels
involved in the Pirie and Kieren model and the van Hiele model can be regarded as
answers to it. Although we need to examine those levels and modify them in accordance
with mathematical concepts intended in the teaching and learning mathematics, they
form & vertical axis of the process model of understanding.

Relating to the second question, learning stages involved in the van Hiele theory
(van Hiele, 1986) and in the Dienes theory (Dienes, 1960, 1963, 1970) are very
suggestive. On the one hand, in the van Hiele theory five stages in the learning
process leading to a higher level are discerned; information, guided orientation,
explicitation, free orientation, and integration (van Hiele, 1986, pp.53-54). On the
other hand, in the Dienes theory six stages in the mathematics learning are set up
basing on four principles, the dynamic, constructivity, mathematical variability and
perceptual variability principle (Dienes, 1960, p.44); free play. rule-bound piay,
exploration of isomorphic structure, representation, symbolization and formalization
(Dienes, 1963, 1970). The stages in two models can be roughly corresponded like the
followings; information to free play, guided arientation to rule-bound play,
explicitation to exploration of isomorphic structure and representation, free
arientation to symbolization, and integration to formalization respectively.

According to Wittmann's idea (1981), these corresponding stages are classified into
three categories. He emphasizes that three types of activities are necessary in arder to
develop a balance of intuitive, reflective and formal thinking, besing on the
assumption that mathematics teaching should be modelled according to the processes of
doing mathematics (Wittmann, 1981, p.395). 1 modify his definitions of three activities a
little in order to form a horizontal axis of the process model. At any level of
understanding, there is three stages, intuitive, reflective, and analitic stage.

Intuitive stage: Children should be provided opportunities for manipulating
concrete objects, or operating mathematical concepts or relations acquired in a previous
level. At this stage they do intuitive thinking.

Reflective stage: Children should be stimulated and encouraged to pay attention to
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their own manipulating or operating activities, to be aware of them and their
consequences, andtorepcmentmenmtemsordiagmns.rigtmwlmguaganmis
stage they do reflective thinking.

Analitic stage: Children must elaborate their representations to be mathematical
ones using mathematical terms, verify the consequances by means of cther examples or
cases, or analize the relations among consequances in order to integrate them as a
whole. At this stage they do analitical thinking and at the end they could progress
their understanding to a next higher level.

Through these three stages, not necessarily linear, children's understanding can
progress from a level to a higher level in the teaching and learning mathematics As a
result, a process model of understanding consisted of two axes, what is called “a two
axes process model” , can be led theoretically. In a two axes process model the vertical
axisisfamedbysanehiamdﬁmllevelsormdastandmgandmehaizmtalaxjsis
formed by three stages in any level

V. BY WAY OF CONCLUSION

A model of understanding mathematics should have prescriptive as well as
descriptive characteristic so as to be useful and effective in mathematics education as
the integration of teaching and learning activities We explared, besing on the
assumption, basic components common to the process medels presented in preceding
researches and two bugic components, i.e. hierarchical levels of understanding and
learning stages for developing, could be identified By using these components as its
two axes, I built theoretically a two axes process model to elucidate the process of
children's understanding in mathematics education.

The validity of this model can be assured indirectly to some extent by corrobarative
evidences in the preceding researches related to models of understanding. But the
model is a theocetical one and a means to an end. Therefore, by using this model, to
grasp the real processss of children's understanding in the teaching and learning
certainmaﬂwnaﬁcalmmeptsandtoelabolatea‘moﬁfyitisleftasaninmtantmsk.
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POWERFUL TASKS: CONSTRUCTIVE HANDLING OF A DIDACTICAL DILEMMA

Konrad Krainer
IFF/Universitit Klagenfurt, Austria

Mathematics instruction consains two conflicting demands. on the one hand the demand for
economical efficiency and for well developed “motorways*, and on the other hand the
demand that pupils should investigate and discover for themselves and should have the
freedom to pave their own ways. It is argued that tasks with a certain richness and quality
help to take some steps towards a constructive handling of this dilemma. Some examples of
*“powerful tasks" are considered and two pairs of properties are worked out. Much attention
is paid to the social dimension.

Background

Discussing the importance of tasks in mathematics education has a long tradition. A detailed
analysis of the so called Task Didactics (Aufgabendidaktik), which is one of the marked
features of Traditional Mathematics, is given by Lenné (1969). Traditional Mathematics was
the leading stream of mathematics education in Germany (and in a similar way in Austria)
till the middle of this century, and then was progressively displaced by New Mathematics
(which in turn is being pushed back more and more). Task Didactics is characterized by a
partition of the mathematical subject-matter ifto specific areas (e.g. fractions, percentages,
triangles, quadrilaterals). Each area is determined by a special type of task which was
systematicaily treated progressing from simple to more complex tasks (combination of simple
tasks). Cross connections (¢.g. regarding fundamental ideas or structures) are not been
worked out in detail. In general, the teacher taught theories and methods and the pupils had
to apply them by solving tasks. How much has this situation changed?

Recent empirical research studies, like those of Bromme (1986) or Clark/Yinger (1987) show
that even nowadays mathematics teachers plan and organize their instruction on a large scaie
with the help of tasks.

Research with regard to tasks takes different directions:

- There are many contributions to general considerations about tasks, for example: Witt-
mann (1984) views teaching units as the integrating core of mathematics education, incor-
porating mathematical, pedagogical, psychological and practical aspects in a natural way
and therefore being a unique tool for integration. For Christiansen/Walter (1986) task and
activity are basic didactical categories whereby tasks can yield an adequate reduction of
the complexity of the interaction between teachers and learners. Bromme/Seeger/Stein-
bring (1990) stress the double-character of tasks as demands on teachers and leamners by
presenting different findings of empirical studies. Krainer (1991a) shows that tasks are
elementary building stones of didactical thinking and acting with relevance not only in
instruction but also in research and communication.

- A starting point of the problem solving movement (see ZDM, 1991) was Polya’s book
How to solve it (1945), distinguishing rowsine-tasks and nonroutine-tasks (later called pro-
blems). Questions concerning how heuristic strategies could be taught and how the
teaching of them could help pupils become better problem solvers dominated the research,
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especially in the 1960's and 1970"s. Since the 1980°s it became clear that problem solving |

research should include questions ahout the learner’s prior mathematical experiences, his |

mathematical knowledge and beliefs, his needs and motivation (e.g. Schoenfeld, 1985;

McLeod and Adams, 1989). In the last years more and more attention is being paid to

studies and teaching experiments where problem solving is used as a teaching method.

One example is the open-approach method by Mohda (1991) whose aim it is to foster

simulitaneously both the creative thinking of the students and mathematical activities. The

fact that teaching by open-approacii as a rule is done only once a month indicates

difficulties of integrating open problem salving within the framework of normal teaching,

- Another direction of research deals with systems of tasks. Von Harten/Steinbring (1985)

demand that tasks within such a "system" rhould refer to a common topic but should be

related in the form of analogies. They disciss the features of systems of tasks in regard

to probability instruction. Krainer (1990, see 1lso 1991b) develops a system of tasks (with

69 tasks) for the concept of angle as a creative mode of organization for a vivid geometry
(stressing a reflected relation between theory and practice).

This paper tries to develop some ideas towards a new culture of constructing and handling
of tasks. First, a central 'dilemma in mathematics education is described. By means of some
examples of powerful tasks it is argued that working with such tasks of a certain richness and
quality is a flexible way of managing this dilemma. Two pairs of properties of powerful tasks
are discussed and some links to other studies are made.

1. A central dilemma in mathematics instruction

How should mathematics instruction be organized? This is one of the most important

questions to be dealt with in mathematics education.

There are two extreme answers to the above question:

- Mathematics is a highly complex and highly developed science which, however, in areas
understandable for pupils offers polished and stable ideas and theories. Therefore, it is
easy to build up well-established ("secured”) courses for mathematics (background theories
etc.). .

- Pupils bring a variety of relevant and practical experiences, associations, intuitions etc.
to mathematics instruction. If the spontaneity and creativity of the pupils is taken seriously
it is - from a psychological point of view - necessary to have a certain insecurity of ma-
thematics courses (formulated after Wagenschein; see Lenné, 1969, p. 65).

These responses constitute a dilemma in mathematics instruction:

security insecurity
versus
of mathematics courses of mathematics courses

This dilemma cannot be resolved by a didactical theory. The situation ever remains
conflicting because both extremes embody meaningful demands: on the one hand the demand
for economical efficiency and for well developed “motorways”, and on the other hand the
demand that pupils should investigate and discover for themselves and should have the
freedom to pave their own ways.
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For centuries it has been commeon to organize mathematics instruction in duplicating "ready”
mathematical theories (as Euclid’s Elements in geometry). Nowadays another extreme,
namely to organize mathematics instruction with the help of open projects, is seen s an idea
not to be excluded from the beginning by more and more people. After the wave of New
Math - which can be seen as a step towards security - the pendulum seems to swing into the
other direction. Notions like problem solving (Polya, Schoenfeld), genetic method and
operative method (Wagenschein, Piaget, Aebli), didactical phenomenology (Freudeathal),
subjective flelds of experiences (Bauersfeld), inwuitions (Fischbein), discovery learning
(Winter) etc. indicate this pendulum swing, which in part is accompanied by constructivist
views. All of these didactical programmes take into account the complexity of mathematics
instruction and stress the active confrontation of pupils with mathematics.

In the following we try to take some steps towards a constructive handling of this dilemma.

We start with an intuitive approach: We regard the way of one task to a powerfid rask and
the interconnections of this task with two other tasks.

2. Three powerful tasks and their genesis

Let us try to put ourselves in the place of a teacher who wants t0 begin with the topic
*functions” in the near future, He looks for ideas for an introduction which on the one hand
leads directly to the mathematical subject-matter but on the other hand leaves scope for
pupils’ creative productions. Concerning this dilemma he has an interesting discussion with
a good colleague. She gives him the advice to glance through the script *Sketching and
Interpreting Graphs” (SHELL CENTRE). At home he reads this script and immediately the
idea "Hoisting the Flag" (p. 6) attracts his attention because he remembers that it was his
class that constructed the crank-handle for the school’s flagpole. So his pupils would already
have a lot of pre-experiences and (positive) associations.

Now to the text of “Hoisting the Flag" (incl. fig. :

*Every morning, on the summer camp, the youngest boy scout has to hoist a Jflag to the top
of the flagpole.

(i) Explain in words what each of the graphs belox: would mean.

(ii) Which graph shows this situarion most realistically?

P
.

If you don’t think that any of these graphs are realistic, draw your own version and explain
it fully.* (SHELL CENTRE, p. 6).

Height
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The teacher likes this task but he wants ¢

to modify it, especially question (ii): Height

it depends on the specific situation of £

which graph is more or less “realistic”. flag

He exchanges graph F for another one Time fig. 2
(fig. 2).

The new graph F refers'to a situation in which the boy apparently made a mistake while
hoisting the flag, resulting in a short-timed sinking of the flag. (Foremost in the teacher’s
mind is a similar mistake which happened to him in the schoolyard in front of the whole
class. What a yelling will arise when they recognize the “disgrace-graph” of their math
teacher! And his hidden triumph in tuming now this case with gentlemanly ease into a
mathematical problem!)

The teacher’s modified task contains the following text (with the same graphs as before, onty
graph F replaced vy the "disgrace-graph*):

The 5A class has assembled in the schoolyard testing their self-constructed crank-handle Jor
the school’s flagpole. As'usual, the math-teacher tries 10 take a mathematical view on this
situgtion: he draws a system of coordinates and describes the astempts of six persons
graphically.

Describe in a few lines, how (with what method) the six persons have hoisted the Sflag! Are
there other realistic graphs possible? Compare your results with those of your neighbour!
Finally formulate what you have learns from this!

The teacher writes down some preliminary considerations for the lesson:

- fine warming up exercise for “interpreting graphs® (surprise!)

- connection of real world situations with mathematics

- first feeling for properties like linear/non linear, increasing/decreasing, gradient,
curvature, etc. (withowt defining these concepts in thar situation)

- with a system of co-ordinates we can describe connections between quantities (here: time
and heighs).

- these graphs imtentionally comtain no numbers, qualitative considerations are in the
JSoreground. It is possible to describe things without numbers as the Jollowing shornt
characterization of the graphs A - F shows:

A: Constant hoisring (possibly automatism)

B: Quick beginning but the forces wane

C: Succession of hoisting and breaking off (possibly alternating hoisting with the right and
the left hand)

D:-Slow beginning, then steady increase of strength

E: Slow beginning, then increase of sirength, bus gingerly as the end

F: Quick beginning followed by a short sinking of the flag, finally managing it without
problems.

The math-teacher knows that this task is only one building-stone towards an encouraging
introduction to "functions”. He decides to construct two further tasks, both interconnected
with the former one.
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-Concerning the "inner logic” of this system of tasks he primarily pays attention to three

aspects: -

- Development from task 1 to task 3: interpreting (given) graphs - sketching and interpreting
graphs - solving problems with the help of a graph (function).

- First only qualitaiive considerations, then more and more quantitative ones.

- Varying variables (not caiy length and time).

For a second task the teacher uses a further graph {"Using petrol”) out of the script from
SHELL CENTRE (p. 11), which he modifies. The pupils have to think of 2 car ride and to
sketch a graph which shows the connection between the driven kilometers and the amount
of petrol left in the car. Then they have to find interpretations for their neighbours’ graphs

and to discuss their resuits ir: pairs.

3

It is not possible to
mention the variety of
interesting questions
which may arise out of
this task. Let's only
show one possible graph
(fig. 3) sketched by
pupils (try to finda s
suitable story!).

Amount of petrol o the car (ire)

ﬁg 3 [ 100 200 309 “00 500 600
Distance travelied (km)

The third task is one of the favourite tasks of the teacher:
he often uses it when introducing
*functions”. He has made good ex-
periences with it, especially be-
cause of the big scope for pupils’
acting, reflecting, discussing, etc.
The task "How long is the shadow?”
deals with the connection between
the angle of inclination of a rod

and the respective shadow caused
by an electric torch (fig. 4).
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The teacher likes experiments in his lessons and therefore he only wants to tell the pupils
about the idea and they should make considerations about to build up such an experiment
(matzrials etc.) and what questions would be of interest. Maybe a "mini-project” will start:
different groups of pupils work on (different) problems they have described before.

The teacher thinks that the experiences of the pupils with these three tasks will be a good
feedback for planning the next lessons.
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3. Properties of powerful tasks

All three tasks of the preceding chapter embody two conflicting aspects: on the one hand
each task is suited for interrelation to other tasks and contributes with them to specific and
general learning objectives. On the other hand each task contains possibilities for deepening,
many of which could develop into a kind of mini-project for (groups of) pupils. Furthermore,
each task is designed in such a way that much self-acting of pupils is initiated, the attention
not only directed to acting but also to reflecting on one’s own and the other’s acting.

Such tasks with a certain richness and quality we will name powerfidl rasks, or - because of

their project-like charakter - project-tasks.

They should be seen as more general than problems (non-routine tasks). Powerful tasks ...

- ... do not necessarily deal with solving something (in many cases it will be sufficient to
describe or to discuss a situation etc.).

- ... contain reflexions upon possible processes (actions etc.) which might happen. They get
their full power when the teacher integrally identifies himself with the aims of the task
(often modifying the text for his purpose).

- ... are open, meaning that the pupils ask new questions and discuss them.

