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Preface by Series Editor

Mathematics education is established worldwide as'a major area of study,
with riumerous dedicated journals and conferences serving national and inter-
national communities of scholars. Research in mathematics education is be-
coming more theoretically orientated. Vigorous new perspectives are pervading
it from disciplines as diverse as psychology, philosophy, sociology, anthro-
pology, feminism, semiotics and literary criticism. The series Studies in
Mathematics Education consists of research contributions to the field based on
disciplined perspectives which.link theory with practice. It is founded on the
philosophy that theory is the practitioner’s most powerful tool in understand-
ing and changing practice. Whether the practice is mathematics teaching, teacher
education, or educational research, ‘the series will offer new perspectives to
assist in clarifying and posing problems and stimulating debate. The series
Studies in Mathematics Education will encourage the development and dis-
semination of theoretical perspectives in mathematics education as well as
their critical scrutiny. It aims to have a major impact on the theoretical devel-
opment of mathematics education as a field of study in the 1990s.

The first book in this series was The Philosophy of Mathematics Education
by Paul Ernest, which can be said to have lived up to the above description.
The next volume to be published will be Mathematics, Education and Philosophy:
An International Perspective, an edited collection containing chapters by Valerie
Walkerdine, Dick Tahta, Brian Rotman, Sal Restivo, Thomas Tymoczko,
Ernst von Glasersfeld, Reuben Hersh, Philip J. Davis, Ubiratan D’ Ambrosio,
David Pimm, John Mason, Paul Ernest, Leslie P. Steffe, Michael Otte, Stephen
I. Brown, Anna Sfard, George Gheverghese Joseph, Paul Dowling, Stephen
Lerman, and others. Exciting and powerful future volumes for the series by
Barbara Jaworski, Ernst von Glasersfeld, Jeffrey Evans and Paul Dowling are
in preparation, and will be published or be in press by the end of the year.

The present volume is the second in the series. In it Anna Sierpinska
tackles what might truthfully be described as the central problem in math-
ematics education: understanding in mathematics. Her inquiry draws together
strands from mathematics, philosophy, logic, linguistics, the psychology of
mathematics education, and especially welcome to an English-speaking audi-
ence, continental European research. She considers the contributions of the

ix
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social and cultural contexts to understanding, and draws upon a wide range
of scholars of current interest, including Foucault and Vygotsky. The outcome
is an important insight into both understanding and mathematics, valuable
both for the teacher and the mathematician. Allin all, an important and appro-
priate contribution to the series.

Paul Ernest
University of Exeter
February 1994
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Introduction

My concern with the question of understanding has its sources in the practical
problems of teaching mathematics and such basic ad naive questions as: how
to teach so that students understand? Why, in spite »f all my efforts of good
explanation they do not understand and make all t ese nonsensical errors?
What exactly don’t they understand? What do they uunderstand and how?
My first approach to these questions was empirical: observations of stu-
dents while discussing mathematical problems, trying to make sense of them,
communicating their understanding to others. The problems given to the
students were such that, to solve them, the students had, in fact, to construct
a new (for them) mathematical concept. The difficulties they encountered, the
tentative understandings of a still very unclear situation were often quite close
to those experienced by mathematicians in the past. Students’ difficulties thus
acquired a more universal meaning and significance, depending not so much
on their lack of matheniatical experience, or abilities, or idiosyncrasies of their

.still immature thought, but on the nature of the mathematical concept itself,

and on the culture in the frame of which it developed.

This is where Bachelard’s concept of epistemological obstacle turned out
to be very useful. Students’ thinking appeared to suffer from certain ‘episte-
mological obstacles’ that had to be overcome if a new concept was to be
developed. These ‘epistemological obstacles’ — ways of understanding based on
some unconscious, culturally acquired schemes of thought and unquestioned
beliefs about the nature of mathematics and fundamental categories such as
number, space, cause, chance, infinity, . .. inadequate with respect to the
present day theory — marked the development of the concept in history, and
remained somehow ‘implicated’, to use Bohm’s term, in its meaning.

It is then on these obstacles that research concentrated: a ‘hunt’ for epis-
temological obstacles started at the same time as an effort of precisation, of a
better <plication of the term was undertaken. The question was posed: on
what grounds do we claim that a student’s thinking suffers of an epistemo-
logical obstacle? Is an epistemological obstacle an error, a misunderstanding,
or just a certain way of knowing that works in some restricted domain but
proves inadequate when the domain is transcended? Or is it an attitude of the

mind that allows to take opinions for facts, a few cases for evidence of general
laws, .. .?
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The term of epistemological obstacle was invented by the French physi-
cist and philosopher Gaston Bachelard. He used this notion for the purposes
of his polemics with positivism in science. Scientists, he said, do not function
in the way prescribed by the neopositivists. Nature is not ‘given’ to us — our
minds are never virgin in front of reality. Whatever we say we see or observe
is biased by what we already know, think, believe, or wish to see. Some of
these thoughts, beliefs and knowledge can function as an obstacle to our
understanding of the phenomena. Our generalizations can be biased by our
tendency to found all knowledge on a few all-explanatory laws or principles
like ‘all bodies fall’ or ‘light propagates in straight lines’, or on all-explanatory
metaphors like ‘air is a sponge’.

But mathematics is not a natural science. It is not about the phenomena
of the real world, it is not about observatiocn and induction. Mathematical
induction is not a method for making generalizations. None of the examples
of epistemological obstacles that Bachelard gave could apply to mathematics,
as Bachelard said himself.

Still, mathematics educators had the feeling that it does make sense to
speak about epistemological obstacles in mathematics: every day, they were
facing something that seemed to function as an epistemological obstacle in
their students’ thinking. What they were missing was a theoretical founda-
tion. The transfer from natural sciences to mathematics required some adap-
tation, and some philosophical reflection on the nature of mathematics. This
turned their attention to the works of Lakatos, whose view of mathematics as
a quasi-empirical science was vividly exemplified in his reconstruction of the
history of the formula of Euler for polyhedrons. This history appears as a

~ ‘race through epistemological obstacles’ — a sequence of refuted wrong or

only limited beliefs about what this or that mathematical object should be,
what properties it can have, etc.

This view of mathematics required a rethinking of the teaching and of the
judgment of the students’ understanding. It relativized their errors. Some of
their errors were caused by ways of thinking quite legitimate within a certain
frame of mind, a certain context of problems and certain beliefs about what
is truth in mathematics. It became clear that at least some of the students’
ways of understanding deserve more respect and attention, and that instead
of trying to replace the students’ ‘wrong’ knowledge by the ‘correct’ one, the
teacher’s effort should be invested into negotiations of meanings with the
students, invention of special challenging problems in which a student would
experience a mental conflict that would bring to his or her awareness that his
or her way of understanding is probably not the only possible one, that it is
not universal,

At this point the research programme shifted to the problems of design
of teaching situations — ‘didactical engineering’ as the French call it — that
would provide favourable conditions for the students to overcome their epis-
temological obstacles and thus understand the mathematical contents better
and deeper.

xii
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Introduction

I started to almost identify understanding with overcoming obstacles.
But then a doubt was born: is all understanding like this? Everyday experience
of teaching and introspection suggested a negative answer. '

Once again, I was at the beginning of my way. The importunate ques-
tion: ‘what is understanding?’ popped up once more.

This time it had to be addressed directly. The first move was to consult
philosophers and psychologists. Gestalt psychology provided some interesting
ideas — especially that of equilibrium ‘or harmony of the ‘field of conscious-
ness’ which seemed to be the aimed at state of mind in understanding. Piaget’s
theory of equilibration of cognitive structures developed this metaphor to
speak about more complex intellectual processes and not just visual percep-
tion. Vygotski’s theory of concept development was quite interesting, t0o.
The process appeared as an evolution of those operations of the mind that
seemed to play an essential role in understanding: first, generalizations of
things, joined later by isolation of features of things and discrimination be-
tween them, all topped, at the age of adolescence, by more advanced gener-
alizations and syntheses leading to the formation of systemic thinking and
concepts. '

Search for hints in the classical philosophical literature (Locke’s and
Leibniz's Essays on Human Understanding) was somewhat disappointing. Works
in philosophical hermeneutics were, on the other hand, quite illuminating in
some ways, although they were concerned mainly with understanding the
written or spoken discourse, rather literary than mathematical. Gadamer’s and
Heidegger's discussions of the ‘hermeneutic circle’ evoked the idea of episte-
mological obstacles and their unavoidability in any effort of understanding.
Ricceur’s description of the process of understanding a text as a dialectic of
successive guesses and validation of guesses quite clearly made the distinction
between the roles of understanding and explaining at the same time as it
revealed their inseparability and complementarity in interpretive processes.

Dewey’s reflections on understanding were very appealing to an educator
— Dewey often referred to the teaching practice and to observations of a
growing child. But his definition of understanding as ‘grasping the meaning’
brought forth the need to clarify the notion of meaning. Now, semantics is
a huge field. The logical semantical views on meaning originated from the
works of Frege and Church were hard to swallow — formal logical views on
meaning are unacceptable for those whose main concern is a living and devel-
oping child. The epistemological and pragmatic perspectives have to be taken,
necessarily.

From this point of view, Husserl’s theory of the intentionality of meaning
was much better: the meaning of a sign is that to which I direct myself (in
thought) in an act of understanding. This definition, however, did not solve
the problem: while Dewey defined understanding by meaning, Husserl de-
fined meaning by understanding. We find ourselves bound in a vicious circle.

A way out of the impasse seemed to be provided by Ajdukiewicz’s ‘Prag-
matic logic’, where understanding was defined independently of meaning using

vos
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Introduction

the category of object as a primitive notion and the notion of meaning was
introduced through the relation of ‘understanding in the same way’.

Ajdukiewicz’s definition was very clear and simple; his notion of meaning
— very natural. I finally had the impression of having understood what under-
standing is all about.

But this was not the end of my problems. Ajdukiewicz's definition was
restricted to understanding expressions; meaning was the meaning of an ex-
pression. Understanding in mathematics is not confined to understanding
expressions. Of course, terms, symbols, formulas, theorems can all be regarded
as expressions. But even if we count texts as expressions, is a proof a text?
Is a theory a text? And what about understanding concepts? For Ajdukiewicz,
a concept was simply the meaning of a name. But my deep conviction was
that understanding a concept does not start with understanding its name.
So there was work to be done still.

In the chapters that follow I present some results of this work. It is an
approach to understanding in mathematics, influenced by Ajdukiewicz’s de-
finition, and guided by the aim of finding some mental tools to answer ques-
tions like: ‘What does it mean to understand such and such notion in
mathematics?’

In the context of the teaching and learning of mathematics any question
about the students’ understanding is at once a question about the level of
understanding: understanding is at once evaluated. This is why many existing
models of understanding in mathematics consist in a hierarchy of levels, steps
or stages. However, it is quite clear that any evaluation of an understanding
must be relative. Therefore, what is proposed in the present book is to meth-
odologically separate the questions of understanding and ‘good’ understand-
ing in building up a model and to admit, as fundamental, the notion of act of
understanding. An act of understanding is not defined in terms of its impact
on cognition; it is not, a priori, judged as valuable or worthless. Axiological
issies come into the scene when whole processes of understanding are taken
into account. Processes of understanding are seen as lattices of acts of under-
standing linked by various reasonings (explanations, validations) and a (rela-
tively) ‘good’ understanding of a given mathematical situation (concept, theory,
problem) is said to be achieved if the process of understanding contained
a certain number of especially significant acts, namely acts of overcoming
obstacles specific to that mathematical situation.

The notion of the act of understanding is central in the whole conception
of the book. Thus, the second chapter: ‘Components and conditions of an act
of understanding’ occupies much more space than any of the others. The first
chapter plays the role of an introduction to it: it inquires into the various
senses and uses of the word ‘understanding’ in ordinary language, discusses
the notion of meaning and relations between the notions of understanding and
meaning. It displays the rich background of issues which underlie the question
of what is an act of understanding that is considered in the second chapter.

Chapter 3 looks at whole processes of understanding, and the roles therein,

ig*
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of explanations and validations, examples, previous knowledge, figurative
speech (metaphors and metonymies), activity (both practical and intellectual).
The question of evaluation of understanding is dealt with in Chapter 4. One
of the problems raised here is concerr:ed with the relativity of any such evalu-
ation. Two important determinants of this relativity. namely the develop-
mental stage of the understanding subject and the culture, i.e., the system of
norms, ways of thinking and communicating, as well as what is considered
as scientific knowledge by both the understanding subject and the person who
evaluates the understanding, are the object of Chapter 5. It is shown, among
others, how the psychogenetic development of understanding is influenced by
the implicit functioning of a culture.

The view presented in the book is just one of the many possible ways of
looking at understanding in mathematics, biased by my own experiences with
mathematics, as a learner — a stulent of Andrzej Mostowski, Karol Borsuk
and Wanda Szmielew; as a teach.r; as a researcher both in mathematics and
mathematics education, and an enthusiastic reader of Ajdukiewicz’s articles
and books. Understanding is a very complex issue, both philosophically and
practically. But it is also a challenging and fascinating one and sometimes we
just cannot resist the temptation of writing about it, although it is clear from
the beginning that whatever we say understanding is, it is not because ‘what-
ever we say is words, and what we mean to say is not words’.

This book is not primarily concerned with the word ‘understanding’ or
the concept of understanding, although it might seem so. It is meant to con-
tribute to a better understanding of how real people understand mathematics
in real life, not of the ‘human understanding’ of mathematics. It is not a
philosophical treatise. In mathematics education we are trying to understand
and communicate on, among others, the problems related to students’ under-
standing. For this we need some clarity on what we are talking and commun-
icating about. This is why, from time to time, we need to make a stop in our
usual more or less practical activities and think about the language we are
using, about the meanings of such common words as ‘understanding’ or
‘meaning’. This book has been such a stop in my own activities, too long, 1
am sure, and whether it was at all worthy of making — let the reader judge.




Chapter 1

Understanding and Meaning

We are in a class of the fourth grade. The teacher is dictating: ‘A circle
is the position of the points in a plane which are at the same distance
from an interior point called the centre.” The good pupil writes this
phrase in his copy-book - the bad pupil draws faces, but neither of
them understands. Then the teacher takes the chalk and draws a circle
on the board. ‘Ah’, thirik the pupils, ‘why didn’t he say at once, a
circle is a round, and we should have understood.’ (Poincaré, 1952)

Understanding
The Word Understanding’ in Ordinary Language

The word ‘understanding’ is used in very many forms and expressions in
informal speech. We say that a person ‘understands’ something, we speak of
a person’s ‘understanding’ of something, and of the various ‘understandings’
people may have. We also speak of ‘mutual understanding’, of understanding
somebody’s utterance or somebody’s writing, of understanding a word, an ex-
pression, a concept, a phenomenon. We qualify understanding as ‘good’, ‘deep’,
‘poor’, ‘complex’, ‘significant’, ‘full’, ‘incomplete’, ‘intuitive’, or ‘wrong’. We
sometimes speak of ‘some’ understanding to say that this understanding is not
yet very elaborate.

It is often claimed that the word ‘to understand’ is highly ambiguous
(Kotarbinski, 1961, p. 128). Indeed, it is certainly not the same mental and
emotional experience to understand the phenomenon of sunset and to under-
stand a poetic description of a sunset. It is not the same to understand the sun
as a bright sphere that travels across the sky from dawn to twilight and to
understand the sun as the star around which gravitate the Earth and other
planets of our planetary system. In this case we speak of two ‘ways of under-
standing’ or two different ‘understandings’ of one and the same thing.

‘Understanding’ can be thought of as an actual or a potential mental
experience, as Kotarbinski pointed out (ibidem). For example, when we say
that a person, who knows his or her multiplication tables, understands the

1
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thought that ‘7 times 9 is 63’, we may mean that the person actually, at this
moment, thinks of ‘7 times.9’ and ‘63’ and considers them as equal, or that
he or she is capable of so doing at any time, having reflected upon it already
in the past.

There are, then, actual mental experiences, which we might call ‘acts of
understanding’ and there is ‘an understanding’ which is a potential to experi-
ence an act of understanding when necessary. ‘Understandings’ thus seem
more to belong to the sphere of knowing: they are the ‘resources’ for knowirig.

An act of understanding is an experience that occurs at some point in
time and is quickly over. But, especially in education, we alsc speak of under-
standing as a cognitive activity that takes place over longer periods of time —
then we sometimes use the term of ‘process of understanding’ in which ‘acts
of understanding’ mark the significant steps while the acquired ‘understandings’

" constitute props for further development.

Understanding . . . What?

Acts of understanding, understandings, processes of undefstanding can all
differ by that which is understood: an expression of language, a diagram, a
concept, a theorem, a theory, a judgment, somebody’s thought, a phenom-
enon, a situation, a problem. ..

In the context of mathematics, we often speak of understanding ‘math-
ematical concepts’ in general or of understanding specific mathematical con-
cepts such as number, quantity, volume, function, limit of a sequence, linear
independence of vectors etc. However, other things are mentioned as objects
of understanding as well.

Let us consider, as an example of a text concerned with cognition in the
mathematical field, the 1991 article of James G. Greeno, and find the various
uses the author is making of the word ‘understanding’ and its derived forms.
Let us start with the question: what appears there as ‘objects of understanding’?

In the first instance of the use of the word ‘understanding’ in the article,
it is associated with ‘patterns’: ‘understanding subtle patterns’. Later the author
mentions understanding of ‘concepts, notations and procedures’, ‘equivalences’
(e.g., of 42 and 6¢7, 2/3 and 4/6, y = 6 — 3x and x/2 + y/6 = 1, etc.), ‘relations
among numbers and quantities’, ‘how mathematics is related to situations
involving physical objects, quantities of money and other concrete things’,
‘problems and situations’, ‘language’, ‘language of mathematics’, ‘instructions’,
‘the linear structure of positive integers’, ‘relations between places in the en-
vironment that are represented by the symbols on the map’, ‘meanings [of
procedures for manipulating notations]’, ‘reasonings’, ‘one’s physical position
in an environment’, ‘concepts and principles’, ‘linguistic representations of con-
cepts’, ‘theoretical entities and processes’, ‘the difference between an object
and the thought about that object’, ‘the sequence of numerals’, ‘mathematical
concepts’, ‘a phrase’, ‘mathematical questions’, ‘metamathematical views’.

19.,




Understanding and Meaning

i

Figure 1: The pattern of the problem of Luc and Miche!

T
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Confusion Between the Thing I Want to Understand and That on Which
I Base My Understanding

If I say ‘I understand the pattern’ (of a class of problems, for example) I may
mean that the object of my understanding is really the pattern, or I may mean
that [ intend to understand the class of problems and the perception of some
common pattern in these problems constitutes my understanding of it — the
pattern founds my understanding of the class of problems. In the former case,
I reflect on the pattern itself, which I have previously identified as common
to certain problems. I may say I understand the pattern when, for example,
I have constructed a model of thi» pattern, identified the basic elements of it.
Then I may be able to formulate problems that follow this pattern and not
only to recognize among some given problems those that satisfy the pattern. .

Let us take, for example, the following problem: Luc has $1.45 more
than Michel. Luc doubles his amount of money and Michel increases his by
$3.50. Now Luc has $0.40 less than Michel. What were the initial amounts of
Luc and Michel?

Understanding the problem as having a certain pattern may consist in
perceiving a similarity between this and other problems done in class. This
may allow the use of an analogous procedure to soive the problem. Under-
standing the pattern itself would probably involve a generalization of the
problem, introduction of variables in place of zll the givens,and unknowns:
four unknown states A, B, C, D are related by given rélations r, s, t, u
between A and B, B and C, C and D, D and A, respectively; to find A and
B. Such understanding could be supported by a representation of the pattern
in form of a diagram, like the one shown in Figure 1.

. A pattern of solution would then easily be seen: given are the relations:
A =1(B)=B + 1.45, D = u(A) = 2*A; C = s(B) = B + 3.50; D = t(C) =
C - 0.40, whence D = u(A) = t(C), and thus u(r(B)) = t(s(B)) which can be
solved as an equation in a single unknown: 2*(B + 1.45) = (B + 3.50) - 0.40
(Bednarz et al., 1992).

A similar ambiguity may occur with respect to ‘understanding a con-
cept’. If the concept is thought of as a certain ready made, existing theoretical

3
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‘object’ out there, named, defined or described in some way, related to other
concepts and interpreted in various situations etc., then understanding it would

"consist in analyzing thjs definition or this description, recognizing these rela-

tions and these interpretations. The ready made concept would then consti-
tute the object of understanding, i.e., that which is being understood.

But the phrase ‘to understand the concept C’ can be interpreted also in
such a way that something is being understood on the basis of this very
concept: something is being brought together as representing a concept, it is
generalized and synthesized into that concept C. The concept would then be
only formed in the act or process of understanding a situation. Such are the
acts of ‘thematization’ Piaget speaks about; for example, the thematization of
the use of geometric transformations into a concept that is fundamental for
geometry, allowing the classification of its various domains as ‘theories of
invariants’ of transformation groups.

In the former case the understanding would consist in finding out what
‘stands under’ the given concept C. In the latter, some situations would be
‘taken together’ — ‘une situation serait com-prise’ in form of a concept.

Thus, when it is said in ordinary language that a certain person has under-
stood something, an X, it may mean that X is indeed the object of his or her
understanding, or that he or she has understood something else of which X
is seen as forming the ‘essence’ or the most important feature: he or she has
understood something else ‘on the basis’ of X. The use of the expression ‘he
or she has understood X’ in the vernacular may be confusing in this respect.
When discussing the notion of ‘act of understanding’ in the next chapter the
distinction between the object of understanding and the basis of understand-
ing is very much stressed. It seems important to be aware of the difference
between ‘what is to be understood’ and ‘on what basis something has to be
understood’ or ‘how do we want something to be understood’ in, for exam-
ple, designing a teaching sequence.

Ir. his article, Greeno used the expression: ‘to understand the meaning (of
X)'. The definite article ‘the’ suggests that X has a well determined meaning
and what is there to understand is this pre-existing meaning. But in under-
standing we very often only just construct a meaning of X; then this meaning
is a basis of our understanding of X. Dewey considered expressions ‘to under-
stand’ and ‘to grasp the meaning’ as synonymous (Dewey, 1971, p. 137). He
was thus explaining ‘understanding’ by ‘meaning’. We shall take an alternative
point of view and, following Ajdukiewicz, we shall explain ‘meaning’ by
‘understanding’. A meaning of X will be, for us, a certain ‘way of understand-
ing’ X, an abstraction from the occasional features of an act of understanding
and retainment of only certain characteristics of it.

What Our Understanding Consists of? Different Ways of Understanding

Things can be understood in various ways and the understanding may consist of
a variety of things. Mathematical examples of different ways of understanding
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are easily available from research on students difficulties in understanding
mathematical notions. Here are some common students’ understandings of
the limit of function at a point, as described by Williams (1991):

A limit describes how a function moves as x moves toward a certain
point.

A limit is a number past which a function cannot go.

A limit is a number or point the function gets close to but never
reaches.

In all three cases the understanding consists in identifying a certain char-
acteristic property of the object of understanding (the concept of limit, of
function, or just the term ‘limit of function at a point’).

Understanding may consist of a variety of other things as well. If the
object of understanding is a phenomenon then its understanding may consist
in finding an explanation of why the phenomenon occurs. One can also under-
stand a practical action by being aware of why this action produces an ex-
pected result. There can be many kinds of explanations and therefore different
ways of understanding. A person may feel she understands an action because
she knows how to perform it successfully. A phenomenon can be understood
by recognizing its main components and the relations between them. An
understanding of a thunderstorm may consist of an explanation by the laws of
physics (electrical discharges, laws of propagation of acoustic and light waves,
etc.) or in an identification of a thunderstorm’s normal course, effects (rain,
thunder and lightning, and the delay between them), states of the atmosphere
before and after the storm etc.

Quite a ot of understanding is related to this question ‘why’ and consists
in finding the ‘premisses’, ‘reasons’ or a ‘cause’ for something. Kotarbinski
uses the following example: ‘Jan understood why the selling of the property
was a mistake.” He interprets it as follows: ‘this means that, through some
kind of reasoning Jan has come to the conclusion that the selling of the prop-
erty was a mistake for such and such reason.” Thus an act of understanding
can be a result of some reasoning — reasoning may lead to understanding
something.

For some authors, ‘understanding’ is synonymous to ‘understanding why’.
It is in this sense that Piaget uses this word in his book on Success and under-
standing (1978). He speaks of understanding a practical action (e.g., building
a house of cards or putting a set of dominoes in a row so that pushing the first
one would make all the others fall down); in this context, to understand an
action means to understand why it works (leads to success) or why it does not
work. In fact. Piaget is very demanding with respect to understanding. ‘Under-
standing how’ to make something, how to perform a practical action, what
to do to attain a certain result, is not understanding at all. Understanding, for
him, belongs to the realm of reason: it must be based on conceptualizations
and such connections between these conceptualizations that are implicative
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and not causal. Understanding focuses neither on the goals that the action is
expected to attain, nor on the means that can be used to reach them; it goes
beyond the information given and aims at the ‘determination of the reasons
without which successes remain mere facts without signification’ (ibidem,
p. 222). Earlier in the book, in the introduction to the final onclusions, Piaget
uses the terms of ‘notional comprehension’ and ‘explicative and implicative
processes of comprehension’ (ibidem, p. 213). Piaget does not speak of any
understanding but specifically of an understanding based on such conceptu-
alizations that allow to explain why a ¢ertain action has been successful and to
imply why certain possible actions would be or would not be successful. For
us here, ‘understanding’ will not a priori mean such ‘notional’ or ‘reasoned’
understanding. We shall not impose other norms on an act of understanding
except such as we subjectively féel necessary for a mental experience to be
called this nam .

What an understanding of other peoples’ behaviour and products of this
behaviour, for example, live speech or written texts, consists of, has been
a long-standing problem in hermeneutics and philosophy. For some philo-
sophers (like Dilthey), understanding in this context meant empathy — feeling
and -thinking as the author feels and thinks. Others, (like Ricceur, 1976),
proposed that a text, or any discourse for that matter, distances itself from the
author, acquires a meaning of its own and the reader has to reconstruct this
meaning for himself.

What ‘Stands Under’ Understanding?

Several pieces of information are needed to make a statement about an act-
of understanding less ambiguous. One should know what is the ‘object of
understanding’, i.e., what is being understood; and on what basis is this object
being understood (a reason?, an explanation?’, a know-how? empathy?), as
well as what are the operations of the mind that are involved in the act of
understanding.

In asking a person whose intention it is to understand something what
does his or her understanding of this something consist of, the expected reply
is normally a description of that on which his or her understanding is based
and of the operation of mind he or she has been using to make the link
between this basis and the obj ct of his or her understanding (for example, the
person has identified the reasons of a certain action).

There seems to be a large variety of theoretical views on what can actu-
ally constitute a basis for understanding. Understanding expressions was tra-
ditionally regarded as based on either images or imagined feelings, situations,
etc. or conceptual representations (Ajdukiewicz, 1974). Jerome S. Bruner (1973)
based understanding of concepts on three kinds of mental representations:
those that could be mediated through actions (enactive representations), those
that could be mediated through pictures (iconic representations) and those that




PAFullToxt Provided by ERIC

Understanding and Meaning

could be mediated through symbols or language (symbolic representations).
Cognitive scientists preferred to think that understanding of any kind of dis-
course consists in retrieval from memory of mental ‘frames’, ‘scripts’; or
‘schemas’ which function very much like procedures in a software (Minsky,
1975; Davis, 1984).

A style of speaking (or maybe even thinking) that has gained some popu-
larity in the past few years is embedded in the ‘environmental’ or ‘ecological’
metaphor. Concepts, it is said, cannot be thought of in isolation from whole
domains of concepts, facts and procedures in which they have their meaning
and which constitute, so to say, their ‘natural environment’. Therefore, it is
impossible to speak of understanding of a concept without speaking at the
same time of the understanding and knowledge of its environment — its
conceptual domain. Coming to know a conceptual domain thus resembles
‘knowing one’s way around in an environment . . . and knowing how to use
its resources as well as being able to find and use those resources for under-
standing and reasonirg. Knowing includes interaction with the environment
in its own terms — exploring the territory, appreciating its scenery and under-
standing how its various components interact’(Greeno, ibidem, p. 175).

In physical environments, understanding and reasoning is based on build-
ing the so-called ‘mental models’ of the reality and simulating the behaviour
of real objects in them, imagining situations, just as they might happen in
reality and not constructing representations, symbolic or iconic or other and
manipulating them according to some more or less formal rules. Greeno claims
that the activity of knowing, understanding and reasoning in abstract concep-
tual environments is analogous to that in physical environments such as a
town, a kitchen or a wood workshop. Abstract concepts are treated as real
objects that can be combined and decomposed; it is simulation of operations
on these objects that is performed rather than formal manipulation according
to laws and rules. It is a very poor understanding, Greeno says, if a person,
asked to calculate mentally ‘25948’ represents to himself or herself the paper
and pencil algorithm and tries to do it in his or her head. A better understand-
ing occurs if the person treats 25 and 48 as objects that can be ‘combined’ and
‘decomposed’: 48 is 40 and 8 and 40 is 4 times 10; 25 times 4 is 100; 100 times
10 is 1000; now, 25 times 8 (which is 4¢2) is 2 times 100, 200. So the result
is 1200.

Sometimes the objects in the model can be particular graphic representa-
tions or diagrams; when we think about functions, for example, we often
replace functions by their graphs which can then be translated, reflected, added,
etc., in our minds.

‘Thought experiment’ is an older term that denotes a kind of mental
modelling. A thought experiment simulates some physical activity, allows the
making of inferences and the understanding of how certain things are related
without actually perforiing this activity.

Greeno uses the term ‘affordance’ borrowed from Gibson (1986) to name
the role that various objects and relations in mental models play in reasoning,
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and implicitly also, in understanding. In a situation of understanding, an
affordance is something that comes in handy as a basis for understanding.
Greeno gives a nice example of perception of an affordance in a geometrical
situation (which, by the way, could also be used as evidence of the role that
the Gestalt ‘insights’ — sudden re-organizations of our field of consciousness
— play in understanding).

A young friend of mine was working on a problem assigned in her
geometry course to prove that the lines that connect the midpoints of
adjacent sides of a parallelogram form another parallelogram. A hint
had been given to draw the diagonal of the parallelogram and she
recognized that if she could prove that each midpoint connector is
parallel to the diagonal, they are parallel to each other. Her initial -
efforts to get that proof were unsuccessful. I suggested focusing on
the triangle formed by the diagonal and the two sides of the parallelo-
gram and covered one half of the figure with my hand. My friend
then saw a different pattern, recognized that the line connected mid-
points of the sides of the triangle and remembered the theorem that
this line is parallel to the base. The example illustrates perception of
a feature of the situation that would not be an affordance unless the
person knew the pattern of inference involving midpoints of sides of
a triangle and that requires a particular attentional focus for it to be
perceived and used. (Greeno, ibidem)

An affordance here in this situation is the configuration satisfying the
assumptions of a certain well-known theorem about the line that connects the
mid-points of the sides of a triangle. The situation which is first understood
as one quadrangle in another quadrangle is then understood as two diagrams
for this theorem: two triangles with connected midpoints of sides.

Notations, or symbolic representations, arc another example of things
that ‘provide affordances’ for mathematical thinking, understanding, and rea-
soning. They have played an important part in the historical development of
mathematics: Viéte's algebraic notation, Descartes coordinates, Leibniz’s no-
tation of derivatives and integrals are some well-known examples of how the
development of representations can give rise to whole new branches of math-
ematics and new ways of thinking in mathematics. Leibniz is known for his
strong belief in the power of good notation. He dreamt of reducing all scien-
tific knowledge to a kind of forinal calculus. Such a calculus would enable
scientists to solve any problem, any controversy, in an unambiguous way.
This dream turned out to be unrealistic but Leibniz’s nutation for derivatives
and integrals remained efficient and handy, suggestive of properties of the
operations themselves; it really ‘opened the way to discoveries’ and ‘facilitated
the work of the mind’ (Juszkiewicz, 1976, p. 274). For Leibniz a symbol
should not be chosen arbitrarily; it should be a small story about the thing
symbolized, it should ‘represent the deepest nature of the thing’ (ibidem).
Then the symbol can be an affordance for the understanding of the thing.

8
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Understanding and Meaning
Synonyms of Understanding

Besides speaking of understanding explicitly we sometimes use more round-
about ways of expressing ourselves. For example, ‘it makes sense to me’ could
be replaced without much change of meaning by ‘I understand it’. ‘Successful
communication’ between two parties is very much the same as mutual unde: -
standing between them.

‘I interpret this as meaning this or that’ — ‘I understand this as. .. ." Of
course, the meanings are not exactly the same, there are subtle differences.
‘Interpretation’ is both understanding and validation of understanding — a
slight shift from the traditional attitude in hermeneutics which made a strong
separation between the sciences of understanding and the sciences of explain-
ing. ‘Successful communication’ can assume more than ‘mutual understand-
ing’ which may remain on the level of empathy. Communication means that
some information has been exchanged and one can expect actions that will be
undertaken accordingly by the communicating parties.

‘Seeing’ in English seems to be the same as ‘understanding’: what do we
mean when, in a conversation, we say ‘I see’? We probably refer to some kind
of internal ‘seeing’ of what the other person has in mind.

Understanding is also implicit in expressions containing ‘seeing as . . ." or
‘recognizing something as. ...’ These expressions give account of a certain
way of understanding; they can describe what kind of concept a person has of
something. Greeno reports that ‘seeing-as’ has become a scientific term related
to Hanson’s theory of patterns of discovery (FHanson, 1961). Hanscn gives the
following examples: ‘One can see the sun as a disk that travels across the sky.
One can also see the sun as a very large, very distant body that is visible part
of the time because the planet we are on constantly rotates’ (Greeno, ibidem,
p. 182). But earlier than that, ‘seeing-as’ was raised to the level of a concept
and a philosophical problem in Wittgenstein’s Philosophical Investigations. One
of the questions posed by Wittgenstein was that of the distinction between
seeing and seeing-as or seeing an aspect. The latter is closer to interpreting and
imagining.

Do I really see something different each time, or do I only interpret
what [ see in a different way? | am inclined to say the former. But
Why? — To interpret is to think, to do something; seeing is a state.

Now it is easy to recognize cases in which we are interpreting.
When we interpret we form hypotheses, which may prove false. —
‘I am seeing this figure as a. ..’ can be verified as little as (or in the
same sense as) ‘I am seeing bright red’. So there is a similarity in the
use of ‘seeing’ in the two contexts. Only do not think you knew in
advance what the ‘state of seeing’ means here! Let the use teach you the

meaning . . .
The concept of an aspect is akin to the concept of image. In other
words: the concept ‘I am now seeing it as. ..’ is akin to ‘I am now
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having this image’ . . . One can use imagining in the course of prov-
ing something. Seeing an aspect and imagining are subject to the will.
There is such an order as ‘Imagine this’, and also: ‘Now see this figure
like this’; but not: ‘Now see this leaf green’. (Wittgenstein, 1958,
p. 213e)

Riceur evokes Wittgenstein’s distinction in relation to the role that
metaphors play in understanding: contrary to what can be thought, figures of
speech are not there to give a ‘picture’ of something but to draw attention to
some important aspect: ‘to figure is always to see as, but not always to see or
to make visible’ (Riceeur, 1977, p. 61).

This distinction between ‘seeing’ and ‘seeing as’ is important in math-
ematics whose very nature does not allow for ‘seeing’ its objects, but always
to ‘see them as’. Let me quote the somewhat bitter words of Poincaré:

What is understanding? Has the word the same meaning for every-
body? .. . [Some] will always ask themselves what use it is. . . . Under
each word they wish to put a sensible image; the definition must call
up this image, and at each stage of the demonstration they must see
it being transformed and evolved. On this condition only will they
understand and retain what they have understood. These often de-
ceive themselves: they do not listen to reasoning, they look at the
figures; they imagine that they have understood when they have only
seen. (Poincaré, 1952, pp. 118-9)

‘Conceptual representation’ in mathernatics education is used in a sense
that is closer to ‘seeing as’ than to ‘seeing’. But also the term ‘conception’ is
used which has a somewhat different meaning. While a conceptual represen-
tation is defined as expressible totally in words, a ‘conception’ may be very
intuitive, partly visual and not necessarily logically consistent or complete. A
person who has a ‘conception’ of, for example, the mathematical concept of
limit, ‘has some notion’ of it, has ‘some understanding’ of it not necessarily on
the most elaborate level. Williams, for example (ibidem), distinguishes ‘having
a conception of limit’ from ‘having a model of limit’, which has to be closer
to the mathematical meaning of limit. Williams requires, for a person to have
a ‘model’ of limit, that he or she be able to distinguish, to some degree, true
statements from false statements about limits; that he or she be able to make
inferences about the concept; that he or she ‘have some sense’ of what con-
stitutes truth in mathematical analysis; that statements and assertions ‘have
meaning’ to the person and that this meaning does not diverge too far from
‘the accepted mathematical meaning’.

To ‘have some sense’ of something, for this something to ‘have meaning’
for a person, are again expressions that refer to understanding. To ‘have a
sense’ of something fs yet another expression. Greeno's ‘number sense’ is a
certain way of understanding numbers and quantities, but also of reasoning
with them. of coming to know them.

10
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‘Grasping the meaning’ is used as another synonym — we already men-
tioned it by quoting Dewey. In understanding, something is ‘caught’, some-
thing almost palpable — the meaning (indeed, Husserl, for example, considered
meaning as an object — an ideal object, but an object all the same). Colloqui-
ally we express the same idea in asking our partner in conversation: ‘Got it?’
as if we were throwing something at him or her and he or she was supposed
to catch it as a ball,

Adjectives Associated with Understanding

To say that a person ‘understands’ something is, as we have seen, a highly
ambiguous expression. In order to make themselves more clear people use all
kinds of adjectives. If we take again the text of Greeno, we find the following
qualifications of ‘understanding’: ‘holistic and configural’ understanding is
oppused to ‘rule-based procedures’; a ‘cultural understanding’ is specific to, and
shared in, a culture; ‘~onceptual’ understanding (close to ‘seeing as’); ‘spatial’
understanding (for example, the understanding of numbers based on relative
sizes of things, position of numbers on the number line, etc.).

Let us talk a little about ‘cultural understanding’. An ethnic community
may develop certain ways of understanding or interpreting words, facts, situ-
ations, or phenomena that may differ from understandings common in other
cultures. The works of anthropologists as well as sociologists of science have
brought to our awareness how different, contrary to what Kant might have
thought, the intuitions of time and space of people living in different cultures
are. Professional communities also develop their own ‘standards’ or ‘ideals’ of
understanding, or ‘cognitive norms’.

The view on learning {(and teaching) the notion of number that Greeno
presents in his paper is grounded in the more general framework of the so-
called ‘situated cognition’. As understanding is involved in cognition, one can
probably also speak of ‘situated understanding’.

The basic form of situated cognition is an interaction of an agent
within a situation, with the agent participating along with objects and
other people to co-constitute activity. The agent’s connection with
the situation includes direct local interaction with objects and other
people in the immediate vicinity as well as knowing where he or she
is in relation with more remote features of the environment ... We
construct mental models that provide us with situations in which we
can interact with mental objects that represent objects, properties and
relations and that behave in ways that simulate the objects, properties
and relations that our models represent . . . The concepts and princi-
ples that a person understands, in this sense, are embedded in the kinds
of objects that he or she includes in mental models and in the ways
in which those objects behave, including how they combine and
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separate to form other objects and how they are interrelated by prox-

imity and path connections in the conceptual domain. (Greeno, ibidem,
p. 200)

‘Situated understanding’ would therefore be an understanding that is
‘concrete’ and ‘contextual’ in the sense that it is grounded in simulated actions
on objects, embedded in certain ‘situations’ rather than in formal inferences
from general and abstract statements, even though these ‘objects’ may be of
very abstract nature like, for example, functions or function spaces, and the
‘situation’ — a highly elaborate research problem of functional analysis.

In speaking about understanding in communication between people,
Greeno uses adjectives such as ‘shared’ and ‘mutual’ understanding. Such
‘shared’ or ‘mutual’ understanding is ‘reached’ through discussions and ‘nego-
tiation of meaning’ of terms used in the discussion. In order for such under-
standing to be established, participants must ‘refer’ to the same kinds of objects
in the mental models they build of the discussed situation. If the situation is
mathematical and the objects are abstract objects then one (and sometimes the
only) way.to decide whether the two people are approximately thinking about
the same thing is to use some representations of these objects: symbols, dia-
grams, graphs and maybe more formal definitions.

In educational practice evaluative qualifications of understanding are fre-
quent. For example, Greeno speaks of ‘adequate’ understanding of mathematical
notation which he opposes to ‘mindless manipulation of symbols’. For him, an
understanding is ‘adequate’ if operations on symbols are projections of mental
operations on objects in a mental model.

There are also other adjectives that Greeno uses with understanding, such
as: ‘significant implicit understanding of many concepts and principles’ and
‘intuitive understanding of quantitative relations of comparison, change and
combination’. ‘Implicit’ and ‘intuitive’ understanding seems to be opposed to
‘more articulate and more complex understanding’.

Activities of the Mind That Accompany or Complement Understanding

Greeno often enumerates ‘understanding’ along with ‘reasoning’; also ‘know-
ing’, ‘perceiving’, ‘using’, ‘solving’, ‘speaking’, ‘insights’ and ‘beliefs’ can be
found in the proximity. Exactly how reasoning and understanding can be
complementary is not discussed in the paper of Greeno — this is not the kind
of question he asks himseif.

We sometimes speak of ‘understanding a reasoning’. So a reasoning can
be understood. Can an understanding be ‘reasoned’? Or must it? In some
languages (for example, in Polish) the word ‘understanding’ (rozumienie) is
derived from ‘reason’ (rozum). In these languages understanding is or should
always be somehow ‘reasoned’. However, this ethymological sense is very

much Jost now, and, even in Polish, expressions like ‘intuitive understanding’
are commonly used.
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There are many questions concerning the notion of understanding, of
which the relation between understanding and reasoning is but one. We shall
examine it more thoroughly in later chapters. Now let us give some attention
to the relations between understanding and meaning.

Meaning

Few concepts have caused as much trouble in philosophy as the concept of
meaning. There is a long history of attempts to encapsulate it into theories
from which it always seemed to be able to slip away. The reason for this may
lie in the unavoidable self-referential character of any theory that would pre-
tend to speak of meaning in a more general way: any definition of meaning
has meaning itself, so it refers to itself as well. Rarely, therefore, was meaning
considered in its full generality; different philosophers have occupied them-
selves with meanings of different things, and they focused. their attention on
different aspects of meaning.

They were probably right in doing so, for, as Austin says (1961, p. 23)
while a question like ‘what is the meaning of the word “irrational number”’
is a sensible one, a question like ‘what is the meaning of a word’, or, worse
even, ‘what is meaning’ is nonsense. Austin caricatures the effects of our drive
to asking such ‘nonsensical questions’ in the following humourous way:

To show up this pseudo-question, let us take a parallel case . . . Suppose
that I ask ‘What is the point of doing so-and-so?” For example, 1 ask
Old Father William ‘What is the point of standing on one’s head?’ He
replies in the way we know. Then I follow this up with ‘What is the
point of balancing an eel on the end of one’s nose?” And he explains.
Now suppose I ask my third question “What is the point of doing
anything — not anything in particular, but just anything?’ Old Father
William would no doubt kick me downstairs without the option. But
lesser men, raising the same question and finding no answer, would
very likely commit suicide or join the Church. (Luckily, in the case
of “What is the meaning of'a word?’ the effects are less serious, amount-
ing only to the writing of bocks). (Austin, ibidem, p. 27)

In my case, the =ffects of asking myself the question ‘What is the meaning
of anything?’ were of this less serious kind. I wrote the pages below.

What Has Meaning?

