
,

DOCUMENT RESUME

ED 379 296 TM 022 642

AUTHOR Beasley, T. Mark; Sheehan, Janet K.
TITLE Choosing a MANOVA Test Statistic When Covariances Are

Unequal.
PUB DATE Oct 94
NOTE 13p.; Paper presented at the Annual Meeting of the

Midwestern Educational Research Association (Chicago,
IL, October 1994).

PUB TYPE Reports Evaluative/Feasibility (142)
Speeches /Conference Papers (150)

EDRS PRICE MFO1 /PCO1 Plus Postage.
DESCRIPTORS *Analysis of Covariance; Comparative Analysis;

*Matrices; Monte Carlo Methods; *Multivariate
Analysis; *Robustness (Statistics); Selection;
Simulation; Statistical Studies

IDENTIFIERS Omnibus Tests; *Power (Statistics)

ABSTRACT
C. L. Olson (1976, 1979) suggests the Pillai-Bartlett

trace (V) as an omnibus multivariate analysis of variance (MANOVA)
test statistic for its superior robustness to heterogeneous
variances. J. Stevens (1979, 1980) contends that the robustness of V,
Wilk's lambda (W) and the Hotelling-Lawley trace (T) are similar, and
that their power functions are highly sensitive to slight covariance
inequalities. Yet under conditions of diffuse noncentrality
structures, V is a clear choice. A Monte Carlo simulation of V, W,
and T as omnibus tests under conditions of covariance heterogeneity
and variance homogeneity investigates the robustness of each test.
Conditions of concentrated covariance and noncentrality structure
were imposed to compare power. Results indicate that the assumption
of homogeneous variance-covariance matrices in the form of covariance
inequalities does not affect the robustness of V, W, or T, while T is
slightly more powerful under such conditions. Five tables are
included. (Contains 14 references.) (Author/SLD)

***********************************************************************
* Reproductions supplied by EDRS are the best that can be made

from the original document.
***********************************************************************



Covariance Inequalities in MANOVA
1

Choosing a MANOVA Test Statistic: When Covariances are Unequal
VD

C
1"--

T. Mark Beasley Janet K. Sheehan
St. John's University Northern Illinois University

U.S. DEPARTMENT OF EDUCATION
Deice of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as
revolved from the person or organIzation
onginatIng

O Minor changes have been made to improve
reproduction guilty

Posts of view or optntons stated tn this docu-
ment do not necesSanty represent otlicmi
OERI positn or policy

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

ABSTRACT TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

Olson (1976, 1979) suggests the Pillai-Bartlett trace (V) as an omnibus

MANOVA test statistic for its superior robustness to heterogeneous variances.

Stevens (1979, 1980) contends that the robustness of V, Wilk's (W) and the

Hotelling-Lawley trace (T) arc similar and that their power functions are
highly sensitive to slight covariance inequalities. Yet under conditions of
diffuse noncentrality structures, V is a clear choice. A Monte Carlo simulation

of V, W, and T as omnibus tests under conditions of covariance heterogeneity
and variance homogemAty investigates the robustness of each test. Conditions

of concentrated covariance and noncentrality structure were imposed to

compare power. Results indicate that the assumption of homogeneous

variance-covariance matrices in form of covariance inequalities does not

affect the robustness of V, W, or T, while T is slightly more powerful under

such conditions.

Paper presented at (he annual meeting of the MidWestern Educational

Research Association. October 14, 1994. Chicago, IL.

BEST COPY AVAILABLE



Covariance Inequalities in MANOVA
2

Choosing a MANOVA Test Statistic When Covariances are Unequal

In applied research with a single dependent variable, the F-ratio is the
uniformly most powerful test that is invariant to linear transformations

(Scheffe', 1959). It is therefore the most flexible and most used test statistic.
Due to trends in both computer technology and the philosophy of science over
the past three decades, behavioral researchers have adopted a belief in a

multivariate reality (e.g., Fish, 1988). Thus, research which utilizes
multivariate statistics has become more prominent; however, there is no

unique multivariate analog to the F test. Only in two special cases do the four
most popular MANOVA test criteria lead to identical results. That is, when the
number of variables p = 1 and/or when the numerator degrees of freedom
(dfh ) equals one, the criteria are equivalent to a univariate F-ratio. Thus, in

one of the most common educational research situations (i.e., multiple group

comparisons), when the null hypothesis is tested against a completely general
alternative, no multivariate test has both the required invariance and the
property of uniformly greatest power. Therefore, considerable debate has

occurred among statisticians over which tests to recommend.

