
DOCUMENT RESUME

ED 383 202 FL 023 001

AUTHOR Hart, Robert S.
TITLE Errata: Response Analysis and Error Diagnosis

Tools.

INSTITUTION Illinois Univ., Urbana. Language Learning Lab.
REPORT NO LLL-TR-T-23-94
PUB DATE Dec 94
NOTE 114p.

PUB TYPE Guides Non-Classroom Use (055)

EDRS PRICE MF01/PC05 Plus Postage.
DESCRIPTORS Authorir, Aids (Programming); Comparative Analysis;

*Computer Software; Data Processing; Discourse
Analysis; *Error Analysis (Language); Error Patterns;
*Hypermedia; *Item Analysis; Programming

IDENTIFIERS *ERRATA (Hyper Card)

ABSTRACT
This guide to ERRATA, a set of HyperCard-based tools

for response analysis and error diagnosis in language testing, is
intended as a user manual and general reference and designed to be
used with the software (not included here). It has three parts. The
first is a brief survey of computational techniques available for
dealing with student test responses, including: editing markup that
identifies spelling, capitalization, and accent errors and extra,
missing, or out-of-order words; pattern matching for rapid
identification of specific grammatical errors, keyword searches, and
easy specification of alternate answers; and error-tolerant parsing,
which puts error diagnosis under control of a grammar and dictionary
of the target language. The second section is a user's manual and
tutorial guide, describing ERRATA and offering examples of its use.
Section three is a reference manual useful to anyone with unusual
analysis requirements or wanting to tailor-make responses analyses.
Installation and technical information is also included, and complete
program code is appended. (MSE)

* Reproductions supplied by EDRS are the best that can be made

from the original document.

I

. ' .

" "

.L.

PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

e,c4 , oNs.,,c\

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

U S DEPARTMENT OF EDUCATION
Once of EduCatiOnei R/Watch and Imorcantrrdint

ILUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

1 000urnent has been reproduced as
received from the parson or organization
Ortcpnaleng d

0 M0,0, changes nave been maw, to improve
reprOduCtOn Quady

1

Potnts Of new or oprntOnS Staled In °us 000u
I

ment 60 not necessarily reprsent 0111011
OE RI 00SMOn or Wady I

Technical Report No. LLL-T-23-94 University of Illinois
December 1994 at Urbana-Champaign

ERRATA: RESPONSE ANALYSIS AND ERROR DIAGNOSIS TOOLS

I

Robert S. Hart
I

2 -BEST COPY AY/

I

Technical Report No. LLL-T-23-94
December 1994

ERRATA: RESPONSE ANALYSIS AND ERROR DIAGNOSIS TOOLS

Robert S. Hart

3

ABSTRACT

ERRATA is a set of HyperCard-based tools for response analysis and error diagnosis. Several
analysis capabilities are provided A markup analysis compares a student's answer to several
author specified correct or wrong answers, determines the best matching alternative, and generates a
graphical error markup that indicates spelling, capitalization and accent errors, extra or missing
words, and out-of-order words. A itgukszurgissionmaLchor allows specification of keywords or
other strings which should be present in the response; complex patterns can be specified by
combining simple strings with AND, OR, NOT, and WILDCARD operators. A simple number
nalvz permits specifications of numerical point values and ranges. These various types of
analyses may be combined into sequences. Feedback text and HyperCard code may be attached to
each answer specificatoin, to be executed if that specification is satisfied. Utility routines support
substitution and other kinds of simple string manipulations. ERRATA's primitive functions can
be combined to support tailor-made response analyses as complex as partial parsing. Although not
intended as a complete authoring system, ERRATA also aids with item presentation by providing
tools for retrieving and displaying blocks of styled text, and can be used as a self-contained context
for authoring drill activities. This document gives a tutorial intorduction to ERRATA, and
documents and lists all HyperTalk scripts. It is designed to accompany and serve as a reference for
the ERRATA software.

KEYWORDS: software tools, HyperCard, HyperTalk, XCMD, XFCN, CAI, CALL, response
analysis, error diagnosis, response judging, markup, matching, error feedback, authoring system,
spelling, word order

4

LANGUAGE LEARNING LABORATORY
College of Liberal Arts and Sciences
University of Illinois at Urbana-Champaign

Technical Report No. LLL-T-23-94

ERRATA: RESPONSE ANALYSIS AND ERROR DIAGNOSIS
TOOLS

Robert S. Hart

Associate Director, Language Learning Laboratory
Assistant Professor of Humanities

December 1994

Available from: Language Learning Laboratory, University of Illinois at Urbana-Champaign, G70 Foreign
Languages Building, 707 S. Mathews St., Urbana, IL 61801 (217)-333-9776

ti

TABLE OF CONTENTS

PREFACE 1

A BRIEF OVERVIEW OF RESPONSE ANALYSIS 3

A QUICK INTRODUCTION TO ERRATA 6

DESIGNING A RESPONSE ANALYSIS 6

IMPLEMENTING THE RESPONSE ANALYSIS IN YOUR STACK 8

ERRATA USER MANUAL 11

SPECIFYING A MARKUP ANALYSIS 13

SPECIFYING A PATTERN-MATCHING ANALYSIS 16

SPECIFYING A NUMBER ANALYSIS 19

SPECIFYING A CUSTOM-MADE ANALYSIS 20

SPECIFYING HELP 21

IMPLEMENTING A RESPONSE ANALYSIS 23

USER-SETABLE PARAMETERS 25

NON-ROMAN FONTS 27

KEEPING A PERFORMANCE HISTORY 28

PARTIAL PARSING 31

ERRATA REFERENCE 38

OVERALL STRUCTURE OF ERRATA 38

CALL STRUCTURES 43

HANDLERS AND FUNCTIONS 43

GLOBAL VARIABLES 70

INSTALLATION AND TECHNICAL INFORMATION 82

REFERENCES.. 84

APPENDIX 1: LISTING OF ERRATA HANDLERS 85

"

PREFACE

Although the presentational sophistication of CAI (computer-assisted instruction) and CALL (computer-
assisted language learning) has greatly increased in recent years as a result of graphic user interface and
multimedia capabilities, most courseware continues to use primitive response analysis. This is
unfortunate, because nearly any learning activity can be made more "intelligent" by incorporating careful
response analysis and error diagnosis. Part of the problem has been the lack of effective software tools for
doing the rather specialized operations required. ERRATA, a software package which facilitates response
analysis within HyperCard", was created to fill this need. ERRATA was designed with special attention to
the needs of CALL but will be generally useful for all kinds of instruction. This document provides both a
user's manual and an exhaustive technical description of ERRATA. The reader is assumed to have a basic
knowledge of HyperCard and HyperTaIrm scripting.

Section 1 is introductory. It briefly surveys a variety of computational techniques available for dealing with
students' responses, including ragagnatkuu, which identifies spelling, capitalization and accent. errors as
well as extra; missing, or out-of-order words in a student's response; pattern-matching, which allows the
quick identification of specific grammar errors, keyword searches, and easy specification of alternate
answers; and error-tolerant parsiug, which puts error diagnosis under control of a grammar and dictionary of
the target language.

Section 2 is a user's manual. It describes ERRATA, a pair of stacks which implement many of these
techniques for the HyperCard environment and gives examples of how ERRATA can be used. These
examples are accompanied by on-line implementations in the ERRATA EXAMPLES and readers may find
it useful to study the on-line material as they proceed. This section provides all the information necessary
for straightforward uses of the analysis tools.

Section 3 is a reference manual for the handlers and global variables used by ERRATA It should be useful
to anyone who has unusual analysis requirements or wants to utilize the primitive analysis routines to
construct tailor-made response analyses. Many of the technical aspects of ERRATA are described only in
this section, so it should be read throughly by anyone wanting an understanding of all ERRATA'S features.

Complete program code for all HyperCard handlers and XFCNs is appended.

ERRATA is freeware. The author retains full copyright, but you may use the ERRATA software as a
component of commercial or non-commercial software, provided that (1) You do not modify the ERRATA
code in any way; (2) You acknowledge ERRATA in any software using it, and when preparing apublished
description of work that utilizes such software, and (3) You do not sell the ERRATA software by itself.

As freeware, ERRATA is offered as is, without any warranty of any kind. However, if you have questions
or encounter problems in using the package, please contact

Robert S. Hart, Associate Director
Language Learning Laboratory
University of Illinois at Urbana-Champaign
G-70 Foreign Languages Building
707 S. Mathews Ave.
Urbana, IL 61801

voice 217)-333-9776
fax (217)-244-0190
email hart@ ux 1 .cso.uiuc. edu

7

1

2

ERRATA uses the findInField0 XFCN fron very useful freeware stack DARTMOUTH XCIvIDs,
Version 3.4.

An early version of the software and some of the written material was presented at "Response Analysis and
Error Diagnosis", a workshop given at the Computers and Applied Linguistics Conference, Ames, IA, in
July 1994; I would like to thank partici. ints in that workshop for their useful feedback. I also wish to
express my gratitude to Ms Toshiko Sakurai for her invaluable cooperation during the development of
ERRATA.

3

A BRIEF OVERVIEW OF RESPONSE ANALYSIS

IResponse analysis is concerned with establishing the properties of constructed responses, that is, some text
that the user has typed in. Sometimes these properties are used to form a judgment or evaluation of the

i response (right/wrong, acceptable/unacceptable, satisfactory/unsatisfactory). However, response analysis
need not be limited to establishing correctness. When the response is wrong, the properties of the response
can be examined to see what kind of errors are present (error analysis) and give appropriate error feedback.
And when the response is correct, it can be examined to see what kinds of capabilities were exercised by the

I
student who constructed it (e.g., what grammar rules were employed).

Computationally, identifying properties is done by hypothesizing characteristics (patterns) which might be
present in the response; for example, containing (or not containing) a verb inflection error, containing (or

0
not) an uncapitalized German noun, as containing the root "chat" followed by the root "blanc", etc. The
response is then examined to see if these characteristics are actually present. The general term for this
process of comparison is Bawling. Defined as above, response analysis always involves matching. Even

i
advanced parsing techniques can be conceptualized as a kind of matching. A parser, however, does not have
a pre-stored set of patterns, but generates them as it goes by using a dictionary, morphology, and a set of
grammar rules. Consequently, effective response analysis is largely a matter of devising and applying
effective matching tools. Table 1 shows various matching techniques which have been applied within CAL

I
The leftmost column briefly indicates how the pattern is specified. The middle column suggests how the
pattern is matched to the response. The rightmost column cites examples of software which use the
technique.

I Exagisanwking usually focuses on suitability and is designed for the case when there is exactly one suitable
response. However, it is really too inflexible for judging anything but single letter responses, and even
there, a leading or trailing space will cause a mismatch. Nevertheless, its negligible programming effort
makes it popular in CAL often in situations where it is unsuitable. To a large extent, improving response

Ianalysis means breaking the addiction to exact matching.

Optimizul "closest match" for spelling and word order is appropriate when there is a "canonical" correct

I
answer. Defined in terms of this canonical answer are a set of correct and "slightly wrong" responses.
Correct responses differ from the canonical answer in trivial ways (extra spaces or extraneous punctuation).
Slightly wrong responses vary from the canonical answer somewhat more, because of capitalization errors,
accent errors, spelling errors (insertion, deletion, substitution, or transposition of single letters), or word

I
order errors (extra, missing, or out-of-order words). The degree of difference is determined by a complex
matching process. Perfect responses are labelled OK, responses which cannot be matched to the canonical
answer are labelled as NO without any markup, and deviations from the canonical answer are represented by

i means of a set of graphic markup symbols. Since errors are determined in terms of insertion, omission,
substitution, and movement of letters and words, the matching process is completely language independent.
This is an advantage, since a spelling/syntax matcher will work as well with Swahili or Hebrew as with
English. It is also a disadvantage, because information about errors is formulated in terms of edit

Ioperations rather than more instructionally meaningful grammar rules.

49

4

Table 1

RESPONSE SET ANALYSIS TECHNIQUE

Unique string Exact match

Response must "almost" match
a small set of "correct" strings.

Spacing can vary
Punctuation can vary
Capitalization can vary
Accentuation can vary
Spelling can vary
Word order can vary
Synonymous words allowed
Ignorable words allowed

Optimized "closest match" for
spelling/w3rd order , usually
with graphic error markup.

Word or string must be
present(key words)

Word or string must be
absent (NOT)

Specific word or string sequences (WILDCARD)
Several strings all present at once (AND)
Any one of several strings present (OR)

Morphology obeys TL rules
Syntax obeys TL rules

EXAMPLES

Ubiquitous

TUTOR, TenCORE
DASHER

Regular expression pattern matching
Exact match of pattern required
but pattern may be quite abstract.

PILOT, SNOBOL

Morphology analysis
Finite state transducers,
Syntactic parsing

Finite state transducers,
KIMMO, BRIDGE,
ALICE, ATHENA

Often it is too restrictive to assume that only the canonical answer is correct. Hence, for the sake of
flexibility, the lesson author may be allowed to indicate synonymous words and ignorable words wizen
specifying the canonical answer, and otherwise control what will be counted as a "serious" deviation. In
addition, it is often the case that there will be several correct answers dissimilar enough that they cannot be
considered as editorial variations of one another. Sometimes, a small set of wrong answers can also be
anticipated as likely to occur. The existence of multiple answers requires a generalization analysis which
will first pick out the best fit from the set of correct and wrong answers and give editorial markup based on
that best fitting answer.

Regular expression pattern matching is a way of determining whether certain combinations of words or
strings are present (or absent) in a response. The most familiar case of this is probably keyword matching,
where the suitability of an answer is determined by looking to see if certain keywords are present. In native
language CAI this approach often works well, because one is after the basic meaning of the response and
can assume that there are no grammar errors present or else that they are unimportant. Most instructional
designs in CALL will not allow major grammar errors to go unnoted, however, and this means that one
cannot base CALL response evaluation solely on keyword matching.

Nevertheless, pattern matching can be a powerful technique for determining the nature of word order,
agreement, inflection, and dependency errors. This is most easily illustrated by example. Suppose that a
correct answer contains "un grande chat blanc", while the student's response contains "un blanc chat grande".

5

Finding the root "chat" in the response followed by the root "grand" establishes the existence of an ail vnayp
onlar error, and finding "grande" following the root "chat" established an adliguaggnclaumnicaj; ca7or.
Finding both the roots "blare" and "grand" present (in either order) indicates that the correct adjective
vocabulary was used. Simple pattern matchers typically allow patterns to be built out of literal values, the
WILDCARD operator "*" which basically means "precedes", and the logical operators AND, OR, and NOT.

Finally, error analysis can be performed by syntaggicsaitag, which requires as essential components a s.
of grammar rules, a morphology analyzer, and a dictionary. For our purposes, it is appropriate to think of a
syntactic parser as a matcher for determining whether a response matches any one of a very large set of
pattern sentences -- namely, all the grammatical sentences in the target language. Because the zet of
"coma" answers is pre-specified in this way, the parser does not need a canonical sentence against which to
match the response. The grammar rules, dictionary, and morphology cooperate to specify in a rather
abstract way the responses which are acceptable. Error - tolerant arsing accepts not only correct sentences of
the target language, but also sentences which are deviant in certain specified ways.

If the parser succeeds in matching the student's response to a grammatical sentence, it outputs a description
of the sentence in the form of a parse tree, that is, a labelled bracketing of the sentence where each word is
assigned a part of speech and each phrase is assigned a phrase structure label. Nowadays, it is usual to have
the parser return more information than this: each word or phrase is labelled not only for primary category,
but also for features such as person, number, gender, case, tense, ,..00d, etc. An error-tolerant parser will
usually be expected to label deviant structures with a description of the kind of rule violation involved.

All these kinds of analyses can be implemented to varying extents using the tools in ERRATA; the
remainder of this dociment shows how this can he done.

6

A QUICK INTRODUCTION TO ERRATA

Using ERRATA involves two steps: (1) flasigningaresgopseanalysjs, and (2) impleinandpg_theanalysis
in HyperTalk. Designing the analysis is a matter of instructional design, sound pedagogical principle, and
teaching experience. This can be done on paper. It does not require any Hyper Talk programming, although
ERRATA requires that you use a particular notation when you write the analysis specifications.
Implementing the analysis you have developed requires a minimum of Hyper Talk programming to attach it
to the ERRATA software.

DESIGNING A RESPONSE ANALYSIS

First, some useful terminology. An P/R interaction is defined to be a situation where the program prompts
the student to type in a response at a particular spot and then analyzes that response. If the response fails to
be satisfactory, the student is usually required to continue with other responses until producing one that is
sastisfactory. In CALL, a P/R interaction is often called an kcal (not to be confused with a Hyper Talk
item). Respgpsejudtpg is the process of analyzing a response in order to get an OK/NO judgment and
show appropriate feedback. To do response judging, ERRATA requires the following:

1. Analysis specifications: ERRATA requires you, for each P/R interaction, to specify some correct
answers, some anticipated wrong answers, and some patterns or numbers to be matched ("some" may be
zero). The collection of specifications for a single response constitutes the analysis for ihat response, e. g.,

:ANSWER cat
:WRONG dog
:MATCH no (cow)

If the response is "cat", then the judgment will be OK; if the response is "dog", then the judgment will be
"no", and if the string "cow" is present somewhere in the response, then the judgment will be NO also. In
addition, any spelling or capitalization errors in "cat" or "dog" will be automatically marked with a
graphical markup. In the case of a multi-word :ANSWER or :WRONG specification, missing words and
out-of-order words would also be marked. A common kind of analysis is a single correct answer, such as

:ANSWER cat

2. Feedback: For each :ANSWER, :WRONG, or :MATCH alternative, you may specify actions which
should be taken if that answer etc. is matched. Usually the action consists of displaying some feedback text
to the student but you might want to do some data collection too. The analysis specifications together with
their conditional feedback create an IF...THEN-ELSE IF-. structure, as in

:ANSWER cat
This is a feline.
Other examples: tiger, lynx, lion

:WRONG deg
This is a canine.

:MATCH no (cow)
This is a bovine.

which has this meaning:

7

if the response was "cat", then display "This is a feline. Other examples: tiger, lynx, lion. ";
else if the response was "dog" then display "This is a canine.";
else if the string "cow" occurs in the response, then display "This is a bovine.";
etc.

You are never required to provide feedback for a specification; it is always optional. You can hay. several
lines of feedback. You do not have to indent the feedback lines, but if you do (as in the example just
above), it will make the data easier to read.

3. Help Information: Besides analysis and feedback specifications, ERRATA also allows you specify
various categories of "help" information:

:HELP vocab
To read: lire, lis, lissons, lu (4); Last: dernier; Ten: dix; Page: page (f).

:HELP grammar
Cardinal numeral adjective precedes adjectives such as dernier, premier, etc.

:ANSWER Elle nous a lu les dix dernieres pages.
:MATCH no (pour noun)

No preposition needed with pronoun in this context.

You may label the :HELP specifications any way you please; in the example above, the two labels
"vocabulary" and "grammar" hav, een used All the :HELP specifications are ignored during response
judging. It is up to your own program to retrieve :HELP information at the appropriate time (e.g., when
the student requests a particular type of help) and display it at an appropriate location. The :HELP
specifications may be included along with the response analysis because they are part of the data that define
how the program will interact with the svxient during a particular _tem. ERRATA does provides a function
getHelp(<label >) which retrieves the information associated with a particular :HELP label. (Text
retrieved with getHelp() should be displayed using showText).

For an example of how to handle student-requested help sing getHelp(), look at the
script of the VOCAB HELP button in ERRATA EXTRAS 8 (Complex Drill Design).

The information associated with a :HELP label does not really have to be help; it can be any kind of text
which is relevant to the item. For instance,

:HELP prompt
Translate to French: She read the last ten pages for us.

could specify the text used to set up the prompt for a particular item. Of course, as explained, your
program will have to retrieve and display this prompt.

4. Puting the analysis specification on-line: An analysis specification must, of course, be typed into field
somewhere. The question is, where should that field be located? If your analysis contains no styled text
(no sized text, no boldface, underline, or italics, and nothing but the default font), then the field which
contains it can be located anywhere in the lesson stack. If your feedback contains styled text, however, the
analysis field must be on the same card where the student types in her response. (This requirement is
imposed because HyperCard makes it very slow and clumsy to moved styled text from one card to another.)
If your analysis text is located on another card or in another stack, you can use the copyText handler
provided by ERRATA to copy it into a field on the card which has the response field.

5. Specifying analyses for multiple items: If a number of responses will be typed into the same response
field (as is usually the case with drill activities), then each item must have its own analysis. Type all the

13

8

analyses into the same field, in order, separating each from the next by a line starting with "#". Below, for
instance, are shown the data for a three-item drill:

:HELP prompt
Name a feline:

:ANSWER panther
:ANSWER tiger
:ANSWER housecat

:HELP prompt
Name a canine:

:ANSWER dog
:ANSWER fox
:WRONG bear

:HELP prompt
Name a bovine:

:ANSWER cow
:ANSWER bison
:WRONG sheep
:WRONG goat

ERRATA provides handlers for accessing this kind of data structure in order to get at the data needed for
each item; see below for details.

IMPLEMENTING THE RESPONSE ANALYSIS IN YOUR STACK

First you must attach the ERRATA handlers and XFCNs by executing a command of this form

start using stack "MyHardDisk:MyFolder:ERRATA
start using stack "MyHardDisk:MyFolder:ERRATA EXTRAS

Usually, the openStack handler is the best place to do this.

air The handlers in ERRATA EXTRAS are not needed by the response analysis system; if
you are not calling them from your own scripts, you do not need to attach this stack.

You must now distinguish these two cases: (A) There is only one response field, but several responses
will be typed into it, each with its a different prompt, as is the case with most drill exercises; (B) There are
several response fields on the card, each with a single prompt and answer. ERRATA requires a slightly
different setup for each case.

(A) When there is only one response field which will be used to receive the response for several items. set
up this way:

1. Set up the multiple-item analysis data as shown above.

2. Execute these handlers in the openCard handler of the card script:

resetErrata
setUpMarkUp <response field name>
setFeedBackField <feedback field name>

If your feedback contains styled text (special fonts, bold, italic, or underline, or sized text) ERRATA will
display the styling by default. If there isn't any styling or don't want to display it,execute

14

setPreserveFormating False

9

which will substantially speed up display operations. setUpMarkUp determines the current response
WI When the student presses RETURN in this field, judging will be done automatically and OK or NO,
any graphical markup, and any answer-contingent feedback will be displayed. setFeedBackField
determines where the feedback will be displayed.

3. As part of presenting each new item, execute lines like these

setCorrectAnswer <analysis field name>, <starting line number>,
<ending line number>
showText getHelp("prompt"), <name of prompt field>

The start and ending line numbers tell where the analysis for the current item begins and ends within the
field. They will depend on the current item number and the format of your analysis data. If you omit the
line numbers, the entire contents of the analysis field will be used.

A call to the XFCN delimiterTabk("linePointers", <analysis field name>, " # ") returns a list
of the line numbers which start with a "#" character. If you have separated the analyses for different items
using lines which begin with "#", then the analysis for the Nth item will start at line number (item N of
list + 1) of the analysis field and end at line number (item N + 1 of list - 1). Get and store this table in a
global before beginning the drill. Each time you present a new item, access the proper table entries to get
the line number parameters for setCorrectAnswer.

'V For an example of a drill activity of this sort which does preserve styled text, examine
ERRATA EXAMPLES # 8 (Complex Drill Design).

If you have turned off styled display by executing setPreserveFormating False then you can specify
the analysis using an expression rather than a field name, for example

setCorrectAnswer item 3 of myVar, 5, 7

Since the value returned by a HyperTalk expression is stripped of text styling, an expression such as
myVar or item 3 of myVar cannot be used when styled display is turned on.

ow For an example of this method of specifying an analysis, see ERRATA EXAMPLES# 5
(A Simple Drill Design).

(B) If there are several response fields on the same card. each with its own prompt and answer. set up this

1. Execute these handlers in the openCard handler of the card script

resetErrata
setFeedBackField <feedback field name>

The resetErrata handler simply makes sure that, in case ERRATA has been used previously, all default
values have been returned to normal. If you feedback styled text, or don't want to display the styling, you
can speed up display by executing

setPreserveFormating False

2. In the script of each response field, install an openField handler with these lines:

15

10

on openField
activateFidld <analysis field name>, <start line number>,

<end line number>
end openField

where the starting and ending lines have the same meaning as above. If the line numbers are omitted, the
entire contents of the analysis field will be used. If the analysis consists of a single correct answer with no
feedback, you may alternatively specify a string instead of a field name

activateField <correct answer string>

for example, activateField "cat", which is the same as specifying :ANSWER cat as the entire
analysis.

When the student clicks on the field whose script contains this handler, that field becomes the current
response field. When the student presses RETURN in that field, response judging is initiated using that
field's contents as the response and whatever the activizteField handler specified as the analysis. OK or
NO, any graphical markup, and feedback will be displayed. Clicking on some other field which has an
activateField handler will make that field the current response field. Thus, the student can move around
from one response field to another.

ERRATA EXAMPLES # 4 (Multiple Response Fields) shows how this is done.

ERRATA USER MANUAL

11

The matching tools in ERRATA are built on two HyperCard XFCNs (external functions): MARKUP and
MATCH.

The MARKUP XFCN is designed for situations where there is a small set of correct and (optional)
incorrect answers. It does two things: it Lads out whether an entire response is "close enough",
overall, to one of the answers and, if so, it returns information about the editorial changes needed
to make the response perfectly correct. This editorial information can be shown to the student as a
graphical markup, or used by the program.

The MATCH XFCN is designed to establish whether the response has (or does not have) certain
properties. These properties must be expressed in terms of the presence or absence of words or
other strings, or sequences of words or strings.

