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A Tree-Based Analysis of Items From
An Assessment of Basic Mathematics Skills

The operating characteristics of 114 Mathematics pretest items from the
Praxis I: Computer Based Test were analyzed in terms of item attributes and
test developers' judgements of item difficulty. Item operating characteristics
were defined as the difficulty, discrimination and asymptote parameters of a
three parameter logistic IRT model. Three types of item attributes were
considered: surface features (for example, whether or not the item stem
contained an equation); aspects of the solution process (for example, whether
or not the solution required application of a standard formula); and response
type (free-response or multiple-choice). Because the attribute set included large
numbers of categorical variables, an approach based on binary regression trees
(Breiman, Friedman, Olshen, and Stone, 1984) was implemented. The results
were quite impressive for asymptote parameters (85% of variance explained),
somewhat less so for difficulty parameters (36% of variance explained) and
fairly unimpressive for discrimination parameters (only 12% of variance
explained). In addition, the tree-based approach was found to be particularly
useful for identifying important interaction effects and for developing graphical
summaries of the modeling results.
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A Tree-Based Analysis of Items From
An Assessment of Basic Mathematics Skills

The goal of this study was to determine the degree to which the operating
characteristics of basic mathematics achievement test items could be predicted from an
analysis of item attributes and test developers' judgements of item difficulty. Items'
operating characteristics were defined as the difficulty, discrimination and asymptote
parameters'of the three parameter logistic (3PL) IRT model. Three types of item attributes
were considered: surface features of the items (for example, whether or not the item stem
included an equation); aspects of the solution process (for example, whether or not the
solution required application of a standard formula); and response format (free-response or
multiple-choice). Studies of this type may be conducted for a variety of reasons including:
(1) reducing simple size requirements for item calibraticn (Mislevy, Sheehan & Wingersky,
1993); (2) providing for more systematic test design and construct validation (Embretson &
Wetzel, 1987; and Bejar, 1991); and (3) diagnosing students' misconceptions (Tatsuoka, 1987,
1990).

The analyses reported in this paper were conducted using a combination of least-
squares regression analysis and binary regression trees (Breiman, Friedman, Olshen, and
Stone, 1984). Regression analysis has been used in numerous studies of the components of
item difficulty (see for example, Enright, Allen & Kim, 1993; Scheuneman, Gerritz &
Embretson, 1991; Sheehan & Mislevy, 1990; and Tatsuoka, 1987). This paper introduces
tree-based models as an exploratory technique for determining the structure of the regression
equation and for developing graphical summaries of the modeling results.

The Tree -Based Approach

For problems involving a single numeric response (y) and a set of predictor variables
(x) a binary regression tree is fit by successively splitting the data on the basis of the
independent variables into binary subsets with similar values of the response variable. At
each stage of model fitting, the splitting algorithm considers all possible splits of all possible
predictor variables. When the potential predictor is a multi-level categorical variable, as was
the case for several of the variables considered in this study, the splitting algorithm considers
all collapsing strategies resulting in exactly two levels. When the potential predictor is a
numeric variable, such as the item difficulty rating considered in this study, the splitting
algorithm considers all possible cut points for grouping the observations into low and high
subsets. Potential splits are evaluated in terms of deviance, a statistical measure of the
dissimilarity in the response variable among the observations belonging to a single subset. At
each stage of splitting, the original subset of observations is referred to as the parent node and
the two outcome subsets are referred to as the left and right child nodes. The best split is the
one that produces the largest decrease between the deviance of the parent node and the sum
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of the deviances in the two child nodes. The deviance of the parent node is calculated as the
sum of the deviances of all of members,

AYM = E cy,

where SF is the mean value of the response calculated from all of the obervations in the node.
The deviance of a potential split is calculated as

D(y,9v,j2) = E D(Yi,,z) E D(Ypilit)
L 2

E Sid2 E _9R)2

where 9/, is the mean value of the response in the left child node and S.R is the mean value of
the response in the right child node. The split that maximizes the change in deviance

AD = XY,S3) D6CYL,9R)

is the split chosen at a given node. In the final fitted model, the predicted value for each
observation is the mean response calculated from only those observations belonging to the
same terminal node.

Figure 1 provides a graphical representation of a tree model estimated for a
hypothetical set of 20 observations. In this particular representation, the number of
observations in each node is plotted as the node label and the variables used to define each
split are indicated on the lines connecting parents to children. Node locations indicate the
predicted value of the response variable (read from the horizontal axis) and the estimated
deviance value (read from the vertical axis).

