
DOCUMENT RESUME

ED 382 635 TM 023 064

AUTHOR Thompson, Bruce
TITLE Stepwise Regression and Stepwise Discriminant

Analysis Need Not Apply.
PUB DATE 20 Apr 95
NOTE 22p.; Paper presented at the Annual Meeting of the

American Educational Research Association (San
Francisco, CA, April 18-22, 1995).

PUB TYPE Reports Evaluative/Feasibility (142)
Speeches /Conference Papers (150)

EDRS PRICE MFO1 /PCO1 Plus Postage.
DESCRIPTORS *Educational Research; *Error cf Measurement;

Heuristics; *Psychological Testing; *Regression
(Statistics); *Research Methodology; Sampling

IDENTIFIERS Research' Replication; *Stepwise Regression

ABSTRACT
Stepwise methods are frequently employed in

educational and psychological research, both to select useful subsets
of variables and to evaluate the order of importance of variables.
Three problems witn stepwise applications are explored in some
detail. First, computer packages use incorrect degrees of freedom in
their stepwise computations, resulting in artifactually greater
likelihood of obtaining spurious statistical significance. Second,
stepwise methods do not correctly identify the best variable set of a
given size, as illustrated by a concrete heuristic example. Third,
stepwise methods tend to capitalize on sampling error, and thus tend
to yield results that are not replicable. (Contains 22 references, 4
tables, and 1 figure.) (Author)

******************In---*********************************************

Reproductions supplied by EDRS are the best that can be made *

* from the original document.
**********************************************************************



a

kr) stepbad.wpl

4D

CA
00

C)

U.S. DEPARTMENT OF EDUCATION
(Mac* of Educatronat Research and ornptuvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

tp, 14 document has been reproduced as
recanted from the person or orgentratton
of Igmating a

O Mmor changes have Peen made to improve
raproduchon Quaid),

Points of view or °cantons stated in this docu
ment 00 not necessaray represent °Moat
OERI posthon or poltcy

PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

.19Xi) eE 71,epti loSo rl

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

STEPWISE REGRESSION AND STEPWISE DISCRIMINANT ANALYSIS

NEED NOT APPLY

Bruce Thompson

Texas A&M University 77843-4225
and

Baylor College of Medicine

Paper presented at the annual meeting of the American
Educational Research Association (training session #25.16), San
Francisco, April 20, 1995.

BEST COPY AVAILABLE

2



Abstract

Stepwise methods are frequently employcd in educational and

psychological research, both to select useful subsets of variables

and to evaluate the order of importance of variables. Three

problems with stepwise applications are explored in some detail.

First, computer packages use incorrect degrees of freedom in their

stepwise computations, resulting in artifactually greater

likelihood of obtaining spurious statistical significance. Second,

stepwise methods do not correctly identify the best variable set of

a given size, as illustrated by a concrete heuristic example.

Third, stepwise methods tend to capitalize on sampling error, and

thus tend to yield results that are not replicable.
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It is the practice within Educational and Psychological

Measurement and other journals to present occasional supplementary

guidelines for authors that complement general APA style

requirements. For example, Thompson (1994b) discussed requirements

involving both statistical significance testing and language

regarding score reliability. The present paper focuses on major

problems with stepwise analyses, and suggests that these methods

ought to be avoided in favor of more suitable alternatives.

Huberty (1994) recently noted that, "It is quite common to

find the use of 'stepwise analyses' reported in empirically based

journal articles" (p. 261). However, various authors have

presented scathing indictments of many of these applications (cf.

Huberty, 1989; Snyder, 1991; Thompson, 1989). Three major problems

can be noted.

The heuristic examples emploved here to illustrate these three

problems involve stepwise regression analysis. However, since all

commonly applied analytic methods are correlational (Cohen, 1968),

and are special cases of canonical correlation analysis (Knapp,

1978; Thompson, 1991), the present discussion generalizes across

the full family of these various applications.

Some researchers employ stepwise methods to select a subset of

better variables from among a larger constellation of predictors,

for use in present or future research (i.e., so-called "variable

selection"). The methods are also sometimes used to interpret data

dynamics, under a premise that selected variables are more

important thr'l predictors that are not selected, or that entry
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order reflects variable importance (i.e., so-called "variable

ordering"). Stepwise methods are not usually useful for either

purpose.

Horrendously Wrona Degrees of Freedom

Problem

Degrees of freedom in statistical analyses reflect the number

of unique pieces of information present for a given research

situation. These degrees of freedom constrain the number of

inquiries we may direct at our data, and are the currency we spend

in analysis.

Regrettably, commonly used statistical packages incorrectly

compute the degrees of freedom in stepwise analyses. The use of

incorrect degrees of freedom in practice often has dire

consequences as regards the accuracy of our inferences.

