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Abstract

Educational reform efforts have led to increased use of alternatives to
the traditional binaryscored multiple choice item. Many of the stimuli
employed by these alternative assessments yield complex responses that
require complex scoring rules. Some of these new item types can be
polytomouslyscored. Differential item functioning (DIF) assessment is a
form of equity assessment. DIF assessment attempts to identify items for
which subpopulations of examinees exhibit performance differentials that are
inconsistent with the performance differentials typically seen for those
subpopulations on collections of items that purport to measure a common
construct. Any DIF technique can be evaluated in terms of how well it meets
certain statistical and practical criteria. These DIF assessment criteria need to
be attended to before we can conclude that the items associated with
alternative forms of assessment can be adequately tested for DIF. DIF
methodology is welldefined for traditional, binaryscored multiplechoice
items. This paper provides a classification scheme of DIF procedures for
binaryscored items that is applicable to new DIF procedures for
polytomouslyscored items. In the process, a formal development of a
polytomous version of a binary DIF technique is presented. Finally, several
polytomous DIF techniques are evaluated in terms of statistical and practical
criteria.
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Equity Assessment for Polytomously Scored Items: A Taxonomy of
Procedures for Assessing Differential Item Functioning

Over the past decade, the clamor over the poor quality of education in
the United States has led to an outcry for educational reform (National
Commission on Excellence in Education, 1983; U.S. Congress, 1992).
Educational testing is increasingly viewed as one of the primary tools for
implementing educational reform in the United States (e.g. America 2000,
National Assessment for Educational Progress). Furthermore, tests have
come to be viewed as a means of ensuring greater accountability in the
educational process (Madaus, 1985). This widespread emphasis accorded to
educational testing has given rise to the idea that tests can lead to changes in
curriculum and instruction. Because tests are thought to play such a
powerful role in influencing the learning process, many are advocating the
redesign of tests to support educational goals (Morrison, 1992). Politicians and
educators are arguing for "new and better" assessment methodsmethods
which more closely resemble what goes on in classrooms (National
'Educational Goals Panel, 1991). Test reformers are calling for assessment
procedures which consist of "authentic" tasks that students should practice.
This has resulted in the proliferation of "performance" or "authentic"
classroom assessment procedures as replacements for traditional tests (see
Bennett and Ward, 1993 for an indepth examination of assessment
methodologies arising from the authentic assessment movement). Thus,
most proposals for national testing programs or systems of assessment do not
call for the implementation of "known" testing technology, i.e., the multiple
choice, normreferenced achievement test (Morrison, 1992). To the contrary,
the multiplechoice test, with its sound psychometric properties developed
over nearly a century, is viewed increasingly as a task irrelevant to the
learning and development of students.

Performance assessment includes a broad range of testing methods that
often require students to create an answer rather than select a response.
Performance assessment item types span a continuum from multiplechoice
to presentation/performance according to the degree of constraint placed on
the examinee's response (Bennett & Ward, 1993). At the upper end of the
continuum, performance assessments could require students to write an
essay, carry out experiments, create and defend a position in an oral
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performance, or to assemble a "portfolio" over a period of time to illustrate
growth in a particular skill or domain (Camp, 1993; Morrison, 1992; Valencia
& Calfee, 1991).

Assessment methods such as these are complex, both in terms of the
"item" or task stimuli and the type of response which the stimuli produce.
Such assessments require new methods for measuring student responses (i.e.,
scoring). Often these assessment techniques are scored in a "polytomous"
manner, that is, they use scoring rubrics that have several categories and
assume an inherent "order" of degree of correctness of the response. This
paper will focus on the polytomouslyscored item type.

Equity Concerns
Differential item functioning (DIF) refers to a psychometric difference

in the way an item functions for two groups. DIF indicates a difference in
item performance between two comparable groups of examinees, that is,
groups that are matched with respect to the construct being measured by the
test. The comparison of matched or comparable groups is critical because it is
important to distinguish between differences in item functioning and
differences in group ability. The vast majority of multiple choice tests are
rightsscored (i.e. each item is scored either as right or wrong). Even when a
multiplechoice test is not rightsscored, it is often analyzed as if it were
(Dorans, 1991). Most procedures utilized to assess DIF presume that items are
scored in this binary fashion (Holland & Wainer, 1993). Currently there are
numerous methods for conducting DIF assessment for binaryscored items
(see Millsap & Everson, 1993; Scheuneman & Bleistein, 1989 for a review).

Educational reform efforts have led to increased use of alternatives to
the traditional binaryscored multiple choice item. Many of the stimuli
employed by these alternative assessments yield complex responses that
require complex scoring rules. Some of these new item types can be
polytomouslyscored. Recently, several procedures have been proposed for
the assessment of DIF for polytomouslyscored items (Chang, Mazzeo, &
Roussos, 1993; Grima, 1993; Muraki, 1993; Rogers & Swaminathan, 1993;
Welch & Hoover, 1993, Wilson, Spray, & Miller, 1993; Zwick, Donoghue, &
Grima, 1993b). However, several important methodological issues will need
to be addressed in the transition from binary to polytomous items. These
issues can be subdivided into two classes: (1) issues pertaining to the validity
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of the rules for assigning scores to stimuli and the quality of the matching

variable, and (2) issues directly related to the statistical and practical utility of

the particular DIF procedure. A meaningful DIF study requires satisfactory

resolution of the first class of issues. The second class contains criteria for
evaluating alternative DIF procedures.

The goal of this paper is threefold. First, we suggest a classification
scheme or DIF procedures used with binaryscored items, and then apply
this clas3ification system to DIF procedures for polytomouslyscored items.
Second, we delineate several issues associated with the extension of current
DIF procedures to performance assessments in which polytomous scoring
rules are utilized. Finally, we propose criteria for the evaluation of
polytomous DIF techniques and evaluate a selected set of polytomous DIF
techniques in terms of these criteria.

Framework for the Classification of DIF Procedures
Two classes of DIF procedures exist for binary items: observedscore

approaches and latentvariable approaches (Millsap & Everson, 1993). Both
classes assume that the items studied for DIF measure the same dimension as
the matching variable, i.e. they presume unidimensionality. The
fundamental difference between these two classes of approaches is that the
former uses an observedscore as the matching variable, while the latter uses
an estimate of latent ability, which is a function of observed data. This
distinction has implications for how DIF is defined and measured. In
addition to this distinction by type of matching variable, we distinguish
between procedures that employ a functional form for the relationship
between item score and the matching variable (i.e. parametric procedures)
and those that do not (i.e. nonparametric procedu2es). Other classification
schemes impose a dichotomy similar to the distinction between observed
score and latent variable approaches (Scheuneman & Bleistein, 1989; Wainer,
1993). However, these schemes do not make a clear distinction between the
type of DIF being assessed and the amount of structure imposed on the data by
the technique. That is, they omit the important distinction between
procedures which define a functional form for the item score/matching
variable relationship a-ad those that do not. Consequently, the false
impression may be conveyed that all latent variable models employ a
parametric form, while all observed score approaches do not. The framework
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we present adds this important distinction and can be used to classify both
binary and polytomous DIP procedures. Parametric approaches to DIF
detectio.L require the assumption that the model for descr_bing the
relationship between item performance and the matching variable is correctly
specified.