MARKUP and MATCH can be called directly from HyperTalk. But to be really convenient for
instructional purposes, they must be combined with programming which accesses data, controls display,
and does a variety of other "bookkeeping" tasks. Hence an important part of the overall response analysis
system consists of a set of routines which take care of these tasks without requiring the detailed attention of
the lesson author. In ERRATA, these routines are implemented by HyperTalk handlers and functions, but
analogous functions could easily be written in IBM ToolBookru or in general-purpose languages such as
PASCAL or C. These routines have been designed for easy, clear, and consistent interface to the primitive
XFCNs. Hence scripting will normally be easier if you do not access the XFCNs directly. Instead you
should always access them though the HyperTalk handlers which have been provided. Table 2 represents
the general scheme.

Boldfacing indicates the kernel of essential routines required for ordinary response analysis. The core pattern
matching handler in ERRATA is the judgeResponse handler, which combines the capabilities of all the
other pattern matching tools, calling on MARKUP, MATCH and other handlers as needed to create a
flexible pattern matching capability.

When response analysis is done by judgeResponse, you must specify two things: the response that is to
be analyzed and the analysis text (the set of answers and other patterns that will be used to analyze the
response). Often the instructional design also requires specifying feedback that will be displayed if a
particular pattern matches (or fails to match) the response. Sometimes it is useful to specify various types
of belt; which will be shown to the student on request. Although not strictly a part of response analysis,
help can be treated much in the same way as feedback, so it is supported by the response analysis system.
Finally, you may want special evaluation message to replace the default "OK" and "NO". In brief, these are
the things which must be specified to set up a response analysis:

Analysis Specifications: What patterns to use and where they are stored.
Response: Where to get it.
Feedback: What to show if the response matches a pattern, and where to show it.
Help: What to show when a given type of help is requested
Evaluation Messages: What to display to indicate a correct/incorrect response.

7

12

Table 2

Your Application ERRATA

Your own handlers

Response Analysis Interface Handlers Primitive XFCIsIs

activateField
setUpMarkUp
setCorrectAnswer
setFeedBackField

resetErrata
changeMarkUpSymbol
restoreDefaultMarkUpSymbols
setJudgingParsans
restoreDefaultludgingParams
restoreMarkUpDefaults

judgeResponse
markupUsingParams

setJudgingHandler

Match XFCN

Markup XFCN

The most complex step is specifying the patterns which are to be matched, and that is what we will discuss
first.

judgeResponse needs to be given an analysis text. This text is a sequence of (one or more) analysis
Specifications. which tells judgeResponse how to carry out the analysis that you want done. Each
individual analysis specification indicates the tipe of matching to do, the polarity of the match (whether a
successful match indicates a correct or incorrect response), and (optionally) what feedback should be given to
the student if the match succeeds. judgeResponse recognizes six different types of analysis spe,cification:

:ANSWER (markup analysis and judgment)
:WRONG (markup analysis and judgment)
:MATCH (pattern matching analysis and judgment)
:NUMBER (number analysis and judgment)
:DO (custom-made user analysis)

:ANSWER and :WRONG, between them, enable judgeResponse to perform a markup analysis which
will determine a right/wrong evaluation and mark minor errors with editorial symbols, :MATCH enables a
general pattern matching analysis helpful for error diagnosis, and :NUMBER takes care of situations where
numbers need to be judged. :DO allows the execution of additional user-written analysis routines. Note
that :HELP, which specifies what the user will see when different types of help are requested and allows
specification of blocks of styled text, is ignored by judgeResponse.

The analysis text can be any length. A minimal analysis might consist of a single :ANSWER
specification without any feedback. A complex one might contain dozens of different patterns to be
examined and a great deal of feedback text. Analysis text can be specified either by providing the name of
the field that contains it, or as an expression (i.e., a literal string, variable, or chunk expression).

The analysis text is a bit like a Hyper/Talk script, and the specifications are something like HyperTalk
commands. However, you must distinguish carefully between the specifications and true HyperTalk
commands. Specifications are not executed by HyperCard directly; they are interpreted and executed by the
judgeResponse handler, which uses them to do matching operations.

13

So that error analyses can be tailored to the lesson author's needs, each kind of specification has its own
syntax, which you must learn before using the analysis tools. The following sections describe this syntax.

SPECIFYING A MARKUP ANALYSIS

:ANSWER and :WRONG specifications instruct judgeResponse to do a markup analysis. The syntax
for specifying the pattern to be matched is the same for both :ANSWER and :WRONG, as shown in these
examples:

:ANSWER Le garcon voit le chien blanc

:WRONG La jetuie fine voit le chat noir

:ANSWER The [quick fast speedy] brown fox jumped over the [lazy lethargic] dog

:WRONG <the a> big vulture flew over [sleeping resting] aardvark

A correct answer is indicted by simply writing the label :ANSWER followed by the actual correct answer.
An anticipated wrong answer is indicated by writing the label :WRONG followed by the anticipated wrong
answer. You must remember several things about the format of these specifications:

In? Like most Macintosh names, :ANSWER, :WRONG, and other analysis specification
labels are indifferent to case: :ANSWER, :ANSWER, :ANSWER, :ANSWER are all
equivalent.

The :ANSWER or :WRONG label must be on theme HyperCard line as the answer
string and separated from it by at least one space.

The :ANSWER or :WRONG does not need to begin on the first character of the line.
However, the label mug have ":" as its first character, ": ANSWER" will not work.

. I s.: Its ,11
specifications. So it doesn't matter if :ANSWER or :WRONG strings or :MATCH
patterns are styled or not. But you may fmd cyrillic or Hebrew easier to read if you hand-
set the font properly.

The answer string must not contain any punctuation marks, since punctuation marks are
ignored when computing a markup. The default set of punctuation marks is

SPACE, RETURN, and . , ; : O [< > ? !

If you need to analyze punctuation, it is possible to respecify which characters are to be
considered punctuation marks.

vnonymous words, can be indicated by putting the list of words in square brackets U. Any one of the
synonyms will be acceptable at that point in the sentence. (There is no way to make a phrase of two or
more words synonymous with a single word, however.) Hence, if the :ANSWER specification is

:ANSWER The [quick fast speedy] brown fox jumped over the [lazy lethargic] dog

then both these responses will be matched and judged correct:

The quick brown fox jumped over the lethargic dog.
The fast brown fox jumped over the lazy dog.

19

14

Ignorable words are indicated by a list of words in angle brackets <>. All such words are removed from the
response before judging, so they must not appear elsewhere in the answer (outside of the ignorable word
list). It is most efficient if there is just one list of ignorable words which appears at the front of the answer
string. Since ignorable words are ignored rawaykim, an answer specification like

:ANSWER the a> big vulture flew over [sleeping resting] aardvark

will accept this response:

A the big vulture the flew a over resting the aardvark a the the.

Hence, some care must be exercised in using ignorable words for CALL purposes.

When the answer to the prompt is unambiguous, it may suffice to use a single :ANSWER specification
without feedback as, for example, with the following prompt and :ANSWER specification:

Change to past tense: John is doing his homework.

:ANSWER John was doing his homework

This is perhaps the most common case. Often, however, several correct responses are possible:

Change to a question: John came yesterday.

:ANSWER Who came yesterday
:ANSWER When did John come
:ANSWER Did John come yesterday

In other cases, several responses are likely to occur, but some of them are wrong:

Change to a yes/no question: John came yesterday.

:ANSWER Did John come yesterday
:ANSWER Was it yesterday that John came
:WRONG Who came yesterday
:WRONG When did John come

This last example points up the fact that different responses will require different feedback. Since feedback
depends on which answer was matched, it is convenient for the lesson author to put any feedback text just
after the :ANSWER or :WRONG specification:

Change to a yes/no question: John came yesterday.

:ANSWER Did John come yesterday
Right, this can be answered "Yes" or 'No".

:ANSWER Was it yesterday that John came
Right, this can be answered "Yes it was."

:WRONG Who came yesterday
This is nel, a Yes/No question, since
the proper reply to it is "John."

:WRONG When did John come
This is not a Yes/No question, since
the proper reply to it is "YeVerday."

In these examples the feedback lines are indented a few spaces to make the analysis more
readable, but this is not necessary. (If i 3enting is present it will, however, be displayed
as part of the feedback.)

15

Text styling in the feedback, such as the underlining and bold italics in the example, will
be preserved in the _isplay unless you execute setPreserveFormating False.

Everything after an :ANSWER/:WRONG specification, all the way to the next specification (or the end),
serves as feedback to display if the response matches the specification. Feedback is never required. It can
always be omitted if it seems instructionally extraneous (an OK or NO message is automatically generated
by the markup analysis in any case):

Change to a yes/no question: John came yesterday.

:ANSWER Did John come yesterday
:ANSWER Was it yesterday that John came
:WRONG Who came yesterday

This is not a Yes/No question, since
the proper reply to it is "John."

:WRONG When did John come
This is not a Yes/No question, since
the proper reply to it is "Yesterday."

When there is a sequence of :ANSWER/:WRONG specifications, as in the exampies above, the markup
analysis compare', the response to each of the :ANSWER/:WRONG specifications. The one which gives
the closest fit to the c determines the judgment (OK or NO) and the feedback

The special tag ":?" indicates an unanticipated response, and can be used with either :ANSWER or
:WRONG. If no other :ANSWER or :WRONG has matched the response so far, then :ANSWER :? or
:WRONG :? matches immediately with a perfect fit (regardless of what the response actually was), the
associated feedback is fetched, and the response analysis terminates. The purpose of ":?" is to specify what
to do with a response that the analysis couldn't recognize at all, so it is Qnly meaningful to have one suc.b
specification. Use :ANSWER :? if you want an unanticipated response judged OK, or :WRONG :? if you
want it judged NO. ":?" specifications should always come last. so that all the other :ANSWER and
;WRONG tags have a chance to match first. (This is an exception to the general rule that the relative order
of :ANSWER and :WRONG specifications is irrelevant.) Here is an example which will judge NO:

Change to a yes/no question: John came yesterday.

:ANSWER Did John come yesterday
:ANSWER Was it yesterday thhi John came
:WRONG Who came yesterday

This is not a Yes/No question, since
the proper reply to it is "John."

:WRONG When did John come
This is not a Yes/No question, since
the proper reply to it is "Yesterday."

:WRONG :?
I can't understand what you typed in.

Note that using ":?" will cut off any :MATCH, :NUMBER or :DO specifications which come after, so ":?"
should be placed after these too.

Sometimes it is instructionally desirable that feedback and :HELP consist not only of text display, but of
other display operations, such as playing sounds or showing pictures or movies, or executing still other
HyperTalk commands (e.g., incrementing counters). ERRATA provides a simple facility for this. Any
feedback line beginning with the double right-arrow "*" is assumed to contain a HyperTalk command, and
will be executed rather than displayed. For example:

21

16

:HELP prompt
* picture "aardvark"
What is the animal in this picture?

:ANSWER <a an> aardvark
* play "okMessage"
That is correct - an African mammal!

:WRONG <a> penguin
* play "noMessage"
* movie "penguin"
No, here is a movie of some penguins in action. See the difference?

The HyperTalk commands must =ad any text that you want displayed. This provides some capability
for multimedia display and response-contingent execution, but the parameters of handlers such as play or
ad= must be constants they cannot be variables.

Ba" ERRATA EXAMPLES # 11 (Multimedia) uses this feature.

SPECIFYING A PATTERN-MATCHING ANALYSIS

Designing a pattern-matching analysis is usually more complicated than designing a markup analysis. This
is because you are describing particular pattem(s) that may be present or absent in the response, and not the
whole of a (correct or incorrect) response. Each pattern specification consists of the word :MATCH, a
polarity specification, and a pattern descriptor. This is shown by it.: following example where the prompt
asks the student to translate a French noun phrase.

Translate to French: the dog and the cow

:MATCH ok (_et_)
This is a conjunctive noun phrase.

:MATCH okStop (le_chien_et_la_vache)
Right!

:MATCH noStop -(_chien_)
Wrong word for "dog".

:MATCH noStop -(_vache_)
Wrong word for "cow".

:MATCH no (Ja_chien_)
"Chien" is masculine.

:MATCH no (Je_vache_)
"Vache" is feminine.

To understand the syntax used to specify patterns, look at the second pattern, "le_chien_et_la_vache". Note
that the pattern must always be enclosed in parentheses. The underscore character "_" is used to indicate
that a space should be present at that point. It is completely equivalent to write the pattern using spaces
rather than underscores:

:MATCH okStop (le chien et la vache)

but underscores make the pattern more readable. A negation sign "-" preceding a pattern indicates that a
match will occur only if the pattern in parentheses is absent in the response. So for instance

-(_vache_)

is a pattern that will be matched if the word "vache" is not present anywhere in the response string.

17

The words "okStop", "noStop", "ok" and "no", which immediately follow the :MATCH tag, are polarity
specifiers which specify what evaluation should be made if the associated pattern is matched. The specifiers
"ok" and "olce` -p" indicate that the pattern is correct or appropriate, whereas "no" and "noStop" indicate that
the pattern is error or inappropriate.

Normally, judgeResponse goes thorough the sequence of pattern specifications one at a time, from first
to last. However, if it a pattern with polarity "okStop" or " noStop" is matched. then no more
snecificalions24filbczrocessejangthLanalysisiyilLsimuly_sion at that point. This gives the lesson
author some minimal capability to execute analysis specifications conditionally. For instance, in the
example sequence above,

:MATCH okStop (le_chien_et_la_vache)
Right!

specifies the correct answer. If it is matched, there is no point in continuing to execute the remaining
specifications, because they all look for various kinds of errors, and there won't be any. Hence "okS top" is
the proper polarity.

As judgeResponse goes through the sequence of analysis specifications, it keeps track of which patterns
have been matched. If at least one "ok" or "okStop" pattern has been matched, and zero "no" or "noStop"
patterns have been matched, then judgeResponse concludes that the response as a whole is OK. If,
however, one or more "no" or "noStop" patterns have been matched, judgeResponse concludes that the
response has problems and judges the response as a whole to be wrong, regardless of the number of matches
which were ok. If the response is judged to be ok, all of the feedback from the "ok" and "okS top" patterns
which were matched is shown; otherwise, all of the feedback from matched "no" and "noStop" patterns is
displayed. (This logic for interpreting :MATCHes can be modified with the matchinglsOk handler.)

Some additional notations are allowed within pattern descriptors that permit the lesson author to specify
more abstract patterns without too much effort. They use these special characters:

Negation (NOT)
I Disjunction (OR)
A Conjunction (AND)

Wildcard (BEFORE...AFTER)
& Ending

Any character

Negation has been illustrated in the examples above. The disjunction (alternate appearance) of several
patterns is specified with "I". For the prompt below, the following analysis sequence is appropriate:

Name a feline:

:MATCH okStop ((cat) I (lion) I (leopard) I (lynx) I (tiger))

For this match to succeed, at least one of "cat" a "lion" a "leopard" a "lynx" a "tiger" must be present in
the response. Any number of them may be present, and there may be additional, unmatched material
present. Conjunction (simultaneous presence) is specified by "A":

List the great lakes:

:MATCH okStop ((Superior) A (Huron) A (Erie) A (Ontario) A (Michigan))

"Superior" and "Huron" gad "Erie" and "Ontario" And "Michigan" must all be present in the response,
although they may appear in any order. There may be additional, unmatched material present also. The
NOT, AND and OR operations can be used to build up complex expressions, for example,

:MATCH ok (((one) A (two)) I ((-(tluee)) A (-(four))))

23

18

which will match any response in which "one" and "two" occur simultaneously, OR any response in which
both "three" and "four" are absent.

The "I" and "A" operators can connect
not legal to write (oneltwo) or (three)^ -(four).

The asterisk "*" serves as a "wildcard" character, so that in

:MATCH okStop (_ne*pas_)

II I ',I ".1 I ICI It is

the pattern will be matched just in case both "ne" and "pas" occur in the response, and "ne" occurs to the
left of "pas". The "*" stands for any amount of intervening material (possibly none), no matter what it is.

"*" can only appear between strings. It cannot be used between expressions containing
OR, AND, or NOT. For example, (((a) I (b)) * c) or (-(a)*(b)) are not a legal pattern
descriptors for :MATCH.

The "&" character will match everything up to the next space. This is useful when you want to match the
root of a word and don't care what ending the response has. For example, suppose the prompt and correct
answer are

Translate this phrase to French: the last ten pages

les dix derniexes pages

A :MATCH specification which will identify the presence of a word order error which puts the adjective
"dewier" before "clix" is

:MATCH no (derni&_dix_page&)

this specifier will match

derniers dix pages
dernitres dix pages
derider dix page
derniers dix pages
demier dix page
dernieres dix pages,

etc., so that the word order error will be correctly identified regardless of spelling or inflection errors in the
adjective and noun forms. A "?" in a pattern will match one character of the response, no matter what, so

:MATCH ok (c?t)

will be matched responses containing "cat", "cit," "at", "cut", "cxt", "cAt", etc. Finally a :MATCH with a
polarity but without a pattern will succeed regardless of the response, as in

:MATCH okStop (aarvaark)
Correct!

:MATCH noStop (penguin)
No, the picture doesn't show a bird!

:MATCH noStop
I don't understand what you typed in.

Put this after all other :MATCHs to specify a default "ok" or "no" judgment and feedback if no other
:MATCH specification succeeds.

24

19

The MATCH XFCN has substantial limitations, most notably the fact that there are no p: variables,
and hence no way to return the material which was matched within a particular context, or to '1 up very
abstract pattern descriptions under program control. Nevertheless, the capabilities of MATCH suffice to
form fairly sophisticated error analyses, e.g.:

Translate to French: She read the last ten pages for us.

:MATCH no (pour noes)
Use indirect object form of PN rather than PREP + PN.

:MATCH no (_dern& dix page)
Numeral adj must precede dernier, etc.

:MATCH no (pag&_demi)
Demier precedes the noun.

:MATCH no -(_a_)
Pass6 compos6 is the appropriate form of past tense.

:MATCH no -((_a_)A(_Iu_))
You need a compound verb form.

:MATCH ok
Yes, the subject must be feminine singular.

age ERRATA EXAMPLES # 9 (Keyword Driven Dialog), # 12 (Multiple choice) and # 15
(Answer/Match Mixed) show various applications of MATCH. Topics # 19 (Simple
Parsing), # 20 (Error Statistics) illustrate direct use of the MATCH XFCN. #21
(Response History) shows direct use of the MATCH XFCN within user-customized
diagnosis handlers which are :DOne by judgeResponse.

SPECIFYING A NUMBER ANALYSIS

The purpose of the :NUMBER analysis is to find out whether a response (which is assumed to be a number
but need not be) falls within a given numerical range. Some example of :NUMBER specifications are

:NUMBER okStop (3)
:NUMBER ok (15-30)

:NUMBER no (*-0)
:NUMBER noStop (250-*)

:NUMBER ok -415-30)
:NUMBER okStop ,(15)

The first tag following :NUMBER must be a polarity value of "ok", "okStop", "no", or "noStop". It
determines how the response will be evaluated if the response fall within the specified number range.

The parentheses surrounding the second tag specify a range of numbers. This may be either a singe number
value, in which case the response must exactly equal the value, or a range, in which case the response must
fall within the range. An open ended range is indicated by "*", so that (15 - *) means 15 or greater and (*
- 20) means 20 cc less. A "-n" preceding the parentheses means that the :NUMBER specifier is satisfied if
the response does NOT fall within the range. If the response is not a number, the match fails.

For CALL purposes, a facility like this is useful mainly when a student is asked to type in numerical
responses to comprehension questions.

25
BEST COPY AVAILABLE

20

rar :NUMBER has no built-in facility for handling ordinals or the written forms of cardinals,
nor does it have any way to specify tolerat -.equired precision) relative to a value.

ERRATA EXAMPLES # 9 (Keyword-driven Dialog) and # 14 (Number Analysis) utilize
the :NUMBER specifier.

SPECIFYING A CUSTOM-MADE ANALYSIS

The purpose of :DO is to allow the user to execute any handler that she wishes in place of :ANSWER,
:WRONG, :MATCH, or :NUMBER. The tag of a :DO specification must contain two space-separated
items:

1. A polarity of "ok", "no", "okStop", or "noStop"
2. A HyperTalk message, together with any input parameters needed by that message.

The handler (it cannot he a function) called by the :DO message should return a value of True or False
using HyperTalk's return command. judgeResponse will access the returned value via the result. If
there is no return, the return will be assumed to be True.

Like :ANSWER and :MATCH, :DO may have its own contingent material. judgeResponse treats :DO
as if it were a form of :MATCH. A return of True from the :DOne handler is treated as if it were a match;
a return of False is treated as if it were a non-match. When the return is True, the feedback is appended to
okFeedback if the polarity tag is "ok" or "okStop"; it is appended to noFeedBack if the polarity is "no"
or "noStop". If the return is False, then the feedback is not processed.

The following example uses :DO to implement a modified exact match judging (an expository, not
instructional, choice). First we write a handler which performs a modified exact match on a model and a
response and returns True if the match succeeds:

on exactMatch model, response
if last char of response - "s" then delete last char of response
return (model response)

end exactMatch

Notice that this handler performs a simple-minded de-pluralization of the response before doing the exact
match judgment. The response to "What is your favorite kind of pet?" may now be analyzed by an analysis
text which :DOes exactMatch several times, once for each anticipated answer.

:DO okStop exactMatch "cat", theResponse
Yes, cats are noble creatures.

:DO no exactMatch "dog", theResponse
Dogs are too servile.

:DO no exactMatch "horse ", theResponse
Horses don't make very good house pets.

A more practical example shows how :DO can be used implement flexible judging of numerical
expressions:

on judgeExpression model, resp
put subst(reap, "units", empty) into resp

return value(resp) = model
end judgeExpression

Note that the word "units", if present, is removed before evaluation by the subst() (string substitution)
function which replaces the string "units" by the null string if it is present. If the question is "How long is
the hypotenuse of a right triangle with sides of 4 units and 3 units?" then this response analysis:

26

21

:DO okStop judgeExpression(5, theResponse)
Right. You must have used the Pythagorean theorem.

will accept all these responses

5
5 units
scIrt(25)
sqrt(16 + 9) units
sqrt(4^2 + 3^2)

or any other arithmetic expression which evaluates to 5 and optionally contains the word "units".

ThtiMmhandlgrissallainitasanteauLtirautonarainalaia handler, so that any vadat ies which
occur within input parameters of the :DOne handler must also be variables which appear within
responseAnalysis. The most useful of these is the global variable theResponse, which contains the
current response string. This is the reason that both exactMatch and judgeExpression above use
theResponse as the value of the second input parameter.

The :DOne handler message is first sent to the current card and will travel up the HyperTalk message
hierarchy in the usual way.

Egr ERRATA EXAMPLES # 21 (Response History) nows how :DO can be used to
implements some simple error-tolerant parsing machinery.

SPECIFYING HELP

The :HELP specification provides a way to stipulate various kinds of information which would aid the
student in successfully providing a response. :HELP information is not really part of the response analysis,
and in fact is ignored by judgeResponse. It is up to the lesson author to write handlers which will
access and display :HELP information, normally at the request of the student.

:HELP specifications have the same syntax as :ANSWER, :WRONG, :MATCH, :NUMBER and :DO, as
shown in this example:

Translate to Swedish: Kerstin is going to the movies tonight

:HELP grammar
Swedish often uses present or future tense where English uses
present progressive.

:HELP morphology
att gd is an irregular verb: gd, gdr, gick, gdtt.

:ANSWER Kerstin gAr till bio igAr kvall.
:ANSWER Kerstin ska gA till bio igAr kvAll.

The :HELP specification consists of the tag :HELP, followed by a label intended to indicate what type of
help text follows. The label can be anything the lesson author likes. Lines following :HELP contain the
actual help text, which is ended by the next :ANSWER, :WRONG, :MATCH, :NUMBER, :DO, or :HELP
directive, or by the end of the analysis text.

1:4? Since :HELP is ignored during the answer judging process, the position of :HELP
specifications within the analysis text is irrelevant; they may be interspersed anywhere,
but the text will be easier to read if they are collected at the beginning or end.

27

22

Because :HELP is ignored during response analysis, ERRATA provides a special function getHelp() to
access help text. It takes one (optional) input parameter, which. is the label of the type of help being
sought:

getHelp("grammar")

getHelp("morphology")

getHelpo returns the text associated with the specified type of help. If that type of help cannot be found
in the current response analysis text, then it returns empty. If the input parameter is not provided or is
empty, then all the help texts present in the current analysis are concatenated and returned. The output of
getHelpo will generally be line pointers to the help text rather than the actual text itself; hence, the value
returned by getHelp() should always be displayed by feedBack or showText or some user handler
which is capable of dereferencing the line numbers.

Here is a simple example of how to make grammar help available to the student on request. Suppose that
the current analysis text is that show immediately above, and that there is a card button named
"GRAMMAR HELP" which has the following script:

on mouseUp
feedBack getHelp("grammar")

end mouseUp

When the student clicks on this button, the string

Swedish often uses present or future tense where English uses
present progressive.

will appear in the current feedback field.

Notice that all help indicated with the :HELP specification is in effect only while the analysis text which
contains it is the current analysis text, Each new item (P/R interaction) will generally bring its own new
answers and new help. Help which is general to a whole group of questions or an entire stack must be
provided for in some different way.

Actually, g block of text labelled with the :HELP specification does not have to be "real" help text. It can
be anything, for instance, a prompt for the item. Suppose, for example, that card field "data" contains this
analysis text, which implements a multiple choice item:

:HELP prompt
According to your reading, what was the main cause of the civil war?

a. Slavery
b. Economic conflict
c. The conflict over Kansas
d. Regional cultural differences

:MATCH okStop (a)
Right, it dominated even traditional economic differences.

:MATCH noStop (b)
It was a contributing cause, but not the main one.

:MATCH noStop (c)
Kansas was a symptom of the slavery conflict.

:MATCH noStop
Please type a, b, c or d.