There are a few ‘grammatical’ questions that one can ask about any predicate
like ‘has meaning’. The first is ‘what is it that has mcaning’? To this, the most
natural answer seems to be ‘the sign’. If anything has meaning, it is a sign.
Or, a sign is what has meaning. This makes the concept of sign very com-
prehensive. If we think it is right to say not that a concept is a meaning (of
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a name) but that a concept has meaning then we agree with Charles Sanders
Peirce that even concepts are signs (Peirce, 1984, p. 439). For Peirce, who, as
Ogden and Richards (1946) say, has accomplished the most elaborate and
determined account of signs and their meaning — a sign is a representation:

it represents or replaces sonsething for someone (‘A sign is an object which
stands for another in some mind’, Peirce, 1986, p. 66). In this sense a sign is
a triadic relation: a representation is a mediation between two elements by a
third one. Ogden and Richards were inspired by this idea when they proposed
their famous ‘triangle of meaning’ (ibidem, p. 11), used, in mathematics edu-
cation, by, among others, Steinbring (e.g., 1993) as a basis for the study of
how the mathematical meanings are constructed in the reality of mathematics
classes.

The notion of the meaning of sign has been studied in general, but some-
times attention focused on the meaning of some specific kinds of signs: phe-
nomena (things, persons, features, events, that can refer to something, mean
something, express something, evoke feelings, induce actions, etc.), objects in
a situation (an object acquires meaning by being an affordance in a problem
situation), parts of a whole (the meaning of an element lies in the function it
plays in the structure of a whole), names, expressions, sentences, questions,
utterances, language as a system, as well as thoughts and propositions.

Where Is Meaning to Be Found?

Angther ‘grammatical’ question about meaning is ‘where is meaning to be
found’? Philosophers differ in their views on this matter: is the meaning of a
sign in ‘ae head of the person for whom the sign represents something (a
‘picture’ in the mind, a ‘mental accompaniment’ of an expression), or is it in
the object represented — in its distinctive features (the connotation of a name
given to this object)? Or is the meamng in the sign? Peirce: the meamng is in
the sign.

The latter, ‘antipsychologistic’ stand was taken by Peirce, and this was
still quite revolutionary in his time. For Peirce all knowledge is mediated by
signs, and cognition is a system of contents, not of subjective mental experi-
ences. The crucial idea here is that the meaning of a sign is determined by the
place of this sign in a whoie system of signs. The meaning of a sign can only
be interpreted by another sign. its ‘interpretant’.

[a sign] has an Object and an Interpretant, the latier being that which
the Sign produces in the Quasi-mind, that is the Interpreter, by de-
termining the latter to a feeling, to an exertion, or to a Sign, which
determination is the Interpretant. But it remains to point out that
there are usually two Objects, and more than two Interpretants.
Namely, we have to distinguish the Immediate Object, which is the
object as the sign himself represents it, and whose Being is thus de-
pendent upon the Representation of it in the sign, from the Dynamical
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Object, which is the Reality which by some means contrives to deter-
mine the Sign to its Representation. In regard to the Interpretant we
have equally to distinguish in the first place the Immediate Interpretant,
which is the interpretant as it is revealed in the right understanding of
the Sign itself, and is ordinarily called the ‘meaning’ of the Sign;
while, in the second place, we have to take note of the Dynamical
Interpretant, which is the actual effect which the Sign, as a Sign, really
determines. (Peirce, 1906)

For Peirce, a sign has an inner possibility of being interpreted before
anyone actually interprets it — this he names the Immediate Interpretant of the
sign, and says that this is what is ordinarily called the meaning of the sign.
The Dynamical Interpretant refers to actual individual acts of interpretation.
Peirce distinguished also the Final Interpretant, that to which all actual inter-
pretations converge.

Peirce viewed language as one system of signs among others; his perspec-
tive on meaning was very broad. Verbal languages are built on symbolic
systems, but there are other kinds of signs besides symbols. Peirce spoke of
indices, icons and symbols, and many intermediate kinds of signs (Peirce,
1955, pp. 98-119). In indices the relation between the mark (signans) and that
which it signifies (signatum) consists of their actual existential contingency.
For example, high temperature and flushed complexion are signs of an illness
— they indicate an infection. Marks of animals on the snow indicate their
recent passing. The relation between signans and signatum that accounts for icons
is that of resemblance: for example the picture of a car resembles the actual
car it depicts. In symbols, there is no factual contingency nor resemblance be-
tween signans and signatum, there is only an ‘imputed quality’ which links the
two component sides of the sign. In this sense, for example, the graph of a
function represents the function in a symbolic, not iconic, way. Peirce, how-
ever, saw more iconic aspects in mathematical inscriptions than we would
generally admit. For example, concerning algebraic expressions, he said:

When in algebra, we write equations under one another in a regular
array, especially when we put resembling letters for corresponding
coefficients, the array is an icon. Here is an example:

ax + by=uy
a,X + be = U,

This is an icon in that it makes quantities look alike which are in
analoguous relations to the problem (Peirce, 1955, p. 107).

Let us note that Peirce is not saying that the system of equations with which
he is illustrating his point is an icon. He only says that it is an icon in some
respects. In general, a sign is never just an icon, or just a symbol, or just an
index; all three aspects coexist and this is true also of mathematical expressions.
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The Meaning Is in the Language As a System
The notion of meaning has most often been looked at in the context of lan-
guage or languages only. Some philosophers looked at language as a system
and either studied the formalized languages constructed in logic and math-
ematics, or attempted to build idealized models of ordinary languages. Others
ronceived of language as an activity, a view more common in psychology
than in philosophy.

Frege adhered to the former view: he regarded language as a symbolic
system. In fact the model language for him was that of pure mathematics

_from which he excluded even geometry. Iis attitude led him to reduce the

world of reference to but two elements: the logical values of Truth and Fal-
sity. Meaning could thus be assigned only to sentences, not to words standing
alone; the sense of a sentence laid in the conditions under which it could be
considered as true. Mathematics was thereby brought down to logic (Dummett,
1991). Logical empiricism radicalized Frege’s views by identifying meaning-
fulness with verifiability, and meaning with a method of verification: what
decides about the meaning of an expression is the existence of criteria that
allow to decide whether simple sentences that contain it are true or false. For
example, the word ‘red’ is meaningful in English, but the word ‘ked’ is not,
because we are not in possession of a method that would allow us to decide,
in appropriate conditions, whether ‘ked’ can be applied to a given object or
not (Ajdukiewicz, 1946). _
Ajdukiewicz proposed a theory of meaning in the 1930s (e.g., 1934)
which he abandoned later due to its limitations: it applied only to the so-called
‘closed and connected languages’, and did not explain the link between mean-
ing and reference. Meaning in this theory was an attribute of a language as a
whole — it was a global approach to meaning. The notion of meaning was
based on that of ‘directives of meaning’ of a language, of which Ajdukiewicz
distinguished three kinds: axiomatic, deductive and empirical. The axiomatic
directives give a set of sentences that have to be accepted as true in the given
language; the deductive directives give rules that allow the acceptance of cer-
tain sentences as true on the basis of other sentences accepted as true; empirical
directives determine which sentences can be accepted as true on the basis of
which empirical data. Thus a language was fully defined by a class of signs
and a ‘matrix’ of directives of meanings formed of these signs and empirical
data. Having such a notion of language, Ajdukiewicz was able to define when
two expressions have the same meaning. He distinguished two cases:
synonymity, when the two expressions belong to the same language, and
translation, when the expressions belong to different languages. For example,
an expression E is said to have the same meaning in language L as an expres-
sion E’ in language L’ if there exists a ‘translation’ R, or an isomorphism of
the ‘matrices’ of the languages L and L’, according to which E and E’ cor-
respond to each other: E’ = R(E). The relation of ‘having the same meaning’
is an equivalence relation; its classes of abstraction were called ‘meanings’.
Within this perspective, it was irrelévant what two languages were
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speaking about; they could be translated one into another provided their
matrices were isomorphic. But matrices described only the abstract structure
of the languages, ignoring what their expressions could be referring to. One can
very well invent two languages, one speaking about the heat and sand of the
African desert, and the other about the cold and snow in the North of Canada,
but such that their matrices are perfectly isomorphic; then a sentence about a
snowstorm would have the same meaning as a sentence about a sandstorm.

While retaining the general idea of defining meaning by abstraction on
the basis of an equivalence relation, in his later works Ajdukiewicz took a
much less formal approach to language, and managed also to take into account
the denotation of expressions. However, ‘philosophers continued attempts to
construct the notion of meaning in idealized models of ordinary languages.
One result of these efforts is the so-called theory of interpretation which
reiativizes the notions of extension and intension of an expression to the con-
text of its use in a ‘possible world’, developed, among others, by Kripke,
Montague, and Scott in the 1960s.

The Meaning Is in the Language As a Social Practice

Wittgenstein was close to such ‘global’ and logical views on language in his
T'ractatus, but his later works (The Blue and the Brown Books, and Philosophical
Investigations) reflect a completely different view. While in the Tractatus,
language appeared as a uniform system, a logical picture of reality, in Philo-
sophical Investigations, Wittgenstein claims that there is no one language but
rather a multitude of languages that can be recognized as such by a kind of
‘family resemblance’. The methodology that he proposed to study the differ-
ent languages used by people was that of ‘language games’: models of differ-
ent uses of language for different purposes and with different means. Language
is thus viewed more as an activity, a social practice, where meanings of phrases
are characterized by the use that is made of them, not by the associated mental
pictures and not by sets of distinctive features of objects denoted by these
expressions (Wittgenstein, The Blue Beok, p. 65). The question ‘What do you
mean?’ is, Wittgenstein says, just another way of asking ‘How do you use this
expression?’. He would speak of the ‘grammar of an expression’ as of the rules
that govern the use of it. Some sentences are grammatical, some are not: in
learning to distinguish this, we learn the meanings of words in a language.
For example, a question ‘Has this room a length?’ is ungrammatical; in an-
swering such a question we would say, shrugging our shoulders: ‘Of course
it has!” and this, Wittgenstein remarks, would not be an answer to a question,
but a grammatical statement. On the other hand, a question like ‘Is this room
15 feet long?’ is a sensible question — the word ‘length’ would be used in it
according to its grammar.

Wittgenstein was against looking at language as a calculus proceeding
according to strict rules (T he Blue Book, p. 25). It is only in mathematics, he
would say, that the meaning of terms can be given by a set of defining
criteria. In the practice of ordinary life and language we recognize things and
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give them names on the basis of ‘symptoms’ rather than definitions. For
example, we say ‘this man has tonsillitis’ because we observed that he has an
inflamed throat, which is a usual symptom of tonsillitis; if we said it because
we checked his blood and discovered the bacillus of angina in it, we would
have based our diagnosis on the defining criterion of tonsillitis. In this case,
the defining ¢ ‘iterion exists, but there are many other cases where such cri-
terion does nct exist. Consider such expressions as ‘expecting someone to
come’ or ‘pain’.

In practice, if you were asked which phenomenon is the defining

criterion and which is a symptom, you would in most cases be unable

to answer this question except by making an arbitrary decision ad

hoc. . . For remember that in general we don’t use language accord-

ing to strict rules — it hasn't been taught us by means of strict rules,

either. We (the philosophers), in our discussions constantly compare

language with a calculus proceeding according to strict rules. This is

a very one-sided way of looking at language. In practice we rarely use

language as such calculus. For not only we do not think of the rules

of usage — of definitions, etc. — while using language, but when

asked to give such rules, in most cases we aren’t able to do so. We

are unable clearly to circumscribe the concepts we use; not because

we don't know their real definitions, but because there is no real

‘definition’ to them. When we talk of language as a symbolism used

in exact calculus, that which is in our mind can be found in sciences

and mathematics. Our ordinary use of language conforms to the stand-

ard of exactness only in rare cases (ibidem, p. 25).

Joining Frege in his contempt of the formalist position which denied all
meaning to mathematical signs, Wittgenstein agreed that there must be some-
thing that gives life to the ‘complexes of dashes’ on paper. He suggested that
this something that gives life to a sign — usually called its meaning — must
be its use (ibidem, p. 4). It cannot be a picture in the mind, for a picture in the
mind is just another sign, and a sign added to a sign cannot make the sign
more alive. Suppose we replace the picture in the mind by a painted picture:
‘why should the written sign plus a painted image be more alive if the written
sign alone was dead? — In fact, as soon as you think of replacing the mental
image by, say, a painted one, and as soon as the image loses its occult char-
acter, it ceases to impart any life to the sentence at all (ibidem, p. 5).

The reason, however, why mathematics educationists seem to be so much
attracted by Wittgenstein’s later view of language and meaning is not that
they have forgotten that in mathematics most terins have their precise defini-
tion but rather that they have in mind the language as practised in the math-
ematics classroom which is not the more or less formalized language of
mathematics found in textbooks or research papers.

The language of the mathematics classroom is a very complex structure.
The context in which students learn mathematics is a multidimensional one,
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where the meanings are determined not only by words written in a book or
uttered by the teacher. The meaning of a problem, for example, depends on
the roles that the students and the teacher assign themselves in the given
situation. It will be different, if the problem was posed by one or more
students, than if the problem was assigned by the teacher. The meaning will
also depend on the intention of the teacher: whether the problem is meant to
introduce the students to a new topic and diffzrent approaches are allowed; or
whether it is meant to check the students’ ability to apply a certain method,
and the students have to give proof of their knowledge. Each of these situa-
tions determine a different ‘didactical contract’. The proof, which, for a re-
search mathematician is a means for ascertaining the truth of a theorem, can
turn, in a specific kind of didactical contract, into an activity of ‘showing a
proof’, as students often put it, namely showing that one has mastered a
technique. Balacheff (1986) remarks that

most of the time the pupil does not act as a theoretician but as a
practical man. His job is to give a solution tc the problem the teacher
has given to him, a solution that will be acceptable in the classroom
situation. In such a context the most important thing is to be effec-
tive. The problem of a practical man is to be efficient, not to be
rigorous. It is to produce a solution, not to produce knowledge.
(Balacheff, 1986)

The social situation of institutionalized learning changes the meanings of
mathematical terms. It brings the language of the classroom closer to ordinary
language, but not in an unambiguous way. We have to deal with so many
different languagés in the classroom: the language of mathematical formulas,
and the language we talk about them, the language in which we evaluate the
students’ performance and the language of logical values. The student utters
a false statement, and the teacher says: ‘wrong’, as if he or she were the judge,
and the student committed a mischief. Lacombe draws our attention to this
shift of meaning whereby mathematics becomes a kind of law rather than
discursive knowledge (1984). In the context of jurisdiction, even the most
neutral mathematical terms can acquire unintended emotive meanings. These
emotive meanings can be a source of anxiety for some sensitive students.

Both the mathematical language and the ordinary language are subject to
certain rules of sense and rationality but these rules can be different in each
case. The mathematical language relies on definition, deduction, tertium non
datur and modus ponens, while the ordinary language is governed by use, con-
text, implicature and presupposition (see Bar-Hillel, 1971; Grice, 1981). These
registers interfere in many subtle ways in a mathematic: lassroom, and, in-
deed, the first thing a child has to learn at school is to move within the fuzzy
boundaries, to recognize signals that warn it which register is being used at
a given moment. These signals are not anything conventionally and explicitly
laid out, they are not transparent, although it may seem so to the teacher.
They are to be found in the tone of the voice, in an expression (like ‘now’
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uttered loudly), in other things. Too many mistakes in the identification of
such signals are another source of anxiety, uncertainty, loss of self-confidence,
and, eventually — ‘school failure’.

Ordinary word: =can something different in mathematics. Yet, espe-
cially in the elementary school, they are used inadvertently by teachers as if
there was nothing to explain. Children have to guess by themselves that a big
number is not a number that is written with huge marks on paper, and a low
number is not one written at the bottom of the page. The horizontal and vertical
refer not to directions in ‘the surrounding space but to the direction of the
sheet of paper. A vulgar fraction has nothing to do with swearing, volume can
refer to the amount of liquid one can pour into a container, and not to_the
‘knob on the television set’. ‘Make’ as in ‘to make a cake’ means something
different than ‘make’ in ‘two times two makes four’, etc. (Durkin and Shire,
1991, p. 74).

Aside from the social-contextual, emotive and sometimes the vernacular
meanings, mathematical terms have their so-called descriptive meaning (Ogden
and Richards, ibidem). At some level of education, this meaning starts to be
given explicitly by definition. But even then, the meanings are not learned
this way. Students will notice the subtle assumptions of the definition only by
entering the praciices of speaking, using-the term, asking questions, solving
problems. Sometimes, the uses of a term may carry meanings not intended by
the modern definition: these meanings are preserved through the process of
mctaphorization that terts normally undergo as they are transferred from
the vernacular into the scientific language, and interfere in the grasp of the
intended meanings (Skarga, 1989).

Wittgenstein says: ‘Essence is expressed by grammar’ (Philosophical In-
vestigations, Part 1. 371), and ‘Grammar tells what kind of object anything is’
(ibidem, 1.373). This seems to be true not only of the ordinary language but
of the mathematical language as well. Knowing the definition of a term with-
out knowing its grammar will not be very helpful in understanding it. For the
grammar of a word establishes the caiegory it belongs to: whether it is a set,
or a subset of a larger set. or an element of a set, whether it is a mapping, or
a property, what are the objects with respect to which it is relativized, etc. For
example, in linear algebra, we say that a subspace is contained in the vector
space, and not that it belongs to it, which indicates that a subspace is a subset
of vectors and not just one single vector. When we ask for a kernel, we must
specify of which linear mapping it is a kernel of: kernel is always a kernel of a
mapping. We can legitimately ask for the kernel of a linear mapping or a linear
operator; we cannct ask for a kernel of a vector space. We can ask for the kernel
of a matrix, but matrix would have to be regarded as representing a linear map-.
ping. More literally, one thould ask for the nullspace of the matrix which is the
same as the solution space of the homogeneous system of equations AX =0, where
A is the matrix in question. Linear independence of u set of vectors is the correct
form, not linear independence of vectors, although it is often used this way, for
reasons of simplicity. We often observe students using mathematical terms
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and phrases in an ungrammatical way. We say then that this student ‘has not
understood’ the theory: we state a problem of understanding.

Another example: how is the meaning of the term function expressed by
its use? What are the questions we can ask about a function? What are the
questions we can ask about a set of functions? How can a function be? Or,
what adjectives can we .use with the noun ‘function’? (Defined/non-defined,
defined in a point/ in an interval/ everywhere; increasing, decreasing, invert-
ible, continuous in a point/ in an interval; smooth; differentiable in a point/
in an interval; integrable . . ., etc.). What can a function have? (Zeros, values,
a derivative, a limit in a point/ in infinity; etc.). What can be done with
functions? (Plot, calculate the values in points. . ., calculate a derivative, an
integral, combine functions, take sequences, series of functions, etc.). How
do we verify that a function is . . . (continuous, differentiable . . . in a point;
increasing in an interval . . . }? What can functions be used for? (Representing
relations between variable magnitudes, modelling, predicting, interpolating,
approximating, . .. ).

In mathematics, terms have their definitions which are usually very gen-
eral, but they also have their primary meanings and secondary meanings, which
specify which examples are more ‘typical’ than others. This part of thc mean-
ing cannot be grasped from just the definition, one must study the use of the
term. For example, a sequence is a function, but a sequence will not be a
typical example of a function. The definition of a rectangle does not specify
the ratio between the width and the length, but a rectangle with this ratio very
small or very large will not be a typical example of a rectangle.

The ambiguities that occur within the mathematical register are lifted not
by reference to definitions but by the context, like in ordinary language. For
example, a polynomial can be a vector — sequence of numbers almost all equal
zero, or a function: this depends on whether we speak of a vector space of
polynomials or about the characteristic polynomial of a linear operator, or the
vector space of continuous functions on a closed interval. Multiplication is used
in multiplication of two numbers, scalar multiplication of a number by a matrix,
multiplication of polynomials as vectors, or as functions, etc. The multiplication
sign is sometimes written down explicitly, sometimes not. When there is no
sign between two symbols, it does not mean, however, that there is an im-
plicit sign of multiplication there (for example, dx does not mean d times x,
but how would one know the meaning of this symbol without being social-
ized into its traditional use?)

The Ecological and Functional Approaches: The Meaning Is in the Environment

While many psychologists locate the meaning in the ‘head’ of the cognizing
subject, some tend to stress the role of the environment, both physical and
social. The well-known adage of those working in the so-called Gibsonian
tradition is; ‘Ask not what’s inside your head, ask what your head is inside of”’
(Mace, 1977). Greeno, referred to in the previous section, was inspired by this
perspective. Besides the role of direct perception of the physical environment
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in cognitive development, and the ability of the nervous system to ‘tune itself
to objectively existing coherent information structures’ (Neisser, 1991), inter-
personal perception is stressed as well. This view can be traced back to the
works of Vygotski, and, later, Bruner, who postulated that language is ac-
quired by the child in a process whose crucial moments are those of ‘joint
attention’ of the adult and the child while they are engaged in a shared activity.

Young children, Neisser writes, learn names of objects not as proper
names but at once as categories. The object whose name is learned is per-
ceived as an affordance for action in a certain class of situations. In a further
stage the name itself becomes an affordance in situations of communication:
it is understood as a symbol which can successfully stand for an object.

It appears, then, that the acquisition of the first vocabulary depends
on the child’s (and the parent’s) ability to coordinate interpersonal
perception and object perception effectively. It is in episodes of joint
attention that the child comes to distinguish spoken words from other
human noises — to treat them, correctly, as signifying intentional
states. The'parent is using the word as a symbol for the object and the
child knows it .. .

To become aware of the symbolic function of the word is to per-
ceive, simultaneously, both the object itself and the speaker’s inferen-
tial intent. What is involved is not perception in Gibson's sense, but
it’s perception all the same. . .

What does the child know when he or she mastered a simple noun?
‘Cup’ is not a proper name of a single object; it refers to a whole
taxonomic category. What defines that category from the child’s point
of view? . . . It has gradually become clear that the so-called ‘classical
theory’ which treats a category as a set of objects defined by the
presence of certain distinctive features, is deeply flawed. It does not
do justice to either the perceptual or the intellectual aspects of categor-
ization. On the perceptual side, categories such as cup are indicated
more by an object’s overall appearance and its affordances for action
than by any set of specific features. For this reason some members of
a given category are invariably more central and ‘prototypical’ than
others. On the intellectual side, assigning an object to a category —
especially a natural kind, such as tree or dog — implies much more
than just the presence of a few defining attributes; it typically involves

arich web of beliefs about an extended domain of experience. (Neisser,
1991)

Relations Between Understanding and Meaning

Philosophers differ also in the way they relate the notions of understanding and
meaning: some explain understanding by meaning, others explain meaning
by understanding. All agree that understanding is a mental experience:
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understanding is always ‘in the head’. While the meaning is public, at least for
some authors, understanding remains private. The confrontation of unde--
standings through social interactions and communications are only steps in a
personal process of understanding; they can give an impulse for a change in
understanding, but whether the change will be introduced or not remains a
individual problem.

In order to be consistent in making the link between meaning and under-
standing, one should admit that the object of understanding is the same as the
object of meaning: it is the sign, broadly understood. When we speak of
‘understanding a concept’, or ‘understanding a thought’, then either we think,
with Peirce, that concepts and thoughts are signs, or we make a distinction
between epistemological objects such as concepts or thoughts and semiotic
objects such as signs and we regard these expressions as ‘un abus de langage’:
We intend to say that a concept or a thought are the basis of our understand-
ing, and what we aim at understanding are signs that represent these thoughts
or concepts for us.

When understanding is explained through meaning it is usually by saying
that understanding is the grasp of meaning (or sense). For some philosophers
belonging to this trend understanding has the same goal as cognition: to know
the truth. This was certainly the case for neo-positivists. Was this also the case
of Frege? If understanding a sentence is knowing the conditions of its truth,
do we also have to know whether these conditions are fulfilled? There has
been a suggestion to extend the Frege-style approach to meaning in such a
way that understanding be distinct from cognition (Danto, 1969). Suppose
truth is considered as but one class of ‘positive semantic values’, and sentences
but one class of ‘semantic vehicles’, while the ‘descriptive meaning’ of a seman-
tic vehicle is a rule that specifies the conditions under which this semantic
vehicle bears a positive semantic value. For example, we can assume that a
concept has a positive semantic value if it is instantiated; a name when it has
a bearer, a picture when it has an original that it truly depicts, a sentence when
the conditions of its being true are specified. Thus a sentence has the same
descriptive meaning whether it is true or false, and one can normally under-
stand a sentence S without knowing that S. Hence, ‘understanding does not
entail knowledge, as meaning does not entail truth’ (ibidem).

The distinction between reason and intellect or cognition based on logic
and empirical observation, which originates in the works of Kant, has been
very much discussed in relation to the criticism of neo-positivism. On the
surface, this seems to be a purely academic discussion, but it is easy to imagine
the detrimental consequences in education of an attitude that reduces all under-
standing to knowledge. Let us recall the wise words of Hannah Arendt, who
said that if people lost their drive to ask the undecidable questions about sense,
they would also lose their ability to ask the decidable questions on which all
civilization is based (Arendt, 1978). Do we want the teaching of mathematics
reduced to just the logical questions of whether a given proposition is true or
false? Students have to be able to distinguish the questions about truth and
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proof from questions about reason and sense of mathematical theories, but the
latter questions must be considered as part and parcel of mathematics educa-
tion, and not rejected as ‘metaphysical’.

This more pragmatic attitude is less likely to be forgotten in an approach
that attempts to explain meaning by understanding rather than vice versa.
This has been the option chosen by Ajdukiewicz in his Pragmatic Logic,
where the meaning of an expression was defined, by abstraction, as a certain
way of understanding it, a class of ‘understandings’. In this approach, the
conditions of ‘correctness’ of an understanding are not set a priori Some
understanding is necessary for anything to start to have meaning; ‘good under-
standing’, as we shall precise it in the following chapters, is an achievement
which requires a long process involving acts of tentative understanding, rea-
sonings, corrections, shifts of attention, etc.

Ajdukiewicz chose four criteria to decide whether or not two people
understand an expression in the same way, or attach the same meaning to it:
1. they apply the expression to the same objects; 2. they use the same method
of deciding whether or not the expression applies to a given object; 3. they
see the expression as being used in the same grammatical mode, i.¢., affirmative,
interrogative, or imperative; 4. they attribute the same kind of emotive aspect
to the expression (neutral, positive, negative) (Ajdukiewicz, 1974, pp. 10-12).

Explaining meaning by understanding is also characteristic of philosoph-
ical hermeneutics, where understanding is an interpretation of that tc which
the thought is being directed in an intentional act. Such an understanding does
not have to be full, it can even be false, but it always consists in some kind
of ordering, and inclusion into a network of already established ‘horizons of
sense’. Understanding discloses a meaning: it is a movement from what the
text says to what the text is speaking about (Heidegger, 1962; Riceeur, 1976;
Skarga, 1989). The direction of the process of understanding is to some de-
gree determined by what, for example, Foucault (1966) refers to as ‘épistéme’,
and Skarga as the ‘rules of sense’ and ‘rules of rationality’, that characterize a
given historical epoch or culture.

Meaning, Significance, and the Objectivity of Meaning

The word ‘meaning’ is sometimes used in the sense of ‘significance’, as when
we say that ‘this has no meaning for me’ or when we speak about the histor-
ical meaning of a political event or the meaning of a piece of art. In these uses
it means importance or value. For Thomas (1991), works of art such as paint-
ing or music have ‘significance’ rather than ‘meaning’ — if ‘meaning’ means
reference and connotation: ‘both pictures and music seem able to refer without
attaching any meaning [connotation] to the reference; both suggest signifi-
cance’. Neither need they ‘convey a message’. Beethoven’s 9th doesn’t ‘mean
that...".

For Hirsch Jr. (1967) the ‘significance’ of, for example, an intellectual or
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other work is a kind of ‘response’ to this work. This work may have some
meaning, but this is not the same as its significance. He explains his under-
standing of the difference between significance and meaning on the example
of an author’s rejection of a previous work:

. . . there cannot be the slightest doubt that the author’s later response
to his work was quite different from his original response. Instead of
seeming beautiful, profound or brilliant, the work seemed misguided,
trivial, and false, and its meaning was no longer one that the author
wished to convey.

However, these examples do not show that the meaning of the
work has changed, but precisely the opposite. If the work’s meaning
had changed (instead of the author himself and his attitudes) then the
author would not have needed to repudiate his meaning and could
have spared himself the discomfort of a public recantation. No doubt
the significance of the work to the author had changed a great deal,
but its meaning had not changed at all. This is the crux of the matter
in all the cases of authorial mutability with which I am familiar. It is
not the meaning of the text which changes, but its significance to
the author. Meaning is that which is represented by a text; it is what
the author meant by his use of particular sign sequencgs; it is what the
signs represent. Significance, on the other hand, names a relationship
between that meaning and a person, or a conception, or a situation,
or indeed anything imaginable . . . Significance always implies a rela-
tionship, and one constant, unchanging pole of that relationship is
what the text means. (Hirsch, ibidem, pp. 7-8) ’

By saying that the meaning has not changed at all, Hirsch seems to be
assuming that a text has a meaning which belongs to the text, and that the
meaning of a text does not change from one epoch to another or from one
reader to another, contrary to the historicist or psychologistic views. What
changes is the significance. In fact, Hirsch makes quite a point of it in his book
and argues very strongly that a text must be understood in its own terms if
it has to be understood at all. Of course, the meaning of the text is not ‘given’
to us, we must construe it, but we do not construe it by imposing on the
words and sentences of this text the categories of our own idiosyncratic ways
of thinking, or of the present day culture, language and thought. Hirsch
compares such a situation to trying to understand a Greek text by reading it
as if it were in English, not in Greek: this way we would simply understand
nothing, he says, because Greek words mean nothing in English. We must
learn Greek first, and we must guess or learn the necessary knowledge before

or while we are trying to understand a text for which this knowledge is a
prerequisite.

The skeptical historicist infers too much from the fact that the present
day’s experiences, categories and modes of thought are not the same
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as those of the past. He concludes that we can only undersiand a text
in our own terms, but this is a contradictory statement since verbal
meaning has to be construed in its own terms if it is to be construed
at all. Of course, the convention systems under which a text was
composed may not in fact be those which we assume when we con-
strue the text but this has no bearing on the theoretical issue, since no
one denies that misunderstanding is not only possible but sometimes,
perhaps, unavoidable. The skeptical historicist goes further than
that. He argues — to return to our previous analogy — that a natural
speaker of English has to understand a Greek text in English rather
than in Greek. He converts the plausible idea that the mastery of
unfamiliar meanings is arduous and uncertain into the idea that we
always have to impose our own alien conventions and associations.
But this is simply not true. If we do not construe a text in what we
rightly or wrongly assume to be its own terms then we do not con-
strue it at all. We do not understand anything that we could subse-
quently recast in our own terms. ({bidem, p. 133f)

‘Understanding is silent’, says Hirsch, ‘interpretation extremely garru-
lous’ (ibidem). Understanding is silent because it consists in reading the text in
its own terms. Interpretation is garrulous because it is a translation into the
readers’ own terms. :

Understanding the text in its own terms does not mean that in reading

we are trying to empathize with the author and to see what he or she ‘wanted
to say’ by it. Once written, the meaning of the text objectivizes itself, This
problem of ‘objectivity of meaning’ is one of the main themes of reflection in
Ricceur’s theory of interpretation (1981).

The ‘problem of objectivity of meaning’ is also important in mathematics
education. It was especially important for those who adhered to the ‘con-
structivist’ psychology of learning and tried to promote ‘constructivistic styles’
of teaching mathematics. One question that always arose, when they were
trying to bring their theories to practice, was: what happens if the meanings
that the child construes in his or her own activity of resolving all kinds of
problem situations are not compatible with the mathematical meanings shared
by the community of mathematicians and teachers and that are aimed at in the
curricula? What should the teacher do? The message that Hirsch and Ricceur
seem to be conveying is that what the child is construing in his or her effort
to learn mathematics is not his or her own mathematics but the mathematics
that is in the shared ways of doing it and speaking about it, in the problems,
methods, theories.

Questions such as those are difficult to resolve not only in theory but also
in the practice of communication of knowledge. It is possible that they will
remain difficult and unresolved for ever. Maybe all we can do is to become
more aware of them.
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Chapter 2

Components and Conditions of an
Act of Understanding

It is time to penetrate further, and to see what happens in the very
soul of a mathematician . . . For a fortnight I had been attempting to
prove that there could not be any function analogous to what I have
since called Fuchsian functions. I was at that time very ignorant.
Every day I sat down at my table and spent an hour or two trying a
great number of combinations, and I arrived at no result. One night
I took some black coffee, contrary to my custom, and was unable to
sleep. A host of ideas kept surging in my head; I could almost feel
them jostling one another, until two of them coalesced, so to speak,
to form a stable combination. When morning came, I had established
the existence of one class of Fuchsian functions, those that are derived
from the hypergenmetric series. I had only to verify the results, which
only took 2 few hours. (Poincaré, 1952)

In this chapter, we shall be focusing on the act of understanding, on its
nature, its components and the mental operations involved in it. We shall pose
the question of the internal (psychological) and external (mainly sociological)
conditions of an act of understanding. Processes of understanding will occupy
us in the next chapter.

We pay all this attention to the act of understanding because it seems
that ir. teaching it is the acts that are the main concern of both teachers and
students. We want to make the students acquire certain ways of understanding,
certain ‘understandings’, certain knowledge, of course, but we cannot do this
other than by helping them to experience acts of understanding. Moreover,
especially today, in the rapidly changing technological post-industrial world
the student can never consider himself or herself fully educated. He or she
must first of all learn how to learn, how to be prepared for the continuous
struggle of understanding, of changing his or her ways of understanding.
Therefore an awareness of what an act of understanding may consist of, a
reflection about it may be more helpful to the future teacher than all the
knowledge he or she might have about the expected, the valued (by today’s
but maybe not by tomorrow's society) ways of understanding certain particular
things and topics in mathematics.
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In the following discussion, a certain way of looking at an act of under-
standing will be proposed. This is, however, (may I remind the reader) only
a certain way of looking at understanding, and not a description pretending
to be ‘complete’ or ‘faithful’ in spite of the occasional use of positive assertions
such as ‘understanding is this or that’. What comes after the ‘is’ should be
taken as a hypothesis.

What Could Be an Act of Understanding?

My starting point will be a concise definition proposed by Ajdukiewicz (1974).
Albeit aware of the various senses in which the word ‘to understand’ is used
in the vernacular, he chose to mean by understanding an act of mentally rela-
ting the object of understanding to another object.

Ajdukiewicz applied his definition to understanding expressions only. To
understand an expression was intentionally to make a link in thought between
this expression and something else, another ‘object’. This ‘object’, for
Ajdukiewicz, could be a mental representation: an image or a concept (in the
psychological sense).

Here is how Ajdukiewicz introduces his definition:

The rustle of leaves, the singing of birds, the noise of a passing
motorcar we hear. The expressions of language of which we have
command we not only hear, but also understand. It is not easy to
explain in what the understanding of an expression consists . . . It is
very often said that a person understood a given word when the
hearing of that word intertwined in his mind with a thought about
an object other than the word in question. For instance, a person who
knows Latin thinks about the Earth on hearing the word ‘terra’; he
thinks that the Earth is round on hearing the statement ‘terra est ro-
tunda’. But it is not always required that the hearing of a word should
in a person’s mind intertwine with a thought about an object other
than the word in question when it is said that the person understood
that word. It will be said, for instance, that we understand the word
‘whether’, as it occurs, e.g., in ‘I do not know whether he will be
here’, even though on hearing that word we do not direct our thought
toward an object other than the word in question. We would also say,
perhaps, that a soldier understood an order if he did what he was told
to, even if the order was formulated in a language which he does not
understand in the first of the meanings mentioned above.

As can be seen from these explanations, the word ‘understand’ is
used in different senses. Without going here into any detailed analysis
of these various meanings of the word ‘understand’ we shall bear in
mind, in the discussion that follows, the first meaning of that word,
namely that a person understands an expression if on hearing it he
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directs his thoughts to an object other than the word in question.
(Ajdukiewicz, 1974, p. 7) '

I should like to extend this definition beyond just understanding expres-
sioits on the basis of a mental representation. I would replace ‘expression’ by
‘object’, and admit that any other ‘object’ can be used as that towards which
our thought is being directed in an act of understanding. The first object [
would call ‘object of understanding’, and the second ‘basis of understanding’.
For example, my object of understanding can be a mathematical word problem,
and in the act of understanding I may recognize the problem as following a
certain well-known pattern. This pattern would be the basis of my under-
standing of this problem.

Ajdukiewicz’s definition is interesting because it identifies the main
components of the act of understanding. There is, of course, the ‘understanding
subject’” (P) — the person who understands. There is that what P intends to
understand — ‘the object of understanding’ (X). There is what P’s thought is
being directed to (intended) in the act of understanding: ‘the basis of under-
standing’ (Y). And there is the operation of the mind that links the object of
understanding with its basis.

The Notion of Object; Mathematical Objects

In generalizing Ajdukiewicz’s definition this way there is, of course, the ques-
tion of what does the term ‘object’ mean here. In the last chapter, we men-
tioned that, in order to have a unified theory of understanding and meaning,
it is reasonable to assume that the object of understanding is a ‘sign’, sign
being something that represents something for someone. But how do we
define ‘sign’? If we do it this way: ‘whatever is understood (or interpreted) by
someone in a certain way, functions as a sign for this someone’, then the
notion of sign is explained by the notion of understanding; we fall into
the error of petitio principii. It seems to be safer to leave the term ‘object’ in the
definition of act of understanding as an undefined or primitive term, without
replacing it by ‘sign’. We can only attempt to explicate what we mean by
‘mathematical objects’, as we are interested by understanding in the math-
ematical field.

Questions related to the notion of object are sometimes discussed within
the community of mathematics educators. The subjective point of view where
one rather speaks of ‘conceptual entities’ or of a person’s object of understanding
is debated against the more ‘realistic’ position which poses ontological pos-
tulates. The article of Greeno, referred to in the previous chapter, pleaded in
favour of the existence of mathematical objects, whose reality in the world of
the mind was compared to that of wood workshop tools in the physical
world. On the other hand, Yves Chevallard, the philosophizing didactician,
proposed to consider something as an object if it is an object for at least one
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person: if there is a person who has a relation, an attitude (un rapport) to it
(1992).

My own position is neither platonic realistic nor idealistic; it is closer to
that professed by Popper: brought into being by our definitions, mathemat-
ical objects are creations of the human mind. But, embedded in a system of
logical necessities and consequences of their relations with other mathematical
objects, they may have properties that can be hard to discover, or difficult to
prove or disprove. The number of still unsolved problems in mathematics
testifies for that.

For a student in mathematics who comes to learn what has already been
invented and discovered, mathematical objects have an undeniable reality —
it is only sometimes very difficult to enter this reality. They don’t think they
have the right to create anything — everything is already there, brought into
being by God or godlike mathematicians, like the mythological Pythagoras,
and Euclid, or more modern but nonetheless legendary Gauss and Lebesgue.
Even in the simple situation in a linear algebra class of defining a linear
operator T on, say, R’ by its values on a basis {e,, e,, e;} some students find
it difficult to accept that they have all this freedom to put whatever they want
for T(e,), T(e,), T(e;). They believe these values should follow from some
assigned formula. But once they have accepted the initial freedom of defini-
tion of values on the basic vectors, there comes a second shock: now the
images of all other vectors in the space are completely determined — by the
initial assumption that T is linear. Of course, we did not have to assume that,
but once we did, we are constrained to abide by this assumption.

Mathematics thus appears as a dialectic game between freedom and
restrictions, invention and discovery: between the liberty of initial choices and
the confinement within the laws of a deliberately chosen system, between the
free creation of objects and the struggle of understanding their properties and
significance. '

In the history of philosophy we have had such strongly anti-platonic
positions as that of J.S. Mill who did not consider definitions of mathematical
concepts as referring to some objects in any sense. Objects must have some
rea] existence, and what mathematical definitions postulate does not exist even
in our minds. A mathematical point has no dimensions, a mathematical line
has no width and is of infinite length. But nobody can imagine a point with
no dimensions and nobody can imagine an infinite line with no width.

The points, lines, circles and squares which any one has in his mind,
are (1 apprehend) simply copies of the points, lines, circles and squares
which he has known in his experience. Our idea of a point, 1 apprehend
to be simply our idea of the minimum visibile, the smallest portion of
surface which we can see. A line, as defined by geometers, is wholly
unconceivable. We can reason about a line as if it had no breadth;
because we have a power, which is the foundation of all the control
we can exercise over the operations of our minds; the power, when
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a perception is present to our senses, or a conception to our intellects,
of attending to a part only of that perception or conception, instead of
the whole. But we cannot conceive a line without breadth: we can form
no mental picture of such a line: all the lines which we have in our
minds are lines possessing breadth . . . Since, then, neither in nature,
nor in the human mind, do there exist any objects exactly corre-
sponding to the definitions of geometry, while yet that science cannot
be supposed to be conversant about non-entities; nothing remains,
but to consider geometry as conversant sbout such lines, angles, and
figures, as really exist; and the definitions, as they are called, must be
regarded as some of our first and most obvious generalizations
concerning those natural objects. (Mill, 1843)

It is of course curious that Mill did not count mathematical concepts as

belonging to the category of ‘relations’ and instead argued very strongly that
they do not belong to the category of ‘bodies’ (for Mill there were four cat-
egories of objects: sensations, souls, bodies, and relations). Indeed, mathemat-
ical concepts can be thought of as derived from generalizations and idealizatior
of relations between bodies rather than of bodies themselves: they belong to
the ‘transfigural’ or even ‘trans-operational’ level, to speak in terms of Piaget
and Garcia (1989). Straight lines do not have width because width is com-
pletely irrelevant for co-linearity. It is co-linearity that matters for the concept
of straight line and this is a relation between at least three things whose
dimensions are irrelevant. If, in passing by two sticks placed vertically we
suddenly see only one, then we know we are on the line determined by these
two sticks and this can be an important information for the sailor who is
about to enter his boat into a harbour and wants to avoid shallow waters
(de Lange, 1984).
"~ Kotarbinski refers to the German logician W. Wundt who distinguished
a slightly different set of categories of objects: things, features, states, relations.
Kotarbinski himself takes a strongly materialistic point of view and does not
admit of features as objects. In fact, features are even more abstract than
relations: they can be thought of as classes of abstraction of relations. Whiteness,
for example, he says is a feature of snow; ‘whiteness’ being a noun in this
sentence, it looks as if there were an object such as whiteness. But this is only
an illusion — whiteness does not exist independently from things that are
white; these things are objects, but not their feature of being white.

It is possible that whiteness needs some medium to appear; that it is some
form of energy and there is no reason why it should not be awarded existence
just as any other form of energy whether we are able to perceive it through
our senses or not. Let me propose here a more liberal point of view: whiteness
can be regarded as an object because we can isolate it as an object of our
thinking, of our understanding. In this sense mathematical abstract concepts
can be objects for us. Real functions defined on the closed interval [0,1] can
be objects. Their whole set can be an object. Geometrical transformations can
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be objects; these objects can form groups, which are again objects, this time
of group theory. Even the general concept of function can be an object if
someone is able to consider it this way. Also judgments (theorems, conjec-
tures, etc.), reasonings (proofs, explanations) can be regarded as objects.

However, we must be aware that, especia]ly in mathematics, objects are
being often only constructed in acts of understanding. Abstract concepts and
relations cannot be communicated in an ostensive way. Therefore, what, a
posteriori, is identified by the understanding person as his or her ‘object of
understanding’, might not have been very clear from the beginning; the ‘con-
tour’ of this object need not be clear in the first acts of understanding it. It can
be vague and blurred. The person may not be able to say what it is that he
or she intends to understand. It is only understanding that may lead to some
clarification and identification of this object. But still it seems that without a
feeling of there being ‘something’ to understand it is difficult to speak about
any act of understanding to have occurred at all.

When Do We Consider We Have Understood? Constraints Regarding the
Basis of Understanding

In Ajdukiewicz’s definition it looks as if absolutely any object (from the range
of representations, for Ajdukiewicz) could be the basis of understanding. But

do we, in our intention of understanding make no choice between the possible
objects Y to which we link our object of understanding X? Or do we guide
ourselves by some criteria? When do we feel we have understood?