A problem associated with the parametric approach is that the detected
DIP is often an artifact of model mispecification. In addition, very large
sampling covariation among parameter estimates is often a problem for
parametric approaches that employ several parameters (Lord, 1980; Ramsay,
1991; Thissen & Wainer, 1982). While the nonparametric procedures are
relatively free of model mispecification and collinearity problems, they
require sufficient data to directly estimate the item/test regressions. In small
samples, these procedures may produce unstable results due to the effects of
sampling error.

These two definitional distinctions, matching on an observable vs.
matching on a modelbased estimate of an unobservable or latent variable,
and whether the approach posits a parametric form for the relationship
between item score and the matching variable can be crossed to produce Table
1 for binary DIF procedures.

ObservedScore DIF Procedures

Although there are many observed -score procedures for assessing DIF
on binaryscored items (Holland & Wainer, 1993; Scheuneman & Bleistein,
1989: Shepard, Camilli, & Williams, 1985), we will focus on three methods
because initial attempts have been made to extend these procedures to the
case of polytomous DIF: the standardization (STND) procedure (Dorans &
Ku lick, 1983; 1986), the MantelHaenszel (MH) method (Holland & Thayer,
1988), and a logistic regression (LRDIF) approach (Swaminathan & Rogers,
1990). Each of these procedures are observedscore approaches because they
share a common definition of . LullDIF at the item level: "An item is
unbiased if, for all individuals having the same score on a homogeneous
subtest containing the item, the proportion of individuals getting the item
correct is the same for each population group being considered"
(Scheuneman, 1975, p. 2). All three procedures employ an observed score
measure of the construct of interest as a matching variable. Hence, they state



that there is no differential item functioning between groups after they have
been matched on an observed score, usually the total score. None of these
three observed-score methods postulate a psychometric or a cognitive model
of item or test performance (see Dorans & Holland, 1993; Swaminathan &
Rogers, 1990 for a more complete description of these observed-score DIF
procedures ).

Table 1

Cross-Classification of Binary DIF Procedures.

A Parametric Form
for Relationship Between
Item Score and the
Match u Variable

ObservedScore
Matching Variable Logistic Regression

Latent-Variable
Matching Variable

No Parametric Form
for Relationship Between
Item Score and the
Matchinz, Variable

Mantel-Haenszel

Standardization

General IRTLR

Limited Information IRT
LR

Log linear IRTLR

IRT D2

Lord's Chi Square

SIBTEST

Binary Non-Parametric Observed-Score DIF Procedures
SIND and MH are both observed-score approaches for binary DIF that

do not specify a parametric form for the relationship between item-scores and
the matching variable (Dorans & Holland, 1993).

Standardization (STND). The null-DIF definition for the STND
method states that at each level of the matching variable there is no
difference in proportions correct between the focal group (the focus of the DIF
analysis) and the reference group (the basis for comparison). This ri-rt be

conceived of as ze-o difference in expected item score given the matching
variable, or as no difference between empirical item test regressions for the
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focal and reference groups. This approach does not use any parametric
function to fit either the empirical item test regressions or the difference
between empirical item test regressions of the focal and reference groups.

An average overall index of DIF, which is referred to as STD P -DIP, is
obtained by averaging differences in expected item scores across levels of the
matching variable, weighting each difference by focal group relative
frequencies. A standard error has been developed to quantify the stability of
this index (Dorans & Holland, 1993), and it has been shown to perform well
in practical applications (Donoghue, Holland, & Thayer, 1993). No formal
statistical test of the null l-,ypothesis has been developed for the
standardization approach, although a test statistic involving the ratio of STD
P -DIP to its standard error can be employed.

Mantel-Haenszel (MH). The null -DIF definition for the MH method is
that the odds for responding correctly is the same in both the focal group and
the reference group, given a level of the matching variable across all M levels
of the matching variable (i.e., total score). This definition has been shown to
be equivalent to STND's definition of null-DIF, which is in terms of
proportions correct (Dorans & Holland, 1993).

The MM approach is sometimes viewed as parametric because it
postulates a particular statistical model, known as the constant odds-ratio
model, as a particular type of violation of null-DIF. In other words, the MH
approach measures amount of DIF under the restriction that the odds-ratio is
the same or constant across all score levels. Hence, it is often referred to as a
uniform DIF model. It does not, however, postulate a particular parametric
form for the odds, for either the focal or reference group, as a function of the
matching variable.

Mantel and Haenszel (1959) provided an estimate of the constant odds-
ratio (amH) that ranges from 0 to 0O with a value of 1 indicating null-DM. In
general, odds are converted to log odds because the latter is symmetric around
zero and easier to interpret. Holland and Thayer (1985) converted amH into a
difference in deltas, MH D-DIF, via a log odds transformation. The standard
error of the MH D-DIF has been studied extensively and performs well in DM
contexts (Donoghue, Holland & Thayer, 1993). In addition, the MH procedure
is associated with a well-established significance test (Mantel & Haenszel,
1959).
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Polytomous NonParametric ObservedScore DIP Procedures
STND and M1-1 are two closely related binary DIF techniques that

measure DIF identically when generalized to the polytomous situation. One
generalization of the MI-I procedure is the Mantel (1963) procedure. Two
mathematically equivalent measures of polytomous DIF have been suggested

as useful supplements to the hypothesis test statistic for the Mantel procedure
(Dorans & Schmitt, 1993; Zwick, Donoghue & Grima, 1993b). Because the
extension of the STND model to polytomouslyscored items has not been
developed in mathematical detail elsewhere, we will do so here, and point
out its relationship to the polytomous DIF version of the Mantel procedure.

Polytomous STND. The general STND approach involves a
comparison of two empirical itemtest regressions, in which differences in
these regressions at each score level are weighted by the relative frequencies
of focal group members at that score level. These weighted differences are
then summed across score levels to arrive at a measure of DIF. The
distinction between binary DIF and polytomous DIF is the number of levels of
the dependent variable, i.e., the item score. For binary items, the STD PDIF
index is an average weighted difference in proportions correct (the expected
item score under binary scoring) across score levels. The more general index
is STD ESDIF, or standardized expected item score DIF. For the general case,
we assume that there is: (1) a matching variable, X, with M levels, m = 1, M;

(2) an ordered item score, Y, with K levels, k = 1, K; and (3) two groups: r

(reference) and f (focal).
The polytomous version of STND starts with the computation of

expected item scores for both the focal group, Efrn(Y I X), and the reference
group, Erm(Y I X), via

Efin(y I X) Nfmk Yk/ Nfm,

and

Erm(Y I X) ='k Nrmk Yid Nrm,

(1)

(2)

where Nfmk is the number of examinees in the focal group at score level m
with item score Yk, and Nfm is the total number of examinees in the focal

9 12
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group at score level m. The terms Nrmk and Nrm are parallel reference
group frequencies. The item score variable, Yk, can take on any ordered
values , including 1, 2, 3, ... K.