Insert Figure 1 Here

As can be seen, the model has two splits yielding a total of three terminal nodes. The
first split divides the data into subsets based on values of the categorical variable x1.
Observations with values of x1 equal to A or B (denoted x1=AB) are classified into the left
child node. Observations with values of x1 equal to C or D (denoted x1 =CD) are classified
into the right child node. The horizontal distance between the left child node and the right
child node is the amount by which the predicted response for observations of type A or B
differs from the predicted response for observations of type C or D. The second split divides
the set of ten observations in the x1=AB node into subsets based on values of the second
independent variable x2. The six observations with x1 =AB and x2<=10 are classified into one
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subset; the four observations with x1=AB and x2>10 are classified into a second subset. There

are no further splits of the x1=CD node indicating that x2 was only helpful at predicting the

value of y for observations with x1=AB. This type of interaction is common in problems

involving several independent predictors. The final fitted model is specified in terms of the

following three prediction rules (corresponding to the three terminal nodes in Figure 1):

16
if xi= AB and x2 s 10 then 9 = -E

6 1,4
io

if x1 = AB and x2>10 then 9 = -E y1
4 i -7

2°
if x1= CD then 9 = 1-E yt

101.n

The various splits shown in Figure 1 represent the optimal sequence of splits

determined from a consideration of all possible remaining splits at each stage of fitting.

Splits of binary variables require a single evaluation. Splits of multi-level categorical

variables require 2'`'1 -1 evaluations, where k is the number of levels. For example, a

categorical variable with 3 levels (A, B, and C) would be evaluated at three possible binary

cuts (A vs. BC, AB vs. C, and B vs. AC). Splits of numeric variables must be evaluated

between each successive pair of ordered observations, a total of n-1 evaluations, where n is

the number of observations in the node (excluding ties).

The thoroughness of this approach to model selection can be appreciated by noting

that, even for the simple example presented above, which included only two variables and 20

observations, as many as 46 separate evaluations were required to determine the optimal

model structure. The determination of the best initial split required 26 evaluations: 7 for the

categorical variable x1, and 19 for the numeric variable x2. The determination of the best

subsequent split of the x1 =AB node required 10 additional evaluations: one to determine

whether or not to continue splitting based on x1 (potentially yielding an x1=A node and an

x1=B node), and nine to evaluate potential splits based on x2. And finally, although the final

model did not include any subsequent splits of the x1=CD node, the decision to leave this

node intact required 10 additional evaluations: one to evaluate a subsequent split based on x1

and nine to evaluate a subsequent split based on x2.

An Example: The Praxis I Mathematics Item Pool

The Praxis I: CBT measures the mathematics, reading and writing skills of

prospective teachers during their college years. Our example concerns a pool of 510

mathematics items which were pretested in the Fall and Winter of 1992. The field test was
structured so that examinees were administered overlapping subsets of items. This was

accomplished by dividing the original item pool into representative 17-item blocks and
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administering three blocks of items to each examinee. Urder this design, each examinee
received 51 items, and each item was administered to approximately 900 examinees. The
entire pool of 510 items was then calibrated using a 3PL model, fit by means of Mislevy and
Bock's (1983) BILOG program. A representative subset of 114 items was subsequently
selected for use in the analysis of items' operating characteristics. This subset included 48
free-response items and 66 multiple-choice items.

Item Attributes

Item attributes were developed by asking members of the ETS Test Development staff
to list surface features of the items and aspects of the solution process which would be
expected to contribute to item difficulty. The resulting attribute list included 13 item feature
variables and 13 solution process variables. Two members of the staff whose duties included
the writing of similar types of items were then asked to rate each of the items on each of the
item feature variables and each of the solution process variables. Raters were also asked to
provide overall ratings of item difficulty expressed on a 1 to 5 scale. Except where noted,
subsequent analyses are based on the average of the two sets of ratings obtained.

Information about item content was also available. In particular, each item was
classified as belonging to one of five content areas:

A. Number Sense and Operations
B. Mathematical Relationships
C. Data Interpretation
D. Geometry and Measurement
E. Reasoning

The item feature variables and the solution process variables are listed in Tables 1 and
2 along with frequency statistics, rater agreement statistics and correlations with item
parameters. (Attribute abbreviations are given in parentheses.) Rater agreement was fairly
high, greater that 90% for all but one of the surface feature variables and averaging about
82% for the solution process variables. Correlations are reported for all of the items
combined (n=114) and for subsets defined by content area and response format. These
subsets were suggested by the tree analyses reported below.