Table 1 presents an illustration. Presume that we have data

from 101 subjects on a dependent variable ("Y") and 50 predictor

variables. After five steps of stepwise regression analysis. the

five entered predictor variables may "explain" 20% of the

variability in the Y scores (i.e., 20/100 = 20% = R2), as

illustrated in Table 1.

INSERT TABLE 1 ABOUT HERE.

Computer packages compute the degrees of freedom correctly, as

n-1. However, the degrees of freedom "explained" (also variously

called "model", "regression", "between", etc.) is computed as the

number of "entered" predictor variables (i.e., 2y). The degrees of

2



freedom "unexplained" (also variously called "error", "residual",

"within", etc.) is then computed as These calculations

yield a statistically significant (a=.05) result in the Table 1

illustration.

However, various researchers (cf. Snyder, 1991) have correctly

noted that these degrees of freedom calculations for the explained

and unexplained variance partitions are simply wrong. If the five

entered predictor variables had been randomly selected, an

explained degrees of freedom of 5 might be arguably correct.

But our five predictors were selected by, at each step,

looking at the results for all the predictor variables not yet

entered! Viewed differently, at each step all 50 predictors

variables were entered, though we may have constrained the b and 0

weights for most of the predictors to be 0 at each step (Cliff,

1987, p. 187). Thus, the computer packages are erroneously not

charging us any degrees of freedom for consulting our data in this

manner.

This statistical welfare system may cause us to radically

overestimate the atypicality of our results, i.e., create an

artifactually small n,.u-a-ALCULATED Table 1 dramatically il)ustrates how

the use of the incorrect degrees of freedom can (a) radically

inflate MScaLALNED, (b) radically dsflateMSUNExpLAINED, and consequently

(c) very radically inflate CALCULATEDLCULATED e g 4.75 versus 0.25). No

wonder Cliff (1987, p. 185) noted that "most computer programs for

[stepwise] multiple regression are positively satanic in their

temptations toward Type I errors."
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Caveats

Of course, it is important in evaluating statistical practices

not to make what in logic is termed an "is/ought" or a

"should/would" error (Hudson, 1969; Hume, 1957). As Strike (1979)

explains,

To deduce a proposition with an "ought" in it from

premises containing only "is" assertions is to get

something in the conclusion not contained in the

premises, something impossible in a valid deductive

argument. (p. 13)

The fact that most researchers "are" using the wrong degrees of

freedom in their stepwise analyses does not mean that we therefore

"should" abandon these methods. Instead, logically we ought simply

to use the correct degrees of freedom.

We need not even somehow persuade the software companies to

fix their computer programs; we need only use the printed sums-of-

squares instead with the correct degrees of freedom we derive

ourselves to then recalculate the remaining statistical tests.

Doing so merely requires a willingness to believe that computer

programs are not infallible, because computer programs were written

by fallible people and not by higher beings.

It is important to note that all stepwise applications are not

equally evil as regards the inflation of Type I error. For

example, the stepwise results after one step for a problem

involving only two predictors might not be so seriously distorted.

Some readers may protest that no one would ever invoke stepwise
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methods with a small number of predictor variables. However, a

colleague only a few days ago described a manuscript for which he

was serving as a referee, and in that study submitted to a

prominent national journal the authors conducted several dozen

stepwise methods for problems each involving only three predictor

variables!

The seriousness of problems with wrong degrees of freedom

being used, as with most statistical (and life) issues, is

situationally conditional. Stepwise methods will be somewhat less

evil, for example, when (a) the sample size is very large, (b) the

number of predictor variables is small, and/or (c) the sum of

squares explained remains near zero across steps.

Does Not Identify the Best Predictor Set of Size "q"

Problem

Unfortunately, many researchers erroneously believe that

conducting two or five steps of analysis will identify the best

predictor set of size two or five. This simply is not what stepwise

methods typically do.

Ignoring for present purposes the variable deletion aspect of

a true stepwise analysis, at step number five forward stepwise

methods address the question, "Given the four predictors already

entered, which one additional predictor will most improve the

analysis?". Thus, the question is conditioned on the presence of

the first four predictors, and yields a situation-specific

conditional answer in the context (a) only of .he specific

variables already entered and (b) only those variables used in the

5
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particular study but not yet entered.

If the first variable entered was different, so the variable

entered in the remaining steps might differ. Furthermore, even if

the first four entered variables remained constant, deleting or

adding predictors from the study certainly might also yield a

different answer to the context-specific stepwise question.

But if we wish to determine the best set of predictor

variables of size q, the question, "what is the best set of q=5

predictors?", does not ask a conditional question invoking a linear

sequence of variable entry. Of course, if we desire this second

question to be answered, it is not reasonable to invoke the answer

to a question one is not posing!