Olson (1976, 1979) has argued that the Pillai-Bartlett trace (V) is superior
to other test criteria as an omnibus test in MANOVA because of its greater

robustness to violations of the assumption of homogeneous variance-
covariance matrices. Olson noted that when groups differ on only a single
dependent variable, a concentrated noncentrality structure, Roy's maximum

root (R) is generally most powerful. However, because R is based on a

maximum cigenvalue, severe problems with Type I error exist, and therefore,

R is rarely recommended under conditions in which assumptions have been

violated. Thus, the Hotelling-Lawley trace (T) or Wilk's X (W) is usually

preferred under such conditions. Olson contends, however, that in educational

and psychological research, a concentrated noncentrality structure is rare, in

that it is more likely for groups to differ in a more diffuse manner (i.e., in

more than one group and/or on more than one dependent variable). Thus,

although di. Terence in power are slight because V is preferred under

conditions of diffuse noncentrality structures (Olson, 1976).

In reply, Stevens (1979) concluded that the conditions Olson used to
demonstrate the superiority of V had extreme differences in subgroup

variances which are unlikely to occur in most research. In a review of
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several related studies, Stevens showed that under four conditions of subgroup
invariance that are more likely to occur, the Type I error rates of V , T, and W
are very similar. Furthermore, he reported that for concentrated

noncentrality structures with heterogeneous variances, the slight robustness

advantages of V are offset by the greater power of T and W. For diffuse

structures, however, V remains the clear choice. Thus, under conditions of

subgroup invariance, one may choose a MANOVA test statistic accordingly.

The MANOVA assumption of homogeneous variance-covariance matrices is

not fully addressed by Stevens nor Olson, however. That is, the issue of
heterogeneous covariances (and covariance/variance ratios) regardless of

subgroup variances remains a concern. Stevens (1980) showed that the power
of MANOVA test statistics generally increase as the intercorrelation among

variables increases, but that the power of such tests are highly sensitive to
small covariance inequalities with equally sized groups. Since little debate

exists ov'r the use of V under condi.ions of diffuse structures, the present
paper focuses on the robustness and comparative power of T, V, and W as
omnibus tests under a variety of conditions of covariance inequality with
concentrated structures.

Methods
Conditions

Using K = 3 and 4 groups, p = 2, 4, and 6 variables, and n = 10 and 20 subjects

per cell, the Type I error rate of T, V, and W were compared under two
conditions of concentrated covariance inequality across groups, while group

variances on all variables remained homogeneous at s2 = 1. Furthermore,

these combinations of heterogeneous covariance structures were examined

under two conditions of concentrated noncentrality structures to compare the

power of each statistic as an omnibus test.

Under Type 1 concentrated structure conditions, the population location

on all variables is different in a single group (Olson, 1974). For this one

group, constants of c = .3 and .6 were added to all variable vectors, which

resulted in small to moderate effect sizes, respectively. For the conditions Type

I concentrated covariance inequality (Cl), all but one group had identical
covariances of r = .10 on all covariance elements of the within-group

variance-covariance matrix while the remaining group had different

covariances (r = .30 or r = .50) on all variable pairs. In the case of p = 2

variables, there is no Cl concentrated covariance structure. This resulted
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Under conditions of Type 2 concentrated structures, the population
location differed on only one variable in one group (Olson, 1974). For this

one group, constants of c = .3 and .6 were added to one variable vector, which
resulted in small to moderate effect sizes, respectively. For the Type 2
concentrated covariance inequality (C2), this means that all but one group had
identical covariances of (r = .10) on all variable pairs while the remaining
group had a different covariance (r = .30 or r = .50) on one element of the
variance-covariance matrix..

All conditions were crossed so that Type 1, Type 2, and no differences in
location occurred under conditions of Cl, C2, and equal covariances.
Furthermore, under different conditions, location constants were added to a

group with r = .10 and to a group with an aberrant covariance.
Procedures.