The global judgements of item difficulty provided by the two raters are summarized in

Table 3. For 92% of the 'terns, the difference between the ratings provided by the two raters
was less than or equal to one point (on a five point scale). Table 3 also provides correlations
with item parameters calculated for all of the items combined and for items grouped by

response format. For the set of all items combined, item difficulty was more highly
correlated with the average difficulty rating than with either of the two individual ratings (.47
vs .40 or .43). The individual correlations show that the two raters were differentially adept
at rating items with different response formats. In particular, Rater 1 was more adept at
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rating the free-response items and Rater 2 was more adept at rating the multiple-choice items.

Insert Tables 1-3 About Here

Analysis of Item Difficulty

Our investigation into the components of item difficulty was conducted using a
combination of tree-based modeling and regression analysis. Tree-based modeling can be

considered as an exploratory technique for uncovering structure in data (Clark & Pregibon,
1992). In this study, tree models are used to identify important interaction effects, to select
subsets of variables for consideration in subsequent regression analyses, and to provide
graphic displays of the modeling results.

The tree-based analysis of item difficulty was conducted in stages. The set of
predictor variables considered in the initial stage of the analysis consisted of all of the item
attributes described above except for the item difficulty ratings provided by the two raters.
The difficulty rating data was intentionally excluded to avoid swamping the information
available from the other item attributes. This strategy allowed several interesting features of

the data to be revealed.

Most of the attributes considered in this study were originally scored on a binary
scale. Consequently, the average attribute scores considered in the tree-based analyses were
specified on a three-point scale: 1 = both raters agreed that the feature was present; 0 = both

raters agreed that the feature was not present; and 0.5 = the two raters disagreed on whether
or not the feature was present. Potential splits of these variables were evaluated twice: once
with disagreements grouped with is (feature present); and once with disagreements grouped
with Os (feature not present). As will be seen, the optimal grouping varied from one attribute
to another and from one analysis to another.

Figure 2 provides a graphical representation of a tree model developed to predict item
difficulty from the surface feature variables and the solution process variables. The predicted
difficulty value associated with each node can be read from the horizontal axis. The item
attributes used to define each split are indicated on the lines connecting parents to children.
Split definitions also indicate the optimal treatment of rater disagreement. Split definitions of
the form "attribute<1" and "attribute =l" indicate that, for that attribute, the disagreement
items were grouped with the items coded as "feature not present". Split definitions of the
form "attribute =O" and "attribute>O" indicate that, for that attribute, the disagreement items
were grouped with the items coded as "feature present". In each case, the grouping selected
was the one which provided the best prediction.



Insert Figure 2 Here

As can be seen, the first split divides the items into subsets based on values of the
content area variable: the 61 items classified as content area A (Number Sense and
Operations) or C (Data Interpretation) are assigned to the left child node; the 53 items
classified as content area B (Mathematical Relationships), D (Geometry and Measurement), or
E (Reasoning) are assigned to the right child node. The AC node is subsequently split into
the 55 items rated as routine applications (NONROU<l) and the 6 items rated as nonroutine
applications (NONROU=1) indicating that, although AC items are generally easier than BDE
items, those AC items rated as nonroutine applications are among the most difficult items in
the pool. Although the routine/nonroutine variable is highly predictive of the difficulty of AC
items, the fact that it does not appear among the variables selected to define further splits of
the BDE node indicates that it provides minimal information about gradations of difficulty
among BDE items. As a matter of fact, Figure 2 shows that there is no overlap whatsoever
between the subset of variables selected for the prediction model for AC items and the subset
of variables selected for the prediction model for BDE items! Confirmation of this
unexpected result can be found in Tables 1 and 2 which provide corrrelation coefficients
calculated sepc rawly for the AC items and the BDE items. In all but one case, variables
which are significantly correlated with the difficulty of AC items are not significantly
correlated with the difficulty of BDE items and conversely, variables which are significantly
correlated with the difficulty of BDE items are not significantly correlated with the difficulty
of AC items. In addition, the magnitude of the correlations calculated from the appropriate
subset (either AC items or BDE items) are greater than those calculated from the combined
set of 114 items. The one exception noted concerns the solution process variable "Apply
standard algorithm in a nonstandard manner". This variable is significantly correlated with
both types of items but only appears in the tree model estimated for the BDE items. This
discrepancy can be explained by the correlation of this variable with several of the surface
feature variables.