As with binary STND, the next step is to take differences in expected
item scores at each level of the matching variable,

Dm = Efm(Y I X) - Erm(Y I X), (3)

and weight these differences by focal group relative frequencies ttiorans &
Kulick, 1986), to obtain

STD ES-DIF = Em NfmDm /1\4 (4)

where, Nf is the total number of focal group examinees.
In the adaptation of the Mantel procedure to polytomous DIF, the

expression in Equation 4 is defined as the standardized mean difference
(Zwick et al., 1993b). In addition, there is a test statistic associated with the
Mantel approach,

MNTL = ( Em Fm - Ern E{Fm})2 / VARm {Fm},

where

Fm = Efm(Y I X)Nfm,

(5)

(6)

and EfFm) and VAR{Fm} are the mean and variance of Fm under the
hypothesis of no association between group and item score given the value of
the matching variable. Under the no association null hypothesis, MNTL is
distributed as a chi-square with one degree of freedom (Mantel, 1963; Zwick et
al, 1993b)

HVV1 and HW3 Approaches. Recently, another pair of test statistics
have been proposed for detecting departures from null-DIF for
polytomously-scored items (Welch & Hoover, 1993). Both indices can be
described using a general standardization framework in which differences in
expected item scores are weighted across levels of the matching variable to

10
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arrive at a summary measure of DEF. One index, HW1, takes the difference in

expected item performance at each level of the matching variable and

converts it into a t-statistic by dividing by a pooled standard error of the mean

difference. These t-statistics are then summed across levels of the matching

variable, and divided by the square root of the sum of the variances of these

independent t-statistics. The resultant statistic is normally distributed with a

mean of 0 and a standard deviation of 1. The second index, HW3, weights

each test statistic by the reciprocal of its sampling variance. A correction factor

is employed at each level of the matching variable to correct for bias in small

samples. The resultant statistic is normally distributed with a mean of 0 and a

standard deviation of 1. Thus, both HW1 and HW3 fall within the general
standardization framework in which differences in expected item scores are
averaged across levels of the matching variable using weights that are driven
by statistical considerations. However, HW1 and HW3 are test statistics; their

magnitudes are samplesize dependent, so they are not measures of the

amount of DIP.
Generalized Mantel-Haenszel (GMH) Approach. The generalized MH

procedure is another generalization of the binary MH procedure (Mantel and

Haenszel, 1959). Whereas the polytomous STND procedure and the Mantel

procedure emphasize expected (average) item scores when comparing focal

and reference groups, the generalized MH (GMH) procedure compares entire

item response distributions, conditioned on the matching variable.
The test statistic for the Mantel procedure is univariate, for the

weighted linear composite of the item scores that defines the expected score.
The test statistic for the GMH is multivariate normal and distributed with K-

1 degrees of freedom under the null hypothesis of no association between

item responses and group, given a fixed value of the matching variable

(Zwick et al, 1993b). This test statistic is sensitive to any differences in
conditional response patterns between the focal and references groups, while

the Mantel and polytomous STND approaches are sensitive to differences

between the means of these conditional distributions.
An interpretable overall measure of amount of polytomous DIF is

difficult to develop, but a series of partial odds ratios can be used to describe
the amount of DIF (Zwick et al, 1993b). There are many collections of partial

oddsratios, however, just as there are many sets of contrasts available in an

ANOVA.



Binary Parametric Observed-Score DIF Procedure
Logistic Regression (LRDIF) Approach. The LRDIF approach is an

observed-score method that specifies a particular parametric form for the
item score/matching variable relationship. Swaminathan and Rogers (1990)
postulate a statistical model, logistic regression, for the probability of
answering an item correctly for a fixed observed score. Their definition of
null-DIF is a variation on the more generic STND definition, because they
postulate a parametric functional form for the empirical regression employed
by STND. Significance tests exist for both uniform DIF and cross-over DIF,
i.e. item-test regressions with intersection points.

The MH procedure can be viewed as a special case of the general logistic
regression model in which the matching variable is discrete, as is often the
case, and the interaction term between score level and group equals zero
(Swaminathan & Rogers, 1990). Thus, the LRDIF technique shares the
definition of null-DIF used in both the MH and STND approaches,
specifically that there is no differential item functioning between groups after
they have been matched on an observed score measure of the construct of
interest.

Descriptive measures of an item's degree of DIF are essential to DIF
assessment. Both the MH and STND procedures have measures, MH D-DIF
and STD P-DIF, respectively, that are meaningfully defined (Dorans &
Holland, 1993) and well-studied (Allen & Holland, 1993; Donoghue, Holland,
& Thayer, 1993; Longford, Holland, & Thayer, 1993). Swaminathan and
Rogers (1990) do not propose a descriptive statistic for degree of DIF for the
LRDIF technique.

Polytomous Parametric Observed-Score Procedure
Polytomous LRDIF. The logistic regression DIF procedure can be

extended to the polytomous case (Miller & Spray, 1993; Rogers &
Swaminathan, 1993). Like the GMH approach, polytomous LRDIF can be
used in many ways to analyze the data. Each approach involves a different set
of pairwise comparisons between score categories or combinations of score
categories. One approach is to compare item performance in adjacent
categories across groups . This requires fitting K-1 logistic regression models
and involves 2(K-1) significance tests, where K is the number of levels of the
polytomous score. Continuation-ratio logits and the proportional odds
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model are two other polytomous LRDIF appro'aches that produce different
sets of K-1 logistic regression functions ( Agresti, 1990). The absence of a
descriptive measure of DIF, in conjunction with the need to examine the K-1
logistic regression functions, makes the polytomous LRDIF procedure
difficult to interpret and at times "unwieldy" (Miller & Spray, 1993). A
further complication is that the results obtained may differ across models,
because each estimates a different sets of odds ratios.

LatentVariable DIF Procedures

A second class of DIF techniques for binary items is rooted in strong
true score theory (e.g. item response theory (IRT)) or weak true score theory
(classical test theory; Lord & Novick, 1968). Central to these psychometric
models is the decomposition of observed test performance into a reliable
portion and an unreliable portion. The reliable portion is often referred to as
latent ability, underlying proficiency, or true score. A fundamental difference
between the latentvariable approaches and the observedscore approaches is
the utilization of estimates of the latent ability or true score instead of
observed score as either an implicit or explicit matching variable. As with the
observedscore approaches, the latentvariable methods can be divided on
the basis of whether or not they specify a parametric form for the item
response function.

Binary Parametric Latent-Variable DIF Procedures
There are several variations on one theme among parametric item

response theory approaches. These variants state that an item has DIF if "...an
item has a different item response function for one group than for another..."
(Lord, 1980, p. 212). A variety of parametric IRT DIF procedures exist. They
differ with respect to the particular parameterization of the item response
function (IRF) assumed, the type of parameter estimation employed, and the
types of significance tests used to assess differences in item parameters (see
Thissen, Steinberg & Wainer, 1993 for a detailed description of these
approaches).