A normally distributed n x p data matrix Z with a mean of zero and
variance of one for each variable (column vector) was randomly generated
using the RANNOR function in SAS/IML (SAS Institute, 1990). Based on the

fundamental postulate of principal components analysis (Forster & Dickman,
1962), a SAS/IML algorithm suggested by Beasley (1994) was used to impose a
correlation/covariance matrix on to Z while each variable (column vector) of

Z. From this transformation of Z, the various differences in location were

imposed by the addition of the given parameters. This involves a linear

transformation of the variable vectors; therefore, no changes in

covariance/variance ratios (r) should occur. For each of the conditions

elaborated, 1,000 replications of the data generation and transformation

processes were completed. A SAS/IML MANOVA algorithm created by Sheehan

(1994) calculated T, V, and W as an omnibus test from the E(H + E)-1 matrix.

Critical values derived from Sebcr (1984) and Timm (1975) were used to avoid
precision problems associated with F approximations of these test statistics in

simulation studies. The number of rejections at the a = .05 level of significance

was used as an index of empirical robustness and power.
Results

In any Monte Carlo study which compares the power and/or robustness of
different procedures, one must consider the sampling error of the simulation

process. Based on the nominal alpha of a = .05 and 1.000 replications, the
standard error of each estimate is se = .007. To avoid the issue of Type I error

rate within this study, the standard error is not used as a means to test

5
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whether one procedure is "significantly" better than the other. Rather, the
standard error is used as general heuristic to compare methorls.
Type I Error

Table 1 shows the empirical Type I error rates for K = 3 and 4 groups, p = 2,
4, and 6 variables, and cell size of n =20. As can he seen, the actual Type I
error rates were within two standard error units of the nominal Type I error

rate (a = .05) under all conditions, even when heterogeneity of covariance was
introduced. These results held regardless of the type of concentrated
covariance structure introduced. Nearly identical results were found for a cell

size of n = 10 but are not tabled.
Power

Tables 2 and 3 show the comparative power estimates for K =3 groups with
location constants of c = .3 and .6 under all conditions of covariance
contamination for cell sizes of n =10 and 20, respectively. Table 4 shows these
power estimates for K = 4 groups and n = 10 subjects per cell. The results for
K = 4 groups and cell size of n =20 weir consistent with the other three
situations and are not tabled.

Overall, the effect of assigning differences in location to the group with
the aberrant covariance was not clear-cut. Under a few conditions, it

appeared that when the group with the aberrant covariance also had
differences in location more power was exhibited as compared to differences

in location for the group with the base covariance of r =.10. Yet under other

conditions, these tendencies were slightly reversed or made little difference.

Therefore, in reporting these results this distinction is not made and the
results were averaged. Therefore, these results for the Cl and C2 conditions
are based on 2,000 replications which gives a standard error of se = .005.

Whether the power of any of these omnibus tests, based on Type 1 or Type 2
concentrated covariance structures, is affected by which group has
differences in central location needs more systematic investigation.

Type of noncentrality structure. The two different concentrated

noncentrality structures were affected di fferently by the heterogeneity of

variance-covariance matrices. The Type 2 noncentrality structure was not
affected by the introduction of covariance heterogeneity in a consistent

manner under the low effect size condition. Further, in most cases the
rejection rates remained within two standard errors of the power levels
without assumption violations. The pattern became more consistent when the

6
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effect size was increased. The empirical power values almost always increased
when heterogeneity of covariance was introduced when the effect size was
moderate. The increased power was at least two standard errors greater than
the power without assumption violations with at least one of the types of
violation. In contrast, the rejection rates of the Type 1 noncentrality

structure decreased as heterogeneity of variance-covariance was introduced.

The decrease was greater for a moderate effect size than for a small effect size.
Degree of contamination. The effect of the degree of contamination

was not consistent with a low effect size. However, when a moderate effect size
was introduced the effects of contamination were greater when the degree of
contamination increased, with few exceptions. For the Type 2 noncentrality
structure, this meant that as the covariance inequality increased from r = .3 to
.5 in the contaminated group, the rejection rates increased. For the Type 1

noncentrality structure, as the covariance inequality increased from r = .3 to
.5 the rejection rates generally decreased.