Powerful tasks do not only take into account the subject-matter but also social dimensions in
instruction. We specify two pairs of properries as characteristic aspects of powerful tasks:
1) - Team-spirit: This property means that tasks should be well interconnected with other
tasks. This “horizontal® connection of tasks can be seen as a contribution to the
security of mathematics courses.
- Self-dynamics: This property means that tasks facilitate the generation of further inter-
esting questions. This "vertical” extension of tasks to open situations can be seen as
a contribution to the insecurity of mathematics courses.
Powerful tasks therefore embody the dilemma security - insecurity as a constituting
element.
2) - High level of acting: This property refers to the initiation of active processes of
concept formation which are accompanied by relevant ("concept generating”) actions.
- High level of reflecting: This property implies that acting and reflecting should always
be seen as closely linked. An important aspect of reflection refers to further questions
from the leamers (which in their turn could lead to new actions).
These two properties express the philosophy that leamers should not only be seen as
consumers but as producers of knowledge. The teachers’ task is to organize an active
confrontation of the pupils with mathematics.

The above considerations on the properties of powerful tasks are supported by various studies

(although there are no assertions about adequate types of instruction), for example:”

- Polya, for whom the most important goal of mathematics instruction is the support of the
leamers’ faculty of thought views this realized optimally by solving nonroutine-tasks. For
Polya reflection is of great relevance: the last of the four phases of his scheme is termed
looking back (see e.g. Polya, 1945).

- Clark and Yinger (1987) consider reaching as a design profession and stress the importance
of reflection in action as one essential activity of teachers (seen as reflective professionals)
in mathematics instruction.

- Dorfler (1989) stresses, like Aebli, the complementarity of actions and relations and
discusses the idea of protocols of actions as a cognitive tool for knowledge construction
which can be seen as a suitable means for reflecting.




2-31

- Constructivistic positions (Piaget, von Glasersfeld, Maturana etc.) make it clear that simple
transfer of teachers’ knowledge into pupils’ knowledge is an unjustified conceptualisation
of leaming. Their position challenges the conception of a strict partition of roles in
mathematics instruction - the teacher renders theories and the pupils apply this theory
(maybe in form of tasks). If pupils are seen as researchers and discoverers this seperation
cannot longer be accepted, and acting and reflecting should be seen as an inseparable pair
of cognitive and social (further) development.

- Bell (1991) stresses a ser of principles for designing teaching which have many common
aspects with the above mentioned properties, for example: Richly connected bodies of
knowledge are well retained, isolated elements are Quickly lost is an argument for
constructing well interconnected tasks; Scope for pupil choice and creative productions can
provide both motivasion and challenge at the pupil’s own level is an argument for
constructing tasks with a high level of self-dynamics.

4. Summary and outlook

Two pairs of properties of powerfid tasks (rich problems, etc.) have been pointed out:

1y} team-spirit and self-dynamics characterizing the dilemma security - insecurity of
mathematics courses

2) high level of acting and high level of reflecting as complementary properties guaran-
teeing a meaningful link between leamers’ actions and mathematical concepts.

There is no magic formula for solving the described dilemma. Depending on the decision to

stress either more feam-spirit or more self-dynamics, we can construct sysrems of tasks ot

mini-projects. This article presents a “little” system of tasks with some possibilities to begin

mini-projects. Krainer (1991b) describes a system -of 69 powerful tasks for the concept of

angle and two mini-projects (conceming discovering and proving in geometry) for pupils to

work on computers with 2-D-graphics.

Additionally, I want to point out some experiences with powerful tasks refering to my own

teaching in school. The following remarks are not based on empirical studies and they are

therefore not systematical but they can show some aspexts of concrete working with powerful
tasks in mathematics instruction:

- Constructing powerful tasks is no difficult task: textbooks contain a wide range of
interesting tasks. In many cases it is easy to modify them in such 2 manner that they fit the
goals the teacher wants to reac” ~ ° fit the (open) activities the teacher wants to initiate.

- Reflecting upon leaming objectives, possible pupils activities and possible pupils difficulties
with regard to tasks gives the teacher more freedom of action: he is more flexible in
reacting to pupils questions and proposals.

- Powerful tasks are valuable means for group work in mathematics instruction. On the one
hand it is possible to construct interconnected tasks- which cover a special part of a
mathematical field as shown with the Grand Prix of Integralopolis (Krainer, 1987) in the
case of Calculus. On the other hand powerful tasks as .aini-projects give pupils the
opportunity to work on different levels, to compare their problem solving s‘rategies and
(provisional) results.

- A very important thing with regard to working with powerful tasks is adequate communica-
tion among the pupils. Possible activities may be: mutual asking and explaining, common
reflecting upon the learning process, making competitions (e.g. inventing new tasks which
the others have to resolve), thinking of difficult questions for the teacher, etc.
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It is assumed that increasing importance of powerfid tasks in mathematics education gives
teachers more encouragement to commit themselves to didactical research. This also is a
valuable contribution to getting theory and practice of mathematics education closer to each
other. But this is no easy rask: we should think in systems as well as in projects!
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MEASURING ATTITUDES TO MATHEMATICS
Gilah C. Leder

Monash University, Clayton, Australia
Swnmgry
Various measures of anitudes to mathematics are described in this paper. The results obtained
from different self-report instruments administered to students in grade 7 are examined for
consistency and compared with avert behavioral indicetors.
Introduction
Increasingly, formal documents concerned with the teaching and learning of mathematics refer to
the importance of student attitudes to the subject.

An important aim of mathematics education is to develop in students positive
attitudes towards mathematics and their involvement in it.... The notion of having a
positive attitude towards mathematics encompasses both liking mathematics and
feeling good about ofie’s own capacity to deal with situations in which mathematics is
involved. (Australian Education Council, 1991, p. 31)

Whether student behavior during mathematics lessons is reflected in different measures of their
attitudes to mathematics is examined in this paper. As a first step, what is meant by attitudes
needs to be discussed.

Almost 60 years ago, Allport (1935) claimed that "attitudes today are measured more successfully
than they are defined”. Four decades later Fishbein and Ajzen (1975) identified more than 500
different methods of measuring attitudes when they reviewed research published between 1968 and
1970. They argued that the theoretical orientation of the investigator. as well as practical
constraints, largely determined how attitudes were operationally defined and measured.

A careful reading of the various definitions allows a number of cor unonalities to be
identified. Attitudes are learnt (the cognitive component); attitudes predispose to action (the
behavioral component); these actions may be either favorable or unfavorable (the evaluative
component); and there is a response consistency. Triandis (1971) captures the different nuances
particularly well:

Attitudes involve what people think about, fegl about, and how they would like 10
hehave toward an attitude object. Behavior is not only determined by what people
would like to do but also by what they think they should do, that is, social gorms, by
what they have usually done, that is, habits, and the expected consequences of
behavior. (Triandis, 1971, p.14)

Measurement of autitudes
A large variety of different instruments has been used to measure attitudes in general, and
attitudes to mathematics in particular. In recent years the unitary scales initially used to tap

attitude to mathematics have typically been replaced by multidimensional measures. This
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development reflects the reconceptualisation among mathematics educators of attitude(s) to
mathematics from a single dimensional to a multidimensional construct (Leder, 1985).

Many of the approaches used to measure attitudes to mathematics rely on paper-and-pencil,
and often self-report, instruments. These do not make use of overt behavior. Commonly used
scales of this type include Thurstone scales, Likert scales (used particularly frequently to tap
attitvdes to mathematics), Semantic differential scales, inventories and checklists, preference
rankings, projective techniques, and enrollment data. Clinica and anthropological observations
and physiological measures are instances of alternate measures. Examples of each approach for
measuring attitudes to mathematics are given in Leder (1985; 1987).

The main aim of the present study is to examine whether student responses on various

measures of attitudes to mathematics are consistent and reflect their behavior during mathematics
lessons.

The setting
As part of a larger study, data were gathered during 1991 in seven mathematics lessons - spread
over eight schooldays - in a grade 7 class in a coeducational school situated in the metropolitan
area of Melbourne, Australia. The students needed that time to complete the task they had been
set: a project to determine the feasibility of a new tuckshop, with a group report to be submitted
at the end of the time allotted.
The sample
Particular attention was focused on one of the groups. Like most of the others, it comprised five
students. Because of illness and schoo! commitments (e.g., music lessons) not all the students
were present for each of the lessons observed,

In this paper, detailed information is presented for two of the students, Chris and Carol.
The instruments
Self-report measures
The following instruments were administered to each student in the class before the main dcta
collection period:
ABOUT YOU: a 25 item, Semantic Differential Scale. The instructions to the students indicated
that the instrument asked ‘what kind of person you think you are’. Bipolar adjectives included
competitive/not competitive, messy/neat, and boring/interesting. An additional item asked if ‘there
are other ways in which you would describe yourself?’
ABOUT YOU AND MATHS I: this scale contained two open ended items in which students were
asked whether or not they liked mathematics and to explain why they feit the way they did.
ABOUT YOU AND MATHS II: students were asked to indicate with a cross, on a line marked
‘exceilent’, ‘average’, and *poor’, where they believed they fitted in. ‘How good are you at
mathematics?’, ‘How good at mathematics would you like to be?", *How good at mathematics
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does your teacher believe you are?’, and ‘How good at mathematics would your parents like you
to be?* were among the eight items in this instrument. -
ABOUT MATHS LESSONS I: students were asked to ‘write a description of the kind of
mathematics lesson you usually have in year 7. If you like, you can include a drawing.’
ABOUT MATHS LESSONS II: this scale consisted of two parallel parts. In the first, students
were asked to indicate how often (often, sometimes, rarely, never) certain activities occurred
during mathematics lessons. The second part of the instrument repeated the earlier (19) items, but
this time students were asked to indicate how much they would like (like, unsure, dislike) the
various activities mentioned. Items included ‘Teacher explains to whole class about a topic’,
*having tests’, and ‘conducting research on your own’.
ABOUT GRADING IN MATHS: this scale contained five open ended items which asked
students’ opinions about various grading approaches.
At the completion of each of the lessons observed, all the students in the class were asked
to complete a sheet labelled:
TODAY'S MATHS LESSON: this instrument contained seven items, including ‘Circle the face
which shows how you felt about your understanding of today's mathematics lesson’, ‘Explain
briefly why you felt this way’, and ‘What would have helped you to understand better?”
Towards the end of the school year students were asked to complete several other
instruments. Two are relevant here:
MORE ABOUT MATHS: this Likert scale contained 26 items such as ‘I like doing mathematics

problems which make me think hard’, *I like mathematics lessons when we can help each other

work things out’, and ‘Luck is important for a student to be good at mathematics’.
HOW GOOD ARE YOU?: this scale was similar to ABOUT YOU AND MATHS I1.

Finally, students were interviewed individually and were asked various prompt questions
which encouraged them to reflect on the year's mathematics activities.
Observational data
For each of the lessons observed, a video camera, supplemented with an additional microphone,
was placed near the group f interest. This allowed the §mdenu' behaviors and conversations to
be captured. These tapes were subsequently transcribed. Field notes were also kept and any
incidents of interest recorded.
Results
Results are presented separately for the different instruments. Because of space constraints, only
selected findings are given.
ABOUT YOU
Chris indicated that she saw herself as very active, independent, not very interested in what others

thought of her, yet aware of other people’s feelings, able to make decisions very easily, self-
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confident, lincshle, friendly, interesting, neat, clever, ambitious, and rather outgoing. Though she
indicated that neatness was not & sufficient condition to do weil in mathematics she chose the
following additional ways to describe herself:

Like to always make my work neat & tidy & look good.
Am quite patient.

For the same open ended item Carol wrote:
1 enjoy being with people.
Carol’s other responses showed her to be less positive about herself than Chris. She considered
herself rather shy, but believed that she was very likeable, friendly, and neat.
ABOUT YOU AND MATHS I
Chris indicated that she liked mathematics because

it is not something that is always easy or always hard. It is more like a challenge. I
also like maths because it is a subject that you will definitely (sic) need when you go
out in the real world.

For the same item Carol wrote

I tike maths because I know if I don’t like it I won't be able to have-a good future.
ABOUT YOU AND MATHS I!
Chris believed that she was excellent at mathematics and that others thought so too. Her teacher
rated her § (excellent) on a scale of 1 to 5. Carol thought she was a bit above average in
mathematics, but that others (teackers, parents, classmates) underestimated her performance. Her
teacher in fact gave her a rzing of 4.
ABOUT MATHS LESSONS I and 11
While both students wrote similar descriptions of their usual mathematics lessons, they differed in
their reactions to some of the more structured items. Chris considered that she often talked about
mathematics in class - with the teacher, to a friend, or in small groups - and often worked with a
partner. She liked working cooperatively with others. Carol indicated that she would like to spend
time working with others but claimed that currently there were few in-class opportunities for such
personal collaborations.
ABOUT GRAL(NG IN MATHS
Chris stated that she was quite satisfied with the methods for grading (described as tests and
observations of students’ work) cutrently being used. Caro! believed that there were better ways to
assess students’ understanding of the work:

I don’t think {the teacher} can really tell what we know from what he gives us to do.
TODAY'’S MATHS LESSON
Chris consistently indicated that she felt good during the lessons we monitored. At the end of the
first lesson she described herself as not feeling sure if she had understood the work ‘because it is a

new project’. *More discussion’ would have been helpful. By the end of the second lesson she
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had ‘no great worries’ about the work ‘becau;e I understood the task to be done’. This feeling
persisted throughout the remainder of the sequence of lessons, Carol showed herself to be more
ambivalent. She circled the ‘neutral® face for four of the lessons. Yet she claimed to be generally
happy about her understanding of the work because ‘I understood what we had to do’, ‘the work
wasn’t hard’, ‘we all cooperated’.
MORE ABOUT MATHS
Chris's self-confessed enjoyment of solving hard problems, doing really well, finding new ways to
solve problems, and feeling that she knew more maths than others was not shared by Carol. Chris
disagreed, while Carol agreed, that mathematics lessons were enjoyable when all the work was
easy.
Qbservational data
The lesson transcripts and our field notes were generally consistent with the overall impressions
obtained through the self-report instruments. Two sets of excerpts illustrate this.
\. Chris’s pride in doing well in mathematics and making her work “neat & tidy & look good”.
How to record the information took on increasing importance as the data the students collected
accumulated. After various trials, Brian, another member of the group asked: ‘Who's got the
neatest writing here?’
The others agreed that Chris undoubtedly did.
Brian: (to Chris) Then you can write them all up.
Jodie: But we'll help to write the rough copies.
Chris: (to Carol) Will you go and shaspen this for us? (The video shows Carol taking the pencil
and moving off.)

Throughout this and the subsequent lessons Chris not only contributed substantively to the
content of the project but also clearly continued to be the main recorder.
2. Carol's volunteered comment that she enjoyed being with people and that mathematics lessons
would be more enfoyable if she could spend more time working in class with others.
From our field notes for lesson 4:

Today was spent preparing bar graphs to present data. Jodie appeared to be
‘directing the traffic’.... She, Carol and Chris drew, then colored in the graphs. For
a long period, Carol appeared to observe and do nothing. Finally, after getting up to
sharpen some pencils, she began (tethargically) coloring as well. The two boys were
on task the entire time discussing the survey questions and the figures involved. The
girls were engaged in social chit chat as they colored.

Excerpt from lesson 5:

Qur group was split into two. The girls worked on the report. Chris and Jodie were
writing, Carol was simply observing. When Carol threw in the occasional comment
she tended to be ignored completely or dismissed with a short and somewhat curt
retort.
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Perusal of the transcript for this lesson confirmed that there were relatively few exchanges
between Carol and the other four students. The following describes a ‘dismissal’ episode.