A regression analysis was conducted to evaluate the predictive capability of the
solution process variables (SPVs) and the item feature variables (IFVs). Thirty variables were
considered in the analysis: (1) all of the SPVs and IFVs with average frequencies of at least
five (11 SPVs and 9 IFVs); (2) a dummy variable used to distinguish AC items from BDE
items; and (3) a set of 9 interaction terms. The interaction terms were defined by crossing
Type=AC with rive other variables (Word Problem, Order & Match, Histogram, Nonroutine
Application, and Recall or Recognize Facts) and by crossing Type=BDE with four other
variables (Quantitative Comparison, Apply Standard Algorithm, Apply Standard Algorithm in
Nonstandard Manner, and Apply Multistep Thinking). The results are presented as Model #1
in Table 4. Of the 30 variables originally considered, 8 were significant at an alpha level of
0.15, including four of the interaction terms suggested by the tree -based analysis. The
estimated eight-variable model accounted for 28% of the variance in item difficulty.
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Insert Table 4 Here

The analyses described above did not consider the information about item difficulty
available from the global judgements of item difficulty provided by the two raters. Figure 3

presents the tree model obtained by adding the average difficulty rating (DR) to the set of
variables considered previously. As can be seen, the average difficulty rating is now the most
important predictor, accounting for the first several splits. Note that the average difficulty
rating has divided the items into three distinct groups: the low group consists of items with
average ratings between 1 and 2.5 inclusive, the medium group consists of items with average
ratings between 3 and 4 inclusive, and the high group consists of items with average ratings
between 4.5 and 5 inclusive. This grouping is highly correlated with item difficulty: low
rated items tend to have estimated difficulties below -1.0; medium rated items tend to have
estimated difficulties between -1.0 and 0.0; and high rated items tend to have estimated
difficulties greater than 0.0. The most notable exception to this rule occurred for items
involving a Quantitative Comparison (QC). Figure 3 shows that the difficulty of the QC
items was consistently underrated. In particular, QC items with estimated difficulties in the
medium range were given low ratings and QC items with estimated difficulties in the high

range were given medium ratings.

Insert Figure 3 Here

Additional evidence of the raters' tendency to underrate the difficulty of QC items is
provided in Figure 4, which depicts the least squares regression line estimated from the entire
set of 114 items, along with points representing individual items. (QC items are plotted as
circles, non-QC itms are plotted as dots.) As can be seen, almost all of the QC items are
underpredicted. The amount of variation in item difficulty accounted for by the regression on
average difficulty rating was 21% (Model #2 in Table 4). When the regression was rerun
with the QC variable included, the amount of variation accounted for increased to 29%
(Model #3 in Table 4).

Insert Figure 4 Here

An additional analysis was conducted to determine whether any of the other item
attributes provided improved prediction over and above that provided by the average difficulty
rating and the QC variable. Using a stepwise procedure, four additional variables were
selected. The additional variables included two SPVs (Apply Standard Algorithm and
Translate Words to Symbols); one item feature variable (Histogram); and one interaction term
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(type=AC crossed with Order and Match). Estimated coefficients are given as Model #4 in

Table 4. The enhanced model accounted for 36% of the variation in item difficulty.

For practical applications requiring maximum predictive power, the enhanced model

(Model # 4 in Table 4) is preferable, since it explains the most amount of variation in item

difficulty. The other models provide useful information about what makes items easy or hard.

In particular, residuals from the analytical model (Model #1 in Table 4) can be consulted for

clues as to why some items are unexpectedly easy or hard, given the identifiable factors that

are usually associated with item difficulty.

Analysis of Item Discrimination

The tree-based analysis of item discrimination considered all of the item attributes
described previously. The fitted model is plotted in Figure 5. The first split shows that items

containing equations (EQUA>0) tend to be more discriminating than those without, although

this is not always the case. The most prominent exception occurs for multiple-choice items

(MC=1) formulated as word problems (WORDP>0) which can not be solved through

application of a standard algorithm (STDALG<1). The 15 items with this combination of
attributes were among the most highly discriminating in the pool. The plot also shows that

the least discriminating items were those which did not involve equations (EQUA =O) and
could be solved through application of a standard algorithm (STDALG=1).