Concentration of contamination. The relative effects of the two
concentrated levels of contamination depended on the type of noncentrality
structure and the level of the effect size. With a low effect size there was not a
consistent pattern. With a moderate effect size in the Type 2 noncentrality
structure, the Cl contamination had slightly more of an effect than the C2
contamination. In other words, the increase in the empirical power was
greater when contamination involved unequal covariances on all variable

pairs. Thus, when a single group differs on a single variable, more power is
demonstrated when covariance inequalities occur across all variables.

The reverse was true with the Type 1 noncentrality structure. The effects

of contamination were greater with the C2 rather than the Cl levels of
contamination. That is, the decrease in power that was greater when the
covariance contamination involves all variables. Thus, outside of equal

covariances, the most powerful situation i, when, when a single group differs

on all variables, but covariances differ on a single variable. This is probably

because the C2 situation presents a lesser contamination of variance-

covariance heterogeneity.

Test criteria. When the variance-covariance matrices were equal, the

ordering of the test criteria was typically T > W > V in terms of power. When

this pattern did not hold, the difference in rejection rates among the test

criteria was usually less than two standard error units. When heterogeneity of

7
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covariance was introduced the order of the rejection rates of the test criteria
typically remained the same as without assumption violations; T > W > V.

Discussion
Past research on the effects of heterogeneity of variancc-covariance on

the omnibus MANOVA test criteria have focused on introducing heterogeneity
of variance - covariance by creating heterogeneous variances (Olson, 1974;

Sheehan, 1994). These studies have found that Type I error rates become

greatly inflated in the presence of heterogeneous variances, and the test

criteria are differentially affected. Further, these studies found that the power

values are also differentially affected by introducing heterogeneous

variances. This had led to the general recommendation of using the Pi Ilai-

Bartlett trace when heterogeneity of variance-covariance is suspected,

because it tends to be more robust against inflated Type I error under these

conditions (Olson, 1974). The important implications of this study is that these

findings do not appear to hold under all types of violations of heterogeneity of

variance-covariance. These results affirm that when heterogeneity of

variance-covariance is introduced with unequal covariances across the

groups, the Type I error rates of three of the MANOVA test criteria, the Pillai-

Bartlett trace, the Hotelling-Lawley trace, and Wilk's' X, arc robust. Further,

the relative power of the three test criteria remain consistent with the power

levels without assumption violations.

These findings have implications for the choice of a MANOVA test statistic

when heterogeneity of variance-covariance is suspected. If the heterogeneity

is due to heterogeneous variances, the recommendations of Olson (1974) hold.

However, if the heterogeneity is due to unequal covariances across the groups,
the Hotelling-Lawley trace would be recommended. Since all of the test criteria

were robust to Type I error under there conditions, the choice of a test statistic

would be made based on power level, and the Hotelling-Lawley trace appears to
have the greatest relative power among the test criteria investigated in this

study.
Recommendations

The findings of this study indicate that it would be wise to reinvestigate

the effects of heterogeneity of variance-covariance of Roy's Greatest Root.

Since, this test statistic has greater power than the other MANOVA test criteria,

it would be the preferred test statistic under conditions of unequal covariances

if it too is robust to inflated Type I error. Also, a systematic investigation into

BEST COPY AVAILABLE
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the comparative power of MANOVA test criteria when differences in location

occur in groups with covariance inequalities under concentrated and diffuse

structures is warranted. Furthermore, this investigation into the properties of

MANOVA test statistics has only addressed V, W, and T as omnibus tests. Ramsey

(1980) commented that simultaneous test procedures (STP's) based on the
overall multivariate test statistic as a means of multiple comparisons can be
used to avoid the problems of "protected" univariate follow-up tests which
disturb both Type I error rates and power. Thus, it has been argued that
investigations into the choice of a MANOVA test statistic should be based on the
power and robustness of MANOVA STP's rather than the omnibus tests (Bird &

Hadzi-Pavlovic, 1983).
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Table 1.

Empirical Type I Error Rate for T, V, W under Conditions of Equal, Cl, and C2

Covariance Structures for K= 3 & 4 groups, p= 2, 4, & 6 variables, and cell size of

n= 20.