Given these data, the following two lines of HyperCard code will display the prompt text in a field named
"promptField"

23

setCorrectAnswer the name of card field "data"
showText getHelp("prompt") into card field "promptField"

Note that setCorrectAnswer must be executed first, because it specifies the current answer field, and this
is the field that getHelp() searches to retrieve the text.

ERRATA EXAMPLES # 8 (Complex Drill Design) uses :HELP to display a prompt and
to specify vocabulary help.

IMPLEMENTING A RESPONSE ANALYSIS

Once you have written the response analysis specifications, implementing the response analysis requires
only a few steps:

1. Attach the ERRATA stack (start using stack)
2. Specify where the analysis text is located (setCorrectAnswer)
3. Specify the field the response will come from (setUpMarkUp)
4. Specify where feedback text should appear (setFeedBackField)
5. Specify where the OK and NO message will come from (setOkNoField)

Each of these steps requires a bit more discussion.

1. Attach the ERRATA stack. To do this, executing the statement

start using stack "ERRATA"

If the response analysis stack is nca in the HyperCard default path, specify the full pathname of the response
analysis stack, for example,

start using stack "myHardDrive:myLibraryFolder:ERRATA"

This messa;:;e. needs to be sent only once, at the time you first enter your stack, so you can put it into the
openStack handler. If you need some of the handlers which are in the ERRATA EXTRAS stack, then
start using that stack too.

2. Specify where the analysis text will come front. To do this, send the message setCorrectAnswer.
The tag may be a literal if the analysis specification is only one line long and lacks feedback:

setCorrectAnswer ":ANSWER Elle a lu les dernieres dix pages"

setCorrectAnsWer "Elle a lu les dernieres dix pages"

As shown in the second message,you may omit the :ANSWER label when specifying a single-line correct
answer; setCorrectAnswtr will provide it automatically. Hence, the two messages have identical
effects.

If the analysis text occupies more than a single line, it will normally be in a container (fieldor variablel and
the parameter of setCorrectAnswer must specify the FULL name of this container. If the analysis text
is mixed with other data inside the container, then you must provide the line numbers of where the analysis
text begins or ends, e.g.:

setCorrectAnswer the name of card field "answers"

setCorrectAnswer the name of field "drillAnswers", 13, 24

2(3

BEST COPY AVAILABLE

24

The latter form can be useful for drill-style activities where the the data for several items may reside together
in the same field. If, for example card field "data" contains this text

What is the German for "one"?
:ANSWER ein

Yes, you got the fgaquestion right.
What is the German for "two"?
:ANSWER zwei

You got the second question right.
What is the German for "three"?
:ANSWER drei

You completed the third question successfully.

Then the analysis text for item 2 is specified by:

setCorrectAnswer the name of card field "data", 5, 6

since lines 5 thru 6 contain the text

:ANSWER zwei
You got the second question right.

For complex analyses, you should type all of the analysis text ahead of time into a hidden field and extract
it (or chunks of it) when needed. If you are using activateField (see (3) below), you do not need to use
siACorrectAnswer, since activateField has the same function.

3. Specify the field the response will come front. There are two ways to do this. When there an several
potential response fields on a card and the student is allowed to skip around from one tc. another of them,
use activateField. Simply put an enterField handler like this into the script of each response field:

on enterField
activateField "This is the correct answer"

end enterField

When the student clicks on one of the response fields, it immediately becomes the new current response
field. Activate Field requires as its parameter a specification of the analysis text either a simple string
with the correct answer, or a container where the analysis text is stored. The effect of activateField ans
is simply to send these two messages:

setUpMarkUp the target
setCorrectAnswer ans

but it is shorter and more efficient to use activateField. Activate Field also allows you to specify
whether the previous field contents should be erased when the field is activated.

If one field serves as the input location for multiple P/R interactions (as might be the case in a drill
format), use setUpMarkUp to specify the active response field and specify each new correct answer with a
new call to setCorrectAnswer. Usually it is best to call setUpMarkUp when you open the card
containing the field:

setUpMarkUp "myField"

setUpMarkUp the name of card field "myField"

setUpMarkUp the name of field "myBkgndField"

After you send the first or second of these messages, card field "myField" becomes the current response
field. It will =win the current response field until it is changed by another execution of setUpMarkUp

25

or activateField. Thrjgdssilypae,guagulaspgasafigliALAygiygniama. You must also send
setCorrectAnswer to specify the analysis text, as shown above. This must be done again for each new
item.

Response analysis is done only for the current response field: when the student presses RETURN in the
current response field, judgeResponse is activated to analyze the contents of that field. If the analysis
generates a markup, it is displayed beneath that field.

4. Specify where feedback should be displayed. To do this, send the message setFeedBackField with
the name of a field on the current card as the tag, as in

setFeedBackField the name of bkgnd field "myFeedBackField"

setFeedBackField "myFeedBackField"

Either message will make card field "myFeedBackField" the current feedback field, and it will remain so
until you change it again. Except for the graphical error markup (which appears in its own specially
positioned field), all feedback generated by judgeResponse will appear in the current feedback field. To
specify the field name you may provide either the full name of a card or a background field using the
HyperCard name function, as shown in the examples above. Alternatively, you may use a short name; if
so, setFeedBackField first looks for a card field of that name, and if it fails to fmd it, for a background
field. If you fail to specify a current feedback field, judgeResponse will not display any feedback.

5. Specify where the OK and NO evaluation messages are stored. This is optional, and need be done only
if you want to replace the default messages ("OK" and "NO") with ones of your own, for instance "Oui" and
"Non" or "Ita" and "Her". This can be done by putting the OK message into line 1 of a special (hidden)
field, and the NO message into line 2. Then execute setOkNoFName with that field name as a
parameter. Any styling which you give to the messages will be preserved when they are shown. See
ERRATA EXAMPLES # 6 (Cyrillic Font) for an example of this.

USER-SETABLE PARAMETERS

There are certain switches which your scripts can set to control the way that display will be done,
specifically, whether styling (font, size, boldface, underline, etc.) will be preserved when feedback and help
text are displayed, or whether styling will be stripped off, and only the bare text text displayed. You can
turn styled display on and off by executing setPreserveFormating True or setPreserveFormating
False. The default is to preserve styling. Eowever. display will be substantially faster if you show the
text without styling, so if the text has no special styling or you do not care whether it shows, disable this
feature to improve response time.

You can control where the "OK" and "NO" message will be displayed. By default they are shown both in
the feedback field and in the markup field (if there is no graphical markup). You can execute
setOkNoLoc "m" or setOkNoLoc "f" to show it only in the markup or the feedback field,
respectively, or setOkNoLoc empty to shut off display altogether. setOkNoLoc "mr restores the
default.

The appearance of the MARKUP edit symbols can be controlled. The simple way to do this is with
changeMarkUpSymbol, which allows you to substitute a new symbol for one of the standard markup
symbols. If, for instance, you dislike the shape of the "X" extra-word symbol and would prefer to use "r,
you can accomplish this with

changeMarkUpSymbol "X", "?"

or if you want to suppress the spelling markup for some reason, you can execute

26

changeMarkUpSymbol "x", empty
changeMarkUpSymbol "=", empty
changeMarkUpSymbol "\", empty
changeMarkUpSymbol ">", empty
changeMarkUpSymbol "<", empty'

This will not affect the judgement in any way, but the student will not see any spelling markup, so you
should inform her in some other way when there is a spelling problem. To restore the original set of
symbols, execute

restoreDefaultMarkUpSymbols

If you want a special set of markup symbol shapes, you must design and use your own fixed-width font.

In some instructional situations it is desirable not to ignore punctuation when judging with MARKUP, but
mark punctuation errors as if they were spelling errors. You can do this by respecifying the set of
punctuation characters, which is stored in theMarkUpPunctuation. After executing

put "(MU<>" & return & space into theMarkUpPunctuation,

for example, the characters ? . , ; : will be treated as alphabet letters. Be sure to include space and
return in the punctuation set, or markup will not work properly. Note that you cannot add or remove
individual marks; you must respecify the whole punctuation set. theMarkUpPunctuation affects only
the MARKUP XFCN. To restore the default value of theMarkUpPunctuation, execute

restorePunctuation

Sometimes it is useful to relax the criteria which MARKUP uses to judge a response OK. This can be
done in four ways: allow certain capitalization errors, allow spelling errors, allow extra words, and allow
word order errors. These parameters are set using the setJudgingParams handler, as in these examples:

setJudgingParams "capFlag", "Ignore_case"
setJudgingParams "misspellOk", True, "extraWordsOk", True
setJudgingParams "anyOrderOK", True

To reset all these parameters to their default values, use

restoreDefaultJudgingParams

The "capFlag" and "misspellOk" parameters are useful if you are concentrating on grammar and do not
want to distract the student into attending to peripheral issues; "anyOrderOk" is useful when you want
the student to type in a list of words, andslon't care about the order. "extraWordsOk" can be useful for
doing keyword judging.

Punctutation, markup symbols, judging parameters, and styled text display are all "sticky" parameters: once
you have changed them, they keep their new values as long as HyperCard is running, or until you change
them again. To restore all of them to their default values, execute

resetErrata

It is wise to do this at the beginning of each new activity (usually in the openCard script) so that you
don't accidentally inherit unexpected values of the parameters from previous activities.

We ERRATA EXAMPLES # 10 (Sentence Transitions), #16 (Vocabulary Help), and # 17
(Judging Lists) manipulate various judging parameters. Every example in the stack starts
out with resetErrata.

NON-ROMAN FONTS

27

If the student is expected to respond in a non-roman writing system, you must explicitly specify the
response and markup fonts. The font used for the response field must be fixed-width so that markup
characters will align properly beneath response characters. By default, ERRATA sets the response font to
Courier. But if you put a valid font name into the global variable responseFont, then that font will be
used instead. (Be sure that the specified font is fixed-width.) If the student is expected to type in Russian,
for instance, you will have to change the response font to something like Kurier, a fixed-width Cyrillic font
intalled in the ERRATA EXAMPLES stack

put "ER Kurier 1252 Normal" into responseFont

Whatever font is specified for the response field will be used by default for the markup field also. When the
response font is Courier, this guarantees that the standard markup symbols will appear in the markup field.
If, however, the response field is something like Kurier, this may not be the case, and you will have to
specify the response font explicitly by putting it into the global variable markupFont:

put "Courier" into markupFont

Or, if you have built a fixed-width font with your own custom-made markup symbols, or are using
someone else's, you will have to specify it

put "MyOwnMarkUpFont" into markupFont

The markup characters must. be the same (fixed) width as the response characters. To satisfy this constraint,
you may have to use two different text sizes. For instance, "Courier" 14 point and "ER Kurier 1252
Normal" 12 point both have a fixed character width of 7 pixels. In this case, set the text sizes of the
response and markup fields directly with a set command after executing setUpMarkUp:

set textSize of muFName to 14
set textSize of responseField to 12

If the non-roman font you are using puts alphabet letters into character slots that are normally punctuation,
you will have to change the punctuation set to reflect this. For instance, Kurier users keys ' " \ to store
cyrillic characters, so these must be removed from the punctuation set:

put " /?!,.;:" G return into theMarkUpPunctuation

If the non-roman font you are using has put characters in strange places, e.g., assigning vowels to character
codes which are normally assigned to consonants, you should let the MARKUP XFCN know which
characters are vowels and which are consonants, and which characters have diacritic marks by putting that
information into the global variable theMarkUpCharinfo. Since these data are not readable unless
displayed in multiple fonts, they should be installed in a field:

case, a6B rReext3vifzxnrsxonpcTy txuuttt¢p;brbsgbbriz s
c,up_case,ABB rgE CTBIOXLV-11111111)Nb 301

d,diarsis,e

d,grave,R2

When initializing the activity, these data should be put into the global variable theMarkUpCharInfo,
which is where MARKUP looks for such information. This global should be cleared when you are no
longer using the Cyrillic font, since it will cause strange markups if applied to roman fonts. See Hart
(1994, pp 16-17) for details on the format and meaning of character information data.

Finally, there is the matter of the keyboard. Kurier puts many of the Cyrillic characters on OPTION and
SHIFT-OPTION keys, and provides no rational keyboard mapping from English key caps to Cyrillic

33

28

characters, so it is essential to remap the keyboard. This can be done by manipulating KBD resources with
RESEDIT, but a simpler solution is to use ERRATA's MAPKEYS XFCN inside of a keyDown handler
in each response field to intercept and remap keypresses. Again, the map data should be put in a field so
that multiple-font display is possible. You may also want to use this remapping when authoring in
response analysis data, in order to get an easier-to-use keyboard. If so, you will need a way to switch back
an forth between the Cyrillic and the normal roman mapping.

gge ERRATA EXAMPLES # 6, (Cyrillic Font) shows in detail how to carry out this
example.

KEEPING A PERFORMANCE HISTORY

Sometimes it is also instructionally useful to categorize unsuitable responses into different types or classes,
an operation known as error analysis. Doing this may be instructionally useful because different errors
require different responses from the program. For example, direct error feedback simply describes the error
type for the student on the assumption that the student will somehow use this information to improve
future performance.

In CALL, suitable responses can also be proltably subcategorized according to the kinds of underlying
ccxnptences (e.g., grammar rules) required to create them. Describing a correct response in this way gives
a (partial) view of the current state of the student's knowledge. The computation needed to identify
categories can range from very simple to very complex, depending on how abstract the error categories are.
Surface analyses may describe errors in terms of the presence or absence of a word or ending or particular
word order. "Deeper" analyses take a view more like that of transformational grammar, which distinguishes
between a surface structure and a deep structure. Surface errors are assumed to be accounted for by some sort
of underlying linguistic mechanisms. These deeper mechanisms may be conceived of as (deviant) phase
structure or transformational rules in the student's interlanguage or, in a principles and parameters context,
as parameter settings.

Such deep mechanisms will not, in general, be directly inferable from a single response, since many
hypothetical mechanisms might be compatible with the same observed response. Consequently, it will be
necessary to aggregate information from a number of different responses. The various observed surface
forms will either confirm or disconfirm the presence of various hypothesized underlying rules, and a
sufficiently large body of evidence provided by surface forms will hopefully eliminate all but the "actual"
underlying mechanisms. The problem here is to get reliable inference from the observed surface forms to
the underlying evidence. One method of building such inferential intelligence into programs is to use
techniques, such as pattern-driven inference systems, imported from AI. When developed in a
thoroughgoing way, such approaches allow the program to construct a student model which represents the
linguistic competence of an individual student in some domain such as syntax or morphology. This is the
approach followed by BUGGY (Brown & Burton, 1978) and the tutorial systems descended from it.

In practice, since here is little agreement on the nature of an appropriate underlying model for language
acquisition, and since learner performance tends to be rather variable, it is often more feasible to simply
keep performance statistics for each of a number of relatively surface categories. Performance statistics
constitute a simple kind of student model. Typically, they refer to grammar structures, either standard or
deviant, defined in terms of surface features such as

Concordance: Case agreements such as subject/verb agreement, adjective/noun agreement.
Morphological case agreements such as stem/ending

Dependencies: Case dependencies, verb/preposition dependencies, adjective/verb dependencies.
Word orikal Surface word order specifications

This is the descriptive vocabulary typically used by language textbooks as well as traditional descriptive
grammars. Grammar rules expressed in this way may lack in theoretical rigor, but continue to be favored in
instructional contexts because they are simple enough to be understood and applied by language learners.

As it happens, properties specifying such rules can often be identified by straightforward matching
techniques.

Student models (including performance statistics) can be shown directly to the student or instructor and this
may be their most common use in programs that maintain them. Ideally, however, they would serve as
input to an adaptive instructional stratcay. The general idea of adaptive strategy is to tailor instruction so
that it will be appropriate to each individual student Usually this is a matter of examining the learning
history to see which rule3 have already been thoroughly learned. Presentation of the learned material is then
de-emphasized in favor of material that has not yet been mastered.

Computationally, maintaining a learning model requires examining student responses to see whether
standard rules have been violated and deviant rules followed. Although this can be done with relatively
simple matching tools, a few pitfalls must be noted. First, the model must maintain two numbers for each
error category: an error counter, the number of times the error occurred, and an opportunity counter, the
number of times that it had the opportunity to occur. The ratio of these two numbers, the error Laic,
measures the probability that a particular type of error will occur, given that the context allows for it. Error
frequencies by themselves are misleading: the fact that a student misused the French subjunctive 0 times
might mean perfect mastery, or might simply mean that the subjunctive has not yet been introduced, so
that no response has required its use.

Finding out whether a particular type of error had an "opportunity" to occur requires careful thought. For
example, consider the following prompt and the two patterns for identifying an adjective order error :

Translate to French: Jean has two black cats. (Correct answer. Jean a deux chat- Twin.)

:MATCH no (noir&_chat)
Adjective order error.

:MATCH no -(chat&_noir)
Adjective order error.

If the response is "Jean a deux 'lairs chats", then both patterns will be matched. But the first pattern looks
for presence and the second for absence. There is only one way that the first pattern can succeed. The
second can succeed in many more ways, and thus may match too many patterns.

In the first :MATCH above, a specific error is identified as being present. Since 'noirs chats" is in the
response, the error clearly had the opportunity to occur, since the two constitutent words are present and the
student has misordered them. Hence, the opportunity counter for the ADJ-ORDER error can be
incremented, and so can the error counter. In this case, there is really only one way that the adjective order
can be wrong, so this is a perfectly reasonable approach.. However, it must be combined with another
pattern, which checks for correct usages of the construction:

(noir&_chat)

(chat&_noir)

INCREMENT OPPORTUNITY COUNTER
INCREMENT ERROR COUNTER

INCREMENT OPPORTUNITY COUNTER

The second :MATCH pattern in the example, -(chatknoir), however, simply establishes that the specified
pattern was nig found, but does not tell why -- it might have been that both words were present but that the
order was reversed, but it might also have been that one or both expected constitutent words were absent. In
fact, this second pattern would match if the response happened to be either of the following

Jean a deux animaux.

Jean a deux chiens blancs.

35

29

30

and thus would attribute an adjective order error to both sentences. But this is clearly wrong, because there
is no adjective in the first response, and in the second, the adjective/noun order is perfectly correct.

As a general principle, a rule cannot come into play unless the constituents which enter into it exist. Thus,
determining a rule violation is a two-step process

1. Establish that all the constituents involved in the rule are present
2. Determine that the correct construction is absent.

In the example above this can be done by using the two patterns

(C-chark_noir)) INCREMENT OPPORTUNITY COUNTER
-(_chatix:dr) INCREMENT ERROR COUNTER

so that the full pattern required to establish an adjective order error is:

:MATCH no (Lchat)^(_noirr(-(chat_noir)))
Adjective order error.

This will give error feedback under the right conditions. In order to compute error rates, however, we must
count both opportunities for the error and actual occurrences. This requires writing someactual HyperTalk
code:

if char 1 of match("((_chat)^(_noir))", response) = "t" then

add 1 to baseCount
if char 1 of match("(-(chat&_noir)))", response) then

add 1 to errorCount
end if

end if

The two variables baseCount and errorCount are supposed to hold the number of opportunities and the
number of actual errors for the adjective order rule. Notice that this is HyperTalk code. and that the
MATCH XFCN is being accessed directly. It is not data which can be processed by the default
judgeResponse handler. Before this code can be used by ERRATA, it must be incorporated into a non-
default judging handler.

iv ERRATA EXAMPLES # 19 (Simple Parsing) and # 20 (Error Statistics) exemplify these
techniques.

PARTIAL PARSING

The problem with what was developed in the previous section is lack of generality. One will find oneself
writing lots of similar patterns like these

:MATCH no (Chat)A(.. noir)^(-(chatnoir)))
Adjective order error.

:MATCH no LchienYtgraridA-(chiengrand)))
Adjective orderWM.

:MATCH no (Llivre)^(_important)A(-(livre_important)))
Adjective order error.

31

for various sentences. This is a lot of work just to check for one error, and it will be even more work if,
instead of simply giving feedback, we are keeping counts for a performance history. To make this a
practical technique for lesson authoring, more efficient means of error checking are required.

We can begin improvements by noting that, for the purposes of adjective order analysis, the exact words are
irrelevant; the important thing is whether two abstract patterns are present, which could be represented
something like this:

ONAAD
-(N& A)

OPPORTUNITY
ERROR

where N symbolizes any (French) noun stem and A any (post-positioning) French adjective stem. If we can
arrange to replace the words in a phrase by their corresponding parts of speech, then the same two patterns
above will suffice for all adjective-noun phrases.

The ERRATA function substO performs the needed substitutions:

subst("Les chats noirs",1 , "chat", "N", "noir", "A")

- -> "les Ns As"

You can think of these substitutions as a form of dictionary lookup: subst() looks for several words
(actually, several roots) in the sentence and, when it finds one, substitutes a "dictionary entry" which, in
this case, is simply an indicator of the root's part of speech. The number following the target string tells
the maximum number of times each substitution is to be done. Thus, "N" will be substituted for "chat"
once and "A" will be substituted for "noir" once within the string "Les chats noirs", yielding the result
shown.

Maintaining a performance history involves keeping track of frequency counts. Since we are likely to be
checking for many types of errors, it would be wise to set up a data structure to do this. This data structure
will comprise the performance history. We will use two global variables, baseCounts and errorCounts
as arrays to store the counters for all error types. Each type of error will be assigned a number, and, so that
we don't have to remember which number goes with which error, we will associate a name with each
number:

global subjVbAgr, adjNAgr, adjOrd

put 1 into subjVbAgr
put 2 into adjNAgr
put 3 into adjOrder

Item number i of each array will hold the counter for error number i, so that, for example, item 3 of
baseCounts holds the opportunity counter for error type 3, adjOrder.

Once these matters have been taken care of, we can write a single handler which will do the adjective order
analysis. As input, it requires a noun stem and an adjective stem to look for in the current response:

37

32

on checkAdjOrder noun, adj

global responseField, baseCounts, errorCounts, adjOrder

put subst((card field responseField), noun, "N"; adj, "A") into response

if char 1 of match("((N)"(A))", response) = "t" then

add 1 to item adjOrder of baseCounts
if char 1 of match("(-(Ni_A)))", response) = "t" them
add 1 to item adjOrder of errorCounts

end if

end checkAdjOrder

The checkAdjOrder handler implements a partial error-tolerant parsing of the contents of the current
response field. It is partial because the whole response is not parsed, just a section identified by the two
patterns. This in turn is determined by the presence and location of the two input words. It is also partial
because only one rule is applied, the adjective order rule. A full parsing would apply as many rules as
necessary to span the full response. In order to fully cover adjective ordering in French, of course, an
analogous handler checkPreAdjOrder would have to be written to handle adjectives such as "grand" that
regularly preceed the nouns they modify. The parsing is error-tolerant because it is able to provide a
structural description for a constructions which deviates from standard French.

How can such handlers be incorporated into judge Response? This is the task that the :DO directive was
designed for. Recall that the tag of the :DO directive must be a Hyper Talk message (a call to a handler,
accompanied by any parameters appropriate for that message). Hence, the analysis data for a series of items
might look like this (as in earlier examples, the prompt is stored along with the analysis text as the first
line but is not part of the analysis text).

:HELP prompt
Translate to French: Jean drives a red Ferari.

:ANSWER Jean conduit un Ferari rouge.
:DO no checkAdjOrder "Ferari", "rouge"

:HELP prompt
Translate to French: Jean has two big dogs and a black cat.

:ANSWER Jean a un chien noir.
:DO no checkPreAdjOrder "chien", "grand"
DO no checkAdjOrder "chat", "noir"

:HELP prompt
Translate to French: Jean has a comfortable apartment.

:ANSWER Jean a un appartement comfortable.
:DO no checkAdjOrder "appartement", "confortzNe"

The :DO specifications have negative polarity so that the evaluation will be NO unless :ANSWER is
satisfied.

Writing specialized parsing for things like subject/verb agreement is more difficult because morphology is
involved. The following script, taken directly from ERRATA EXAMPLES #21 (Response History),
shows a more developed version of this approach which checks for both kinds of adjective order errors as
well as subject/verb and adjective/noun agreement

on initializePerformHistory

-- Reset all performance history counters to 0.

global baseCounts, errorCounts, errorLabels

put "SubjVAgr,adjNAgr,adjOrder" into errorLabels
repeat with i - 1 to number of items in errorLabels
get item i of errorLabels
do "global" && it
do "put i into" Si it
put 0 into item i of baseCounts
put 0 into item i of errorCounts

end repeat

end initializePerformHistory

on checkPreAdjOrder noun, adj

-- Check whether ADJ precedes NOUN; update ADJORDER counters.

global responseField, baseCounts, errorCounts, adjOrder

put subst(value(responseField) noun, "N", adj, "A") into response

if char 1 of match("((N)"(A))", response) = "t" then
add 1 to item adjOrder of baseCounts
if char 1 of match("(-(A&_N)))", response) = "t" then
add 1 to item adjOrder of errorCounts

end if
end if

end checkPreAdjOrder

on checkAdjOrder noun, adj

-- Check whether ADJ follows NOUN; update ADJORDER counters.

global responseField, baseCounts, errorCounts, adjOrder

put subst(value(responseField) noun, "N", adj, "A") into response

if char 1 of match("((N)^(A))", response) = "t" then
add 1 to item adjOrder of baseCounts
if char 1 of match("(-(Ni_A)))", response) = "t" then

add 1 to item adjOrder of errorCounts
end if

end if

end checkAdjOrder

39

33

BEST COPY AVAILABLE

34

on checksubjVAgr subj, verb, class

-- Finds ending features of SUBJ and VERB and see if their
- - person s number agree. Updates performance history counters
- - for SUBJVAGR. CLASS *, verb conjugation - 1 or 2.
-- If any ending features are unidentifiable, do not score this item.

global responseField, baseCounts, errorCounts, subjVAgr

put value(responseField) into r
if (subj is in r) AND (verb is in r) then
put endingFs(subj, "n") into sFs
put endingFs(verb, "v" G class) into vFs
if validFs(sFs, vFs) then

add 1 to item subjVAgr of baseCounts
if NOT fsAgree(sFs, vFs) then
add 1 to item subjVAgr of errorCounts

end if
end if

end checksubjVAgr

on checkAdjNAgr noun, gender, adj

-- See whether person and number features of NOUN and ADJ agree.
-- Updates performance history counters for adjNAGR.
-- If any ending features are unidentifiable, do not score this item.

global responseField, baseCounts, errorCounts, adjNAgr

put value(responseField) into r
if (noun is in r) AND (adj is in r) then
put endingFs(noun, "n") into nFs
put gender into char 1 of nFs -- Replace person with gender.
put endingFs(adj, "a") into aFs
if validFs(nFs, aFs) then

add 1 to item adjNAgr of baseCounts
if NOT fsAgree(nFs, aFs) then add 1 to item adjNAgr of errorLiunts

end if
end if

end checkAdjNAgr

function endingFs wd, partOfSpeech, class

- - If whole WD is in response, return feature values of WD.
-- If WD is present as a stem, return the feature values
-- which go with WD's ending. Else return "*FAILED*".