Thus, the five predictors entered in five steps of forward

entry will not typically answer the question as to what are the

best q=5 predictors, and it is even conceivable that none of the

five variables selected by stepwise will be included in the best

subset of five predictors.

Figure 1 presents the Venn diagram of a heuristic example to

make this dynamic concrete. Since Venn diagrams are two-dimensional

representations of multi-dimensional phenomena, they must be

interpreted as only figurative portrayals of simultaneous

relationships among three or more variables (Craeger, 1969).

However, bivariate relationships can be literally presented in this

manner.

INSERT FIGURE 1 ABOUT HERE.

The example involves a dependent variable,

6
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predictor variables. Table 2 presents sums-of-squares variance

partitions associated with Figure 1, e.g., XI explains 100 of the

400 sums-of-squares units associated with the individual

differences (i.e., variability) in the Y scores. Table 3 translates

the sums of squares into correlation coefficients.

INSERT TABLES 2 AND 3 ABOUT HERE.

Table 4 presents the regression analyses for the data. If a

stepwise analysis was conducted, predictor X1 would be entered

first, because this variable has the largest squared bivariate

correlation (r2 = 25%) with Y. In the second step, predictor X2

would be entered, and the resulting R2 would be 45.00%.

INSERT TABLE 4 ABOUT HERE.

However, if an all-possible-subsets analysis is conducted with

the same data, the best predictor set of size q=2 is determined to

be predictors X2 and X4, with an R2 of 47.5%. The best predictor set

of size q=2 does not include either of the two predictors entered

in the two steps of the stepwise analysis!

Caveats

Again, few behaviors either in life or in statistics are

always wrong. Some behaviors are only usually wrong, and we have

to think about whether special exceptions have arisen. This is

what makes teaching methodology so difficult--we must teach our

students to think rather than only to memorize universal principles

of lock-step rote behaviors.

First, our two questions ("which one additional predictor...?"
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and "what is the best set...?") are logically equivalent when we

are investigating the subset, q=1. Stepwise analysis does correctly

identify the best single predictor.

Second, the two types of analyses do yield the same answers

whenever the predictors are perfectly uncorrelated. This occurs

when we use orthogonally-rotated principal components scores in an

analysis, for example. Of course, 30 steps of stepwise with such

predictors tells us nothing we don't already know, if we already

know the 30 correlation coefficient involving Y and each of the 30

uncorrelated component scores.

Tendency to Yield Non-replicable Results

Problem

Stepwise methods tend to yield conclusions that will not

replicate in future research. This is because stepwise methods tend

to capitalize outrageously on sampling error. Sampling error is

variability in sample data that is unique to the given sample, and

therefore cannot be reproduced in subsequent samples. Snyder

(1991) presents an excellent heuristic example of these dynamics.

At a given step, the determination of which single variable to

enter will enter variable X1 over variables X2, X3, and X4, even if

X1 is only infinitesimally superior to the other three variables.

It is entirely possible that this infinitesimal advantage of

variable X1 over another variable is sampling error, given that the

competitive advantage of X1 is so small.

Stepwise analysis is a linear series of conditional decisions,

not unlike the choices one makes in working through a maze. An

8
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early mistake in the sequence will corrupt the remaining choices.

If X1 is incorrectly entered first in the analysis due to an

infinitesimal advantage representing only a small amount of

sampling error, all remaining conditional entry decisions may also

therefore be incorrect.

Since small differences may reflect sampling error, but these

small differences can greatly effect the sample results, stepwise

sample results often do not generalize. Thus, Cliff (1987, pp.

120-121) suggested that, "a large proportion of the published

results using this method probably present conclusions that are not

supported by the data."

Caveats

Obviously, less sampling error tends to be present in data

sets involving (a) larger samples, (b) fewer predictor variables,

and (c) larger effect sizes, as reflected in the factors involved

in most statistical corrections for positive bias in uncorrected

variance-accounted-for effect sizes (Snyder & Lawson, 1933;

Thompson, 1990). Thus, use of stepwise methods in these

circumstances might be somewhat less sinful. And again, if the

predictor variables are uncorrelated, the analysis is not distorted

by the sampling error in the relationships among the predictors.

Summary

Stepwise methods do not do what most researchers believe the

methods do. Stepwise methods are especially problematic when

statistical significance tests are invoked to determine stopping

positions, because the methods have all the problems associated

9
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with conventional statistical significance applications (Carver,

1978; Cohen, 1994; Thompson, 1993, 1994a, 1994b, 1994c), in spades.