Groups

Covariance
Structure K=3 K=4

Variables T V W T V

p= 2 FQ .043 .043 .038 .048 .048 .047

C2(3) .045 .044 .044 .048 .045 .046

C2(5) .050 .046 .044 .050 .054 .048

p =4 .052 .046 .049 .044 .043 .042

C1(3) .048 .034 .043 .048 .047 .043

C1(5) .048 .038 .046 .054 .051 .052

C2(3) .051 .036 .048 .045 .046 .043

C2(5) .052 .034 .047 .050 .051 .049

p =6 .049 .048 .044 .052 .048 .043

C 1(3) .052 .047 .045 .053 .055 .051

C1(5) .056 .055 .051 .049 .051 .046

C2(3) .057 .058 .050 .052 .051 .049

C2(5) .047 .047 .043 .056 .055 .052

Note. EQ = Equal Covariance Structure; C1(3) = Type I Concentrated Covariance
Structure with r = .3 as the aberrant covariance; C1(5) = Type I Concentrated
Covariance Structure with r = .5 as the aberrant covariance; C2(3) = Type 2
Concentrated Covariance Structure with r = .3 as the aberrant covariance;
C2(5) = Type 2 Concentrated Structure with r = .5 as the aberrant covariance.

10
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Table 2.

Comparative Power for T, V, W under Conditions of Equal, CI, and C2 Covariance

and Type 1 and Type 2 Noncentrality Structures for K= 3 groups, p = 2, 4, & 6

variables, c = .3 and .6, and cell size of n = 10.

Noncentrality Structure
Covariance

Variables Structure

c = .3

Type 1 Type 2

T V W T V

p = 2 EQ .100 .088 .098 .076 .067 .076
C2(3) .090 .082 .089 .071 .064 .061
C2(5) .093 .082 .092 .084 .078 .085

p = 4 EQ .115 .112 .117 .058 .054 .057
C1(3) .074 .070 .075 .099 .090 .086
C1(5) .106 .095 .103 .064 .059 .062
C2(3) .117 .107 .118 .060 .066 .065
C2(5) .104 .096 .100 .071 .066 .074

p = 6 EQ .117 .121 .121 .064 .067 .067
C1(3) .095 .096 .094 .065 .064 .066
C1(5) .084 .086 .086 .068 .065 .073
C2(3) .117 .117 .119 .059 .067 .064
C2(5) .102 .100 .099 .068 .069 .070

c = .6 T V W T V

p = 2 13:2 .297 .274 .298 .184 .163 .181
C2(3) .286 .265 .286 .191 .177 .190
C2(5) .269 .247 .272 .186 .173 .188

p = 4 13:). .357 .324 .348 .130 .121 .130
C1(3) .303 .275 .303 .127 .118 .130
C1(5) .289 .267 .289 .138 .126 .138
C2(3) .335 .297 .327 .138 .127 .139
C2(5) .321 .282 .309 .150 .145 .148

p = 6 BQ .357 .317 .348 .103 .102 .105
C1(3) .283 .265 .285 .114 .109 .117
C2(5) .254 .239 .246 .127 .121 .125
C2(3) .342 .322 .346 .106 .106 .107
C2(5) .342 .322 .346 .12' .127 .127

Note. EQ = Equal Covariance Structure; C1(3) = Type 1 Concentrated Covariance
Structure with r = .3 as the aberrant covariance; C1(5) = Type I Concentrated
Covariance Structure with r = .5 as the aberrant covariance; C2(3) = Type 2
Concentrated Covariance Structure with r = .3 as the aberrant covariance;
C2(5) = Type 2 Concentrated Structure with r = .5 as the aberrant covariance.
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Table 3.

Comparative Power for T, V, W under Conditions of Equal, Cl, and C2 Covariance

and Type 1 and Type 2 Noncentrality Structures for K= 3 groups, p = 2, 4, & 6

variables, c = .3 and .6, and cell size of n = 20.