The most general approach is the General IRTLikelihood Ratio (LR)
approach (Thissen, Steinberg & Wainer, 1988), which uses the BockAitken
(Bock & Aitken, 1981) marginal maximum likelihood estimation algorithm

13



to estimate parameters for a wide variety of models. A second approach, Log-
Linear IRT-LR employs maximum likelihood estimation (Kelderman, 1989).
A third approach, Limited-Information IRT-LR employs normal ogive IRT
models with generalized least squares estimation of parameters (Muthen &
Lehman, 1985). Each of these three approaches employ likelihood ratio (LR)
tests to assess the significance of DIF effects, contrasting a compact model in
which focal and reference group IRFs are identical with an augmented model
in which the IRFs differ.

These three likelihood ratio approaches have been previously
evaluated (Thissen, Steinberg & Wainer, 1993). The least applicable for DIF
analysis ,or traditional binary multiple-choice items is the Log-Linear IRT-
LR procedure because it is restricted to classes of Rasch models that do not
permit items to have different discrimination or non-zero asymptote
parameters. The normal ogive IRT models employed by the Limited-
Information IRT-LR approach similarly do not permit non-zero asymptotes,
and require larger sample sizes than the other LR methods, but they can be
used to test ' DIF within a multidimensional model. Since the General
IRT-LR app. .L accommodates a wide variety of IRT models, it is the
approach that is least likely to confound DIF between the focal and reference
groups with lack of fit of the IRT model to the data. However, each of the
three LR approaches can be labor and computationally expensive, especially
the General IRT-LR approach, because each item is studied separately, and
two sets of item parameter estimates (or more) are required for each item. A
standardized DIF statistic for any IRT DIF model has been proposed (Wainer,
1993); it is based on the focal group weighting procedure from the STND
approach (Dorans & Ku lick, 1986).

A fourth IRT-based approach for DIF assessment analyzes all of the
items simultaneously. The IRT-D2 approach uses the Bock-Aikten marginal
maximum likelihood EM algorithm followed by one or two iterations of the
Bock and Lieberman (1970) direct Newton-Raphson algorithm to estimate
item parameters in the reference and focal groups (Bock, Muraki,
Pfeiffenberger, 1988). The Newton-Raphson algorithm provides standard
errors for the item parameter estimates. The three-parameter logistic model
used but only the difficulty parameters differ between groups. Unlike the LR
procedures, the IRT-D2 approach uses the ratios of parameter differences to
their standard errors to evaluate the significance of observed differences. One
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descriptive index of DIF which can be used is the standardized index of bias
(Murald. & Engelhard, 1989). An alternative index to measure amount of DIF
(in the latent variable metric), is the difference between item difficulty
esEmates. This approach is analogous to the MH delta difference. A
standardized DIF statistic using focal group weighting could also be employed.

Lord (1980) also suggested a procedure within this category, a procedure
that has come to be known as Lord's chi-square approach (McLaughlin &
Drasgow, 1987). As with the IRT-D2 method, Lord's chi-square approach
presumes that the three parameter logistic model fits the data in both the
focal and the reference group. Both discrimination and difficulty, however,
are allowed to differ between groups. A chi-square test is used to
simultaneously test the null hypothesis of no differences in both parameters
across groups.

Polytomous Parametric Latent-Variable DIF Procedures
There are several IRT-based models that can be used with

polytomously-scored items. Some of these models posit a parametric form
for the probability of choosing each category as a function of underlying
proficiency. These parametric models fall into two general classes:
"difference" models and "divide-by-total" models (Thissen & Steinberg,
1986). For the difference model class, the parametric form for the probability
of choosing category k, P(k), is written most simply as a difference between
two adjacent cumulative probabilities P*(k) P*(k+1), where P*(k) is the
probability of a response in category k and above. The graded response model
is an exemplar for this class (Samejima, 1969). For the divide-by-total class of
models, the parametric form for the probability of choosing category k is
written most simply as an exponential divided by a sum of exponentials
(Thissen & Steinberg, 1986). The nominal response model (Bock, 1972), the
partial-credit model (Masters, 1982), and the rating-scale model (Andrich,
1978) are all examples of the "divide-by-total" class of models. The multiple
choice model is a modified version of the nominal model that allows for
non-zero lower asymptotes in the expressions for P(k) (Thissen & Steinberg,
1984).

The general nominal response model has been adapted for the study of
DIF on item sets (Wainer, Sireci, & Thissen, 1991) and the same methodology
can be employed to study polytomous DIF. The approach employs a series of



likelihood ratio (LR) tests to assess the significance of DIF effects, contrasting a

compact model in which focal and reference group item category response

functions are identical with different augmented models in which the item

category response functions differ.
In the partialcredit model (Masters, 1982), the propensity to select

category k on item i is expressed as

k K c

Pik = expt E (0- biv)) expt (0 biv);., (7)
v=1 c=1 v=1

where the biv are the points of intersections for adjacent categorical response

curves, called step parameters, and 0 is the individual's ability or proficiency.
In this dividebytotal model, all items have the same discrimination

parameter, which equals 1.0 and does not appear in Equation 7. The rating
scale model (Andrich, 1978) can be derived from this model by decomposing

bik = bi dk, (8)

in which bi is an item location parameter and dk is a threshold parameter.
This decomposition requires that all items have the same number of

response categories, which is likely to occur with rating scales, and implies

that thresholds are constant across all items.
In the generalized partial credit model (Muraki, 1992) items have

different slope parameters, denoted by a

Pik = exPt ai (0 bi + dv)} / E ai exP(
c.i y.i

ai (0 bi + dv)}. (9)

The only difference between Equation 7 and Equation 9 is the slope parameter
ai. There is a rating scale version of the generalized model which uses the

relation in Equation 8.
Following the approach employed to study item parameter drift in

achievement test items (Bock, Muraki, & Pfeiffenberger, 1988), Muraki (1993)
proposed a procedure for assessing polytomous DIF using the generalized
partial credit model. This DIF procedure posits that the slope parameters are
equal in the reference and focal groups, and tests for differences in the step
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parameters, bik. Within the rating scale version of this model, DIF
assessment involves checking for differences between the focal and reference
group in item location parameter bi, on an item-by-item basis, and testing
across all items for differences in threshold parameters, dk, across all items.

Because the partial cr.::dit model is a special case of the generalized partial
credit model, in which the item slopes are equal across all items, the same
approach can be used to assess DIF for the rating scale model.

Binary Non-Parametric Latent-Variable DIF Procedure
Simultaneous Item Bias Approach (SIBTEST). Currently, this category

contains only one latent-variable approach for DIF assessment: the
simultaneous item bias test or SIBTEST (Shealy & Stout, 1993a; Shealy &
Stout, 1993b). SIBTEST has a tneoretical foundation in multidimensional
item response theory and bears a close resemblance to the observed-score
STND method. A DIF-free multidimensional item response model is
postulated to underlie performance on a set of items. The SIBTEST model
makes a distinction between the construct of interest or target ability and
secondary nuisance abilities, and postulates that DIF for the marginal item
response function (IRF) for the target ability results from differences in the
distributions of the nuisance abilities between the focal and references groups.
In essence, differences along these dimensions introduce construct-irrelevant
variance into the measurement process. This model provides a psychometric
rationale for the differences in unidimensional item response functions that
is consistent with the fundamental distinction between construct relevant
and construct irrelevant differences. In the full multidimensional space, each
item is DIF-free; differences in distributions of nuisance abilities induce DIF
at the unidimensional target ability level.