Order and Harmony

Order and harmony in our thoughts, the feeling that ‘it fits’ is probably the
most obvious criterion. We know this feeling by introspection: the common
act of recognizing something consists in classifying it, putting it orderly among
other similar objects, by naming it, for example, when we come across an
inscription like ‘y = 2x + 3’ and say to ourselves ‘Oh! a linear function’.

Even the most primitive acts of understanding require this feeling of
order. For example, our undergraduate students’ understanding of a math-
ematical notion may be based on mere memory that they have already heard
that name or seen that theorem or formula. But, this memory cannot be
isolated: the object is remembered within a certain context. The student re-
members at least in what course he ot she has heard or seen it.

Order and harmony in our ‘field of consciousness’ was very important in
Gestalt psychology: tendency to equilibrium in the field of consciousness is
this field’s basic feature. This idea reappears in Piaget’s theory of equilibration
of cognitive structures (1975a). Assimilation and accommodation are two
operations of the mind that ensure the equilibrium of these structures.

Also in hermeneutics, interpretation or ‘extraction of the sense’ of a text
or utterance consists in introducing an ordes:
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Sense is always a result of an ordering, whether this is an ordering of
words in a sentence, or an ordering of actions or phenomena. If we
cannot see this order we feel a lack of sense . . . Since sense is . . . closely
related to understanding, then something has a serse if it was already
somehow understood, but understanding itself is never just a inno-
cent looking at something. From the very start it is rooted in the
world, filled with memories, included in a multitude of horizons of
sense. Hence, . . . there can be no sense in what appears as unrelated,
inconsistent with respect to these horizons. For something to acquire
sense, it must become embedded into this tissue of already constructed
senses, or, having torn it apart, it must rebuild it anew. Using the
Wittgensteinian expression, we can say that a word has some sense
{for us] if it enters into a [language] game that is already known. An
utterance has a sense if its message can be included into a game of
other messages in such a way that we can say that it obeys the same
rules. (Skarga, 1989, p. 167)

Understanding on the Basis of.a Unifying Thought

The criterion of ‘finding a unifying principle’, a relation that ‘founds’ what we
want to understand does not apply, perhaps, to all acts of understanding. How-
ever, when it comes to understanding abstract concepts, theorems, theories,
it certainly starts to play an important role.

This idea of understanding as ‘taking together’, conceiving of something
as a unity is quite important for Leibniz (New Essays on Human Understanding):
understanding does not mean just forming ‘aggregates of things’; the crucial
question is what founds the aggregate as a whole.

Philalethes: The ‘composition’ of simple ideas to make complex
ones is another operation of our mind. This may be taken to cover
the faculty of enlarging ideas by putting together several of the same
kind, as in forming a dozen out of several units.

Theophilus: This unity of the idea of an aggregate is a very genu-
ine one: but fundamentally we have to admit that this unity that collec-
tions have is merely a respect or relation, whose foundation lies in what
is the case within each of the individual substances taken alone. So the
only perfect unity that these ‘entities by aggregation’ have is a mental
one, and consequently their very being is also in a way mental, or
phenomenal, like that of a rainbow . ..

Theophilus: It may be that ‘dozen’ and ‘score’ are merely relations
and exist only with respect to the understanding. The units are separate
and the understanding takes them together, however scattered they may
be. However, although relations are at the work of the understand-
ing, they are not baseless and unreal. The primordial understanding
is the source of things; and the very reality of all things other than
simple substances consists only in there being a foundation for the
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perceptions or phenomena of simple substances. (Leibniz, 1765, BK
11, Ch. xii)

The French word comprendre, ‘to understand’, has its roots in exactly this
idea of ‘taking together’ as a unity. So there must be something that founds
this unity, and the perception of this something is exactly what our under-
standing consists of. Isn’t this what happens, in fact, when, for example, we
understand the phenomenon of rainbow on the basis of the principle of dis-
persion of sunlight by refraction and reflection in drops of rain water? Or,
when numbers are understood as constructions based on the ideas of quotient
structure and equivalence relations. Integers are obtained as equivalence classes
of a relation between pairs of natural numbers: (a,b) ~ (cdy=a+d=b+c.
Then, for example, the class [1,2] = {(1,2), (2,3), (3,4), . . .} can be denoted by
‘=1". Likewise, rationals are obtained as equivalence classes of an analogous
relation between pairs of integer numbers: (a,b) ~ (c,d) & ad = bc. It was
Cauchy’s dream to think of reals as classes of abstraction of a relation between
sequences of rationals. This idea, however, suffered of a petitio principii and
had to be amended (Boyer, 1968, p. 606).

Reduction to Something Simpler or More Fundamental? Systemic Understanding -

(from Without the Object of Understanding) and Experiential Understanding

( from Within)

Scientific understanding has often been characterized as one that reduces
complexity, unifies, simplifies, bases everything on a few general laws. This
‘reductionist’ view of scientific understanding has not satisfied all philosophers.
Maslow, for example, has introduced the concept of ‘suchness understanding’
to contrast it with the reductionist understanding that he said belongs rather
to the category of ‘lawful explanation’ (Maslow, 1966). The ‘suchness under-
standing’ (of a situation, for example) refers to experiencing this situation ‘as
such’, in all its richness and variety of aspects. ‘Suchness’ refers to experiencing
a situation from within, without trying to classify it, without looking at its
‘system properties’. ‘Suchness understanding’ in science refers to ‘comprehen-
sive experience, in which the only scientific requirement is to accept what
exists (ibidem, p. 79). The experienced suchness is completely alien to any kind
of definition and especially the ‘rigorous’ definition, because any definition is
abstraction and generalization and these do not apply to ‘suchness’: ‘An experi-
ence of redness or of pain is its own definition, i.e., its own felt quality or
suchness. It is what it is. It is itself.’ :

So ultimately is any process of classifying, that is always a reference
to something, beyond the suchness of an experience. Indeed, this holds
true for any abstracting process whatsoever, which by definition is a
cutting into the suchness of an experience, taking part of it and throw-
ing the rest away. In contrast the fullest savouring of an experience
discards nothing but takes it all in. So for the concepts ‘law’ and
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‘order’ — these, too, are system properties, as are also ‘prediction’ and
‘control’. Any ‘reduction’ is a happening within a theoretical system..
(Maslow, ibidem, p. 81)

The question arises however: is it at all possible to experience the above
described ‘suchness understanding’® Are we at all able to isolate a situation
(pain, redness, continuity of a function) and experience (savour) it from with-
in without conceiving of it as a system already? Can we isolate it without
‘throwing away’ what does not belong to this situation? And even if we were
able to live the suchness of an experience — would we then feel as if we had
understood it? Don’t we a priori expect that understanding selects and intro-
duces order — and Maslow assumes that suchness contradicts order?

Fortunately, Maslow acknowledges that ‘suchness’ and ‘abstraction’ are
complementary rather than contradictory and ‘cannot be split apart without
damage’ (p. 87). Choosing one at the expense of the other can only generate
either ‘a crippled reduction to the concrete’ or ‘a crippled reduction to the
abstract’. The main point of Maslow is that the ‘reductionist’ view of under-
standing, which is integrative and driven towards simplification, does not give
full account of human understandings (even in the domain of science), many
of which are just ‘experiential’, remaining within the object of understanding,
not going beyond it, abstracting and classifying.

This is the kind of understanding that the sculptor has of clay or
stone, that the carpenter has of wood, that a mother has of her baby,
that a swimmer has of water, or that a husband and wife have of each
other. And this is the kind of understanding that is ultimately im-
possible for the nonsculptor, the noncarpenter, the nonmother, the
nonswimmer, or the nonmarried, no matter what other resources of
knowledge may be available. (Maslow, ibidem, p. 89)

~ May I add: This is the kind of understanding that a mathematician has of
mathematics and that is ultimately impossible for the nonmathematician?

. Understanding and Reaching the Essence of Things; Phenomenalism and

Essentialism
Very often we have the feeling that we have not ‘really’ understood something
unless we have reached to ‘the essence’ of this something. This happens when
the motivation of our intention of understanding is guided by a question of
the type: ‘What is . ..?". We want to grasp what makes the object exactly
what it is: ‘the essence of an object is that without which it would not be
what it is’ — this is how the ‘essence’ of things was traditionally understood
(Kotarbinski, 1961, p. 46).

The notion of essence has been the object of many controversies among
philosophers past and contemporary. Very important in the philosophy of
Aristotle and the scholastic philosophy of Middle Ages, its significance was
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undermined by the scientific and matter-of-fact attitudes of the seventeenth-
century scientists and philosophers of nature (Kotarbinski, ibidem, p. 488).
Facts and phenomena, observation and experience was what all scientific knowl-
edge had to rely on exclusively; the questions about the ‘internal deep essence’
of things, were ridiculed as irrelevant and even senseless. This positivistic
attitude reached its apogee in the 1930s, in the works of Schlick and Carnap.

In the frame of this attitude one can sensibly ask for the essence of a gen-
eral name but not for the ‘essence of things’: the essence of a word is nothing
more and nothing less than what can be logically inferred from its definition.

The watchword [of the positivistic attitude] was: observe the facts
that can be reached by observation, do not enter into vain speculations
concerning the unobservable interior of objects; state regularities of
co-existence and succession of phenomena; on these regularities base
your predictions, and on the predictions — your technology; take all
enquiry into the nature of reality and essence of things to be worthléss
and even senseless enterprises. For Mill, the essence of man was simply
‘the set of characteristic features co-noted by the name “man”’.
(Kotarbinski, ibidem, p. 486)

But it is very difficult to resign from inquiring into the nature and es-
sence of ihings. We somehow expect more of scientific understanding than of
scientific explanation. This dilemma between our scientific and methodological
conscience on the one hand and beliefs about there being a reality that with
pain and effort it will be possible to discover on the other, is very well
rendered by Werner Heisenberg in his book Der Teil und das Ganze (1969).
Heisenberg found it difficult to put up with the notion of time as ‘that what
the clock shows’ and felt dissatisfied with his understanding of relativity theory.
He said that while having understood the mathematical apparatus of the theory,
he still had problems with understanding why the moving observer understands
by the word ‘time’ something else than the fixed observer: he understood the
theory with his head but not yet with his heart: ‘ich habe die Theorie mit dem
Kopf, aber noch nicht mit dem Herzen verstanden’ (ibidem, p. 48). He could not
resign from his naive notion of time which one has whether one wants it or
not and which is a useful tool of our thinking:

If we now claim that this notion of time must be changed, then we
do not know any more whether our language and thinking can remain
useful tools of orientation. I do not want to refer here to Kant who
described space and time as a priori forms of intuition thereby be-
stowing upon these fundamental forms a claim to absolute, as it was
admitted in the earlier Physics. I should only wish to stress that speech
and thinking will become uncertain if we change such fundamental

notions, and uncertainty cannot be matched with understanding. (Heisenberg,
1969, p. 48)
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Of course, it is possible to suspend one’s scruples about whether or not
a given theory ‘really’ tells ::» anything about the object it theorizes upon or
models. It is also possible o :~vept that the meanings of the terms in a theory
are different from the meanngs that we have attached to these same words up
till now. After all, the decision whether, in our understanding, we have or
have not reached the ‘essence’ of the matters upon which we reflect, is our
personal decision, based on feelings rather than on some rational arguments.
The positivists were satisfied with their understanding; Heisenberg obviously
was not.

There are also some attempts at coming to terms with phenomenalism,
accepting its merits while not completely rejecting the questions for reaching
beyond the observable. Such is, for example, the position of Kotarbinski
(ibidem, p. 489) and also of Cackowski, who, in his account of ‘scientific
understanding’, refers himself to Feynman’s metaphor of the world as a huge
chess game.

The phenomenon is for the scientists a real and objective event or
process and the task of scientific cognition consists in the discovery
of the regularities of these processes and the laws of interaction be-
tween events. To come to know these laws and rules — means to
understand the world of things. This is how R. Feynman understands
the ‘scientific understanding’ of the world:

‘What do we mean by “understanding” something? We can imag-
ine that this complicated array of moving things which constitutes
“the world” is something like a great chess game being played by the
gods, and we are observers of the game. We do not know what the
rules of the game are; all we are allowed to do is to watch the playing.
Of course, if we watch long enough, we may eventually catch on to
a few of the rules. The rules of the game ar¢ what we mean by funda-
mental physics. Even if we knew every rule, however, we might not be
able to understand why a particular move is made in the game, merely
because it is too complicated and our minds are imited . . . Actualily,
we do not have all the rules now . .. Aside from not knowing all the
rules, what we really can explain in terms of those rules is very lim-
ited, because almost all situations are so enormously complicated that
we cannot follow the plays of the game using the rules, much less tell
what is going to happen next. We must, therefore, limit ourselves to
the more basic question of the rules of the game. If we know the
rules, we consider that we “understand” the world’. (Feynman, 1965,
p. 2-1) :

The scientist is not always able to explain a law; this does not
mean however that he never asks the question ‘why?’ This question
is asked and often an answer is found. For example, the discovery of
intra-atomic structures allowed to explain the ‘rules of the game’ on
the atomic level (the rules of the inter-atomic connections, the rules
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of the atomic bonds); the subquantum level (quarks) may facilitate the
explanation of intra-atomic structures, etc. Science investigates the
rules on different structural levels of the world, one of which serves
as premisses for the explanation (‘understanding’) of the rules on other
levels. Because of these multilevel structures the phenomenalistic at-
titude of the contemporary science becomes more complicated and
may even be doubted. It is however beyond doubt that the contem-
porary science has developed very much thanks to this phenomenalistic
attitud€, understood as an protest against the metaphysical essentialism
that directed the scientists’ attention to absolutely objectless ‘essences’,
‘beings’, ‘substances’. (Cackowski, 1987, p. 169)

For many mathematicians and physicists, the possibility of mathematizing
a part of reality is that which they organize around their understanding of this
reality. They feel they have understood something if they succeeded in building
a mathematical model of it (Pollak, 1968). Also genetic psychology stressed
the role of mathematizing in understanding (Piaget and Garcia, 1989, p. 4).
According to Piaget, it requires logico-mathematical structures to but constitute
the object of understanding. Mathematization is present in understanding from
the very beginning. If we relied only on our senses we would be unable to
preserve certain sensations and attribute permanence to other sets of them —
this permanence ensures that we constitute them into objects and are able to
store them in memory. analyze them, decompose and recombine.

In the controversy between phenomenalism and essentialism mathematics
often played the role of a mediator. Starting from Galileo, grasping a physical
phenomenon in mathematical terms was a warranty that the scientific inves-
tigation will not be reduced to mere recording of facts, making no distinction
between the essential and the irrelevant details. But mathematics, too, has had
something similar to the controversy between phenomenalism and essentialism
which concerned mainly physicists and philosophers. I refer here to the frictions
between formalism and . . . platonism or neoplatonism, maybe?

A ‘formal’ understanding of a mathematical notion consists in under-

standing its name on the basis of its definition — a certain statement which

has a definite logical structure and definite logical links with other statements
(theorems and definitions). A definition in this sense is what is observable in
a concept — it is its phenomenon. Such an understanding may not be felt as
satisfactory. An analysis of just the definition does not answer the questions
about how the concept is crucial or marginal for the theory and its applica-
tions, what was its role in the development of the theory, what were the
problems that the concept helped to solve or understand better. An awareness
of all this may seem important for understanding the concept.

Of course, it is very difficult to speak about the ‘essence’ of a mathemat-
ical notion, although the temptation is great, especially for mathematics edu-
cators. From time to time an aspect of a mathematical notion is brought up
as being important for its understanding and it is proposed that it be stressed
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in teaching. Functions, for example, were viewed mostly as particular relations
in the period of the so-called ‘new math’ reform in Europe; later, with the
trend towards bringing mathematics closer to life, functions were presented
as models of relationships between variable magnitudes. A more both multi-
faceted and general perspective is offered in seeing functions as, on the one
hand, a certain process (when we speak of transformations of elements of one
set into elements of another set and when we are actually doing these trans-
formations, by hand or with the help of a computer), and, on the other, a
certain object (when we consider functional spaces, for example). The concept
of function has many aspects and grasping as many of them as possible in
teaching should probably be aimed at. The problem is, however, that when
we use ordinary language to say something about a function, we necessarily
focus the listener’s attention on one possible understanding of functions. This
means that ‘whatever we say a function is, it isn’t’ — to naraphrase Korzybski’s
words

Whatever we say a thing is, it isn’t because whatever we say is words
and what we mean to say is generally not words. (Korzybski, 1950,
quoted and commented by Bohm and Peat, 1987, p. 8)

Components of an Act of Understanding

In this section we shall discuss, in more detail, the basic components of an act
of understanding, namely: the understanding subject, the object of under-
standing, the basis of understanding, and the operation of the mind that links
the object of understanding with its basis.

T he Understanding Subject: Who U nderstands

When we speak generally of the act of understanding as a psychological and
actual event, then we think of it as occurring in an individual person at a given
time. In this case the understanding subject is the psychological subject: a
student in our laboratory, or in our class, or, simply, you or me.

But when we speak of how the understanding of a certain mathematical
notion developed in history, and mention certain acts of understanding that
occurred in a past epoch, then this notion of psychological subject is no longer
adequate. Of course, it happens that a mathematician gives account of a per-
sonal experience (like Poincaré did in the motto to this chapter). But, most of
the time it appears that a new way of understanding is shared by mathematicians
at a given time with nobody in particular being responsible for its invention.
The new way of understanding is ‘in the air’, som~how.

Lubomirski, a Polish philosopher who studicd the problem of general-
ization in mathematics (1983), was very much concerned with this notion of
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subject. The perspective on generalization taken in his book was not that of
a logician but that of an epistemologist. He studied generalization in its dia-
chronic dimension and therefore he had to deal with ‘the generalizing subject’
— he who generalizes — ar.d not only with generalizations as results of the
mental work of this generalizing subject. Lubomirski's question was how to
understand this category when one wants to speak about generalization as a
certain cognitive procedure that leads from one mathematical situation to
another.

Lubomirski proposes, without pretending to offer a final solution to his
problem, to adopt the Piagetian notion of sujet épistémique (Beth and Piaget,
1961, p. 328-9) of which, he says, the notions of psychological subject and
the so-called social consciousness are certain deformed concretizations.-It is in
the operational structures of the epistemic subject that are encoded the ‘natural
logic’ of mathematical thinking and, in the historical perspective, the ‘math-
ematically founded objectivity of coming into being of mathematics’, as
Cavaillés (1962) would say. It is the epistemic subject that takes on the re-
sponsibility of the fact that, in various historical epochs, there existed some
commonly shared beliefs that nobody has really individually articulated.

In our work, we cannot completely dispense with the idea of the psy-
chological subject when we speak about the actual understandings of math-
ematics in actual students. After all, in a mathematics class, a teacher has to
do not with sujets épistémiques but with very concrete people (some of whom
may, of course, grow to be Gausses). But, on the other hand, if we want to
speak about understanding of some mathematical topic in normative terms,
this notion of sujet épistémique comes in handy. To be exact, it is not the way
‘a certain concrete Gauss’ has developed his understanding between one work
and another that will give us some guidance as to what acts of understanding
have to be experienced or what epistemological obstacles have to be overcome
in today’s students. We have to know how a notion has developed over large
periods of time, and in what conditions (questions, problems, paradoxes)
were the great breakthroughs in this development brought about. This, and
not historical facts about exactly who did what and when, can be instructive
in designing our teaching and facilitating understanding processes in our
students.

T he Object of Understanding

In introducing the notions of Gestalt psychology, it is often pointed out that
one important difference between the Gestaltist and the classical ‘introspective’
psychology points of view on consciousness is that in the classical psychology
consciousness was a stream of objectless sensations or inipressions, whereas in
the Gestalt psychology, consciousness was always a consciousness of something.

In Locke’s ‘Essay’, understanding ‘bas ideas’. and it ‘gets’ or ‘derives’ these
ideas from sensations or reflections on operations of our minds. Sensations
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and reflections are regarded as ‘sources’ of ideas. We cannot say that what
Locke means is that understanding consists in getting ideas ‘of ’ sensations or
reflections, which then would be the objects of understanding; rather; ideas
are gotten ‘from’ these two ‘sources’. It is not clear, then, what the object of
understanding is, and whether it makes sense to speak about such a thing.
Understanding, for Locke, was primarily the source of knowledge; an activity
of the mind that produced knowledge. This knowledge must have been, for
an empiricist, knowledge about the world. We might presume then, that it is
the world (whatever this means) that was the object of understanding for
Locke.

It is possible that a more accurate description of the classical psychological
position would be not to say that psychologists occupied themselves with
‘objectless’ sensations, impressions, etc., but rather that this object was not
specified: the object was ‘the world’, or ‘reality’. Of course, a vague object
functions as if there were no object at all.

Such a vagueness of object of understanding can still be observed some-
times in works of mathematics educators, even though a great step had been
taken from the time when the discipline of mathematics education was a mere
branch of the general discipline of education. The general discipline of educa-
tion spoke about understanding in general, whatever the object to be undes-
stocd, and formulated principles of teaching any subject. It has become clear
at some point that teaching methods must be content-specific, because very
clearly learning is content-specific. Our minds do not function in the same
way whether we study mathematics or the history of literature. However, this
‘content-specificity’ is often applied to mathematics as a whole, or to some
domains of mathematics, like ‘algebra’, for example. ‘Algebra’ is a very im-
precise term. It means one thing for a scholar working in the field of group
representations theory, another for a high-school teacher, and still another for
a historian who studies the development of algebraic thought from Diophante
to Viéte. But even in the context of high-school algebra, when a teacher says:
‘My students don’t understand algebra’, it is not clear what exactly it is that
they do not understand: the symbolic system, and the often tacit conventions
that come along with it, the notion of equation as representing a certain con-
dition on the variables, the notion of variable as opposed to that of unknown,
the notion of parameter as opposed to that of the variable . . .?

It would seem that one important aim of the didactical analysis of a
subject of teaching is to clarify what it is that we want our students to under-
stand when they study mathematics, and what exactly it is that they don’t
understand. We want our students to experience a certain number of acts of
understanding in their studious lives. Each such act has an object which the
student has to notice, identify as an object of his or her understanding for any
conscious thinking on it to start at all.

The problem of objects of understanding is linked as much with the
contents of teaching as with the goals of this teaching. It is not the same
whether, in the frame of school ‘algebra’, we set ourselves the goal to teach

41

58




Q

ERIC

PAFullToxt Provided by ERIC

Understanding in Mathematics

the students a technique of solving equations or to have them acquainted with
various approaches to solving problems, one of which is solution of equa-
tions; or whether we want the students to solve problems or to solve them
‘by algebra’. .

Also, one must not forget that school is an institution into which many
children are forced and not chosen by their free will. Therefore, one has to be
very careful when speaking about objects of understanding in the frame of
institutionalized learning. From teacher to student, the object of understanding
can easily change its identity. What is, for the teacher, an ‘algebraic method
of solving problems’ may become, for the student, a mechanical procedure,
a school activity that is done to comply with the requirements of the teacher
and the school institution. It may have nothing to do with ‘methodology’ and:
certainly nothing with answering interesting questions. The student’s activity
does not always have a cognitive character; very often it is a strategic activity
aiming at going through the school and graduating with as little intellectual
investment as possible.

In the following section, we discuss some of the possible objects of
understanding in mathematics.

Understanding Concepts

The object of understanding in Ajdukiewicz's ‘Pragmatic logic’ is always an
expression of language. It may be an isolated word, or it may be someone’s
utterance, but it is always composed of words. Now, when speaking of under-
standing in mathematics, we are concerned not so much with understanding
words as with understanding concepts, relations between concepts (some-
times stated in forms of theorems), problems, arguments (proofs), methods,
theories, mathematical symbolism, mathematical representations such as dia-
grams, graphs etc.

But what is a concept? According to Ajdukiewicz a concept (in the logical
sense, not in the psychological sense of a mental experience — a kind of
mental representation) is just the meaning of a name {a meaning, I should say,
as a name can have several meanings, and therefore there may be several
different concepts related to a given name). The question now is: can under-
standing of a concept be reduced to the understanding of its name?

A process of understanding a concept may start well before its name is
known or invented. Let us consider an example from an experiment, in which
two students were constructing for themselves a notion of limit (Sierpinska,
1985b).

Example: understanding the concept of limit

Two 16-year-old students have been ‘shown’, + .thout the use of words,
what is the tangent to a curve in a point, by using a ruler fixed in a point (T)
on a curve and sliding while another point of intersection with the curve was
moving towards T until it identified with T (Figure 2). Then the position of
the ruler was marked, and it was declared by the experimenter that this position
is the position of the tangent to the curve in the point T. A certain way of
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Figure 2: Demonstration: the tangent to a curve at point T

understanding what is the tangent to a curve in.a point was thus vaguely sug-
gested. Until now the students would deal with the tangent to a circle only,
understood as a straight line having only one common point with the circle.

The students were then asked to communicate this notion, in writing,
without using drawings, to a couple of other students, in a way that would
allow them to find tangents to given curves in given points.

The task was difficult: the students had to create a language to describe
something that, intuitively, seemed very easy and simple. They had to analyze
a situation given in a synthetic, visual way. Here is a sample of their conver-
sation, in which they attempt to define the procedure of finding the tangent
(students are labelled U1 and U2).

U1l: To find such a line means to come so closer and closer and so
that ...

U2: Exactly. So that. .. what?

U1: It’s like drawing lines through consecutive points.

In a second stage of the same experiment, the students had to develop this
new notion of tangent so that they would be able to compute the formula of
the tangent to the curve y = sin x at x = 0. The students first repeated the
manipulation with a ruler sliding on the sine curve and observed that the point
0 is ‘a breakthrough point’: as the secant line moves with the intersection
point moving from (=,0) through (0,0) and further to (—x,0) its angular coef-
ficient first increases and then decreases. They called the value at zero ‘the
limit point’. Passing to numerical calculations, the students estimated the
angular coefficients of the secant in the positions of the intersection point P
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Figure 3:  Calculating the tangent to y = sinx at x = 0

X deg x rad

32 .5589
8 2792
4 1396
2 .0698

given by x = 32, 16, 8, 4 degrees (the students were thinking in degrees, and
only later switched to radians). Without even dividing sin x by x to obtain the
angular coefficient of the secant, the students conjectured:

U2: Here the difference slowly becomes smaller and smaller. . .
Ul Yes, it does.

U2: It gets smaller and smaller, until. ..

Ul: (whispers). . . until it becomes one, in the end.

U2 Yes (firmly). It will tend to one.

The language of the students is full of comparisons and metaphors.
‘Tends to one’ is an expression metaphorically describing the behaviour of
the sequence; it is not a mathematical term yet in their language.

The students have experienced an act of understanding: the object of their
understanding was the behaviour of a sequence of positions of a secant OP to
the curve y = sin x. They understood it on the basis of a conjecture that, ‘in
the end’ it *becomes’ the line y = x , or that it ‘tends’ to such a position. This
act of understanding brings them closer to understanding the concepts of
tangent and limit: it can be considered as a step in the process of understand-
ing the concept of tangent to a curve as the limit of a variable secant, or, more
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gene.ally, as a step in the process of understanding the concept of limit. [End
of example]

Of course, ‘the concept of limit’ is un abus de langage, because there are
many concepts behind the mathematical term ‘limit’. It depends on whether
we think. of the limit of function, in general, or of the limit of a sequence, and
whether the sequence is numerical or not; and there are, of course, many
degrees of generality of this concept. For example we can define the ‘limit of
a numerical sequence’ in terms of absolute values or in terms of neighbour-
hoods. The two definitions do not define the same concept; they are logically
but not epistemologically equivalent. The second is already one step further
into generalization.

If, however we sometimes do speak of ‘the concept of limit’ in math-
ematics, we refer to the general idea of something to which some variable
thing can be brought as close as we wish. And, in teaching, it is often this way
of understanding, this ‘general idea of limit’, that we wish that our students
grasp in the first place. We wish them to discover this idea by themselves, in
a way, before being given the name of ‘limit’ (which has meanings in the
vernacular that conflict with the mathematical meaning: Cornu, 1981, 1983).
But, of course, we plan that, in further learning, they will become more con-
scious of the mathematical term of ‘limit’ and develop more precise math-
ematical meanings of it, the numerical, the topological, limits of sequences,
limits of functions of a continuous variable, etc.

Understanding Problems -

Very often, in mathematics, we have to understand ‘the problem’. This, again,
is an ambiguous term. The ‘problem’ may be a simple school problem, and
its understanding may consist in identifying what is given, what is to be
found, and maybe what category of problems does the problem belong to.
Here, the problem is given; the aim is to solve it. But sometimes, the aim is
to identify the problem: the teacher is saying something, formulating some
definitions and facts on the blackboard, proving some theorems; the student
has to understand what the questions are that these definitions, facts and
proofs are answering. For example, in studying linear algebra at the university
level and learning to find all the possible Jordan Canonical Forms related to
given characteristic and minimum polynomials, the students must understand
what questions have yielded this knowledge, why the canonical forms are at
all necessary or useful. For the mathematician who ‘works on a problem’,
understanding it better may result in its reformulation, in the discrimination
between the essential and the superfluous assumptions, its generalization, or
discovery of an important analogy.

Understanding Mathematical Formalism

Understanding a particular symbolic inscription may be included into the
category of understanding an expression. Understanding a formalism, how-
ever, may involve deep conceptualizations.
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Example: the formalism of linear algebra

For a student of linear algebra, the notion of linear independence of vec-
tors acquires meaning in the context of bases of vector spaces. It is linked with
the property of ‘minimality’ of generating sets. Now, to go from this natural
idea to the formal defining property of a linearly independent set of vectors,
i.e., to saying that the set {v,, v,, ..., v,} is linearly independent whenever
avi+...+av,=0yieldsa,=0fori=1,...,n, is by no means a straight-
forward and easy task. A whole chain of acts of understanding is involved
in it. '

First, one must identify the linear combination as an operation that pro-
duces a vector space out of a given set of generators. This act is a specification
of a more general idea of generating structures out of a given set of elements
by combining them along some allowed rules of combination. This idea can be
developed rather early through experiences with various construction toys like
LEGO, for example. In vector spaces, the allowed combinations of elements
are linear combinations, and the elements (the ‘blocks’) are called ‘vectors’.

Suppose that, with a certain set of vectors, a vector space was generated.
Then the question must arise: did we really need all these vectors? Were they
all indispensable? Couldn’t one or more of them be obtained from others?
This is easy to see if one vector is a multiple of another; much less so if a
vector is a non-trivial combination of others. ‘Algebra has developed a whole
range of techniques for the purpose of answering this question. To understand
how these techniques relate to the notion of ‘one vector is a non-trivial linear
combination of others’ or linear dependence of vectors is not at all easy.

A serious obstacle to understanding the formal theory is to conceive of
the linear independence as a relation between two vectors rather than as a
property of a set of vectors. For example, students would say that the set
{(1,1,0), (0,0,1), (1,1,1)} is not ‘completely’ dependent because the first two
vectors do not depend on each other. There is an important epistemological
threshold here that marks the passing from the school algebra where concrete
expressions are manipulated to the algebra that is normally taught at the uni-
versity: the algebra of structures whose fundamental objects are sets furnished
with properties.

The confusion of students with linear independence can be huge. Follow-
ing is an example that shows what happens when one wants to make sense
of the formal definition on the basis of the ‘vector-to-vector’ conception of
the relation of independence. This is the case of an undergraduate student,
who, asked to complete the phrase: ‘. . . is linearly independent’ said, in a first
movement: ‘a linear combination of a span of vectors’, thinking maybe, at this
point, of the inscription ‘a,v, +...+ a,v, = 0’ that appears in the formal
definition of linear independence. This was not a result of a purely perceptual
association, however. Believing that linear independence is about one vector
being independent of another vector, the student was looking, in the definition, .
for this one vector that would be independent of other vectors. He thought
that it might be the linear combination ‘a;v, +. ..+ a,v,’. When he learned
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that linear independence is a property of a set of vectors, he felt that there is
some sort of contradiction there, because, in the definition, this set of vectors
seems to be written as one vector — this linear combination! Here is how he
recounts his experience in an interview by the end of his second linear algebra
course:

... 1 remember last semester that’s the problem I had, exactly. ..
Understanding linear independence . . . This was really a stupid ques-
tion, but it was before the last exam, and I asked them what exactly
linear independence meant because I always thought of it as one vector
associated with another vector, and now it’s a set of vectors being
associated. So . .. but then again it’s that set of vectors being written
as one vector, you know? So you would say it’s quite a contradiction
... T can't understand like which vector is linearly independent of
each, like is it the vectors . . . Like I know that if all your a’s are equal
to zero then all these vectors have to be linearly independent. But
then to understand exactly why . . . how it warks and why it works,
it took a while, you know . ..

The concept of linear independence involves many difficulties of logical
character. One difficulty is concerned with conditional statements in general.
Students tend to focus on either the premise or the conclusion, usually adding
a general quantifier. For example, one student claimed in a discussion over
her erroneous proof that ‘linearly independent vectors are always zero’ thus
explaining why she substituted 0 for a linear combination of these vectors:
‘avy + ...+ a,v, . She could have read the definition as: ‘for any coefficients
‘A, - - - Ay, AV, + ... +a,v, =0, disregarding the conditional character of the

" statement completely. Another difficulty is related to the negation of propo-

sitions. Linear independence is, logically, a negation of linear dependence and
one could say that, well, once linear dependence is understood, the under-
standing of linear independence should be quite straightforward. But the logical
rules of negation do pose a serious problem to many students. Moreover, the
acceptance of a definition that is obtained by negating a statement depends on
the acceptance of the law of excluded third (tertium non datur). However, this,
law of classical logic is not obvious and may not be accepted by all students.
Those who search for truth rather than for consistency do not readily accept
the formal aspects of mathematics. Another difficulty is the synthesis of a
definition thus obtained by a long chain of translations from an initial ‘natural’
condition to a symbolically expressed statement. Yet another, a semantic
detachment from the initial context of bases in order to be able to consider the

property of linear independence as a subject of study in its own right. [End
of example]

Understanding Texts
A text (as a whole) can be an object of understanding. Understanding
mathematical texts has been identified as a didactical problem by Krygowska
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(1969). One of the most striking examples she gives is that of a student who
was asked to read and explain how she understands a definition of homothety
she has never seen before. The girl starts to read: ‘Homothety is . . .", suddenly
interrupts and exclaims: ‘I don’t understand, I don’t know what “homothety”
means!”. This shows quite clearly that understanding mathematical texts
requires a certain awareness of the structure of such texts, of the place of
definitions, how they are formulated, what are they composed of (distinction
between definiendum and definiens), etc. Krygowska claims that there are
techniques or behaviours that help in understanding mathematical texts and
that these have to be explicitly taught and trained in our mathematics classes
and not left to the students’ own ingenuity.

Mathematical texts and mathematical formalism have their spec1f1c1t1es
that make their understanding a somewhat different experience than reading,
for example, literary texts. While, in reading any text, the interplay between
the grasp of the text as a whole and the analysis of the details plays a funda-
mental role, reading of mathematical texts involves much more of some kind
of a ‘forward-backward’ movement. Especially the more formal mathemat-
ical expressions and phrases have to be understood more like two-dimensional
diagrams than a linear piece of writing. We can see this on the example of the
tiny text which defines the notion of a linearly independent set of vectors,
already discussed in the previous section:

avi+...+av,=0=23=0fori=1,...,n

This text can read as: ‘the only way to write the zero vector as a linear
combination of the vectors v sub i is to put all the coefficients equal to zero’,
or ‘a linear combination of linearly independent vectors is zero very rarely;
only if all the coefficients are zero’. This interpretation was possible by, first,
looking at the text as a whole and noticing the necessity of the condition that
is on the right hand side of the sign of implication: in reading, this is rendered
by saying: ‘the only way . ..” Then one looks back at the left-hand side of the
implication and sees it as a decomposition of the zero vector into a linear
combination of the vectors v. And now one looks at the right side of the
implication and, first, gets a grasp of the whole, noticing that it refers to the
coefficients, then reads ‘for i = 1, ..., n’, saying ‘all coefficients’, and ends
with reading ‘a; = 0, again going back from what was written next to what
was written first.

Presently, research into the understanding of mathematical texts is given
proper attention in mathematics education (Bauersfeld and Zawadowski, 1987;
Laborde, 1990; Gagatsis, 1985; Pimm, 1988, 1990, 1992).

The Basis of Understanding

For Ajdukiewicz, an act of understanding an expression is always based on a
mental ‘representation’. He considered two kinds of such representations:
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‘mental images’ and ‘concepts’ (in the psychological, not logical sense). It
seems that we found our understanding on various other things, as well. For
example, on thoughts that are judgments or convictions or just thoughts that
things are so and so; let us call this kind of basis of understanding ‘thoughts
that [so and so]’, after Kotarbinski.

There are also other kinds of representations besides mental images and
concepts. Psychological research finds some evidence to the effect that our
understanding can be based on our ability to do something: on a ‘procedural’
representation. Such is very often our understanding of numbers and opera-
tions on them. We feel we understand because we are able to perform, to
count and compute. We have mentioned ‘suchness’ or ‘experiential’ under-
standing which is based on some kind of holistic, non-conceptualized grasp of
a situation.

In the following we look in more detail at some of the possible categories
of bases of understanding.

Representations As Bases of Understanding

Ajdukiewicz defines representations as instantaneous mental experiences of an
individual: ‘definite experiences at a given moment in a given person’s mind’.
In an act of understanding based on a representation of the object that is being
understood, the subject does not take any position toward this object and does
not evaluate or judge it. The object of understanding is only being matched
with some mental image and/or description. If, for example, the object of
understanding is the word ‘game’, somcone who is not a specialist in game
theory may direct his or her thoughts onto memories of games such as soccer,
hockey. tennis, bridge, poker, chess, or solitaire or may categorize the notion
of game as an activity meant for entertainment in which something is at stake
and in which there are winners and losers.

Ajdukiewicz distinguishes only two kinds of representations: mental
images and conceptual representations (or concepts in the psychological —
not logical — sense). The notion of ‘mental image’ encompasses not only
visual but also other sensory experiences, auditory, olfactory or kinesthetic.
Mental images may also be based on memories of feelings, like pain, or sad-
ness, or joy. A conceptual representation consists of a definition or description
of some kind and is, as such, essentially verbal. Such is, for example, the un-
derstanding of the word ‘square’ as a rectangle with perpendicular diagonals.

This categorization of mental representations is very simple, and cer-
tainly does not do justice to all the discussions and controversies over this
concept in modern psychology (Clements, 1981 and 1982). We shall not enter
into the details of these discussions here. Let us only remark, however, that,
in reality, representations rarely appear under one of these ‘pure’ forms.

As Wittgenstein remarked (1958), in ordinary language we are applying
a name to an object not on the ground that it satisfics the conditions of the
definition of this name but because it has some kind of family resemblance to
objects that we have heard called this name. Following this idea, Hofstadter
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(1985, p. 547f) has shown how attempts to precisely define a colloquial ex-
pression can lead to absurdity. The expression he was analyzing was ‘the First
Lady’ as an example of a name of a role in society. Each definition formulated
on the basis of known examples of a ‘First Lady’ seems to provoke the appari-
tion of other existing or possible examples that contradict the definition.

. . . something terrible is happening to the concept as it gets more and
more flexible {i.e., when its definition becomes more and more gen-
eral]. Something crucial is gradually getting buried, nimely the no-
tion that ‘wife of the president’ is the most natural meaning, at least
for Americans in this day and age. If you were told only the general
definition, a gigantic paragraph in legalese, full of subordinate clauses,
parenthetical remarks, and strings of ‘or”’s — the end product of these
bizarre cases — you would be perfectly justified in concluding that
Sam Pfeffenhauser, the former father-in-law of the corner drugstore’s
temporary manager, is as good an example of a First Lady concept as
Nancy Reagan. (Hofstadter, 1985, pp. 548-9)

In mathematics, an understanding on the basis of ‘family resemblance’ is
very often not sufficient. ‘Natural meanings’ do not matter that much and this
‘terrible thing’ is happening all the time. This is not to say that, in mathemat-
ics, the definition, in a way, precedes the concept. Imporiant concepts have
long histories before a definition is formulated. But, whatever trouble math-
ematicians may have in finding a definition that would suit everybody’s needs
and the existing examples, once they have agreed upon a definition, it is
binding, and one has to accept all its logical consequences. Let us just recall
the history of the concept of function in the nineteenth century. Before Dirichlet
and Bolzano, functions were those well behaved relationships that could be
represented by almost everywhere smooth curves. After the general definition
was introduced allowing absolutely any well-defined relationship between
two variables to be a function, mathematicians started to come up with
examplés of functions that were real monsters to most of their colleagues. At
the turn of the century, Poincaré wrote: ‘Formerly, when a new function was
invented, it was in view of ~ome practical end. To-day they are invented on
purpose to show our ancestors’ reasonings at fault, and we shall never get
anything more than that out of them’ (Poincaré, 1952, p. 125). In spite of all
this turmoil, the ‘natural meanings’ of the ancestors were not to be brought
back to mathematics.

Students of mathematics normally go through a whole series of such
‘terrible things’ that put their representations and reasonings at fault. Let us
take again the definition of linear independence. One can, in principle, survive
for a while on an understanding of linear independence as a relation between
two vectors, maybe visualized geometrically in terms of ‘not lying on the
same line’. But when it comes to the notion of dimension and to understand-
ing why the dimension of the zero vector space is 0, then one has to refer only
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to the definition to show to oneself that the set composed of only the zero
vector {0} is linearly dependent and that, consequently, the zero space does
not have a basis. At this point, one simply cannot do without a strictly con-
ceptual representation of linear independence.

Another categery of representations seems to impose itself as one studies
understanding of mathematics in younger children. Very often they behave as
if their understanding was in their fingers rather than in their minds. In their
acts of understanding, the intention of understanding seems to be directed
towards an immediate action. It is based on some kind of ‘feeling’ of an
activity which' has to be performed here and now. For example, many high-
school students just ‘know what to do’ with an equation: when encountering
an equation, for example, V(x — 1) = -5 they would sit down and try to ‘extract
the root’ by whatever means they can think of. But they may not be able to
tell what they are doing, why they are doing it, what is an equation, what is
a solution of an equation, and whether it makes sense, in this particular case,
to square, subtract, and do all these thlngs they were doing. The kind of
representation they have of equations is neither a pure mental image (based
on motion, for example), nor is it purely conceptual. We might use thé name
of ‘procedural’, a word already used in a similar sense by several authors
(Herscovics and Bergeron, 1989) or ‘operational’ (Sfard, 1991, 1992) or ‘pro-
cess conceptions’ (Breidenbach et al., 1992). They are representations based
on some kind of schemas of actions, procedures. There must be a conceptual
component in them — these procedures serve to manipulate abstract objects,
symbols and they are sufficiently general to be applied in a variety of cases.
Without the conceptual component they would not become procedures. We
may only say that the conceptual component is stronger or weaker.

If the conceptual component-is weaker then in an act of understanding
our thought is directed to an activity that we cannot express otherwise than
by showing how to perform it. If it is stronger then the subject has at least
a partially verbalized schema of the activity. A boundary case could be that of
one of my linear algebra undergraduate students who defined linear independ-
ence of a set of vectors by describing what he would do to check whether a
particular set of vectors is linearly independent: ‘For the polynomials to be
linearly independent they must be expressed as a linear combination then the
components are equated. Results are put into a matrix, the matrix is reduced
to echelon form. If after being reduced the matrix has all non-zero rows then
the polynomials are said to be linearly independent over K.’ Or the case of the
legendary 12-year-old who thought he understood the formula for the area of
the rectangle because ‘he got all his answers right’. He probably had a schema
for calculating the areas that he could verbalize at least in the form: ‘you just
take the length and the width and multiply’ (Skemp, 1978).

The category of such ‘procedural’ representations connects to the Brunerian
category of ‘enactive representations’ (Bruner, 1973). For Bruner, a represen-
tation is ‘a set of rules in terms of which one conserves one’s encounters with
events’ (ibidem, p. 316). Hence, it is a way of keeping ‘ideas’ in memory. A
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representation needs a medium to express itself, and Bruner mentions three
kinds of such media: the enactive. the iconic, and the symbolic. These media
are then the key according to which Bruner classifies representations — a
classification, let us note, that is remindful of Peirce’s typology of signs:
indices, icons, symbols.