Covariance
Variables Structure

c= .3 T

Type 1

V

Noncentrality Structure

Type 2

W T V

p= 2 .177 .173 .167 .111 .103 .106
C2(3) .162 .158 .152 .112 .113 .108
C2(5) .161 .159 .154 .118 .118 .112

p = 4 .197 .157 .212 .093 .071 .088
C1(3) .203 .154 .193 .077 .055 .070
C1(5) .175 .134 .164 .091 .069 .085
C2(3) .208 .158 .195 .107 .080 .097
C2(5) .172 .129 .159 .098 .073 .091

p = 6 EQ .217 .216 .205 .085 .087 .075
C1(3) .190 .189 .175 .090 .088 .082
C2(5) .163 .162 .152 .096 .095 .087
C2(3) .200 .198 .190 .080 .081 .076
C2(5) .199 .198 .182 .088 .092 .082.

c = .6 T V W T V

p = 2 BQ .607 .603 .596 .349 .340 .332
C2(3) .622 .611 .608 .382 .370 .366
C2(5) .566 .553 .547 .381 .373 .367

p = 4 EQ .744 .671 .726 .266 .213 .250
C1(3) .658 .578 .636 .294 .225 .279
C1(5) .587 .509 .567 .280 .218 .265
C2(3) .716 .629 .690 .288 .227 .274
C2(5) .656 .574 .633 .308 .238 .288

p = 6 EQ .788 .765 .761 .216 .217 .201
C1( .,) .682 .660 .657 .233 .235 .217
C1(5) .542 .559 .554 .258 .257 .240
C2(3) .754 .723 .722 .245 .235 .225
C2(5) .733 .713 .710 .240 .246 .230

Note. EQ = Equal Covariance Structure; C1(3) = Type I Concentrated Covariance
Structure with r = .3 as the aberrant covariance; C1(5) = Type 1 Concentrated
Covariance Structure with r = .5 as the aberrant covariance; C2(3) = Type 2
Concentrated Covariance Structure with r = .3 as the aberrant covariance;
C2(5) = Type 2 Concentrated Structure with r = .5 as the aberrant covariance.
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Table 4.

Comparative Power for T, V ,W under Conditions of Equal, Cl, and C2 Covariance

and Type 1 and Type 2 Noncentrality Structures for K= 4 groups, p = 2, 4,

variables, c = .3 and .6, and cell size of n = 10.

Noncentrality Structure
Covariance

Variables Structure Type 1 Type 2

c = .3 T V W T V

& 6

p = 2 EQ .091 .091 .089 .080 .082 .082
C2(3) .096 .095 .098 .060 .059 .059
C2(5) .088 .089 .088 .079 .081 .079

p = 4 EQ .105 .102 .098 .061 .055 .054
C1(3) .112 .109 .106 .057 .049 .048
C1(5) .084 .079 .077 .063 .057 .055
C2(3) .097 .091 .086 .063 .057 .058
C2(5) .098 .095 .091 .064 .061 .058

p = 6 .107 .101 .099 .072 .069 .064
C1(3) .099 .097 .098 .058 .057 .055
C1(5) .104 .096 .097 .072 .067 .068
C2(3) .102 .097 .094 .067 .063 .063
C2(5) .097 .091 .094 .060 .055 .053

c = .6 V

p = 2 r-Q .270 .271 .273 .159 .160 .160
C2(3) .273 .271 .271 .166 .170 .167
C2(5) .252 .256 .257 .150 .157 .151

p = 4 EQ .343 .311 .319 .124 .112 .114
C1(3) .280 .263 .262 .124 .120 .115
C1(5) .268 .252 .249 .136 .135 .124
C2(3) .320 .291 .300 .125 .131 .117
C2(5) .310 .285 .290 .120 .114 .108

p = 6 EQ .340 .312 .328 .108 .096 .098
C1(3) .297 .267 .285 .124 .114 .111
C1(5) .261 .235 .238 .103 .101 .096
C2(3) .332 .287 .307 .115 .110 .109
C2(5) .314 .267 .287 .111 .099 .102

Note. EQ = Equal Covariance Structure; C1(3) = Type 1 Concentrated Covariance
Structure with r = .3 as the aberrant covariance; C1(5) = Type 1 Concentrated
Covariance Structure with r = .5 as the aberrant covariance; C2(3) = Type 2
Concentrated Covariance Structure with r = .3 as the aberrant covariance;
C2(5) = Type 2 Concentrated Structure with r = .5 as the aberrant covariance.