Insert Figure 5 Here

A linear prediction model for item discrimination was estimated using a stepwise

regression procedure. The variables considered in the analysis included all of the item
attributes listed in Tables 1 and 2 with average frequencies of at least five, plus three
interaction terms suggested by the tree model. The interactions were defined as follows:

(1) MC*WORDP=1 if (MC=1 & WORDP>0), MC *WORDP =O otherwise;

(2) NE*WORDP=1 if (EQUAL & WORDP>0), NE*WORDP=0 otherwise;
(3) NE*STDALG=1 if (EQUAL & STDALG=1), NE *STDALG =O otherwise.

The estimated regression model included one of the item feature variables (EQUA), and two
of the interaction terms (MC*WORDP and NE*STDALG). As shown in Table 5, EQUA and
MC*WORDP have positive coefficents and NE*STDALG has a negative coefficient.
Together, these variables account for 12% of the variance in item discrimination.

Insert Table 5 Here
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Analysis of Item Asymptotes

The 3PL asymptote parameter measures the likelihood of responding correctly to an
item through random guessing. Since the chances of guessing the correct response to a free-
response item are extremely small, we followed the common practice of setting the asymptote
parameter equal to zero for all of the free-response items in this study. Consequently, our
analysis of item asymptotes was confined to the 66 items classified as multiple-choice
(MC=1). This subset included 41 standard multiple-choice items with 3 or 4 options, and 25
nonstandard multiple-choice items with varying numbers of options, from eight to more than
twenty. (The exact number of options was not tallied for items with more than twenty
options.) The tree model estimated from this data is plotted in Figure 6. As can be seen, the
number of choices is the single most important predictor. Items with five or more choices
have low predicted asymptote values (6<0.15); items with .fewer than five choices have high
predicted asymptote values (6>0.15).

Insert Figure 6 Here

The linear regression models estimated to predict item asymptotes are listed in Table
6. A model including the single variable, "Number of Choices" accounts for 59% of the
variance. A model including "Number of Choices" and four additional variables accounts for
85% of the variance. The additional variables include: a dummy variable coded as 1 for
items with twenty or more options, and zero otherwise; the square of the number of choices
variable; and two solution process variables "Apply standard algorithm in a nonstandard
manner" and "Interpret mathematical vocabulary". The dummy variable was included to
account for the fact that the No. of Choices variable was truncated at twenty.

Insert Table 6 Here

Past efforts to develop prediction models for item asymptotes were significantly less
successful than the current effort. In the analysis of verbal items reported in Mislevy et al.
(1993), for example, the prediction model for item asymptotes only accounted for 5% of the
variance. The success of the current effort can be attributed to the many different types of
items included in the Praxis I pool. Whereas most previous analyses have considered
similarly formatted items (e.g. all four Dice multiple-choice items) the Praxis pool includes
items with many different formats, from standard 3- or 4-choice multiple-choice items, to
items requiring the examinee to select a response from a table of more than 20 numbers.
This variation in item format resulted in the large variation in the Number of Choices variable
which accounted for the high value of R2 obtained.
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Evaluation of Model Fit

Predicted values of discrimination parameters, difficulty parameters and asymptotes are

plotted vs. "true" values in Figure 7. Predicted values were obtained by applying the

prediction equations with the highest values of R2, as reported in Tables 4, 5 and 6. "True"

values are the parameter estimates obtained in the original calibration of the entire pool of

510 items. Free-response items are plotted with a circle; multiple-choice items are plotted

with a dot. Although considerable variation remains for discrimination parameters, much of

the variation in difficulty parameters and asymptotes has been accounted for. In addition, the

plots show no unusual outliers.

Insert Figure 7 Here

Analysis of Difficulty Rating Data

The test developers' global ratings of item difficulty was the single most important

predictor of item difficulty among all those considered in this study. Because this variable

turned out to be so important, an additional analysis was conducted to determine what could

be learned about the "mental model" raters used to judge item difficulty. Figure 8 presents a

tree model developed to predict the difficulty rating score from the other item attributes.

Unlike the tree models presented previously, this model was built from the raw (unaveraged)

rating data provided by the two raters. The item attributes considered in the analysis included

all of the item attributes listed in Tables 1 and 2 with observed frequencies of at least five, a

variable indicating whether the item was classified as free-response or multiple-choice, a

variable indicating the source of the observation (Rater 1 or Rater 2), and a variable

indicating the content area covered by the item (A,B,C,D or E). As shown in Figure 8,

neither the rater identification variable nor the content area variable were selected for the tree-

based prediction model. The tree also shows that low rated items and high rated items are

easily identified: low rated items are those that do not involve multistep thinking

(MTHINK =0) and can be solved by recalling or recognizing facts (RECALL =1). High rated

items are those that do involve multi-step thinking (MTHINK=1). For items in the middle of

these two extremes, the picture is more complicated, involving several other item attributes.