PARTOFSPPEECH is WD's part of speech (N, V1, V2 or A);
-- CLASS is an optional morphological subclass (not used here).

global responseField

if wd = er hen return empty

put value(responseField) into r
put endingOf(wd, r) into e
if e = "failed*" then -- WD NOT PRESENT IN RESPONSE.

return empty
else if e - wd then FUT.L FORM OF WD PRESENT.

if "n" is in partOfSpeech then -- Pronouns.
get tableLookUp(wd, ",je ls,tu 2s,elle 3s,i1 3s,on 3s,nous

ip,vous 2p,elles 3p,ils 3p", "3s")

else if "v" is in partOfSpeech then -- Irreg verb Etre.
get tableLookUp(wd, ",ai ls,as 2s,a 3s,suis ls,es 2s,est

3s,sommes ip,etes 2p,sont 3p")

else if "a" is in partOfSpeech then -- Irreg adjectives.
get tableLookUp(wd, ",beau ms,belle fs,belles fp,beaux mp", "ms")

end if
else if partOfSpeech - "n" then --WD IS STEM; DO MORPH ANALYSIS.

get tableLookUp(e, ",s 3p,a1 3s,aux 3p", "3s") N endings.
else if partOfSpeech = "v1" then -- ER verb present indic endings.

get tableLookUp(e, ",e ls.3s,es 2s,ons 1p,ez 2p,ent 3p",)

else if partOfSpeech = "v2" then -- IR verb present indic endings.
get tableLookUp(e, ",is ls.2s,it 3s,issons 1p,issez 2p,issent 3p",)

else if partOfSpeech = "a" then -- Adjective endings.
get tableLookUp(e, ",s mp,e fs,es fp", "ms")

else get empty
if it * empty then return it else return "*failed*"

end endingFs

function fsAgree fListl, fList2

FLIST1, FL1ST2 are two feature values each of
-- form Fi or Fi.Fj.Fk...
-- Return TRUE if two feature values agree, else FALSE.
-- N. B.: Lists are order-sensitive.

return (fListl is in fList2) OR (fList2 is in fListl)

end fsAgree

function tableLookup wd, table, defaultFs

- - TABLE is a table of comma-separated (ENDING FEATURES]. E.g.,
",e ls.3s,es 2s,ons 1p,ez 2p,ent 3p"

- which means that ending "e" is either 1st perso: singular or 3rd
-- person singular; "es" is 2nd person singular; "ons" is 1st person
- - plural, etc.

get offset(comma i wd i space, table)
if it > 0
then return item 1 of word 2 of char it to 999 of table
else return defaultFs

end tableLookUp

4

35

BEST COPY AVAILABLE

36

function endingOf wd, r

- - WD is the root or stem of some word. If whole WD is present
-- in string R, return WD. Else, find WD as stem in R and return
-- its ending. If no form of WD present, return "*FAILED*".
- - Default for R is current response.

global responseField

if r empty then put value(responseField) into r
get offset(space 4 wd, space 6 r) -- Look for WD as stem
if char it + length(wd) of r - space then -- Found exact form WD
return wd

else if it > 0 then
return word 1 of char it + length(wd) to 999 of r -- Ending of WD.

else return "*failed*" WD not present.

end endingOf

function validFs

-- Return True if every input param is a valid feature value
- - (i.e., not "*fail*"), else False.

repeat with i 1 to the paramCount
if param(i) "*fail*" then return False

end repeat
return True

end validFs

on showCounters

- - Compile and display table of all performance history counters.

global errorLabels, baseCounts, errorCounts

put "Error Category, Error Count, Base Count" & return into display
repeat with i 1 to number of items in errorLabels

put item i of errorLabels 66 item i of errorCounts i4 -1
item i of baseCounts i return after display

end repeat
feedBack display, "append"

end showCounters

Here morphological analysis is done by the handler endingOf(wd), which finds the stem wd in the
current response field and returns any ending the stem may have. The function endingFs(word,
part0fSpeech) takes a stem and return the features which go with whatever ending word has. Some
small ending "dictionaries" which associate endings with features are stored as hard-coded lists inside
endingFs(). The function fsAgree(fListl, fList2) checks to see if two feature specifications agree.
The handler checkSubjVAgr subj, verb takes the root of the subject and the root of the verb and
determines if their ending disagree. If so, the proper counters are incremented. The handler
checkAdjNAgr does the same for a noun and its associated adjective. Both the latter handlers use
validFsO to check whether the endings attached to the noun, adjective or verb were actually valid French
endings. If any of them were not, then, of course, no features could be returned. In that case, the agreement
checks are meaningless and will not be performed.

Here is the analysis text utilized by this script

37

:HELP prompt
Translate to French: Claude drives a red Ferari.

:ANSWER Claude conduit un Ferari rouge.
:DO no checkAdjOrder "Ferari", "rouge"
:DO no checkSubjVAgr "Claude", "condu", 2
:DO no checkAdjNAgr "Ferari", "m", "rouge"

:HELP prompt
Translate to French: Claude has two big dogs and a black cat.

:ANSWER Claude a deux grands chiens et un chat noir.
:DO no checkPreAdjOrder "chien", "grand"
:DO no checkAdjOrder "chat", "noir"
:DO no checkSubjVAgr "Claude", "a"
:DO no checkAdjNAgr "chien", "m", "grand"
:DO no checkAdjNAgr "chat", "m", "noir"

:HELP prompt
Translate to French: She has a comfortable apartment.

:ANSWER Elle a un appartement confortable.
:DO no checkAdjOrder "appartement ", "confortable"
:DO no checkAdjNAgr "appartement", "m", "confortable"

ter This example is implemented as ERtiATA EXAMPLES # 21 (Response History).

This sketch of a programming approach to partial parsing ignores many complications, among them the
possibility of multiple occurrences of the same word in a response and the ambiguous feature values of
endings, which is common in languages such as German.

Such an approach to limited parsing is reasonable for CALL activities which involve limited vocabulary
and morphology and focus only a few grammar points, but becomes hopelessly inefficient when each
response must be tested against many rules. Of course program efficiency can be improved by rewriting
HyperTalk functions as XFCNs, organizing all of the words and endings of the target language into a single
dictionary for quick lookup, treating morphological juncture phenomena systematically, etc. But the
eventual outcome of moving in this direction is designing and implementing a general-purpose parser.

The important point to realize is that, from the perspective of error analysis, classical pattern matching and
parsing are not mutually exclusive techniques. They represent two extremes along a continuum of
abstaction and generality. The choice of where to locate the design of an error analysis along this
continuum will depend very much on the nature of the material and the kind of information that one wishes
to obtain from the analysis. Noi only does limited parsing implemented by matching take less up-front
development than a highly generalized syntactic parsing system. It may be more flexible, allowing the user
to diagnose semantic and pragamtic errors not accessible within the framework of a highly generalized
parsing.

43

38

ERRATA REFERENCE

This section provides fairly complete documentation for the Hyper Talk handlers which comprise the
response analysis machinery in ERRATA and ERRATA EXTRAS It is intended mainly. for those who
want to use more advanced features of the various handlers and functions in writing their own scripts. The
first part of the reference describes handler and functions used by ERRATA and the second describes the
global variables.

The MARKUP XFCN is not documented here; Hart (1989; 1994) give detailed technical information on the
internal design of the MARKUP XFCN.

OVERALL STRUCTURE OF ERRATA

ERRATA is structured to deal with four fields on any card where it is invoked:

A response field, where the student will type in the response to be analyzed.
An "answer" field, which holds the text of the analysis specifications and feedback.
A feedback field, where all response-contingent, author-specified feedback will be displayed.
An evaluation message field, where alternatives to the "OK" and "NO" messages are stored.

Of these four, the response field is absolutely required, while the others may be absent if the nature of your
analysis permits. ERRATA does not automatically know the names of these four fields. Your handlers
must use the setUpMarkUp, setCorrectAns wer, setFeedBackField and setOkNoField handlers
to specify them.

When setUpMarkUp is used to stipulate the name of the response field, ERRATA creates a transparent
field called "markup" to hold the graphical markup symbols and places it immediately behind the response
field. It will be extended one character to the left, to accommodate any "ii" (missing word) symbols which
may preface a line of the response, and will extend about one line below the response since markup
characters must be positioned beneath the response letters.

The response field will also be converted to "transparent" style so that the markup characters beneath will
show through. Consequently, both markup and response fields are transparent, lacking borders to delineate
the area for typing into. Therefore, ERRATA creates a rectangle-style field, slightly larger than the markup
field and positioned just behind it Its rectangular frame delineates the typing area and, because it is opaque,
it "shadows" out any underlying graphics and allows the response characters and markup symbols to show
clearly. The name of this "shadow" field is generated by putting an "*" before the name of the response
field. Note that a shadow field will be created for each response field, but there will be at most one
"markup" field in the foreground and one in the background. These modifications to the card are permanent;
ERRATA makes no attempt to restore the card to its original condition when interaction with the response
field is completed.

"Answer" field is a misnomer; "analysis text" field would be more appropriate since the field can hold not
only :ANSWER but :WRONG, :MATCH, :NUMBER, and :DO specifications along with their contingent
feedback. If the answer field is present, it will normally be hidden. It need not exist if the analysis is
specified using a variable, expression or literal string.

The ERRATA handlers fall into five functional categories:

Interface handlers which connect the user's input and display fields to ERRATA. (setMarkUp,
setCorrectAnswer, setFeedBAckField, setOkNoField, activateField,
makeSbadowField, defaultKeyHandling).

Judzine parameter handlers, which set parameters which control the details of the analysis process.
(resetErrata, setJudgingHandler, setJudgingParams, changeMarkUpSymbol,
restoreDefaultMarkUpSymbols, restoreMarkUpDefaults).

Text Display handlers, which access and display chunks of styled text. (getHelp, getFeedBack,
showText, feedBack, showMarkUp, okWord, noWord, hiliteMatch,
de re fe ren c eT ext , labelLines, displayLabel, quickCopy, copyText,
setPreserveFormating).

Analysis handlers, which interpret the analysis specifications and provide control structure for the
overall analysis process. (MARKUP XFCN, MATCH XFCN, markUpUsingParams,
judgeResponse, responseAnalysis, handleKey).

Utility handlers, for doing useful string operations such as case change and substitution. (subst,
substResp, upCaseResp, delimiterTable XFCN, STRINGUTILITIES XFCN).

Straightforward uses of ERRATA require the lesson author to manipulate mainly the interface handlers.

A useful CALL package must be prepared to deal with a wide range of writing systems, and this means that
multiple text fonts must be supported. All ERRATA display handlers can, in fact, preserve text styling,
but only at the price of display slowdown and some fairly baroque programming. This is a direct
consequence of HyperTalk's continuing failure to provide any quick efficient way to copy styled text or
store it in variables: styled text must be copied by the clumsy device of going to the source field and
copying it into the clipboard, then going to the destination and pasting the clipboard. Furthermore,
ordinary HyperrT'alk chunk expressions cannot be used to manipulate styled text ranges. Instead, character or
line pointers must be maintained and dereferenced, adding greatly to the scripting complexity.

Table 3 summarizes the input parameters/return values of the major ERRATA routines. It is not intended
to be exhaustive.

Table 3

PARAMETERS AND RETURN VALUES OF MAJOR ERRATA ROUTINES

"0" = direct input parameters and direct return values.
" () " = display operations or other side effects

Unbracketed items name global variables.

Handler/Function Name Input values Output values/Effects

1. CALLED BY USER:

setUpMarkUp [field name] muField
[keep response] responseField

[make markup field)
(make shadow resp. field)

39

setCorrectAnswer

activateField

setJudgingHandler

setFeedBackField

setOkNoFName

setOkNoLoc

setTudgingParams

restoreDefaultJudgingParams

setPreserveFormating

defaultKeyHandling

changeMarkUpSymbol

restoreDefaultMarkUpSyrnbols

restoreMarkUpDefaults

resetErrata

[field name or expression]
[start line number]
[stop line number]
[keep response]

[field name or expression]
[start line number]
[stop line number]
[keep response]

[handler name]

[field name]

[field name]

[char string of loc indicators]

[keywords & param values]

[True or False]

[True or False]

[pairs of symbols]

46

theMarkUpAnsFName
theMarkUpAnsVar
theMarkUpAnsL1
theMarkUpAnsL2
theMarkUpAns

theMarkUpAnsFName
theMarkUpAnsVar
theMarkUpAnsL1
theMarkUpAnsL2
theMarkUpAns

theJudgingHandler

theFeedBackFName

theOkNoFName

suppressOkNo

capFlag
extraWordsOk
anyOrdeOk
misspellOk, etc.

capFlag
extraWordsOk
anyOrtlerOk
misspellOk, etc.

preserveFormating

userKeyHandling

theMarkUpSymbols

theMarkUpSymbols

capFlag
extraWordsOk
anyOrderOk
misspellOk, etc.
theMarkUpSymbols
theMaricUpPunctuation

theFeedBackFName
theOkNoFName
preserveFormating
userKeyHandling
theJudgingHandler
capFlag
extraWordsOk
anyOrderOk
misspellOk, etc.
theMarkUpSymbols
theMarkUpPunctuation

40

2. USED BY ERRATA:

keyDown

judgeResponse

responseAnalysisO

markUpUsingParamsO

getFeedEtack()

getHelpO

showMarkUp

feedBack

[user's keystroke]

theResponse
muField
theMarkUpAnsFName
theMakUpAnsVar
theMarkUpAnsL1
theMarkUpAnsL2
theMarkUpAns
theBestFitThreshold

[model]
[response]
theBestFiatireshold

[model]

fresPonsel

[lineNo of best fit Ans]
theMarkUpAnsVar
theMarkUpAnsL1
theMarkUpAnsL2
theMarkUpAnsFName

[help spec label]
theMarkUpAnsFName
theMarkUpAnsVar
theMarkUpAnsL1
theMarkUpAnsL2

theMarkUp
muField
responseField

[text with line references]
[amend]
theFeedBackFName

47

{initiates judging, hides
feedback, or passes key)

the response
thcJudgment
theMarkUp
theFeedEack
okFeedBack
noFeedBack
thePatternFeedBack
okCount
noCount
[bestFit,
lineNo of best fit ans,
markup for best fit ans]

the response
theJudgment
theMarkUp
theFeedBack
theOicFeedBack
noFeedBack
thePatternFeedBack
okCount
noCount
[bestFit,
lineNo of best fit ans,
markup for best fit ans]

[markup string]
theMarkUpReturnValues
theMarkUpMaps

theFeedBack

[txt with line references]

(format string in mu field)

(display text in fdbk field)

41

showText

labelLines

showLabel

quickCopy

derefereaceText0

okWord0

noWccd0

hiliteMatch

makeShadowField

3. UTILITY ROUTINES

substO

substRespO

upCaseRespO

labelLinesO

displayLabel

[txt with line references]
[field name]

EaPPerldl

[label]
[source field]
[delimiter char]

[label]
[source field]
[destination field]
[delimiter char]

[source chunk type]
[source start chunk number]
[source e.nd chunk number]
[source field name]
[destination chunk type]
[destination start chunk number]
[destination end chunk number]
[destination field name]

[txt with line references)

[match pattern]
responseField

[field name]

[display text in field and
execute command lines)

[bracketed line range]

(display block of styled
text)

(copy styled chunk range)

[de referenced, destyled text)

[text with line references]

[text with line references]

(hilite pattern in response)

(clones, resizes, and
renames response field)

[text]
[number of times to substitute]
[pairs of old, new strings]

[number of times to substitute]
[pairs of old, new strings]
theResponse

[strip diacritics]
theResponse

[field name]
[lad]
[delimiter]

[label]
[source field name]
[destination field name]
[delimiter]

[substituted text]

theResponse

theResponse

[line ptrs to a labeled
block of text]

(styled copy of labelled
text from source to dest)

42

1

1

1

1

1

1

43

CALL STRUCTURES

1. keyDown message, sent when the user presses any key:

keyDown
handleKey

pass keyDown
judgeResponse

...etc. (see 3 below)

2. setuplotarktrp, which establishes the current response field and arranges the markup and associated
fields:

setUpMarkUp
resolveFName()
fieldExists()
makeShadowField
stringUtilities("strWidth") XFCN
stringUtilities("fontInfo") Xt'CN

3. judgeResponse, the default top-level judging control structure:

judgeResponse
fieldExists()
responseAnalysis()

match() XFCN
judgeNumber

stringUtilitles("removeChars") XFCN
send <user :DO Handler>
getFeedBack()
markUpUsingParams()

markUp() XFCN
computeAnsFit
getFeedBack()
matchingIsOK
okWd()
noWd()

showMarkUp
stringUtilities("findLineBreak") XFCN
showText

resolveFName()
findInField() XFCN
findInField() XFCN
gutzkCopy()

feedBack
showText

resolveFName()
findInField() XFCN
findInField() XFCN
guickCopy()

HANDLERS AND FUNCTIONS

The handler or function and its formal input parameters are given in boldface. Some examples of the
syntax for calling the handler and an explanation of the general function of the handler follow.

BEST COPY AVAILABLE

44

When the functioning is complex or the user may need to manipulate the handler extensively, more
technical details are provided, including a discussion of variables affected by the handler, defaults for input
parameters, etc.

on setJud in Handler handierName

setJudgingHandler "myVeryOwnJudgingHandler"
setJudgingHandler empty
setJudgingHandler "judgeResponse"

Specify that handlerName is the name of the handler that will be called to do response analysis when the
student presses the RETURN key in a response field.

If no name has been specified, then the default name " judgeResponse" is used.

Once you have used setJudgingHandler to specify some other name, the analysis package will keep
using that name indefinitely, until you change it again with another call to setJudgingHandler.

You will never need to use setJudgingHandler unless you have written one or more of your own
judging handlers to preempt it.

V? ERRATA EXAMPLES # 7 (Response Tracking), # 19 (Simple Parsing) and # 20 (Error
Statistics) reset the judging handler. #10 (Transitional Sentences) and various others
preempt the default judgeResponse handler.

on activateField ans, startLine endLine, keepResp

activateField "This is the correct answer"
activateField "Le garcon voit le chien Blanc"
activateField "Der hund", "dontErase"
activateField the name of card field "myAnalysis", 15, 35, True

activateField should be called from within an openField handler in the script of some field on the
current card. When the student clicks on that field, the activateField handler will be executed. The field
which was clicked then becomes the current response field. The text specified by ans and startLine,
endLine becomes the current analysis text, used to judge the response after it has been typed in.

Executing activateField ans, startLine, endLine, keepResp is equivalent to executing the two
handlers

setUpMarkUp the short name of the target, keepResp
setCorrectAnswer ans, firstLine, lastLine

but is more convenient. See the documentation for setUpMarkUp and setCorrectAnswer for details
on how to specify the parameters.

This handler is useful when there are several response fields on the same card, each with its own answer, and
the student is allowed to skip around freely from one to another. Call it from within an openField
handler so that it will be activated when the student moves the text cursor into the field preparatory to
typing in a response:

45

on openField
activateField "This is the correct answer"

end openField

Notice, however, that a response field established with activateField way can have only one answer (i.e.,
analysis text).' ERRATA EXAMPLES # 4 (Multiple Response Fields) uses this handler.

on setU MarkU respField, fieldStyle, keepResp

setUpMarkUp "responseField"
setUpMarkUp name of field "myRespField", "noErase"

Makes respField the current response field. When response judging is initiate°, judgeResponse takes
the response string from this field, and places the markup beneath this field. respField can be either the
full or short name of a card or background field on the current card.

161? A call to the function resolveFName(respField) is used to determine which field
respField refers to.

If need be, a field named "markup" will be created. Then the "markup" field will be hidden and moved up or
back to the layer just behind respField. The default textFont, textSize, and textStyle of the "markup"
field will be reset to match those of respField. These actions are necessary to assure that the markup
symbols will be aligned correctly beneath the student's typing.

The style of field "markup" will be set to "opaque" so that the markup field will cover any text or
graphics which happen to be behind it. Otherwise the markup symbols would not be legible. The style of
the response field will be permanently changed to "transparent", so that the markup symbols behind the
response field will appear. Since the boundaries of the transparent response field are no longer visible,
setUpMarkUp creates a permanent rectangular "shadow" field and places it behind both the response field
and markup field. Its name will be the name of the response field with an asterisk prepended. The shadow
field provides a uniform, opaque background for the response and markup display. There will be at most
one markup field for the background and one for the foreground, but there will be a separate shadow field for
each response.

If keepResp is omitted or empty, then the current contents of respField will be erased when
setUpMarkUp is executed; otherwise the current contents will be left intact.

on setCorrectAnswer correctAns, startLine, endLine

setCorrectAnswer "This is the answer"

put ":WRONG This is a wrong answer" into var
setCorrectAnswer var

put ":ANSWER This is the answer" into card field "answerText"
setCorrectAnswer the name of card field "answerText"

setCorrectAnswer the name of bkgnd field "data", 10, 23

BEST COPY AVAILABLE

The name of this handler is a bit misleading. It actually stipulates the entire set of analysis specifications
which will be used to do the next response analysis. Often this does consist of nothing but a correct
answer, but :WRONG, :MATCH, :DO, and 'HELP specifications and associated feedback can be in the
analysis text too.

correctAns may be a literal string or expression, a variable which contains the analysis text, or the name
of a field which contains the analysis text. In any case, correctAns must contain a response analysis text
which is acceptable to the current judging handler. If you use the default judgeResponse handler, then
the analysis text can mix :ANSWER, :WRONG, :MATCH, :NUMBER, :DO and :HELP specifications
(including optional feedback) in any order.

If correctAns consists of a single line without any special label, judgeResponse will interpret it as the
tag of an :ANSWER specification which has no feedback. That is,

setCorrectAnswer "The quick brown fox"

is the same as

setCorrectAnswer ":ANSWER The quick brown fox"

jf correctAns is a field name. it must be the full name of a card or background field on the current card,
e.g.,

card field "myField"
bkgnd field "myField"

The most convenient way to get the full field name is to use the HyperCard function the name, as in
these examples:

setCorrectAnswer the name of card field "myField"

setCorrectAnswer the name of field "myBkgndField"

put the name of card field "myField" into analysisField
setCorrectAnswer analysisField

which will cause card field "myField" or background field "myBkgndField" to be used as the source of the
analysis specifications. If correctAnswer does not contain a field name. then it is assumed to contain the
actual analysis data.

If you have set preserveFormating to True in order to preserve the font, size and
style attributes of feedback text, then correctAnswer must specify a field name. This
is because only fields can support text formatting. Failure to specify a field name in this
situation will result in an error dialog.

The two optional input parameters startLine and endLine allow you to specify that only a certain range
of lines in the correctAnswer text should be used for analysis. This can be useful for drill activities
where a single field contains the response analyses for a number of items, perhaps mixed in with other data.
If, for example card field "data" contains this text:

What is the German for "one"?
:ANSWER ein

Yes, you got the first question right.
What is the German for "two"?
:ANSWER zwei

You got the second question right.
What is the German for "three"?
:ANSWER drei

52

46

47

You completed the third question successfully.

Then the analysis text for item 2 is specified by:

setCorrectAnswer the name of card field "data", 5, 6

If no line numbers are speckled, then the entire text specified by correctAnswer is used.

Calling setCorrectAnswer sets five global variables:

theMarkUpAnsFName: Contains the name of the field that contains the analysis text, if
correctAnswer was specified via a field name. If correctAnswer was specified as a literal
string or variable, theMarkUpAnsFName will be empty.

theMarkUpAnsVar: An unformatted copy of text containing the analysis text. If
correctAnswer was specified as a field name, then theMarkUpAnsVar will contain the
same text as that field, but without any text formatting. If correctAnswer was specified as
a variable or literal, then theMarkUpAnsVar will contain that value.(This will also be the
last line of the text within the field named by theMarkUpAnsFName, if there is one).

sw theMarkUpAnsVar may be coextensive with the analysis text, or it may
contain the analysis text within it, as a range of lines delimited by
theMarkUpAnsL1 and theMarkUpAnsL2.

theMarkUpAnsL I: Number of the
(This will also be the first line of the text within the field named by
theMarkUpAnsFName, if there is one).

theMarkUp Ans L 2: The Dumber of the _last line of the analysis text within
theMarkUpAnsVar. (This will also be the last line of the text within the field named by
theMarkUpAnsFName, if there is one).

I ' . r 1.

theMarkUpAns contains an unformatted copy of the current analysis text, that is, line
theMarkUpAnsLI to theMarkUpAnsL2 of theMarkUpVar.

on setFeedBackField fName

setFeedBackField "myFeedBackField"

Specify ;Name as the short or full name of the card or background field where any feedback (other than the
standard graphical markup) should appear. Any special feedback messages for OK or :WRONG answers or
matched patterns will appear in this field. The function call resolveFName(fName) is used to determine
which field, if any, fName refers to.