This latent-variable approach does not posit a particular parametric
form for the IRF. Instead, it assesses DIF in the same manner as does STND
with one important difference: instead of using the empirical item test
regression employed by STND, it regresses item performance onto an
estimate based on classical test theory of matching-variable true score.

In SIBTEST, the measure of DIF employed parallels the STD P-DIF
index. Differences in the empirical item/true score regressions for the focal
and reference groups are averaged across score levels with a focal group
weighting function. It has been shown that the true-score correction



improves the. matching variable in a way that leads to unbiased estimation of

this standardizationlike DIF index ( Shealy & Stout, 1993b). In SIBTEST, the

studied item is not part of the matching variable. In MH and SIND the

matching variable must include the studied item in order to produce an
unbiased estimate (Holland & Thayer, 1988; Donoghue, Holland & Thayer,
1993). A statistical test of the nullDIF hypothesis exists for SIBTEST, as does
a standard error for the descriptive index of DIF (Shealy & Stout, 1993b). The

SIBTEST approach appears to be as effective for detecting DIF as the MH

procedure (Shealy & Stout, 1993a).

Polytomous NonParametric Latent-Variable (IRF) DIF Procedure
Polytomous SIBTEST. The latentvariable approach to DIF assessment,

called SIBTEST, was actually designed to study differential test functioning
(Shealy & Stout, 1993a; Shealy & Stout, 1993b) and is easily adapted to the
study of polytomous DIF (Chang, Mazzeo, & Roussos, 1993). Like extended
standardization, SIBTEST does not postulate a functional form for the
relationship between item scores and scores on the matching variable.
Instead of using the empirical item test regression employed by extended
STND, it regresses item performance onto an estimate of matching variable
true score. Differences in the empirical item/true score regressions for the
focal and reference groups are averaged across score levels with a focal group

weighting function.
A statistical test of the nullDIF hypothesis exists for SIBTEST, as does a

standard error for the descriptive index of DIF (Chang, Mazzeo, & Roussos,
1993; Shealy & Stout, 1993b). In addition, it has been shown that equivalent
item response functions (IRFs) or expected item score functions for the focal
and reference groups implies equivalent item category response functions for
the focal and reference groups, under the partial credit, generalized partial
credit, and graded response models (Chang & Mazzeo, 1994). This result
suggests that SIBTEST, which assesses DIF with respect to differences in IRFs,
can be employed as a first step in testing for polytomous IRT DIF. If DIF is

detected, then a latentvariable DIF procedure that posits a particular
mathematical form for all item response categories can be used to study the
DIF in greater detail. This twostep process mirrors a binary DIF process in
which an item is first studied via MH. If an item is flagged for DIF it is then
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3ubmitted to STND for distractor analysis in an effort to better understand

why the item exhibits DIF (Dorans & Holland, 1993).

In summary, as was the case with the binary DIF procedures, we can

cross-classify the polytomous DIF procedures by whether the matching

variable is an observable vs. a model-based estimate of an unobservable or

latent trait, and whether or not the approach posits a parametric form for the

relationship between item score and the matching variable (see Table 2).

Table 2
Cross-Classification for Polytomous DIF Procedures

A Parametric Form
for Relationship Between
Item Score and the
Matchin Variable

ObservedScore
Matching Variable

No Parametric Form
for Relationship Between
Item Score and the
Matching Variable

Polytomous Logistic Mantel
Regression

Polytomous STND

HW1 & HW3

Generalized Mantel
Haenszel

LatentVariable
Matching Variable General IRTLR Polytomous SIBTEST

Partial Credit

Generalized Partial Credit

Evaluation of Polytomous DIF Procedures

Validity of Scoring Rules and Quality of Matching Variable

In the case of binary-scored items, subject matter experts craft an item

in such a way that the keyed response is defensible from a ck,ntent

perspective. The item is scored as correct or incorrect, assigned values of I

and 0; a total score is obtained by summing the item scores (sometimes a

correction for guessing is involved) For polytomously-scored items, an

obvious extension is to assign arbitrarily consecutive integers to ordered
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categories. It is important in the development and administration of this type
of item that a sound construct-based reason exist for the assignment of the
numerical values to the categories, and that the meaning inferred from the
scoring rubric be both reliable and generalizable. When the data are fit by the
Rasch model, there is a theoretical justification for the number right score as a
matching variable (Holland & Thayer, 1988). Even when the data are not fit
by the Rasch model, number correct is still a reasonable matching variable.

The efficacy of DIP assessment also hinges on the quality of the
matching variable. In binary-scored DIF analysis, a simple sum of item scores
produces a total score that frequently serves as the best available matching
variable, i.e., a reliable measure of the construct of interest. There are
exceptions to this rule. DIF assessment presumes that all items and the
matching variable, be it an observed score or a model-based estimate of ability,
are measuring the same dimension. In fact, DIF can be viewed (as it is in the
SIBTEST framework) as a violation of unidimensionality. DIF assessment
procedures work well as long as violations of unidimensionality are limited.
When a test is multidimensional, it may be necessary to decompose the score
into more homogeneous subscores, and either match on them separately or
use multivariate matching (Dorans & Holland, 1993). Otherwise, the DIF
analysis is likely to yield different results in different regions of the
multidimensional ability space, as the mix of abilities brought to bear on the
item varies. Therefore, when multidimensionality is persavive, DIF is
difficult to assess.

For polytomous items, a theoretical justification exists for using
number correct if the data follow the partial credit model (Zwick et al., 1993a).
For at least one commonly-used polytomous item, the essay, the matching
variable issue is complicated by the fact that essays and multiple choice items
may measure different dimensions, and that different essays may also
measure unique dimensions (Dorans & Schmitt, 1993). When the number of
items comprising the matching variable is too small, e.g. less than 20, or if the
item being studied is not included in the matching variable, DIF assessment
becomes problematic (Donoghue, Holland, & Thayer, 1993). Valid
polytomous DIF detection and description requires a well-defined, reliable
matching variable.
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Statistical and Practical Utility of DIF Procedures
Any DIF procedure can be evaluated in terms of statistical and practical

criteria. We propose seven criteria which can be used to assess polytomous
DIF procedures. We will, now address each of these criterion in turn, and
apply them to a subset of the polytomous DIF procedures that were described
in this paper. A cross-classification of the criteria as applied to the selected
polytomous DIF procedures is summarized in Table 3.

Statistical Criteria
1. Linkage to test theory. The observed-score approaches, GMH and

STND/Mantel, do not make any assumptions about the classical test theory
decomposition of scores (Lord & Novick, 1968). Although their binary
analogs might be called classical procedures (Scheuneman & Bleistein, 1989),
these polytomous observed-score methods have no connection to any theory
of tests.

The partial credit model uses the strong true score theory known as
TRT, while the polytomous SIBTEST approach uses both a new non-
parametric form of IRT and what is in essence traditional test theory (Kelley,
1927). Both these latent-variable approaches are closely linked to a test theory
that decomposes an observed score into a systematic true score (or a
monotone transformation thereof), and a stochastic error score, both of which
are latent variables.