On the tape Jodie can be seen dictating to Chris while Carol looks on:
Carol: (to Jodie) You can’t use pros and cons....
Jodie: How can... Why not?
Carol: Well, they won’t know what it means....
Jodie: ...Everybody here knows what pros and cons means.... Basically, good and bad.
Carol: Oh, yes

Confirmation of Carol’s limited involvement in solving the task also emerged during the
interview held with Chris at the end of the year. Chris confided:

Well, I think all of our group, um felt that, Carol ... she didn"t really help as much,
and we’d sort of say, oh, you know, I wish Carol would give us a bit more help.
She’d just sit there and watch us doing it all. There wasn’t much we could do ...

Concluding comments

The self-report data, gathered mostly before our observations began, provided generally coherent
pictures of the students’ attitudes and indicated varicus differences in the ways Chris and Carol
thought about mathematics and themselves as learners of mathematics. The lessons we monitored
revealed consistencies between in-class behaviors and images evoked by the self-report measures.
For example, Chris's pride in neatly presented work was acknowledged and valued by the group.
During the lessons, we observed her in a variety of activities compatible with her positive attitudes
about herself and mathematics. Carol’s marginal position within the group was consistent with,
and likely to reinforce further, her perception that others underestimated her mathematical
capacities and her wish for more personal contacts in class. While we observed the group, Carol’s
opportunities o engage in constructive mathematical activities were severely limited by others and
by herself.
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THE FUNCTION OF LANGUAGE IN RADICAL CONSTRUCTIVIBM: A
VYGOTSKIAN PERSPECTIVE

Stephen Lerman
South Bank Polytechnic, London

ABSTRACT Some critics of radical constructivism suggest that the
theory seems to lead to solipsism, that is the inability of people to be
able to have knowiedge other than of the self, and to step outside their
own minds to a social domain. In this paper, | argue that the problem is
centred around the role that language piays in thought, and i suggest that
since radica! constructivism is rooted in Piagetian thought, fanguage is
seen as one of the external phenomena by which one achieves a 'fit'. In
contrast, a Vygotskian position on language and thought places social
interaction as the precursor of higher thought, and | argue that such a
perspective provides more powerful interpretations of events in the
classroom. In particular, | suggest that it contributes a missing
dimension to research studies of the mathematics classroom interpreted
in the radical constructivist paradigm.

It has been claimed that, in contrast t0 behaviourist Or cognitive learning theories,
the radical constructivist paradigm offers multiple interpretations of learning
events (e.g. Lerman and Scott-Hodgetts 1991) and of teachers’ beliefs (e.g. Scott-
Hodgetts and Lerman 1990) and rich alternative research perspectives for
mathematics education {von Glasersfeld (Ed.) 1991b). At the same time, debates
around the theory have, in my view, enriched ideas and developed discussion in the
mathematics education community. The concern of this paper is the criticism that
radical constructivism does not deal adequately with the nature of communication and
language. and social aspects of conceptual development. In last year's PME
proceedings. Ernest {1991) suggested:

“To regard the social as secondary to the pre-constituted cognizing

subject is again problematic. and this difficulty is not adequately

resoived by radical constructivism.” (p. 32)
At the same time. some researchers working within the radical constructivist
approach appear to recognise the source of the difficulty. The following quote from
Cobb et al (1991) demonstrates the way in which the problem of the nature of
communication 18 embedded in radical constructivism:

"Constructivism, at least as it has been applied to mathematics

education, has focused almost exclusively on the processes by which

individual students actively construct their own mathematical realities.

. . However, far less attention has been gwen to the interpersonal or

social aspects of mathematics learning and teaching. . . how . . . does

mathematics as cultural knowledge become “interwoven™ with individual
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children’s cognitive achievements? In other words, how is it that the

teacher and the children mar.age to achieve at least temporary states of

intersubjectivity when they talk about mathematics?” (p. 162)
The notion that pupils construct their own meanings trom what is ottered in the
classroom, and that the teacher constructs her own interpretations ot the child's
constructions which are then relayed back to the child to gain feedback for
corroboration or refutation, and negotiation, seems to lead to a continuous process
that at best results in a 'tit’ of meanings. This does not appear to be the same as
communication in any sense that is externai to the mind of the individual and thus
reaching out to other minds. As for the role of social interaction, von Glasersteld
(1991a) interprets Piagetian theories as oftering the tollowing:

“The experiential environment in which an individual's constructs

and schemes must prove viable is always a social environment as well

as a physical one. Though one's concepts, one's ways ot operating, and

one's knowledge cannot be constructed by any other subject than

oneself, it is their viability, iheir adequate tunctioning in one's

physical and social environment, that turnishes the key to the

solidification of the individual's experiential reality.” (p. 20-21)
In relation to the function of language, some writers (e.g. Ernest 1991) recognise
its essentiat role in conceptual development, but given the interpretation of social
interactions above, there appears to be some confusion about how language can play
that essential role.

In an earlier paper (Lerman 1989) ! briefly suggested that Wittgenstein's
discussion against the notion of private languages highlights the problem and answers
it, but as pointed out by Burt (1990), this was not suficiently deveioped. In this
paper | wiil attempt to pinpoint the source of what is sesn by some as a major
difticulty of radical constructivism. | will suggest that whilst there is a problem
with communication for radical constructivism its resolution is to be found i an
analysis of the social nature of language and consequently of concepts. | will argue
that a Piagetian radical constructivism sees language as one of the social phenomena
by which one measures the adequacy of one's private theories. For Vygotsky,
language is primary, and socially embedded. Consequently a Vygotskian radical
constructivism (if one can aliow such a name) would focus on how language and
concepts are constructed, both for the individua! and the group, in the interactions
of, tor instance. the mathematcs classroom. | will also argue that the latter
perspective takes on board the post-structuralist cntiques of individualistic,
inciuding Piagetian. psychology Although the discussion will relate to language and
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concepts in general, ! will make some connections with mathematics education
explicit at the end, with reference to the work of Cobb, Wood and Yackel.

Language and Thought

Two inter-related and major themes of Piaget's work are constructivism and
structuralism. The former has been re-evaluated and elaborated as radical
constructivism, and the latter has been subjected to what are termed post-
structuralist critiques.  Whilst radical constructivism is firmly within the
Piagetian paradigm, post-structuralism is a radical shift away from the
structuralist underpinnings.of Piaget and away from an individualistic paradigm for
psychology towards a social paradigm. However the following two quotes appear to
indicate that these two theories or groups of theories take the same ontological
position with regard to reality:

“Language is not transparent . . . it is not expressive and does not label a

‘real' world. Meanings do not exist prior to their articulation in

language and language is not an abstract system, but is always socially

and historically situated in discourses.” (Weedon 1987 p. 41)

“The world we live in, from the vantage point of this new perspective, is

always and necessarily the worid as we conceptualize it. "Facts”, as Vico

saw long ago, are made by us and our way of experiencing, rather than

given by an independently existing objective worid.” (von Glasersteld

1983 p. 51)
Thus it seems that Piagetian thought is pulled in two divergent directions that
nevertheless have fundamental ideas in common. | am going to argué here that the
dichotomy is apparent in the manner in which the relationship of fanguage to thought
and reality is conceived by these two theories. (I do not concur with Ernest's
reification of a theory, the status of a category of ideas to which in his view radical
constructivism does not achieve - see Ernest 1991 p. 25.)

For radical constructivism, language, as other external phenomena, is a medium
through which the individual measures and compares her/his thoughts and ideas. As
a consequence of comparison of those theories with other people, through language,
or indeed interaction with objects (including books). the individual modifies her/his
theories through accommodation. in order to achieve a ‘fit’, the criteria for which,
namely adequate functioning and viability, are of course individually relative aiso.
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For post-structuralism, thoughts and ideas are expressed in language and are limited
by that language. Words do not capture the essential essence of character of
concepts, e they abstract or 'real’, because one cannot speak of such a character.
What they do capture, because it cannot be otherwise, is the social construction of
language. | cannot speak of one object being green and another red in a private way,
which | then compare with your private meaning. | can only speak of those ideas
because there is a social convention which aliows ‘green' to be applied in one case and
'red' in the other. Actually | cannot speak of 'green’ and ‘fed’ at all, as | am colour
blind. When 1 do use these words my daughters laugh. They do not merely note that
their concepts; or mine, must be in need of accommodation. My rather unimiportant
physical incapacity results in my not being able to share the social constructions of
colour. Similarly, to use the word 'equator’ is to know its use and occurrence. In
fact the equator does not exist in any observable sense, it is as 'real’ a concept as the
centre of the universe which, for the Greeks in ancient times, was the centre of the
Earth and in other places for other peoples at other times. To be able to speak of the
Northern hemisphere and the Southern hemisphere, or to calculate distances between
points on the surface of the Earth depends on my sharing the current (Western?)
language of measurement on the surface of the Earth.

To take a further instance, one that | have used often but that nevertheless captures
many of the points | wish to make here, consider the concept ‘hat’, How is this
acquired? What would be implied by saying that someone has acquired the concept
‘hat'? Certainly it is not an innate platonic concept, nor does the concept identify
some fixed signified, such that a definition or single occurrence leads to a permanent
and compiete 'understanding’. | suggest that one engages with ‘hat' as one acquires
the language of clothes, parts of the body, notions of temperature, perhaps religious
significations, and uses to which objects are put. After all, a hat is identified by its
nse and public interpretation. To tatk of my individual construction of the notion
‘hat’ which | then compare with other peopie’s ignores the issuw of the tools | use to
make that construction: public signs embedded in language, such as clothes, pans of
the body etc.

| am suggesting that to speak of individual constructions in the radical constructivist
sense is entirely appropnate. but they are not in a ‘private language’. inaccessible
to outsiders, including in particular teachers. precisely because the toois .ot thought
are necessarily public. 1t is not surprising, from this point of view, that there
appears to be intersubjectivity in the classroom, or that any individuai can
‘interweave' with culture, in our case mathematical cuiture. This is not. however,
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Piaget's notion of how thought and language are connected, as may be seen from the
following (1969):
°. .. it is apparent that one can legitimately consider language as playing
a central role in the formation of thinking only in so far as language is
one of the manfestations of the symbotic function. The developmert of the
symbolic function in turn is dominated by intelligence in its total
functioning." (p. 126)
As Zepp says of Piaget's theory of language (1989): "It states that thought exists
prior to, and ouside of, language.” (p. 27)

Vygotsky's ideas offer a ditferent interpretation of the connection between public
social interaction and the formation of concepts and conceptual development in the
individual. I'briefly review some of Vygotsky's work in the next section.

Yygotsky on Language and Thought

For Vygotsky the process of thinking, beyond the elementary, pre-inteltectual stage,
cannot be understoos without understanding the social relations in which the
individual exists.

*. . . the sociai dimension of consciousness is primary in time and in

fact. The individua! dimension of consciousness is derivative and

secondary” (quoted in Wertsch 1985 p. 58)
This is not to say that the individual dimension is reducible to the social, nor indeed
the reverse. The connection between external social interactions and individual
consciousness 1s through a complex process that is a major concern for Vygotsky,
that he calls internalization. The issue of how this takes place. and how the teacher
can set up the social norms in the classroom in order to facilitate internalization is
clearly a central one for education. The work of the Purdue project (Cobb et al
1991) on developing those social relations in their research classrooms is. in my
view, an excellent exampie.

Concerning the role of language, Vygotsky says (1962):
“The structure of speech does not simply mirror the structure of
thought; that is why words cannot be put on by thought like a ready-made
garment. Thought undergoes many changes as it turns into speech. it
does not merely find expression in speech; it finds reality and form.”
(p. 126)
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What is clear in Vygotsky's ideas is that language is more than an external source for
adaptation in order to achieve a ‘fit', it has a primary role.
“Real concepts are impossible without words, and thinking in concepts
does not exist bayond verbal thinking.” (Vygotsky 1986 p. 107)
What is also clear is that Vygotsky's view is very ditferent from Piaget's:
“This attempt to derive the logical thinking of a child and his entire
development from the pure dialogue of consciousness, which is divorced
trom practical activity and which disregards social practice, is the
central point of Piaget's theory.” (Vygotsky 1986 p. 52)
A Vygotskian form of radical constructivism retains the notion that reality is a
construction, not a received phenomenon, but sees rcality as a social construction
through language rather than the individual constructions of pre-existing cognizing
subjects whose communications are uitimately incommensurabie. Whilst thought is
internal and there are ditferences at least in function between the inner language of
the individual and the external public language, they are both expressed in and, ina
sense, bounded by publicly accessible language. This does not imply that one can read
another's mind, as the individual consciousness and the social domain are not
reducible one to the other. In focusing on the constructions of individual students,
research needs to focus aiso on analysis of the discourses and the social practices of
the mathematics classroom, as thlese are the means by which the intersubjective is
met.

B . M s ©

Much research in the radical constructivist paradigm seems, | suggest, to be
searching for explanatory theories for the role that discourse in the classroom
plays, a role that reachex beyond achieving a fit' to concept formation itseit. For
instance, in their work on second grade learners (Cobb 1991, Wood 1991, Yackel
1991, Cobb et al 1991), the researchers refer to sociology and social interaction as
being required to explain and guidc' the activities in the classroom:

= .. we might say that the children learned as they participated in the

interactive constitution of the situations as they learned.” (Cobb 1991

p. 235)

“Neither a psychological ndr a sociological perspective provides an

adequate description of the complexity of the process (children’s

mathematicat learning).” (Wood 1991 p. 356)
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°. . . through peer questioning . . . they deveiop sophisticated forms of

explanation and argumentation which are infiuenced by the social

interaction of the participants.” (Yackel 1991 p. 370)
Reterring to the concerns expressed by Cobb et al above, namely how individuals
participate in mathematics as cultural knowledge, and how teachers and children
communicate, | suggest that the answer may be found in the primacy of the social
over the individual, that is to say the intersubjective over the intrasubjective. In
the interaction of the teacher with the students and the students with each other, one
sees the multiple and complex interactions of the discourse of the community of
mathematicians with that of the mathematics classoom, as well as with those of the
students as peer group and sub-groups of the peer group etc.

In reading the transcripts of the Purdue project one can, | suggest, observe the
construction of knowledge, not in the privacy of individual minds alone but in the
social domain of the classroom (e.g. Cobb et al 1991 p. 167, concerning the meaning
of the fraction 1/1). Through discussion, dispute, cognitive conflict, sharing and so
on, the intersubjective becomes internalized as the intrasubjective and the
intrasubjective is offered to others, becoming intersubjective. In the mathematics
education community we like to use the term ‘negotiation’ to describe how concepts
develop through the activities of the mathematics classroom. In a Piagetian
framework this term appea.s to function only as anothsr word for accommodation,
because of the absence of any intersubjective communication. In a Vygotskian
framework negotiation is a description of that intersubjective communication. It is
the meaning that is negotiated because the meaning is constructed in and through the
language of social interactions, and cannot be otherwise. 'Meaning’ is not invested in
the signified, nor does it appear in the mind of the individual except through
language which is socially rooted. Other aspects of the mathematics classroom also
become more signiticant with the primacy of social interactions. For instance, the
power relations that prevail in the ciassroom, revealed vividly through some of the
work on discourse analysis (e.g. Walkerdine 1989), have purchase because some
individuais, by virtue of the calling up of particular discursive practices, are
endowed with more authority than others.