Once you have set the feedback field, it will stay unchanged until you reset it with another call to
setFeedBackField.

53

48

on setOkNoFName (Name

setOkNoFName name of card field "myMessages"
setOkNoFName "russianMessages"
setOkNoFName empty

fName specifies the name of a field which holds user- defined messages to replace the standard messages
"OK" and "NO". Within field (Name, the replacement for the "OK" message must be in line 1 of the
field, and the replacement for the "NO" message must be in line 2. It you replace either message. you must
replace them both. If you want to suppress one of the messages for some reason, leave its line blank. To
return to the default messages, execute setOkNoFName empty.

The text of the messages may be formatted, and the formatting will be preserved when the messages are
displayed.

sar II I O Oh I' 0 I 0 t II 41.0

Field !Name must be on the same card as the response and feedback fields. Normally, of course, it will be
hidden. The function call resolveFName(fName) is used to determine which field, if any, fName refers
to.

This handler is provided primarily so that the default English messages can be replaced with target-language
equivalents such as "Oui" and "Non" or "1:1a" and "Her".

car ERRATA EXAMPLES # 6 (Cyrillic Font) shows how to do this.

[on setOkNoLoc locjjoecs

(In ERRATA EXTRAS)

setOkNoLoc
setOkNoLoc
setOkNoLoc

"mf"
nf.

empty

Determines where judgeResponse will display the current "OK" or "NO" messages. Default is to display
the mesgage both in the feedback field and (if there is no markup) in the markup field.

locSpecs must be " mf" or "fm" or "m" or "f" or empty. If "m" is present in locSpecs, it indicates
that evaluation is to be shown in the markup field. If is present, then evaluation will be shown in the
feedback field. If both are present, then it will be shown in both places. If locSpecs is empty, then
judgeResponse will not show the OK/NO messages.

This handler actually sets the value of suppressOkNo, which indicates where markup should ma be
shown.

stIr ERRATA EXAMPLES # 10 (Sentence Transitions) uses this handler to shut off display
of evaluation in the markup field.

49

fon defaultKeyHandling tf

defaultKeyHandling True
defaultKeyHandling False

If tf is True, the default key handler is enabled; if tf is False, it is disabled.

This handler is useful if you have written your own keyDown key handler. After your keyDown handler
has handled the special keys such as RETURN, ENTER, etc., you will want to pass the remaining keys
on up to the system so that, e.g., editing keys will have the usual effect and alphabetic keys will be inserted
into the current response field in the expected way. You will probably not want the keys that you pass to
be processed by the default keyDown handler in ERRATA so you should shut it off by calling
defaultKeyHandling False. (The default key handler will still receive the keys, but it will pass them
straight through without processing them.)

This handler sets the global variable userKeyHandling to False or True.

war ERRATA EXAMPLES # 12 (Multiple Choice) does its own key h- 'telling so that
judging will be done after a single keystroke.

Ion setPreserveFormating tf

setPreserveFormating True
setPreserveFormating False

tf specifies whether the response analysis system will try to preserve text formatting when displaying
feedback and help text. If ti is True, formatting will be preserved; if tf is False, formatting will be
stripped from the display.

This handler sets the global variable preserveFormating to True or False, which in turn affects the
operation of the handlers getFeedBackO, getHelp(), and feedBack.

This switch is useful because the Hyper Talk put command will not preserve formatting when it copies text
from one location to another, and because variables will not store formatted text. In order to retain text
formatting (incInding font. size. and style)., text must be copied from the source field onto the clipboard and
then pasted from the clipboard into the destination field. The response analysis system provides two
handlers, copyText and quickCopy which perform this service.

When preserveFormating is True (the default value), text display is handled by quickCopy; otherwise
it is handled by put. However, display is noticeably slower when quickCopy is used, so
preserveFormating should be set to False if the feedback and help text lacks any formatting features.

unction okWord

feedBack okWord()
showText okWord(), the name of card field "myOwnField"
put '',Word() into fdbk

Returns the current evaluation message for a correct response. The default value is simply "OK", but if a
field with user-specified messages has been set using setOkNoFName, then line 1 from that field will be
returned as an embedded reference of form 1,1,card field "my0kNoField"). This result must be displayed
using feedBack or setText.

53

50

noWord

feedBack noWord()
showText noWord(), the name of card field "myOwnField"
put noWord() into fdbk

Returns the current evaluation message for a wrong response. The default value is simply "NO", but if a
field with user-specified messages has been set using setOkNoFName, then line 2 from that field will be
returned as an embedded reference of form (2,2,card field "my0kNoField"). This result must be displayed
using feedBack or setText.

on chan.eMarkUS mbol oldS mbol news mbol

changeMarkUpSymbol "X", "?"
changeMarkupSymbol "es", space
changeMarkupSymbol "A", space

Change the default graphical markup symbol oldSymbol to be the symbol newSymbol instead. Both
oldSymbol and newSymbol must be a single character. The default symbols for various types of errors
are:

Should be upper case
Should be lower case
Missing or incorrect accent mark

x Extra letter
Missing letter(s)
Incorrect letter
Transliterated letter, move right
Transliterated letter, move left

Run-together words; separate them

x Extra or unidentifiable word
A Missing word(s) at this location
44 Word out of order: move leftward to one of the "A" locations

This handler is useful for changing the way that errors are represented graphically, if you have a special font
or believe that other symbols will be better indicators of certain types of errors. You can also suppress the
appearance of certain errors markups (e.g., word order or spelling markups) by substituting a spare for the
default symbol.

on restoriDefaultMarkUpSymbols

restoreDefaultMarkUpSymbols

Restores all the markup symbols to their original (default) values. This is a convenient way to get back to
normal if you have been making a lot of changes in the markup symbols.

on setJudgingParams p1, vl, p2, v2, ... p-i, v-1

setJudgingParams "capFlag", "Authors_caps"

setJudgingParams "extraWordsOk", True, "anyOrderOk", True

Gives new values to some of the standard judging parameters used by the markup XFCN.

Each p-i is a string which names a judging parameter. The v-i which follows each p-i specifies the value
which that judging parameter should take, such as true. The value must, of course, be meaningful for the
parameter in question. The following table shows each of the p-i at the left, and the allowable v-i values
for that parameter, and their effects, at the right.

"capFlag"

"extraWordsOk"

"anyOrderOk"

"misspellOk"

"wordMarkUpNeeded"

"runtogetherNeeded"

"adjustNeeded"

"shortCut"

"markUpMapsNeeded"

If "Exact_case" (the default) then the capitalization in the response
.must exactly match that in the model or else cap errors will be marked
and judgment will be NO. If "Authors_caps", the response must
have a capital whenever the model does, but additional capitals in the
response are permitted. If "Ignore_case" then case is ignored when
matching model and response.

If True, judge OK even if extra words are present in the response. If
False (the default) judge NO if extra words are present.

If True, order of words in the response does not have to match the order
of words in the model in order to get an OK judgment. If False (the
default), judge NO if words are not in the specified order.

If True, judge OK even if some words are misspelled. If False (the
default), judge NO if there is any spelling error.

If True (the default), an error markup string will be generated and
returned. If False, no string (i.e., a null string) will be returned, only
a judgment of OK or NO. If you simply wish an evaluation and don't
want to display the graphic markup as error feedback, you can speed
things up slightly by setting this parameter to False. In that case,
your script can use the other information returned by MARKUP to
determine what feedback to give the student

If True (the default), MARKUP will find and mark run-together words.
If False, run-togethers will not be identified as such, but will be
marked as misspelled or unidentified words. Turning off this feature
when MARKUP is running slowly will speed things up, but at the cost
of degrading the quality of the markup.

If True (the default), MARKUP will try to "improve" the graphical
error markup to make it more intuitive. If False, this improvement is
not done. Do not turn off improvement unless speed is a serious
problem, because it significantly degrades the quality of the MARKUP

If True (the default), MARKUP will do a "fast" spelling analysis that
will not generate a spelling markup between badly misspelled pairs. If
False, force a complete spelling analysis for every word. Use False if
you need a markup for very badly misspelled words (e.g., when using
MARKUP in a spelling lesson). Turning off shortCut may slow the
program down significantly when model and/or response are long.

If True, MARKUP will generate and return in the HyperCard global
variable theMarkUpMaps two "maps" showing which model words

51

are paired with which response words. If False (the default), this map
will not be returned, and the value of theMarkUpMaps remains
unchanged.

" parameterDisplayNeeded" One of the characters "v", "b", "d", "c", "h", "p", "w", "f", "s",
or "m" or else nothing at ali (the default). If one if these characters is
present, then information of the requested type will be returned in the
HyperCard global variable theMarkUpParamDisplay. Otherwise
the value of theMarkUpParamDisplay remains unchanged. The
character that you use as an input parameter determines the kind of
information that will be returned:

"b"

"d"

"Cl'

ht,

p
"ve,

"r,

"s"

"m

VERSION of the MARKUP XFCN which is running

Table of BASE CHARACTER specifications

Table of DIACRITIC specifications

Table of CASE specifications

Table of PHONETIC CATEGORY specifications

Table of PUNCTUATION CHARACt ER specifications

Values of the JUDGING WEIGHTS AND THRESHOLDS

Values of the JUDGING FLAGS

Values of the MARKUP SYMBOLS

Values in the PHON_MATRIX

This parameter allows you to copy a judging table into a HyperCard
container, where it can be inspected using the SHOW VARIABLES
option of the HyperCard debugger. The format in which this
information is returned is discussed below.

"spellingOnlyNeeded" If no value or "x" (the default), then the standard spelling and word
order analysis is done. If the value is "r" or "p", a special, spelling-
only analysis will be done: the model and response strings will be
immediately submitted verbatim to the spelling analyzer and an edit
trace will be generated by comparing every character in the two strings,
including punctuation, spaces, and return characters. None of the
special syntax used to define synonym and ignorable word lists in the
model will be recognized. Since there are no word boundaries, no order
analysis will be done. The value of spellingOnlyNeeded determines
the nature of the return:

"p" Return a "pretty" markup string, suitable for display beneath
the response string.

x
Return the raw markup string, without prettying it up.

Do not do the special spelling-only analysis; do the normal
spelling and word order analysis.

52

53

"debugNeeded"

Since the model and response strings are treated as if they were words
when spellingOnlyNeeded is "r" or "p" neither string can exceed the
maxittaan word length of 20 characters.

The information returned in the HyperCard global variable
theMarkUpReturnValues are different for the special analysis, and
consists of a raw edit distance and a normalized edit distance.

Returning a raw trace forces a least-cost edit trace string (markup string)
to be computed no matter hOW dissimilar the model and response are, so
this option is useful for spelling lessons or other cases where an exact
spelling markup is needed even when a response is badly misspelled.
The "pretty" markup will display properly, but only the "r" option has
complete information about the nature of errors present, so it is
appropriate if you want to do computations on the markup string.

Setting this parameter to True cause technical information about the
internal workings of MARKUP to be returned in the HyperCard global
theMarkUpDebug. Included are the edit distance matrix, values of
ignorable words in the model and response, and candidate match sets for
each response word. This information is intended only for debugging
and development purposes. If False (the default), no information is
returned.

Since HyperCard allows a handler to accept 16 input parameters, you may specify up to 8 p-i/v-i pairs in
each call to setJudgingParams. If you need to set more than 8 parameters, you can use several calls to
setJudgingParams. Once you have changed the value of a parameter, it will keep that valueuntil you
change it again, or as long as HyperCard continues to run.

ige The parameter values you specify with setJudgingParams are used only if you do the
markup by calling the markUpUsingParams() function. If you call the MARKUP
XFCN directly, these settings are ignored and you must pass values directly to the
"XFCN. Hence, you should normally activate the markup through
markUpUsingParams().

ERRATA EXAMPLES # 10 (Sentence Transitions), #16 (Vocabulary Help), # 17
(Judging Lists) and # 18 (Spelling,/Dictation) modify judging parameters.

on restoreDefaultJudgingParams

restoreDefaultJudgingParams

Returns all the judging parameters to their default values.

This is a convenient way to get back to the normal (original) configuration of judging parameters if you
have been changing the a lot.

on restoreMarkUpDefaults

restoreMarkUpDefaults

54

Returns both markup symbols and judging parameters to normal (original, default) state. Calling this
handler is equivalent to calling restoreDefaultMarkUpSymbols, restoreDefaultJudgingParams,
and restorePunctuation, but is more convenient

Use this if you have made a lot of changes in the symbols and parameters and then want to return
everything to the default state.

on keyDown ch

Default key handler. If the key ch is pressed in the samentlesponsglighL then it is given to handleKey
to examine. Otherwise, the key is simply passed on up the message hierarchy.

You program should never need to call this handler except perhaps through a pass statement It is called
automatically whenever the user presses a key.

war If you install your own keyDown handler at the field, background, card, stack, or Home
stack level, you should use pass to pass keyDown messages on up the judging
hierarchy so that, e. g., text editing keys will be operational in the response field.

If you do pass keyDown, you will probably want to disable this handler by executing
defaultKeyHandling False. Otherwise, this default handler may process judging keys like RETURN a
second time.

on handleKey ch

Used internally by keyDown handler.

This handler processes every key typed into the current response field. It causes a response analysis to be
computed and feedback and markup to be displayed when the student presses RETURN. It also causes the
graphical markup to disappear when the student begins to type in revisions. Keys other than RETURN are
passes on up the message hierachy so that editing operations such as character insertion and deletion will
function properly in the response field.

function marku Usin Params model, res onse

get markupUsingParams("This is an answer", field "response")

put markupUsingParams(ans, card field "resp") into markUpString

This function executes the markup XFCN using model as the correct answer and response as the
response string. It is used internally by judgeAnswer and judgeResponse.

When this function calls the markup XFCN, it passes all of the judging parameter values which you have
established using setJudgingParams.

Its returns are identical to those of the markup XFCN. The direct return is a graphical markup string. It
also returns the evaluation of the response (OK or NO) as the first item of the HyperCard global variable
theMarkUpReturnValues, and may also cause other requested information such as response maps to be
put into other global variables. Sec Hart (1994). No display is generated.

55

function getJudginglnfo

(In ERRATA EXTRAS)

get getJudgingInfo()

This function returns a report which displays the values of all of the markup XFCN's internal parameters
and judging tables. This gives you a complete picture of the information used by the markup XFCN to do
its judging. the markup)GCN is called via markUpUsingParams(), so the judging parameters you
have specified through HypexTalk globals will be in effect.

For a detailed description of the kind of information returned and its exact format, see Hart (1994).

It i gli:11 1 1 1-.1I D.' 1 `11 %I in Courier font,

This function is useful mainly for development and debugging purposes, but is also helpful if you are
uncertain about which judging parameters are currently in use.

function findBestAns model res onse

get findBestAns("This is an answer", field "response")

put item 1 of findBestAns(ans, reap) into bestFit

Used internally by judgeAnswer and judgeResponse.

Sets the global variable theJudgment.

Direct return is information on the best-fitting answer, formatted as a list of thd items:
BESTFIT,BESTLINE,BESTMU. These values are identical to those returned by judgeResponse; see
judgeResponse for details.

'function getFeedback lineNo

feedBack getFeedBack(12)

get getledBack(23)

Returns the feedback which belongs to a particular :ANSWER, :WRONG, :MATCH, :NUMBER, :DO, or
:HELP specification in the current analysis text. No display is generated.

lineNo is the line number of a specification, relative to the current analysis text jabffgiahalyariable
theMarkUnAnR. All the text between that specification and the next one (or the end of the analysis text)
is located.

If preserveFormat is set to True, then the actual text is returned. Otherwise, a line-range reference of
form (startLine,endLine) is returned. startLine and endLine are relative to the variable or field which
contains the c'grent analysis text (i.e., theMarkUpAnsVar). Returning line numbers enables text
formatting to be preserved provided that the feedback text is later displayed by the feedBack or showText
handler.

56

function etHel t e

feedBack getHelp("grammar")
get getHelp()

Returns the text which belongs to a particular :HELP specifier in the current analysis text. No display is
generated.

type is the label for a particular kind of help, or else empty.

The current response analysis text in the global theMarkUpAns is searched to determine whether a help
specification with label type is present. If so, the text which belongs to it is identified. If type is empty,
then all help directives are found, regardless of label, and their texts identified.

If preserveFormat is not set to False, then the actual text(s) are concatenated, each beginning on a new
line, and returned. If it is set to True, the return is a series of one or more line-range reference of form

(startLine 1 ,endLinel)
(startLine2,endLine2)
(startLine3,endLine3)

where startLine and endLine are relative to the variable or field within which current analysis text is located
(theMarkUpVar, or the field named by theMarkUpAnsFName) which may be larger than the current
analysis text in theMarkUpAns). Returning line numbers enables text formatting to be preserved when
provided that the feedback text is later displayed by the feedBack handler. If no help specification(s) of the
appropriate type(s) are present, then the rearm is empty.

on hiliteMatch _pattern

hiliteMatch "(_ne_*_pas_)"
hiliteMatch "(plan)"

pattern is any pattern descriptor.

This handler calls the match XFCN to attempt a match of pattern to the contents of the current response
field. If it succeeds, 11 1 °If I

operations), then the Matched material is boldfaced within the current response field. If the pattern is not
simple, no display will be generated.

HI II" a II OD

Return is identical to that of the match XFCN: the first character of the return is T if the match succeeded,
otherwise F. If the pattern is simple (i.e., one without any AND, OR, or NOT operations), then the
remaining characters of the return show which response characters are matched by the pattern: "x" indicates
a matched character, a space indicates an unmatched character. If the pattern is not simple. then spaces will
=Iry in all character positions. Since hiliteMatch is a handler, the return must be accessed by the
result.

This function is provided so that matched portions of a response can be selectively hilited as part of the
feedback given to the student. In this way, attention can be focused on particular parts of the response.

_J

57

'function judgeNumber range, response

judgeNumber "(1-10)", card field "input"
judgeNumber "(1-*)", field "response"
judgeNumber " -(5) ", responseVar

Checks to see if a response is within a given numerical range. No display is generated.

The numerical value or range is stipulated by range, which must `e a string containing a valid number
specifier, as shown above, where "*" symbolizes infinity (or minus i 'inky) and "," symbolizes NOT.

Response is the student's response string (which need not be a number). All commas are removed from
lespansebgfcralziging.

If response falls within range, then judgeNumber returns True; if response is not a number or falls
outside of range, the return is False.

on judgeResponse

judgeResponse

This is the default judging handler, used to do response judging unless (1) there is a handler of this name
lower in the message hierarchy, e.g., in your stack's field, card, or stack script, or (2) a call to
useJudgingHandler has specified that a handler with a different name should be used to do the judging.
judgeResponse is the most general and powerful response analyzing facility provided by ERRATA. It
allows the lesson author to apply a sequence of :ANSWER, :WRONG, :MATCH, :NUMBER and :DO
specifications to the analysis of a response.

The effect of judgeResponse is to apply the current analysis text (stipulated by setCorrectAnswer)
containing various :ANSWER/:WRONG/:MATCH/:NUMBER/:DO specifications to the current response.
Any number of specifications of each type (including 0) may be present, and they may be occur in any
sequence. The specifications are used to determine a judgment of True or False (OK or NO) to display a
markup (if one of the :ANSWER or :WRONG specifications was satisfied), and to display feedback text
associated with satisfied specifications.

The response analysis text must have been previously set by calling the handler setCorrectAnswer or
activateField. The response is taken from the current response field (established by the most recent
execution of setMarkUp or activateField).

judgeResponse processes the specifications in order, but treats :ANSWER and :WRONG specifications
differently from :MATCH,:NUMBER and :DO specifications. ANSWER and :WRONG specifications are
examined to see which one best fits the current response. :MATCH, :NUMBER and :DO specifications are
processed do not enter into this determination of a best fitting answer.

If there is a perfect match to an :ANSWER specification or any (perfect or imperfect) match to a:WRONG
specification, the associated feedback message will be put into the current feedback card field, as specified by
the most recent call to setFeedBackField. If no feedback field name has been specified, then the feedback
will not be displayed. Note that feedback from a matched :ANSWER command is shown only if the
judgment is OK (the match was perfect, as determined by current values of capFlag, misspellOk
extraWordsOk, and aayOrderOk).

:MATCH, :NUMBER and :DO specifications are also examined in sequence. Patterns are compared the
response string and whenever there is a match, the corresponding feedback is saved for possible later display
in the current feedback field established by setFeedBackField. If in feedback field name has been
specified, the feedback will not be displayed.

58

If the polarity tag of a matched specifier is "okStop" or "noS top", then all further processing of specifiers
ceases immediately. Otherwise, it continues until the last specification is examined. A final judgement
value theJudgment is then determined in two steps:

1. If : ANSWER /:WRONG specifications have established an True or False value, then that is
used

2. If no :ANSWER/:WRONG specifications were satisfied, then the results from the
:MATCH/:NUMBER/:DO specifications are examined. If all such specifications which were
matched has polarity "ok" or "okStop ", the final judgment is True; otherwise the final
judgment is False. (This default computation can be overriden by installing a user version of
matchIsOk.)

Feedback from :MATCH, :NUMBER, and :DO specifications is computed separately The variable
okFeedBack contains feedback from all such matched specifications which had "ok" or "okStop" polarity.
The global variable noFeedBack contains feedback from all such matched specifications which had "no" or
"noStop" polarity. If the final judgment theJudgment is True, then thePatternFeedBack contains
okFeedBack; if the judgment was False then it contains noFeedBack. Finally, theFeedBack
contains a concatenation of the best answer feedback and thePatternFeedBack

Besides displaying feedback, judgeResponse returns the results of the analysis in three global variables:

theJudgment: True if response was OK, otherwise False.

theMarkup: Graphic markup which goes with the best-fitting answer (identical to BESTMU
below).

theFeedBack: Feedback generated by the analysis, except for the graphical markup.

In addition judgeResponse computes more technical information on the best answer, formatted as a list
of three comma-separated items: BESTEtT,BESTLINE,BESTMU. This information is set by the return
command; however, since judgeResponse is a handler rather than a function, it must be accessed through
the result:

BESTFIT is a Lumber between 0 and 1 indicating how well the best fitting answer actually fit the
response, with 0 indicating no fit at all and 1 indicating perfect fit. If none of the
specifications fit, it will have the same value as theBestFitThreshold.

BESTLINE is the number of the line which contains the best-fitting :ANSWER or :WRONG
specification, within the variable or the entire field which contains the answer text., i. e.,
within theMarkUpAnsVar or the field named by theMarkUpAnsFName. If none of
the :ANSWER or :WRONG specifications fit, BESTLINE will be empty.

BESTMU is the markup that goes with the best fit :ANSWER or :WRONG specification
(identical to theMarkup above). If none of the specifications fit, it will be empty.

Answer fit is computed as a function of spelling and word-order errors as follows:

ANSFIT := (3*PMATCHED*(1 - AVEDIST) + PNONINV) /4

where PMATCHED is the proportion of words matched, PNONINV is the proportion of non-inversions in
word order, and AVEDIST is the average distance between matched model and response words. (For more
detail on the rationale for this formula and significance of these numbers, consult Hart, 1989 and 1994) A
value of ANSFIT which exceeds theBestFitThreshold is considered to be a fit; anything less than this
is a non-fit. (The global variable theBestFitThreshold has a default value of .70, which may, however,
be changed by the user.) BESTFIT is the maximum ANSFIT taken over all the :ANSWER and :WRONG

59

specifications. '1, his default computation is done by computeAnsFit can be preempted by installing your
own computeAnsFit handler.

ear ERRATA EXAMPLES # 10 (Sentence Transitions) uses the value of BESTLINE to
compile and display a list of words missing in the response.

function responseAnalysis model, response

get responseAnalysis("This is an answer", field "response")

put item 1 of responseAnalysis(ans, resp) into bestFit

Judges the response in response against an analysis text in model. Identifies the :ANSWER/:WRONG
specification which best fits the response. Processes all :MATCH/:NUMBER/:DO specifications and
determines appropriate feedback. This best fitting answer is used to arrive at an OK or NO judgment, and
also to determine (but not display) appropriate graphic markup. All feedback is merged into a single text
but is am displayed. No display is generated.

Results of the analysis are returned in three global variables:

theMarkup, the graphic markup which goes with the best fitting answer.

tbeJudgment: True, if the response was suitable; False if it was unsuitable.

theFeedBack: All feedback generated by the analysis, except for the markup.

The direct return of responseAnalysis() is technical information on the best-fit answer, formatted as a
list of three comma-separated items: BESTI.11,BESTLINE,BESTMU. These values are identical to those
returned by judgeResponse; see judgeResponse for details.

This function is used internally by the judgeResponse handler. It will also be useful if you want to do
the same kind of judging that judgeResponse does but want the the timing or format of feedback to be
different. In that case, you can call responseAnalysis, then use the information in theMarkUp,
theFeedBack and theJudgment to do your own display work.

tar ERRATA EXAMPLES # 10 (Sentence Transitions) uses responseAnalysis()
directly.

on feedBack fdbk, append

feedBack "No, try again" i return

put "Subordinate clause requires subjunctive mood." G return
into var

feedBack var, "append"

feedBack theFeedBack

Displays the contents of fdbk in the current feedback card field as specified by setFeedBackField. If
there is no current feedback field specified, then nothing is displayed.

If append is omitted or empty then fdbk replaces the previous field contents; otherwise fdbk is appended
at the end of the field.

65

60

feedBack examines the contents of fdbk to see if line range references of form (startLine,endLine) are
present (such references are generated by the getHelpO and getFeedBack() functions). If so, feedBack
removes each reference and
contains the current analysis text. i.e.. of theMarkUnAnsVar or the field _named by
Iftealadithazsalautt. If preserveFormating is currently set to True, then this display is done in
such a way that the text format properties of the specified lines are preserved.