2. Interpretable measure of DIF. To be used effectively, a DIF detection
technique needs an interpretable measure of amount of DIF. The definition
of DIF varies across polytomous models and thus the complexity of the
interpretation of DIF also varies from model to model. Among the methods
summarized in the table, the STND /Mantel a, ?roach and the polytomous
SIBTEST approach have measures of DIF in the metric of expected item score
for the focal group, which can be thought of as a weighted difference in
empirical item test regressions. For long matching variables with high
reliability, these approaches should yield identical estimates of amount of
DIF. These DIF measures can be interpreted as a difference between how the
focal group actually performs on the item and how well matched reference
members would have performed on the item.

21 24



;4

'44

-61,7:,.."14,110
.

.44

Table 3

Summary of Selected Polytomous DIF Procedures Evaluated by
Suggested Statistical and Practical Criteria

eneralized eneralized
Mantel Polytomous Polytomous Partial
Haenszel STND SIBTEST Credit

Statistical Criteria

1. Link to test theory none none IRT and CI I IRT basis
bases

2. Interpretable measure of
amount of DIF a set of

oddsratio
measures

3. Unbiasedness of
estimator

4. Standard error

5. Statistical test of null
hypothesis

Practical Criteria

standardized
expected item
score measure
in focal group
metric

standardized
expected item
score measure
in focal group
metric

differences in
item locations
and thresholds
in metric of
latent variable

biased

yes

yes

unbiased

yes

yes

biased

yes

yes

9

in theory

yes

1. Cost

2. Capacity to handle
multiple items

variable
depends on
how many sets
of odds ratios
are studied

inexpensive inexpensive variable
depends on
whether tests
for DIF are
limited to
location
parameters

several items
can be
analyzed
to ether

22

several items
can be
analyzed
together
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several items
can be
analyzed
tocrether

several items
can be
analyzed
to .,ether



The DIF measures that come from the generalized partial credit model
are in the metric of the latent ability. These include differences in item
locations and differences in thresholds for the rating scale version of the
model, and differences in step location for the partial credit version. Unlike
the expected item score measures, these measures do not depend directly on
the distributions of scores in either the focal or reference group.

The least interpretable measures are associated with the GMH method.
The choice of measure depends upon the particular set of comparisons one
makes. For example, one possibility is to use the set of odds-ratios which
compares each category to a common base category (Zwick, Donoghue, &
Grima, 1993a). In many applications, any category could serve as the base, so
many possible sets exist. In addition, other types of odds-ratios are possible
measures of DIF.

3. Unbiasedness. It is desirable for a DIF procedure to employ a
measure of DIF that is unbiased if there is zero DIF. To date, only the
polytomous STND measure, as implemented as a supplement to the Mantel
statistical test, has exhibited this desirable property, albeit only indirectly via
simulation studies (Grima, Zwick, & Donoghue, 1993; Zwick et al., 1993a).
The same studies show that the DIF measures for the GMH statistic are biased
positively above the null-DIF amount of equal odds. The polytomous
SIBTEST measure identifies items favoring the focal group when there is no
DIF (Chang, Mazzeo, & Roussos, 1993), which suggests the approach may be
overcorrecting for unreliability.

In general the approaches that do not employ a parametric form for the
relationship between item scores and the matching variable will tend to be
less biased than the approaches that impose a functional form on the data
unless the particular functional form is appropriate for the data.

4. Standard error. Ideally, an unbiased estimator also has a low
standard error. In practice, however, we often have to choose between an
unbiased estimator and one with a smaller standard error. In order to make
that choice it is useful to have an estimate of the standard error. Standard
errors exist for the both the STND approach and the polytomous SIBTEST
approach. The standard error for the GMH procedure has been addressed by
(Zwick, Donoghue, & Grima, 1993a). In theory, a standard error exists for the
difference in item parameters for the generalized partial credit model. In
practice, however, it is computationally demanding because it requires the
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inverse of a very large matrix (i.e. dimension equal to the number of items

times the number of categories).
In general the approaches that do not employ a parametric form for the

relationship between item scores and the matching variable will tend to be

less biased than the approaches that impose a functional form on the data

unless the particular functional form is appropriate for the data. Biasedness is

often a cost associated with imposing a strong model on the data. The benefit

of the strong model is the ability to work with weaker data, e.g. data in which

there are few items and a short matching variable.
5. Statistical test of null hypothesis. Significance testing of the null DIF

hypothesis answers the question of whether the DIF seen on an item exceeds

that expected given sampling variability under the null hypothesis. It

protects researchers against concluding there is DIF when there is none, but it
does not protect them from concluding there is no DIF when there is some.
All four procedures provide for a statistical test of the null hypothesis of

nullDIF.
The power of a statistical test is the probability that it will lead to the

rejection of the null hypothesis, no DIF, in favor of a specific alternative
hypothesis. Power increases as a function of sample size and the amount of
DIF associated with the effect size (Cohen, 1988). Power is inversely related to

the stringency of the significance criteria. The power to detect DIF needs to be

studied for the four methods listed in Table 3.

Practical Criteria
1. Cost. The degree to which a DIF procedure will be used in routine

operational settings is largely a function of the cost associated with its use.
Major cost components include the computer time required, and the human
resources needed to check and evaluate the results. When a strong truescore
model, such as an IRT model, is used it is important to check whether the
model fits the data before making inferences based on the results of using the
model in a DIF context. More complex models often require more specialized
training to use than do silly' 'er models. In this sense, the GMH is the most
costly procedure to use becase of the ambiguity associated with definition of
its DIF measure. Since the generalized partial credit model may be used to
test for differences in thresholds as well as item location parameters, it too can
be expensive. In contrast, the STND/Mantel and polytomous SIBTEST
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approaches are relatively low cost since each produces a single measure of DIF
for each item.

.2Capa&y_to handle multiple items. Another practical consideration
is whether each item must be analyzed separately (as with current
implementations of the IRTLR approach) or whether the items can be
analyzed together as a set. A drawback of the flexible General IRTLR
approach is the amount of time required to process each item (Thissen,
Steinberg, & Wainer, 1993). Each of the four approaches to polytomous DIF
under consideration in this paper (GMH, polytomous STND, polytomous
SIBTEST, and generalized partial credit) are capable of studying multiple
items simultaneously.