In conclusion, | have suggested here that radical constructivism has a great deal to
offer to research in mathematics education, but it does not have an adeguate
interpretation of social interaction precisely because radical constructivism holds to
a Piagetian view of the role of language. There is much to be gained from a
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Vygotskian view, whereby !anguage and the social domain are primary, and the
intrasubjective is the internalization of the intersubjective.
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TO BE OR NOT TO BE MINIMAL?
STUDENT TEACHERS’ VIEWS ABOUT DEFINITIONS IN GEOMETRY
Liora Linchevsky , Shlomo Vinner and Ronnie Karsenty

Hebrew University, Jerusalem

Abstract
The authors examine some aspects of matheniutical definition as conceived by prospective teachers.
The aspects are minimality and arbitrariness. This is done by means of a geometrical questionnaire
which appears to be a didactical questionnaire. Most of the students seem to be aware of the
minimality aspect. Some accept it and some reject it. On the other hand, it seems that many of the
students are not aware of the arbitrariness aspect. In addition, some serious geometrical misiakes are

found in the freshmen.

§1. The Minimality Aspect of Mathematical Definitions

Mathematics learing is supposed to have some fringe benefits. One of them is a metacognitive view
about mathematics as a deductive system. The two most important 1ools of any deductive system are
definition and proof. In high school, the deductive aspects of mathematics are strongly represented
by Euclidean geometry. Van Hiele ( for details see Usiskin, 1982 and Senk, 1989 ) suggested a
theoretical framework to deal with geometrical thinking. Several levels :° geometr.mal thinking were
distinguished. However, Van Hiele did not give behavioral criteria by means of which a particular
Van Hiele level can be assigned to an individual. This was done by Usiskin and Senk as part of an
attempt to examine the validity of the Van Hiele theory. It is only reasnable to assume that a high level
of geometrical thinking will include some understanding of definitions. This, however, is included
only in an implicit way in the Van Hiele test ( Usiskin, 1982 ). In this study we were not interested in
assigning a Van Hiele level to individuals (like, for instance, Mayberry, 1983 ). Our interest was to
find out whether student teachers. at different stages of their study, are aware of certain aspects of
mathematical definitions. The main aspect on which we concentrated was the aspect of minimality.
The other one was the aspect of arbitrariness. More specificly, there are some mathematical notions
that can be defined in more than one way. In these cases, the mathematician. the textbook writer or
the mathematics teacher has the freedom to decide which way he or she wants to go. Probably because
of this it is common to claim that mathematical definitions are arbitrary. On the other hand. they are not
atbitrary at all: there is always a good reason for the choice of any term in the mathematical vocabulary.
Therefore, it is not completety coherent to claim about a definition that it is arbitrary and at the same
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time to be able to justify it. We consider the claim that mathematical definitions are arbitraty as an
expression of the view that mathematical definitions are man made rather than made by God. Thus.
the minimality aspect seems to us much more essential to mathematical definition than the arbitrariness
aspect. Minimality can be considered a universal principle as well as mathematical. When you are
asked about the meaning of a term you should say only the minimum required to understand the term.
This principle is not necessarily accepted by everybody outside the domain of mathematics. Neither it
is necessarily recommended as a pedagogical appproach. Nevertheless. it is a most crucial structural
clement of mathematics as a deductive system. As a matter of fact, it shapes the way in which
mathematics progresses when it is presented deductively. Namely, after the definition. theorems
which give you additional information about the concept. are formulated and proved. If mathematicai
definitions were not minimal we would have to prove their consistency. For instance. if you define an
equilateral triangle as a triangle whose sides are congruent and aiso all its angles are congruent then
you have to proceed by showing that these two properties can "live together.” The most appropriate
way of doing it in this case is to show that if all the sides of a given triangle are congruent then also all
its angles are congruent. Therefore. what is the point of defining an equilateral triangle by means of
both its sides and its angles if you should prove exactly the same theorems you would have to prove
when going the minimal way? Being minimal is being economical and this is considered a virtue. We
even dare to say that in many cultures. not only in the culture of mathematics. being economical is
regarded as positive while being wasteful is regarded as negative.In spite of that. there are few cases
in geometry where definitions are not minimal. The most famous one. perhaps, is the definiton of
congruent triangles. The common definition of congruent triangles is the following: Two triangles are
said to be congruent if all their sides and all their angles are congruent, respectively. Every geometry
student knows that it is sufficient to require less than that for two triangles to be congruent. This is
expressed by each of the four congruence theorems. The reasons for this redundency, so we believe,
are psychological. The above definition is a special case of thre general definition of congruent
polygons where one must require congruence of all sides and all angles respectively. When passing
from the general case to the special case. the mathematician ( Euclid? ) did not want to lose :he
message of the general definition. Namely. the concept of congruence involves focussing on both all
sides and all angles. It also expresses the idea that if you put one triangle on top of the other then the
later will be exactly covered by the first one. Moreover. if you decide. inspite of all.to use a
congruence theorem as a definition. you will not find a didactically best candidate. Thus, in some rare
cases. the principle of minimality is not observed in mathematics. In u. “.e cases. didactical and
psychological principles take over.
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§2.Method

We used a two stage written questionnaire in order to expose the student teachers’ views. In addition
to it we also had a group discussion using the questionnaire as a starting point, Because of space
problems we will report here only on the questionnaire. Its first part was the following:

Ina geometry exam the following two questions were given:

1. Define an equilateral triangle.

2. Define a rectangle.

Here are some answers given to these questions by students:

la. An equilateral triangle is a triangle that has three congruent angles.

1b. An equilateral triangle is a triangle that has three congruent sides.

Ic. An equilateral triangle is a triangle in which all the sides and all the angles are congruent.

1d. An equilateral triangle is a regular triangle. Namely, all its sides and all its angles are congruent
and each median is also an altitude and an angle bisector.

2a. A rectangle is a quadrilateral in which all angles are right angles.

2b. Arectangle is a parallelogram that has at least one right angle.

2c. A rectangle is a quadrilateral that has 3 right angles.

2d. A rectangle is a quadrilateral whose opposite sides are congruent and all its angles are right
angles.

The teacher decided to give 10 points to each answer which is absolutely correct. How many points
would you give to each of the above answers if you were the teacher? Assuming that the students will
come 1o you to argite about their marks please explain why you deducted points if you did so.

After the students had answered this part of the questionnaire we collected their answer-sheets and
gave them the second part which was:

_ The teacher deducted several points from the answer defining an equilateral triangle as a regular
triangle in whic* all the sides and angles are congruent and each median is also an altitude and an angle
bisector. The student who had given this answer came to the teacher to argue about his mark. The
teacher explained to the student that she had deducted the points because the answer included
unnecessary details. The student said: If in a Biology test I write " unnecessary details” when
answering a question like "what is a mammal” I'll get extra points.

What will you answer this student in case you agree with the teacher? If you don't, please, explain
why you don't.

Our aim in the second part of the questionnaire was to raise the minimality issue in a completely
explicit way. We assumed that in the first part of the questionnaire, there will be some cases where
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students will deduct points because of reasons different than we had in our minds. Thus, in the
second part we forced them to relate to our main issue -- the minimality aspect of mathematical
definitions. We were aware of the fact that some students will understand the questionnaire in a
didactical context and not in a purely mathematical context as we really meant. ( This was a price that
we were ready to pay. The alternative was to formulate a questionnaire which is quite similar to a
mathematical exam. We wanted to avoid that by all means. Testing somebody’s knowledge is a
threat, especially, to teachers and prospective teachers. ) Bearing this in mind, we were very careful
with our analysis. We believe that in most cases we were able to distinguish between didactical
arguments and mathematical argumeats. We assumed that the didactical arguments whould include
explicit clues like: / would not deduct points because for a student at this stage it is a satisfactory
answer. If we were wrong we were wrong, so we believe, only in very few cases. We also
believed that the second question.in the first part of the questionnaire would be a better stimulus for
the arbitrariness aspect, in case it was known to the student. More specificly, the common definition
of an squilateral triangle can be considered as “canonical.” This is. perhaps, because of the name that
implies “equal sides.” The case of the rectangle is a different one. There is a definition that might
seemn more natural at the elementary school { four right angles ) and there is a definition that might
seem more’natural at the context of Euclidean geometry ( a parallelogram with a right angle ). Thus. if
somebody is aware of the arbitrariness aspect of definition, he or she will be ready to accept other
definitions of the rectangle than the one they were used to in their past.

After collecting the second part of the questionnaire we had a group discussion with the students.
The entire activity took place in the students' regular classes and it lasted about an hour.The discussion
took about half an hour. We led the discussions but we avoided from expressing our opinions. The
main issues we raised for the discussions were the minimality and the arbitrariness aspects of
mathematical definitions (of course, we did not put it in thesewords ). Our plans to discuss also the
reasons for the minimality principle and some cases where it is not observed were not carried out in
most of the classes because of the students’ insufficient mathematical background. However, there
were few exceptions. The group discussions will be reported elsewhere.

§3. Sample

Our sample included four groups. The first three consisted of students in a teacher college in
Jerusalem. It is a four year teacher college which gives the students an academic degree. The college
prepares its students for teaching at the junior high level. Hence, their mathematical preparation is less
than what a regular mathematics student gets at a regular university. On the other hand. there is @ lot of
empbhasis on didactics and pedagogy at the teacher college. The first group of the above three was a
freshman group, the second was a sophomore group and the third included junior and senior students.
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The reason for including both junior and senior students in the same group is that there is no diference
between the juniors and the seniors as far as geometry is concerned. In addition to the above three
groups there was another group of university students participating in a teacher training program.
These were regular mathematics students who had had at feast two years of mathematical studies at the
Hebrew University of Jcrusalcm'. The above four groups will be called groups 1-4 respectively. .
Group 1 included students who had not yet decided about the discipline they wanted to teach at the
junior high school. Some of them would teach mathematics and the rest would teach biology. The
students in groups 2-4 would teach mathematics in case they would become teachers. The sizes of
groups 1-4 are 37, 17, 19 and 9, respectively.

§4. Results and analysis
For the total majority of the students the questionnaire was a strong enough stimulus to make them

relate to the minimality aspect of definition. This exluded two students of the 3-rd group. The
students were classified, therefore, into the following three categories:

Category | -- the student understands the minimality principle. He or she believes that a redundant
information in a definition should be penalized.

Category 2 -- the student belicves that a definition can include "unnecessary details.” For some
students, the more a definition includes the better it is.

Category 3 --the student does not relate to the minimality principle.

Table 1
Distribution of Students into Categories 1-3 ( the minimality aspect )

Category 1 Category 2 Category 3
Group 1 (N =37) 1 36 0
Group 2 (N=17) 10 7 0
Group 3 (N=19) 10 7 2
Group4 (N=9) 6 3 0

Here are some typical examples of categories 1&2.

E

Category 10

Student A: A definition shouldn't include anything which can be implied by another part of the

O

RIC

Aruitoxt provided by Eic:

387



E

O

RIC

Aruitoxt provided by Eic:

2-53

definition. ( group 4)
Student B: - When we come to give a definition in mathematics we try to give the shortest definition

which will uniquely charecterize our topic. -nything beyond this is implied by the definition and it is

redundant even if it is correct. ( group 3)

Category 2:

Student C: I deducted points (On 1b) because the student should be more specific about the triangle.

He is not supposed to let the reader think about all the consequences that can be implied from his

definition. ( group 2) .

Student D: 1 deducted points (on 1b) because although it is true that an equilateral triangle has three

congruent sides, this also implies that it has three congruent angles and the student should have

mentioned it. ( group 1) .

As to the arbitrariness aspect of definition, the questionnaire was not a strong enough stimulus to .
majority of the students as it was with the minimality aspect. The students are classified again into
three categories. .

Catcgory 1 -- the student is aware of the arbitrariness aspect of definition. He or she accepts different
definitions for the same concept in case they are equivalent. It is clear to the student that there does not
necessarily exist one and ultimate definition for a given concept.

Category 2 -- the student believes that there exists one and ultimate definition for a given concept. He
or she rejects any definition which is not the “canonical” definition.

Category 3 -- the student does not relate to the arbitrariness aspect of definition. It is probably because
of lack of reflective attention to this aspect. { This hypothesis is supported by table 2.)

Table 2
Distribution of Students into Categories 1-3 ( the arbitrariness aspect )

Categoyy 1 Category 2 Category 3
Group 1 ( N=37.) 3 4 30
Group 2 ( N=17) 8 6 3
Group 3 (N=19) 4 7 8
Group 4 (N=9) 6 3 0
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Here are some typical examples.

Caegory L

Student F: This is (2b ) the definition to which [ am used but all the other definitions are also correct.
(group 2)

Student G: This answer (2b) is also.correct. It represents a different perspective. ( group 3)
Quegory 2

Student H: This (2b ), perhaps, will finally be alright, but I don't want the student to define the
rectangle by means of the parallelogram. For this I'll deduct 4 points. (group 1)

Student I: / reject 2a, 2c and 2d because they are properties, not definitions. ( group 3)

There were several students who spoke about properties versus definitions. According to their line of
thought, properties are implied by definitions. However, from any analytical point of view, there
should not be any difference between properties which are implied by definitions and properties
which are used in order to define concepts. It seems that for some students, the properties used in the
definitions have a very special status. Because of this status they stop, perhaps, to be properties and
turn into something else.

Another phenomenon that was observed in the students' questionnaires was the mistakes they made
with very simple geometrical concepts. Soometimes, mistakes are not necessarily an obstacle for the
understanding of mathematical principles. In such a case they can be ignored from the cognitive point
of view and can be excused from the mathematical point of view. For instance, a student can makea |
mistake when differentiating a given function. This does not necessarily imply that he or she does not
understand the basic principles of the differential calculus. However, there are mistakes which prevent
the student from acquiring the appropriate understanding of the subject. We believe that the mistakes
which were made by some of the students in our sample belong 1o the last category. Here are some
examples:

Student J: A rectangle is not a parallelogram and it has more than one right angle. ( group 1,a
reaction to 2b)

Student K: Not always a triangle that has three congruent angles has also three congruent sides.
( group 1, areactionto la)

Student L: This answer (2b) is incorrect because there exists a parallelogram with one right angle
which is not a rectangle. ( Here the student draws a right angle trapezoid. Group 2. )

Student M: ! deduct 4 points (2a) because from this one can imply that it is also a square. A square
al'so has 4 right angles. ( group 1)

Student N: It is not ( 2c) necessarily a rectangle. It can be a square. ( group 1 )

Student O: This definition (2d ) does not imply that the adjacent sides are not congruent, ( group 1)
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It is hard to sce how students with such mistakes can relate to the really important aspects of gecometry
as definition and proof. Table 3 below indicates the number of students with such mistakes in the four
groups of our sample. One might find some comfort in the fact that only in the first group the majority
of the students made these serious mistakes and in the high school prospective teachers nobody made
them. If you remember that the first group included students who might finally decide not to teach
mathematics then you might be tempted to think that the situation is not so terrible. We disagree with
that. Here we are concemed with the most basic facts of geometry. Every junior high school student
should know that a square is also a rectangle. Hierarchical classification is a fundamental thought
process that every educated person should be capable of. It is required in many domains, not only in
mathematics. What analytical abilities do our students acquire at school if they cannot see that a square
is a rectangle according to any legitimate definions of the two? It scems that some high school students
who continue their higher education are still in the Van Hiele first level of geometrical thought. Their
conception of the geometrical figures is global and lacks analytical elements. They relate only to the
visual aspects of the figures and not to their propertics.