A representation of the world or of some segment of one’s experience
has several interesting features. For one thing, it is in some medium.
We may represent some events by the actions they require, by some
form of picture, or in words or other symbols. There are many sub-
varieties within each of these three media — the enactive, the iconic,
or the symbolic . . . [Hence] there are three kinds of representational
systems that are operative during the growth of human intellect and
whose interaction is central to growth. All of them are amenable to
specification in fairly precise terms, all can be shown to be affected
and shaped by linkage with tool or instrumental systems, all of them
are within important limits affected by cultural conditioning and by
man’s evolution. They are, as already indicated, enactive representa-
tion, iconic representation, and symbolic representation — knowing
something through doing it, through a picture or image of it, and
through some such symbolic rheans as language. With respect to a
particular knot, we learn the act of tying it; when we know the knot,
we know it by some habitual act we have mastered and can repeat.
The habit by which the knot is organised is serially organized,
governed by some schema that holds its successive segments together,
and is in some important sense related to other habitual acts that
facilitate or interfere with its learning and execution. What is crucial
is that the representation is expressed in the medium of action with
many features constrained by the nature of action, for example, its
sequential and irreversible nature. An image of the knot carried in
your mind or on a page is not the same thing a5 the knot being ticed,
although the image can provide a schema around which action can be
sequentially organised. An image is a selective, simultaneous, and
often highly styl ed analogue of an event experienced. Yet it is not
arbitrary in its manner of referring to events as is a word. You can
recognize an image of something, once having seen the something in
question. You cannot recognize the appropriate word by knowing
only the cvent it significs. Linguistic signification is, in the main,
arbitrary and depends upon the mastery of a symbolic code. A lin-
guistic description, therefore, involves knowing not only the referents
of words, but the rules for forming and transforming uttcrances.
These rules, like the rules of image formation and habitual action, arc
distinctive to the medium of language. (Bruner, 1973)

It is clear that this description of representations allows for a wider range
of mental experiences than the categorization of Ajdukiewicz, who did not
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take into account the enactive representations, and in whose conceptual rep-
resentations only words were allowed.

It is interesting to note, as Bruner suggests, that many acts of understand-
ing may consist not in representing oneself the object of understanding, but
in translating from one representation to another, the object of understanding
already being sonie kind of representation in our mind. This may espccially
be the case in mathematics, whose abstract objects cannot be communicated
otherwise than through some form of representation. In the example above of
the linear algebra student defining the notion of linear independence, what the
boy was doing was translating exactly his enactive-iconic representation of
linear independence into a symbolic one (rather faithfully for the time being,
to be true).

In his atready mentioned work concerning generalization in mathematics,
Luboroirski considers what he calls ‘mathematical situations’. Generalization
is a cognitive procedure that leads the cognizing subject from one math-
ematical situation to another. This ‘mathematical situation’ as described by
Lubomirski, seems to be a certain representation of the problem at hand. but
this representation is neither purely enactive or iconic, nor purely symbolic,
and it is rather complex, because it contains ‘all those elements of mathemat-
ical knowledge . . . that are present at the moment in the subject’s conscious-
ness and on which depends the subject’s decision about what cognitive activity
to undertake and in which way to realize it’ (ibidem, p. 5). It is possible that
arescarch mathematician works simultaneously with complex systems of rep-
resentations being flexible enough to go from one set of representational rules
to another.

‘Mental Models’

Greeno, whosc article was extensively quoted in the previous chapter, claims
that our knowing, understanding and reasoning are grounded in ‘mental
models” rather than ‘representations’. He presents his view on ‘knowing in
conceptual environments' as an alternative to the information-processing frame-
work of cognitive science which, he claims, bases knowing on the existence
in the human mind of ‘representations’

In the current information-processing framework of cognitive science,
knowledge is a set of representations that are stored in the mind,
including symbols that represent concepts, properties, and relations
as well as representations of procedures for manipulating symbolic
expressions. Learning a domain, in this information-processing frame-
work, is the construction of cognitive structures and procedures that
represent the concepts, principles and rules of inference of the domain.
(Greeno, ibidem, p. 174)

This is maybe a slightly oversimplified account of the information-
processing view on learning. Inforniation processing in the newest computer
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environments is certainly not a linear manipulation of built-in procedures the
access to which is available only through the strict commands of a formal
language. Hyper-languages and multimedia environments, developed in the
field of educational technology, work in a way that is very close to what
Greeno describes with the help of his ‘living in a physical environment’ and
‘mental models’ metaphor.

In the environmental view knowing a set of concepts is not equivalent
to having representations of the concepts but rather involves abilities
to find and use the concepts in constructive processes of reasoning.
Representations of concepts and procedures can play an important
role in reasoning, as maps and instructions can help in finding and
using resources in a physical environment. The person’s knowledge,
however, is in his or her ability to find and use the resources, not in
having mental versions of maps and instructions as the basis for all
reasonings as action. (Greeno, ibidem, p. 175)

Greeno’s view of our intellectual lives is very much focused on ‘survival’
and ‘consumption’, slightly less on ‘production’, and of course, very little on
just thinking for the sake of thinking itself. This may be an adequate image
of knowing but certainly not of thinking in general. For example, even if the
noticn of infinity — actual infinity — can be thought of as a ‘resource’ for
something, a convenient idealization fz. solving some of the mathematical
theoretical questions — why should we think of it in such a pragmatic way?
Isn’t understanding just for understanding, reasoning just for reasoning, know-
ing just for knowing, and not for doing something with this knowledge (like
finding and proving a new theorem, publishing a paper, adding it to the CV¥,
obtaining a research grant etc.), something specifically human? Ian Hacking
(1975) quotes, in that respect, Aristotle, saying that a man ‘who will not
reason about anything is no better than a vegetable’ (Metaphysics, 1006a), in
an interesting argument with Wittgenstein's view on the necessity of proofs.
The necessity of proofs lies in the human need of proving and not in the

formal need of assessing the truth of theorems. Let me quote this passage
here:

Wittgenstein, in his unfinished ‘Remarks on the Foundations of Math-
ematics’ was . . . drawing attention to the undetermined character of
mathematical concepts. He went so far as to suggest that a math-
ematical theorem did not have the marks of necessity until it was
proven. But he thought that once the proof was pointed out to us, we
would not fail to accept it, except on pain of being called stupid or
irrational. That which makes us accept proofs is not our training in
mathematical skills and concepts but is a precondition for those skills
and concepts, and lies in human nature. It is innate. To be human is
to be able to prove a little. (Hacking, ibidem, p. 69)

V1
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The ‘concreteness’ of mental models, their being filled with various
‘objects’ that are being moved around, combined and decomposed, and that, in
the course of working with them, become very familiar, is certainly appealing
to our understanding and is helpful. However, they may have the tendency
to acquire, in our minds, the status of the ‘whole truth’ about the conceptual
domain we are exploring with their help: they actually start to be the whole
world. And thus they become obstacles to further exploration. It may even
be so that the more we make a mental model function and the better it works,
the bigger the obstacle we thus create for ourselves.

For example, the mental model of the domain of numbers and quantities
— the ‘number se; s’ — that Greeno proposes to be developed in school-
children, is the knowledge of the logistics rather than of arithmetics, the
knowledge of the artisan rather than the knowledge of the architect. In this
model, numbers are objects very much like wooden blocks of various lengths,
and operations are almost physical operations on these biocks. This is all right
if the domain of numbers is restricted to positive rational numbers and-addi-
tion or even subtraction of integers; problems arise with the multiplication of
integers whose rules it is difficult to explain without reference to the integers
as a structure that extends the structure of natural numbers in a way that
preserves the properties of operations in it. It may be difficult, for both the
students and the teacher, to get rid, at this point, of the importunate spatial
understanding of numbers as blocks. But . . . maybe, in this pragmatic world,
it does not make sense to teach all children multiplication in the ring of
integers, after all?

‘Apperception’ As a Basis of Understanding

On the highest levels of abstract thinking, understanding may be based on
what the psychologists of the Wiirzburg School called ‘apperceptions’. It is
‘apperception’, they say, that allows us to understand sentences like ‘Thinking
is so unusually difficult that many prefer to draw conclusions’ (cited in Luria,
1981, p. 21).

. The first thing that we identify in this sentence is the opposition that is
made there between ‘thinking’ and ‘drawing conclusions’: drawing conclu-
sions (in a formal or automatic way) appears as an escape from thinking. We
would have thus isolated the jogical structure of the sentence, maybe on the
basis of such cues as ‘so difficult . . . that’. Our understanding is based here on
a certain logical pattern. We recognize this pattern because we have some
experience with understanding and using sentences like: ‘Climbing a moun-
tain is so difficult that many prefer to use a chair-lift’. Usually we pass very
quickly over this phase of understanding and go on to wondering why this
statement about thinking and drawing conclusions should be true. We may
start to ask ourselves questions like: Why should thinking be more difficult
than drawing conclusions? Isn’t thinking always based on drawing conclusions?
etc.,
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“Thoughts That [So and So]’ As Bases of Understanding

Understanding on the basis of some ‘thought that...’ seems to be quite
important in scientific thinking. This is the category to which belong acts of
understanding that answer our questions about the reasons why things are as
they are, why a statement should be true or false, or what results (of exper1~
ment, computation, research) can one expect, etc.

A ‘thought that {so and so]’ need not express a person's conviction or
opinion. It may be just a statement one has remembered. For example, in
understanding V2 is an irrational number’ on the basis of a thought that V2
cannot be represented as a ratio of two integer numbers’, the thought can, but
need not be, a conviction. A person may be convinced of the truth of this
thought on the ground of its proof which he or she has understood. Or the
person may just repeat, in mind, an argument he or she has memorized. The
proof can be understood on the basis of the thought that all its steps seem
logically correct. Or, it can be understood on the basis of a thought that
synthesises the so-called ‘idea of the proof” (nervus probandi ) and emphasizes
all the essential hygotheses. Or, its understanding may consist in perceiving
the historical significance of the theorem. In the context of historical consid-
erations, what often comes to mind is that the statement V2 is an irrational
number’ is an arithmetical counterpart of the geometrical discovery of the
Pythagoreans that the diagonal of a square is not commensurable with its side.

Mental Operations Involved in Understanding

It seems that there are four basic mental operations involved in understanding:
identification, discrimination, gencralization and synthesis (Sierpinska, 1990b).

[dentification

We are speaking here of identification in the sense of discovery or recognition.
When I say, for example, that | have identified the object of my understanding,
I mean, first, that I have ‘discovered” or ‘unveiled’ it, that is, isolated, singled
out from the ‘background of my field of consciousness’ in which it was, so
to say, hidden, and, second, that I have recognized it as something that I in-
tend to understand.

In so identifying an object I am introducing a certain order or hierarchy
into what I am presently considering: some things become more important
than other things. If there already was a certain hierarchy in my field of con-
sciousness, it can be completely reversed in a new act of identification.

In isolating an object and recognizing it I may or may not be naming it.
For example, in perceiving a car crashed against a tree | may or may not think
to myself ‘Aha, a car crash’. But in any case 1 would have classified it some-
how, put it into a folder, with memories of other crashes 1 would have seen
or experienced. For example, I may say to myself: 1 have seen something like
that before. In this case I identify an object with another object. Instcad of
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giving an object a name I may aiso be describing it somehow, for example
with the help of a metaphor or marking it with the help of a metonymy. If
the object is new, this figure of speech can be the root of a name later given
to thé object. This is how many names in everyday language have come into
being.

When 1 identify an object, I classify it, putting it together with other
objects — even if these objects are objects I know nothing about except that
I intend to study them.

Classifying is not the same as categorizing. An object included into a class
is not a ‘particular case’ of this class. It is just an element of it. In categorizing,
a class of objects is included into another class of objects — the latter is then
a generalization of the former. For example, an event (like a particular car
crash on the road) can be classified; a phenomenon (of car crashes on icy roads
in winter) can be categorized (as a particular case of car accidents).

Identification is the main operation involved in acts of understanding
called einsicht by Gestalt psychologists: acts that consist in a re-organization of
the field of consciousness so that some objects that, so far, have been in the
background, are now perceived as the ‘figure’. Let us have an example of such
einsicht in mathematics (Sierpinska, 1992c).

Example: identification of the crucial part of a geometric figure in

a proof

Suppose students have to prove the following fact in geometry (Egret
and Duval, 1989):

If O, B, C are non-colinear points in the plane, I is the middle of BC,
D is such that DOBI is a parallelogram and M is the middie of DI
then M is the middie of OC. (see Figure 4.1)

At the beginning of solving this problem, the diagram is probably under-
stood as in Figure 4-1[. Only DOBI is identified as a parallelogram. The
solution requires that the DOIC part of the diagram be noticed and identified
as a parallelogram, as well (Figure 4-11I).

{End of example]

Discrisnination

Discrimination between two objects is an identification of two objects as

different objects. For exaniple, understanding the concept of cquation requires

a discrimination between the equation as being a condition on some free

variables and the equality as a statement which can be either true or faise.
The meaning of ‘identification” and ‘discrimination’ is close to what Locke

’

Another faculty we may take notice of in our minds is that of discern-
ing and distinguishing between the several ideas it has. It is not enough
to have a confused perception of something in general. . . . How much
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Figure 4: Identification of the crucial part of a geometric figure in a proof

L

the imperfection of accurately discriminating ideas from one another
lies either in the dullness or faults of the organs of sense; or want of
acuteness, exercise, or attention in the understanding; or hastiness and
precipitancy, natural to some tempers, I will not here examine: it
suffices to take notice, that this is one of the operations that the mind
may reflect on and observe in itself. (Locke, 1690, BK II, Ch. xi)

There can be several degrees of discrimination as there can be several
degrees of identification. One is mere perception that two objects are two and
not one. Of some such discriminations even ‘brutes’ are capable, says Locke.
Another degree is that when two objects are compared with one another with
respect to certain sensible circumstances, contingent to the objects themselves.
A still higher degree is when two general ideas are compared from the point
of view of abstract relations.

The comparing them with one another, in respect of extent, degrees,
time, place, or any other circumstances, is another operation of the
mind about its ideas and that is upon which depends all that large
tribe of ideas comprehended under ‘relation’...[The comparing]
seems to me to be the prerogative of human understanding ... Beasts
compare not their ideas further than some sensible circumstances
annexed to the objects themselves. The other power of comparing,
which may be observed in men, belonging to general ideas, and use-
ful only to abstract reasonings, we may probably conjecture beasts
have not. (ibidem, BK II, Ch. xi, sec. 4)

Generalization

Generalization is understood here as that operation of the mind in which a
given situation (which is the object of understanding) is thought of as a par-
ticular case of another situation. The term ‘situation’ is used here in a broad
sense, from a class of objects (material or mental) to a class of events (phe-
nomena) to problems, theorems or statements and theories.
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For example, we may have a mathematical situation related with the
Pythagorean theorem. At first, it can be restricted to just the picture of squares
built on the sides of a right angled triangle and tc the uses.of the formula
a’+ b= c? in various computational exercises. If, at some point, this situation
is perceived as a particular case of a situation where the figures built on the
sides of a right angled triangle are any similar figures, then we can speak of
generalization.

At first sight it would seem that identification and discrimination are
operations more fundamental than the operation of generalization which, one
would say, belongs already to more sophisticated functions of the theorizing
thought. In fact, it is difficult to put a hierarchy on these operations. Gener-
alization can be defined as an ‘identification of one situation as a particular
case of another situation’, but this would only mean that we take the notion of
identification as more fundamental than the notion of generalization which is
derived from it, and not that the operation of identification is genetically more
primitive or earlier, and generalization can only be developed on its basis.
There are many levels of all these operations and they probably develop inter-
actively, the development of one forcing the development of other. We shall
see it in more detail through Vygotski’s theory of development of concepts
in Chapter 5. There are also many forms of generalization, and a fairly com-
prehensive overview and analysis of them can be found in Dorfler, 1991,

All four operations are important in any process of understanding. But,
in understanding mathematics, generalization has a particular role to play.
Isn’t mathematics, above all, an art of generalization, 1’art de donner le méme
nom a des choses différentes’, as Poincaré used to say? In learning mathematics
the child is expected to make a particular effort of generalization: from early
childhood experiences with numbers of things, to numbers as such, to un-
knowns, to variables, relations between variables, functions, relations between
functions,’. . . Any variable is a general term, designating an arbitrary element
of a given domain. All algebra is nothing but the study of the generality of
our assertions and an attempt towards even more generality.

It is also worthy of noting that the operation of generalization must act
on some object: we generalize something — a concept, a problem, a math-
ematical situation. It is therefore necessary to have identified this something
as an object. In guiding our students towards a generalization, very often we
forget that the object to generalize may not yet be an object for them. Do they
only know what they are supposed to generalize? It might be worthwhile to
check whether this object is within their intellectual grasp at that point.

This is not always done. For example, in our linear algebra undergradu-
ate courses, students are led from one generalization to another at a pace that
rarely takes into account the normal human possibilities of understanding.
The canonical forms of linear operators are introduced before the students
have had the time to identify the subtle relationships between linear operators
and their matrices, and between the latter and their minimum polynomials.
And even if they know something about these relationships they may still not
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have identified the problématique that is resolved by the canonical forms of
linear operators. Very often, the canonical forms come in when, for the stu-
dents, all the previous material is nothing but a set of techniques of solving
simple problems of computation or verification. In this situation, the Jordan
canonical form, instead of appearing as a major generalization and synthesis,
a central theorem of a theory, just joins the existing set of techniques. It be-
comes reduced, in the students’ minds, to a combinatoric procedure of filling
in a matrix with the ‘Jordan blocks’.

Synthesis

-‘Synthesis’ means for us here: the search for a common link, a unifying

principle, a similitude between several generalizations and their grasp as a
whole (a certain system) on this basis. For example, after having followed,
step by step, a mathematical proof, suddenly we grasp the so-called idea of
the proof. The proof becomes a whole, it is no more just a set of isolated
logical moves from one statement to another. Czezowski claims that it is also
such synthesis that allows one to find a proof.

Proving can be successful only when we are able to grasp the funda-
mental idea of the proof. called nervus probandi thanks to which the
proof becoines a coherent system, a well connected whole . . . [For
example] the nerve of the proof . .. of the De Morgan law [-(p&q)
<> =p v =q ] is the thought that both the conjunction and the alter-
native are expressible by implication, and therefore the implication
constitutes a kind of link between them which allows us to use the
hypothetical syllogism. (Czezowski, 1959, p. 147)

This is an example of a ‘local’ synthesis in mathematics. But one can
also speak of more global syntheses, of grasping, as wholes, vast domains of
mathematical knowledge. It is such syntheses that have paved the way to
unifications that mathematics has known in the nineteenth and twentieth cen-
turies. These unifications were based on such fundamental organizing ideas as
function, mapping. invariant of a mapping, equivalence relation, algebraic struc-
ture. quotient structure, category, etc. The so-called abstract algebra, linear
algebra, group theory, category theory, etc., are, onc can say, by-products of
these cfforts of synthesis.

It is mainly this kind of synthesis that occupy the mind of Daval and
Guilbaud (1945), when they speak of generalization and synthesis as the
driving forces of the development of modern mathematical thought. This is
also the position of Bachelard. He claims that questions and hypotheses are at
the root of any scientific activity and that ‘teute hypothese est synthése’ (1975,
pp- 10-11).

Bachelard (1970) put forward the idea that modern scientific thought is
characterized by a certain specific type of hypotheses. These hypotheses are
not derived from inductive generalizations of observations of reality or from
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knowledge given — this kind of view would be based on a kind of positive
attitude to reality, observation, experience, and knowledge of our predeces-
sors. The most striking feature of the modern scientific thinking, says
Bachelasd, is its polemic character: the favourite question seems to be: ‘why
not?" which leads to ‘polemic generalizations’ (like the non-Euclidean geometries

,and non-commutative algebras). However, such an activity would be very

futile, indeed, if the thought stopped there. But it doesn’t. These generalizations
are, in fact, only symptoms of overcoming certain beliefs or points of view
which bring about a genuinely new knowledge in form of momentous syn-

_theses such as the idea of Felix Klein of ‘geometries of transformation invariants’

or the so-called abstract algebra. One should not forget the monumental venture
of the Bourbaki group, whose aim was to unify mathematics and reduce the
number of its fundamental notions and constructions.

However, this last undertaking can make us suspicious with respect to
the value of such unifications: the books of Bourbaki are particularly hard to
read: they appear to make understanding more difficult. It seems that there is
some limit to the reduction of the number of basic notions, with the help of
which others are defined. The smaller the number of such notions. the longer
must be the chain of reasonings that explain the relations between notions
dependent on these. And the understanding of such relations demand that
these reasonings be grasped as a whaole.

The idea of understanding in mathematics based on a reduction to a
small number of fundamental and very general organizing notions such as set,
relation, equivalence relation, group, function was the guiding principle in
the so-called ‘new math’ school reforms in the years 1960-70. It was a shock
to all the proponents of the new curricula that not only the children did not
understand mathematics better, but their understanding got worse than any-
thing seen so far. It is true that there were many mistakes in the realization
of the new programmes, too literal interpretation of certain suggestions, going
up to formalization with things that were supposed te be taught in a
propaedeutical way, and the like. But the biggest mistake was made in the
interpretation of the role of synthesis in understanding: like generalization, a
synthesis must be made by the understanding subject himself or herself, not
by the teacher. Synthesis as an act of understanding is an act on one’s own
knowledge. To unify. reduce, generalize and synthesize, there must be some-
thing in one’s mind that one can unify, reduce, generalize and synthesize. In
the reformed programmes the children were expected to synthesize empty
sets of knowledge.

One last remark is probably due: we have not included the activity of
abstraction as an operation ‘involved in an act of understanding’. This may
appear as curious — abstraction is seen as belonging to the very nature of
mathematical activity. The reason for this omission is that abstraction does
not constitute an act of understanding in itself. It is just the act of detaching
certain features from an object. But abstraction is not lost in understanding;
in fact, abstraction is involved in all and cach of the four operations and cach
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of them is somehow involved in abstraction. For example, for the features to
be detached, they have to be identified through acts of discriminating between
what is important and what can be neglected from some point of view. Also
generalizations and syntheses, in creating new abstract objects, necessarily
imply abstraction.

Psychological Conditions of an Act of Understanding

The question here is about internal, mental and psychic conditions. It is difficult
to say what are the sufficient conditions for an act of understanding to occur,
but some necessary conditions seem to be quite obvious.

Attention and Intention

Attention well seems to be a necessary condition of understanding: without
attention, without having noticed that there is something to understand, there
can be no act of understanding.

Locke says,

Men . . . come to be furnished with fewer or more simple ideas from
without. according as the objects they converse with afford greater or
less variety; and from the operations of their minds within, according
as they more or less reflect on them. For, though he that contemplates
the operations of his mind, cannot but have plain and clear ideas of
them; yet, unless he turn his thoughts that way, and considers them attentively,
he will no more have clear and distinct ideas of all the operations of
his mind, and all that may be observed therein, than he will have all
the particular ideas of any landscape, or of the parts and motions of
a clock, who will not turn his eyes to it, and with attention heed all
the parts of it. The picture, or the clock may be so placed, that they
may come in his way every day; but yet he will have but a confused
idea of all the parts they are made up of, till he applies himself with
attention, to consider them each in particular. (J. Locke, 1690, BK I
Ch. i)

The mind has to be voluntarily directed towards an object in order to
derive an idea of it. It needs awareness of the operations of one’s own mind
to form ideas of them and start relating them to each other.

In mathematics education, the question of the place of attention in under-
standing is a very important one. It has been demonstrated by Mason (1982,
1989) how, indeed, understanding of mathematics requires a series of ‘delicate
shifts of attention’. Mason and Davis (1990) have studied the role of ‘noticing’
for understanding. For it is not obvious, for a person not yet familiar with a
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mathematical domain, what to look at, what to attend to. The thought wan-
ders about, sometimes attaching importance to irrelevant details of a symbolic
representation. It is very difficult for the teacher to communicate what should
be attended to: mathematics deals mainly with relations and these, in general,
cannot be pointed to with a finger. What can be pointed to are ‘shadows’ of
things, not the things themselves. Thus, the very object of understanding in
mathematics is very hard to communicate. It is difficult to make the students
identify this object and maintain an interest in it.

So far we have been speaking of ‘attention’ in the sense of ‘attending to’
something: voluntarily thinking of a thing. This links attention with con-
sciousness or awareness. On the other hand, everybody knows stories about
*sudden illuminations’, unexpected acts of understanding something of which
a person was not thinking of at all at the moment (Hadamard, 1945). Would
these stories undermine the thesis of the necessity of attention for an act of
understanding to occur?

It does not seem likely. Poincaré, whose biggest discoveries in the field
of Fuchsian functions occurred to him while sleeping or taking part in social
events, firmly claims that these ‘illuminations’ would never have occurred to
him had he not fully consciously attended to his mathematical problems in the
time preceding these events, however not directly in time.

There is another remark to be made regarding the conditions of this
unconscious work, which is, that it is not possible, or in any case not
fruitful, unless it is first preceded and then followed by a period of
conscious work. These sudden inspirations are never produced (and
this is sufficiently proved already by the examples I have quoted)
except after some days of voluntary efforts which appeared absolutely
fruitless, in which one thought one has accomplished nothing, and
seemed to be on a totally wrong track. These efforts, however, were
not as barren as one thought; they set the unconscious machine in
motion, and without them it would not have worked at all, and
would not have produced anything. (Poincaré, 1952, p. 56)

We can speak of conscious work in the sense of purposefully and volun-
tarily attending to a mathematical problem which is the object of our under-
standing at that time. This is what Poincaré had in mind. But there is also
another kind of consciousness — ‘a meta-consciousness’ — through which we
attend not to the problem itself but to our own ways of understanding it, our
going about solving it, etc. How exactly this kind of attention can help in
understanding, controlling one’s problem solving strategies, etc. is also an
important problem in mathematics education (Schoenfeld, 1987).

Attention implies that there is an intention to understand — an orienta-
tion towards understanding, grasping the meaning. It seems that without the
intention of understanding there can be no act of understanding. On the other
hand, is the int. ition of understanding a sufficient condition for us to say that
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there has been an act of understanding? It sometimes happens that we very
strongly intend to understand something but have trouble in getting the
meaning — we feel a blank in our minds — nothing appears where normally
the ‘basis of understanding’ popped up so easily. For example, someone gives
us a number (e.g., a street number, like ‘sixty-nine hundred Boulevard Décarie’)
over the phone — in a foreign language — and we can repeat the words but
we don’t visualize the number as written. Even if we speak this language, we
may still count in our mother tongue and feel uncomfortable with names of
numbers pronounced in this foreign language. If the information that is being
thus given to us on the phone is important, our intention to understand may
be very strong indeed. I would be inclined to saying that there has been an act
of understanding in such an extreme case: it consisted in identifying the object
to be understood.

Question

Not all acts of understanding are preceded by a question. We understand the
familiar parts of our mother tongue without questioning ourselves on their
possible meanings. But it seems that any act of understanding that brings
about a substantial change in what we know, or think, or believe is preceded
by a question.

A sensible and interesting questlon seems to be absolutely necessary in
maintaining both the attention that allows us to notice that there is something
to understand, and the tension that is required in conducting long reasonings
that only can promise the reward in understanding. And only those objects
about which we do not know something, about which, therefore, we have a
question, are meaningful for us and can become objects of our understanding.

The routine acts of understanding which arc not preceded by a conscious
‘big’ question are called ‘ap-prehensions’ by Dewey, in contrast to ‘compre-
hensions’ which require more reflection. In fact, Dewey speaks about the
complementary functions of both ‘unquestioned understandings’ and those
preceded by a question in the processes of khowing. He says,

All judgment, all reflective inference, presupposes some lack of under-
standing, a partial absence of meaning. We reflect in order that we
may get hold of the full and adequate significance of what happens.
Nevertheless something must be alrecady understood, the mind must be
in possession of some meaning that it has mastered, or else thinking
is impossible . . . An increase of the store of meanings makes us con-
scious of new problems, while only through translation of the new
perplexities into what is already familiar and plain do we understand
or solve thesc problems. This is the constant spiral movement of
knowledge. (Dewey, ibidem, pp. 139-40)
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in the Piagetian theory of equilibration the two complementary mech-
anisms of assimilation and accommodation seem to be analogous to those that
are involved in acts of ‘ap-prehension’ and ‘com-prehension’, respectively.
The mechanism of accommodation is triggered by a mental cenflict — an

.event caused by the discrepancy between information coming from the environ-

ment and the existing mental structures. And a conflict is a step towards a
question, it predicts a question, prepares the ground for it.

In scientific understanding, the role of questions is deemed fundamental.
Bachelard says,

For a scientific mind, all knowledge is an answer to a question. If
there hasn’t been a question, there cannot be scientific knowledge.
Nothing can be taken for granted. Nothing is given. Everything has
to be constructed. (Bachelard, 1983, p. 14)

Social Conditions of an Act of Understanding

For a teacher and a more pragmatically minded mathematics educator, the
practical conditions of understanding, various ‘aids’ to understanding, factors
that may help a student to understand mathematics, are more important than
speculations about the psychological conditions of an act of understanding
to occur. It is obvious that the student must attend to his or her cbject of
understanding, and that he or she must be motivated by some interesting
and meaningful question. It is less obvious for the teacher what to do, what
activities to design, in order to draw the students’ attention, to motivate
them, engage into the activity of understanding. This is a serious problem and
much of mathematics educational research is devoted to it.

However, any solution to this problem must take into account the fact
that, in a mathematics classroom, understanding takes place in a social environ-
ment that has many different components or dimensions. French didactique
has attempted at covering the complexity of this environment in the so-called
‘théorie des situations’ (Brousseau, 1986, 1989). Any activity that we design for
our students will be altered by the fact that we ‘assign’ it to them, and they
will expect to be evaluated on it. The understanding that students will de-
velop will depend on the kind of ‘didactical contract’ that will establish itself
between the teacher and the students in the given classroom situation. We
mentioned this problem earlier in Chapter 1.

Being aware of the mechanisms of didactical contract we can play on
some of the variables involved in the institutionalized teaching and construct
didactical contracts in which students would be more likely to experience acts
of understanding closer to those lived through by mathematicians in their
work. Experiments by Legrand (1988), and others, for example. Lampert
(1988) have shown that this is not impossible.

Brousseau's theory of didactical situations proposes a certain categoriza-
tion of these situations. One of them is the ‘situation of communication’, in
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which students communicate among themselves, thus verbalizing their math-
ematical experiences. They also communicate with the teacher, revealing their
own understanding of the problem situation; then the teacher enters into a
kind of ‘negotiation’ of meanings with the students which activity sometimes
materializes in an ‘institutionalization’ of the commonly developed knowl-
edge. Unfortunately, this kind of two-way communication is still rather rare
in our mathematics classes, and certainly very rare in undergraduate univer-
sity lecture-rooms. A more familiar situation is that of the teacher who tries
to ‘communicate’ mathematical knowledge to his or her students using all
kinds of means and methods of which the verbal language is but one. Dia-
grams, graphs, tables, and other graphical representations are commonly used
and, moreover, believed to have a transparency that researches have shown
to be an illusion (e.g., Janvier, 1978). Manipulatives, blocks, pies, and other
concrete materials have raised many discussions as well.

Language remains the main means of communication in the mathematics
classrcom. But, as we mentioned in the first chapter, referring to Wittgenstein,
there is no one language but many languages which define meanings of ex~
pressions through different uses that is made of them. ‘Language’ in the
mathematics classroom is an incredibly complex notion. There is the language
of mathematical symbols and formulas — but the language of the teacher in
the classroom is not just based on matiiematical symbols; more often than not
it is 2 mixture of the everyday spoken language, didactical jargon and tech-
nical mathematical terms. Each of these ‘languages’ has its own conventions,
and these conventions may not be compatible with each other. This is deemed
as an important source of students’ difficulties in understanding (e.g., Maier,
1986, 1992). Teachers use figurative speech to explain mathematical concepts.
Not always successfully. They also use ‘body language’ like gestures (e.g.,
large hugging gestures for brackets or sets), noises of various kinds (like
bangs), and other ways of capturing attention like highlighting, underlining
etc. (Pimm, 1992). It would be interesting to know how these influence
students’ understanding.

Let us mention below some researches that have been done with respect
to the role that various forms, means and styles of communication in the
mathematics classroom play in enhancing students’ understanding.

The Role of Communicative Activities in Understanding

It is commonly believed that comm inicative activities enhance understanding
in students. Students seem to understand better if they work in groups,
participate in discussions where they have to verbalize their understandings,
where their understandings are confronted %t other students’ understandings
and where, in defending their own points of view, they have to engage in
validations and justifications that make therm: see better whether or not iheir
understandings are consistent or ‘make sease’. In psychology, the value of -
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cooperation with peers (as opposed to asymmetric interactions with adults)
was raised by Piaget, and developed by others (Piaget, 1958; Perret-Clermont,

" 1980). On the other hand, Vygotski and Luria stressed very much the inter-

action of a child with adults and how appropriate instructional interventions
can indeed enhance the development of the child’s spontaneous concepts.
In mathematics education this contention is not taken for granted. There
are research projects that test the assumption and confront it with the practice
of teaching. Researchers probe the value of classroom discussions and debates
(e.g., Pirie and Schwarzenberger, 1988; Bartolini-Bussi, 1990, 1992; Legrand,
1988; Krummbheuer, 1991; Richards, 1991; Lampert, 1988), small group dis-
cussions (Civil, 1992; Yackel, 1987; Curcio and Artzt, 1992) and other com-
municative activities such as writing reports on solving a problem (Morgan,
1991, 1992) or writing journals in the mathematics classroom (Hoffman and

Powell, 1989: Oaks and Rose, 1992; Borasi and Rose, 1989; Sterret, 1990;

Connolly and Vilardi, 1989). This research brought disiillusionment to many
of the first hopes and expectations. It is now quite clear that neither discussion
or writing will automatically lead to better understanding, that there are many
kinds of discussion and writing and many kinds of using this writing of which
some give better prognosis about improvement of understanding than others.
Researchers now speak of categories such as ‘mathematical discussion’ (Pirie
and Schwarzenberger, ibidem), and ‘effective discussion’ (Civil, ibidem; Bartolini-
Bussi, 1990). One may write a journal entry as a ‘participant’ or as a ‘spec-
tator’: one may be using language instrumentally or one may be reflecting, in
writing, on the meaning and significance of one’s activities (Britton et al.,
1975). One may be writing an autobiographical note in one’s journal, or build
up a narrative, or produce explanations, or just make notes (Oaks and Rose,
ibidem). It is also stressed that writing journal entries about mathematics classes
or problem-solving will not in itself enhance understanding; journals must
become objects of comment and discussion — some kind of peer reviewing
is proposed — the author must receive feedback on what he or she has written
(Hoffman and Powell, ibidem). )
Many researchers focus on communication as it normally happens in the
classroom (and is not designed by a researcher) and reflect on the value for
understanding of its different modes, means, and styles. Some seek the rea-
sons why very often communication in the classroom fails and try to discover
patterns or even rites of communication which in fact have only the appear-
ance of communication while, in fact, no communication of ideas, no learning
and no understanding (on the conceptual level at least), occurs at all. What
happens in the traditional classroom is often a kind of ‘routine questioning’ in
which the teacher expects the students to produce not so much some coherent
solutions but only words associated with what the teacher is saying, these
words making the teacher believe that the students have understood and the
lesson can be continued. The well-known ‘funnel pattern’ consists in narrow-
ing the questions so that the students can only answer what the teacher
expects them to answer (Bauersfeld, 1983). The Socratic style questioning has
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similar effects; the outside observer has the impression that the student has
understood; it may also be the teacher’s illusion. (However, a kind of ‘neo-
Socratic method' has lately been developed by Loska (1992) that preserves the
main idea of maieutic but leaves the students with a right to choose their own
paths of reasoning and to make mistakes). There are other patterns of teacher—
students verbal intc action that also give this illusion (e.g., Voigt, 1985;
Steinbring, 1993). Atweh and Cooper (1992) describe how, in fact, students
are able to avoid learning or understanding and resist teaching by engaging
into the ‘meaningless rituals’ of classroom interactions.

Styles of Classroom Communication

There are different styles -of classroom communication between the teacher
and the student. One important distinction made of late is that between the
so-called ‘behaviouristic’ and the ‘constructivistic’ styles of teaching. The first
is authoritarian and leaves little room for the students’ free and creative activ-
ity: the student is supposed to reproduce knowledge rather than construct it
himself or herself. The teacher believes that he or she can ‘transmit’ knowledge
by ‘telling’ the student what he or she has to know and how to understand.
The constructivistic style is more symmetric in nature; the teacher will allow
the students to develop their own understandings of a new problem situation
and will negotiate meanings with the students rather than impose meanings
on them. It is generally believed that the constructivistic style leads to better
understanding and learning than the ‘behaviouristic style’ (Cestari, 1983; Perret-
Clermont, 1990) but there is an on-going discussion on the actual possibility
of maintaining the former style in the practice of everyday institutionalized
teaching, and on the details of this style in teaching concrete subject matter.
It is generally felt that some things in mathematics just have to be ‘told’ the
students; there is no way of making the students reconstruct some more
advanced concepts in mathematics. The discussions and negotiations of mean-
ing can only be done on the meta-level, i.c., on the level of possible solutions,
different approaches to a given mathematical question (Dorier, 1991).

What Understanding Is Not

Thus far, in our efforts to understand understanding we have been mainly
investigating into the operation of identification: we were trying to say what
understanding is. Now the time has come to use our abilities of discernment:
we shall attempt to say what understanding is not.

It has already been mentioned in Chapter 1 that sometimes understanding
is confused (or deliberately merged) with knowing, and argued that this is
perhaps not a desirable thing to do in education. Unfortunately, institutionalized
education is framed to develop students’ knowledge rather than thinking.
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This is a heritage of a Jong-standing tradition. Thinking, contemplation and
understanding for their own sake have not been very highly valued by the
modern ‘enlightened’ times that are concerned mainly with ‘results’ and ‘pro-
gress of knowledge’. Any domain of human mental activity had to be organ-
ized in the way sciences wer2: science was the model. The ideal of Hegel's
philosophy was to raise philosophy to the rank of science. Are the values of
the post-modern era likely t> reach our educational systems soon?
Understanding has also to be distinguished from invention or discovery.
While any invention assumes understanding, the latter does not necessarily
imply the former: there are many straightforward, routine acts of understand-
ing by which we live, make sense of our environment, communicate with
others about everyday matters. Only exceptional acts of understanding feel as
real discoveries, and these are normally preceded by considerable intellectual
effort. Of course, we would expect our students to experience such creative
acts of understanding in their learning; otherwise it would be hard to say they

learned anything genuinely new. This is probably what Piaget had in mind
when he wrote, ,

The basic principle of active methods will have to draw its inspiration
from the history of science and may be expressed as follows: to
undersiand is to discover, or to reconstruct by rediscovery, and such
conditions must be complied with if in the future individuals are to
be formed vsho are capable of production and creativity and not simply
repetition. (Piaget, 1975b, p. 20)

Another thing that an act of understanding is not is the activity of rea-
soning and even less the chain of inferences that lead from the premisses to the
conclusion. But a reasoning taken as an accomplished whole can play the role
of a basis of understanding. In fact, acts of understanding and reasonings. can
be seen as complementing each other in processes of understanding: this is a
view that will be proposed in the next chapter.

There has been a view, held by the so-called ‘neo-positivists’, and more
precisely by philosophers of science related tv the deductive-nomological
methodology of explanation, that understanding is nothing more than an
ability to predict. According to this methodology. the explanandum (the
sentence describing the phenomenon to be explained) is a logical consequence
of the explanans, which is composed of two kinds of premisses: 1. the class of
individual true statements about the specific initial conditions; and, 2. the class
of statements representing general laws (and thus also true) (Hempel and
Oppenheim, 1948, pp. 567-79). The important thing, in this philosophy, was
to explain the phenomena; an understanding of a phenomenon was achieved
if the explanation of it allowed to predict its future occurrences:

The [D-N]} argument shows that, given the particular circumstances
and laws in question, the occurrence of the phenomenon was to be
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expected; and it is in this sense that the explanation enables us to
understand why the phenomenon occurred. (ibidem)

This position was criticized even by methodologists of the same circle.
example Friedman (1988) argued that,

Understanding and rational expectation are quite distinct notions. To
have the grounds for rationally expecting some phenomenon is not
the same as to understand it. I think that this contention is conclu-
sively established by the well known examples of prediction via so-
called ‘indicator laws’ — the barometer and the storm, Koplick spots
and measles, etc. In these examples, one is able to predict some phe-
nomenon on the basis of laws and initial conditions, but one has not
enhanced one’s understanding of why the phenomenon occurred. To
the best of my knowledge, Hempel himself accepts these counter-
examples, and, because of them, would concede today that the D-N
model provides at best necessary conditions for the explanation of
particular events. (Friedman, 1988, p. 190)

It is possible to be able to predict future events on the basis of a model
which can reflect a complete misunderstanding of the underlying phenomena

— such was the case of Ptolemy’s astronomy, for example.

By saying that ‘understanding is nothing but an ability to predict’, we
imply that what we mean by ‘understanding’ is a certain way of knowing.
This is not the approach to understanding that is being proposed here. Not
only do we discriminate between understanding and knowing, but we also
refrain from assuming right from the beginning that understanding is some
kind of ‘good understanding’. We do not a priori evaluate understanding.

Among the many views on understanding, there is one which identifies
an act of understanding with tne retrieval of a ‘frame’ or ‘script’ from memory,
sometimes called the ‘computer metaphor approach’ (Minsky, 1975; Schank
and Abelson, 1477: Davis, 1984). In the domain of psychology of mathemat-
ical behaviour in school-children the concept of frame was used to explain
some of the common mathematics students’ errors. It was regarded as a useful
language to think about understanding (or rather misunderstanding). Some
researchers have further developed it to allow for an explanation of why a
student retrieves a wrong frame in a particular situation (Malle, 1990).

There are several deceiving aspects of his approach. One is that it repre-
sents the functioning of the human mind as mechanical, automatical: a ‘cue
triggers the retrieval of a certain frame from memory’ which is then set to
function by an input of data. It also reduces the human mind to a logical
system, and for a logical system it is not important what is being spoken
about, only whether it is grammatically cotrect or true (in the sense of logical
consequence). In particular, mathematics could find itself thus reduced to
logic, which is certainly not a view that it would be worthwhile conveying
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to students. Moreover, in the computer metaphor approach, and cognitive
science in general, it is assumed that thinking is always taking place in some
language. This brings us to the well-known controversy about whether lan-
guage and thought are separable or inseparable. Plato, in ‘Sophist” wrote that
‘thought and sentence is one and the same thing. Only the talk of the soul
with itself — this is what we call thought’. Merleau-Ponty (1973) would say
that thought cannot exist without the world, outside the sphere of language
and communication: it would fall into unconsciousness the very moment it
would come into being. But many philosophers contend that there is more to
thought than what can be expressed in any language. Bergson said that ‘the
most living thought becomes frigid in the formula that expresses it. The word
turns against the idea. The letter kills the spirit (1975, p. 141)°. There is the
well-known testimony of Einstein (Penrose, 1990, p. 548ff). In discussing the
matter Penrose says,

[ had noticed, on occasion, that if I had been concentrating hard for
some while on mathematics and someone would engage me suddenly
in conversation, then I would find myself almost unable to speak for
several seconds. This is not to say that I do not sometimes think in
words, it is just that [ find words almost useless for mathematical
thinking. Other kinds of thinking, perhaps such as philosophizing, seem
to be much better suited to verbal expression. Perhaps this is why so
many philosophers seem to be of opinion that language is essential for
intelligent or conscious thought! (Penrose, 1990, p. 549)

Of course, one could deny the name of ‘thought’ to the mental experi-
ences that are not expressed or expressible in a verbal form, but it is also
possible to assume that such non-verbal things as dynamic diagrammatic rep-
resentations of algebraic expressions that are being transformed or the con-
sciousness of one's own actions are also thoughts. The consciousness of a
mental activity is indispensable for a further more conceptual reflection and
thematization of one’s mental operations; isn’t this the mechanism through
which we come to understand and create mathematics? Can we provide a
non-human cognitive system with such a consciousness and ability to reflect
on its own activity? Can we say that such a system is capable not only of
knowing certain things but also of understanding what it is doing?