Conclusions

It appears that the polytomous DIF techniques which have been
reviewed in this paper are not yet ready for routine operational use. This is
not unexpected since these techniques have yet to receive the extensive and
rigorous study accorded to their binary DIF counterparts. Among the
procedures that we have examined, the expected item score approaches, the
polytomous STND(observed score) approach, and the polytomous SIBTEST
(latent variable) approach appear closer to practical implementation than
either the GMH or generalized partial credit approaches. This is not
surprising given that the expected item score approaches collapse across
categories via a simple additive rule to arrive at a standard statistical
summary of the data, i.e., an expectation. In the process, some valuable
information may be lost, but simplicity of interpretation and statistical
stability is obtained. In contrast, the GMH approach is more descriptive of the
conditional distributions of categorical item scores at each ability level.
Descriptions of a set of conditional distributions, however, require more data
to achieve a desired level of stability than do estimates of the averages of
those distributions. The generalized partial credit model imposes a
mathematical structure on these more complex data and gains some stability
and interpretability in the process, but is still trying to describe something
more complex than an expected ite:n score.
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The expected item score approaches, polytomous STND, and
polytomous SIBTEST each have the disadvantage of discarding information

during DIF analysis because score distributions can not be recreated from

averages. However, the focus on averages, or expected item scores, has the

advantage of simplicity of interpretation, and provides more statistical
stability since averages of conditional distributions are more stable than entire

conditional distributions. The GMH approach attempts to summarize these

conditional distributions at the expense of interpretational simplicity and
statistical stability. The generalized partial credit model imposes a model on
the data that reduces the statistical instability, but at the potential expense of

employing an inappropriate model for the functional form of the
relationship of item score to the latent variable.

For these reasons, it appears unlikely that the GMH and generalized
partial credit models are ready for operational use as primary DIF detection
devices at the present time. Instead they may be better suited for use as
adjuncts to the easier to use and more interpretable polytomous STND and
polytomous SIBTEST approaches. The GMH approach is likely to be limited
to applications where ample data exists to obtain stable estimates of the
conditional item score distributions. The generalized partial credit model, or
some otHer strong truescore model, is more likely to be useful with small
samples of data where strong models are needed to extract inferences from
the data. Strong truescore models are also more likely to be useful with
smaller numbers of items, a situation often encountered in research studies
(Bock, 1993).

We propose a framework for classifying DIF procedures on the basis of
whether they define DIF with respect to an observed variable or a latent
variable, and by whether or not a parametric form is proposed for the
relationship between item score and the matching variable. However, the
framework does not provide for the inclusion of all potential DIF procedures.
Some types of performance assessments (e.g. the portfolio) employ stimuli
which produce complex responses. Psychometric models which order
examinees and their responses to items are not appropriate for use with these
more complex stimuli and resultant responses (Mislevy, 1993). Before DIF

procedures can be developed for these kind of stimuli, .a "psychometrics for a
new generation of tests" must be developed (Mislevy, 1993). The current lack
of appropriate psychometric models and DIF procedures to accommodate
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these types of stimuli, however, does not exempt these assessment procedures
from the need to demonstrate that they are fair and equitable. DIF analysis (or
something in this spirit) for performance assessment stimuli whicn involve
scoring schema more complex than ordered polytomousscoring models, will
eventually become a mandated procedure. It seems likely that the solutions
to this problem will not be as straightforward as developing polytomous
extensions of binary DIF procedures.

Finally, we proposed several criteria that may be used to evaluate the
efficacy of DIF procedures. It i3 our intent that these statistical and practical
criteria, in conjunction with our classification framework, will assist
practitioners evaluate prospective polytomous DIF procedures in the future.

27
I-,



References

Agresti, A. (1990). Categorical data analysis. New York: Wiley.
Allen, N. L., & Holland, P. W. (1993). A model for missing information

about the group membership of examinees in DIF studies. In P. W.
Holland & H. Wainer (Eds.), Differential item functioning (pp. 241-
252). Hillsdale, NJ: Lawrence Erlbaum Associates.

Andrich, D. (1978). A rating formulation for ordered response categories.
Psychometrika, 43, 561-573.

Bennett, R. E., & Ward, W. C. (Eds.). (1993). Construction versus choice in

cognitive measurement. Hillsdale, NJ: Lawrence Erlbaum Associates.
Bock, R. D. (1972). Estimating item parameters and latent ability when the

responses are scored in two or more nominal categories.

Psychometrika, 37, 29-51.
Bock, R. D. (1993). Different DIFs: Comment on the papers read by Neil

Dorans and David Thissen. In P. W. Holland & H. Wainer (Eds.),
Differential item functioning (pp. 115-122). Hillsdale, NJ: Lawrence

Erlbaum Associates.
Bock, R. D., & Aikten, M. (1981). Marginal maximum likelihood estimation

of item parameters: An application of the EM algorithm.
Psychometrika, 46, 442-449.

Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n
dichotomously scored items. Psychometrika, 35, 179-197.

Bock, R. D., Muraki, E., & Pfeiffenberger, W. (1988). Item pool maintenance
in the presence of item parameter drift. Journal of Educational
Measurement, 25, 275-285.

Camp, R. (1993). The place of portfolios in our changing views of writing
assessment. In R. E. Bennett & W. C. Ward (Eds.), Construction versus
choice in cognitive measurement (pp. 183-212). Hillsdale, NJ:

Lawrence Erlbaum Associates.
Chang, H-H., & Mazzeo, J. (1994). The unique correspondence of the item

response function and the item category response functions in
polytomously scored item response models. Psychometrika, 59.

28 31



Chang, H-H., Mazzeo, J., & Roussos, L. A. (1993, April). Extension of Shealy
Stout's DIF procedures to polytomously scored items. Paper presented
at the annual meeting of the National Council on Measurement in
Education, Atlanta, GA.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Donoghue, J. R., Holland, P. W., & Thayer, D. T. (1993). A monte carlo study
of factors that affect the MantelHaenszel and standardization
measures of differential item functioning. In P. W. Holland & H.
Wainer (Eds.), Differential item functioning (pp. 137-166). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Dorans, N. J. (1991, November). Implications of choice of metric for DIF
effect size on decisions about DIF. Paper presented at the International
Symposium on Modern Theories in Measurement: Problems and
Issues., Montebello, Quebec, Canada.

Dorans, N. J., & Holland, P. W. (1993). DIF detection and description:
MantelHaenszel and standardization. In P. W. Holland & H. Wainer
(Eds.), Differential item functioning (pp. 35-66). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Dorans, N. J., & Ku lick, E. (1983). Assessing unexpected differential item

performance of female candidates on SAT and TSWE forms
administered in December 1977: An application of the standardization
approach (RR-83-9). Princeton, NJ: Educational Testing Service.

Dorans, N. J., & Ku lick, E. (1986). Demonstrating the utility of the
standardization approach to assessing unexpected differential item
performance on the Scholastic Aptitude Test. Journal of Educational
Measurement, 231 355-368.

Dorans, N. J., & Schmitt, A. P. (1993). Constructed response and differential
item functioning: A pragmatic perspective. In R. E. Bennett & W. C.
Ward (Eds.), Construction versus choice in cognitive measurement
(pp. 135-165). Hillsdale, NJ: Lawrence Erlbaum Associates.

Grima, A. (1993, April). Extending the MantelHaenszel DIF procedure to
polytomously scored items. Paper presented at the annual meeting of
the National Council on Measurement in Education, Atlanta, GA.

29
32



Holland, P. W., & Thayer, D. T. (1985). An alternative definition of the ETS

delta scale of item difficulty (RR-85-43). Princeton, NJ: Educational

Testing Service.
Holland, P. W., & Thayer, D. T. (1988). Differential item performance and the

MantelHaenszel procedure. In H. Wainer & H. Braun (Eds.), Test
validity (pp. 129-145). Hillsdale, NJ: Lawrence Erlbaum Associates.