Table 3
Distribution of Students with Serious Geometrical Mistakes

Students with serious mistakes
Group 1 (N=37) 27
Group 2 (N=17) 3
Group 3 (N=19) 7
Group4 (N=9) 0

After all these school years, with all the information they are flooded with, it seems that many
students cannot sce the forest for the trees.
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Abstract

In this paper. first we propose a theoretical framework within which it is possible (0 undersiand what
thinking algebraically is: this framework (first iniroduced in a paper presented 10 PME 1990) was
developed both on the basis of the study of the historical development of aigebra and of epistemological
considerations. It is then shown, with data from an experimental study, that our framework is useful to
distinguish different solutions io problems requiring the determination of a number, and also that it can
be used 10 explaln differences in facility levels between problems with the same underlying "algebraic
structure”. It is also shown that some aspects highlighted by the use of our framework are of central
imporiance if we are (0 understand what is it that we want owr students (o learn-understard in order for
them to think algebraically.

1.The Theoretical Framework

In a previous paper (Lins, 1990), we presented the sketch of a framework designed to
provide an understanding of what thinking algebraically means. The need for such framework
had been pointed out by researchers working on the subject (eg, Lee, 1987).

Our framework proposes that algebraic thinking is: (i) thinking arithmetically; (ii)
thinking internaily; and (iii) thinking analytically (see Fauvel, 1990; Vieta, 1968). The
arithmetical aspect is necessary both to characterise the absence of processes involving limits,
in the sense of Differential Calculus, and 10 remind us that—no matter what formalisation may
offer to us—the arithmetical operations are a fundamental model for our understanding of
algebraic operations: the elem:nts in non-numerical algebras (abstract or otherwise) are in fact
treated as if they were numbers of a different kind. The concept of number has, in fact, been
transformed many times; Euclid would not call V5 a number, and yet we do. By internalism,
we mean operating exclusively within a Numerical Semantical Field, as opposed, for
example, t0 associaling numbers—as measures— to line segments, and from this producing
meaning 1o the manipulation of arithmetico-algebraic relationships. The internalism is
necessary to allow us to distinguish between algebraic thinking and other models that can be
used to produce algebra (eg, geometrical models {eg, deducing the square of a sum of two
numbers using equality of areas], whole-part models [see Lins, 1990], or contextualised
models {eg, a scale-balance model]). The analyriciry is necessary to characierise algebraic
thinking as dealing with relationships, involving numbers, the arithmetical operations, atd the
equality relationship. The analyticity is particularly important to allow us to understand
differences in conceptualisations of the algebraic activity. To analytical procedures, one
opposes synthetical procedures .

Under those three conditions, it is clear that the manipulation of the model can only be
guided by the properties of the arithmetical operations and the properties of equality. This
means that the arithmetical operations become objects, while in non-algebraic models they are
tools. Only as ohjects can they have properties and guide the solution process.

A crucial distinction in our framework, is that between algebra and algebraic thinking;
in relation to our framework, the production of an algebraic result does not necessarily involve
algebraic thinking, nor does the use of algebraic symbolism. It is shown, within the context of
our framework, that the development and use of algebraic (literal) symbolism is a possible
consequence of, and not an g priori condition for algebraic thinking. Algebraic symbolism is
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" made possible and adequate by algebraic thinking. This discussion is also beyond the

possibilities of this short paper. and the reader is again referred to Lins (1992).

In reference to our theoretical model (i) one speaks of developing algebraic expertise
and knowledge, an approach which seems to be more adequate—in view of the work in, for
example. Luria (1976), Davidov (?), and Bishop (1988)—than speaking of the development of
mental (abstract} structures that enable one to deal with algebra (as in, eg, Garcia and Piaget.
1984). Developing an algebraic mode of thinking involves one's insertion into aspects of a
mathematical culture (White, 1956: Freudenthal, 1983), and the acceptance of certain objects
as the focus of our attention (Lins. 1987, 1990 and 1992). And (ii) our framework is based on
the analysis of the use and production of algebra by peoples of different historically situated
cultures: however, our historical analysis rejects the notion—characteristic of the
Babylonia-Greece-Europe strain (used, eg, in Harper, 1987)—that the central thread to be
followed in the history of algebra is that of the development of literal symbolism, and the
notion that the history of mathematics is the history of the production of mathematical results
(Dicudonné, 1987). Instead we examined the ways in which different mathematical cultures
produced knowledge that we would identify as "algebra”; we examined the interweaving of the
conceptions about number and about mathematics that characterises each culture's approach to
algebra and the consequences to their algebraic knowledge, ie, the models they had used to deal
with it and what knowledge was possible under those circumstances. It clearly emerged from
this study, that although results were exchanged between different cultures, those were always
reinterpreted in relation to the new mathematical culture into which they had been brouhgt. Itis
in this sense that one has to understand the reconceptualisation of algebra by Arab
mathematicians (Rashed, 1984), and the development of algebra in ancient China (Martzloff,
1988: Yan. 1987); it is also in this sense that we should examine students' development of an
algebraic mode of thinking and the development of their algebraic knowledge.

2. A "worked example"

Let's examine three possible sotu ions to the problem of finding a number such that its
triple plus ten is equal to 100.

Solution 1: Subtract 10 from both pants of the equaity relationship (or add -10 to both parts of
the equality relationship) to conclude that the triple of the number is 90. Now divide both parts
of the equality relationship by 3, to conclude that the number is 30; or use the fact that

. =<
ab-c::b—a.

Solution 2: Just "undo" it.
3 +10

|

Solution 3: Take a line AB which is 100 units long. Now, take C in AB, such that CB=10, and
then partition the remaining segment AC and in 3 equal parts. Each of them is of the sought

lenght.

Solution 1 is arithmencal. internal, and analytical. 1t proceeds by algebraic thinking. It
is important to nouce that the use of symbolism is not necessary, aithough it wotld closely and
concisely represent the process. Solution 2 is arithmetical and internal, but not analytical. The
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unknown value is produced from the known ones, and the problem is modelled by a sequence
of operations to be performed, not by an equality relationship involving the unknown value.
Solytion 3 is neither arithmetical nor analytical; as Solution 2, itis syncherical. Its objects are
lines, and thus, it is the properties of lines that guide the solution, in the sense of determining
what can and should be done to solve the problem.

The importance of distinguishing the three types of solutions, is that Solution 1 and
Solution 2 would apply equally well to a problem like -3x + 10 = 1, but not Solution 3, while,
almost surprisingly, Solution 2 would not apply to 10 - 3x =1. A similar situation would arise
from dealing with formule such as (a +b)2 = a2 + 2ab + b2. We think that some serious
didactical misreadings can occur if that differentiation is not taken into account, resulting in
inadequate teaching approaches.

3. Aims and method of the experimental investigation

The experimental part of our research was designed, then, to investigate the models
used by secondary school students when solving problems that required the determination of a
numerical value. Some of those problems were of the traditional “algebra word problem” type
(AWP), some were of the "secret number” (SN) type. Our SN problems were presented in
the form of a numerical equality that the sought “secret number” was said to satisfy. Other
types of problems were also used.

In an exploratory study, we haud verified that in some cases it may be very difficult—if
not impossible—to distinguish or identify the model used. In the case of the "worked example”
presented above, for example, if only the calculations had been presented in a script (100-
10=90; 90+3=30), the three models we presented could equally have been used. In order to
overcome this difficulty, we devised a set of 6 written test papers, that instead of using
“test-items” (in the sense of each problem "corresponding"” 1o one type of equation) consisted
of groups of 3, 4, or 5 problems (AWP and SN) all of which could be solved by solving the
same general linear equation. Each student was presented with at least two of these groups, the
problems being mixed in two test papers, which were solved in two different days within a
week. The variations in the problems included different types of number involved (positive and
negative, integer and decimal), both in the coefficients and for the unknown and different
contexts (including, as we mentioned, the "purely numerical” SN problems). Not all
combinations were used: instead. we chose, in each group, those aspects that we thought, on
the basis of the exploratory study, to provide the most information in relation to our objectives.

We wanted to understand two aspects of the students' solutions, First, the obfecrs that
had been actually manipulated in order 1o produce the solution (numbers, arithmetico-algebraic
relationships, lines, dizgrams, objects of the context). Second, the effect that different
variations would have both in the facility levels and in the clioice of models used.

In all problems the use of “letters” was avoided, so that difficulties in the problems
would not involve difficulties with their interpretation. Whenever available, calculators were
used. The students were always told, however, that if they thought a calculation was "too
hard™, they could only indicate it: solutions with mistakes in computations only were

constdered correct if the striegy would lead to a correct solution had the calculations been
correctly performed,

4. The sample

The tests were applied in four secondary schools, two in Nottingham, England and two
in Sio Paulo. Brazil. The groups tested were: three 2nd-year English groups (average age. 13
yvears. 2 months: 53 students altogether. FM2), three 3rd- vear English groups (14y3m; 66 st.,
FM3). two 7th-grude Brazilian groups (13y11m: 56 st. AHT), and two 8th-grade Brazilian
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FM3), two Tth-grade Brazilian groups (13y11m: 56 st, AHT), and two 8th-grade Brazilian
groups (15y0m: 53 st., AH8). The main reason for applying the tests both in Brazil and in
England, was to produce a more varied sample of models used, once the teaching programs
and methods are quite dissimilar in the two countries. In Lins(1992) we examine some of the
consequences of those differences.

5.The resuits

3.1 Buckets

B1: From a tank filled with 745 litres of water, 17 buckets of water were taken. Now there are only 626 litres
of water in the tank.

How many litres docs a bucket hold?
(Explain how you solved the problem and why you did it that way)

B2 and B3: | am thinking of a "sccret” number, | will only teil you that ...181-(12 x secret no.)=97 (B2: in
B3 the relationship was 120-(13 x sceretno.)=315)

The question is: Which is my sccret number?

xplain how vou solved the problem and why you did it that wav)

in Buckets. the important factors were the presence of a context in B1 and the
negative answer in B3.

A7 AY 1] M2 FM3

Bl B2 B3 Bl B2 W3 Bl B2 B3 BI B2 B3
21 F1] 21 17 7 17 Pl 20 20 24 24 2AH

CHEST 005 0.4 010 029 100 071 000 005 005 000 000 000
HCALC 090 029 005 059 000 000 060 045 010 088 050 007
GHIZE 000 000 000 006 000 000 000 005 000 000 017 000
wEQT 004 0.48 000 029 000 0.00 004 000
WCALL 0.24 0.1y 0.0 0.0 0.15 040 013 071
NAIT 000 0.0 0.9 006 000 000 020 030 045 004 017 013

v 095 052 014 094 100 071 060 055 015 088 067 07
wEOHG 005 038 067 000 000 029 020 015 040 008 017 071
HATT 000 040 019 006 000 000 020 030 045 004 017 0.13

As one would reasonably expect. Bl was easier than B2, and B2 easier than B3. In
only two cases (AHS and FM2) there is no significant difference between B1 and B3. In
fact, the only non-correct answer tor Bl in AH8, was a Not artempred.

Two test-items (question 34: “25-37" and question 35: “20-(-10)") were used to check
students' ability to perform subtractions involving negative numbers.The very low facility level
for B3 could be explained in the English groups by difficuities with negative numbers, but not
in AH7, where only one student answered question 34 incorrectly, and all students answered
question 35 correctly. There is also the difference between Bl and B2 in AH7 and FM3 10 be
explained.

By far, the typical correct solution to B1 was a “calculations™ solution (76% of all
answers)—as Opposed to one using an equation. In 64% of the “calculations” solutions, an
explanation was given making reterence 1o the fact that to know how much had been taken on
the (seventeen) buckets, one had to subtract what was left from the initial amount of water; in
none of them a justication for that was explicitly provided (cither verbal or disgramatic). We
think that the use of a subtraction to evaluate how much water had been taken was elicited by
a part-whole model in the form of. "If from the whole (tank) you separate one of two parts
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(which is known), what is left is the other part (which is yet unknown)."; subtraction is used
as a fool, as much as a "building-up” strategy can be used to evaluate the remaining part. If
this model is to be applied to B2, one has to identify, in the given expression, the whole (181)
and the parts (12 times the secret number, and 97). The results fror AH7 and FM3 suggest
that this process is not as straight-forward as it might seem. It is possible that the part-whole
model used in Bl was perceived by the students as "belonging” to the context; it is also
possible that a subtraction presented as in B2 does not "translate naturally”, to those students,
as the evaluation of a detaching process or as representing "detachinng from the whole”. We
think that both aspects played a relevant role.

On the other hand, in AH8, both B} and B2 had almost the same facility level. In B2,
as it had happened with the Ticket & Drive problems (and in fact with most problems in
relation to this group of students), they systematically made use of equations (100% and all
correct): in B2, however, most of the solutions (60%) did not use an equation, supporting our
suggestion that the context strongly suggested a tacit part-whole model. The results for this
group indicate, moreover, that the use of an equation represented a change in the model used
(which is not always the case): we affirm that it corresponded to a change in the mode of
thinking,. in the sense proposed by our theoretical framework, ie, a change in the objects that
guide the solution process.

In refation to B3, a clearer understanding of the picture we have so far suggested,
emerges. The only group for which the facility level is high is AH8 (71%), in which all the
solutions—correct and incorrect—proceeded by solving “the” equation; in all other groups it
stays bellow 20%. As we said before, in the English grops this could be due to the poor
understanding (or familiarity) with negative numbers, but not in the case of the Brazilian group
AH7. Brazilian students of the 7th grade, as those in AH7, are well used to solving lincar
equations where the coefficient of x is positive, and thus, acquainted with equations. This
might explain why many of them tried (and failed) to use an equation to solve B3. However,
it is clear to us that this shift towards an “algebraic atempt” signifies that the model used in B1
and B2 was not "available” unymore, that is, a part-whole model (the shift is, in any case,
"gradual”, as we have that: in B1, 91% of the solutions did not employ an equation; in B2,
53% did not employed an equation: but in B3, only 24% did not); that the part-whole model is
not applicable to B3 is immediately clear, as it is not possible that something is removed from a
whole and yet it gets bigger. A few students perceived that the number had to be negative, and
treated itas if it had said "+12-secret number” (in which case i part-whole model would easily
apply), later correcting the answer's sign

3 T sving

Til and Ti2: Sam and George bought tckets W a concert. Because Sam wanted a better scat, his ticket cost|
four times (Til: 2.7 times i Ti2) as much av George's ticket. Altogether they spent 74 pounds on the
tickets.

What was the cost of cach ticket? (Expliam how you solved the problem and why you dit it that way)

Ti3 and Tid: Mr Swectmann and his tamuly have o drive 261 muiles to get from London to Leeds. At a
certain point they decided to stop for lunch, After lunch they sull b .d to drive four times (Ti3; 2.7 times' in
Tid) as much as they had alrcady driven.

How much did they drive before lunch? And atter lunch?