Hence, contents of the global variable theFeedback (or any other text which might contain such line
references) should always be displayed with

feedBack theFeedBack

I 1 I' III 11I I I I' . I

so that text formatting can be preserved when this has been requested.

If feedBack encounters a reference of form (startLine,endLine,card field "fieldName"), it gets the lines from
the field referred to by the third item rather than from the current response field. The field referred to must
be on the current card. This allows you to display formatted text from a variety of locations in the feedback
field.

on showText txt, fieldName, append

showText "Some text with 00,35) embedded lines", "myField"

put "Here is some help: (17,45)" into helpTxt
put the name of bkgnd field "helpDisplay" into helpField
showText helpTxt, helpField, "append"

Displays the contents of txt in the field named by fieldName. The txt may contain embedded line ranges
of the sort generated by getHelp() and getFeedBack(). showText will dereference these line range
pointers when it does its display work.

If append is omitted or empty then txt replaces the previous field contents; otherwise txt is appended at
the end of field fieldName.

showText examines the contents of txt to see if line range references of form (startLine,endLine) are
present (such references are generated by the getHelp() and getFeedBack() functions). If so,
showText removes each reference and in its place displays lines startLine thru endLine of the variable or
field which contains the current analysis text. i.e.. of theMarkUjansVar or the field named b
IheMarkUpAnsFName.

If showText encounters a reference of form (startLine,endLine,card field "fieldName"), it gets the lines
from the field referred to by the third item rather than from the current answer field. The field referred to
must be on the current card. This allows you to display styled text from a variety of locations in field
fieldName.

If preserveFormating is currently set to True, then showText does its display in such a way that the
text format properties of the specified lines are preserved.

When showText dereferences a range of lines in curly brackets, it examines that text line by line. Any
line enclosed begun by a word consisting solely of the double-right-arrow ">>" is assumed to contain an
executable HyperCard command. showText will send the contents of such a line to the current card and
remove the line from the feedback text. As soon as showText encounters a line which does not begin
with "»", it stops searching and assumes that the rest of the feedback text is meant for display; hence,
commands should always come at the beginning of a block of referenced lines.

I

61

Since answer contingent feedback is fetched by getFeedBackO in the form of a line range reference, and is
eventually displayed by showText, this feature provides the user with a capability to execute code
conditionally on which analysis specifications are matched. However, note these limitations:

1. Commands are sent one line at a time, so these can be only one command on a line.
2. I Ir if pi .1 I I 1 .0 CLUIWISaa,

which defines no variables of its own. Hence, any commands you execute must have constant
parameters.

3. Commands are executed only when txt is displayed. If you defer or block the display of
feedback, then any answer - contingent commands will not be done, whether or not they are
display commands

Consequently, this capability will be useful mainly to call simple display commands (such as play,
movie or picture for multi-media feedback), or your own answer-contingent handlers which might, for
instance, keep track of what kinds of errors student made.

mar ERRATA EXAMPLES # 8 (Complex Drill Design) uses this handler.

'function dereferenceText txt

dereferenceText("Here is some help: {12,28,card field "help "})

put "Information: (21,33)(52,59)(67,102) into var
get dereferenceText(var)

Computes the contents of txt, which may contain embedded line ranges of the sort generated by
getllelp() and getFeedBack(). dereferenceText expands txt by dereferencing all of these embedded
line range pointers. The result, which will of course lack any text formatting, is returned directly. No
display is generated.

ERRATA EXAMPLES # 10 (Sentence Transitions) uses this handler. This function is
provided so that your handlers can examine and possibly interpret HyperCard code within
answer-contingent feedback text.

function labelLines F, label, d

(In ERRATA EXTRAS)

get labelLines("helpText", "invertedWordOrder")

put labelLines(name of card field "grammarRef", "verbs") into v

Return pointers to a block of styled text in field named F. If F is not a full field name, it is expanded by
resolveFNameO. The block retrieved is the first block delimited by a line beginning with label, which
should begin with delimiter character d, and is delimited at the end by the next line beginning with character
d. If label does not begin with d, then d is prepended to label. The default for d is #.

The return is in the form of line range in curley brackets, (startLine,endLine) which can be displayed by
displayLabel.

6 7

62

on displayLabel label, S, D, d

(In ERRATA EXTRAS)

displayLabel ":Subjunctive", "grammarHelpField", "feedBack", "$"

displayLabel "3rd Conj", name of card field "grammar", --I

name of field "helpDisplay"

Append a block of styled text from source field named S at the end of destination field named D. The two
fields must be on the current card. If S and D are not full field names, they are expanded by
resolveFName(). The block is the first block delimited by a line beginning with label, which should
begin with delimiter character d, and is delimited at the end by the next line beginning with character d. If
label does not begin with d, then d is prepended to label. The default for d is #.

ERRATA EXAMPLES # 8 tComplex Drill Design) uses the displayLabel() in a
handler which will display a list of named grammar help topics from a field of help text.

put resolveFName("myField") into fullFieldName

put the name of field "myBgField" into bfName
get resolveFName(bfName)

Finds the true, full field name of fName, which should name a field on the current card. "Full field name"
means the name in the form it is returned by HyperTalk's the name function, i.e., card field "xxx" or bgnd
field "xxx". If fName is already a full field name or is empty, then fName is returned unmodified. If
fName is a short name, then the resolveFName(loc:cs first for a card field, and, if there is none, for a
background field of that name and returns the expanded name. If the current card contains no field named
Mame, then an error dialog is given. No display is generated.

function subst count txt oldl newl old2 new/ old6, new6

get subst("Hello, world!",1 , "Hello", "Goodbye")

- -> "Goodbye world!"

get subst("Il a des chats noirs.:,l , "noir", "A", "chat", "N")

"Il a des Ns As."

get subst("the boy and the girl:,l , "the", "DET")
- -> "DET boy and the girl."

get subst("the boy saw a girl.",-1 , "a ", empty, "the ", empty)

=..> "boy saw girl.

get subst("Have a happy, happy, happy day!", 2, "happy", "nice")
"Have a nice, nice, happy day!"

The "=-->" indicates the value which will be in it after each call.

Returns the result of replacing the first (i.e., leftmost) count occurrences in txt of oldl by newl, then
the first count occurrences of old2 by newt, etc. The inputs txt and at least the pair oldl, newl
mu be specified. Up to six pairs of substitutions can be specified.

BEST COPY AVAILAP1 E

1 If count is not specified or is negative, then instances of old-i will be replaced. If any of the old-i are
empty, then no substitutions will be done. The search for each new instance of old-i starts right after the
most recent replacement, so replacement cannot be become non-terminating.

This function is provided mainly so that literal strings can be converted to more abstract patterns, as
illustrated in the examples above. It calls stringUtilities("mSubst", tit, count, oldl, newl
old6, new6) to do its work.

ERRATA EXAMPLES # 10 (Sentence Transitions) and # 19, 20, and 21 (parsing
designs) utilize subst() and substResp.

on substResp count, oldi, newl, old2, new2, old6, new6

substResp 1 , "Hello", "Goodbye"
substResp , "the", empty

A convenience handler which replaces the first (i.e., leftmost) count occurrences in of oldl in
theResponse by newl, then the first count occurrences of old2 by new2, etc. txt and at least the
pair oldl, newl must be specified. Up to six pairs of substitutions can be specified.

If count is not specified or negative, then all occurrences of the string old-i are replaced by new-i.

theResponse is modified by this handler. It calls subst() to do its work. There is no display generated
and no return.

Ion upCaseResp stripDiacrits

upCaseResp
upCaseResp True

A convenience handler which converts all the lower-case characters in theResponse to upper case
equivalents. If stripDiacrits is True, it also removes any diacritic marks from the characters.

theResponse is modified by this handler. It calls stringUtilities("strUpper", theResponse,
stripDiacrits) to do its work. There is no display generated and no return.

on computeAnsFit muReturn J
Used internally by judgeResponse.

muReturn contains the information returned by the MARKUP XFCN in theMarkUpReturn Values,
consisting of the judgment; PMATCHED, the proportion of matched words; AVEDIST, the average
normalized edit distance between pairs of matched model and response words; and PNONINV, the proportion
of non-inverted word sequences in the response.

computeAnsFit computes and returns a value between 0 and 1, inclusive, which reflects how well the
model string and the response string fit one another overall. The formula used by compute ANSFTT to get
this value is:

69

63

64

ANSFIT (3*PMATCHED*(1 - AVEDIST) + PNONINV) / 4

Roughly speaking, this means that vocabulary being present and recognizable is given three times the
weight of correct word order in determining how well the response fits a model. This guarantees that a long
sentence which has all the required words present will not be rejected as a fit just because they are out of
order.

computeAnsFit returns its value with a return command. judgeResponse calls computeAnsFit
each time :ANSWER or :WRONG calls the MARKUP XFCN; since computeAnsFit is a handler, not a
function, judgeResponse reads the return value using the result.

The metric given above works reasonably well in general, but you may need to modify it for some special-
purpose analyses. For instance, if your feedback concerns word order, then you will not want an
:ANSWER or :WRONG specification to be satisfied unless all of the words required are actually present. In
this case, you may want to modify the computation of ANSFIT like this:

ANSFIT := 0,
(3*(1 - AVEDIST) + PNONINV) / 4, OTHERWISE

IF PMATCHED < 1

This excludes a fit unless all the words required are present, and guarantees that anything you say about
word order will refer to words which are actually present in the student's response. (Of course, you would
not want to do this if the feedback concerns missing words.)

ERRATA EXAMPLES # 8 (Complex Drill Design) replaces the default
computeAnsFit handler with one like this.

111
In order to activate computeAnsFit, judgeResponse executes

send "computeAnsFit theMarkUpReturnValues" to this card I
Hence if you put your own handler named computeAnswerFit in the card, background, or stack script of
your stack, it will preempt the default version in the ERRATA stack. Remember that your handler must
return a number between 0 and 1, inclusive.

ion matchinglisOk

Used internally by judgeResponse.

Uses the number of satisfied and unsatisfied :MATCHes to compute an evaluation of the response as OK or
NO relative to :MATCH-type specifiers. The default form is

(okCount > 0) AND (noCount - 0)

where okCount is the number of satisfied :MATCH statements having an "ok" or "okStop" polarity and
noCount is the number which have a "no" -1 "noStop" polarity. This means that each positive polarity
match is sufficient to identify a correct answer and that each negative polarity match is sufficient to identify
a wrong answer. This form of combination is appropriate for the usual kinds of error analysis.' It is an error in your analysis specifications if the same string can satisfy both a positive

and a negative polarity match.

This handler returns a value of True (response OK) or False (response wrong) in the result. This
handler is used by responseAnalysis (via judgeResponse), which calls it by sending he message
"matchinglsOk" to the current card.

65

You can substitute a different evaluation computation for the default one by installing your own
matchinglsOK handler in you card or stack script. This handler should have no input parameters, should
consult the global variables okCount and noCount and/or whatever other globals are appropriate, and
return True or False.

ERRATA EXAMPLES # 9 (Keyword-driven dialog) installs a revised version of
matchinglsOk more suitable for keyword matching..

on copyText chnkl, p1, p2, cb1, f1, cl, s1,
chnk2 1 2 cb2 f2 c2 s2

copyText "line", 15, 25, "cardfield", "myField", "myCard",
"myHD:myFolder:myStack ", "char", 230, 235, "bkgndfield",
"bField", "aCard", "aVol:aFolder:aStack"

copyText "item", 1, 10, "c", "fOne", "cOne", "sOne",
"item", 3 "b", "fTwo", "cTwo", "sTwo" --Insert before item 3.

copyText "line", 1, 10, "c", "fOne", "cOne", "sOne",
"char", 0 "b", "fTwo", "cTwo", "sTwo" --Insert at front.

copyText "item", 1, 10, "c", "fOne", "cOne", "sOne",
"char", 99999 "b", "fTwo", "cTwo", "sTwo" --Append at end.

General facility for copying text from one field to another while preserving all the text sty): 1g properties
(font, size, boldfacing, etc.). The fields can be absolutely anywhere, but the source and destination stacks
must be modifiable. copyText works by going to the source field, copying the specified range of chunks
into the clipboard, then going to the destination field and copying the clipboard into the specified range of
chunks. After this is done, it returns to the orignal card from which copyText was called. Because its
generality makes it slow, copyText may take several seconds to copy text. The current selection will be
lost.

chnkl: Type of chunks: "line", "item", "word" or "char".
p 1: Number of first chunk in source range. If empty, set to 1.
p2: Number of last chunk in source range. If empty, set to 99999.
cbl: Type of source field, either "card field" or "background field"

(actually, only the first character "c" or "b" need be specified).
fl: Short name of source field.
c 1 Short name of source card. If empty, use current card.
s 1 Name of source stack (including path information, if

source stack is not in the default path). If empty, use current stack.

chnk2: Type of destination chunks: "line", "item", "word" or "char ".
qi: Number of first destination chunk in range. If empty, set to 1.
q2: Number of last destination chunk in range. Set to ql -1 if emitted

or empty, to allow for insertion just before destination
chunk number q2.

cb2: Type of destination field, either "card field" or "background field"
(actually, only the first character "c" or "b" need be specified).

f2: Short name of destination field,
c 2 Short name of destination card If empty, use current card.
s 2 Name of destination stack (mcluding path information if destination

stack is not in the default path). If empty, use current stack.

To inseitigsthefortslunkia, leave q2 empty. To insert at the front of destination stack, specify chnk2
= "char" and qi = 0. To append at end of destination field, specify chnk2 = "char" and q1= 99999 or
some other sufficiently large value. To copy the whole source text, specify chnkl = "char", pl = 1, p2 =
99999, chnk2 = "char", ql =1, q2 = 99999.

While copyText is going from one location to another, lockMessages is set to True so that
openStack, openCard, closeStack, closeCard, messages will not be sent. All stack and field
properties are restored after copying is completed.

on quickCopy chnkl, p1, p2, 11, chnk2, ql, q2, f2,

quickCopy "line", 15, 25, the name of card field "fromField",
"char", 50 the name of bkgnd field "toField"

66

Facility for copying text from one field to another while preserving all the text format properties (font, size,
boldfacing, etc.). Bodijheaouroficidandsleslinalionfiekliaost he on the current card. The destination
field must not be a shared-text background field. Because of it limitations, quickCopy works faster than
copyText. quickCopy copies the specified range of source 'kid chunks into the clipboard, then copies
the clipboard into the specified range of destination field chunks.

chnkl: Type of chunks: "line", "item", "word" or "char "..
pl: Number of first chunk in source range. If empty, set to 1.
p 2: Number of last chunk in source range. If empty set to 99999.

11fl: Full name of source field, as given by HyperCard function the name.
Note that this includes specification of whether the field is a card
or bkgnd field.

chnk2: Type of destination chunks: "line", "item", "word" or "char". i
ql: Number of first destination chunk in range. If empty, set to 1.
q2: Number of last destination chunk in range. Set to ql -1 if omitted

or empty, to allow for insrolon just before destination
chunk number q2.

f2: Full name of destination field, as given by HyperCard function the name.
Note that this includes specification of whether the field is a card
cr bkgnd field.

To insert at front of the destination field, specify chnk2 = "char" and qi = 0. To appead at end of the
destination field, specify chnk2 = "char" and ql = 99999 or some other sufficiently large value. To copy
thewholesoureeleaLspecify chnkl = "char", pl = 1, p2 = 99999, chnk2 = "char ", ql = 1, q2 =
99999.

!function delimiterTable tableType, txt, delimiter

(XFCN)

get delimiterTable("charPointers". card field "myField", "1")

put delimiterTable("linePointers", myVar, "tf") into list

Compiles a comma-separated list of delimiter locations--information which is useful in setting up drill
materials for presentation.

1
tableType is the type of pointer required. if it is set to "charPointers ", then each entry in the list will
be the character position of one of the delimiter characters in txt. Following HyperCard delimiter

conventions, the txt is assumed to lack leading and trailing delimiters (i.e., the "delimiters" are actually
separators), but a "virtual" delimiter just before the text and just after the text are added to make it easier
when using the pointer list to retrieve the range of text (characters or lines) between two delimiters.

If tableType is "linePointers" , then the list will contain the line numbers of delimiter lines within
. A delimiter line is one which has delimiter as its first character. In keeping for HyperCard

conventions for delimiters, is assumed that the beginning and end of txt will lack delimiter lines, so
"virtual" delimiter lines are added at those positions. These virtual delimiters are reflected in the first and
last list entries, as with the character pointer table.

delimiter is any character which delimits blocks of texts, such as the items of a drill.

The Nth block of characters or lines (Le., text between the Nth and N+lst delimiter) is specified by

char (item N of list + 1) to (item N of list - 1) of txt

or

line (item N of list + 1) to. (item N of list - 1) of txt

If txt already has delimiters at the beginning and end, you should remove the first and last
entries of the returned list.

ERRATA EXAMPLES # 8 (Complex Drill Design) uses delimiterTable and several
handlers of its own to manage a multi-item drill with styled text.

function ma f Ke s str ke M inverse delimiter

(XFCN)

mapKeys("abcd", "al b2 d4") ==> 12c4
mapKeys("x123y", "Al B2 C3 D4", "inverse") ==> xABCy
mapKeys("abcd ", empty) --> abcd
mapKeys("c", "aX by cZ") ==> z
mapKeys("1234", "la 3b 2b 4d") ==> abbd
mapKeys("a b c", "aA/bB/cC/ *" "/") ==> A*B*C*

str is a string of 25.3. or less characters. keyMap is a string of form "aA bB cC.... nN", which means that
all instances of "a" in str should be replaced by "A", all instances of "b" should be replaced by "B", etc. If
a charcter is not in the set a, b, c, n, then it is not replaced within str. If inverse is " inverse" , then
the mapping goes in the opposite direction. If a char appears several times in a, b, c, n, then the leftmost
substitution will be done. One use of this function is to remap the keyboard by substituting and forwarding
keypresses within a keyDown handler. If the second parameter is &wig, a default map is used appropriate
for a keyboard for the Hebrew Tamar font.

Character pairs must be separated by one or more delimiter characters (the default delimiter is space.
The delimiter character cannot appear in any character pair. If you need to map the space character, you
may specify as the value of delimiter some other character that is used to separate character pairs in
keyMap. When delimiter is omitted, the space character is used.

'function stringytilities operation, p1, p2,

(XFCN)

I

67

stringUtilities() provides a number of operations useful for matching and formatting strings.
operation is the type of operation to be done. The number and meaning of the remaining input
parameters pl, p2,... depend on which operation is specified:

strIngUtIlltles("reverse", str)

stringUtilities("reverse", "Hello World!")

-> "!dlroW olleH"

Returns the reverse of str, which must be 255 or less characters long.

strIngUtIlltles("removeChars", str, charToRemove, removeExtraSpaces)

stringUtilities("removeChars", " Hello ,.. World!? ", ",.!?", True)
"Hello world"

Removes all instances of every character in the string charsToRemove from str, which must be 255 or
less characters long. If removeExtraSpaces is True, then any extra spaces, including leading and
trailing spaces, will be removed also. Return is an altered copy of str.

strIngUtIlItles("fIndStrIng", txt, pattern, N, offset, compType,
Ignore Case, IgnoreDiacrits)

stringUtilities("findString", "abcABCabc", "ab", 2, 0, True, False)
--> 7 -- Char position.

Searches rightward through the text in txt to find the Nth instance of pattern, beginning at the first char
past offset (numbering of chars starts at the left with 1). Return is the character position in txt where the
first character of pattern was found. If offset is not given, seach starts at character 1.

compType controls the way in which characters are compared: 0 = strict ASCII identity; 1 = strict
international (diacritics and secondary order taken into account); and 2 = weak international (diacritics and
"secondary ordering" ignored). Default is 0. For the ASCII identity method only, if ignereCase and/or
ignoreDiacritics are True, then case and/or diacritic marks will be ignored when matching characters.
For the other compType values, these parameters are ignored.

strIngUtIllties("findStringL ", txt, pattern, N, offset, compType,
Ignore Case, IgnoreDlacrits)

stringUtilities("findStringL", "abcABCabc", "ab", 2, 0, False, False)

- -> 4 -- Char position.

Searches leftward through the text in txt to find the Nth instance of pattern, beginning at the first char
past offset (numbering of chars starts at the left with 1). Return is the character position in txt where
the first character of pattern was found. Character position refers to standard numbering, beginning with 1
at left end of txt. If offset is not given, seach starts at rightmost character of txt.

compType controls the way in which characters are compared: 0 = strict ASCII identity; 1 = strict
international (diacritics and secondary order taken into account); and 2 = weak international (diacritics and
"secondary ordering" ignored). Default is 0. grASCII identity method only, if ignoreCase and/or
ignoreDiacritics are True, then case and/or diacritic marks will be ignored when matching characters.
For the other compType values, these parameters are ignored.

strIngUtIlltles("fontinfo ", fontName, fontSlze)

74

68

69

stringUtilities("fontInfo", "Courier", 12)

==> 10,2,0,11 -- Ascent, descent, leading, maxwidth.

Returns information about the font nam rd fontName, in size fontSize. Return is a list of 4 comma-
separated items: ASCENT,DESCENT,LEADING,MAJCWIDTH, which have the usual Macintosh Font
Manager definitions (see Inside Macintosh, IV, 27-45).

strIngUtIlltloa("strWldth", txt, fontName, fontSize, style)

stringUtilities("strWidth", "abc", "Courier", 12, "plain")

==> 21 -- Width in pixels.

stringUtilities("strWidth", "abc", "Courier", 12, "bold,underline,italic")
==> 24 -- Width in pixels.

Returns the width in pixels of the text in txt, when it is presented in font fontName, at pointsize
fontSize, in style style.

strInglitIlltles("fIndLineBreak", s, dIsplayWIdth, txtFont, txtSIze, txtStyie)

stringUtilities("findLineBreak", "aa bb cc dd", 20, "Courier", 12, "plain")

==> 21 -- Width in pixels.

Finds first linebreak in string s at the same place the Mac system fords it.

s A string of monostyle, monopscript text (255 chars or less).
displayWidth Width of display space, in pixels (usually the width of a display field).
txtFont Font in which the text will be displayed
txtSize Text size in which the text will be displayed
txtS ty le A string with comma-separated list of style values (plain, italic, bold, etc.) in

which the text will be displayed.

Break characters are the characters after which a line break is legal. "findLineBreak" uses the set which
appear to be default for the Macintosh system's linebreak algorithm for latin scripts: " -+/*&1\<>=#".
Note that space and hyphen are in this set.

Return is a comma-separated list of three positive integers: SI,LASTDISPLAYED,S2

S 1: Points to the first char of a run of 1 of more break characters that ends
the display line.

LASTDISPLAYED: Points to the last char which there is actually room to display on the
line (may be last character before the run of breaks, or one of the break
characters).

S2: Points to the first character past the run of breaks that ends the display
line.

When doing display, a run of break characters is always appended to the preceeding non-break characters;
hence break charactes can never begin any line but the first Here is an example text string with the possible
locations of SI and S2 marked:

AAAAAA BBBBBB-CCCCC DDDDDD
I I .11 I I I

7 12 18 19 24 28 34

sl s2 sl s2 sl s2 sl,s2

To find out how much of this text string will fit into a single line of a field 40 pixels wide when displayed
in plain 12-point Courier font, call

70

stringUtilities("findLineHreak", "AAAAAA BBBBBB-CCCCC DDDDDD",

40, "Courier", 10, "plain")
7,6,12

Hence, the first displayed line will be char 1 to 6 of the text. Chars 1 - 11 should be consumed, so the
remaining text to format will begin with character 12.

sae Used internally by the showMarkUp handler. This XFCN has somewhat the same
functionality as the STYLEDLINEBREAK function discussed in Inside Macintosh: Text,
5-24, which also explains break characters, etc.

GLOBAL VARIABLES

The range of possible values for each global is given just below its name in boldface. Some description
of the use of the value, the default value, and the ways in which the variable can normally change value
(including the handlers which set the variable) follow.

For globals which effect communication with the MARKUP XFCN, no attempt is made to give an
exhaustive description of the format or significance of the data they hold; the user should consult Hart
(1994) where full details are provided.

[adjustNeeded

True, False

MARKUP XFCN parameter. The quality of the word order markup is increased if this is set to True, but
MARKUP will take a bit longer. The default is True.

Set by setMarkUpJudgingParams.

lanyOrderOk

True, False

MARKUP XFCN parameter which determines whether word order errors will cause a response to be judged
wrong. The default is False.

Set by setMarkUpJudgingParams.

I capFlag

"Exact_case", "Authors caps ", "Ignore_case"

MARKUP XFCN parameter which determines whether capitalization errors will cause a response to be
judged wrong. If "Exact_case" (the default), any deviation in case will cause a wrong judgment. If
"Ignore_case", then any differences in case are ignored and will not lead to a wrong judgment. If

J

"Authors_caps", then the student must have upper case everywhere that the author has it in other
positions, case is ignored.

Set by setMarkUpJudgingParams.

idebugNeeded

True, False

MARKUP XFCN parameter. This parameter is useful for development purposes, since, if set to True, it
allows the XFCN PASCAL code to return debugging information to HyperCard in the global variable
theMarkUpDebug. This is needed because the usual PASCAL debugging tools can't be used within
XFCNs. Default is False.

Set by setMarkUpJudgingParams.

lextraWordsOk

True, False

MARKUP XFCN parameter which determines whether extra words not specified in the :ANSWER
specification will cause a response to be judged wrong. Default is False, so that extra words cause a NO
judgment

Set by setMarkUpJudgingParams.

marku Font

Font name

Contains name of font which will be used as default font for the markup field.

Set directly by put.

' ERRATA EXAMPLES # 6 (Cyrillic Font) resets this variable.

barkU leLlapsNeeded

True, False

MARKUP XFCN parameter which determines whether MARKUP XFCN will compute and return
response-model pairings of words as additional information in theMarkUpMaps.

Set by setMarkUpJudgingParams.