This information may prove useful for future studies designed to refine the attribute scoring

procedures.

Insert Figure 8 Here
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Discussion

The tree-based approach described in this paper enabled us to develop a set of linear
models for predicting the difficulty, discrimination and asymptote parameters of the Praxis I
mathematics items. Using easily obtainable information about item features and test
developers' ratings of item difficulty, we were able to explain 36% of the variation in item
difficulty parameters, 12% of the variation in item discrimination parameters and 85% of the
variation in item asymptote parameters. This is enough predictive power to be practically
useful since, as was shown in Mislevy et al. (1993), similar models explaining even less
variation, when used as prior distributions for item parameters, provided the information
equivalent of approximately 250 additional pretest calibration subjects.

The tree-based approach employed in this study contributed to the success of the
modeling effort in two ways: (1) it helped us to identify several important interaction effects
which might not otherwise have been identified; and (2) it provided graphical displays of the
modeling results which helped us to understand and discuss the models. We expect that the
feedback provided by the tree-based displays will also prove useful in future efforts to refine
the attribute scoring procedures.

Due to the limited number of items available, the models developed in this study
could not be cross-validated. Additional research is needed to validate the model structure
and to investigate the stability of the estimated parameters.

12
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Table 4

Summary of Item Difficulty Modeling Results:
Estimated Regression Coefficients and R2 Values

Alternative Models

Parameter' 1 2 3 4

Intercept -.158 -2.146 -2.489 -1.899

Difficulty Rating .482 .542 .497

Quantitative Comparison .403 .709 .559

Apply Std. Algorithm -.545 -.437

Histogram -.971 -.844

Order & Match 1.185

Translate Words to Symbols -.405

BDE*(NonstdApplication) .477

BDE*(Apply Mul.Thinking) :525

AC*(Order & Match) -1.668 -.601

AC*(Recall/Recog. Only) -.685

df (8,105) (1,112) (2,111) (6,107)

R2 .33 .22 .30 .39

Adjusted R2 .28 .21 .29 .36

a) All regression coefficients were significant at an alpha level of .15.
The adjusted R2 is corrected for the number of variables in the model.
AC content areas = Number Sense & Operations & Data Interpretation.

BDE content areas = Mathematical Relationships, Geometry, Measurement & Reasoning.



Table 5

Summary of Item Discrimination Modeling Results:
Estimated Regression Coefficients and R2 Values

Alternative
Model'

Parameter' 1 2

Intercept .928 .930

Equation .146 .133

MC*(Word Problem) .159

NE*(Apply Standard Mg.) -.096

df (1,112) (3,110)

R2 .04 .14

Adjusted R2 .03 .12

a) All regression coefficients were significant at an alpha level of .15.
The adjusted R2 is corrected for the number of variables in the model.
MC = Multiple Choice Item Format. NE = The item does not contain
an equation or formula.
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Table 6

Summary of Item Asymptote Modeling Results:
Estimated Regression Coefficients and R2 Values

Alternative
Models

Parameter' 1 2

Intercept .257 .553

No. of Choices -.014 -.108

Choices>=20? -.679

(No. of Choices)2 .006

Apply Std.Alg. in Nonstd. Manner -.063

Interpret Math. Vocabulary .035

df (1,64) (5,60)

R2 .60 .87

Adjusted R2 .59 .85

a) All regression coefficients were significant at an alpha level of .15.
The adjusted R2 is corrected for the number of variables in the model.
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Figure Captions

Figure 1. A sample tree model for 20 observations.

Figure 2. Prediction of item difficulty from solution process variables and item features.

Figure 3. Prediction of item difficulty from solution process variables, item features and
difficulty rating.

Figure 4. Relationship of item difficulty to average difficulty rating.

Figure 5. Prediction of item discrimination from solution process variables & item features.

Figure 6. Prediction of item asymptote from solution process variables & item features.

Figure 7. Evaluation of model fit.

Figure 8. Prediction of difficulty rating from solution process variables and item features.
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Figure 4
Relationship of Item Difficulty
To Average Difficulty Rating
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