Explain how you solved the problem i how sou hnew what to do)

Til and Ti3 ure |4} problems: Ti2 and Tid are (2.7} problems. In T&D, the contexts
and the types of numbers were cross-combined to compensitte for possible differences due to
the context: the main point we w,mted to exanune was the effect of different types of numbers
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in the choice of models: by examining the differences in the facility levels, it would also be
possible to gather information indirectly.

g PUT I AH8 FM2. . FmM3

! Ti3 Tis T Ti2  Tid Ti4 T Ti2  Ti3_Ti4 Ti) Ti2, Ti3 T4 Ti1 Ti2
X 16 .40 40 16 19 34 34 19 17 36 3617 .25 41 a1 2

| OKEQT 0.13 0.15.0.42 0.13 , 0.42 0.29 0.7370.53 ; 0.007 0.05 0.03:0.00 _0.00° 0.00 0.02 0.00;
{OK-3.70r5  0.32 0.00 0.43 0.06, 0.31 0.03 0.15 0.00 _ 0.41 0.06 0.33 0.00: 0,80 0.10 0.68 0.l¢:
JOKT&E _0.00:0.00,0.00 0.00,  0.00 0.00 0.00 0.00 ; 0.09 0.00 0.00;0.06:: 0.04. 0.00 0.02. 0.20!
iW 27w4 0.3 0.23 0.02 0.25 0.80 0.09 0.06:0.11 . 0.06 0,14, 0.20:0.00 : 0.08: 0.32 0.07 0.20;
‘wori 0.19 020 0.05 0.38 _ 0.1 0.39 0.05°0.26 0.29; 0.14, 0.20,0.29  0.04.0.27 0.12 0.28"
NAIT . 0.25 0.43 0,03_0.19 _0.16_0.21 0.03 0.11_; 0.24 0.6] 0.25 0.65 _0.04_0.31 0.07 0.16:
l(»; 0.4 0.15°0.85 0.1  0.7¢_0.32 0.88 0.53_ 0.4]. 0.11 0.36 0.06._0.84_0.10 0.72 0.36!
WRONG | 031 0.43 0.07 063 0.1l 043 0.1 0.37  0.35 0.28 0.40,029 0.2 0.89 019 0.4,
INAIT 025 0.43 0.08 0.12 0.16 0.21 0.0¢ 0.11 0.24 0.61 0.25 0.65 0.04 0.31 0.07 0.16i

The main distinction produced here, was between the levels of facility for the [2.7]
problems (Ti2 and 4) and the {4] problems (Til and 3). The differences cannot be accounted
for on the basis of difficulties with calculating with decimals, because. as we said before,
mistakes with calculations only were disregarded.

The examination of the scripts revealed that in many of the cases in which an
explanation had been provided. the model used in {4] problems was "1 section (or lot) and 4
sections” or “1 ticket and 4 tickets". This model is evidently difficult to apply to [2.7]
problems. In the older Brazilian group. in which the use of equations was much more frequent
than in any of the other groups (practically nil in the English groups), the facility levels for
{2.7} problems are significantly higher: even in this group, however, [4] problems were easier
than {2.7] problems. Our hypothesis is that although those older Brazilian students used
equations, many of them might have relied on the “sections” model to set the equation,
resulting again in a greater difficulty in {2.7] problems. The alternative would be to set the
cquation numerically, ie, “a number plus 2.7 times this number is equal to 261". Another
interesting result, is that the one type of error that can be singled out is dividing 261 by 2.7 (or
4): the fact that it has happened moré trequently in [2.7] (Ti2: 20%; Ti4: 14%) than in (4]
problems (Til: 6%: Ti3: 9%), scems to indicate that because the "2.7" is less suggestive of
the “parts” model, the solution becomes, in the absence of other models, a "play with
numbers™: in such a situation, it is reasonable to suppose that the choice of a division is made
on the basis of the perception that each part of the journey is shorter than the whole journey.
One further difficulty is hidden, 1n [4] problems, the reason to add | and 4 would be to know
"how many parts altogether”, so one can share the total into that number of parts; in [2.7]
problems, the very notion of “"sharing into a decimal number of parts" is not clear at all, and we
suggest that this step not being meaningtul. it renders the "1+2.7" step also meaningless, and it
is for this reason that the “1" is left aside in so many cases, We think that on those cases, it is
the inappropriateness of the “sharing" model that is responsible for the failure of many students
in solving [2.7} problems. and not—as suggested by Fischbein et al (1985)—that the
“primitive model” of division being that of "sharing”, division is not perceived as uscful; our
rescarch suggests that a mode! is chosen first. and only then a process to produce the required
evaluations is chosen. Had a student noticed that in fact the problem involved searching for
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4 number that multiplied by 3.7 would give 261, she or he could use, for example, trial and
error (as in 60% of all correct answers to Ti2 in the English groups), instead of division;
division could he "inadequate” because of its "primitive model”, yet a solution could be
correctly produced.

6. Conclusions

Algebra, and here we mean "school-algebra™ for the sake of brevity in the discussion,
is concemed with the manipulation of generic numerical relationships. Those relationships,
however, can be modelled in a number of different ways: geometrical models, “real-life”
models, or algebraic models, for example. Correspondently, algebra can be produced
geometrically, in a contextualised way, or algebraically. There are other other possibilities. In
each case, however, the objects that the reasoning deals with and is guided by are different,
belonging to different Semantical Fields, ie, different ways of making sense and
producing meaning are involved. Different levels of expertise and different bodies of
algebraic knowledge can be produced. Algebraic thinking may equally happen in the context
of solving a simple linear equation or in the context of proving the fundamental theorem of
algebra. and the mode of thinking will be the same, although not the complexity of the
mathematical sitation. Nevertheless, thinking algebraically, by its own nature, allows the
development of a much deeper and complete algebruic knowledge.

Our research shows that our students dealt with problems involving the determination
of a sought number using various models; it also showed that some of those models have
limitations that might hinder the swudents’ progress in algebra. The ability to solve the equation
100-5x = 40 does not imply—even when there are no difficulties with negative numbers—the
ability to solve 100-5x = 200, although it might appeur that it should. Also, the solution of an
equation like 181-12x=97, which algebraically involves the manipulation of the variable,
can be done synthetically if a part-whole model is used. Our research suggests that the
difficulty with this and other types of equations (eg, 181-12a=128-7n, which underlies one
group of problems in our study), might be in finding a suitable model to guide the solution
process (ie, to interpret the problem within a suitable Semantical Field) rather than something?.
1t is necessary, thus, not only to distinguish algebra from algebraic thinking, but also to
understand the different Semantical Fields within which algebra can be produced; operating
within a Numerical Semaniical Field, the arithmetical operations and the equality become
objects and it is possible and adequate, thus, to use a compact notation that borrows from the
symbolism of arithmetic, as the arithmetical operations also retain their role as tools (in a
renewed and expanded sense).

In view of our analysis and of the results that emerged from the experimental study,
we think that the teaching of algebra should rely less on “simple” examples to build an
algebraic understanding, as those are the ones more likely to be successfully modelled by
non-algebraic models, and as a consequence, obstacles, rather than support for the
development of algebraic thinking will probably emerge. Although our study focused on the
process of solving problems requiring the determination of a numerical value, two groups of
problems were designed to investigate whether the students would use the manipulation of
arithmetico-ulgebraic relationships in order do derive new information about a given situation;
the answer was overwhelmingly negative, and this finding may—in the light of our
framework—be related to the refusal. by subjects with a substantial expertise in algebra, to use
it to prove statements in "generalised arithmetic” (as documented, for example, in Lee and
Wheeler, 1987).
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Finally, our research have led us to believe that any successful effort to study what
people can or cannot learn-understand under different conditions, depends inevitably of a clear
understanding of what is it that we want people 10 learn-understand, and this is what our
theoretical framework provides in relation to algebraic thinking.
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WHAT'S IN A PROBLEM?
EXPLORING SLOPE USING COMPUTER GRAPHING SOFTWARE

Susan Magidson, University ot Calitornia at Berkeley, USA

This paper explores student interpretations of a non-standard problem designed
to provide an entry into the domain of linear graphing and motivate an
exploration of slope. Students work with computer graphing software to
reproduce a picture. In doing so, they explore the concept of slope in a
structured way. | use microanalysis to charactsrize students' concaptions of the
domain and specifically of this exploratory problem. The data point to the
impoitance of viewing problems from the problem solver's perspective: seemingly
arbitrary features of the problem and the computer environment profoundly
influence the students’ experiences.

introduction

in the past few years, several innovative curriculum projects have used exploratory
problems to introduce new concepts or to frame curricular units. The tray problem, for
example, in which students cut identical squares out of each corner of a cardboard square
with the goal of fokding up the sides to make a tray of the greatest volume, appears in the
beginning of several recent innovative U.S. algebra texts (for instance, Stein & Crabill,
1984). Such problems give students a way to begin to explore a new domain in a structured
yet open ended way: the goal is clear but the method is not. In this paper, | describe how
twelve pairs of students interpreted an exploratory problem. The analysis demonstrates that
a problem is not a static entity but raiher is redsfined by those who solva it -- by the
knowledge they bring to it, by the goals they set, and by the assumptions they make.

The Probiem, as Presented to the Students

The problem was designed as an introduction to slope for beginning algebra students. The
instruction sheet is shown in Figure 1. The pedagogical goal was for students to develop an
intuitive sense of slope including general properties of order, symmaetry, and direction,
benchmarks of slopes of magnitude 0, £1, and te¢, and an understanding that evenly
spaced numbers do not produce evenly spaced lings where 1<|m|soe.
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Can you make a starburst? —

Here's how: ;:g
Type in the equation ye x

but with & numbar in place of

the Q. :

Hit the retum key.
There's the first line in your
starburst

Try ancther number.

Now you've got two lines.

Keep trying different xu-8

numbers until your starburst Y-8

looks like the one in the

picture.

Good luckl \2y=2 —
Figure 1: The Starburst instruction Sheet Figure 2: A Sample Green Globs Screen

Theoretical Frame

While problem solving is a well-represented area of research, exploratory probiems like the
starburst problem are of a slightly different genre than most ot the problems previously
considered. Greeno and Simon, in their 1988 review of the research on probiem solving,
discuss several dichotomous ways to classify problems, inciuding weil-structured or ill-
structured and novel or domain specific. Exploratory problems like the starburst problem
tend to bridge these categories. They have well-structured objectives but ill-structured
procedures. Further, they require students to draw on domain-specific knowledge as well as
genaral problem solving skills. The main difference, however, lies in the instructional goal.
The goal is not for students to apply old knowledge in new ways to solve problems (as in
many domain specific probiems) nor for students to develop and refine general problem
solving techniques (as with many novel problems). Rather, the goal of problems like the
starburst is for students to explore a new domain by discovering new information and
applying it to solve the problem. Pedagogically, what is important is not the solution, but the
discoveries made along the way.

A third dichotomy, expert v. novice, is relevant because it focuses on the probiem
solver. Larkin (1980) maintains that experts and novices approach and solve the same
problems differently because they see a different problem. Once again, the difference is the
goal: instruction based on expert/novice research focuses on problems in which the goal is
to improve the novice's performance so that the novice will learn to solve these problems
more like the expert. in contrast, exploratory problems like the starburst are designed for
novices and capitalize on students exploring an unfamiliar domain. Exploratory problems
would be trivial and non-productive for experts because experts aiready possess the domain
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knowledge in question (in this case, that slope = rise/run). This knowledge defeats the
purpose of the problem -- for students to develop beginning intuitions about the domain.

In his seminal work on mathematical problem solving, Schoenfeld {1985) looks at
'students solving problems that, like the starburst, are non-standard and open-ended, draw
on domain knowledge, and serve as springboards into new domains. The distinction
between exploratory problems such as the starburst and Schoenfeld's problems is that
Schoenteid assumes that students have adequate resources {(mathematical facts,
procedures, and understandings) to solve the problem. He is interested in students' higher-
order skills for managing these resources on ditficult problems. Exploratory prohlems like the
starburst problem ask students to develop new resources in order to solve an unfamiliar
problem. In addition to drawing on previously compiled knowledge, students are asked to
search for new knowledge and then use it to solve the problem. Furthermore Schoenfeld's
primary instructional goal for the problems he chose was to teach students to become better
problem solvers. The pedagogical goals for the starburst problem are to motivate students’
exploration of a new domain and to help them develop intuitions about it.

Method

Twelve pairs ot students (culturally and socioeconomically diverse) trom local public and
private junior high and high schools were videotaped working on the starburst problem.
Students had previously plotted points on coordinate axes, worked with integers and rational
numbers, and practiced simple m~.nipulations of linear equations. They had not studied
slope or graphed lines by plotting points.

The software used was a commercially available program called Green Globs written
by Dugdale (1982). A facility called Equation Plotter graphs equations typed in by students.
More than one equation can be graphed on the same grid. It is not possible to erase a single
line; it is only possible to clear the entire screen, Lines are drawn from left to right. If the
students type in the same equation more than once, they will not be able to see the computer
graph it again. See Figure 2 for a sample screen.

In addition to videotaping students in a lab setting, | also observed six ditferent first-
year algebra classes working on the problem as part of their math curriculum.

Results and Analysis

Students found the problem to be challenging and engaging, and all of the pairs succeeded
in reproducing the starburst picture to their satisfaction. There was a wide range of student
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insights and discoveries which are analyzed in detail in Magidson (in}reparation). In this
paper, however, | focus on the surprises: on the instances in which students set unexpected

goals or in which seemingly arbitrary aspects of the problem or computer program had a
profound effact on the resulting activity.
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Figure 3: A mathematically correct solution

Although | did not expect students to produce a mathematically precise starburst, it
was useful to examine the exact slope numbers involved. Since students were working with
an 8x8 grid, and since the starburst on the instruction sheet was constructed by connecting
border grid points {(0,8), (1,8), (2,8), etc.] to the origin, the slopes of these thirty two lines
can be found by dividing each y-coordinate of a border grid point by its corresponding x-
coordinate. ! Figure 3 shows the slope numbers (in fractions and decimal equivalents) that
produce the picture on the instruction sheet.

The solution shown in Figure 3 is based on the number eight because the Green
Globs square grid default is 8x8. From my perspective as a problem designer familiar with
the underlying mathematics, the dimensions of the grid were arbitrary to the problem: finding
the exact value for the slope takes the same procedure regardless of the dimensions.
Simiariy, the general behavior of siope is not affected by gridsize (providing the scales are
symmetric): larger slopes still produce steeper lines, positive and negative siopes of the

INote that the end points of the lines are evenly spaced. Since the grid is square and not circular, the angles
between the lines vary slightly: angies between adjacent knes near an axis are greater than angles between
adjacent lines near a corner. Since studerts tend to focus on where lines begin and end rather than or the
angles between them, this does not appear to complicate the problem: indeed, were the angles batween
adjacent lines congruent, the 1ask would become signiticantly more difficul.
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same magnitude are still symmetric about the x- and y- axes, and the benchmarks of slopes
of 0, 11, and +oo remain unchanged. From the students’ perspectives, however, the choice
of an 8x8 grid significantly influenced their interpretations of the problem.

To begin with, most students focused on the numbers in the corners of the screen
labelling the dimensions of the grid (x=8; y=8; x=-8; y=-8) as potentially relevant (see Figure
'2). Some assumed that the number eight had something to do with the solution. Further,
somse students inferred that the slope could not be greater than eight. Two students went so
far as to figure out how to change the grid size to 10x10 because they convinced
themselves that they could not solve the problem with an 8x8 grid. When students asked
about these numbers, | explained that they referred to the grid size, but assurmed they had
little to do with the solution because of my conception of the problem and my expectations of
what the students’ goals and strategies wouid be. 1 expected that students would interact
with the problem by spending most of their time trying to define the domain of slope numbers
{positive and negative; integral and rational) and trying to create an approximate picture.
Given this scenario, the number eight is not particularly relevant: students wou!ld choose
approximate values between 0 and 10 or 12 and their negative counterparts. What
happened instead was that many pairs set themselves the goal of matching lines exactly
{even after | suggested they relax their goal and approximate), in which case slopes of +8
produce the two lines nearest the y-axis, thus producing lines that are part of the picture and
delimiting the range of slope numbers in this problem. Given this goal, the number eight is
critical to the problem solution.