These are very difficult questions, and the answers, if any, depend on
what is meant by ‘understanding’ or ‘knowing’ as well as on what is meant by
‘computer’. The fast developments of technology nowadays suggest that we
be very careful in expressing opinions in these matters. It even may be that
these questions are of a philosophical rather than scientific nature, and cannot
be decided on the grounds of experiment. This is the message that, willingly
or unwillingly, Penrose is conveying in his book on ‘computers, minds, and
the laws of physics'.
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Chapter 3

Processes of Understanding

What is understanding? Has the word the samme meaning for every-
body? Does understanding the demonstration of a theorem consist in
examining each of the syllogisms of which it is composed in succes-
sion, and being convinced that it is correct and conforms to the rules
of the game? In the same way. does understanding a definition consist
simply in recognizing that the meaning of all the terms employed is
already known. and being convinced that it invoives no contradiction?
(Henri Poincaré. 1932).

In this chapter we shall concern ourselves with the process of understanding
and the roles played in it of various reasonings. examples. previous knowledge
and experience. figurative speech. and. last but not least, activity, practical
and intellectual.

The Process of Understanding

Processes of understanding can be regarded as lattices of acts of understanding
'inked by reasonings. If A and B are acts of understanding. then we may
admit that A < B (A precedes B) if there has been a reasoning R, in some way
induced or inspired by A. that led. on its turn. to the act of understanding B.

For example, let a certain process of understanding start with an identi-
fication of an object X as an object worthy of study. Several kinds of ques-
tions can arise: like: what is X?: or what is the use of X?: or what can one do
with (about, for. etc) X? etc. Let A be the act of understanding based on some
‘guessed) answer to this question. What then follows is a search for some
validation of this guess. The validation is based on a reasoning R. For ex-
ample, if the question was: what is X? and the guess was: X is Z. then R may
consist in proving that Xis Z or in verifying whether X is Z. In this case. the
result of R is an act ot understanding B based on a thought that X is Z. or
that X is certainly not Z, or that X is Z under the condition that C. ctc. Thus
the guess A leads to an understanding B about which there is already more
conviction thanks to some reasoning R,

In one process of understanding the relation < establishes a partial order.
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The unity of a process of understanding is determined by the close relation-
ship of the objects of understanding of the acts of which it is composed.

If, in one process of understanding, two acts A and B are not linked by
a reasoning, there always is a third act C such that A and B are linked with
C: either both A and B were obtained through reasonings inspired by C, or
A and B inspired reasonings that led to C. Thus, acts of understanding and
reasonings in one process of understanding constitute quite a dense network
(in the ordinary sense of the words).

While, in one process of understanding, the objects of understanding are
closely linked to each other, there can be a large variety of bases of under-
standing. One may even say that a process of understanding something consists
of a series of transformations of some initial basis of understanding.

In the following section we try to clarify a little the differences between
the various kinds of rcasonings involved in a process of understanding.

Reasonings

Ajdukiewicz (1985) counts as reasoning all inference and deduction as well as
‘processes of solving mental problems and questions carried out with the use
of inference and/or deduction’. Simple reasonings (i.e., those that make use of
only one process of inference or deduction) break up into ‘spontaneous’
reasonings and ‘problem-directed’ reasonings (ibidem, p. 224); the latter, in
their turn can be divided into classes depending on the kind of problem they
are directed by: proving (when the problem is ‘to prove that A"), verifying
(when the problem is ‘to decide whether or not A’) and explaining (when the
problem is ‘to complete’ [a certain sentence], and a possible answer is not
given in the wording of the problem: it usually starts with a ‘why?’).

Ajdukiewicz understands inference as

a thought process through which, on the basis of a more or less
positive acceptance of premisses, we are led to an acceptance of a
conclusion that remained so far unaccepted or accepted less positively
by us, and we accept the conclusion to a degree that does not exceed
the degree with which we accept the premisses. (Ajdukiewicz, 1985,
p. 106)

Deduction is a process similar to inference with, however, a few import-
ant differences. First, in the process of inference, the most important thing is
the *acceptance’ of something: the goal is to increase the certainty or diminish
the doubt. Certainty claims are not so important in deduction. Deduction is
more formal; it is explicit and it is based on explicitly admitted rules. Infer-
ence leads from accepted premisses to conclusions that, thereby, become more
probable (even if this probability is only subjective). Deduction leads from
(hypothetically) admitted reasons to consequences, that are implied by the rea-
sons according to some well defined rules on the basis of some set of state-
ments admitted as truc.

JY
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Let us see, as an example, how deduction and inference are involved in
a reasoning such as the reductio ad absurdum. Suppose that we have to prove to
prove a statement p. What we do is the following: we hypothetically assume
the statement —p and deduce from it a statement q. For the trick to work, q
must be false. Our claim that q is false is a result of an inference: we infer that
q is false from some accepted premisses: definitions, proved theorems etc.
Now our accepted premisses are: q is false, the implication =p = q is true.
From these we infer that —p is false (on the basis of the tautology: if q is false
then the statement =p = q is true if and only if =p is false). This inference has
increased our certainty that —p is false. This now becomes our accepted premise
from which we infer (by the law of tertium non datur which we also accept) that
p must be true.

The difference between inference and deduction is maybe best grasped in
the opposition between the processes of proving and explaining. Ajdukiewicz
(1974, p. 223) classifies proving as an inferential reasoning and explaining as
a deductive reasoning.

The foregoing remarks point to a close. relationship between proving
and explaining. Both when proving a theorem and when explaining
a state of things we answer to one and the same ‘why?’ question.
Hence it may be expected that the explanation procedure follows a
course which resembles that of the procedure of proving, with the
proviso that in the case of an explanation that which is to be explained
is known in advance and does not require any substantiation, whereas
in the case of proving what is to be proved is not yet known and the
proof is to substantiate that.
Let us consider an example to see that it is really so. Suppose a
person knows that (a) any physical body which is generically lighter
- than water does not sink in water but floats on it, (b) ice is generically
lighter than water. Now we present to that person the following
syllogism:
(a) Any physical body which is generically lighter than water
floats on it.
(b) Ice is generically lighter than water.
Hence:
(c) Ice floats on water.
This syllogism may be said both to be, for the person concerned, an
explanation of the state of things described in the conclusion, and a
proof of the conclusion. But it may be an explanation, for the person
concerned, of the state of things described in (c) only if that person
knew in advance that state of things to be true, i.e., only if he ac-
cepted the statement (c) even before deducing it from statements (a)
and (b). On the other hand, this syllogism may be called a proof of
statement (c), for the person concerned, only if that person came to
accept the statement (c) only by inferring it from statements (a) and
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{(b), and did not know beforehand whether {c) is true. (Ajdukiewicz,
1974, pp. 442-3)

An explanation of a state of affairs X is therefore a solution of the prob-
lem that can be worded as ‘why [X] ?’. The answer to this question has the
form of ‘[X] because [Y]’. When I explain a certain fact by referring to some
reason of the sentence that states this fact, then I do not at this point only infer
this fact from this reason — this fact is known to me independently from this
reason. However, I carry out a mental operation which is similar to the oper-
ation of inference; namely, in explaining [X] by [Y], I derive the sentence
stating [X] from the sentence stating [Y], I perceive the relation of implication
between the second and the first, but I do not use this relation to base my
conviction about [X] on [Y], because I am convinced about [X] independently
from [Y].

Thus, deduction does not serve as a basis for our more positive acceptance
of the derived statement. In an explanation of a consequence X on the basis
of a reason Y, Y implies X but X is not inferred from Y.

It is worthy of notice that what is explained is a certain state of things
(a fact, a phenomenon), and what is derived is a statement. For example, in
physics, the phenomenon of rain storm is being explained. The phenomenon
need not be inferred from electrical laws; its existence and its normal course
are well known by observation. The question is why it happens and why it
happens as it happens.

In fact, an explanation of some state of affairs aims at founding its under-
standing on a different basis {more conceptual, usually). In the above example
of rain storm, a first understanding is probably based on a visual and auditory
representation of a rain storm. A second, after an explanation, can be based
on a thought that a rain storm is caused by an accumulation of electrically
charged clouds.

Proving aims at increasing the degree of firmness with which we accept
something as a basis of our understanding.

An act of understanding does not belong to reasonings because neither of
its elements contains inference or derivation. It can only be based on a result
of a reasoning, taken as a whole, as one single synthesized argument.

I3

Explanation and Understanding
The Role of Explanation in Understanding Mathematics

In distinguishing between proving and explaining, Ajdukiewicz says that what
is proved is a statement, and what is explained is a state of things. Therefore,
if we wish to speak about explanation in mathematics in Ajdukiewicz’s style,
we should make it clear what are, for us, these ‘states of things’ in mathematics.
In empirical sciences, a ‘state of things’ is what is ‘ascertained beyond all
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_doubt’, by observation, experiment. In mathematics, it can be an ecxisting

mathematical theory, and anything that is proved or admitted without proof
within this theory.

The quest for an explanation in mathematics cannot be a quest for proof,
but it may be an attempt to find a rationale of 2 choice of axioms, definitions,
methods of construction of a theory. A rationale does not reduce to logical
premisses. An explanation in mathematics can reach for historical, philosoph-
ical, pragmatic arguments. In explaining something in mathematics, we speak
about mathematics: our discourse becomes more metamathematical than
mathematical., ‘

This is what the logical positivistic stand endeavoured to abolish: all
informal discourse should be eliminated from mathematics; mathematicians
should join efforts to completely formalize all branches of mathematics.
Meaning should be reduced to the truth value: FALSE (0) or TRUE (1). In
the practice of mathematical research (or any scientific research for that matter),
this philosophical stand is difficult to maintain: it is overcome by the drive to
find ‘reasons’ and ‘causes' of things, facts, theorems.

The most important of [the basic instruments of knowledge] is cer-
tainly the search for ‘reasons’, which justify the abstractions and gen-
eralizations. Logical positivism has tried from its origin to get rid of
this factor and to reduce science to a simple description of phenom-
ena. This was A. Comte’s idea. But inreality, every scientific mind,
while not always admitting it, asks questions like that. It has often
been noted that excellent physicists, while vigorously professing a
positivist credo in the prefaces to their writings, contradict this faith
in the body of their work by pursuing a bona fide analysis of *causes’.
As one example of this invincible tendency to search for ‘reasons’, we
might cite the evolution of the contemporary mathematical logic.
Limiting itself to a purely descriptive language, algebraic logic had
long adhered 'to a purely extensional perspective, hence the ‘truth
tables’, which, in actuality, remain so far removed from any ‘truth’
that they have led to the truly scandalous paradoxical situation that
p = q can be true when there is no actual relation of truth between
p and q.

At present we are witnessing the birth of a movement whose
aims are to exclude all relations that are not logically necessary as well
as significant so that each implication is based on a reason (cf. Anderson
and Benlap's logic of entailment). Mathematicians, ever since Cournot,
have distinguished between demonstrations which simply verify a
theorem and those which, in addition, provide the reasons. (Piaget
and Garcia, 1989, pp. 271-2)

Indeed, understanding a theorem on the basis of acceptance of the logical
soundness of its proof is not the same as its understanding both on the busis
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of the proofand its ‘reasons’. For example, what kind of understanding of the
statement that V2 is an irrational number can be derived from its proof by
reductio ad absurdum? The proof is based on the definition of the irrational
number as a number that cannot be represented by a ratio of two integers, and
on the property of unique factorization of integers. This does not explain why
the fact is so significant. But, if we know how it is related to the discovery
of incommensurable line segments by the Pythagoreans, then we can better
understand what role it has played in the development of mathematics. More-
over, the proof by itself does not show how incommensurability is related to
irrationality; neither does it tell us why the decimal expansion of ¥2 should be
infinite and non-periodical, which is another characterization of irrational
numbers. Answers to such questions belong to the explanation of the theorem
and go beyond just the proof of it.

Proofs may call for an explanation, as well. Such an explanation can
highlight the so called ‘idea’, or ‘this indefinable something that makes the
unity of the proof” (Poincaré, 1970, pp. 29-34).

Explanation of an abstract mathemafical theory may consist in a con-
struction of its model, in which the variables, rules and axioms of the theory
are interpreted and acquire meaning. The model becomes a certain ‘reality’,
ruled by its own ‘laws’. In explaining a theory, we deduce its rules, axioms,
definitions, and theorems from the ‘laws’ of the model.

Scientific and Didactic Explanations

The aim of an explanation is to found the understanding on a new basis.
Explanations could be classified along the kinds of requirements that are put
on this new basis. Explanations which aim at a more conceptual basis of
understanding are mostly met in science and this is why we may call them
‘scientific’. Explanations which aim at a more familiar basis of understanding
(an image or just some previous knowledge and experience) are frequent in
teaching, so let us call them ‘didactic’.

Scientific explanation is thus opposed to didactic explanation. Far from
reducing new knowledge to familiar knowledge, it very often aims at show-
ing how non-obvious certain unquestioned things are. For example, in teaching,
the continuity (i.e., the completeness) of the ordered set of real numbers is
sometimes explained by reference to the intuitive feeling of ‘continuity in the
smallest parts’ of the straight line, which is used to represent this set. Richard
Dedekind (1963) was not very happy with this kind of explanation.

The way in which the irrational numbers arc usually introduced is
based directly upon the conception of extensive magnitudes — which
itself is nowhere carefully defined — and explains numbers as the
result of measuring such a magnitude by another of the same kind.
[Pedekind’s note: The apparent advantage of the generality of this
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definition of number disappears as soon as we consider complex num-
bers. According to my view, on the other hand, the notion of ratio
between two numbers of the same kind can be clearly developed only
after the introduction of irrational numbers]. Instead of this I demand
that arithmetic shall be developed out of itself. . . . Just as negative
and fractional rational numbers are formed by a new creation, and as
the laws of operating with these numbers must and can be reduced to
the laws of operating with positive integers, so we must endeavor
completely to define irrational numbers by means of the rational
numbers alone. . . . By vague remarks upon the unbroken connection
in the smallest parts obviously nothing is gained; the problem is to
indicate a precise characteristic of continuity that can serve as a basis
for valid deductions (Dedekind, 1963).

The definition of continuity of real numbers in terms of cuts, proposed
by Dedekind, is by no means something ‘familiar’. The most surprising thing
is the very need to formulate it. For, at first sight, it seems to state an obvious
fact. An understanding of this need comes together, with an awareness of
the non-obviousness of continuity: an awareness of the existence of number
domains which are not complete, and of the essentiality of assumptions about
the completeness of domain in theorems so intuitively clear as the theorem
stating that increasing and bounded sequences are convergent. Thus, in this
case, understanding demands not so much a reduction to a more famlllar
knowledge, as a derivation of a more elaborate knowledge.

Students’ Own Mathematical Explanations; an Example

Didactic explanations are used not only by teachers; they can also be used by
students themselves. Also the learner can seek explanations ‘that would make
the basis of his or her understanding more familiar. The example that follows
evokes such a situation. It also shows how proofs and explanations are inter-
woven in a process of understanding.

Example: the recurring decimals

A group of 17-year-old humanities students were shown, on examples,
how to convert periodic decimal expansions of numbers into ordinary frac-
tions (Sierpinska, 1987).

x = 0.1234123412341234 . . .
Multiply both sides by 10000:
10000x = 1234.123412341234 .,
Subtract the first equality from the second:
9999x = 1234
Divide by 9999:
x = 1234/9999
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The students were accepting the argument for expansions like the one above
(0.989898 . . ., 0.121121.. ., etc.) but refused to accept that 0.959...=1
even though it was obtained in an analogous way.

At first the students refused both the reasoning and the conclusion, but
later, their attitudes started to differentiate. One student, Ewa, began to ac-
cept the proof as mathematically valid, and the conclusion as mathematically
correct, but refused to accept it as true ‘in reality’.

Ewa: Arithmetically or algebraically, this is OK, but in reality . ..
This will be close to one but it will not be equal one. There
will be such a tiny difference, very tiny, but a difference all the
same . . . It’s like that asymptote to a hyperbola: they never
meet . . . The difference gets smaller and smaller, but it never
becomes null . . . It reminds me of the upper and lower bounds
we were doing last year, remember?

In justifying her opinion Ewa relies on an image of a hyperbola and on
reference to an analogy: hyperbola is to its asymptote as 0.9999 . . . is to one.
Ewa first identifies a similarity between the relation of the hyperbola to its
asymptote and the relation of the number 0.999 ... to the number 1. The
similarity is based on the common feature of ‘approaching something’ (Ewa
understands the number 0.999 ... as being constructed and not as already
constructed: rather as a sequence than as its limit). Then Ewa extends the
similarity onto other features of the behaviour of the hyperbola with respect
to its asymptote: they never meet. From this she deduces that also the number
0.999. .. cannot meet the number 1. This is her explanation of what she .
accepts as a fact: 0.999 ... # 1.

The only student in this group who finally accepted the equality
0.999...=1 was Tom. Here is the moment when he changes his mind:

Tom: Because, no matter how many nines we have here, it will
never be equal one.

Teacher: You accepted the argument in case of other numbers. Why
not here?

Tom: I don’t trust these mathematical proofs. They are just tricks.

There is hesitation in his voice, alrcady. He attempts some modification of the
result so that it will be acceptable.

Tom: Maybe we can say that this zero nine nine is 2 number the
closest to one? Because there is no number closer to one than
that. . . . This cannot be equal one unless . . . unless . . . unless
we assume that this goes to the very infinity . .. Then it can
equal one.. . . Because these differences get smaller and smaller,
without limit.
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Several phases can be distinguished in this short process of understanding:

1 the rejection of the equality 0.999...= 1 is temporarily suspended
and the equality becomes subject to verification;
2 proof of the equality: -
(a) an act of understanding of the equality based on the identi-
fication of a crucial assumption: the number of nines is

infinite;
(b) inference: ‘then it can equal one’
3 acceptance of the equality 0.999,..=1

4 explanation:
(a) act of understanding based on an identification of the main
reason: ‘Because these differences get smaller and smaller etc.’

(Here Tom stops and the explanation remains incomplete: the step of derivation
is not made.)

Instead of pursuing this course of explanation (for example, by assuming
the difference e = 1 — 0.999. . . and showing that, because 0.999...> 0.9
implies e < 0.1, etc. e must be a positive real number smaller than any positive
real number, which yields e = 0 in the standard analysis) Tom reaches for
analogies and metaphors to convince his peers. This decision can be explained
cither by his explicit mistrust in ‘mathematical proofs’ or by the constraints
of the social situation. Namely, by accepting the equality, Tom found himself
in opposition to the rest of the group. Now, what these students need is not
an explanation (because they do not believe in the equality) but a proof. So
it is a proof that Tom will be looking for. Tom's strategy seems to be the
following: Ewa refuted the equality on the basis of an analogy with the
hyperbola approaching its asymptote: this was her explanation of the inequality
in which she believes. Tom sets to prove that this explanation is not valid
because, in fact, the hyperbola ultimately, ‘in the end’ meets the asymptote.
He says: ‘If two lines are not parallel then they must intersect. Even if the
deviation is minimal, just as here, these lines must intersect somewhere . . .
Imaginc two people running on these lines . . .". [End of example]

Examples of T'eachers’ Didactical Explanations

In the following I discuss several types of explanation: explanations with the
help of an example, explanations with the help of a model, with the help of
a visualization, and other means. An example of a lesson in which the teacher
uses various means of didactic explanations is given in the third subsection.

Didactical Explanation of a Definition or T'heorens With the Help of an Example
This kind of didactical explanation can be regarded as an element of an explana-
tion of a theory with the help of a model. In the elementary lincar algebra,
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for example, theorems formulated generally for arbitrary vector spaces over
arbitrary fields, are explained by taking a space R" for some concrete n, say
n =2 or 3. Sometimes a geometrical model of R" (a cartesian plane or space)
is referred to. Then the theorem is not proved to hold in the model but either
its thesis is shown to hold in some concrete case, or the theorem is applied in
a concrete case. .

Althcugh such a procedure is worthless as a proof, it has some value as
an explanation (after all students have no reason to disbelieve the author of the
textbook or the teacher, so they do not need a proof to convince themselves
of the veracity of the theorem). One aim of such an explanation is to analyze
the theorem: to see what values can be assigned to the various variables in its
statement, what the thesis means in a concrete case, briefly — to see what the
theorem is about. In the case of theorems as complicated as, for example, the
Jordan Canonical Form theorem, it is hard to imagine how their mere for-
mulation can be understood without first trying to see how they work in a
concrete situation.

Didactical Explanation of a Theory With the Help of a Model
Let us discuss this kind of explanation with the example of the notion of
integer number. . '

Example:.explanations of integer numbers

Ever since the arithmetic of integers has been introduced into teaching at
the elementary level, mathematics educators have had to cope with students’
difficulties. Perceiving the source of these difficulties in the abstract and for-
mal character of the structure (Z, +, *), educators have proposed several mocels
(number line models, annihilation models involving, for example, positive
and negative quasi-electrical charges, the model of arrows in a two dimensional
space). In these madels negative numbers and operations on them were inter-
preted in terms of more concrete manipulations of objects. It was expected
that through the use of such models students will have less trouble in the
correct application of rules of operations on integers (Freudenthal, 1983, pp.
432-60). ‘

It was clear that an explanation of these rules through their derivation
from the axioms and the general idea that we want to have a set of numbers
closed not only under addition but also subtraction and that we want this set
to be an extension of natural numbers that would preserve all the properties
of operations in this smaller set (Freudenthal, 1973), is out of the question
with respect to 12-13-year-old children. Such an understanding of integers is
possible only when one possesses the concepts i’ number, variable and group
and is capable of thinking of whole sets of numbers as algebraic structures.

Thus, what can be done is to speak about concrete negative numbers, just
as, in fact, one speaks about concrete natural numbers, and assign some meaning
to them just as one assigns meaning to natural numbers in elementary school
(measure of an amount of things, codes of things, positions of things, adding,
taking away . . .). The problem is, however, that these meanings of numbers
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and operations cannot be preserved when extending the set of numbers to
contain the negative numbers as well. Adding in the set of integers does not
always result in augmenting the amount, and subtracting does not mean that
one ends up with something less. It is also not at all clear why, by multiplying
two negatives one should get something positive. Authors of the models try
to cope with these difficulties, either by proposing to introduce whole num-
bers through a model that can be further extended to a model of integers in
a way that does not reinforce the idea that adding means augmenting, for
example (the number line model, e.g., Chilvers, 1985), or by inventing such
models of integers that allow to preserve the old meanings of addition and
subtraction as augmenting and diminishing (the annihilation model, e.g.,
Battista, 1983). .

Each of these models has features that explain nicely an aspect of integer
numbers (not all aspects). For example, the annihilation model implicitly intro-
duces the additive group of integers as the quotient structure obtained from
the semi-group of natural numbers by dividing it by the equivalence relation:
(a,b) ~ (¢,d) & a + d =b + c. The equivalence class of, say, the pair (1, 2) can
be denoted by -1, the equivalence class of the pair (2, 1) is denoted by 1, and
1 and -1 are opposites because they add up to the equivalence class of (3, 3)
which is the nentral element of the group, denoted by 0. In teaching, this idea
is translated into an enactive representation. Equivalence classes are repre-
sented by sets of pairs of counters of two colours, or pairs of counters with
plus or minus signs on them. Counters of different colours or different signs
annihilate each other. Thus, children are taught to identify pairs such as, for
example:

(2 red, 0 yellow) ~ (3red, 1 yellow) ~ (4 red, 2 yellow) ~ (5 red,
3 yellow) &c.

or:
(O red, 2 yellow) ~ (1 red, 3 yellow) ~ (2 red, 4 yellow) ~ (3 red,
5 yellow) &c.

Adding equal numbers of counters of different colours does not change any-
thing ([n,n] is the neutral element), so such pairs can be used to obtain sums
and differences of the newly obtained integer numbers. In this way, rules for
adding and subtracting integers are learned.

The annihilation models are particularly appealing for a mathematician
because they present a certain general procedure for extending a domain of
numbers by taking a quotient structure. How much, however, of this idea is
conveyed through manipulating counters to a 13-year-old child, is hard to
know. Certainly there is no awareness of an algebraic structure being thus
built. The understanding is based on some kind of procedural or enactive
representation. But this can be a good start, a foundation upon which a teacher
can build 2 more conceptual understanding later on.
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A certain conceptual maturity (which, according to Vygotski, is attained
only in adolescence) is necessary to grasp the rules of operations on integers
as a certain theoretical, mathematical necessity. In this respect it is interesting
to read the confessions of Stendhal (La vie de Henri Brulard) about the difficult
process of understanding the rule that ‘minus times minus is plus’ (Hefendehl-
Hebeker, 1991).

One of the obstacles in the historical development of the concept of
negative numbers was found to be ‘an attachment to a concrete viewpoint,
that is, an attempt . .. to assign to numbers and to operations on them a
“concrete sense”’ (ibidem; see also Pycior, 1984; Chevallard, 1985b). One may
wonder, therefore, whether it is not better to confine ourselves in teaching
negative numbers to 12-13-year-olds to reading the thermometer scale, and
leave the study of operations to a time when the students are able to make it
without assigning a ‘concrete sense’ to everything they encounter. Of course,
one can train the students to perform operations on integer numbers without
answering their questions about why they are defined as they are defined
(after all, in history, negative numbers were used in mathematical calculations
for a long time before they could be theoretically founded and explained).
Introducing integers with the help of the number line model or the annihilation
model does not answer the question why the rules for operations are defined
as they are defined. The only advantage is that the model provides the learner
with some concrete images linked with operations (moving to the right by n,
annihilating the charge +n with the charge —n) which may consolidate the
long-term memory of these rules.

The question is, however, why should e train the students in integer
operations at all? What for? As it is, for the time being, 12-13-year-old stu-
dents are both presented with a model (most often the number line model)
and are trained in computation on integers. The most amazing thing is that
sometimes, the model — whose aim is only to explain, to give meaning to the
mathematical notions being the proper objects of teaching — becomes an
object of teaching in itself and its knowledge is assessed on tests. Moreover,
new symbolisms grow over the model, which require their own rules to
handle them. For example, sometimes integers (concrete integers) are written
with signs attached to them in front in superscript: *2, 7., Sequences of
additions and subtractions on integers become speckled with crosses and lines
up and down. This is exactly a case of a ‘didactic transposition' (Chevallard,
19852) that has gone voo far: an alienation of an instrument of didactic ex-
planation. These ‘signed numbers’ can be confusing, to say the least. More-
over, this symbolism may create an obstacle when learning algebra, where a
letter does not necessarily denote a positive number, or a negative number. It
is a variable that can assume any value. The minus sign in front of a letter just
means that its sign has to be changed: ‘-’ stands, in fact, for the unary operation
of change of sign (like the +/- key in calculators). The operation of subtraction
becomes obsolete in algebra: we are always adding, except that sometimes we
are addir 4 the opposite. [End of example]
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Examples of Didactical Explanations During a Lesson on the Limit of a
Numerical Sequence
The lesson took place in a class of 17-year-old humanities students in Warsaw.
The theme of the lesson was: ‘The limit of an infinite sequence’ (Sierpinska,
1991).
Example: explanations of the definition of the limit of a sequence
In a first phase of the lesson the teacher introduces the notion of ‘epsilon
neighbourhood of a number’. In explaining this notion the teacher uses two
schemas of a didactical explanation:

1 the new notion is derived as a particular case of an already known
notion;

2 the definition of the new notion is derived from its model (in this
case: its geometrical model).

The teacher starts with an informal definition:

"T: We start with the notion of the epsiion neighbourhood of some
number, say, number g. An epsilon neighbourhood of a number
will be the set of all real numbers that are contained in an interval
around this number . . ., an interval the length of which, on both
sides, equals exactly this epsilon.

Further the teacher reminds the students the itotion of epsilon neighbour-
hood of a point by referring to ‘drawing’ graphical representations of such
neighbourhoods:

T: Why ‘epsilon’? Imagine drawing necighbourhoods . .. We used
to speak about plane neighbourhoods, in geometry . . . We spokc
about circular neighbourhoods. We drew circular neighbourhoods
of points, that is, circles with some radiuses and centres in points
whose neighbourhoods we were considering.

The teacher aims at representing the notion of epsilon neighbourhood of
rumber as a special case of the notion of a circular neighbourhood of a point
in the cartesian plane. For this, however, one must conceive of straiglt line
as being, in a sense, a special case of the plane, which is possible if both the
line and the plane are considered to be special cases of the general notion of
an n-dimensional cartesian space. So, what is needed first, is a generalization:
the notion of n-dimensional space. This generalization is not done by the
teacher in an explicit way: she just calis the number line ‘a one-dimensional
space’, in a kind of metaphorical way:

T: What does such a neighbourhood reduce to in a one-dimensional
space? [T draws a straight line on the board ]. This is the number g.
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[T marks the point g on the line]. We are considering the neigh-
bourhood with radius epsilon of this point. What does a whole
circle reduce to if the universe of my considerations is only this
one-dimensional space, this number line, and not the whole plane,
hm?

S:  [It reduces] to a line segment.

T: To an open line segment, yes.

The thought of the student who answered went into a slightly different
direction than the teacher intended: he generalizes to euclidean spaces and not
to cartesian spaces, and therefore, what he obtains is-a line segment, and not
an interval. So now the teacher has to draw the student’s attention to numbers,
and to suggest that he conceives of the line as a number line:

T: OK And in terms of numbers, such a line segment illustrates . . .?
T A set,

S:

T: What set? What is the name of such a set?

S: A bounded sequence.

T: Pardon me? [impatiently] Come on, now, what does such an open
line segment illustrate on the number line?

S:  An interval.

T: [with relief | An interval, of course! If the radius was epsilon, and
I drew the circle from the point that illustrates the number g
here, what are the numbers that are there, on the borders of this
interval? What values? Can this be established or not?

S: Plus.

T: Here. .. epsilon is positive, because it expresses the length of the
radius, so it is clear that it must be positive.

S: g+e

T: g+ ¢ And here?

S: g-¢

T: g — €. Perfect. And exactly such an interval will be called the

epsilon neighbourhood of the number g.

It can be seen from the above episode that what the students have to
understand primarily in a mathematics classroom is their teacher’s intentions.

In the next phase of the lesson the teacher dictates a definition of the limit
of a sequence:

T: A number g is called the limit of an infinite numerical sequence
if and only if for any positive number epsilon . . . there is a real
number k such that all terms of the sequence with indices greater
thank . .. belong to the epsilon neighbourhood of the number g.

The students are asked to write this definition ‘in terms of quantifiers’.
Not without difficulty, a formal definition eventually appears on the board.

85

103

PAFullToxt Provided by ERIC



Understanding in Mathematics

ima=g« Ve>0dke RVn>kla-gl<e
n— oo

The teacher stresses the role of each element of the definition in turn and
formulates several informal definitions of the limit:

To be in the epsilon neighbourhood means to be a number such that
its distance from the number g is less than €.... Here is what it
means: starting from an index that is already greater than k, all terms
of the sequence will fit into the epsilon neighbourhood of the number
g . . . This means that they will be so close to the number g that their
distance from this number will be less than the given epsilon. . ..
Notice that the definition starts with the words: for every epsilon.
This means that epsilon can be chosen as small as we please . . . No
matter how small the neighbourhood of the number g is, it will con-
tain a lot . . . an infinite number of terms of the sequence . . . Because
k may turn out to be enormous. But even such a k will cut off only
the first terms of the sequence. Even if this is a million of terms, those
that have to squeeze into the neighbourhood constitute a majority,
there is an infinity of them . . . starting from a certain place all terms
of the sequence will squeeze into this neighbourhood.

The notion of limit is also visualized with the help of a certain standard
graphical representation (Figure 6). This visualization consists in drawing a
two-coordinate system, some ten isolated points arranged as if on the curve
y =1+ 1/x, x > 0. This visualization is not a result of plotting a graph of a
sequence the formula of which would be given beforehand.

The teacher compares thus obtained representation to ‘a hyperbola that
converges to its asymptote’, and shows why 1 can be regarded as the limit of
the thus represented sequence:

T: Does this term fit into this chosen neighbourhood? No. This one?

Neither. This one? No, but never mind. ,
The 15th term will well fit into the neighbourhood. Say, 1

establish k equal 14 and starting from the 15th term . . . so only
14 terms did not fit into the neighbourhood. Someone might
say, well, this is a big neighbourhood, so one can see it from the
last desk, and this is supposed to work for every epsilon. So let
us take a smaller epsilon, as small as we please.

S:  And yet there will be an infinite . . .

T: And yet there will be an infinite number of terms in this neigh-
bourhood. All of them — starting from a certain point.

In the last phase of the lesson the teacher shows, by examples, how to
prove, by definition, that a given sequence has a given limit. She also gives
a kind of recipe how to do such a proof.
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Figure 5: A visual representation of a convergent sequence

The examples were:

(1) a,=1/n g=0
(2) a,=(2n - 1)/n g=2
(3) a,=(n*+1)/3n* g=1/3

The first problem is solved by the teacher with very weak participation
from the students. This solution is regarded as a model for solving this kind
of problems. The schema of solution is explained by the teacher:

You write in problem 2 that you have to check the truth of the
statement . . . only for a, you substitute not 1/n anymore but this
expression, and for g not zero but 2. And then, under the modulus,
please reduce to the common denominator, and transform the in-
equality in such a way that it determines the n. And then it will be
very easy for you to check whether the statement is true. Now,
please, do your calculations. [Silence. T walks around]. . .

I repeat it once more. When you check the truth of this state-
ment, then the equivalent fact that the given number is the limit of
the sequence, is also true. So you substitute the concrete a,and g and
transform the inequality so that it determines the n. And then, it will
be very easy to evaluate the logical value of the statement. It is very
similar to what we have just done. Jack, work, stop talking.

Roughly speaking, there were three kinds of explanations of the notion
of limit during the lesson. In each kind, the reasons were formulated in a
certain model: the model of natural language, the model of geometrical rep-
resentations, the model of an action (of proving that a given sequence has a
given limit). The derivation consisted either in a formalization (formalization
of a definition of limit dictated in plain words), or in an interprctation of the
formal definition in the language of the model. The reasons of the formal
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definition thus appeared to be either the informal definition using plain words
but essentially the same as the formal one, or definitions using some more
homely expressions and vivid metaphors (like ‘squeezing’ of the terms of
sequence into a neighbourhood: this gives the idea that the epsilon is small),
or the fact that converging sequences behave like hyperbolas that come closer
and closer to their asymptotes, or the seemingly sensible activity of trans-

‘forming the formal definition by plugging in concrete values of certain vari-

ables and solving (for k) an inequality with absolute value. These ‘reasons’
were meant by the teacher to become solid bases of understanding of the
formal definition of limit in the minds of the students.

Now, even if the students have adopted as their own such bases of under-
standing of the notion of limit (and the students’ erroneous answers and
silences don’t leave much hope even for that) the use of these bases for further
understanding of mathematical analysis is doubtful. At that point the students
have not as yet identified convergent sequences as a special class of sequences
among other sequences — and as an object worthy of study — because no
sequences other than convergent were considered during the lesson. Also, the
significance of the conditions of the definition was not founded on examples
of sequences for which the non-satisfaction of one of the conditions leads to
the statement of the non-convergence of the sequence. On the other hand, the
non-essentiality of the feature of the visual representation which presented
a sequence converging ‘uniformly’, and from only one side of the limit, was
not raised. Neither of the explanations attacks the common convictions or
representations that students may have with respect to the idea of a magnitude
approaching some value with time.

The heaviest reproach is, however, that the teacher’s explanations ex-
plained nothing because explanations explain states of affairs and, for the
students, the definition of limit has certainly not yet become a state of affairs.
Not only they are not convinced about it, but they don’t even know what it

‘is all about. [End of example]

The Role of Example and the Medium in Which It Is .
Presented fur Understanding

Examples play a role in explanation: if what is to be explained is a general
statement, an example obtained by a specification of variables may be used as
a reason from which the statement is derived by induction. Thus an example
may become a basis for understanding this general statement.

It is a pedagogical adage that ‘we learn by examples’. Pedagogues, of
course, think of paradigmatic examples in this case. They think of instances
that can best explain a rule or a method, or a concept.

The learner is also looking for such paradigmatic examples as he or she
is learning something new. The problem is, however, that before you have
a grasp of the whole domain of knowledge you are learning, you are unable
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Figure 6: Graphical representation of an iteration of a linear function

to tell a paradigmatic example from a non-paradigmatic one. So you rnake
mistakes, wrong choices, wrong generalizations (because, of course, you gener-
alize from your examples). Moreover, as the example is normally represented
in some medium (enactive, iconic or symbolic), you may mistake the features
of the representation for the features of the notion thus exemplified.

Below are some drastic examples of such situations in a couple of 16-
year-old students’ processes of understanding the notions of iteration of func-
tion and attractive fixed point. Disregarding all definitions, the students based
their understanding on those of the first examples that they have found most
strikingly explanatory (Sierpinska, 1989).

Example: iteration of functions and the fixed point

The fixed point of a mapping was defined by the teacher as a point that
does not change under the mapping. Examples of the fixed points of an axial
symmetry, homothety, a linear function {given by a formula) were given. But
then a graphical representation (Figure 7) of the sequence of iteration of an
R to R function was shown (dynamically, on a computer screen) and it was
said that the x-coordinate of the intersection point of the graph of the function
with the auxiliary line y = x represents the fixed point of the function. Some
students abbreviated this definition to: ‘the intersection point is the fixed point’.

The last example used by the teacher (and investigator) in the introduc-
tory session was the following:
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Figure 7:  Iteration of a piecewise linear function

_ ) -5x+8forx<9/7
f(x)-{ -1/3x+2forx > 9/7

The graphic representations of the iterations of this function (Figure 7) with
various initial points were dynamically represented on the computer screen.

When the teacher was introducing this example, one student exclaimed:
‘No, here, there are two functions!’. This elicited explanations on the part of
the teacher that a function need not be given by a single formula in the whole
domain etc. This exclamation is, again, a symptom of understanding [the notion
of function, in this case] on the basis of examples rather than definitions.

Further, iteration sequences (i.e., x, f(x), ff(x), fff(x) etc.) of the func-
tion, starting with x = 1, x = 0.8, and x = 1.2 were studied both in the nuin-
erical and graphical settings. The problem given to the students to solve
immediately after the introductory session was to find functions with a peri-
odic iteration sequence 2, 3, 2, 3, 2, ... having attractive fixed points in the
interval (2,3). As one possible solution was a piecewise linear function, one
student was led to believe that the notion of iteration of function is valid only
for piecewise linear functions like the one in the above example. He also
believed for a moment that the tixed point is the articulation point of the two
linear parts. It was easy to make him change his mind because the student was
intelligent; the fact that he did think so, shows nevertheless that understand-
ing on the basis of examples is not just the domain of the siow or less able
students.

For all five students whose understanding was closely studied in the
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experiment, at the beginning, iteration of a function was just an activity of
drawing little line segments between the graph of the function and the aux-
iliary line y = x. They did not know where to start from and were unable to
reproduce the teacher’s actions exactly because they hadn’t paid attention to
the relation between the iteration sequences and this activity of representing
them graphically. All they attended to was the image. They would explain to
each other: “You have an attractive point [they would omit ‘fixed’] if you get
such a spiral little line, or such stairs’.

This visual representation persisted for a long time in students’ under-
standing of iteration, even though their understanding was becoming more
and more analytical. Iteration was understood by most of them as a kind of
transformation of a point of the graph of the function, so:

(x, f(x)) is transformed onto (f(x), ff(x)) which is transformed onto
(FF(x), FEF(R), ete. ,

Some students had not even identified the notion of fixed point as an
object per se, at least at the beginning. They would speak of ‘attractive’ and
‘repellent’ points. Each student passed through the period of conceiving of the
fixed point as the point of intersection of graphs of f and v = x. And again,
this visual representation would be retained in their already analytic concepts
of fixed point. For example, two students kept the name of fixed point for
the intersection, and the argument x such that f(x) = x was named ‘the x-
coordinate of the fixed point’. Even these students had trouble in isolating the
notion of fixed point from the context of iterations. They would say, at some
moment, that the fixed point is a point for which the sequence of iteration is
constant. [End of example]

It seems then that ‘learning by examples’ is a property of our minds that
has little in common with the pedagogical expectations expressed in the
adage. An example is always embedded in a rich situation that contains more
elements, data, information than just those directly related to the object ex-
emlified. The teacher cannot be sure that, from this sea, the students will fish
oniy the bits strictly relevant for the formation of the concept. It is hard,
therefore, to understand the teacher’s frustration, when, after having prepared
the best of examples, he or she finds that the students are still able to com-
mit the most unbelievable mistakes and errors. The method of paradigmatic
examples is not really a method of teaching. Rather, it is a2 way in which con-
cepts are being formed: the examples cannot be transmitted from the teacher’s
mind to the learner’s mind. The latter must construct or reconstruct examples
that can be regarded as paradigmatic in some more objective sense. The teacher
can only help the learner by organizing situations against which the consecu-
tive tentative forms of these examples can be tested, in which they can be
revealed, and in which a change can be discussed and negotiated, if necessary.

Examples are, in understanding abstract concepts, the indispensable prop
and the necessary obstacle. It is on the basis of examples that we make our
first guesses. When we start to probe our guesses, the fundamental role is
slowly taken over by the definitions.

4
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Figures of Speech in Understanding

We may start from the principle that we all take a natural pleasure in
learning easily; so since words stand for things, those words are most
pleasing that give us fresh knowledge. Now, strange words leave us
in the dark; and current words [with the things they stand forj we
know already. Accordingly, it is metaphor that is in the highest degree
instructive and pleasing. (Aristotle, 1932, p. 206)

Figures of Speech for Understanding and Figures of Speech for
Explaining

Books and articles that pra'se the role of figurative (and, in particular,
metaphorical) language in co nition are usually full of polemics with the
opponents of figurative speect. in scientific communication. For example,
Lakoff and Johnson (1980), authors of the popular book Metaphors we live by,
start by quoting Thomas Hobbes the nominalist, for whom metaphors were
like ignes fatui, always ready to mislead the traveller at night, and John Locke
who said that metaphors serve ‘any design but that of naked truth’,

In fact there is no contradiction between the proponents and the oppon-
ents of the metaphor. The two parties are only considering two different uses
of metaphor.

One is the spontaneous use of metaphor in a problem situation, where
something new (a new concept, a new relationship, a new method, a so far
unnoticed aspect) is being identified and no language is available yet to speak
about it. There is a search for words, names, comparisons in the intention to
uriderstand — to ground the emerging ‘object’ in somethirig. The knowledge
about the newly identified something is not ready yet. A metaphor always
highlights an aspect of a situation, and thus helps to identify something as
something. We observe this creative role of metaphor in the making of
mathematical objects both by students and mathematicians. One of the
mathematicians interviewed by Anna Sfard (1994) said: ‘To understand a new
concept I must create a metaphor, A personification. Or a spatial metaphor.
Or a metaphor of structure. . .. There is, first and foremost, an element of
personification in mathematical concepts. . . . For example, yesterday, I thought
about some coordinates. I told myself: ‘this coordinate moves here and . . . it
commands this one to do this and that’ (Sfard, 1994).

Mathematical terms and expressions are indeed sometimes very powerful
metaphors. We tend to forget about their metaphorical origin and impact on
our understanding, as they already belong to the accepted lexicon. Pimm
(1988) draws our attention to this phenomenon:

To most people, the statement ‘the complex plane is a plane’
would be a commonplace one . .. Yet this metaphoric naming and
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the above identification which underlies it has certain mathematical
effects, as can be seen by suggesting that ‘the complex line’ is an
alternative expression for the same set which stresses certain different
features and ignores others. Referring to C as ‘the complex plane’
highlights the two-dimensional (ordered pair) representation of
complex numbers a + ib and encourages an approach to complex
analysis by means of two dimensional real analysis via ‘real and
imaginary parts’. The plane metaphor also encourages the seeing ‘a
complex number as a vector’ . .. which offers an effective image for
complex addition and subtraction, but one less so for multiplication
and division. (Pimm, 1988)

The other use of metaphor is concerned with presertation or explanation
of a body of knowledge already in existence.