Holland, P. W., & Wainer, H. (Eds.). (1993). Differential item functioning,

Hillsdale, NJ: Lawrence Erlbaum Associates.
Kelderman, H. (1989). Item bias detection using loglinear IRT.

Psychometrika, 54, 681-697.

Kelley, T. L. (1927). The interpretation of educational measurements. New
York: World Book.

Longford, N. T., Holland, P. W., & Thayer, D. T. (1993). Stability of the MH
DDIF statistics across populations. In P. W. Holland & H. Wainer
(Eds.), Differential item functioning (pp. 171-196). Hillsdale, NJ:

Lawrence Erlbaum Associates.
Lord, F. M. (1980). Applications of item response theory to practical testing

problems. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores.

Reading, MA: AddisonWesley.
Madaus, G. F. (1985). Test scores as administrative mechanisms in

educational policy. Phi Delta Kappan, 66, 611-617.
Mantel, N. (1963). Chisquares tests with one degree of freedom: Extensions

of the MantelHaenszel procedure. Journal of the American Statistical

Association,. 58, 690-700.
Mantel, N., & Haenszel, W. M. (1959). Statistical aspects of the analysis of

data from retrospective studies of disease. Journal of the National
Cancer Institute, 22, 719-748.

Masters, G. N. (1982). A Rasch model for partial credit scoring.
Psychometrika, 47, 149-174.

McLaughlin, M. E., & Drasgow, F. (1987). Lord's chi-square test of item bias
with estimated and with known ability parameters. Applied
Psychological Measurement, 11, 161-173.

Millsap, R E., & Everson, H. T. (1993). Methodology review: Statistical
approaches for assessing measurement bias. Applied Psychological

Measurement, 17, 297-334.

30

33



Miller, T. R., & Spray, J. A. (1993). Logistic discriminant function analysis for
DIF identification of polytomously scored items. Journal of
Educational Measurement, 30, 107-122.

Mislevy, R. J. (1993). Foundations of a new test theory. In N. Frederiksen, R.
J. Mislevy, & I. I. Bejar (Eds.), Test theory for a new generation of tests
(pp. 19-39). Hillsdale, NJ: Lawrence Erlbaum Associates.

Morrison, P. (1992). Testing issues in American schools: Issues for research
and policy. Social policy report: Society for Research in Child

Development, 6(2).
Muraki, E. (1992). A generalized partial credit model: Application of an EM

algorithm. Applied Psychological Measurement, 16, 159-176.
Muraki, E. (1993, April). Implementing item parameter drift and bias in

polytomous item response models. Paper presented at the annual
meeting of the National Council on Measurement in Education,
Atlanta, GA.

Muraki, E., & Englehard, G. (1989, April). Examining differential item
functioning with BIMAIN. Paper presented at the annual meeting of
the American Educational Research Association, San Francisco, CA.

Muthen, B., & Lehman, J. (1985). Multiple group IRT modeling: Applications
to item bias analysis. Journal of Educational Statistics,10, 133-142.

National Commission on Excellence in Education. (1983). A nation at risk:
The imperative for educational reform. Washington, D. C.: U. S.
Government Printing Office.

National Educational Goals Panel. (1991). The national educational goals

report: Building a nation of learners. Washington, D. C.: Author.
Ramsay, J. 0. (1991). Kernel smoothing approaches to nonparametric item

characteristic curve problems. Psychometrika, 56, 611-630.
Rogers, H. J., & Swaminathan, H. (1993, April). Differential item functioning

procedures for nondichotomous responses. Paper presented at the
annual meeting of the National Council on Measurement in
Education, Atlanta, GA.

Samejima, F. (1969). Estimation of latent ability using a response pattern of
graded scores. Psychometrika Monograph No. 17, 34 (4 Part 2).
Richmond, VA: William Byrd Press.

31

^-'..t- .- 4

:;7;'



Scheuneman, J. D. (1975, April). A new method of assessing bias in test
items. Paper presented at the annual meeting of the American
Educational Research Association, Washington, DC. (ERIC Document
Reproduction Service No. ED 106 359).

Scheuneman, J. D., & Bleistein, C. A. (1989). A consumer's guide to statistics
for identifying differential item functioning. Applied Measurement in

Education, 2, 255-275.
Shealy, R. T., & Stout, W. F. (1993a). An item response model for test bias

and differential test functioning. In P. W. Holland & H. Wainer (Eds.),
Differential item functioning (pp. 197-239). Hillsdale, NJ: Lawrence

Erlbaum Associates.
Shealy, R. T. , & Stout, W. F., (1993b). A modelbased standardization

approach that separates true bias/DIF from group ability differences and
detects test bias/DIF as well as item bias/DIF. Psychometrika, 54, 159-

194.

Shepard, L. A., Camilli, G., & Williams, D. M. (1985). Validity of
approximation techniques for detecting item bias. Journal of
Educational Measurement, 22, 77-105.

Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item
functioning using logistic regression procedures. Journal of
Educational Measurement, 27, 361-370.

Thissen, D., Steinberg, L., & Wainer, H. (1988). Use of item response theory
in the study of group differences in trace lines. In H. Wainer & H.
Braun (Eds.), Test validity (pp. 147-169). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Thissen, D., Steinberg, L., & Wainer, H. (1993). Detection of differential item
functioning using the parameters of item response models. In P. W.
Holland & H. Wainer (Eds.), Differential item functioning (pp. 67-113).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Thissen, D., & Steinberg, L. (1984). A response model for multiple choice
items. Psychometrika, 49, 501-519.

Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models.
Psychometrika, 51, 567-577.

Thissen, D., & Wainer, H. (1982). Some standard errors in item response
theory. Psychometrika, 56, 611-630.

32 35



U.S. Congress, Office of Technology Assessment. (1992). Testing in American
schools: Asking the right questions (OTA-SET-519). Washington, DC:
U.S. Government Printing Office.

Valencia, S. W., & Calfee, R. (1991). The development and use of literacy
portfolios for students, classes, and teachers. Applied Measurement in

Education, 4, 333-345.
Wainer, H. (1993). Model-based standardized measurement of an item's

differential impact. In P. W. Holland & H. Wainer (Eds.), Differential
item functioning (pp. 123-135). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Wainer, H., Sireci, S. G., & Thissen, D. (1991). Differential testlet functioning:
Definitions and detection. Journal of Educational Measurement, 28,
197-219,

Welch, C., & Hoover, H. D. (1993). Procedures for extending item bias
techniques to polytomously scored items. Applied Measurement in
Education , 6, 1-19.

Wilson, A. W., Spray, J. A., & Miller, T. R. (1993, April). Logistic regression
and its use in detecting nonuniform differential item functioning.
Paper presented at the annual meeting of the National Council on
Measurement in Education, Atlanta, GA.

Zwick, R., Donoghue, J. R., & Grima, A. (1993a). Assessing differential item
functioning in performance tasks. (RR-93-14). Princeton, NJ:
Educational Testing Service.

Zwick, R., Donoghue, J. R., & Grima, A. (1993b). Assessment of differential
item functioning for performance tasks. Journal of Educational
Measurement, 30, 233-251.

33 3i3