Further, one of the most compelling problems for most pairs of students was trying to
space the lines evenly. Lines with siopes between one and infinity are particularly tricky
given a decimal mpresemtation.2 As can be seen in Figure 3, lines with siopes between
zero and one are more accessible once students realize that they can use non-integral
numbers. All of the pairs tried a decimal slope at some point, found that it produced a fine in
the appropriate region, and tried another. Students whose goal was to evenly space the
lines (but not to match them exactly) discovered fairly easily that tenths (.1, .2, .3) produced
evenly spaced lines that closely approximated the starburst picture. In contrast, students
whose goal was to match each fine exactly had a much more difficult task since the actual
slopes on an 8x8 grid are consecutive eighths. Recognizing and expressing eighths as
decimals (.125, .25, .375, .5) can be a complicated task for a first year algebra student. Ina

2The computer program supports slopes expressed as fractions, but all of the students in the study chose
decimals as a more comfortable representation of rational numbers.
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related study conducted in our lab, students who worked the starburst problem on a 10x10
grid had little trouble tinding the slopes for these lines.

This example may seem to suggest an advantage to presenting the starburst on a
10x10 grid since the goal is not to obscure the problem solution with sophisticated decimal
représentations. Had 1 done so, however, at least one pair of students (C&D) would have
been denied the opportunity to make some sophisticated discoveries about the behavior of
slope that surfaced because the grid was 8x8 and becauss their goal was to match grid points
exactly. In an 8x8 grid, lines that pass through border grid points include slopes of 1, 2,
4,and 8. By graphing those lines on a clean grid, C&D noticed that each time they doubled
the slope number, the region betwsen the previous line and the y-axis was halved. They
inferred from this that they would never be able to create a vertical line because the line
would keep getting closer and closer to the y-axis but never get there3. Similarly, they found
that going in the opposite direction, halving the slope halved the distance between the
previous line and the y-axis. A transcript excerpt follows:

D: One, right. One makes the x. One times two splits it in half right?
C: Uh huh

D: gnd point five spiits it in haif. Two splits this in haif. Point five splits this in halt.

C: Okay.

D: Four spiits this into four, point two five splits this into four. So over here you keep
muttiplying by two -- one times two is two, two times two is four, four times two is eight.
Over here you keep dividing by two -- one divided by two is point five divided by two
is point two five divided by two is point one two five.

This discovery is mathematically valid and something C&D wouid later be able to prove
when they learned about rise and run {i.e. doubling the rise is the same as halving the run)
but would not have appeared had the.scale not been a muitiple of two. A seemingly
arbitrary decision in problem design had significant entailments for these students.
Another unintended aspect of the problem was the density of lines in the starburst
picture | gave students as a guide. In contrast to my videotapes where most pairs spend
most of their time grappling with how to evenly space the lines, | observed two aigebra
classes solving a starburst with half the number of lines, and was surprised to find that the

3An application of one of Zeno's paradoxes of motion, slightly alterad. Zeno, a Greek mathematician, argued
that before an object could travel a certain distance, it must first travel hait of that distance, and before that
a haif of that distance, and so on, 50 that the object would never be able to begin moving. (Boyer, 1968.).
In math class earfier in the year these students had taked about *JJ's nose” -- an example where a student
was standing near a metal pipe: before his nose could reach the pipe, he wouid need to first go half the
distance, then half the remaining distance, then haX the remaining distance again an wouid thus get closer
and closer to the pipe whiis never reaching it.
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spacing issue never came up: there were simply not enough lines to make this a salient
teature.

My choices of grid size and density of lines influenced the students' interpretations of
the starburst problem in ways | had not anticipated. In addition, a feature of the software
seemed to significantly influence students’ problem solving strategies, namely, the inability
of the user to erase a single line at a time. It is possible to clear the entire grid, but not a
specific line. Most students asked about this capability the first time they graphed an
incorrect line, and found this restriction a continual source of frustration. Their response to
this limitation may have worked in their favor, however: many pairs responded by taking
notes. Then, when their screen became too confusing to look at, they could clear the screen
and reproduce the “correct” lines with minimal effort. Note-taking led to other organizational
strategies (ordering their findings, only recording the positive or negative values, using
m={1} as a referent) that seemed to help the students with pattern hunting and sense making.
Furthermore, when they went to recreate their partial starburst on a clean grid, many did so
systematically, starting with [m}=1 and then either typing in positive/negative pairs (y=1x,
y=-1x; y=2x ,y=-2x; 6tc.) or typing an ordered set of positive slopes followed by the
corresponding set of negative slopes. If students had been able to select the lines they
wanted to erase, they would not have needed to create more than one starburst: every time
they graphed a line they didn't like, they cnuld simply have removed it from the screen. It is
unclear whether they would have had to develop the same organizing strategies, strategies
which often led to important discoveries about the domain.

Discussion

These examples illustrate the unexpected consequences of students working in an
untamiliar domain to solve an exploratory problem. What can we leam from their
experiences? It would be easy enough to alter the problem and computing environment
based on these examples and to bring in some more students to test it out. Undoubtedly this
woulkd result in new student constructions and conceptions of the domain, some predictable,
some not. The point, however, is not that one computer program or one grid size or a certain
density of lines would necessarily be better than another. Rather, what is important is to
recognize that the problem, while seeming to be general, is actually extremely context-
dependent from the point of view of the prablem solver regardless of how we alterit. in an
unfamiliar domain, problem solvers have no way to know, a priori, what iz significant and
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what is arbitrary. Further, through exploring seemingly arbitrary aspects of the problem, they
may find fruitful avenues to pursue, as did C&D with their doubling and halving strategies.

Conclusions

In analyzing problem solving activity it is important to put aside our preconceptions of the
problem so that we can look at the problem through the problem solvers’ eyes. What do they
see? What are their goais? What constraints do they impose on the problem? It is too easy
to speak of “the starburst problem” or “the tray problem” and to assume certain conceptuai
and procedural entailments. Particularly in the case of exploratoty problems, we must tearn
to expect the unexpected. If we want to understand what students take from an exploratory
problem, we must look carefuily at their exberiences without preconceptions of our own. We
must not assume that students see what we see. !f we are to take constructivism seriously,
we must remembaer that there is no one static interpretation of a problem. Rather, the problem
lies in the eyes of the behoider.
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INDIVIDUAL THINKING AND THE INTEGRATION G¥ THE IDEAS
OF OTHERS IN PROBLEM SOLVING SITUATIONS

Carolyn A. Maher and Amy M, Mantino
Rutgers University

This paper describes the probl lving behkavior of o sevem-jear old
student, Mickael, who is observed over o five-month period in two small-
group situations im whick ke initially does his own individual thinking,
appeoring to ignore his classmates in the sessions, and thenm eventually by
integrating the strategies of othker group members modifying his initial
representation of the problem. An analysis of the development of his
Cartesian product representation of multiplicotion, first in grade 2 ond
then in grade 3 is givem, focusing om how RMichael first built-up his
initiol representation, and how ke revised and modified it over time.

This research is part of a four-year longitudinal study of how children build-up their
mathematical ideas as they are engaged in problem tasks with other students. It takes place in a
classroom setting where children, usually working in pairs, are encouraged to justify their
solutions, and provide explanations to the teacher and other classmates, as they share ideas. The
theorctical perspective for this research comes from a constructivist orientation in which problem
situations provide students with the opportunity to build ideas and support or revise their thinking
as original ideas become modified and refined.

Earlier findings suggest that although children work in a social context - small group or
whole class - individual ways of representing a problem and the methods for solution are initially
invented and personally constructed by each individual problem-solver. After an initial
representation has been built, the ideas of others may be considered and integrated into the original
construction.* In fact, we are beginning to see patterns which suggest an initial attempt to build a
representation of the problem, accompanied by a deliberate rejection of the ideas of others. Only
after there is some ownership of an original idea will new ideas begin to be integrated into a more

- refined representation of the problem (Davis, Maher, & Martino, in press; Davis & Maher, 1991;

Maher & Martino, 1991; Martino & Maher, 1991).

To illustrate this phenomenon, we present an analysis of the development of the Cartesian
product representation of multiplication of Michael, a seven year old, who was engaged in solving
the same problem on two occasions, first in grade two and then in grade three. This paper traces
the development of Michael's mathematical ideas.

Classroom Settings. In both the second and third grade mathematics classrooms the
expectation was for considerable student initiative in devising ways to solve mathematical
problems. Instruction was frequently organized to encourage individuals (working in small
groups) to solve problems at their own pace and without teacher intervention. Foliowing the
problem-solving sessions. children had opportunity to share their ideas in a whole class
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discussion. After the sharing of solutions, several children were individually interviewed about the
problem activity.

In our classroom work in schools, we find that students may not be ready to agree ona
solution to a_particular problem task. When this occurs, our preference is to allow for student
disequilibration. Rather than reach closure at the time and push for or present a solution, we
choose to revisit the same problem later. In our analysis of the problem-solving behavior of
Michael, the same activity was presented on two occasions, five months apart. In the first
presentation, the problem was not solved. What we observed was the development of strategies
and notations for solvirg the problem. Although small groups of children appeared to have agreed
among themselves on a solution, no consensus was reached by the entire class.

Data Source. Data for this study came from children's written work and analyses of videotape
transcripts from the following three sources: (1) classroom small-group working sessions (one
grade two triad-group and one grade three pair-group); (2) each group sharing their solution
strategy with the test of the class; (3) interviews with individual children following the problem
activity. This paper specifically focuses on the problem-solving behavior of Michael (M) who was
a member of a triad-group in grade two {with Stephanie (S) and Dana (D)) and a pair-group {with
Jaime (Ja)] in grade three. The ideas of other group members also will be discussed as they relate
1o Michael's building of his mathematical ideas. (For a detailed analysis of Stephanie and Dana's
problem solving, see Maher & Martino, 1991).

The Problem. The problem-solving activity was presented as part of a regular mathematics
lesson. Students were got told in advance any method for solution. The problem presented was:

Stephen has a white shirt, a biue shirt, and a yellow shirt. He has a palr of blue
jeans and a  pair of white jeans. How many different outfits can he make?

Grade Two - Stephanie, Michael and Dana (May 30, 1990).

The group of children began the problem by focusing on information that dealt with the
color and type of clothing in order to build up a representation of the problem situation. Michael's
partners, Stephanie and Dana, shared how they planned to draw three shirts, and place one letter
inside cach to represent color of clothing. Michael was observed silently reading the problem with
a puzzled facial expression. Then Michacl began to build his own solution; while doing so, he
appearcd to be detached from the interaction of his two partners. After working independently for
about one minute, he then listened to his partners’ understanding of the problem situation and
compared it with his own. '

M:  Wait a minute...[He looked at the problem again.] Ycah, white shirt, white pants. [He
drew a shirt and placed a letter "W" inside the outline.)

o 40 8
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Stephanie, Michael and Dana each decid=d to draw a picture to represent the problem data.
Initially, students spoke aloud, but did not seem to respond to the commerits made by others.

§: Ok, blue and then a yellow shirt. [Stephanie drew blue and yellow shirts.] He has a pair
of blue jeans... [She reread the second part of the problem.}

M: This is simple.

S:  Anda pair of white jeans. [She drew two pairs of jeans.] How many different outfits
can he make? Well..[Dana looked at Stephanie’s paper and drew blue and white jeors.)

M: [Michael looked up as he spoke.] He can make only two outfits. [He drew a pair of jeans
and placed a letter "W" inside.).

Michael's partners quickly drew three shirts and two pairs of jeans placing a one letter code
to represent color inside each article of clothing. Michael drew one complete outfit consisting of a
white shirt and white jeans. Stephanie, having built an initial representation of the problem
situation, decided to respond to Michael's last statement. His suggestion that there were two
possible outfits had stimulated Stephanie's curiosity, and she responded by rereading the problem
and checking that the input data representation was consistent with her knowledge representation.
She then disagreed with Michael's observation and reported that Stephen "could make a lot of
different outfits”.

When Dana completed her drawing of three shirts and two pairs of jeans, she indicated that
three outfits can be made by matching one pair of jeans with each of the threc shirts. From her
explanation we might infer that Dana had the key idea for exhausting all possible combinations.
Simultaneously, Stephanie (Figure 1b) used her diagram to develop a coding strategy to make her

i combinations of outfits. She then began to illustrate each distinct outfit with a pair of letters, (the
first letter designated the shirt, and the second letter the jeans), and monitored her work by
numbering each combination that she generated. Figures 1a, 1b and 1c show the final written
work of Dana (la), Stephanie (1b) and Michael (1c).
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Figure 1a - Dana's solution Figure 1b - Stephanic's solution Figure 1c - Michael's solution

409




E

2-75

As the girls verbally shared their plans for solution, Michael was silent and appeared to be
inactive. We observed him gazing in the direction of Dana for approximately four seconds, then

he continued to add to his drawing of a single outfit. As Stephanie was recording her first outfit,
she said:

S: You can make it different ways t00. You can make white and white, that's one...W and
W. [She drew a 1 and W over W. Michael viewed Dana's work.]
M:  That's what I'm doing. [He erased and redesizned the white pants.}

As Stephanie and Michael compared their strategies, Dana found a notation that enabled her
to make use of her origi-al idea of matching a pair of jeans to all possible shirts by spontaneously
drawing lines that connected each of her white and blue shirts to each of her blue and white jans
and her yellow shirt to her blue jeans. She concluded. as indicated in Figure 1a, that there were a
total of five different outfits. Stephanie continued to list pairs of letters for her outfits (Figure 1b)
and concluded, also, that there were a total of five outfits. During this time, Michael, quietly
worked alone, occasionally stopping to listen to his classmates, or to talk aloud about his
combinations. '

M: {Michael spoke aloud, but the girls were engaged in an argument about the need for the
outfits 1o match.] I'm doing white pants and white shint, blue shirt and blue pants.
[Michael continued to draw.]

S:  [She addressed Dana.] No...how many outfits can it make? It doesn't matter if it
doesn't match as long as it can make outfits.

Michael continued to perfect his drawing without speaking (occasionally erasing a piece of
an article of clothing). Recall that early in the session, Michael reported two outfits, and Stephanie
tried to convince him that more combinations of outfits could be made. However, Michael
continued to engage in drawing his own picture (Figure 1¢) which consisted of a second set of
shirt and jeans labeled with the letter "B" inside. Although he seemed to be aware of Stephanie’s
coding strategy, he appeared to rejectit. As Stephanie read her fifth combination aloud, Michael
Jooked up from his drawing at Stephanie, he then retumed to his own paper and replied:

M: I don't think...I1 don't want to do it that way...I want to do it this way. (Michael referred
10 his own picture. explicitly rejecting Stephanie’s system of coding.]

D: Well, do it the way you want.

S: Do you know what? There's five combinations...there’s only five combinations. Cause
look you can do a white shirt with white pants...

M: {He stared upward, then spoke.] That's what1did. A white shirt with white pants, a
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blue shirt with blue pants...

S: (Michael looked directly at Stephanie as she spoke.] You can do this...listen Michael!
Michael will you listen for once. You can do five combinations...you can do...number
one white and white, number two biue and white, number three yellow and white,
number four blue and blue and number five yellow and blue.

M: {He holds up his paper with his drawing of two outfits.] I got these two so far.

You can do four (sic) combinations Michael! I'm sure of it!