Simplifying things a little bit, one may say that, in the first case, the
metaphor serves understanding, and, in the second, that it serves explanation.
While explaining with the help of a metaphor may improve the understanding
of the person who explains (because of the above mentioned reasons), it need
not induce the intended understanding in the person to whom something is
being explained. This person may focus attention on the irrelevant parts of
the image provided by the metaphor or wish to see complete ‘isomorphism’
between the object and the metaphorical image and thus miss the point. (As,
for example, when taking too much to heart the metaphor of ‘complex plane’,
one might forget that complex numbers are primarily a field, and an algebra-
ically closed one).

Locke was very much against the use of figures of speech in commun-
ication. He would say that they serve the purpose of covering the ignorance
of the speaker and confounding listeners rather than that of clarifying matters.
Leibniz had a more balanced view in this respect:

Philalethes: The way, to prevent such confusion [caused by the
polysemy of words] is to ‘apply steadily the same name’ to a certain
collection of simple ideas ‘united in a determinate number and
order . .. But this neither accommodating men’s ease or vanity, or
serving any design but that of naked truth, which is not always the
thing aimed at, such exactness, is rather to be wished, than hoped
for . . . the loose application of names, to undetermined, variable, and
[in blind thoughts — G.W. Leibniz] almost no ideas, serves both to
cover our ignorance, as well as to perplex and confound others which
counts as real learnedness and as a mark of superiority in knowledge.

Theophilus: These language troubles also owe much to people’s
straining to be elegant and fine in their use of words. If it will help
them to express their thoughts in an attractive way they see no ob-
jection to employing figures of speech in which words are diverted
slightly from their usual senses. The new sense may be narrower or
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wider than the usual one (this is called synecdoche); it may be a trans-
ferred sense, where two things have had their names exchanged because
of some relation between the things, either a concomitance (metonymy)
or a similarity (metaphor); and then there is irony, which replaces an
expression by its opposite. This is what such changes are called when
they are noticed; but they are rarely noticed. Given this indeterm-
inacy in the use of language, a situation where we want some kind of
laws governing the signification of words . . . what is a judicious person
to do? If he is writing for ordinary readers, he will deprive himself of
the means for giving charm and emphasis to what he writes if he
abides strictly by fixed significations for the terms he uses. What
he must do — and this is enough — is to be careful not to let the
variations generate errors or fallacious reasoning. Thus ancients
distinguished the ‘exoteric’ or popular mode of exposition from the
‘esoteric’ one which is suitable for those who are seriously concerned
to discover the truth; and that distinction is relevant here. If anyone
wants to write like a mathematician in metaphysics or moral philo-
sophy there is nothing to prevent him from rigorously doing so;
some have announced that they would do this, and have promised us
mathematical demonstrations outside mathematics, but it is extremely
seldom that anyone has succeeded. I believe that people are repelled
by the amount of trouble they would have to take for a tiny number
of readers: like the question of Persius, quis leget haec (‘Who will read
this?”) with its answer vel duo vel nemo (‘Either two people or no one’)
(Leibniz, 1765, BK II, Ch. xxix, sec. 12)

Bachelard criticized very much the use of familiar metaphors in scientific
explanations of the eighteenth-century physics. For him they functioned as
‘epistemological obstacles’ to the development of scientific thought by play-
ing the role of all-explanatory devices. Bachelard evokes the metaphor of
‘sponge’ whick was supposed to explain both the properties of the air, and the
properties of the center in which electricity flows. ‘Obstacle verbal' was
Bachelard’s name for the attitude of a scientist who satisfies himself with such
explanations (Bachelard, 1983).

Metonymies appear to be less controversial, maybe because they are
less consciously employed, less visible, and are most often used in oral com-
munication. Their importance in communication is paramount: they allow
for an economy in the use of words, if only the speaker and the listener are
‘in tune’ on a subject. This is important in mathematical communication. The
metonymical use of mathematical symbols is well known: for example, the
name of a value of function, ‘f(x)’, for the function itself, the name of a
representant of a class of abstraction for the class of abstraction, e.g., 3/5 for
{ 3/5, 6/10, 9/15, etc.} (Bauersfeld and Zawadowski, ibidem). While a meta-
phor used by someone can be a symptom of his or her act of identification
of a new object, a metonymy can be a symptom of an act of generalization:
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as when the metonymical shift of reference goes from a certain class of objects
to a larger class of objects. We shall see this on the example of the historical
development of the concept of function.

However, metonymies used by our students are not always signs of such
acts of generalization. On the contrary, they can be symptoms of certain
restricted ways of understanding, even obstacles to generalization. Here are
two examples of such a situation. The first comes from an experiment already
mentioned above, on iteration of functions (Sierpinska, 1989). The second is
from a research on undergraduate students’ difliculties with linear algebra
(Sierpinska, 1992by.

Example: the value of a function at a point

A group of 16-year-old students had to solve the following problem:
to find functions (from R to R) that would have an attractive fixed point in
the interval (2,3) and a periodic trajectory 2, 3. This last condition means that,
if f is the function, then f(2) = 3 and f(3) =2 . In the students’ notes, instead
of such conventional inscriptions, the students wrote: ‘x(2) = 3 x(3) = 2. Of
course, theoretically, the students might have denoted the unknown function
by ‘x’. However, their further behaviour suggested that ‘x’ stood for the
argument of function, as usual, and the inscription ‘x(2) = 3’ was meant to
say: ‘substitute 2 for x in the formula of the function; you should get 3. The
latter was the expression they used for what is normally worded as: ‘the value
of the function in 2 is 3". The inscription ‘x(2) = 3’ simply better expressed
their conception of function as a ‘result of a calculation’. This conception of
function is maybe a little distant from the formal definition but it seems to be
quite close to a more ‘constructivistic’ definition of function, as worded, for
example, by Cauchy, in his 1821 ‘Cours d’Analyse’:

We call functions of one or more variables such quantities that present
themselves, in calculations, as results of operations made on one or
more constant or variable quantities. (Cauchy, 1821 Cours d’Analyse de
I'Ecole Polytechnique, 1e Partie, Analyse Algébrique. De I'Imprimerie
Royale. 1821).

[End of example]

Example: metonymical use of variables in linear algebra

Metonymies are handy tools of diiect communication, as we mentioned
before. Used in a written text addressed to someone who has not been there
at the moment of its creation, and is unaware of what the author might have
been’ focusing on while writing it, they sometimes look like nonsense, they
feel like jokes. One of my linear algebra students had this habit of writing his
solutions in such a metonymical way. He was using ad hoc notations, for the
purposes of the one problem he was solving at the time, regardless of all
conventions. His own conventions had very short life; he would switch from
one to another within one solution. He would use numbers as variables, but
he would also use them as codes. For example, ‘(5,5,5)" would stand for an

95




Understanding in Mathematics

arbitrary vector whose all three coordinates are equal: here is what he wrote
to show that the set of vectors in the 3-dimensional real space whose all three
coordinates are equal forms a subspace of that space:

a=b=c IS A SUBSPACE
1° (0,0,0)
2° (5,5,5)
(5,5.5)
(10,10,10)
3 k(1,1,1)
k, k, k

Once he used the following inscription:

11 12 13
21 22 23

to denote an unknown 2x3 matrix: ‘12’ being the code of the entry in the first
row and second column. In explaining what is a symmetric matrix he wrote:

1 2 3
4 5 6
7 3 9

adding: ‘2 is the same as 4, 3 is the same as 7, 6 is the same as 8’.

Indeed, this metonymical style of writing in mathematics was not some
kind of deliberate excentricism on the part of this student. Rather, it was a
result of an obstacle that we might call ‘numerical reckoning’ (‘logistice numerosa’)
— thus alluding to a pre-Viéte way of thinking about variables in algebra that
is to be distinguished from ‘reckoning by species’ (‘logistice speciosa’) devel-
oped by Viéte in his Introductior: io the Analytic Art (Piaget and Garcia, 1989,
p. 147). In numerical reckoning. the basic element of thinking is the concrete,
isolated number; if it does not matter what number it is in a given situation,
it can be denoted by a letter or by a randomly chosen numeral, or any symbol
for that matter. In the reckoning by species, the basic elements of thinking are
the species of numbers or magnitudes, not their concrete representants.
Numerical reckoning is satisfied with showing a method on examples; it is
not interested in the formulation of a general theory, its goal is to efficiently
solve certain concrete problems. Therefore it does not need a system of no-
tations that would be comprehensive, consistent and generally applicable. Any
ad hoc symbolic means would do to explain how to solve a certain kind of
question by example.[End of example]

Construction of a Metaphor As a Symptom of a Creative Act of
Understanding

There exists an opinion that the very possibility of learning something radically
new can be explained ‘only by assuming some operation which is very similar
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to metaphor (Petrie, 1979). ‘The metaphor’, says Petrie, ‘is one of the central
tools in overcoming the epistemological gap that exists between the old and
the new knowledge’. (The other tools he mentions are: analogies, models,
‘exemplars’, i.e., exemplary paradigmatic solutions of problems). A radically
new knowledge, according to Petrie, is the kind of knowledge that cannot be
attained just through assimilation of new data into the existing mental structures
and calls for an accommodation of the latter,
Johnson (1980) agrees, in principle, with Petrie when he says,

metaphors generate novel structurings of our experience in a way not
fully anticipated by our available systems of concepts . . . The new
metaphor provides a basis for elaborating new concepts (or relations
of concepts), and its adequacy may be judged at least partially by how
well it ‘fits in with’ the concepts already articulated . . . Metaphors
lead us to experience the world in novel ways. By causing a reorgan-
ization of our conceptual frameworks they institute new meaning.
These foundation acts of insight are tied to truth claims because they
alter the systems of fixed concepts with which we make truth
claims . . . So understood, metaphors may be seen as grounding the
concepts that we then use to speak determinately of as objects. The
primary role of metaphor is thus to establish those structures we later
articulate by means of fixed, determinate concepts (and systems of
concepts). (Johnson, 1980, p. 65)

Thus, by structuring, ordering our experience and making it ‘fit in with’
the existing mental structures, a metaphor is a basis of understanding. An act
of understanding based on a new metaphor is a creative act of understanding
insofar as it ‘causes a reorganization of our conceptual frameworks’. More-
over, an act of understanding based on a metaphor plays a crucial role in the
development of our thinking: it prepares the ground for the formation of a
concept.

Sometimes the concept obtains a name that bears the traces of the meta-
phor or metaphors that announced its coming into being. Our language is full
of such ‘lexicalized’ or ‘conventional’ metaphors. This is also true for the math-
ematical language. For example, expressions such as ‘convergent sequence’,
‘limit of a function f(x) when X tends o a’ are remindful of the metaphors used
by the creators of Calculus and Analysis to describe the newly identified
notions. Not yet having explicited the concept of limit as a concept on its own
right, Newton used the tesin what today we call the derivative ‘the ultimate
ratio of evanescent increments’. He used to explain this notion with the help
of the word ‘limit’, used metaphorically, and the images of movement towards
something, of approaching something:

The ultimate ratios with which the quantities vanish are not, strictly
so speaking, the ratios of ultimate increments, but limits to which the
ratios of these ever decreasing quantities approach continually.
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Or, he would write,

Quantities, and the ratios of quantities, which in any finite time con-
verge continually to equality, and before the end of that time approach
nearer to each other than by any given difference, become ultimately
equal. (Newton, 1969) '

All these words: ‘ultimate’, ‘converge’, ‘continually’, ‘approach’ provide
our minds with images on the basis of which we have the impression of
understanding what Newton is talking about.

Example: metaphors and metonymies in the historical genesis of

the concept of function

An interesting interplay between metaphors and metonymies can be found
in the historical development of the concept of function. Mathematicians,
astronomers and physicists occupied themselves with relationships between
variable magnitudes from times immemorial, but it is only by the nineteenth
century that the class of all such (well determined) relations was identified as
a definite mathematical object. Newton, whose ‘fluent quantities’ seem to be
very close to what today we would call continuous functions of time, never
really considered them in isolation from the rates of their changes, i.e., fluxions.
Fluents were the primitive functions of fluxions, which were, on their turn,
the derivatives of fluents ( Juszkiewicz, 1976, p. 257).

‘Fluxio’ is the metaphor of the flowing waters of, for instance, a river.
The idea of the flow of time is based on its comparison to a river that flows.
Newton probably first used this image to describe how the time variable
changes: it is characterized by a ‘continuous flow’ with constant velocity — a
steady ‘stream’. Later, the name of ‘fluxion’ was extended to term the rates of
change of all kinds of quantities that, like time, are characterized by a continuous
flow, and the name of ‘time’ was given to all uniformly flowing quantities,
Le., such that their fluxions can be represented as an unity.

I consider time as flowing or increasing by continual flux and other
quantities as increasing continually in time and from the fluxion of
time I give the name of fluxions to the velocities with which all other
quantities increase . . . | expose time by any quantity flowing uni-
formly and represent its fluxion by an unity. (Newton, 1967, p. 17)

I shall, in what follows, have no regard to time, formally so
considered, but from quantities propounded which are of the same
kind shall suppose some one to increase with an equable flow: to this
all the others may be referred as though it were time, and so by
analogy the name of ‘time’ may not improperly be inferred upon it
(ibidem, p. 73) -

In the above, there are two metaphors followed by two metonymies.
First, time is metaphorically called a ‘fluent quantity’; this name is then
metonymically extended.to denote any continually increasing quantity. On
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the other hand, the velocity with which time is changing is metaphovically
called “fluxion’, a name which is then metonymically extended to dencte the
velocity of any continually increasing quantity.

"The terms of ‘fluent quantities’ and ‘fluxions’ were not adapted on the
continent (maybe because of their limited use: motion, its changes and rates
of change).

The term of ‘function’ was born in the geometrical context of analytic
investigation and description of curves. In his 1673 manuscript ‘Methodus
tangentium inversa, seu de functionibus’, Leibniz was concerned with two mu-
tually inverse problems: 1. for a curve, for which the - :lation between the
abscissas and the ordinates is given by an equation, to find its subtangent,
subnormal and other segments linked with a curve; 2. to find the relation
between the abscissa and the ordinate when a certain property of the subtangent,
subnormal, or some other segments linked with the curve is given. These
segments ‘linked with the curve’ are called ‘lines fulfilling some function for the
curve’ (Juszkiewicz, 1976, p. 159). Here, for the first time, the term ‘function’
appears in a metaphorical use.

Twenty one years later, in 1694, in an article published by Le Journal des
S¢avans Leibniz used the term ‘functions’ to denote

all the line segments that are obtained by producing an infinity of
straight lines, corresponding to a fixed point and the points of the
curve, and they are: the abscissa AB er A, the ordinate BC or gC,
the chord AC, the tangent CT or C¥, the normal CP or Cr, ‘the
subtangent BT or B9, the subnormal BP or B . . . and an infinity of
other, the construction of which is more complicated ( Juszkiewicz,
1976, p. 159).

This is a sign of a metonymic abbreviation: lines fulfilling some ‘func-
tion’ for the curve are, now, simply, ‘functions’. However, the sense in which
the term ‘functions’ was used by Leibniz in this article, did not seem adequate:
it diverted the attention from what was most important in the analytical study
of curves, namely from the relations between ‘the line segments fulfilling
some functions for the curve’ and focused on these lines themselves. Thus, the
point in the discussion between Leibniz and his disciple Jean Bernoulli was not
so much the adequacy of the term ‘function’ but something much deeper:
what is more important in the study of curves, coordinates or relations be-
tween the coordinates, objects or relations between objects. It became clear
that the relations are exactly what distinguishes one curve from the other, and
that in classifying these relations one obtains a classification of curves. Before
that discovery, mathematicians used the classification of Descartes: curves
were divided into mechanical and geometrical and the mechanical curves
were excluded from mathematical study. The new principle of classification
allowed for the consideration of these curves, as well (Leibniz called them
‘transcendental’, while the geometric curves of Descartes were called
‘algebraic’).
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This shift of attention together with the conviction that only relations
expressible by analytic formulae are worthy of mathematical study had led
Bernoulli to the isolation of the concept of a ‘quantity in whatever manner
formed of indeterminates and constants’ which he denoted by ‘n’ (posito n esse
quantitatem quomodumque formatam ex indeterminatis et constantibus) (1694 in Acta
Eruditorum see Cajori, 1929). The word ‘function’ did not appear in this arti:
cle. It turned up again three years later, in 1698, when, in a letter to Leibniz,
Bernoulli writes that he proposes to use the letters X and the Greek letter x
to denote the above mentioned quantities because then ‘it is at once clear the
function of what’ is X or x. In this context, the word ‘function’ is again used
metaphorically, in a way similar to that in which it was used for the first time
by Leibniz with respect to subtangents, subnormals etc. But now, the focus
is on the dependence of the object that fulfills the function on the objects for
which this function is fulfilled. For example, a person Y may fulfill the function
of chairman at a meeting of a body of people (just as the coordinates of the
points of a curve fulfill a function for the curve); but this function is a function
of this meeting of a group of people, i.e., this occupation or duty or purpose
depends on there being a meeting of a body of people; the function of chairman
is a function for a group cf people. A function as duty or purpose is always
a function of and for something, depends on this something.

In further correspondénce between Leibniz and Bernoulli, there occurs a
metonymical shift of reference and the word ‘function’ starts to be used as a
name of the analytic expression describing a relation of dependence of one
variable on other variables (and not as a name of the relation itself) (Juszkiewicz,
ibidem, p. 166).

The 1718 article of Jean Bernoulli, published in the Mémoires de I’Académie
des Sciences de Paris, contains an apparently official definition of the term
‘function’: a function of a variable quantity is a quantity in whatever manner
formed of this variable quantity and constants ( Juszkiewicz, ibidem, p. 160).
This meaning of ‘function’ is, in principle, still preserved in Cauchy’s 1821
definition (quoted above).

Now, for the word ‘function’ to denote an arbitrary well-determined cor-
respondence between two variables as understood, for example, by Lejeune
Dirichlet i1 1937 (‘if a variable y is so related to a variable x that whenever a
numericz] value is assigned to x, there is a rule according to which a unique
value of y is determined, then y is said to be a function of the independent
variable x’, (Boyer, 1968, p. 600)), a backward shift of attention was neces-
sary: from the way of representing a relation to the relation itself; and — a
generalization: from relations expressible analytically to arbitrary relations.

Let me summarize below the ‘figurative history’ of the concept of function:

1673 .

Metaphor (giving 2 ‘new’ name to an ‘old’ object):

Object {abscissa, ordinate, subtangent, subnormal, etc.} — Name: ‘line
segments fulfilling a certain function for the curve’
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1694

Metonymy (shifting the use of a name to a different object):

Name: ‘function’ (as the role that abscissa, ordinate, etc. play for the
curve) = Object: {abscissa, ordinate, etc.}

— Shift of attention from objects to relations between objects.

— Conviction that only analytically expressible relations are worthy of
mathematical study.

— Identification of the concept of a quantity in whatever manner formed
of indeterminates and variables.

1698

Metaphor:

Object: a quantity (X) in whatever manner formed from indeterminates
(x) and constants — Name: ‘the quantity X 1s a function of the variable x.
1718-1821f :

Bernoulli's definition of ‘function of a variable quantity’:

Metonymy:

Name: ‘function’ {as a relation of dependence of one variable with respect
to another] — Object: an analytic expression representing a relation be-
tween variables.

Before 1837

Metonymy:

Name: ‘function’ {as an analytic expression] — Object: the analytically
expressible relation between variable quantities.

1837

Metonymy:

Name: ‘function’ {as an analytically expressible rc:ation of dependence
between variable quantities] —» Object: any. well-defined correspondence
between variable quantities.

[End of example]

The Role of Activity in Understanding
Activity Versus Passiveness of the Mind in Understanding

It is almost tautological to say that understanding is an active rather than
passive experience if we want to speak of acts of understanding. An act of
understanding happens only in an attentive mind, who is willing to identify
objects, to discriminate between them, to perceive generality in the particular
and the particular in the general, to synthesize large domains of thought and
experience. Our minds are not being passively ‘imprinted with ideas of things
without’. Understanding does not ‘come into us to lie there so orderly as to
be found upon occasion’ (Locke, 1960, BK II, ch. xi). It needs active construc-
tion to even see what everybody seems to see in an effortless and natural way.
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It has been reported that persons blind from birth to whom the facuity of
seeing has been restored have great difficulty in discriminating even between
a square and a triangle.

One man having learned to name an egg, a potato, and a cube of
sugar when he saw them, could not do it when they were put in
yellow light. The lump of sugar was named when on the table but
not when hung up in the air with a thread. However, such people can
gradually learn; if sufficiently encouraged they may after some years
develop a full visual life and be able even to read. (Young, 1960,
p. 63., quoted in Goldstein and Goldstein, 1978, p. 17)

In their How we know? Martin and Inge Goldstein comment that,

seeing — the sense we think o as most directly putting us in touch
with facts — is learned rather than automatic. We see with our minds,
not with our eyes, and we are subject to whatever unconscious biases
and misconceptions are produced by the training that teaches us to
see. We are not arguing a case for disbelieving what we see. We have
no choice, really. However, being aware that perception is not pas-
sive observation but rather a learned use of our intellectual faculties,
however unconsciously it is done, should alert us to the possibility
that things need not be what they seem, and that changes in our own
thinking may change what we see. (Goldstein and Goldstein, ibidem)

These last words bring us to the question of the influsnce of education and,
more generally, culture, on what we attend to, what, th.refore, we understand,
and how we understand it. These questions will be dealt with in Chapter 5.

Acting Upon an Object in Order to Understand It

According to the psychologists representing the so-called ‘activity theory’,
understanding something requires acting upon it, transforming it, for exam-
ple, into a subjective representation. The understanding subject is the ‘agent’
whose relation to the object is mediated by his own activity (Leont’ev, 1981;
Davydov and Radz.hovskii, 1985; Davydov; 1990; Bauersfeld, 1990). As a
result of the action of the agent on the object, a new object may come into
being: the agent would have produced something. In this approach to the role
of activity in understanding, the attention focuses on transformation and
production of objects (external or mental) as results of the activity of the
understanding subject: it is concerned with the changes of reality.

The definition of an act of understanding that was proposed in the pre-
vious chapter might be seen as quite compatible with this view, if we consider
that the linking of the object of understanding with its basis is an activity that
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transforms the object. However, our definition is far from suggesting that an
act of understanding, a priori, has a voluntary aim to change something.
In fact, a better word to use would be ‘maps’, not ‘transforms’: in an act of
understanding, one object is mapped onto another. Neither would we say
that, in an act of understanding an object is being ‘produced’. Of course, some
of our acts of understanding do change (for us) the world we live in. We start
to see the same things in a completely different way. But normally, we don’t
‘plan’ it: we don’t try to understand something in order to change it. We just
try to understand. Period.

On the other hand, when we speak not of understanding in general, but
of good or deep understanding, for example, in mathematics, then we think
of the possible activities that a student could engage in, indeed, what actions
could he or she perform on the object of understanding. We suggest that the
student transforms this object. For example, we suggest that a formal defini-
tion be deformalized, that an informal statement be formalized, that a general
statement be specified, that an assumption be taken away from a theorem, to
see if it would still hold, etc. In fact, students tend to be very passive in their
processes of understanding, taking things as they are, solving problems as
they are given. often strictly following some model solution, never asking
themselves questions that are not already in the book. But mathematics has to
be understood in an active way because what we have physical access to are
only symbols, representations of various kind. It is necessary to scratch a little
through them to get to the concepts that are hidden behind.

But this is a different view on the function of the transformation of object
in understanding: we transform in order to better understand; an act of under-
standing in itself is not meant to transform anything. Indeed, what happens
in a process of understanding, is that our object of understanding is not the
same from one act to another: however, we would not so much transform
this object as we would look at something different, a different aspect maybe,
or we would:look from a different level. For example, we would reflect on
our own actions when dealing with our former object of understanding. In
understanding mathematics, whose generalizations form hierarchies such that
what has been an operation at one level becomes an object at a higher level,
this kind of change of object of understanding plays a crucial role.

In this we are closer to the approach of Piaget, for whom understanding
is built in a complex dialectic process between action and reflection upon
action or in a movement back and forth from an instrumental use of opera-
tions through reflexive abstraction to a reflected abstraction for which the first
abstraction becomes an object of study.

The action can be a physical action on material objects or it can be a more
intellectual activity on symbols of abstract objects as it happens in mathemat-
ics (e.g., when we apply a sequence of translations to a geometrical figure to
check whether it is congruent to another one, or when we solve a concrete
system of equations to find a set of points satisfying certain conditions). Let
us consider these two situations in turn. -
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From a Physical Action to Understanding

The relation between successes in performing concrete physical actions and
understanding why these actions were successful was studied by Piaget in his
book Success and understanding (1978).

It may be. worthwhile noting at this point that, although ‘understanding’
appears in the title of the above mentioned work, throughout the text Piaget
speaks of the relationships between “skill and knowledge’, ‘action and thought’,
‘doing and knowing’, ‘action and conceptualization’ (ibidem, pp. vii-viii),
‘practical success and notional comprehension’ (ibidem, p. 213) as if referring
to one and the same thing. This is somewhat disturbing, as, for us here,
‘knowledge’, ‘thought’, ‘understanding’, ‘conceptualization’ are far from being
synonymous. It also follows from the contexts in which the words ‘under-
standing’ or ‘comprehension’ are used that Piaget has high expectations with
regard to the ‘states of consciousness’ they refer to. Let us then keep in mind
that, for Piaget, understanding means conceptualization or conceptual under-
standing, and understanding an action means ‘explicative’ and ‘implicative’
understanding, that is understanding that both explains why a given action
was successful and allows for implying whether a planned action can or cannot
be successful.

In Success and understanding Piaget was looking for the mechanisms by
way of which the ‘doing’ is transformed into the ‘knowing’, even though
there is admittedly a considerable time lag between the two. What he found
is that this transformation is done in three steps or stages: in the first, con-
ceptualization lags behind successful action; in the second, the two go hand in
hand; in the third, conceptualization overtakes action.

In the first stage, action has an autonomous and cognitive character; one
knows by doing. Hence a certain know-how is developed which is self-
sufficient for obtaining success within a certain range of activities. The high level
of practical skill at this stage contrasts with the low level of conceptualization
which concentrates on the external results of the action. For example, in
Piaget’s experiments, although the subjects were successful in constructing
roofs (two cards) or houses of four cards, in their explanations of why they
succeeded, they were not taking into account the role of inclinations, i.e., that
the two cards support each other in the roof structures or that one card props
the other in the figure T. Instead, when asked ‘How does it keep up?’, they
would say, for example, ‘Because it touckes’, referring thereby to the result
of their action.

In the subsequent stages, conceptualization and action start to have 1ecip-
rocal effects on each other. The second stage is the period of transition, where
conceptualization and action go hand in hand with each other but are
uriiscriminated by the subject. While conceptualization already supplies ac-
tion with its power of anticipation, this anticipation relates only to immediate
action — the conceptualization is immediately implemented in action. Or we
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can say that the results of an action are always experimented in direct action;
they are not inferred from assumed premisses as it will happen in stage III.

. .. it is not because subjects at level IIA interpret the transmission of
movement by the passage of an impetus across the passive or medi-
ating [billiard] balls that they go on to orgaunize their actions so as to
tap this impetus and to facilitate its circulation inside the balls (in the
way that an engineer familiar with the principles of electromagnetism
constructs instruments on the basis of Maxwell’s equations). What
conceptualization supplies to action is a reinforcement of its powers
of anticipation and the possibility, in a given situation, of devising a
plan for immediate implementation. In other words, its contribution
is to increase the power of co-ordination already immanent in action,
and this without the subject’s establishing the frontiers between his
practice (‘What must I do to succeed?’) and his conceptual system
(‘Why do things happen this way?’). Moreover, even in situations
where the problems are distinct and where the point is to understand
rather than to succeed, the subject who has become capable, thanks
to his actions, of structuring reality by operations, nevertheless remains
unconscious of his own cognitive structures for a long time: even if
he applies them for his personal use and even if he attributes them to
objects and events for the purpose of explaining them causally, he
does not turn these structures into themes of reflection until he reaches
a much higher level of abstraction. (Pi-.get, 1978, pp. 215-6)

The mental operations that are constructed in the process of reflexive
abstraction in stage Il are not ‘representations’ of actions — they are still
actions because they produce new constructions — but they are ‘signifying’
actions and not physical actions: the connections they rely on are of implica-
tive and not causal nature, i.e., they are connections between significations.
This opens the way to the conceptual understanding of the action which
becomes a fact in the third stage.

In the third stage conceptualization finally overtakes action. This phase
characterizes itself by the functioning of the ‘reflected abstraction’ for which
the product of the reflexive abstraction becomes itself the object of reflection
and conscious formulation. The subject focuses no more on the results of the
action but on its mechanisms; no more on the question: ‘What must I do to
succeed?” but on the question ‘Why do things happen this way?’. Now, the
results of an action can be inferred from what the subject knows about its
mechanism; they need not be experimented in action. The subject can now
programme the whole action: action is guided by theory.

The question is, of course: how the search for reasons of the success of
an action can become autonomous to the point of dispensing with all actual
objects? (‘That it can — we know from the existence of, for example, math-
ematics!). Piaget sees the answer to this question in, on the one hand, the
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necessary generalization that any explanation of the success normally requires,
and, on the other, the recursive character of the construction of operations
(ibidem, p. 222).

When, in stage III, understanding overpowers action, the subject’s atti-
tude towards the success changes: the immediate and concrete success doesn’t
matter that much anymore; the immediate result or goal of an action does not

“count. Unlike action, understanding, in the sense of finding reasons, does not

have a ‘result’. If understanding has a goal, it is that of ‘re)establisking an
equilibrium. In that, understanding is more like a free vector —- it admits of
a direction, but not of an end point. But this direction can only be identified
ex post factum, Piaget claims, saying that this indeed resolves the age-old
question of objectivity of mathematics: whether it is ‘invented’ or ‘discov-
ered’. The necessity of a new and unforeseen construction can only be shown
in retrospect by means of deductive instruments developed at this new stage,
not before or during their elaboration. Thus,

mathematical creations are neither discoveries, because the entities
thus constructed did not exist beforehand, nor inventions because
their creator is not free to modify them at will — they are construc-
tions with the particular property of imposing themselves of necessity
just as soon as they are completed and closed on themselves, but
never during their elaboration. In respect of teleonomy they thus
provide a typical example of a direction without finalism, which is
precisely the characteristic of an equilibration. (ibidem, pp. 227-8)

From Instrument to T heme of T hought

By its reference to mathematics, the above quotation already makes a transition
to the question of relations between the more intellectual actions on symbolic
forms and understanding of these actions. This question is the main subject of
Piaget and Garcia’s book (1989). The three stages seem to be present in both
the psychogenesis of knowledge and the history of science: Piaget labels them
with prefixes ‘intra-’, ‘inter-’ and ‘trans-’ (for example: the intrafigural,
interfigural and transfigural stages in the development of geometry; or the
intraoperational, interoperational and transoperation stages in the develop-
ment of algebra). The first stage is interested only in particular objects (e.g.,
geometrical figures or algebraic operations). The second looks at relations
between these particular objects. At this stage mental operations reflecting
these relations are constructed. The last stage ‘thematizes’ these operatioris
which have played only an instrumental role in the previous phase, transform-
ing them into objects of reflection. It is at this level that theories come into
being.

Examples abound in the history of mathematics of such thematizations or
shifts of attention from results of actions and effectiveness of techniques to the
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study of the ‘mechanisms’ of these actions and techniques. It is thanks to such
shifts that the general notions of function, group, category have been con-
structed. It is the thematization of transformations in geometry that has led to
what is now well known as the ‘Erlangen Program’. Another example is pro-
vided by the history of linear algebra between the nineteenth and the twen-
tieth century, the former having centered its efforts of techniques of solving
systems of equations and finding determinants, the latter developing a theory
of linear operators in which determinants are but a kind of invariants of matrix
representations of linear operators and a measure of existence of eigenvalues.

The main point of Piaget in both of the mentioned works is that no
matter how elaborate the ‘thematization’, it always has its roots in some more
or less concrete activity: any development starts with an action on objects,
i.e., on the ‘intra-’ level, goes through making connections between objects
at the ‘inter-’ level, and, if it culminates with a perception of and reflection on
a whole structure at the ‘trans-’ level, it is only to consider it, at a further
stage, as a new ‘intra-’ level. None of these can be skipped, if a conceptual
understanding has to develop: shortcuts are possible in teaching, but not in
learning. And this is the ultimate advice that mathematics educators take from
Piaget when they pick up his idea of a dialectic process between the instru-
ment of action and object of reflection and develop in various forms and
argumentations (see ‘dialectique outil-objet” of R. Douady (1986); ‘process-
object’ of E. Dubinsky (1992b), ‘operation-reification’ of A. Sfard (1992),
etc.). The necessity to make this point is urgent both with those teachers who
allow their students to reduce their learning to rote memorization of formulas
and the activity of ‘plugging-in’ numbers into them, as with those who,
overly concerned with ‘meaning’ and ‘understanding’, never let the students
actually instrumentally use certain mathematical methods and techniques for
the solution of some meaningful problems, but at once demand that they
conceptually understand why these methods and techniques work, i.e., they
want the students to understand the theory before they could even become
aware of the usefulness of its tools. The former never let their students get
onto the second and third levels or stages of knowing and thinking; the latter
point to their students the highest level while depriving them of the ladder
with which they would be able to climb there. As usual, the solution lies
somewhere in between.

The Question of Continuity of the Processes of
Understanding

In philosophy the question of continuity is posed with respect to human
cognition both in its psychogenesis and historical development. Such a ques-
tion can also be asked with respect to processes of understanding.

If continuity in time of a process of understanding means that small
increases in time always produce small changes in the ways of understanding,
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then processes of understanding are not continuous. Sudden ‘illuminations’ or
sudden changes in the way in which a situation is viewed, when aspects
theretofore unnoticed come to the foreground, are facts well documented in
psychology and in personal accounts of scientists. These are the moments of
a radical change in understanding.

But one can speak of a different kind of continuity, as it is done in
philosophy, in the sense that from one kind of cognition to another, or from
one historical epoch to another something is preserved, something remains
essentially the same. For example, for someone who believes that scientific
knowledge is accumulated through ages and nothing essential is rejected or
refuted, the historical development of knowledge will appear as a continuous
process,

Piaget and Garcia, speaking of the psychogenesis of knowledge, and
deriving it from actions which are certainly different from thought, make an
explicit distinction between the ‘functional continuity’ or the stability of the
regulatory mechanisms of cognitive development and the ‘structural continu-
ity’ or the mathematical continuity in time of the results of these construc-
tions. The results can change in a leap fashion: ‘this change can include br=aks,
leaps, disequilibria, and reequilibrations.’

We have tried throughout to provide support for the hypothesis,
formulated in the Introduction, that there exists a certain functional
continuity between the ‘natural’, prescientific and the scientific sub-
Ject (where the latter remains a ‘natural subject’ outside of her scientific
activity for as long as she does not defend a particular philosophical
epistemology). If such a functional continuity exists, we can conclude
that the two characteristics we attribute to all knowledge in the field
of sciences themselves are even more general than expected: the relative
absence of conscious knowledge of its own mechanism and the
continuously changing nature of the construction of knowledge. In
‘fact, as the epistemological analysis of scientific thinking finds itself
obliged to go back to its prerequisites, which are constituted by the
cognitive elaborations of prescientific levels, this recursive procedure
confronts us with increasingly unconscious structurings which are
increasingly dependent upon their prior history. (Piaget and Garcia,
ibidem, p. 266)

One can also speak of such ‘functional continuity’ or continuity of
mechanisms in processes of understanding, which, albeit distinct from pro-
cesses aiming at the acquisition of knowledge, cannot be separated from them
in that the two are complementary. At any level, a process of understanding
will necessarily imply the operations of identification, discrimination, gener-
alization and synthesis which will be linked by various reasonings; however,
these operations and reasonings will present various degrees of sophistication
at different levels, and the contents of the acts of understanding will also vary
considerably.
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All more recent analyses of the question of continuity in science, very
much discussed in polemics with neo-positivism, show that the question itself
is not well posed. Piaget and Garcia do this in the way described above after
having discussed in depth the differences in positions of Bachelard, Popper,
Kuhn, Feyerabend and Lakatos and defined their own stand with respect to
these authors. Let me mention only their reference to Bachelard, as his epis-
temology plays a special role in the approach to understanding that is presented
in the present book. Bachelard takes the discontinualist stand and stresses very
strongly the qualitative differences between ‘common knowledge’ and scien-
tific knowledge, considering the former, with its ‘familiar metaphors’ and
‘unquestioned opinions’ as creating obstacles to the latter. Also the historic
development of scientific knowledge characterizes itself by abrupt breaks with
previous findings and ways of thinking: the examples of ‘non-theories’ such
as the ‘non-Euclidean geometries’, the ‘non-Newtonian mechanics’ etc., serve
as a support for Bachelard’s thesis (Bachelard, 1970). What changes from one
phase to another of cognitive development is the ‘epistemic framework’. This
framework is a product of both the cognitive system and the socially accepted
paradigm of science. Unquestioned and partially unconscious, it becomes ‘an
ideology which functions as an epistemological obstacle that does not allow
for any development outside the accepted framework’ (ibidem). The rupture
that is necessary to overcome the obstacle, extend the framework and answer
new scientific questions accounts for the discontinualistic view of the history
of science {or any development of human cognition for that matter).

But again, this discontinuity is only in the products of the cognitive
system; the mechanisms of functioning of this system may remain fundamen-
tally the same.

Another explanation of the unnecessary controversy between continualism
and discontinualism is provided by Cackowski (1979). Considering the ques-
tion of continuity versus discontinuity between the extra-scientific cognition
and the scientific cognition, he presents a model of development of knowl-
edge that shows the illusions of the discontinualism. This model is based on
two points.

The first point is that (a) a complete formalization of scientific language
is an utopia, and therefore never can scientific knowledge be freed from the
impact of the ‘everyday thought’; (b) no matter how rigorous and axiomatic-
deductive our methods of validation are in a particular domain of sophist-
icated scientific or theoretical thought, understanding (and, thereby, the search
for reasons of the choices of axioms, or of the important questions) ultimately
relies on empiric-inductive thinking (Piaget and Garcia, as well as Kuhn
would add that understanding relies also on the predominant world view,
Weltanschauung or ideology which have ‘more in common with society and
culture than with the cognitive system itself; however, the social-cultural and
the cognitive components cannot be dissociated within a single epistemic
framework); (c) the receptive-constructive nature of human thought is capable
of overcoming the following oppositions between the everyday and scientific
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thinking without necessarily completely denying the role of the former in the
coming into being of the latter: objectivity — relativity, objectivity of struc-
tures — subjectivity of structures, objectivity and interiorization of subjectiv-
ity — subjectivity and exteriorization of subjectivity, realism — idealism,
centripetal orientation of the ‘epistemological vector’ (from thing to the mind)
— centrifugal orientation of the vector (from ‘mind’ to objective embodiments
of the mind which are the embodiments of conceptual structures created by
the mind), primordiality of description in relation to explanation — prim-
ordiality of explanation in relation to description.

The second point starts with the assumption that the functioning of the
human thought is of an oscillating nature — between the empirical and the
conceptual-theoretical levels. If one looks only at one of these levels, there is
an illusion of discontinuity, where thought leaps to the other level. In fact,
what happens is that the gap on one level of thought is bridged by the thought
of the other level:

. . . the illusions of discontinualism emerge from the fact that a cer-
tain link in the development of the means of thought [e.g., language],
methods or the object of thought is by-passed. This must occur when
one analyses the process of the development of thought solely on the
factographic level (flat empiricism). We have already said that the

. factual processes of thinking take place between the level of abstraction
and the empiric-objective level of the concrete. Examining the
development of knowledge, of cognition within the framework of
either one of those two levels, we shall not discover any continuity,
because continuity realises itself along a sine. When at one level of
cognition there occurs a gap — there is continuity at another level;
thus, the gap is filled but at a different level. This is the way in which
we see the model of cognition, in which discontinuity and continuity
are dialectically linked . .. The real link which precedes the emer-
gence of abstract thought is to be found not at the level of abstract
thought, but at the level of observation, of a technical or social-
material experiment and activity. Also the real continuation of abstract
thought lies beyond the level of abstract thought and is to be found
in the sphere of an observational, experimental, technical or material-
social utilisation of an abstract thought. It is only through this tran-
sition to the level of the concrete, live utilisation that abstract thought
confirms its informational contents, its existence. The situation is
similar with facts: they become real scientific facts insofar as they are
understood, while their understanding takes place through including
them into a theory. (Cackowski, 1979)

Cackowski concludes with some sad reflections on both the real practice
in contemporary science and the pedagogical practices. By refusing to ‘under-
stand’ (which necessarily implies oscillating between different modes of
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thought) some scientists in fact break with scientific thinking, either reducing
their activity to a thoughtless accumulation of facts or to an ‘equally thought-
less’ non-theoretical formalization. Teaching at the university level (but not
only at this level) suffers from the consequences of such attitudes, providing
students with highly sophisticated methodologies they don’t know what to
do with because they don’t know what are the questions that these powerful
methodologies could possibly answer. By ignoring the unity of cognition,
says Cackowski, academic teachers can create insurmountable obstacles to the
development of the creative scientific thought in general. :

The postulate of unity of cognition should encompass both the dialectic
of the empiric-inductive and the theoretic-deductive knowledge and the dia-
lectic of the concepts used as instruments of action and as objects of thought,
mentioned at the end of the previous section.
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Good Understanding

How is it that there are so many minds that are incapable of under-
standing mathematics? Is there not something paradoxical in this?
Here is a science which appeals only to the fundamental principles of
logic, to the principle of contradiction, for instance, to what forms,
so to speak, the skeleton of our understanding, to what we could not
be deprived of without ceasing to think, and yet there are people who
find it obscure, and actually they are the majority. That they should
be incapable of discovery we can understand, but that they should fail
to understand the demonstrations expounded to them, that they should
remain blind when they are shown a light that seems to us to shine
with a pure brilliance, it is this that is altogether miraculous.

And yet one need have no great experience of examinations to
know that these blind people are by no means exceptional beings. We
have here a problem that is not easy of solution, but yet must engage
the attention of all who wish to devote themselves to education.
(Henri Poincaré, 1952)

The Relativity of ‘Good Understanding’

When a mathematics teacher says ‘My students don’t understand [for example]
fractions’, this does not mean that these students have not experienced acts of
understanding related to fractions. It only means that they have not understood
them well by this teacher’s standards. The students may think they have
understood fractions in a way but, for the teacher, this way was not good
enough. Maybe it was incomplete or superficial, procedural or instrumental,
restricted to concrete examples, rather than general, relational or conceptual,
reaching to the very essence of the notion, etc.

If a mental experience of connecting an object X with an object Y is at
all considered by the understanding subject as an act of understanding the
object X, then, subjectively, the object of understanding has been well under-
stood: Y has to ‘fit in with’ X. If, on the other hand, Y is not considered as
a sufficient basis for understanding X then the subject would say: ‘I don't
understand X.’” (Note that the subject would say this also in the case when he
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or she cannot match any object Y with the object X that he or she intends
to understand. But this may mean also that the subject was trying various
objects Y and none seemed to fit.)

The situation changes dramatically if it is not the subject himself or herself
but someone else who looks at an understanding. Then we have to do with
a normative point of view, which is common especially in the teaching and
learning situations, at school, with its curricula, textbooks and examinations.
Here, some ways of understanding are higher valued than others.

Note that | am saying ‘normative’ and not ‘objective point of view’. Can
we speak of an objectively good or correct understanding of something?

Not in an absolute sense, maybe. But some evaluations can be more
objective than others. For example, if we speak of understanding a concept
belonging to a certain mathematical theory by a student who is aware that he
or she is studying a theory and not revelations about the nature of the world,
and who is also (hopefully) aware of the basic notions and assumptions of the
theory, and the student’s way of understanding this concept stands in contra-
diction with a result of the theory, then we might rightly judge that this
student’s understanding of the concept is wrong. This judgment, albeit rela-
tive to the theory in question, depends only on the logic of the theory and not
on, for example, the mood or the system of values of the judging person.
This is why it is_‘objective’, even if this objectivity is only local.