77

71

72

'misspell Ok

True, False

MARKUP XFCN parameter which determines whether spelling errors will cause a response to be judged
wrong. If True, then spelling errors will not cause a response to be judged wrong. Default is False.

Set by setMarkUpJudgingParams.

muMeld

Full name of a HyperCard card or background field

Contains full name of the markup field, where the graphical markup is displayed.

Set by setUpMarkUp.

noCount

Integer 0

Contains number of :MATCH, :NUMBER, or :DO specifications with a "no" or "noStop" polarity which
have been satisfied during the current analysis.

Set by judgeResponse (via responseAnalysis), judgeMatch (via matchMR)

InoFeedBack

Styled text

Contains a concatenation of the feedback text from all the :MATCH, :NUMBER or :DO specifications
wnich have been satisfied during the current response analysis and which have a negative polarity ("no" or
"noS top").

Set by judgeResponse (via responseAnalysis via matchMR), judgeMatch (via matchMR)

FrCount

Integer Z 0

Contains number of :MATCH, :NUMBER, or :DO specifications with an "ok" or "okStop" polarity which
have been satisfied during the current analysis.

Set by judgeResponse (via responseAnalysis), judgeMatch (via matchMR)

73

okFeedBack

Styled text

Contains a concatenation of the feedback from all the :MATCH, :NUMBER or :DO specifications which
have been satisfied during the current response analysis and which have a positive polarity ("ok" or
"okStop").

Set by judgeResponse (via responseAnalysis), judgeMatch (via matchMR)

parameterDisplayNeeded

empty, "v", "b", "d", "c", "h", "p", "w", "r, "s", "m"

MARKUP XFCN parameter which determines whether the MARKUP XFCN will return information about
one of the judging parameters in theMarkUpParamDisplay. Default is empty (no information
returned). For meaning of the remaining parameters see Hart (1994).

Set by setMarkUpJudcringParams.

IpreserveFormating

True, False, empty

Determines whether getHelp() and getFeedBack() and feedBack will try to preserve the text
formatting (font, style, size) of contingent feedback text. Default is empty (same as False).

Set by setPreserveFormating.

!response Field

Name of a HyperCard card or background field

Contains name of the current response field. judgeResponse will give an error message if you attempt
to do a response analysis without setting this variable. resolveFName() is used to determine the full
field name.

Set by activateField and setUpMarkUp.

[responseFont

Font name

Contains name of font which will be used as default font for current response field.

Set directly by put.

74

ler ERRATA EXAMPLES # 6 (Cyrillic Font) manipulates this variable.

runTogetherNeeded

True, False

MARKUP XFCN parameter which determines whether run-together word errors will be identified. If
runTogetherNeeded is False, run-together words will simply be marked as unidentified words, but
MARKUP will run faster. Default is True.

Set by setMarkUpJudgingParams.

shortCut

True, False

MARKUP XFCN parameter which determines how edit distance between words is computed. True causes
the edit distance of dissimilar words to be set to infinity; False forces a computation of the actual edit
distance in every case. If shortCut is False, MARKUP will run more slowly. Default is True.

Set by setMarkUpJudgingParams.

spellingOnlyNeeded

"x", "r", "p", empty

MARKUP XFCN parameter which determines whether input strings to the MARKUP XFCN will be
treated as sequences of words (i.e., sentences) or as sequences of characters (i.e., words). If "x" or empty,
then input parameters are treated as sentences. If "r" or "p" then the inputs are treated as words, and all
characters, including spaces and punctuation, are treated as alphabetic. Hence, the edit distance between the
two exact strings is computed. "r" returns the raw graphic markup resulting from this process; "p" returns
a prettied up form suitable for display. The default is "x", which is the same as empty.

This parameter affects the return values in theMarkUpReturnValues.

Set by setMarkUpJudgingParams.

la' ERRATA EXAMPLES # 18 (Spelling/Dictation) sets this variable to "r" in order to get
back the raw markup needed for a custom-made spelling markup display.

suppressOkNo

"m", "f", "mf", "fm", empty

Used by judgeResponse to determine where to display the current OK/NO messages. The default value of
empty causes display in both the feedback field and the markup field (if there is no graphical markup). If
"m" is present in suppressOkNo, then display in the markup field is suppressed. If "f' is present, then

display in the feedback field is supressed. If the value is "mf" or "fm", then the messages are not displayed.
If the value is empty, then display is done in both places.

Kr ERRATA EXAMPLES # 10 (Sentence Transitions) resets this variable.

ItheBestFitThreshold

A decimal number between 0 and 1.0

Determines the interpretation of the "answer fit" computed between a model and response. If answer fit is
less than theBestFitThreshold, then the model and response are considered NOT to match at all;
otherwise they are considered to match (although perhaps imperfectly). The default value is 0.70.

Use put to set this variable.

'the FeedBack

Text with embedded line references

Contains the feedback generated by the most recent response analysis.

Set by judgeResponse (via responseAnalysis), judgeMatch (via matchMR), and judgeAnswer.

theFeedBackFName

Full name of a HyperCard card or background field, empty

Contains full name of the current feedback field (e. g., card field "myField" or bkgnd field "myField"). The
feedBack handler uses this as the destination for the display it generates. If theFeedBackFName is
empty, no feedback display will be generated by feedBack.

Set by setFeedBackField.

theJudgingHandler

Name of a HyperCard Handler

Contains name of the current judging handler. The default value is "judgeResponse".

Set by setJudgingHandler.

'the Judgment

True, False

Si

75

Contains the evaluation of the current response as computed by the current analysis.

Set by judgeResponse (via responseAnalysis), judgeMatch (via matchMR), and judgeAnswer
(via findBestAns).

theMarkUp

A string of graphical markup characters

Contains graphical markup corresponding to the best fit :ANSWER or :WRONG specification which was
matched during the most recent response analysis. If there was no :ANSWER or :WRONG specification,
or if none was matched, then theMarkUp is empty.

If something went wrong inside the MARKUP XFCN (usually too many letters in a word or too many
words in a response or an :ANSWER or :WRONG specification), then theMarkUp will contain, instead
of a markup string, an error message whose first character is "%". The remainder of the message will
indicate the problem. See Hart (1994) for details.

Set by judgeResponse (via responseAnalysis via MARKUP XFCN), and judgeAnswer (via
findBestAns via MARKUP XFCN).

LtheMarkUpAns

A response analysis text

Contains (unformatted) text which will be used as analysis text for the current response analysis. The text
contains analysis specifications (:ANSWER/:WRONG/:MATCH/ :NUMBER/:DO / :HELP) with optional
feedback for each.

Set by setCorrectAnswer, activateField.

theMarkUpAnsFName

The full name of a HyperCard card field or background field, empty

Contains the name of a field of data which either is coextensive with the current analysis text or contains
the current analysis text somewhere within it. If the data field was specified by a literal value or variable
rather than a field name, then theMarkUpAnsFName will we empty.

Set by setCorrectAnswer, activateField.

It heMarktipAnsL1

Lteger > 0

Contains the number of the first line of the analysis text within the data field or variable which contains the
analysis text. The name of the field will be in theMarkUpAnsFName, if there is such a field; the

1

variable, which always exists, is theMarkUpAnsVar. If the field exists, it will have the same contents
a3 the variable, but with text formatting.

Set by setCorrectAnswer and activateField.

theMarkUpAnsL2

Integer > 0

Contains the number of the last line of the analysis text within the data field or variable whicii contains the
analysis text. The name of the field will be in theMarkUpAnsFName, if there is such a field; the
variable, which always exists, is theMarkUpAnsVar. If the field exists, it will have the same contents
as the variable, but with text styling.

Set by setCorrectAnswer and activateField.

ItheMarkUpAnsVar

Text

Contains a copy of the data field or variable which contains the analysis text. The name of the field will be
in theMarkUpAnsFName, if there is such a field;. If the field exists, it will have the same contents as
the variable, but with text formatting.

Set by setCorrectAnswer and activateField.

ItheMarkUpCharInfo

Formatted data, empty

Contains data determining the way the MARKUP XFCN will interpret different characters during judging.
If empty (the initial value), default judging parameter values are used. See Hart (1994) for details.

Set directly by put.

theMarkU Debug

Formatted data

The MARKUP XFCN puts debugging information into this variable, if such information has been
requested. See Hart (1994) for details.

Set by markUpUsingParams() (via MARKUP XFCN).

83

77

ItheMarkUpMaps

78

Formatted data

The MARKUP XFCN puts information about the way in which model words and response words are I
paired, as well as information about the locations of response words, into this variable, if such information
has been requested. Line 1 gives the number of the model word which corresponds to each response word,
with 0 indicating no correspondent. Line 2 gives the number of the response word which corresponds to
each model word, with 0 indicating no correspondent. Line 3 gives the starting character number of each
response word withing the unmodified response string. See Hart (1994) for details.

ISet by markUpUsingParams(), via MARKUP XFCN.

ItheMarkUpParamDisplay

Formatted data

The MARKUP XFCN puts information about the current judging parameters into this variable, if such
information has been requested. See Hart (1994) for details.

Set by markUpUsingParams(), via MARKUP XFCN.

theMarkUpParameters

Formatted data, empty I
The MARKUP XFCN uses the information in this global to control the way in which the markup
analysis, particularly the spelling analysis is done. If empty (the initial value), default judging parameter
values are used. See Hart (1994) for details.

Set directly by put.

theMarkUpPunctuation

A string of characters, empty

The string in this variable specifies the characters which the MARKUP XFCN will consider to be
punctuation. These characters will be removed from the student's response before it is judged. If you want
to judge some of the punctuation marks, you will need to modify this string so that those marks are
removed from the set of punctuation marks.

If theMarkUpPunctuation is empty (the initial value), then a default value 'of ".,: < > ?! {) E1 < > ?"

& return & space will be used for the punctuation.

To change this variable, put a new string directly into theMarkUpPunctuation. The initial, standard,
set of punctuation marks is restored by restorePunctation ai-4 also by restoreMarkUpDefaultE.

b 4 1

79

JtheMarkUpReturnValues

A list of 4 comma-separated items

Contains values which the MARKUP XFCN computes during the process of marking up a response.

Set by markUpUsingParams(model, response) (via MARKUP XFCN). The nature of the values
returned depends on the setting of the MARKUP XFCN input parameter spellingOnlyNeeded.

If the value of spellingOnlyNeeded was "x" (the default case), then the return is a list of 4 comma-
separated values JUDGMENT,PMATCHED,PNONINV,AVEDIST:

JUDGMENT: True, if the model matched the response, otherwise False.

PMATCHED: Proportion of words which were matched (between 0.0 and 1.0)

PNONINV Proportion of word order non-inversions (between 0.0 and 1.0)

AVEDIST: Averaged normalized edit distance (proportion of misspelling) between matched words.
(between 0.0 and 1.0)

The response analysis package uses these values to compute the fit between the model and the response.

If the value of spellingOnlyNeeded was "r" or "p", then theMarkUpReturnValues contains a list
of two comma-separated items, RAWEDITDIST, NORMALTEEDEDITDIST:

RAWEDITDIST: A positive integer representing the minimum total cost of edit operations
needed to transform response into model.

NORMALTZEDEDITDIST: A number between 0.0 and 1.0. It is equal to RAWEDITDIST
divided by a normalizing factor and represents the similarity of the two strings.

Set by markUpUsingParams() (via MARKUP XFCN).

ItheMarkUpSymbols

A string of characters, empty

The string in this variable specifies the characters which the graphical markup uses to indicate various kinds
of errors. If it is empty (the initial value), then a default value of " +---XLiwx1=><[" is used for the
symbols, The significance of the character at the various positions is:

addcap
dropcap
accenterr

x extrawd
missingwd
movewd

x extrltr
\ missingltr

substituteltr
> transltri
< transltr2

tunonwd

80

Specific default characters can be changed to others by executing changeMarkUpSymbol. The default
values will be restored by restoreMarkUpSymbols or restoreMarkUpDefaults.

thePatternFeedBack

Text with embedded line references

A concatenation of feedback generated by :MATCH, :NUMBER and .DO specifications which were satisfied
during the most recent response analysis.

If the theJudgment was True, then only the positive polarity ("ok" or "okStop") specifications will
contribute; if the theJudgment was False, then only the negative polarity specifications ("no" or
"noStop") will contribute.

Set by judgeResponse (via responseAnalysis) and judgeMatch (via matchMR)

ItheResponse

Text

Contains a (possibly modified) copy of the response which the student typed into the current response field.
This is the string which judgeResponse uses to make its judgments.

The user may want to operate on this string to, for example, reduce all the characters to a uniform case suc

do arbitrary string substitutions using substo. Since MARKUP deals with spaces, case variations, etc.,
as uppercase, remove extra spaces or unwanted characters such as punctuation marks, strip off diacritics, or

automatically, these operations are useftl mainly to get a regularized response to use with the MATCH
XFCN.

tar If you remove or insert characters into theResponse, it will no longer match what is
displayed in the response field, and any markup or match hiliting done using

substitutions should be placed after all :ANSWER and :WRONG specifications and before
lheResnonse as data will not display correctly. Hence, :DOs which perform string

all :MATCH , :NUMBER and other :DO specifications.

Set by judgeResponse (via responseAnalysis) and judgeMatch (via matchMR).

[userKeyHandling

True, False, empty

Determines whether the keyDown handler in the ERRATA stack will be active or not. If
userKeyHandling is False or empty, the default handler will be active; if True it will not be. This
variable should normally be True only if the user has written a keyDown handler of his own

111

When the default handler when it is shut off, keyDown messages are passed up the response hierarchy in the
normal way so that, e, g., RETURN will not cause judging to take place in the response field but will
simply insert an end-of-line character.

To change the value of this variable, execute defaultKeyHandling.

I

81

iwordMarkUpNeeded

True, False, empty

MARKUP XFCN parameter which determines whether word order errors will cause a response to be judged
wrong. empty is equivalent to True. The default value is True.

Set by setMarkUpJudgingParams.

82

INSTALLATION AND TECHNICAL INFORMATION

The ERRATA software is in a folder named ERRATA which has this file structure:

ERRATA
ERRATA EXTRAS
ERRATA EXAMPLES
XCMDS

delimitefrableXFCN
delimiterTablear
delimiterTable.p
delimiteffable.o

mapkeysXFCN
mapKeysar
mapKeys.p
mapKeys.o

stringUtilitiesXFCN
stringUtilitiesXF'CNar
stringUtilitiesXFCN.p
stringUtilitiesXFCN.o

markupXFCN
markupXFCN.rc
markupXFCN.p
markupXFCN.o

matchR
matchRic
matchR.p
matchR.o

HyperCard stack
HyperCard stack
HyperCard stack
folder
folder
THINK PASCAL project file
THINK PASCAL source code
THINK PASCAL object code
folder
THINK PASCAL project file
THINK PASCAL source code
THINK PASCAL object code
folder
THINK PASCAL project file
THINK PASCAL source code
THINK PASCAL object code
folder
THINK PASCAL project file
THINK PASCAL source code
THINK PASCAL object code
folder
THINK PASCAL project file
TIENT' PASCAL source code
THINK PASCAL object code

Installation of ERRATA is trivial: simply copy the ERRATA folder to any convenient location on your
hard disk. You can even use ERRATA directly from diskette, although it will be slow. Or you can merge
the ERRATA stacks and folders into some other folder. It is best to keep all ERRATA materials in the
same folder, however.

ERRATA requires the following hardware and software:

A Macintosh machine, Quadra-class or better.
Macintosh Finder (System) 7.1 or better
HyperCard 2.1 or better

ERRATA was developed on a Quadra 700 using this software configuration. It should run on other
Macintosh machines with less clock speed, but the user may experience appreciable slowdown, particularly
when doing display, since the handlers which do copying of styled text are quite computation intensive.
(Setting the ERRATA parameter preserveFormatting to False will minimize this effect.) The
primitive MARKUP, MATCH, STRINGITTILITY and DELIMITERTABLE XFCNs should be adequately
fast on any Macintosh.

All XFCN resources are installed in the ERRATA stack. Each XFCN is structured as a THINK
PASCALT," 4.01 project. The PASCAL source code, the object code, and the THINK PASCAL project
file for each XFCN is distributed in the folder named XFCNs. The XCMD file is not needed by ERRATA,
but is provided for your information. (To work with the projects, you will have to rebuild them
substituting valid pathnames for your machine.)

The compiled MARKUP XFCN project occupies a bit more than 42700 bytes of space; the MARKUP
XFCN itself occupies about 22474 bytes. This is near the limit of the allowed size for HyperCard code
resources. XFCNs borrow their space from the HyperCard stack, so if MARKUP is run in recursive or
other deeply embedded contexts, there may not be sufficient stack space. Running the MARKUP XFCN in
such a situation will cause the stack to overflow into the heap and will most likely cause a hard system
crash, if not immediately, then soon thereafter, or at latest during exit from HyperCard. To guard against
this, the markUpUsingParins(function checks to make sure that there are at least 28500 bytes free on
the HyperCard stack; if not, MARKUP is not run and an error dialog appears. (Since MARKUP's word-
order -error algorithm is recursive, space requried is somewhat sensitive to the number of words in model and
response, but 28500 should be sufficient to run with the maximum of 18 words.) If you call the primitive
MARKUP XFCN, you should rust use the HyperTalk function the stackSpace to assure that this much
stack space is available.

To conserve stack space, some large MARKUP array structures have been put into dynamic memory. The
Mac Toolbox functions NEWPTRO and DISPOSPTRO are used to allocate and deallocate this memory,
which amounts to about 24K of space. If this much heap memory is not available, MARKUP aborts and
returns the error message "%Couldn't get matrix memory."

The STRINGUTILITY XFCN is also large and is not guarded in any way, so care should be taken to check
stack space before calling it. It does not allocate heap memory and has no recursive routines.

The user should be aware of the following limitations on the MARKUP XFCN:

Versions through 3.0 will not work properly with the Macintosh 16-bit char representation, i.e.,
with the language extensions.

Maximum number of letters in a single word: 22
Maximum number of words in rn)del (including synonyms but excluding ignorables): 18
Maximum number of words in response: 18
Maximum number of characters in model: 255
Maximum number of characters in response: 255

These limitations are not intrinsic to the MARKUP algorithm, but are imposed by the fact that the entire
MARKUP function has to run in the limited space provided by the HyperCard stack. The MATCH XFCN
has the following limitations:

Maximum characters in pattern: 255
Maximum characters in reskinse: 255

To determine which version of ERRATA you have, inspect the first line of the stack script of the
ERRATA or ERRATA EXTRAS stacks. To di-lerni;ne the version of the MARKUP, MATCH,
FIRLNC311THIITES or DELMITERTABLE XFCNs, execute the function without input parameters from
the message window, e.g.: Markup°. A version string will be returned.

1

84

REFERENCES

Brown, .1. & Burton, R. (1978) Diagostic models for procedural bugs in basic mathematical skills.
Cognitive Science, 2, 155-191.

Hart, Robert S. (1989) Algorithms for the Dynamic Identification of Spelling and Word Order Errors in
Student Responses, Technical Report No. LLL-T-15-89. Urbana, IL: Language Learning
Laboratory, University of Illinois at Urbana-Champaign.

Hart, Robert S. (1994) Improved algorithms for Identifying Spelling and Word Order Errors in Student
Responses. Technical Report No. LLL-T-15-94. Urbana, IL: Language Learning Laboratory,
Un'versity of Illinois at Urbana-Champaign.

APPENDIX 1: LISTING OF ERRATA HANDLERS

-- ERRATA Version 1.0

SETUP HANDLERS.

on setJudgingHandler handlerName

-- Specify the name of the handler which will do the answer judging.

global theJudgingHandler

put handlerName into theJudgingHandler

end setJudgingHandler

on activateField C, L1, L2, keepResp

-- Convenience handler which combines effects of SETMARKUP and SETCCRRECTANS.
-- When executed in an OPENFIELD handler, prepares the field
-- to accept and mark up a response using C, L1, L2 as the correct answer.

C, L1, L2 = Correct answer or analysis text
KEEPRESP = If TRUE, current contents of RFIELD are left alone, else erased.

setCorrectAnswer C, L1, 1.2
setUpMarkUp name of the target, keepResp

end activateField

on setUpMarkUp rField, keepResp

-- Create (if necessary), format, and position a 'markup' field
-- so that the graphic markup will display properly beneath RESPFIELD.

RFIELD = Name of the field where student types in response.
KEEPRESP = If TRUE, current contents of RFIELD are left alone, else erased.

global responseField, shadowFName, responseFont, muField, markupFont

put resolveFName(rField) into rField

91

85

86

if fieldExists(rField) then

lock screen
put rField into responseField
put word 1 to 2 of rField into cbf
put quote & "markup" & quote into muS
put cbf && muS into muField

makeShadowField rField -- Makes rField transparent.
put the result into shadowFName

If markup field doesn't exist, create it.
if NOT fieldExists(muField) then

set editBkgnd to (cbf = "card field")
doMenu "Now Field"
set editBkgnd to False
do "set name of last" && cbf && "to" && muS

end if

-- Move markup field just behind response field.
show muField
select muField
repeat until (number of muField = number of rField - 1)

if (number of muField > number of rField) then doMenu "Send Farther" else doMenu "Bring
Closer"

end repeat
choose browse tool
hide muField
set lockText of muField to True
ut empty into the name of muField

-- Use fixedwidth font and make sure that font characteristics
-- are identical so marks will line up with chars of response string.
If responseFont = empty then put "Courier" into responseFont
if markupFont = empty then put "Courier" into markupFont

set style of rField to "transparent" -- So markup will show thru.
set textFont of rField to responseFont

put textHeight of rField into tH
put textFont of rField into tFont
put textSize of rField into tSize
put textStyle of rField into tStyle

set *style of muField to "opaque"
set textFont of muField to markupFont
set textSize of muField to tSize
set textStyle of muField to tStyle
set textHeight of muField to tH
set fixedLineHeight of muField to fixedLineHeight of rField
set wideMargins of muField to wideMargins of rField

87

-- Extend markup field 1 standard char width to left
put rect of rField into r
subtract stringUtilities("strWidth ", "e, tFont, tSize, tStyle) from item 1 of r

set rect of muField to r

-- Lower mu field the height of a letter.
get stringUtilities("fontInfo", tFont, tSize, tStyle)

put item 1 of it + item 2 of it into fontHeight -- Ascent + descent
get rect of muField
add fontHeight to item 2 of it
add fontHeight + 3 to item 4 of it
set rect of muField to it

Expand shadow 1 pt beyond mu field.
put "," into c
get item 1 of it - 1 & c & item 2 of it - fontHeight 1 & c & item 3 of it + 1 & c & item 4 of

it + 1
set rect of shadowFName to it

show shadowFName

if (keepResp True) then put empty into the name of rField

unlock screen
select text of rField

else ERROR("Can't find response field:" && rField)

end setUpMarkUp

on setCorrectAnswer C, L1, L2

-- Specify a new correct answer. If PRESERVEFORMATING = TRUE then C must be the name
-- of a field. L1, L1 specify a line range within C (1 to end if omitted).

-- Sets THEMARKUPANSFNAME, THEMARKUPANSL1, THEMARKUPANSL2,
THEMARKUPANSVAR, THEMARKUPANS

global theMarkUpAns, theMarkUpAnsL1, theMarkUpAnsL2, theMarkUpAnsVar,
theMarkUpAnsFName, preserveFormating

93

88

if word 1 to 2 of C is in "card field bkgnd field" then
if value("there is a' && C) then
put C into theMarkUpAnsFName
put value(C) into theMarkUpAnsVar

else error('Can't find ans field.")
else

put empty into theMarkUpAnsFName
put C into theMarkUpAnsVar
if preserveFormating = True then error("Ans FIELD NAME needed to preserve formating.")

end if
if L1 = empty then put 1 into theMarkUpAnsL1 else put L1 into theMarktAnsL1
if L2 = empty then put number of lines in theMarkUpAnsVar into theMaNUpAnsL2 else put L2

into theMarkUpAnsL2
put line theMarkUpAnsL1 to theMarkUpAnsL2 of theMarkUpAnsVar into theMarkUpAns --

Deformated ans text.

end setCorrectAnswer

on setFeedBackField (Name

-- Specify name of field where any special feedback will be put.
-- (Will be shown and hidden along with markup).

global theFeedBackFName

get resolveFName(fName)
if fleldExists(it) OR it = empty then

if (there is a field theFeedBackFName) AND (theFeedBackFName * it) then hide
theFeedBackFName

put it into theFeedBackFName
else error("Can't find feedback field:" && it)

end setFeedBackField

on setOkNoField F

global theOkNoFName

put resolveFName(F) into theOkNoFName

end setOkNoField

function okWd

global theOkNoFName

if theCkNoFName = empty then return "OK" else return "(1,1," & theOkNoFName & "}"

end okWd

function noWd

global theOkNoFName

if theOkNoFName = empty then return "NO" else return "{2,2," & theOkNoFName & "}"

end noWd

on defaultKeyHandling tf

-- If TF = True, disable default key handler, else enable it.

global userKeyHandling

if (tf = False) OR (tf = "off") then put True into userKeyHandling else put empty into
userKeyHandling

end defaultKeyHandling

on setPreserveFormating tf

-- If TF = True, preserve text format of feedBack.

global preserveFormating

put (tf = True) OR (tf = "on") into preserveFormating

end setPreserveFormating

on restorePunctuation

global theMarkUpPunctuation

put (".,:;<>?!{}0<>?" & return & space) into theMarkUpPunctuation

end restorePunctuation

on changeMarkUpSymbol oldSymbol, newSymbol

global theMarkupSymbols

get offset(oldSymbol, "+--)Cl.x1=><r)
if it * 0
then put newSymbol into char it of theMarkUpSymbols
else error("Bad default markup symbol.")

end changeMarkUpSymbol

1'15

89

90

on restoreDefaultMarkUpSymbols

global theMarkupSymbols

put "+---XA=x\=><r into theMarkupSymbols

end restoreDefaultMarkUpSymbols

on setJudgingParams

-- Up to 8 pairs of parameters, each pair consisting of

1. String which names one of the judging parameters (global var name)
2. A value to assign to that parameter

-- E.g.: setJudgingParms "capFlag", "Authors_Caps", "anyOrderOK", True

-- Each parameter named is set equal to the following value. It keeps this
-- value until it is changed again! The order of the pairs is irrelevant.

global capFlag, extraWordsOk, anyOrderOk, misspellOk,
wordMarkUpNeeded, runTogetherNeeded, adjustNeeded, shortCut,
markUpMapsNeeded, parameterDisplayNeeded, spellingOnlyNeeded, debugNeeded

put ",capFlag,extraWords0k,anyOrder0k,misspellOk," &
"wordMarkUpNeeded,runTogetherNeeded,adjustNeeded,shortCut," &
"markUpMapsNeeded,parameterDisplayNeeded,spellingOnlyNeeded,debugNoeded,"
into paramNames

put -1 into i
repeat
add 2 to i
if (i <= the paramCount - 1) then

put param(i) into pName
put param(i+1) into pVal
if (comma & pName & coman is not in oaramNames) then

error("Bad judging param name:" && pName)
exit setJudgingParams

else do "put" && pVal && "into" && pName
else exit repeat

end repeat

end setJudgingParams

on restoreDefaultJudgingParams

91

-- Set global vars with default values of Input params.
-- Other permissible values for params shown in comments.

global capFlag, extraWords0k, anyOrderOk, misspellOk,
wordMarkUpNeeded, runTogetherNeeded, adjustNeeded, shortCut,
markUpMapsNeeded, parameterDisplayNeeded, spellingOnlyNeeded, debugNeeded

put 'Exact case" into capFlag --"Authors_caps", "Ignore_case"
put False into extraWordsOK -- True
put False into anyOrderOK -- True
put False into misspellOK -- True
put True into wordMarkUpNeeded -- False
put True into runTogatherNeeded -- False
put True into adjustNeeded -- False
put True Into shortCut -- False
put False Into markUpMapsNeeded -- True
put Rx" into parameterDisplayNeeded "m", ... etc.
put "x* into spallingOnlyNeeded
put False into debugNeeded -- True

end restoreDefaultJudgingParams

on resetErrata

global theJudgingHandler, theOkNoFName, theFeedBackFName, preserveFormating

put "judgeResponse" into theJudgingHandler
put empty into theOkNoFName
put empty Into theFeedBackFName
put True into preserveFormating

end resetErrata

on restoreMarkUpDefaults

restore Defau ItMarkUpSymbols
restoreDefaultJudgingParams
restorePunctuation

end restoreMarkUpDefaults

-- INTERFACE USER INPUT WITH JUDGING/MARKUP.