As a general proposition, there are readily available software

programs to assist with appropriate variable selection efforts by

conducting almost instantly-available and painless all-possible-

subsets analyses. Thus, stepwise analyses should be eschewed in

favor of programs such as those offered by McCabe (1975) ,the Morris

program distributed within Huberty's (1994) book, or SAS procedure

RSQR. As regards interpretations involving the origins of

explained variance, i.e., variable ordering, a useful alternative

is simply to consult standardized weights (called different names

across analyses to confuse graduate students, e.g., beta weights,

factor pattern coefficients, standardized discriminant function

coefficients) and structure coefficients (Thompson & Borrello,

1985). Huberty (1994) summarizes a variety of other helpful

variable ordering strategies for the discriminant analysis case.
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Table 1
Hypothetical Five-Step Regression Model

vlith 101 Subjects and 50 Predictor Variables

Analysis Source SOS df MS Fcalc Pcrit R2

1 Explained 20 5 4.0000 4.75 4.41 20.00%
Unexplained 80 95 0.8421
Total 100 100

2 Explained 20 50 0.4000 0.25 **4e- 20.00%
Unexplained 80 50 1.6000
Total 100 100

*Since Fcritical at infinite and infinite degrees of freedom equals
1, an Fcalculated less than 1 can not be statistically significant.

step.wkl 3/22/95
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Table 2
Variance Partitions of the Predictive

Abilities of the Four Predictor Variables

Single Partitions Partitions in Combinations
Partition SOS Predictor Partitions Total

A 20 X1 = E + F + G
B 50 = 21 + 49 + 30 = 100
C 27 X2 = B + C + D
D 3 = 50 + 27 + 3 = 80
E 21 X3 = A + B + E
F 49 = 20 + 50 + 21 = 91
G 30 X4 = D + G + H
H 66 = 3 + 30 + 66 = 99

Table 3
Pairwise r Values

Variable
Pair

Common
SOS r2

, X2 0 .0000 .0000
XI,X3 30 .0750 .2739
XI,X4 60 .1500 .3873

100 .2500 .5000
X2 , X3 185 .4625 .6801
X2, X4 3 .0075 .0866
X2, 80 .2000 .4472
X3 , X4 0 .0000 .0000
X3 ,Y 91 .2275 .4770
X4 , 99 .2475 .4975

Note. r2 = Common SOS / 400. For example, r2x1,e = 100/400 = +.2500,
while rxix = the square root of r2x" = the square root of +.2500
= +.5000.
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Table 4
Calculation of O's and R2's for the

Six Pairwise Combinations of the Four Predictors

Predictors rl r2 rxx 0 0(r1) + /3 (r2) =

1,2 1 .5000 .4472 .0000 .5000
2 .4472 .5000 .0000 .4472 .2500 + .2000 = .4500

1,3 1 .5000 .4770 .2739 .3993
3 .4770 .5000 .2739 .3676 .1997 + .1753 = .3750

1,4 1 .5000 .975 .3873 .3616
4 .4975 .5000 .3873 .3575 .1808 + .1778 = .3586

2,3 2 .4472 .4770 .6801 .2285
3 .4770 .4472 .6801 .3215 .1022 + .1534 = .2556

2,4 2 .4472 .4975 .0866 .4072
4 .4975 .4472 .0866 .4622 .1821 + .2300 = .4121

3,4 3 .4770 .4975 .0000 .4770
4 .4975 .4770 .0000 .4975 .2275 + .2475 = .4750

Note. 13 = (r1 - (r2 * rxx)) / (1 - rxx2). For example, for
predictor pair X1 and X3, 01 =

(.5000 - (.4770 * .2739)) / (1 .27392)
(.5000 - .1306) / (1 - .0750)
.3694 .9250 = .3993

R2 = 0(rl) + 0(r2). For example, for predictor pair X1 and X3, R2 =
(.3993 * .5000) + (.3676 * .4770)
.1997 + .1753 = .3750

step6666.wkl 3/24/95
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Figure Caption.

Figure 1

Venn Diagram of Relationships Among Five Variables

I



x 0 
rr 

I-3 
Pt 
IV 1-3 

ea, 
CD 

D:01 PI 
CD m 

to to 
Pi II 0 fD 

f.3 
ig g 

0 rt 0 
o o 

tis a 
o Pl 

m tI 0' a 
in 
, H co 

et 
o to 016. 

0 0 ° 
14 A Mt 

CO 
a, t?4 g P i 

0 a 
co 

0 0 
Pit 

1 
,%) rs 

I 
, 

Pi 
." co 

Q as 
1-1- 0 PI 

a co 
ID CA 0 
to 

MJ 1'4 tit 0 
ILI 1-4 0 0-1 

O PI 
a 4 
r$ 13/ 

CD 

1'21 ef. 
tr C) II CA 

ct P-1 
0 o 0 in 

O 11 
CD 

O 
GI 0 

0 (-t- 
m 11 

ca 
II 

0 
o 
L.3 

0 CD 

O "a 

at ID 

rf 

CD 

rr 
rt. 
ID 
Is 
611 

rr 
CD 

04 