This does not mean that it would be easy to produce such an objective
judgment: how would one practically check that a person’s understanding is
not contradictory with any statement of the theory? There may be an infinity
of them. It is much .impler to prove that a student’s understanding is not
perfect: one contradiction would suffice. This is why the mathematics educa-
tional literature is full of stories of students’ ‘errors’, ‘lack of understanding’,
‘misconceptions’, ‘misunderstandings’, etc. Accounts of good understanding
are rare, and those that exist are often poorly justified.

When it comes to understanding not a particular concept of a theory or
a particular method but the theory as a whole, when, for example, one asks
the question ‘what is the point of this theory?’, then the evaluation must be
more subjective. Here the problem is not so much with the meanings as with
the significance, and criteria of significance are not a matter of just the logic.
The judgment depends on one’s philosophical attitudes towards scientific
knowledge, views on the raison d’étre of the theorizing thought, on the goals
of learning mathematics, on one’s theory of intellectual development, etc.
The judgment of a person’s way of understanding will be relative to cultural
norms, which are not justified by reference to some logical system but by an
appeal to traditional values.

Let me illustrate these problems of relativity with the story of a student
having trouble in understanding linear algebra (Sierpinska, 1992b). We shall
see here the clash between the subjective feeling of understanding or not
understanding and what is considered to be good understanding by teachers.
There will be two aspects of this clash: one in which the student does not feel
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he has understood, but his understanding may be considered as just fine by
the teacher, and another, where the student thinks he understood but his
understanding is inconsistent with the theory.

Example: Raf’s problems with understanding linear algebra

Raf (fictitious name) is an undergraduate student, a mathematics major
who has successfully completed his first-year courses. He passed the two
linear algebra courses with an A and a B buc he does not think he understood
linear algebra well enough. In an interview a week after the final examina-
tions, he kept comparing Linear Algebra with Calculus which he felt he
understood a lot better. There were many reasons for which he thought ‘Linear’
was more difficult. One of them was that it was hard to see the point of linear
algebra, while, for ‘Cal’, it seemed to be quite obvious. Why was everybody
repeating that linear algebra is so important? He asked his teachers about it
and what he heard was often: ‘if you continue in mathematics, you will see
why it is so important.” Some people added that linear algebra is useful in
many other domains of mathematics as well as in applications. Raf himself
said that ‘I can see that if you are using computers and if you have to do, like,
applied mathematics, then of course I can see where it comes in handy.” He
also said that he finally is starting to understand that linear algebra, ‘basically,
it’s a new form . . . a new way of communicating mathematics’. But he com-
plained about not being told that by the teachers right away, as well as about
vectors and matrices, ‘how important they are in all other fields, for example,
in statistics, ...” However, he was not happy with these explanations of
the importance of linear algebra. The interesting thing was that, when he
was arguing for the importance of Calculus, he wouldn’t use much stronger
arguments — just the applicability of Calculus in engineering. The arguments
why Calculus was easier were more convincing: ‘In Cal you can visualize a lot
more.’ In fact, the Calculus course was at a much lower level of synthesis and
abstraction than the Linear Algebra course. The students’ tasks were mainly
to calculate areas, volumes. They didn’t have to ‘show proofs’, like in Linear
Algebra. Therefore, there is something else that Raf is not understanding
about linear algebra, not just why it is so important.

In the citation below ‘I’ stands for ‘interviewer’, ‘. . ." mark the suspen-
sion of voice; *{. . .}’ marks an omission of a part of the protocol.

Raf: .. .it’s maybe that in Cal you can visualize a lot more. But in
linear . . . It’s not that I don’t like linear, it’s that I don’t under-
stand linear. You know, I've like had two courses now and I
passed them both but it’s not something that I can say that I
understand, you know, I know how to do some problems,
I know how to do inner product space. I liked that part. But
there are some of the problems ... Until now I still haven’t
had that feeling where I completely understand what linear
algebra is all about . . . Like, I don’t see the point of it. {. . .}
Everybody keeps saying that linear is so important, it’s so
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important. I sti]l haven’t seen that yet. I still don’t understand
linear. You know, I can see things. ! could now understand
more what a vector space is. But last semester I was thinking
what do they mean by a vector space ... What’s so different
about that space than any other space, you know?

L And what’s so different about it?

Raf: Oh, it’s just the axioms that you have to use to remain in the
vector space . . . That’s what I have come down to realize. It’s
just a different way of dealing with vectors, in particular, and
matrices, in different axioms, eight of them, about addition
and multiplication, whatever . . . And if they follow these eight
rules you are in a vector space. The same about subspaces.
They have to be closed under addition and scalar multiplication
and it’s in the subspace and that’s what I see of it. But the
general idea {...} why linear is so important ... Maybe if
teachers explained to students right away what was the import-
ance of linear, you know, the underlying importance of it,
maybe we would have an easier understanding of it. Like al-
ways when we talk about it we find linear is very abstract, you
know. {. ..} Like, I understand vectors {. ..} but what I don't
understand is their point. .. Like, I don’t understand the im-
portance of T-invariant subspaces because I don’t understand
them. I have a little understanding of that but it’s not very
strong. You know what I find is difficult {. ..} sometimes
teachers {...} would go to show us things that are not so
difficult but just a little bit too far from us. ...

L]

The problem of Raf and many other students in his class was that, while
they were still at the inter-level of algebraic thinking (in Piaget and Garcia’s
terminology), the whole course was conceived in terms of the trans-level: it
contained strong synthesizing results such as the Cayley-Hamilton theorem,

.the Primary Decomposition Theorem, the Jordan canonical form of linear

operators and matrices. The main objects of study were not operations on
vectors in particular vector spaces but operations on whole vector spaces,
linear operators, classes of vector spaces, classes of subspaces such as T-invariant
subspaces, relating the subspace with a linear operator on the space. In order
to understand what is the point of introducing these concepts, one must have
a kind of bird’s eye view on the whole problématique of linear algebra and one
must be at the trans-level of algebraic thinking.

Raf, and many other students, had a very hard time understanding the
concept of T-invariance. In the interview, when we spoke about it, Raf’s
understanding appeared as a real mess. Asked to explain what is a T-invariant
subspace, he said: ‘One that maps onto itself’ (1), which seems close (except
for ‘onto’ instead of ‘into’, and there is no mention of the operator). It turns
out, however, that he thinks not so much of subspaces as of vectors being
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invariant. A vector is invariant if its multiples remain in the subspace: ‘any
multiples of those vectors will be T-invariant, will still be in the subspace’ (2).
He also writes: ‘v € W, kv € W’ (3). This sounds as if all vectors in any
subspace would be T-invariant, as subspaces are closed under scalar multipli-
cation, anyway. It looks independent of the operatcr, also. The operator does
play some role, however, in Raf’s understanding of T-invariance. Asked to
write symbolically what he said in (1), he puts: ‘T(kv) =kT(v) € W’ (4). This
now looks as if any vector is T-invariant under any linear operator T. But
maybe Raf wanted to write rather something like ‘T(v) = kv’ which looks
more like a definition of an eigenvector. Indeed, Raf somehow associated T-
invariance with eigenvectors or vectors that are mapped onto multiples of
themselves (which is not so stupid, after all). He said, later, some time after
I explained to him that a vector that maps onto a multiple of itself is usually
called eigenvector, that he learned it that way from some book: “When I
looked at it [T-invariance] in another book, the way they were describing it,
they were using eigenspace, and the eigenvectors, and so that’s where I got
these ideas . . . You know, always k times v . .. when v is in W then kv is in
W’. He repeats here the same kind of expressions he already used in (3), and
(2), but maybe he thinks of kv as being the image of v under T.

While T-invariance is defined as a property of subspaces, Raf used to
think of it as a property of vectors, which can be a symptom of his being at
the inter-level of algebraic thinking and not yet at the trans-level. But, as he
said himself, he used to live under the assumption that he understood T-
invariance correctly.

Raf: {...} you think you understand and you ask and you are cor-
rected and it turns out that you understood it the wrong way.
And I'd go around under the assumption that I understood it
the right way.

{...}

Raf: {. ..} the teacher doesn’t notice that the students are having a
problem because the students are not speaking up. It’s not a
fault of either it’s just . . . The concepts are sometimes . . . You
are learning something, or you are supposed to be learning
something . . . I should say I. .. Ilearn something but it turns
out that I am learning it completely wrong. You know? But it
works!

L For a while.

Raf: For a while and when you get to a problem, and this doesn’t
work, and then you have to go back. And in linear that seems
to happen a lot more ‘cause in Cal you know right away if
what you are doing is wrong or right.

It is true that in linear algebra courses, especially if they are done in
the chalk-and-talk style, with little conversation with students, the students’
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understanding is not probed enough. Most of the questions and problems are
straightforward exercises (find the matrix representations, find eigenvalues,
diagonalize, etc.) or proofs. Neither put into question the students’ under-
standing. In exercises, they can get a correct answer by blindly applying a
method shown in a model solution. The proofs do not nrobe the studente’
knowledge, either, because many students don’t even know how to start
doing a proof, so they do not invest any previous knowledge into such an
exercise; therefore, when they read the proof written by the textbook’s author

or teacher — this proof does not contradict any of their assumptions. [End of
example]

Various Approaches to Research on Understanding in
Mathematics Education

In spite of all the theoretical problems that one may have in defining ‘good
understanding’ in mathematics, the question cannot be escaped: it is import-
ant, both for the teachers and the students. It is so important that, in
mathematics education, ‘to understand’ often means ‘to understand well’, and
in many theoriss of understanding the focus is only on different levels of
‘goodness’ of understanding, or kinds of understanding, some of which are
better that other. Some researchers endeavour to uncover the mechanisms of
thought that lead to good understanding; some elaborate on mental activities
that enhance understanding, etc.

Generally speaking, one could distinguish three main approaches to the
question of understanding in mathematics education. One of these approaches
focuses on developing teaching materials that would help the students to
understand better. Another concentrates on diagnosing the understanding in
students. A third one is interested in the more theoretical issue of building
models of understanding. Some of these models are more prescriptive (what
are the mental and other activities that have to be performed in order to
understand); other are rather descriptive (what is it that people do in order to
understand; or how people understand mathematics or particular mathematical
topics). This does not mean that any researcher would fit strictly into one of
these categories and not in another. Larger research projects normally envisage
all three of these preoccupations. It is only particular publications that might
fit into a single category. )

In mathematics education there is quite a number of publications that
explicitly deal with understanding. Some of them are referred to in this book.
I shall not undertake the task of classifying them into the three approaches.
Maybe I can leave it to the reader. For example, where would you put
‘Children’s understanding of mathematics: 11-16’ cdited by K. Hart (1981)?

Let me refer to some Polish authors, less known to the non-Polish speak-
ing audience. For example, Z. Dyrszlag, who has worked on understanding
quite intensively in the 1970s, under the supervision of A.Z. Krygowska. He
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proposed, in his 1972 paper, to assess a student’s level of understanding on the
basis of well-chosen questions and problems that the student was able to
answer and solve. (Such was also the approach used in Hart’s book). In
Dyrszlag’s further papers (1978, 1984), there is a shift from just diagnosis to
‘control’, the latter meaning not only evaluation but monitoring in the aim of
improvement. Control requires a vision of a certain ideal state and Dyrszlag
went into some more theoretical considerations, distinguishing, for example,
between a descriptive (static) understanding and an operative (dynamic) under-
standing. He also proposed to determine a person’s understanding on the
basis of a set of abilities. These ‘abilities’ were not content specific: they were
meant to be applicable to processes of understanding in mathematics in general.
However, it can be seen that Dyrszlag had in mind the more advanced formal
and rather pure than applied mathematics. This attitude towards mathematics
was characteristic of Krygowska and her school. Dyrszlag enumerated alto-
gether sixty-three abilities grouped in twelve blocks that would account for
a good understanding. Related, for example, to understanding definitions,
there are abilities such as: the ability to find errors in an incorrectly formulated
definition; to give examples and non-examples of the defined concept; to
produce counter-examples in order to prove that an assumption is essential; to
explore limit cases, to write a definition in two different symbolic conven-
tions, etc. With respect to solving problems Dyrszlag speaks of the ability to
‘solve inverse problems’.

This ability seems particularly interesting. Concerned with the Piagetian
idea of invertibility of mental operations and the concrete operational stage,
we recommend that the primary-school child be taught addition of a number
together with subtraction of one as two mutually inverse operations. The
same with multiplication and division. But we somehow forget about this
useful principle when it comes to teaching mathematics at the university. For-
example, the standard question in the linear algebra courses is: given a linear
operator, find its characteristic polynomial. Why not ask the question: given
a polynomial, find a linear operator for which this polynomial is the charac-
teristic polynomial; how many different (in what sense?) linear operators can
you find? How many non-similar matrices would have a given polynomial as
their characteristic polynomial? What if a minimum polynomial was also given?
An investigation into such questions has led some (the investigation was
optional) of my undergraduate linear algebra students to a better understand-
ing of the canonical forms of linear operators and matrices.

Another Polish didactician, M. Klakla, worked on mathematical under-
standing within a similar framework, but he interested himself with specific
mathematical topics, for example, with understanding quantifiers in math-
ematical logic (Klakla et al.,1992). The first step of the research consisted in
a detailed analysis of the teaching material both from the logical mathematical
and the didactical points of view. This analysis led to setting up a list of
‘aspects of understanding logical quantifiers’. In a second step, test questions
were designed such that, to answer them, the student had to be aware of each
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and all of these aspects. An apalysis of the students’ responses allowed them
to order the targeted aspects with respect to their difficulty (rate of failure).
In the case of quantifiers, it was found, among others, that the most difficult
thing seems to be concluding from false general statements to existential
statements and their negation, as well as from true éxistential statements to
general statements or their negation. Klakla’s approach is perhaps a little less
‘pragmatic’ than that of Dyrszlag in the sense that it focuses rather on the
diagnosis than on monitoring students in a teaching process.

Mo&els of Understanding

As we have seen, researchers have different goals in mind as they approach
the question of understanding in mathematics. Some of these goals are more
pragmatic (to improve understanding), some are more diagnostic (to describe
how students understand), some others are more explicitly theoretical or
methodological. But whatever the primary goal, some theory of understand-
ing is always in the background, whether explicitly laid out or not.

There are at least four kinds of such theories or models. One kind are
those that are centered on a hierarchy of levels of understanding. The Van
Hiele model of understanding in geometry belongs here (Van Hiele, 1958;
Freudenthal, 1973, p. 125; Hoffer, 1983; Guttiérez et al., 1991). There are other
examples, referring to other conceptual domains (Bergeron and Herscovics,
1982, elaborate on levels of understanding functions; Herscovics and Bergeron,
1989, propose a three-tiered model of early understanding of natural numbers;
Nantais and Herscovics, 1989, study the difficulties of early multiplication;
Peled, 1991, concerns himself with integers). There are general models not
referring to a particular mathematical concept, like, for example, the Pirie and
Kieren ‘recursive model of understanding’ (1989).

Other kinds of theories of understanding are those whose main idea is
that of an evolving ‘mental model’, ‘conceptual model’, ‘cognitive structure’,
and the like. Greeno does not explicitly speak of a ‘model of understanding’
— he is interested in cognition in general — but in his conception of knowing,
understanding (as well as reasoning) is based on mental models, so he would
fall into this category. Lesh et al. (1983) are speaking of ‘conceptual models’.
This idea was used and developed by other researchers as well {e.g., Arzarello,
1989). ‘Cognitive structure’ is, of course, a Piagetian term and several authors
do refer to him explicitly in constructing their models of understanding. For
example, Dubinsky and Lewin (1986), propose what they call ‘genetic decom-
positions’ of mathematical concepts to describe the development of cognitive
structures in relation with the learning of these concepts. These ‘genetic de-
compositions’, for a particular mathematical concept, the authors say, ‘map
the way in which students empirically formulate their understandings for the
first time’, and they ‘generate an account of the arrangements of component
concepts and cognitive connections prerequisite to the acquisition of these
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concepts’. Dubinsky and Lewin are aware that their model does not reach to
the act of understanding itself, and,

seems only able to explicate all the prerequisite structures, both
necessary and sufficient, for the cognitive act to occur. It can provide
the readiness, but the act itself remains inaccessible and idiosyncratic,
dependent on the particular way in which a given subject notices and
organizes his/her experience. It would seem one never has direct access
to cognitive processes . . . but, at best, only to what an individual can
articulate or demonstrate at the moment of insight itself. Precisely
what occurs at that moment seems as inaccessible as it is essential,
(Dubinsky and Lewin, 1986) '

A third kind of model views the process of understanding as a dialectic
game between two ways of grasping the object of understanding. The dialectic
couple can be composed of the concept consider/ed as a tool in solving problems
and this same concept viewed as an object of study, analysis, theoretic devel-
opment: the dialectic of instrument and thematization. For example, R.K.
Skemp’s opposition between the instrumental and relational understanding,
R. Douady’s dialectique outil-objet, and A. Sfard’s operational versus structural
understanding in algebra seem to belong to this trend.

The fourth kind could be called the historico-empirical approach. Here,
attention revolves around obstacles to understanding encountered both in the
history of the development of mathematics and in today’s students.

The Historico-empirical Approach to Understanding in
Mathematics

This approach is close to that taken by Piaget and Garcia in their Psychogenesis
and the history of science. However, there are some subtle differences which
stem from the different perspectives of epistemology and education. What is
relevant to epistemology are the ‘mechanisms of development’, stages, trends,
laws (such as the law of equilibration of cognitive structures, and the functioning
of reflexive and reflected abstraction). For Piaget and Garcia, the essential
problem is,

... how to characterize the important stages in the evolution of a
concept or a structure or even of the general perspective concerning
a particular discipline, irrespective of accelerations and regressions,
the impact of precursors or ‘epistemological gaps’. .. The central
problem, in fact, is . . . that of the existence of the stages themselves,
and particularly that of explaining their sequence. (ibidem, p. 7)

But, from the point of view of mathematics education, what is interest-
ing are exactly these ‘accelerations and regressions’ and ‘epistemological gaps’,
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as well as ‘epistemological obstacles’ and difficulties because it is assumed that
to learn is to overcome a difficulty. That an equilibrium has to be finally
attained — this is taken as a banality; the problem is that without first
destabilizing the student’s cognitive structures no process of equilibration will
ever occur, i.e., no learning of something radically new will ever occur. The
construction of meaning seems to be determined not by the stages — at least
not only by the positive stages of a move towards a change but also by the
negative impact of various norms and beliefs and ways of thinking that con-
stitute obstacles to this change. It is thus interesting, for a mathematics educator,
that, in the early period of the history of Calculus, mathematicians had some
difficulty in discriminating between what we now call the convergent and the
divergent series and that Leibniz could argue that the sum of the infinite series
1-1+1-1+...can be considered as 1/2. It is also quite revealing that
Cauchy thought that the limit of a convergent sequence of continuous functions
should be a continuous function, and that the concept of uniform convergence
was invented to amend the error. The study of the contexts and mental frame-
works in which such understandings appeared and were overcome can help
both in identifying today’s students’ difficulties, and in finding ways of deal-
ing with them.

Here we come across another difference between the epistemological and
the educational perspective. Epistemology may stop after having defined the
‘stages and mechanisms of development’ or even after having identified the
obstacles to changes of modes of thinking. For a mathematics educator, this
is only a starting point. The central problem of education is not so much the
description and categorization of the processes of development of knowledge
as the intervention into these processes.

Also, at this hour and date, we are much less sure about such concepts
as ‘development’ or ‘progress’ of knowledge. Epistemological ‘obstacles are
not obstacles to the ‘right’ or ‘correct’ understanding; they are obstacles to
some change in the frame of mind. While we would accept to speak of levels
of complexity of thought, and certainly the trans-level involves more com-
plexity than the inter-level, we feel much more reluctant to judge a system of
values and categories of thought that go with the former as more ‘progressive’
than the one that goes with the latter. We have to prepare our students for a
lifetime of changes, adjustments of ways of thinking and understanding: if
there is anything we have the obligation to prepare students for it is a readiness
for a constant revision of these.

The need of ‘reorganizations’, over which Piaget and Garcia pass rather
quickly in their work, is indeed one of the most serious problems of education.
In teaching we do not follow the students’ ‘natural development’ but rather
we precede it, trying, of course, as far as possible, to find ourselves within our
students’ ‘zones of proximal development’. But we cannot just tell the stu-
dents to ‘now reorganize’ their previous understandings, we canrot tell them
what to change and how to make shifts in focus or generality, because we
would have to do this in terms of a knowledge they have not acquired yet.
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So we must introduce the students into new problem situations and expect all
kinds of difficulties, misunderstandings and obstacles to emerge and it is our
main task as teachers to help the students in overcoming these, in becoming
aware of the differences; then the students will perhaps be able to make the
necessary reorganizations. :

The use that educational research makes of historico-critical analyses,
such as those of Piaget and Garcia, is much more content-specific and much
more instrumental. For mathematics education, general developmental theories
are only a means to elaborate on and design the development of particular
mathematical concepts and processes. For epistemology, this hierarchy is
reversed: general theories are the very goal of its research and the study of
particular processes is but a means to attain this goal.

The fundamental assumption that underlies the historico-empirical ap-
proach is not that of a parailelism in the contents between the historic and
genetic developments of scientific understanding. What is considered as re-
sponsible for the similarities that we find between our students’ understandings
and the historical understandings, is not the supposed fact that the ‘philogenesis
recapitulates ontogenesis’ but, on the one hand, a certain commonality of

. mechanisms of these developments (Piaget and Garcia, ibidem, p. 28), and, on

the other, the preservation, in linguistic tradition and the metaphorical use of
words, of the past senses (Skarga, 1989).

According to Piaget and Garcia, one of the mechanisms of knowledge
development is the ‘sequentiality’ in its construction. ‘Sequentiality’ means
that ‘each stage is at once the result of possibilities opened up by the preceding
stage and a necessary condition for the following one (ibidem, p. 2). As every
next stage starts with a reorganization, at another level, of ways of under-
standing constructed at the previous stage, the understandings of the early
stages become integrated into those of the highest levels. Therefore, the
meanings from the early stages are not lost, they are implicated in future
understandings, and thus, also, in their history. The second meéchanism is
one that ‘leads from intra-object (object-analysis) to inter-object (analyzing
relations or transformations) to trans-object (building of structures) levels of
analysis (ibidem), which is common to both the individual and the historical
development.

Another source of the kinship between students’ understandings and those
encountered in the history of science and mathematics is found in the bifurcation
of ways in which words that have once played the role of fundamental cat-
egories of thought change their meaning. One branch of this bifurcation can
be called ‘rationalization’ as when a word or expression becomes a scientific
term, included in a theory. Another branch can be called ‘metaphorization’:
the word acquires a metaphorical meaning or the value of a symbol and lives
in the vernacular (Skarga, ibidem, p. 135). For example, the notion of mass,
in physics, has passed from the ordinary meaning of something big or heavy
through the Newtonian meaning relating it to force and acceleration, through
the mass from relativity theory and to the mass from Dirac’s theory. Bachelard
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describes these stages as stages of rationality: the classical, the relativistic, the
dialectic (Bachelard, 1970). But, in the vernacular, we still refer to a body of
matter, a ‘shapeless mass’ or a ‘sticky mass’ of something, we also speak of
a ‘mass of people’ . .. The same could be said of such categories as number,
infinity, cause or chance and probability. Rationalization and metaphorizations
are processes that go in different directions. While rationalization breaks
linguistic graditions and ontologies that they carry, metaphorization preserves
them in ways that are not quite literal, but still bear some of the old emotions
and values. Skarga writes,

This leap into metaphor is not a break with experience, although it
could be a result of distanciation from the literal meanings thanks to
the verification of experience by scientific methods. It consists in a
fixation of very strong primary experiences, together with associa-
tions that they awake, filled with emotions and values and a rich
tissue of imagery . . . There exist experiences so strong that time cannot
destroy them. They become sources of whole theories such as [for
example], the theory of elements, and when the theory is abandoned,
they express themselves in a network of metaphors, and it is exactly
this network that has the power of survival not as a remembrance
long forgotten and put aside but as a live word . . . Language is a real
treasure-house of thoughts and images of which we are the
heirs . . . (Skarga, 1989, pp. 136-7)

‘Good Understanding’ in the Historico-empirical Approach:
Significant Acts of Understanding

Our definitions of an act and process of understanding did not, a priori,
presume external evaluation. An act or process of understanding had to be an
act or process of understanding for the understanding -subject. In speaking of
the ‘conditions of understanding’ we had in mind those conditions under
which the understanding subject is able to experience an act that feels like an
act of understanding. However, the more normative point of view cannot be
avoided, and we shall have to tackle the question of good understanding, even
though we know that any definition of good understanding must be relative
to some set of norms, whether philosophical or logical.

Considering a single act of understanding of an object X we can evaluate
it according to whether the basis of understanding Y is conforming to some
accepted or expected way of understanding the object X. We can use the
criteria of logical consistency within a theory, or criteria dictated by a certain
system of beliefs (about the nature of mathematics, for example, or about the
goals of learning mathematics). We can also evaluate it by reference to the
subject’s internal cognitive system and system of beliefs and use the criterion
of internal consistency.
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We can speak of the significance of an act of understanding, and not only
of the internal or external consistency of its basis. However, in this case we
would have to take into account not an isolated act of understanding, but this
act as involved in the network of a process of understanding. Also, we would
have to have an idea of what we aim at: a vision of an ‘ideal’ way of under-
standing of the object in question. Then we could judge whether the subject
is ‘going in the right direction’, whether a given act of understanding brings
him or her closer to that ‘ideal’ vision.

With such a vision in mind, some acts can be considered as more signifi-
cant or important than others. But how do we'judge that one act of under-
standing is more significant than another? This is where the historical study
comes in handy. If we know what were the major breakthroughs in the
history (or pre-history) of a theory; what questions triggered sudden new
developments; what were the understandings that caused stagnation, then we
are able to identify those acts of understanding that are really important.

But in the evaluation of understanding, the developmental stage of the
child or student is an important factor. Although the early understandings are
implicated in the ‘grown-up’ understandings, they may not be transparent,
and the history of mathematics is the history of grown-up mathematics.
Therefore, historical analyses have to be done in interaction with empirical
studies of how mathematical concepts develop in children. Thus, an act of
understanding can be judged significant, if it marks a transfer to a different
level of thinking, for example, from the intra- to the inter- level, or from
thinking in complexes to conceptual thinking, if we wish to work within the
framework of Vygotskian psychology.

In general, we propose to judge as more important than any other those
acts of understanding that consist in overcoming an obstacle, whether devel-
opmental, or epistemological — related to the mature scientific knowledge.

Let us take a simple example. When the notion of power zero is intro-
duced by decreeing that a° = 1 some students will simply add this information

- to the mathematical rules they remember, without giving much thought to it.

Others will accept it as a useful convention allowing to preserve the - ntinuity
of the exponential function y = a*. But yet other students will revolt against
it by saying that the very inscription a° does not make sense, if taking to power
n means to multiply a by itself n-1 times. In this case we say that conceiving
of power as repeated multiplication is an obstacle to understanding the ex-
ponential function.

It seems reasonable to admit that an understanding that is founded on a
question or on an identification of something we do not quite understand, is
superior to an understanding, unproblematic but banal and often merely verbal
of 2° = 1 as a convention and one more rule to remember. It goes deeper into
the meaning of this convention, it starts a search for its reasons. In fact, it
implies a revision of the notion of power — an overcoming of an obstacle; it

involves a construction and not just a memorization of the concept of real
power (a*x in R).
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One doubt that comes up here is that judging understanding in terms of
epistemological obstacles makes this judgment even more relative, because,
one may say, an obstacle is always an obstacle to a change to a different way
of understanding or knowing, and how do we know that this new under-
standing is better than the old one. However, we must note that something
(a belief, a scheme of thinking) functions as an obstacle often only because
either one is unaware of it, or because one does not question it, treating it as
a dogma. Overcoming an obstacle does not mean switching to another sys-
tem of beliefs or another persistent and believed universal scheme of thinking
but rather in changing the status of these things to ‘one possible way of seeing
things’, ‘one possible attitude’, or ‘a locally valid method of approaching prob-
lems’ etc.

The Philosophy of Epistemological Obstacles

Why do we think that good understanding has to be achieved through
‘overcoming obstacles’? Why do processes of understanding have to be of
such dramatic nature? The reasons lie in our assumptions about both the
intellectual development of an individual and the historical development of
knowledge. The first assumption is that from one level of knowing and under-
standing to another, there is a need of at once integration and reorganization.
Coghition is not an accumulative process. This is assumed to hold both for
the psychogenesis and the history of scientific knowledge. This psychological
view is in harmony with the philosophy of Bachelard, for whom, to ‘find the
truth’, ‘intellectual repentance’ is necessary:

Reflecting on a past of errors, the truth is found in a real intellectual
repentance. In fact, one knows always against some previous knowl-
edge, by destroying ill-built knowledge, by overcoming that which,
in the mind itself, is an obstacle to spiritualization. (Bachelard, 1983,
p. 14)

Thus, new understanding can only partially be built on previously de-
veloped ways of understanding. Hence, for example, at school, when we pass

from whole numbers to integers, or from arithmetic to algebra, we must

leave room for the ‘intellectual repentance’ — a reorganization of previous
understandings. While integers can be regarded as a generalization of natural
numbers, we must keep in mind that children’s understanding of the latter,
as it develops in the first school years, cannot serve as an immediate basis for
this generalization. Pupils do not grasp natural numbers as a whole, as a
structure equipped with certain operations and which is not closed under
some of these operations. But it is only such understanding that can be a basis
for the generalization. Quantities of something, amounts of apples and cakes,
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and operators that tell you how many times you are taking such and such
quantity — the usual understanding of numbers by kids that young — cannot
serve as a basis for understanding the ring structure of integers. And this is
almost what is expected of them, if we think they will find some meaning
in the rule ‘minus times minus is plus’. Integers are already a first step into
algebra which, far from being ‘generalized arithmetic’, is a methodology of
mathematics. Arithmetic, from the point of view of algebra, is already the
theory of numbers. :

Other assumptions of the philosophy of epistemological obstacles are
related to the positivistic illusions of the possibility to build scientific knowl-
edge on the basis of solely observation and logic in a way that is completely
free from any ‘metaphysical’ considerations. In fact, the notion of epistemo-
logical obstacle came into being in Bachelard’s polemics with neo-positivism
or logical empiricism.

We cannot do without ‘metaphysics’ in scientific understanding and this
means that epistemological obstacles are unavoidable. Our beliefs about the
nature of scientific knowledge, our world views, images that we hold and that
are imprinted in the language that we use, schemes of thinking — all form the
starting point for our dealing with scientific problems as much as they bias
our approaches and solutions. They are the necessary props as well as obsta-
cles to a ‘good understanding’. Their overcoming requires a rebuilding of the
fundamental understandings and this leads to philosophical considerations.
It always comes to that when scientists start to reflect on the basic notions
of their theories. This happens also in mathematics. Major breakthroughs in
mathematics are often accompanied by discussions, within the community,
about what does the result mean for mathematics as a whole, for the certainty
of the mathematical knowledge, for the admissible methods of proof, etc.
This is what happened with Godel’s theorems, the four-colour problem . . . In
June 1993, Fermat’s Last Theorem was announced proved by Andrew Wiles
(June 23 in Cambridge, Wiles declared that he can prove Taniyama conjecture
for semistable elliptic curves over Q, which implies Fermat’s theorem). What
philosophical discussions and reflections will this historic event give rise to?
One interesting thing about this proof is that it is a result of an incredibly
collective effort. As Ken Ribet put it: “The method of Wiles borrows results
and techniques from lots and lots of people. To mention a few: Mazur, Hida,
Flach, Kolyvagin . ..’, and Wiles and Ribet themselves. In December of the
same year there was a’rumour about there apparently being a gap in the proof:
mathematicians did not take Wiles” announcement for granted, they started on
a job of verifying it, probing it from various points of view. Doesn’t this
recent history tell the more general public about how mathematics come into
being, as well as about the possibility of sharing an understanding of the most
abstract ideas and being able to communicate them?

Heidegger (1962) claimed that ‘the real movement of the sciences takes
place when their basic concepts undergo a more or less radical revision which
is transparent to itself”:
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The level which a science has reached is determined by how far it is
capable of a crisis in its basic concepts. .. Among the various dis-
ciplines everywhere today there are freshly awakened tendencies to
put research on new foundations. Mathematics, which is seemingly
the most rigorous and most firmly constructed of the sciences, has

. reached a crisis in its ‘foundations’. In the controversy between the
formalists and the intuitionists, the issue is one of obtaining and secur-
ing the primary way of access to what are supposedly the objects of
this science. (Heidegger, 1962, pp. 29-30)

For many practitioners of science, complying with the positivistic stand-
ards would mean resigning from understanding at all, because understanding
requires harmony in thoughts and our thoughts are not divided into ‘scien-
tific’ and ‘philosophical’. We, as understanding subjects, are indivisible wholes.
We have already referred to Heisenberg’s position in this respect, in relation
to essentialism. Let us come back to his illuminating comments about under-
standing quantum theory. What he says is that all the difficulties with under-
standing quantum theory appear exactly in the junction between experimenting
and measuring on the one hand, and the mathematical apparatus on the other,

and to overcome them ‘true philosophy must be practiced’ (Heisenberg, ibidem,
p. 283).

Of course, I can agree with the requirement of the greatest possible
clarity in concepts; but the prohibition of reflection on more general
questions, on the grounds that there are no clear concepts there, does
not appeal to me at all; such limitations would make the understanding
of the quantum theory impossible . . . Physics consists not only in
experimenting and measuring on the one side and the mathematical
apparatus on the other, but in the place of their junction true philo-
sophy must be practiced . . . I suspect that all difficulties in under-
standing quantum theory appear exactly in this place, usually passed
over in silence by the positivists; and passed over exactly because it
is impossible to use precise concepts there. The experimental physicist
must speak about his experiments, and in doing this he is de facto using
notions of classical physics, about which we know that they are not
exactly adjusted to nature. This is a fundamental dilemma and it cannot
be simply ignored . .. You know, of course, the poem of Schiller
“The allegory of Confucius’ and you know that I especially like the
following words there: ‘Only completeness leads to light and truth
lives in the deeps’ (Nur die Fiille fiihrt zur Klarheit, und im Abgrund
wonnt die Wahrheit] Completeness here is not only the completeness of
experience but also completeness of notions, various ways of think-
ing about our problem and phenomena. It is only thanks to the fact
that one can speak about the peculiar relations between the formal
laws of the quantum theory by using a variety of notions, which then
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illuminate them from all sides while seeming contradictions are brought
to our awareness, that it is possible to bring about changes into the
structures of our thinking, which changes are the very condition of
understanding quantum mechanics . . . When speaking [about quantum
theory] we are forced to use images and allegories which express, in
an imprecise way, what we think. Sometimes we cannot avoid a con-
tradiction, but, using images, we are able to somehow come closer to
the real state of things. We must not, however, deny the existence of
this state of things. (Heisenberg, 1969, pp. 283-5)

Epistemological obstacles are very likely to be found in sciences that raise
questions concerning reality, and, therefore, also questions about the nature of
being and our possibilities of knowing it, about which we have all sorts of
preconceived ideas. It would seem, a priori, that the abstract mathematical
knowledge is less prone to sufier these. That this is not exactly the case — we
shall see from the example that follows. '

Epistemological Obstacles in Mathematics:
The Case of the Bolzano Theorem

Let us see, as an example, how epistemological obstacles have functioned in
the historical process of understanding the theorem of Bolzano. We base our
analysis on the historical study of Daval and Guilbaud (1945).

By the ‘Bolzano theorem’ we mean the following theorem: a function
continuous in the closed interval a £ x < b passes from one value to another
by all the intermediate values, i.e., for any y such that f(a) < y < f(b) or f(a)
>y > f(b) there exists a number ¢ between a and b such that f(c) = y. This
theorem is also called the Darboux property theorem.

For Daval and Guilbaud the most important mental operation in math-
ematics was generalization. The way in which they present the history of
Bolzano theorem is meant to support this claim. I hope to show here how,
in fact, all four fundamental operations of understanding interact in this history,
and how some of the crucial acts of understanding in it consisted in overcoming
an epistemological obstacle.

From a Computational Technique to the Concept of Continuous Function

According to Daval and Guilbaud, the Bolzano theorem had its sources in an
attempt to understand the technique of successive approximations used to
compute radicals of various degrees in view of its generalization to a method
of solving equations of the type f(x) = c.

The technique of finding a radical x = "™Vc consisted in, first, guessing two
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natural numbers a and b such that a" < ¢ < b" and then continuing to find
narrower and narrower intervals including x: :

a<...23, <2, <...X...<b, <b <...<b

Both sequences approached x but, most of the time, none of the approxima-
tions was the number x.

The conviction that the number "¢ exists, however, was based on a visual
representation of the solution of equations like x" = ¢. Both curves, y = x" and
y = ¢ are ‘continuous’, have no gaps; therefore they must intersect in some
point (x,y); X is exactly the n™ radical of c:

An attempt to generalize the technique to solving equations of the type
f(x) = ¢, where f is any function, must have posed the question of the condi-
tions under which the technique really works. In particular, the intuitive notion
of ‘continuous’ function had to be scrutinized. In the nineteenth century, at
the age of ‘arithmetization of analysis’, of systematization of concepts, the
image of a ‘line without gaps’ couldn’t be satisfactory any more. And, from
the practical point of view, this visual definition was of no help in studying
the behaviour of particular functions. Cauchy had had the idea to reject all the
(superfluous) visually based reasons for which mathematicians thought the
technique worked. and focused his attention on the technique itself.

He probably tried to imagine situations where the technique would lead
to false conclusions, i.e., situations in which the test on a, and b, would
always work but the root of the equation f(x) = ¢ would not exist. In looking
for the two sequences of approximations a, a;, a,, ...,and b, b;, b, ... we
check the consecutive terms by verifying whether ¢ or f(x) is between f(a,)
and f(b,). Well, it may happca that we always get f(a,) < ¢ < f(b,) and
nevertheless x — the common limit of a’s and b’s — is not the root of the
equation f(x) = c. For example, take

_ ) xfor0sx<2
f(x)-{ 4for2<x<5

and solve the equation: f(x) = 3.

It is clear that the solution does not exist. However, if we formally apply
the technique of successive approximations, we may be led to the conclusion
that the root is 2. But, f(2) = 4, and not 3.

If we think why things turned out so bad, we may notice that the crux
of the matter lies in the behaviour of the sequences f(a,) and f(b,). While a,
and b, were nicely converging to the same limit, the other two were not, and
certainly they were not converging to ¢, which is important if we want x —
the common limit of a’s and b’s — to satisfy the equation f(x) = c. For it may
happen that the equation has no solution even if the sequences f(a,) and f(by)
have a common limit. This was then the idea of Cauchy: to take the strictly
sufficient condition for the technique to work, i.e., the condition that, if a, is
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a sequence of arguments of the function tending to an argument z, then the
corresponding sequence of values must converge to f(z) = ¢, and use this as
a definition of ‘continuous function’, ‘continuous functions’ being the name
traditionally used relative to functions for which the technique worked.

In deciding to define (and understand) continuity as he did, Cauchy had
to overcome the obstacle of thinking of functions as ‘lines’ and of continuity
as a being a global property of such lines. Now, functions are viewed as
relationships between independent and dependent variables and continuity of
a function is continuity in a point: continuity is defined locally.

Bolzano theorem describes situations in which the consecutive approx-
imations technique of solving equations of the type f(x) = c is sure to work.
It is a synthesis — a smali theory of the technique — in which are condensed
the intention to generalize the technique to a broader range of functions, the
discrimination between situations in which the technique works and those in
which it does not work, the identification of the sufficient condition upon
which it works, the identification of an important notion of ‘functions con-
tinuous in a point’ distinguished from the intuitive concept of visually repre-
sented continuous lines.

Overcoming a Misinterpretation of the Bolzane Theorem

For a very long time after Cauchy announced his theorem, it was regarded as
an equivalence and not as just an implication. Darboux disclosed this error
but, according to Lebesgue, the faulty formulation was taught in Paris as late
as in 1903. There is nothing unexpected about this error, though, if we con-
sider all the obstacles that had to be overcome in order to understand the
Bolzano theorem. _

As Daval and Guilbaud explain it, in the second half of the nineteenth
century, the understanding of continuous functions was based on a concept of
‘continuous variable’. It was defined as a variable whose increment can be
infinitely small. The continuous function was defined as a function y = f(x)
such that if x changes continuously, so does y.

The reason why, from this definition, it was rapidly inferred that the
function y = f(x) is continuous if and only if, when x continuously passes
from a to b in the interval <a, b >, then y passes from f(a) to f(b) through
all the intermediary values, can be found in, basically, two ideas prevailing at
that time. The first was the belief that a finite continuous variable cannot pass
from one value to another without passing through all the intermediary values.
This is all right if this is how we think about independent real variables, or,
as we say today, intervals of real numbers.

A problem arises, however, when two variables enter into play and one
depends upon the other: when the variable y is a function of the variable X,
then the ‘continuous variation’ of y is not exactly the same as the ‘continuous
variation’ of x because the latter expression means that x is an element of an
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‘interval while the values of y may cover the most fantastic subsets of the real
numbers, not necessarily intervals.

The faulty ‘if and only if” version of the Bolzano theorem was a result of
considering the expressions ‘x varies continuously’ ‘and x passes froma to b
through all the intermediary values’ as equivalent, and of the non discrimina-
tion between the character of change of a single independent real variable and
that of couples of variables, one depending on the other.

A way out of this error is in becoming aware of and rejecting the above
ways of understanding. Restricting the definition of a continuous variable to
only what it explicitly says, namely: that it is a variable whose increment is
arbitrarily small, we obtain the following definition of a continuous function:
the function y = f(x) is continuous if, by varying the increase of x, the
increase of y can be made arbitrarily small — which is exactly what Cauchy
wanted to say in his definition of a function continuous in a point.

Further Generalizations: General Analysis

The manner of speaking about functions in terms of variables, common in the
nineteenth century, led to focusing attention on ‘variability’ and ways in which
y changes when x changes. The domains of variability of x and y remained
in the background. Their determination did not seem necessary to define a
function. The ‘rule’ or ‘formula’ of the function was sufficient and ‘naturally’

pointed to the values which could be used for x and y.

The discrimination between ‘continuity’ as a global property of lines
representing functions and ‘continuity’ as a local property of functions brought
about an identification of two objects: the domain and the range of function.
This way, the function f is no more an attribution of particular numbers to
particular numbers, but becomes a mapping of the set Domf onto the set
Imf. The thinking about functions becomes more ‘global’ again. The domain
of the function may have certain properties and one may ask the question
whether the function preserves them or not.

The language used to speak about the arguments and values becomes
more static: from ‘varialles’ to ‘sets’; on the other hand, the way of speaking
about the function becomes more dynamic; from ‘rule’ or ‘law’ to ‘mapping’.

Traditionally, it was thought that the set in which the variable x varies
is always somehow naturally given. Most often it was a subset of reals. This
domain was so natural that there was seemingly no point in speaking about
its properties. Properties always distinguish something from something clse,
but here there was nothing to distinguish because real numbers were the
whole world.

Now, the identification of the concepts of domain and range of function
led to the question: why just the real numbers? Functions, from being dcfined
on just real numbers, were generalized to functions or mappings defined on
any set. Functions started to be seen everywhere and the ‘functional thinking’
(Klein's funktionales Denken) indeed pervaded all mathematics.
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Before, variables and continuous functions were thought of in terms of
‘an arbitrary increment of the variable’: in the Bolzano theorem the question
was of passing through all the intermediary values. Now, the generalizing
movement gave birth to notions such as the neighbourhood of a point,
topological space, condensation point, and gereralizations of the notions of
closeness, position (situs), limit, which were conceived so far in terms of
numbers. It is enough to know, for any element of a given set, what it means
to lie in its neighbourhood. This defines the topology of the set and allows
for evaluation of the mutual position of the elements of the set without
necessarily using the notion of number.

The property of continuity of a function can then be defined with the use
of the weaker notion of the condensation point and not with convergence: the
function f from A to Y, where Y is a topological space, is continuous in a
condensation point a of the set A if f(a) is a condensation point of the set f(A).