97

92

on keyDown ch

-- Default key handler. If key was pressed in current response field, use it for
-- judging; otherwise, pass it on. If USERKEYHANDLING = TRUE, simply pass key thru.

responseField, userKeyHandling

if ,rKeyHandling * True) AND (name of the target = responseField) then handleKey ch
else pass keyDown

end keyDown

on handleKey ch

-- Handles keys typed into the response field so that response is
-- judged, and the markup field is shown, when RETURN is pressed.
-- Other keys make the markup field dissappear, to prevent copying.

global theMarkUpAns, muField, theFeedBackFName, theJudgingHandler

put the selectedChunk into saveSC
if ch = return then

if (theJudgingHandler = empty) then put "judgeResponse" into theJudgingHandler
send theJudgingHandler to the target
show muField
if (theFeedBackFName * empty) then show theFeedBackFName
select saveSC

else
hide muField
if (theFeedBackFName c empty) then hide theFeedBackFName
select saveSC
send "keyDown ch"

end if

end handleKey

-- DO MARKUP USING GLOBAL JUDGING PARAMS.

function markupUsingParams model, response

-- Do markup using global vars as input parameters. Return markup string directly.
--The judgment and other values are returned in global var THEMARKUPRETURNVALUES.

global capFlag, extraWordsOk, anyOrderOk, misspellOk,
wordMarkUpNeeded, runTogetherNeeded, adjustNeeded, shortCut,
markUpMapsNeeded, parameterDisplayNeeded, spellingOnlyNeeded, debugNeedod

1

put empty into uteMarkUpDebug

if the stackSpace > 28500 then
return markup(model, response,
ca.pFlag, extraWordsOk, anyOrderOk, misspell0k,
wordMarkUpNeeded, runTogetherNeeded, adjustNeeded, shortCut,
markUpMapsNeeded, parameterDisplayNoeded, spellingOnlyNeeded,

debugNeeded)
else ERROR("Stack too small for MarkUP XFCN")

end markupUsingParams

HILITE MATCHED MATERIAL IN RESPONSE.

on hiliteMatch r, fName

R return from a call to the match XFCN: match(Model, Response).
-- The contents of field FNAME (which should be identical to Response) are hilited using M.

put value(fName) into response
put response into the name of fName -- Remove text formating.

delete char 1 of r T or F.
if r * empty then

put empty into list
put r & space into r
put length(r) into it
put space into lastC
repeat with i 1 to rL

put char i of r into c
if lastC * "x" AND c "x" then

put i & "," after list
else if lastC x AND c "x" then

put i - 1 & "," after list
end if
put c into lastC

end repeat
delete last char of list -- remove trailing

94

put 1 into
repeat until I = number of items in list

put item i of list into startC
put item i + 1 of list into endC
do "set textStyle of char startC to endC of" && fName && "to bold"

add 2 to i
end repeat

end if

return m

end hiliteMatch

function getHelp type

-- Return help text labelled as TYPE for current analysis text; if TYPE is empty, return all
help texts.

global theMarkUpAns

put ":" into dd
put dd & 'help" into h
put empty into help
repeat with I = 1 to number of lines in theMarkUpAns

get line i of theMarkUpAns
if (word 1 of it = h) then

if ((word 2 of it = type) OR (type = empty)) then
put getFeedBack(i) & return after help

end if
end if

end repeat
return help

end getHelp

function getFeedback linallo, cmds

-- Look at current answer and get line range between LINENO and the next SPEC,
--exclusive. If PRESERVEFOMATING is True, return the line range, in format

"(startLine,stopLine } ", else return the text.
StartLine and StopLine are relative to THEMARKUPANSVAR.

global preserveFormating, theMarkUpAns, theMarkUpAnsL1

95

if theMarkUpAnsL1 * empty then
put ":" into dd
put theMarkUpAnsL1 - 1 Into L lineNo is relative to L
if (lineNo is a number) then
add 1 to lineNo
put 1 + number of lines in theMarkUpAns into r
repeat with i = lineNo to r

get word 1 of line I of theMarkUpAns
If (char 1 of word 1 of it = dd) then
put I into r
exit repeat

end if
end repeat
subtract 1 from r

if lineNo <= r then
if (preserveFormating = True)
then return "{" & L + lineNo & "," &L+r&

else return line lineNo to r of theMarkUpAns
else return empty

else return empty
else return empty

end geiFeedBack

-- NUMBER JUDGING.

function judgeNumber range, response

-- Return TRUE if number RESPONSE is within RANGE, else FALSE.
-- RANGE is an expression of form "(50-75)" or "(50)".
-- Use "*" to indicate open ended range, e.g., "(*-100)"
-- or "(1oo-1". Use "," to reverse polarity of judgment,
-- e.g., ".(100-150)". Extra spaces in range expression are ok.

repeat with i = 1 to (number of chars in range)
if char i of range * space then

put (char i of range) Into negFlag
end if

end repeat

repeat with i = 1 to (number of chars in range)
if char i of range is in ",-(,)" then put " " into char i of range

end repeat

put stringUtilities(" removeChars", response, ",") into response

101

put word 1 of range into n1
put word 2 of range into n2
if (n2 = empty) then

if (n1 is not a number) then return False
put (response = n1) into j
if negFlag then return NOT j else return J

else
if NOT ((n2 is a number) OR (n2 a "")) then return False
if NOT ((n1 is a number) OR (n1 = "1')) then return False
put ((n1 =, "*") OR (n1 <= response))
AND ((n2 a "*") OR (response <= n2)) Into j
if negFlag then pram NOT j else'retum j

end if

end judgeNumber

- JUDGE COMBINATION OF PATTERN MATCHING AND ANSWER/WRONG WITH MARKUP.

on judgeResponse

- Default judging handler. Judge response from RESPONSEFIELD using analysis specifications
- from global THEMARKUPANS. Display markup and feedback. Info on best ans returned via
-- THE RESULT.THEJUDGMENT, THEFEEDBACK, THEMARKUP also set.

global responseField, theMarkUpAns, theMarkUp, theFeedBack, muField

if fieldExists(responseField) then
get responseAnalysis(theMarkUpAns, value(responseField)) -- Do response analysis.
if char 1 of it a "%" then return empty

showMarkUp
feedBack theFeedBack

if (there is a card field "bestFit") then put item 1 of it into card field "bestFit" -- Show
bestfit.

return it -- BestAns info.
else error("Can't find response field: & responseField)

end judgeResponse

2

96

97

function reeponseAnalysis model, response

Go through a. list of ANSWER/WRONG/MATCH/NUMBER specifications
(with optional feedback) Find the best ANSWER/WRONG. Also match all patterns.

-- Direct return Is BESTFIT,BESTLINE,BESTMU. Also sets THEJUDGMENT, THEMARKUP,
THEFEEDBACK, OKCOUNT, NOCOUNT, OKFEEDBACK, NOFEEDBACK, THEPATTERNFEEDBACK.

global theMarkupReturnValues, theBestFitThreshold, okCount, noCount,
okFeedBack, noFeedBack, thePattemFeedBack, theJudgment, theFeedBack,
theMarkUp, theResponse

put "." into d
put ":" into dd
put response into theResponse
if NOT (char 1 of word 1 of model = dd) then put dd & "answer before model
-- if (last line of model * "*") then put return & "V' after model
if (theBestFitThreshold = empty) then put .7 into theBestFitThreshold
put theBestFitThreshold into bestFit
put empty into bestLine
put empty into bestMU
put empty into thePatternFeedBack
put empty into okFeedBack
put empty Into noFeedBack
put False into pos
;Jut 0 into okCount
put 0 into noCount

repeat with i = 1 to number of lines in model
put line i of model into rn
if char 1 of word 1 of m * dd then next repeat
put (char 2 to 99 of word 1 of m) into cmd
if (cmd is in "match.number.do.") then -- MATCH, NUMBER

put word 2 of m into polarity
delete word 1 to 2 of m
if m = empty then
get True

else if cmd = "match" then
get match(m, theResponse)

else if cmd = "number" then
get judgeNumber(m, theResponse)

else --DO
send m to this card
if the result = empty then get True else get the result

end if

103

98

if char 1 of it 3. "t" then
put (d & polarity & d) into p

get getFeedBack(i, model)
if (it * empty) then get "." && it & return

if p is in ".ok.okStop." then
add 1 to okCount
put it after okFeedBack

else if p is In ".no.noStop." then
add 1 to noCount
put it after noFeedBack

end if
if p is in ".okStop.noStop." then exit repeat

end If
else if (cmd is in "answer.wrong") then ANSWER, WRONG

if ":?" Is in word 2 of m then
if bestFit <= theBestFitThreshold than

put (cmd = "answer") in pos
put 1 into bestFit
put i into bestLine
put empty into bestMU
exit repeat

end if
end if
put markupUsingParams(word 2 to 999 of m, theResponse) into mu
if char 1 of mu 3. "V then XFCN error.
ERROR(mu)

put False into theJudgment
put empty into theFeedBack
put mu into theMarkUp
return mu

else
get theMarkUpRetumValues
send "compureAnsFit it" to this card
put the result into ansFit
if (ansFit > bestFit) then

put (cmd = *answer") into pos
put ansFit into bestFit
put i into bestLine
put mu into bestMU

end if
end if

end if
end repeat

put (bestFit = 1) AND pos into ansOK
send "matchinglsOK" to this card
put the result into matchOK
put ansOK OR ((bestLine . empty) AND matchOK) into theJudgment
if (bestFit < 1) AND pos then put empty into fbk,
else :1 (bestLine * empty) then put getFeedBack(bestLine, model) & return into fbk
else put empty into fbk
if (the.ludgment AND matchOK) then put okFeedBack into thePatternFeedBack else put

noFeedBack into thePa1temFeedBack

164

99

if theJudgment then put okWd() into jdg else put noWd() into jdg
put jdg & return & fbk & thePatternFeedBack into theFeedBack
put bestMU Into theMarkUp
if theJudgment OR (theMarkUp = empty) then put jdg into theMarkUp

retur.9 (bestFit & comma & bestLine & comma & bestMU)

end responseAnalysls

on feedBack fdbk, addit

-- Show FDBK in current feedback field. if ADDIT * empty, append, else replace.

global theFeedBackFName

showText fdbk, theFeedBackFName, addit

end feedBack

on showText txt, F, addit, cmds

-- Show TXT in field named by F. If ADDIT * empty, then append it. Dereference &
-- copyText line ranges of form {STARTL,STOPL} STARTL, STOPL are relative
-- to full exercise text in THEMARKUPANSVAR and field THEMARKUPANSFNAME.

global theMarkUpAnsFName, preserveFormating

put resolveFName(F) into F
if fieldExists(F) then
lock screen
if (addit = empty) then put empty into the name of F
if preserveFormating = True then
put 0 into e
repeat

put item 1 of findInField(txt, "r, True, e) into s
if s = 0 than

put char e + 1 to 99999 of txt after the name of F
exit repeat

else
put char e + 1 to s - 1 of txt after the name of F
put item 1 of findInField(txt, 1", True, s) into e

put char s + 1 to e - 1 of txt into emb
put item 1 of emb into startLine

put item 2 of emb into endLine
put item 3 of emb Into Sr
if Sr = empty then put theMarkUpAnsFName into Sr
put value(Sr) into tx
if u=" is in tx then

repeat with j = startLine to endLine

105

get line j of tx
if word 1 of it = "*" then
if cmds * False then send word 2 to 9999 of it to this card

add 1 to startLine
else exit repeat

end repeat
end If

quIckCopy "line", startLine, endLine, Sr, "char", 99999 F
end if

end repeat
else put txt after the name of F -- No formating.

show F
unlock screen

end if

end showText

on showMarkUp

-- Break lines of markup to parallel line breaks in response and display result.

global responseField, muField, theMarkUp

put short name of muField into mF
put theMarkUp into marks
put valuv(responseField) into r
if wideMargins of responseField then get 18 else get 10
put width of responseField - it into w
put textFont of responseField into tFont
put textSize of responseField into tSize
put textStyle of responseField into tStyle
if "{" Is not in theMarkUp then

repeat with i = 1 to 99999
if r * empty then

get stringUtIlities("findLineBreak", r, w, tFont, tSize, tStyle
Firstbreak,lastdisplayed,lastbreak + 1

put min(item 3 of it - 1, item 2 of it) into endChar
if i = 1 then put 1 into s else put 0 into s
put char 1 to endChar + s of marks into line i of card field mF
delete char 1 to (item 3 of it - 1) of r
delete char 1 to (item 3 of it - 1 + s) of marks

else
put marks after card field mF
exit repeat

end if
end repeat

else showText theMarkUp, muField

end showMarkUp

10

100

101

function fieldExists F

FNAME Is name of field, e.g., card field "myField"; bkgnd field "yourField"

if (F = empty) then return False else return value("there is a" && F)

end fieldExists

on quickCopy chnk1, p1, p2, f1, chnk2, q1, q2, f2

-- Fields Fl and F2 must be on current card. F2 must not have shared text.

if q2 = empty then put q1 - 1 Into q2
lock screen
put visible of f1 into saveV1
show f1
get "select" && chnkl && "p1 to p2 of" && f1

do it
put tha selection into S1
put (the selection = empty) into void
if NCT void then doMenu "Copy Text" -- Copy disabled if null selection.
set visible of f1 to saveV1
put lockText of f2 into saveLT2
put visib:9 of f2 into saveV2
show f2
set lockText of f2 to False -- Must be unlocked to paste into.
do "select" && chnk2 && "q1 to q2 of" && f2

put the selectedChunk Into SC2
put the selection into S2
if NOT void then doMenu "Paste Text" else put smpty into the selectedChunk
set lockText of f2 to saveLT2
set visible of f2 to saveV2
unlock screen

end quickCopy

on error str

-- Show error msg STR then drop into debug moca.

answer str
debug checkpoint

end error

107

function resolveFName F

if (word 2 of F = "field") then return F
else if there Is a card field F then return name of card field F
else if there Is a field F then return name of field F
else If (F * empty) then error(''Can't find field named: & F)
return empty

end resolveFName

function nthltem t, n, d

Return Nth item of T delimited by D.

put the ItemDelimiter into s
set itemDelimiter to d
get Item n of t
set itemDelimiter to s
return it

end nthltem

function itemCount t, d

put the ItemDelimiter into s
set itemDelimiter to d
get number of items in t
set itemDelimiter to s
return It

end itemCount

on computeAnsFit muR

ansFit := (3'pMatched*(1 - aveDist) + pNonlnv) / 4
return (3*(item 2 of muR)*(1 item 4 of muR) + (item 3 of muR))/4

end computeAnsFit

on matchingisOK

global okCount, noCount

return (noCount = 0) AND (okCount > 0)

end matchingisOK

I. us

102

on makeShadowField F

103

-- Create a field identical to F at the location of F, then make F transparent.
- Expand shadow field to exceed F's markup field by 1 dot.

if F * empty then
lock screen
put word 1 to 2 of F into cdbg
put the editBkgnd into saveEB
if cdbg = "bkgnd field" then set editBkgnd to True
put cdbg && quote & "" & short name of F & quote into shadowF
if value("there is not a. && shadowF) then
put visible of F into saveV

show F
select F
doMenu "Copy Field"
doMenu "Paste Field"
do "set name of last" && cdbg && "to" && word 3 of shadowF

set visible of F to saveV
end if
do "select" && shadowF
repeat until number of shadowF = number of F - 1
if number of shadowF > number of F
then doMenu "Send Farther" else doMenu "Bring Closer"

end repeat
choose browse tool
set editBkgnd to saveEB
if style of F * "shadow" then set style of shadowF to "rectangle"
set style of F to "transparent"
set script of shadowF to empty
set lockText of shadowF to True
unlock screen

else ERROR("Can't find response field." & F)
return shadowF

end makeShadowField

function subst str, k, 01, n1, o2, n2, o3, n3, 04, n4, 05, n5, o6, n6

-- Substitute N-i for 0-1, K times for each pair, in RESP; return result.

if k = empty then put -1 into k
return stringUtilities("mSubst ",str, k, o1, n1, o2, n2, o3, n3, o4, n4, o5, n5, o6, n6)

end subst

on substResp k, 01, n1, o2, n2, 03, o4, n4, 05, n5, 06, n6

-- Give params to SUBST() to apply to THERESPONSE.

global theResponse

109

put subst(theResponse, k, 01, n1, 02, n2, 03, n3, 04, n4, 05, n5, o6, n6) into theResponse
return False

end substResp

on upCaseResp stripDiacrits

-- Convert THU' T.SPONSE to all upper case; if STRIPDIACRITS Is TRUE, remove diacrits also.

global theResponse

put stringUtilities("uprString" theResponse, stripDiacrits True) into theResponse

end upCaseResp

function labelLines F, label, d

-- Return line numbers in field F bracketed between LABEL and the next following
-- label-type string, exclusive. A label string begins with char D and begins its line.

if d = empty then put "#" Into d
if char 1 of label d then put d & label into label
put value(resolveFName(F)) into txt
get findlnField(txt, label, False, 0)
put item 1 of it Into p
if p > 0 then put item 2 of it + 1 into 11 else return empty
get findlnField(txt, d, True, p)
if item 1 of it > 0
then return 11 & "," & item 2 of it - 1

else return 11 & "," & number of lines in txt

end labelLines

on displayLabel label, S, D, d

-- Copy to field D the block of text started by LABEL with delim char D in field S.

get labelLines(S, label, d)
if it empty then

put return after the name of D
quickCopy line", item 1 of it, item 2 of it, resolveFName(S),
"char, 99999 resolveFName(D)

end if

end displayLabel

0

104

105

-- ERRATA EXTRAS Version 1.0

on cursorintoResponseFieki

-- Place cursor at end of response field text.

global responseFiek

select after text of responseField

end cursorintoResponseField

COPY STYLED TEXT FROM FIELD TO FIELD (ACROSS STACKS)

on copyText chnk1, p1, p2, cbi, f1, c1, s1, chnk2, q1, q2, cb2, f2, c2, s2

-- Copy any chunk from any field in any stack into any other field in any stack, PRESERVING
TEXT FOMRAT. E.g.,

COPYTEXT "line", 1, 10, "cd", "aField", "aCard", "aStack", "char", 50, 50, "bkgnd",
"bField", "beard", "bStack"

If p1 = empty then
if q1 = empty then
if p2 = empty then
if q2 = empty then

put q1 into q2
add 1 to q1

end if

put 1 into p1
put 1 into q1
put 99999 into p2 If no P2, take P1 - end.
-- If no 02, locate cursor at 01.

put quote into q
put the short name of this stack into s -- Expand stack, card & field names & chnk ptrs.
if s1 = empty then put s into s1 -- Defaults are this card, this stack.
if s2 it empty then put s Into s2
puZ 'stack" && q & s1 & q into s1
put "stack" && q & s2 & q into s2
get the short name of this card
if c1 = empty then put it into c1
if c2 = empty then put it into c2
put "card" && q & c1 & q into c1
put "card" && q & c2 & q into c2

106

put "card field" && q & f1 & q into f1
put 'card field" && q & f2 & q into f2
if char 1 of cb1 * "c" then put "bkgnd" into word 1 of f1
if char 1 of cb2 "c" then put "bkgnd" into word 1 of f2
put the long name of this card into cs
put (c2 && "or && s2) Into cs2
put (c1 && "of" &P, s1) into cs1

put "Bad COPYFIELD stack spec." into se

If value("there is a" && si) AND value("there is a" && s2) then -- Do the copying.
put 'Bad COPYFIELD field spec.' Into fe
put "COPYFIELD can't GO card, stack." into nogo
put the lockMessages into saveLM -- Disable openStack, etc.
set lockMessages to True
lock screen
if (cs * cs1) then GO cs1
if (the result = empty) then

if value(*there is a" && f1) then
put visible of fl into saveV1
show f1 Must be visible to select.
do 'select" && chnk1 && 'p1 to p2 or && f1

put (the selection = empty) into void
if NOT void then doMenu "Copy Text" -- Copy c.,IQRbled if null selection.
set visible of f1 to saveV1

else error(fe)
else error(nogo)
if (cs1 * cs2) AND (the result = empty) then GO cs2
if (f2 * empty) then If no f2 specified, just leave on clipboard, no error.

if (the result = empty) then
if value('there Is a" && f2) then
put visible of f2 into saveV2
put lockText of f2 into saveLT2

put the editBkgnd into saveBG
if sharedText of f2 it True then set editBkgnd to True -- Must be in bkgnd to edit

sharable text.
show f2 -- Must be visible to select.
set lockText of f2 to False -- Must be unlocked to paste into.
do `select" && chnk2 && "q1 to q2 of" && f2

if NOT void then doMenu "Paste Text" else put empty into the selectedChunk
set visible of f2 to saveV2 -- Restore state of field.

set editBkgnd to saveBG
set lockText of f2 to saveLT2

else error(fe)
end If

else error(nogo)
GO cs
set lockMessages to saveLM
if (the result * empty) then error(nogo)
unlock screen

else error(se)

end copyText

on deReferenbeText txt

-- Return unformated dereferenced copy of txt with line references.

global theMarkUpVar

if (addlt = empty) then put empty into r
put 0 into e
repeat

put item 1 of findlnField(txt, "{", True, o) into s
if s = 0 then

put char a + 1 to 99999 of txt after e
exit repeat

else
pui char e + 1 to s 1 of txt after r
put item 1 of findlnField(txt, "}", True, s) into e

get char s + 1 to e - 1 of txt
put line item 1 of it to item 2 of theMarkUpVar into r

end :I
end repeat
return r

end deReferenceText

function labelLines F, label, d

-- Return line numbers in field F bracketed between LABEL and the
-- following LABEL, exclusive. LABEL begins with ":" and occupies its own line.

if d = empty then put "#" into d
if char 1 of label d then put d & label into label
put value(resolveFName(F)) into txt
get findlnField(txt, label, False, 0)
put item 1 of it into p
if p > 0 then put item 2 of it + 1 into 11 else return empty
get findlnField(txt, d, True, p)
if item 1 of it > 0
then return 11 & "," & item 2 of it - 1

else return 11 & "," & number of lines in txt

end labelLines

on displayLabel label, S, D, d

get labelLines(S, label, d)
if it empty then

put return after the name of D
quickCopy line", item 1 of it, item 2 of it, resolveFName(S), -,
"char", 99999 resolveFName(D)

end if

end displayLabel

113

107

-- GET INFO ABOUT PARAMS AND TABLES INTERNAL TO MARKUP XCMD.

function getJudginglnfo

-- Return a report of all Markup's current interna: parameter values.

global theMarkupParamDisplay, parameterDisplayNeeded

put empty into r
put yvbdchpwfsm" into typeList

put parameterDisplayNeeded into saveDN
repeat with i = 1 to length(typeList)

put (char i of typeList) into parameterDisplayNeeded
get markUpUsingParams(empty, empty)
put (theMarkUpParamDisplay & return & return) after r

end repeat
put saveDN into parameterDisplayNeeded
return char 1 to length(r) - 2 of r

end getJudginglnfo

function inBrackets txt

put offset(" {", txt) into p1
put offset("}-, txt) into p2
if p1 > 0 AND p2 > 0 then return char p1+1 to p2-1 of txt else return empty

end inBrackets

114

108