@

Although Michael refused to change his method of solution, he seemed to be considering
his classmate's strategies as he continued to build his model. As the girls shared their solution
with the teacher, Michael continued to draw a third set of shirt and jeans with the letter "Y" inside
them. He looked in the direction of the girls for several seconds and continued to draw. After
drawing a third combination, he looked at all three papers, and drew an "eye-glass" shaped
diagram beneath his three outfits (Figure 1c). Stephanie, having completed the activity, tried to
collect Michael's paper before he finished writing.

M: Wait a second! Ok, I'm done.
Michael did you find the five ways?
M: 1don't need to I found six...three ways. It's no big deal. [Stephanie astempted to
change Michael's solution, and he became visibly angry.] Don't mess up my paper!
S:  Michael, don't worry!
M:  You touch my paper and guess who I'm going to chase!

Occasionally, as indicated by the videotape, Michael glanced at Dana and Stephanie's
work, but these glances were brief and might easily have gone unnoticed. Michael's written
solution (Figure Ic) displayed a diagram with three shirts (B, W, Y) vertically aligned with three
pairs of jeans (B, W, Y). At the bottom of the page he wrote the three letiers W, B and Y with the
letters W and Y enclosed within his "eye-glass” shaped diagram. His solution bore no
resemblance to either the connecting line strategy of Dana or the two letter coding strategy of
Stephanie; it was clearly different. Michael's first mental representation may not have been
sufficiently developed to let him incorporate all of the relevant information. His display of yellow
jeans suggests that he may have lost track of which colors were available. Another interpretation is
that he redefined the problem by expanding the jeans possibilities. One could also conjecture that
his placement of letters in the enclosed region of the "eye-glass” shaped drawing might be a
method for rapidly matching up the white and yellow shirts with the blue jeans. However, this
seems unlikely since Michael announced that he had found three outfits.

Michael's final solution showed no influence of the strategies used by his partners. In fact,
what was particularly interesting about this classroom episode was that each student produced an
independent solution, and seemed to be satisficd with his or her own strategy.

i
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Notice that Michael agreed with Jaime's suggestion to draw a picture, but his diagram
differed from that of his partner’s. He did not use connecting lines in the manner which Jaime did
(Figure 2a). Instead, Michael indicated his combinations by moving his finger between the
respective articles of clothing in the written problem statement, and later drew these connecting
lines with his pencil to establish his combinations of outfits (Figure 2b). To describe and record
the outfits, Michael wrote a letter for shirt color over a letter for the color of the jeans. Michael
used a notation, similar to the coding system used by Stephanie in the second grade (Figure 1b), to
complete his solution of six combinations.

The videotape indicated that Jaime and Michael worked individually, occasionally listening
to each other, and pursuing their own solutions. In grade two, Michael's written solution (Figure
Ic) displayed a diagram with three shirts (B,W,Y) and three pairs of jeans (B,W,Y), an "eye-
glass" shape containing letters and no numerical answer. In grade three, Michael developed a
variation on Dana's connecting line strategy (Figure 1a) without drawing pictures of shirts and
pants. He drew lines between the colors in the stated problem to generate his combinations, and
recorded these combinations with the two letter coding strategy similar to that used by Stephanie
the previous year (Figure 1b). Although it wasn't evident from Michael's behavior and grade two
solution that he was attending to the representations of his classmates and in the process gaining
from the experience, his third grade solution strategy provided strong evidence that he was
conscious of the ideas of others.

Following the third grade activity, the children were individually interviewed about the
problem task. Analysis of the videotaped transcripts gave us further insight into the children's
awareness of thei: problem-solving activity. Michael and his partners each responded that they had
used their own method to obtain the same solution in both second and third grade. This is
interesting in light of the fact that each student showed some modification in his/her strategy and
found six outfits in grade three. Specifically, Michael's third grade written work (Figure 2b)
indicated an integration of elements from both Stephanie and Dana's second grade strategies. He
retained these ideas to create a solution which was his own.

Conclusions and Implications

Initially, Michael worked independently to build his own personal representation of the
problem. In the second grade activity he appeared, frequently, to be detached from the discussions
of his partners. He also scemed to reject the suggestions of his partners, apparently satisfied with
his own effort and progress. Neither Michael nor his partners provided a complete solution to the
problem in grade two. Yet we see, in grade three, evidence of the influence of Michael's second
grade partners' notation and approach in Michael's third-grade representation of the problem
solution. Michael worked with a new partner in grade three who also had a partial solution in
grade two that was unlike the representation of cither of Michael's former partners, Stephanie and
Dana. We found in an earlier analysis of the work of Stephanie and Dana over a five month period
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Grade Three - Michael and Jaime (October 11, 1990)
In the second month of grade three, Michael worked with Jaime on the shirts and jeans problem.
Immediately after reading the problem, Michael offered four as the number of possible outfits.

M:  Youcan make four outfits.

Ja: How do you know? )

M: Ididit. Iputblue with blue...[Michael began to form his combinations by tapping with
his pencil to connect shirt colors to jean colors in the written problem statement.
Meanwhile, Jaime returned 1o reading the problem.)

Jaime pointed to each color in the stated problem, and counted articles of clothing rather than
outfits, Michael, having chosen a path of solution, listened as Jaime counted, and responded to
her findings.

Ja: 5,6,7,8,9,10, 11, 12 outfits. (Jaime counted each article of clothing. ]

M:  You put 12 outfits?

Ja:  No, no, you see the white..pretend this is a shirt and this is jeans. "W*" on the blue, "W*
again and the "W", white and white, and then blue..,"B" with the "B"..How many"

M: 1don't know. {Michael continued to work on his solution.)

Jaime, who in grade two had recorded her outfits as descriptive phrases, now began to
draw a diagram (Figure 2a) with six geometric figures for shirts and six more for jeans, each
containing a one letter code for color. She connected each shirt and pair of jeans with a line to
define each outfit as distinct, and used a pattern to generate her combinations matching each color
shirt to both colors of jeans. ©

Ja: I'm drawing a picture.

M: Meoo. ﬂmmame
He hae & pair of SIul Toans ond & PATTSi-nile joens.
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Figure 2a - Jaime's grade three solution Figure 2b - Michael's grade three solution
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(Davis, Maher & Martino, in press) the influence of Dana's second-grade thinking on Stephanie's
third-grade work. We see, here, the influence of Stephanie and Dana’s second-grade thinking on
Michael's third grade work. [Recall that no second grade child obtained a complete solution; no
closure was reached in the grade two synthesis; no intervening work in school dealing with this
idea occurred in the interim.] Yet we see the influence on Michael from others following his initial
individual effort. Michael succeeded eventually in expanding, refining, and developing a more
powerful representation of the problem solution. Ong might suggest that although Michael
appeared detached from group discussions and later verbally rejected his partners' suggestions in
grade two, he might well have been attentive to their ideas, although yet unwilling to include them.

Teachers who have observed the grade-two tape of Michael and his grade-two drawing
suggest that he appeats to be excluded from the group activity, that he probably was not
understanding the problem, that he was not benefiting from the activity, and that he was mostly
disenguged ot "off-task”. Some teachers have expressed concern about the appropriateness of the
activity until after viewing the third-grade tape in which they expressed surprise and puzzlement.

It seems 1o us that the cpisode and the response of others 10 it, raise some potentially
important questions dbout expectations regarding how students leam and build-up their ideas.
Also in question is the issue of expecting immediate cooperation and team-work from members of
small groups engaged in a problem-solving task and the necessity of reaching immediate closure to
a problem-task after students have had an opportunity to work on it. If the grade-two lesson were
brought to closure after the class discussion {ordinarily teachers view it as their responsibility to
point out the missing outfit(s) or to point out strategies for finding it (them)] would Michacl (or
Stephanie) have been better off? We suspect not.
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MATHEMATICS PRACTICE IN CARPET LAYING

Joanna O. Masingila
Indiana University - Bloomington

Building upon previous research concerning mathematics practice in everyday Gituations, the
mathematical concepts and processes used by cerpet layers were studied, using an ethnographic approach,
over a period of seven weeks. Mathematics practice in carpet laying is characterized through a discussion

of the mathematics used by carpet layers in estimation and installation activities in an effort to describe

and detail how people actively give meaning to and use mathematics in the midst of ongoing activities in
relevant settings.

Introduction

Learning and deing mathematics is an act of sense-making and comprises both
cultural and cognitive phenomena which cannot be separated (Schoenfeld, 1989). Part of
every culture are the everyday happenings of the people belonging to that culture. As
such, mathematical thinking and learning occurs in this everyday practice. Research
on cognition in everyday practice (e.g., Carraher, Carraher & Schliemann, 1985; Lave,
1988; Saxe, 1988; Scribner, 1988) points toward the need for studying cognition within a
cultural context. My interest, specifically, is to close the gap between doing
mathematics in out-of-school situations and doing mathematics in school. It is my
contention that the gap between out-of-school and in-school mathematics practice will
only be narrowed when the ways in which mathematics is meaningful in the contexts of
everyday life are determined. To this end I chose to examine mathematics practice in
the workplace—in particular, mathematics practice in carpet laying. Note that I will
often use the more general term, floor covering work, instead of carpet laying since I
observed the estimating and installation procedures for tile and hardwood, as well as
carpet.

Research Design
For this study, I used an ethnographic approach to examine the mathematical

concepts and processes used in carpet laying. The study was conducted over a period of
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seven weeks in June, July, and August 1991 in a midwestern city in the United States.
This study is best categorized by what Wolcott has called a "microethnography." A
microethnography "zeroes in on particular settings . . ., drawing on the ways that a
cultural ethos is reflected in microcosm in selected aspects of everyday life, but giving
emphasis to particular behaviors in particular settings rather than attempting to
portray a whole cultural system" (Wolcott, 1990, p. 64). This research focused on the use
of mathematical concepts and processes in the context of floor covering work. Four
methods of data collection were used: participant observation, ethnographic
interviewing, artifact examination, and researcher introspection (methods described by
Eisenhart, 1988). The data were analyzed using activity theory (Leont'ev, 1981; Wertsch,
1985) as a guiding framework and a process of inductive data analysis to develop a
theory grounded in the data that describes the mathematics practice of carpet layers.
In the Carpet Laying Context

The mathematics practice of the carpet layers I observed is characterized through
discussions of two areas: (1) the mathematical concepts, and (2) the mathematical
processes used by floor covering workers. Following a brief description of these two
areas, a carpet estimating situation is presented ar.d discussed in order to provide a
glimpse into the mathematics practice of carpet layers.
Mathematical Concepts

1 observed four categories of mathematical concepts used by floor covering estimators
and/or installers: measurement, computational algorithms, geometry, and ratio and
proportion. Measurement concepts and skills were involved in most of the work done by
the estimators and installers. In particular, I observed four different categories of
mesasurement usage: finding the perimeter of a region, finding the area of a region,

drawing and cutting 45° angles, and drawing and cutting 90° angles.
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Although algorithms are processes rather than concepts, I mention computational
algorithms in this section because I am interested in the mathematical concept of
measurement underlying these algorithms. I observed the following computational
algorithms used by estimators in measurement situations to determine the quantity of
materials needed for an installation job: estimating the amount of carpet, estimating the
amount of tile, estimating the amount of hardwood, estimating the amount of base, and
converting square feet to square yards.

In addition to the use of measurement concepts and algorithms, I also observed the
use of the geometry concepts of (1) a 3 - 4 - 5 right triangle, and (2) constructing a point of
tangency on a line and drawing an arc tangent to the line. Floor covering estimators
also used ratios and proportion concepts when working with blueprints and drawing
sketches detailing the installation work to be done.

Mathematical Processes ‘

Besides the use of mathematical concepts, the estimators and installers made use of
two mathematical processes: measuring and problem solving. As would be expected,
the process of measuring is widespread in the work done by floor covering estimators
and installers. Although being able to read a tape measure is vital, other aspects are
equally as important in the measuring process: estimating, visualizing spatial
arrangements, knowing what to measure, and using non-standard methods of
measuring.

The mathematical process of problem solving is used by floor covering workers every
day as they make decisions about estimations and installations. However, the problem
solving that occurred in this context is slightly different from how problem solving is
typically defined. Problem solving is commonly thought of as the process of coordinating
previous experiences, knowledge, and intuition in an effort to determine an outcome of a

situation for which a procedure for determining the outcome is not known (Charles,
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Lester & O'Daffer, 1987). Problem solving in the floor covering context deviated from this
definition in that procedures for determining outcomes were usually known. However,
unfamiliar constraints (e.g., a post in the middle of a room) and irregular shapes of
rooms forced floor covering workers to coordinate their previous experiences,
knowledge, and intuition to determine outcomes of situations they faced.

The problems that estimators and installers encountered required various degrees of
problem-solving expertise. As the shape of the space being measured moved away from
a basic rectangular shape, the problem-solving level increased. To solve problems
occurring on the job, I observed estimators and installers use four types of problem-
solving strategies: using a tool, using an algorithm, using a picture, and checking the
possibilities.

On the Job: An Estimating Situation

One of the situations in which estimators or installers used the strategy of checking
the possibilities was in deciding on the best estimate for a carpet job. This often involved
weighing cost efficiency against seam placement. Sometimes a customer specifies that
he or she wants to see all the possible installation situations sketched out and then he or
she will make a decision. However, in the majority of situations that I observed, the
estimator provided a single suggestion on how the carpet could be installed and
presented this suggestion to the customer. In almost all cases, the customer concurred
with the estimator's suggestion.

The preparation of an estimate for a carpet job is constrained by a number of factors:
(1) most carpet is 12' wide, (2) carpet pieces are rectangular, (3) all carpet pieces should
have the nap running in the same direction, (4) consideration of seam placement is very
important to accommodate traffic patterns and the type of carpet being installed, and (6)

some carpets have patterns that must match at the seams.
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One carpet estimate situation I observed involved a pentagonal-shaped room in a
basement. I accompanied the estimator, Dean, as he took field measurements and
figured the estimate. The maximum length of the room was 26' 2" and the maximum
width was 18' 9" (see the figure below). Since carpet pieces are rectangular, every
region to be carpeted must be partitioned into rectangular regions. The areas of these
regions are then computed by multiplying the length and width. Thus, this room had to
be treated as a rectangle rather than a pentagon. Dean figured how much carpet would
be needed by checking two possibilities: (1) running the carpet nap in the direction of the
maximum length, and (2) turning the carpet 90° so that the carpet nap ran in the
direction of the maximum width.

In the first case, two pieces of carpet each 12' x 26’ 4" would need to be ordered. Note
that two inches are always added to the measurements to allow for trimming. After one
piece of carpet 12' x 26’ 4" was installed, a piece of carpet 6' 11" x 26’ 4" would be needed

. for the remaining area. Since only one piece 6' 11" wide could be cut from 12' wide
carpet, multiple fill pieces could not used in this situation. Thus, a second piece of
carpet 12 x 26’ 4" would need to be ordered for a total of 70.22 square yards. The seam
for this case is shown by a thin line in the figure.

Turning the .carpet 90° would require two pieces 12' x 18’ 11" and a piece 12' x 4' 9" for
fill. The 12' x 4' 9" piece would be cut into four pieces, each 2' 4" x 4' 9", The seams for
this case are shown by thick lines in the figure. The total amount of carpet needed for
this case would be 56.78 square yards. This second case has more seams than the first,
but the fill piece seams are against the back wall, out of the way of the normal traffic
pattern. Thus, these seams do not presént a large problem. In both cases there would
be a seam in the middle of the room. The carpet in the first case would cost at least $200

more than the