In this new language the expression ‘to pass through all the intermediary
values’ must be replaced by an expression free from reference to order. Order,
the relation of ‘lying in between’, natural in the domain of real numbers may
not make sense in arbitrary topological spaces. According to Daval and
Guilbaud, the generalization of the Bolzano theorem to the statement that
‘continuous functions preserve the property of connectedness of sets’ could
consist in such a generalization of the property ‘to pass through all the inter-
inediate values’ that made abstraction from order or movement on the number
line and preserves only the idea of ‘solidarity’ between the parts of the set.

It is exactly this solidarity between different parts of the set of values
of y that discloses the existence, in the proof of Cauchy, of the two
sequences f(a,) and f(b,) that have common limit c. Let us say the
same as Cauchy but exclusively in terms of condensation points. When
we had to prove that ¢ is necessarily among the values of y, the latter
were divided in two parts: the y’s that are greater than c and f(b,) are
among them, and the y’s that are lesser than ¢ and f(a,) are among
them. But — and here is the ~ssential argument — this classification
excludes one value, namely f(L) = ¢ (L is the common limit of a, and
b,). If we get rid of sequences and their countable character, the proof
goes as follows: for the division of the set of all values of y into two
(and only two) subsets to be complete, it is necessary that the con-
densation point ¢ belongs to either one or the other of these categories.
It is clear then that the essential feature of the set of values of y is that
it cannot be divided into two parts so that no part contains none of
the condensation points of the other. (Daval and Guilbaud, 1945, pp.
126-7, my translation)

i.e., the set of values of y must be ‘connected’.

This is how connectedness as a property of sets is identified and, at the
same time, it is distinguished from continuity as a property of mappings: ‘a
continuous mapping preserves the connectedness of sets.’
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All this leads to a synthesis: a thought is born that, in the generalized
geometry the gue.iion of invariants of mappings is important. Now, the
generalized Bolas: o theorem becomes a theorem of the theory of invariants
of continuous mappings, i.e., topology.

The Notion of Epistemological Obstacle as a Category of
Thought in Mathematics Education; Problems of Definition

The notion of epistemological obstacle, taken from Bachelard, made its ap-
pearance in mathematics education (more precisely, in the French didactique des
mathématiques, thanks to Brousseau) around the year 1976, and very soon
started to function as a ‘category’. By ‘category’ I mean here, after Skarga
(ibidem), a notion which, albeit not necessary in the development of a scientific
domain, is sufficiently general and powerful to direct the thought and shape
a field of research around itself: :

Human thought. . .tends to organize its problems around certain
notions that I call categories . . . These [categories] are not invariably
characteristic of our intellect and they have not a character of univer-
sality or necessity, yet they have sufficient range to direct thought.
They have not a formal character, but usually a high degree of
generality, that allows them to be applied in various domains. Each
category is normally accompanied by other words and phrases, eagerly
used, fashionable, which often in the eyes of the authors are meant to
add to the scientificity, seriousness, modernity of ther texts, ... A
category fulfils a double role. On the one hand, it shapes the field of
theoretical research, remaining, however, in its center, and being the
object of analysis itself. . . . On the other, it is for this category that
the researcher reaches in trying to explain various questions . . . How-
ever, the main function of a category is that it directs the thought.
(Skarga, 1989, pp. 108-9)

This is exactly what happened with the notion of epistemological obstacle:
it started to ‘direct the thought’, a whole research programme started to
develop around it, while, at the same time, heated debates were taking place
among the theoreticians about the very nature of epistemological obstacles,
the possible definitions, the rationale of bringing it into the field of math-
ematical thought, so different, after all, from the sciences of nature. This trend
in mathematics education is slowly dying out, there are other questions and
new words that occupy more central places, and the notion of epistemological
obstacle has not grown to have a definition that would receive a wider con-
sensus. A interdisciplinary conference that brought together psychologists,

. philosophers of science, and mathematics and physics educators, organized by

Nadine Bednarz in Montréal in 1988 (Bednarz and Garnier, 1989), was partly
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meant to elucidate the notion of epistemological obstacle, but participants left
with the feeling of confusion greater than ever.

It is possible that the most characteristic feature of a category is that it is
hard to grasp with a definition, difficult to enclose within a rigid theory. A
category does not belong to the world of theories; if it functions the way it
does — by directing the thought — it is because it works somewhere between
and above the vernacular and the research field. It is better described by the
use that was made of it in research, what questions did it lead to, what
explanations did it provide, what kind of discourse has developed around it.

Bachelard himself never gave any definition of his obstacle épistémologique;
he only provided us with a series of examples of poignant differences between
physics in the eighteenth century and the contemporary physics and the hint
that this notion is useful in the ‘psychoanalysis of the scientific thought’. The
obstacles could be found in the human tendencies to hasty generalizations, or
to explaining everything with familiar metaphors, or universal laws such as
‘all bodies fall’, or, still, by looking fo: a substance responsible for a phenom-
enon. Obstacles were there on the path of change from the ordinary thinking
to the scientific thinking, from one kind of rationality to another kind of
rationality. )

For myself, the general lines of a theory of culture as described by E.T.
Hall seemed to provide an appropriate framework within which not to define
but somehow explicate the notion of epistemological obstacle, which seemed,
first of all, a cultural phenomenon. This will be described in more detail in the
next chapter. But there are other possible, and maybe even more adequate
frameworks. Certainly, Michel Foucault’s notion of épistéme and his archae-
ology of knowledge (1973) provides a useful basis; it is even closer to the
historical-empirical methodology adopted by mathematics educationists in that
it looks at culture diachronically, and not synchronically (or spatially) as Hall’s
theory does. Moreover, it focuses more on the taken for granted and un-
conscious of science — this is where epistemological obstacles are grounded
— and it looks at different epochs by comparing their unconscious layers:
epistemological obstacles reveal themselves in the differences. But Foucault
looks at this unconscious layer in a positive way, which, again, agrees, with
the philosophy of epistemological obstacles: these obstacles are, contrary to
the connotations that the word ‘obstacle’ can bring to mind, positive. They
are positive in the sense that they constituted the ground of the ‘epistemolog-
ical space’ that determined, in a way, the kind of scientific questions and ways
of approaching them, characteristic of a given epoch. In a foreword to the
English edition. Foucault writes,

On the one hand, the history of science traces the progress of discovery,
the formulation of problems, and the clash of controversy. .. it
describes the processes and products of the scientific consciousness.
But, on the other hand, it tries to restore what eluded that con-
sciousness: the influences that affected it, the implicit philosophies
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that were subjacent to it, the unformulated thematics, the unseen
obstacles; it describes the unconscious obstacles. This unconscious is
always the negative of science — that which resists it, deflects it, or
disturbs it. What I would like to do, however, is to reveal a positive
unconscious of knowledge: a level that eludes the consciousness of a
scientist and yet is part of the scientific discourse. instead of disputing
its validity and seeking to diminish its scientific nature. What was
common to the natural history, the economics, and the grammar of
the Classical period was certainly not present to the consciousness
of the scientist; . . . but unknown to themselves, the naturalists,
economists, and grammarians employed the same rules to define the
objects of their own study, to form their concepts, to build their
theories. It is these rules of formation, which were never formulated
in their own right, but are to be founc only in widely differing theories,
concepts, and objects of study, that I have tried to reveal, by isolating,
as their specific locus, a level that I have called, somewhat arbitrarily
perhaps, archaeological. (Foucault, 1973, p. xi)

Foucault’s theory can also be viewed as better fitting with Bachelard’s
notion because both authors belong to the same philosophical tradition, while
Hall’s anglo-saxon, empiricist approach seems very different in spirit with the
more rationalistic or ‘Cartesian’ perspective of Bachelard. Indeed, Foucault
himself points to the difference between the two approaches, at the point
when he describes the changes of conceptual schemas between the sixteenth
and the seventeenth centuries.

The sixteenth century viewed language as the mirror of the world, the
seventeenth and eighteenth centuries regarded it as a representation. in the
former period of time the prevalent ways of understanding the world were
based on the identification of resemblances of the most diffuse and general sort.
Language belonged to nature: both language and nature were networks of signs.
Knowledge was the same as interpretation of texts. For example, a ‘natural-
istic’ study of an animal could be a ‘mixture of exact descriptions, reported
citations, uncriticized fables, non-differentiated remarks on anatomy, heraldry,
habitat, mythological values of the animal, its uses in medicine or magic’
(Foucault, 1973, p. 54). Thus, ‘to know an animal or a plant or whatever in
the world is to collect all the thick layer of signs that could be deposed in them
...’ ‘nature itself is a continuous fabric of words and marks, tales and char-
acters, discoursc and forms . . . Nature is, from top to bottom, written’ (ibidem).
The seventeenth century brought a criticism of this resemblance-based épistéme
both in England and France, but different perspectives were taken.

We already find a critique of resemblance in Bacon — an empirical
critique that concerns, not the re! *‘ons of order and equality between
things, but the types of mind and the forms of illusion to which they
might be subject. We are dealing with a doctrine of quid pro quo. Bacon
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does not dissipate similitudes by means of evidence and its attendant
rules. He shows them, shimmering before our eyes, vanishing as one
draws near, then re-forming again a moment later, a little further off.
They are idols. The idols of the den and the idols of the theatre make us
believe that things resemble what we have learned and the theories
we have formed for ourselves . . . Only prudence on the part of the
mind can dissipate them, if it abjures its natural haste and levity in
order to become ‘penetrating’ and ultimately perceive the differences
inherent in nature.

The Cartesian critique of resemblance is of another type. It is no
longer sixteenth-century thought becoming troubled as it contem-
plates itself and beginning to jettison its most familiar forms; it is
Classical thought excluding resemblance as the fundamental experience,
and primary form of knowledge, denouncing it as a confused mixture
that must be analysed in terms of identity, difference, measurement
and order. (Foucault, ibidem, pp. 51-2)

This is the same difference of perspectives that separates the anglo-saxon
analytic philosophy such as practised, for example, by Ryle and Austin, and
the French structural linguistics of Lévy-Strauss and Jakobson. The former
studies the use of language and claims that only the use can provide the
standards; the latter constructs models of the use and study their logical

implications. For Ryle, the aim of the analysis of language was ‘to move
conceptual roadblocks’. Austin did not believe in the ‘gospel of clarity’; he
would say that philosophy resolves one set of questions only to arrive at
another set of questions (Cranston, 1972). This can be called an ‘empiricist’
approach: the studied reality is the use of language within a complex network
of social relations. The French approach was more ‘rationalistic’: it attempted
to provide a ‘logically satisfying explanation of the world’ (Cranston, ibidem).
Language was viewed as a system or structure governed by rules; social
structure is a theoretical model of relations between people. These structures
and models are the only reality that we are able to study.

Foucault, whose works such as The Order of Things or Maduess and
civilization are usually classified as belonging to the French structuralist school,
has nevertheless been found as having bridged the gap between the English
linguistic empiricism and French structuralism in at least one point: in Foucault,
Man, the abstract construct, the ‘sujet épistémique’, becomes finally a man, unique,
individual, only forced to accept the binding rules and categories of the épistéme
he happens to find himself historically tied within under pain of appearing as
mad (Cranston, ibidem; Foucault, 1973, p. xiii). Indeed, there could be even
more to it than that: in points interesting for a mathematics educationist there
seems to be a kind of homomorphism between Hall’s ‘major cultural triad’
and Foucault’s épistéme. We shall clarify this point in the next chapter. One
reason, however, why I have decided to remain by Hall’s theory, is that,
unlike Foucault, Hall looks at many different cultures, not just the culture

136




Q

ERIC

PAFullToxt Provided by ERIC

Good Understanding

developed by the western civilization. This perspective raises the question of
a relativity of epistemological obstacles that is not only diachronic but spreads
across the different coexisting cultural backgrounds that students bring today
to their classes in more and more countries. It is therefore more real, and
more realistic: many of us have to face the cultural relativity of episternological
obstacles and deal with it in our daily work with students. Another reason is
that the method of historico-empirical studies that we propose ourselves to
develop with relation to understanding in mathematics is more empirical than
rationalistic in spirit: for us the reality is the students’ actual understanding,
not models or theories that we build about it.

To end this section, let us only mention that the notion of epistemological
obstacle, implicit under different names, forms and in different contexts and
philosophical settings can be found in many philosophers before and after
Bachelard. We have already recalled the Baconian ‘idols’. Husserl stressed the
discontinuity between the common or practical knowledge that remains un-
questioned, taken for granted, and the scientific attitude. At the turn of the
century, the awareness of social and cultural determinants of scientific knowl-
edge appeared in the works of Durkheim, Granet, Halbwachs, Scheeler and
others. Without reference to Bachelard, similar ideas appear in the works of
Schiitz, Garfinkel, Cicourel. A Polish philosopher, Florian Znaniecki (1882—
1958), in his Social roles of scientists (in Polish), occupied himself with the
sociology of scientists and distinguished such historical types of roles they
played as sages, technicians, scholars, researchers, determining very different
standards of what is and what is not scientific and significant. Kuhn’s theory
of scientific revolutions shows how changing can be the scientific truth, how
the fundamental categories of thought and rules of rationality can vary from
one paradigm to another. It is needless to recall the role and works of Popper
and Lakatos in this area. All this — to mention but a few.




C'hapter 5

Developmental and Cultural
Constraints of Understanding

In analysis_to-day there is no longer anything but whole numbers,
or finite or infinite systems of whole numbers, bound together by a
network of equalities and inequalities. Mathematics, as it has been
said, has been arithmetized.

But we must not imagine that the science of mathematics has
attained to absolute exactness without making any sacrifice. What it
has gained.in exactness it has lost in objectivity. It is by withdrawing
from reality that it has acquired this perfect purity. We can now move
freely over its whole domain, which formerly bristled with obstacles.
But these obstacles have not disappeared; they have only been re-
moved to the frontier, and will have to be conquered again if we wish
to cross the frontier and penetrate into the realms of practice. (Henri
Poincaré, 1952)

Understanding is both developmentally and culturally bound. What a
person understands and how he or she understands is not independent from
his or her developmental stage, from the language in which he or she com-
municates, from the culture into which he or she has been socialized: His or
her beliefs, his or her ‘cognitive norms’, his or her world view can all be
sources of obstacles to understanding the theoretical frameworks of contem-
porary scientific knowledge. His or her conceptions cannot be more elaborate
than his or her developmental stage allows for, even if the level of his or her
speech and technical skills have already superseded this stage.

In the sequel, while trying to support this thesis, we shall be interested
in finding the developmental and cultural roots of epistemological obstacles.
Two theories turn out to be of help here: L.S. Vygotski’s theory of develop-
ment of concepts from early childhood to adolescence and E.T. Hall’s theory
of culture (Sierpinska, 1988; 1993). * ygotski's experimental studies into the
development of concepts will guide us towards an idea of how the child’s first
understandings of mathematical notions constitute themselves into obstacles
in the adolescent’s thinking. Hall’s theory of culture will explain how episte-
mological obstacles come into being, how they function in scientific commu-
nities and how ‘they are being transmitted through socialization and education.
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These two sources of obstacles: ‘development’ and ‘culture’ are closely
inerrelated. We start by an explication of this relationship. .

The lielationship Between Development and Culture
Development and Instruction

In considering the question of relationship between development and instruc-
tion, or between spontaneous concepts that develop through physical and
mental maturation and informal socialization out of school, and scientific
concepts that are a product of culture and can only emerge in the process of
instruction, Vygotski claims that, while there is ‘a certain element of truth’
in the theory that ‘development must complete certain cycles or stages or
bear certain fruits before instruction is possible’ (Vygotski, 1987, p. 195), this
theory does not contain the whole truth. He even says that this one-sided
dependence is of secondary importance.

Instruction can give more to development than is present in its direct
results. Applied to one point in the child’s thought, it alters and
restructures many others . . . Instruction is not limited to trailing after
development or moving stride for stride along it. It can move ahead
of development, pushing it further and eliciting new formations. -
(Vygotski, 1987, p. 198)

But the relationship between development and instruction is not straight-

forward; it is very complex (ibidem, p. 201). Instruction does influence devel-
opment, but not in a direct way.

It would be a mistake to think that a pupil’s failure in arithmetic in
a given semester necessarily represents the progress in his internal
[developmental] semester. If we represent both the educational pro-
cess and the development of the mental functions that are directly
involved in that process as curves . . . we find that these curves never
coincide. Their relationship is extremely complex. We usually begin
the teaching of arithmetic with addition and end with division. There
is an internal sequence in the statement of all arithmetic knowledge
and information. From the developmental perspective, however, the
various features and components of this process may have an entirely
different significance. It may be that the first, second, third and fourth
components of arithmetic instruction are inconsequential for the
development of arithmetic thinking. Some fifth component may be
decisive. At this point, the developmental curve may rise sharply and
begin to run ahead of the instructional process. What is learned there-
after may be learned in an entirely different way. Here there is a
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sudden shift in the role of instruction in development. The child has
finally understood something, finally learned something essential; a
general principle has been clarified in this ‘aha experience’. (Vygotski
ibidem, p. 207)

And here Vygotski says something very important, indeed he gives a
crucial argument against both disregarding instruction in development as well
as saying that instruction should go hand in hand with development:

If the course of development coincided completely with that of in-
struction, every point in the instructional process would have equal
significance for development. . . . [But] in both instruction and devel-
opment there are critical moments. These moments govern those that
precede it and those that follow it. These points of transition on the
two curves do not coincide but display complex interrelationships.
Indeed, as we said before, there could be no relationship between
instruction and development if the two curves were to fuse. (ibidem,
p. 207) :

Instruction cannot always wait for the development to be fully accom-
plished; often it must pull it. Teaching interventions must be wisely dosed,
they must be used at appropriate time and on the right level: they must be
within what Vygotski has called the ‘zone of proximal development’. This
zone — the close domain of the child's potential development — has more
significance, he says, for the dynamics of intellectual development and for the
success of instruction than does the actual level of development {ibidem, p. 209).

This has important consequences: if the instruction does not intervene at
the right moment then some intellectual abilities may not have the chance to
develop. For example, if, at the time of the development of conceptual think-~
ing (usually around adolescence), the student is not given the opportunity and
is not guided to engage in more formal reasonings, deductions and inferences
in which the premisses or reasons are made explicit and whose rules are
agreed upon, he or she may never become able to develop the style and level
of thinking that is necessary to understand and construct mathematical proofs.
At the age of 20 or more, when the student comes to study mathematics at
the university level, the propitious developmental moment would have passed,
and it may be too late for the teaching intervention to have any effects.

Development As a Social Affair

Instruction, knowledge, scientific knowledge are cultural notions; they are
always embedded in a certain culture while creating and conveying a certain
culture themselves. According to Vygotski, development is a cultural affair.

Thus it is also a social affair. Social psychologists, W. Doise and G.
Mugny (1984) claim that ‘different cultural systems all indicate that systems
of social interaction influence individual cognitive development while at the
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same time social interactions in different cultures have common elements:
influencing the initiation of cognitive development’. Indeed, statistical researches
have shown a relationship between the school failures of students and the
socio-economic status of their parents. Efforts to explain this state of affairs
led some psychologists to the conclusion that it is not the low degree of
initelligence that is responsible for the students’ failures but the psycho-social
conditions in which these children are tested (see, e. g., Vialet al., 1974, cited
by Perret-Clermont, 1980): the very situation of test is a social situation and
a social relation between the experimenter and the child which may not be
interpreted in the same way by children from different social classes (Perret-
Clermont, ibidem, p. 4; Tort, 1974, pp. 266-7, quoted by Perret-Clermont).
The test may not measure the intellectual abilities of the child but his or her
social abilities to defend himself or herself in an unfriendly and threatening
situation.

The ‘Social Handicaps’ Influencing Mathematical Development

Horv the socio-economic backgrounds of students can affect their mathemat-
ical development is an important problem in mathematics education. Research
findings show that not only this background has an impact on the students
spontaneous development, but often teachers adjust their attitudes and teach-
ing so that the condition of the students be perpetuated. Very often math-
ematics teachers conceive of mathematics as a ‘crucial subject for reproducing
existing social values’ and modify curriculum material according to the social
class and gender of their pupils (Atweh and Cooper, 1992). It is hypothesized
that the socio-economic context of the school and its culture as well as the
gender of the students will determine to a large degree the teacher’s behaviour
towards the students, what and how he or she will teach as well as what the
students will be expected to learn and understand. Also the students’ view of
their chances to succeed in mathematics is biased by the place they think they
occupy in the society. This affects their participation. The phenomenon of
resistance of students to learning can be partially caused by such beliefs. In
such case classes turn into meaningless ‘rituals’ of activities that have nothing
in common neijther with mathematics nor learning or are constantly inter-
rupted by the ‘bad behaviour’ of students. Atweh and Cooper claim that the
study of how students resist learning might be crucial for designing inter-
vention studies intending to increase the participation and success of under-
represented groups in mathematics.

These findings are supported by older psychological research into the
fundamental question whether psycho-sociological factors only interfere in an
explicit expression of cognitive abilities or if indeed they determine the course
of the development of cognitive processes in childhood (Perret-Clermont,
ibidem, p. 5). Psychologists were led to the conclusion that, since commun-
ication and motivation play such an important role in the development of
cognitive processes, then it is not the social background in itself that hinders
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the intellectual development but a kind of ‘social handicap’. The development
is retarded if, in the social environment of the child, too little time is devoted
to social and verbal interactions and the degree of elaboration of these
verbalizations is not very high. It also depends on the home situation and
parents’ aspirations with respect to the child. For a normal intellectual devel-
opment the child must feel the need and motivation to communicate on higher
and higher levels.

Cultural Values in.PSychological and Educ.'ional Research;
. ‘Ethnomathematics’

The above reasoning implicitly admits that the culture of socially and eco-
nomically privileged classes is something better and higher valued than the
culture of the working class or poor people. The point is only how, by
making the knowledge of privileged classes accessible to the child, to create
conditions that will help him or her to make his or her way to this class. The
laudable result is when the child rejects his or her own culture and starts to
think and speak like the experimenter or the teacher. But research into the
actual ways of knowing and understanding of children who, to survive, have
to work (as, for example, the street candy vendors), has shown quite plainly
that the intelligence of these children is indeed very highly developed and
their sense of numbers imposing (Carraher et al., 1985; Saxe, 1990).

There is a whole movement in mathematics education now, called
‘ethnomathematics’ which studies mathematical thinking in different cultures
and proposes to ground the teaching of mathematics in schools in such prob-
lems and contexts that are familiar and meaningful in the cultural environ-
ments of students and to allow the students to use whatever means they like
to approach these problems.

Of course, there is the risk, then, that this will result in following too
closely the students’ spontaneous development, which can be disastrous for
their development indeed — this is at least what Vygotski seems to be saying.

My interest in Vygotski's theory of conceptual development started dur-
ing my cooperation with Monika Viwegier (Sierpinska and Viwegier, 1989;
1992). It resulted in a certain interpretation of this theory (Sierpinska, 1993)
of which I give an account below (with the permission of the publisher).

The Genesis of Understanding and the Developmental Roots
of Epistemological Obstacles

Introduction

The genesis of concepts in a child, according to Vygotski, is the genesis of his
or her intellectual operations such as generalization, identification of features
of objects, their comparison and differentiation, and synthesis of thoughts
in the form of systems. The very same operations lie at the foundations of
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understanding. This explains why I have been attracted by Vygotski’s theory
of the development of concepts. The various genetic forms of these opera-
tions, discovered and described by Vygotski, seemed to provide, almost im-
mediately, the possible genetic forms of understanding. Moreover, the theory
can be used to explain some of the curious ways in which students understand
mathematical notions, and why, at certain stages of their construction of these
notions, they simply cannot understand in a different or more elaborate or
more abstract way.

Generalization of mathems:ical objects and situations, identification of
certain elements or features of these objects and situations as objects in them-
selves, or as more important than others, discrimination between objects and
features of objects, synthesis of various judgments about objects and relations
between objects, are the elementary operations both in understanding, and
concept formation, and in thinking, in general. But, from a qualitative point
of view, these operations are by no means the same in a child and in an adult.
From early childhood through elementary school years through adolescence

and adulthood, the operation of generalization, for example, undergoes an

evolution from simple formation of chaotic aggregates of objects linked by
various subjective and affective relations, to connection of objects on the basis

.of their playing a role in some common situation, to connection of objects

linked by some common and abstract feature.

The reason why a mathematics educator at any level of teaching may be
interested in this theory is that the general pattern of development of concep-
tual thinking from early childhood to adolescence seems to be recapitulated
each time a student embarks on the project of understanding something new
or to construct a new concept. ‘Different genetic forms of thinking coexist’,
Vygotski says, and an adolescent or even an adult, when confronted with a
new situation or concept, often starts with an understanding which is at a very
low level of generalization and synthesis, with very vague discrimination
between the relevant and the irrelevant features.

Vygotski distinguishes several stages and two processes of development
of concepts in a child from early childhood till adolescence, where the chang-
ing roles and levels of sophistication of the elementary intellectual operations
are clearly seen. The first of these processes starts very early: this is mainly the
process of the development of generalization. Identification and discrimina-
tion are there too, of course, but, at the beginning, they operate only on the
level of material, concrete objects. This process is composed of two main
stages: the stage of ‘syncretic images’ and the stage of ‘complexes’, the latter
falling into five phases.

The second process starts later, in the last phase of the first (7-8 years of
age). This is where begins the development of identification of more and
more abstract features of objects and relations. Some features are distinguished
from others as more important. Hierarchies of features are built. This pio-

cess starts later because ii requires an already well developed operation of
generalization.
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When these two processes finally merge at the threshold of adolescence,
the child is in possession of ‘pre~concepts’ or ‘potential concepts’ and the
ground is set for the operation of synthesis necessary for the construction of
concepts which cannot exist otherwise but as elements of a system.

This section is composed of two main parts. The first presents the devel-
opment of the operations of generalization, discrimination, identification and
synthesis according to Vygotski. The second derives from it the genetic roots
of epistemological obstacles. The first is split into the discussion of three paths
of development: the development of generalization in children between the
age of 2 and 7 or 8, the development of identification and discrimination in
elementary-school children; the development of synthesis in adolescents.

The Development of Generalization

Vygotski distinguishes two important steps in the development of the opera-
tion of generalization in experimental conditions before the age of adoles-
cence: ‘syncretization’ and ‘complexization’, or formation of ‘syncretic images’,
and ‘complexes’ which are surrogates of concepts in the child’s thinking.
‘Syncretization’ and ‘complexization’ differ by the kind of criteria by which,
implicitly, the child decides that an object belongs to the same group of
objects.

Syncretization uses loose criteria: objects are brought together in a ran-
dom, unsystematic way. The choice is made on the basis of various subjective
impressions of closeness or contiguity. In real life, a 2-year-old will generalize
objects on the basis of subjective, and very often affective, impressions. A
shop, for example, can be understood as something pleasant (it is a place
where people buy candy for kids); a dog as something terrible, if the child
happened to be bitten by one (Luria, 1981, p. 51).

The product of syncretization is a ‘chaotic heap’ of subjectively linked
objects (Vygotski, ibidem, p. 135). The subjectivity of relations on which the
syncretic image is built makes this kind of generalization very unstable, labile.

In ‘complexization’ subjective impressions of kinship between concrete
objects are replaced by connections that actually exist between objects. In
spite, however, of being built on more objective connections, a complex is
not yet a concept. The difference lies in the character of these connections.

In a concept, these connections are logically of the same type. Connec-
tions that bring objects together in a complex, are more often than not log-
ically heterogeneous, factual, randomly discovered in direct experience. In fact,
any connection between an object and the model can be a sufficient reason for
including the former into the complex (Vygotski, p. 137).

If a name is given to a complex of objects, it does not function as a tertn
covering a certain range of objects (its referential meaning) and a certain set
of logically coherent critefia that allow for deciding whether a given object
may or may not be termed that way (its categorical meaning), as it happens
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in the case of scientific concepts (Luria, 1981, pp. 34-9). Rather, as Vygotski
metaphorically expresses it (ibidem, p. 164), the name functions as a family
name for a group of objects. Just as members of, say, the Pietrov family, enter
the group of family members on many different grounds (as, for example,
being the son of a Pietrov, or the wife or the mother of a Pietrov, etc.),
elements of a2 complex are there for just as many various reasons. For exam-
ple, one object can be taken because it is of the same colour as the model,
another because it is of the same shape, still another because it can be used
together with the model for some practical purpose in the same situation (for
example, a spoon will:be added to a saucer), etc.

The metaphor of ‘family name’ has also been used by Wlttgenstem (see
Chapter 1) in his distinction between ordinary language and the more formal
languages of mathematics and sciences. What Wittgenstein seems to be saying
is that ‘complexive thinking’ pervades the use of ordinary language. He also
considered it as being ‘all right”: ‘ordinary language is in order as it is.” Unlike
Russell, he was not proposing, in his later works, to correct the propositions
of ordinary language but simply to understand it. Vygotski had a more
Russellian ideal in mind: for him, ‘concept’ meant ‘scientific concept’ fur-
nished with a definition; the goal of education is to bring children to a level
where they would be able to think in terms of scientific concepts.

One symptom of ‘complexive thinking’ is that, in the sorting out of
objects, there is a lack of a logically homogeneous set of criteria. Objects are
put together in classes on the basis of some resemblance which can differ from
one class to another. Foucault in The Order of Things reminds us that the way
in which people ordered their world in the sixteenth century in Europe was
obviously based on a kind of complexive rather than conceptual thinking:
factual and heterogeneous resemblances were the basis on which things were
brought together. There were many kinds of resemblances: contingency in
space, various analogies (e.g., the analogy of the human body to the earth,
man'’s flesh resembling the soil, blood veins resembling rivers, etc.). More-
over, the resemblance of one thing to another had always to be marked by
some more or less visible sign on one of the things, representing the othe- in
some iconic way. Walnuts were considered as good for headaches because the
kernel of the nut resembles human brain. There had to be some resemblance
between the illness and the remedy. Also words were regarded as signs that
were not arbitrary; they bore a resemblance to things that it was necessary to
decipher in order to understand.

Words offer themselves to men as things to be deciphered . . . Lan-
guage partakes in the world-wide dissemination of similitudes and
signatures. It must, therefore, be studied itself as a thing in nature.
(Foucault, 1973, p. 35)

This kind of thinking can also be detected in students’ first experi-
ences with algebra. They seem indeed to be looking at the strange algebraic
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aggregates of letters and numerals as hieroglyphs or magic ‘signs’ to decipher.
Having no logical or methodological tools, they look for sameness, associa-
tions with class activities to put some order into this new world. Let us have
an example of such behaviour.

Example: complexive thinking about equations

The example originates from an interview conducted in 1992 by a
Concordia University in Montréal graduate student in mathematics educa-
tion, Marino Discepola. In the interview, a successful 15-year-old high-school
student (‘Jane’) was given a set of algebraic expressions and asked to sort them
out according to her own criteria. She formed the following groups:

(1) y=5/8x y = 2p/x y=ax+b y = 2x

2) 2x=0 2x-5=0 2a-5=0

(3) A =bh/2 h = 2A/b P =xy/2 g = 5/8h

4 4=5-1 8=38 2=3 Cx+D=Ax+B
x+13=x 3/4=2/3 1/a + 1/b = 1/c

5) 2x-x x = 5/8

Jane explained that she took together the expressions in (1) because ‘you
are showing here what y is going to equal to’. In group (2) ‘they are all equal
zero’. Group (3) are ‘formulas’; initially the group contained only the first
three expressions; after some hesitation, g = 5/8h was added and Jane ex-
plained that this is the formula for gravity. Group (4) was called ‘arithmetic’;
she explained her inclusion of ‘Cx + D = Ax + B’ by saying: ‘you don’t know
what Cx is, so it could be like 7+ 3 =10 or 5 + 5 . Four is equal to four and
eight is equal to eight and same thing here, same thing here and here.” Group
(5) was composed of items she hadn’t noticed and thus did not include them
anywhere before.

Asked to go over again her groupings and asked for the particular reasons
of including items like 2 = 3, and 3/4 = 2/3 together with other items in group
(4) she used the following arguments: {2 = 3] Well, you have in problem
.. . you have to figure if there is something missing out of it and you have
to figure out . . . because we used to have problems like that where you have
to figure out why maybe 2 is equal to 3’; ‘[3/4 = 2/3] Well, sometimes when
solving for x . . . if this was 3x and you want to find out for x. .. you do 4
times 2 over 3 times 3x which is 9x so 8 over 9. ..”; ‘[x + 13 = x] assuming
the same principle as this where you don’t know what x is, so it could be
1+ 13 = 14 just like 4 = 5 — 1.” For the group (5) she said that ‘each x could
be replaced by 5/8’.

Obviously Jane has not been using a single criterion to classify the whole
set of cxpressions. Rather, she went by various associations, on the basis,
sometimes, of the external appearance of the expressions (groups 1 and 2,
mainly), and, at other times, on the basis of association with a domain of class
activities in which the expressions appeared (solving for x, figuring out why
there is a contradiction). ‘3/4 = 2/3’ is not a false statement — it is a part of
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an equation, it can be completed to be an equation. Anyway, the expressions
are neither statements nor conditions for her, they are not finished mathemat-
ical objects. They are tasks to perform, computations to be done. Variables
are not names of an arbitrary element of a set; they are numbers awaiting
an operation (note that an x on the left side of the equation may be assigned
a different value than the x on the right side of it). [End of example]

One form of complexization is that of forming ‘chain-complexes’.
Vygotski used this term when referring to the behaviour of a child who, in
an experimental situation of adding objects or pictures of objects to a given
model, focuses on the last object added and is satisfied with any link between
the new object and this last one, disrespectful of any contradiction that may
occur with regard to the previously added objects. For example,

. . . the child may select several objects having corners or angles when
a yellow triangle is presented as a model. Then, at some point, a blue
object is selected and we find that the child subsequently begins to
select other blue objects that may be circles or semicircles. The child
then moves on to a new feature and begins to select more circular
objects. In the formation of the chained complex, we find these kinds
of transitions from one feature to another. (Vygotski, ibidem, p. 139)

Example: complexive thinking about equations (continued)

Symptoms of chain-complexizaticn, mixed (as it often happens in reality)
with other forms of complexive thinking, could also be observed in Jane.
Asked to arrange the given set of expressions into fewer groups she formed
four groups of which the first was:

x = 5/8, y = 5/8x, y = 2X%, y = 2P/x, 2x =0, 2x - x,
2x-5=0, x+ 13 =x.

Let us speculate on how she could have been thinking: she first took x
= 5/8, then y = 5/8x because 5/8 is in both; y = 2x and y = 2P/x arc added
because the previous was y equals something as well; then 2x = 0 because
2 and x were in the previous expressions; 2x — x also has a 2x in it; so does
2x —5=0; x + 13 = x has similar shape. When asked later why she put all
these expressions together, she said: ‘supposing x = 5/8 we could solve all
these equations . . . by replacing x by 5/8." This could have been an after-
thought. She might have thus transformed her chain-complex into a complex
by associations, where the core object would be ‘x = 5/8’. Anyway, it is rather
clear that Jane has not developed a concept of equation yet. For her, ‘to solve
an equation’ does not mean to find values that satisfy the condition given in
it, but to compute something, to produce a number, by whatever means.

In the interview, Jane complained that the task she was given was
difficult; she said she ‘could not get started’. Here is an excerpt from the
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Marino:  Why is it harder?

Jane: Well, because . . . sometimes I don’t see the relation, what
they have in common.

M.: So it is much easier to see the differences?

J.: Yeah!

M. So now you are looking for things that they have in
common?

J.: Ha, ha. .

M.: And which parts do you focus on?

) Now I am going to focus on the whole equation.

Jane’s behaviour here is characteristic of the very first phase of conceptual
thinking, the phase of crisis and maturation, full of hesitation, and many
returns to the most primitive complexive thinking, but also with emerging
self-awareness, dissatisfaction with one’s own thinking, search for consist-
ency. [End of example]

Chain-complexization may carry very far away from the original model.
There is no focus on one single feature in building such a generalization.
Within a complex, an object preserves all its features; neither is distinguished
as the one that is essential for the complex. Even if there was a feature that
connected an object to a complex and made it similar to objects that were
already there, there is no reason whatsoever for the person who forms the

complex to make abstraction from other features that the object objectively
possesses.

No single feature abstracted from others plays a unique role. The
significance of the featurc that is selected is essentially functional in
nature. It is an equal among equals, one feature among many others
that define the object. (Vygotski, ibidem, p. 141)

For Vygotski, this ‘equity’ of features is a strongly discriminating char-
acteristic of complexization with respect to the kind of generalization that is
at the basis of concept formation. The latter is founded on a hierarchy of
connections and a hierarchy of relations between features. It creates a qual-
itatively new object which goes beyond just the union of its elements — it is
a system, and it is a system within other systems. On the other hand, the
complex is a conglomerate of its elements, and its relations with other con-
glomerates are not relevant.

The complex is not a superordinate to its elements in the way the
concept is a superordinate to the concrete objects that arc included
within it. The complex merges empirically with the concrete ele-
ments which constitute it. This merging of the general and the par-
ticular, of the complex and its element . . . constitutes the cssential
feature of complexive thinking generally and of the chained complex
in particular. (Vygotski, ibidem, p. 140) '
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It is possible to take a slightly different point of view on the fact that, in
a complex, the relations that connect the various elements can be of so many
various kinds, each taking into account different features. It is not so much
that the child takes all the featuies of an object on equal terms but rather that
the child is unstable in distinguishing the features of the object he or she is
considering. At one moment it can be, for example, the colour, at another,
the shape. The child may not be able to focus on one feature for a longer time.

At the level of complexes, and, a fortiori, syncretic images, processes of
understanding are very short. The object of understanding (i.e., that which is
being understood) changes all the time. In these conditions, the synthesis of
a concept on the basis of a couple of features that have been well identified and
distinguished from others in an interrelated chain of acts of understanding,
cannot be possible.

At some pc .nt in their pre-school life children come to form the so-called
‘diffuse complexes’ which allow them to transcend the world of their imme-
diate experience. This kind of generalization develops when the child goes
beyond just stating facts and starts to draw. conclusions, make inferences. It
often strikes us how unexpected and original or ‘impossible’ the chiid’s con-
clusions are ‘in domains of thinking that are not subordinated to practical
verification’ (Vygotski, p. 141). We usually explain it by the children’s natural
tendency to mix up their dreams and fantasies with reality. The fact is that
children base their interences on a very wide basis; they do not feel bound by
any logical or empirical constraints. Absolutely any connection between the
premise and the conclusion would do. This leads to very ‘diffuse’, expanding
complexes characterized by unexpected associations, strange leaps of thought.
But, however striking the originality of these boundless complexes might be,
the principle of their construction is the same as that which underlies the more
restricted concrete complexes: they rely on factual connections between dif-

 ferent objects. Taking an analogy with art, they resemble forms such as ‘col-

lage’ in which various parts and pieces of ready-made real objects or pictures
of objects are assembled in an often unexpected fashion to form a certain
whole — an object of art.

Diffuse-complexes are not something specific just to the kindergarten
children. They were common in the sixteenth century épistémé as described by
Foucault. They may also occur in adolescents and adults today. Here is an
example.

Example: diffuse-complexive thinking about the numecrical con-

tinuum in adolescents

The humanities students described in (Sierpinska, 1987) were a little bit
lost in such diffuse-complexization when they extended the problem of whether
the equality 0.999 . . . = 1 holds true or not to questions about the existence
of the smallest particle of matter, the limits of the universe, the limits of
human knowledge, to questions of truth and convention in science. Strictly
speaking, all these quostions have nothing to do with the equality 0.999 . , . =
1 regarded as a simple, easy to prove fact of the theory of real numbers, a
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consequence of the assumption that real numbers are an Archimedean do-
main. But, for these students, the concept of relative validity of a statement
within a theory was not yet something they would know and agree with.
This concept was still to be developed and the above mentioned ‘diffuse com-
plex’ was one step towards this goal, reached, finally, at the end of a three-
week period of discussions and serious thinking. [End of example]

Pseudo-conceptualization is a form of generalization that normally starts
developing in a child at the age of 3. Results of this activity of the mind
resemble concepts in that the objects they refer to are the same as those
referred to by concepts bearing the same name (i.e., the referential meanings
of a pseudoconcept and a concept with the same name are the same). This
means that the child and the adult would use the same name for the same
objects. However, and this is the major difference, the criteria they would use
to decide whether a given object belongs to the given name will be of com-
pletely different nature. While the child would be guided by concrete factual
features and connections, the adult, in conceptualizing, will guide himself or
herself by an abstract and logically coherent set of criteria.

In experimental conditions,

the child forms a pseudoconcept when he selects objects to match a
model which are like those that would be selected and united with
one another on the basis of an abstracted concept. Thus this general-
ization could arise on the basis of a concept. In fact, however, it arises
on the basis of the child’s complexive thinking. It is only in terms of
the final result that this complexive generalization corresponds with
a generalization constructed on the basis of a concept. (ibidem, p. 142)

For example, given a triangle, the child will select all triangles from the
experimental material, just as an adult would probably do. But, in doing so,
the child makes up his or her decisions on the basis of the general appearance
of the concrete material pieces of plastic or wood and not on the basis of|
for example, the thought that the object given at the start is a model of the
geometrical abstract concept of triangle defined as a three sided polygon.

Vygotski claims that, at the kindergarten age, the pseudcconcept form
of generalization dominates over other forms of complexive thinking. The rea-
son for this overlapping of referential meaning in children and adults, accord-
ing to Vygotski, is that the child is not on his or her own in constructing the
referential meanings of words but is very strongly oriented by the stability
and consistency of meanings in the language of adults that communicate with-
the child. The child is more or less left to his or her own devices in the choice
of the categorical meaning, i.e., the criteria upon which one decides what
object should be called what name: ‘as he moves along this predetermined
path the child thinks as he can on the given level of development of his
intellect . . . The adult cannot transmit their own mode of thinking to the
child’ (Vygotski, p. 115).
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Let me add here that, if the child uses a wrong word to name something
he or she is immediately corrected. And the child wants to be taught the
names of things; children do not rebel against being corrected. Parents know
how importunate children can be in asking for names of things and how they
take delight in repeating each-new name and trying it on new objects, seeking
the approval of parents or other adults.

This readiness of the child to accept adults’ suggestions as to what and
how to generalize weakens significantly at the threshold of conceptual think-
ing. This may be linked, as we shall see later, with the fact that conceptual
thinking is systemic in nature: concepts are systems that are parts of a system.
Accepung to change the meaning of one word often means that a whole
system of meanings has to be fundamentally reconstructed. This is costly
from the point of view of both the emotional and the intellectual investments.

It is the most striking behavioural difference between elementary-school
children and adolescents that the former are more open to what the adults
tell them about the meanings of words. Adolescents seem to have their own
views on what words should mean and are able to defend them with passion
(Sierpinska, 1987, 1993; Sierpinska and Viwegier, 1989, 1992).

The reason for this difference of attitude may lie.in that complexes and
concepts have completely different structures. In a complex, which is a con-
glomerate of objects linked by various non-homogeneous, concrete and fac-
tual connections, contradictions, inconsistencies are something normal. But
concepts are supposed to be consistent systems of relations and the discovery
of a contradiction is a disaster that must be repaired. Martha, a 14-year-old
student described in (Sierpinska and Vi\}vegier, 1989, or Sierpinska, 1993)
desperately defended her conviction that a set cannot have more elements
than its proper subset: the set of all natural numbers couldn’t have ‘as many
elements’ as the set of all even numibers. For her, ‘to be a subset’ partly meant
‘to have less elements’ and she strived to preserve this concept which the
newly introduced concept of equipotence threatened to overthrow. But when
she discovered a logical gap in her arguments, this was a sufficient reason for
her to give up and to accept her defeat. She could not bear an mcomlstency
in her thoughts.

The Development of the Mental Operattons of Identification and
Discrimination

Along with pseudoconceptualization, the child starts to develop the opera-
tions of identification and discrimination on the level of features of objects and
relations between features of objects.

In constructing pseudoconcepts on the basis of maximum similarity be-
tween features of objects, the child must sort out the features and identify
some of them as more important than other (in a given situation), because
similarity between objects can never be complete It is in the phase of
pseudoconceptualization that
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. . .. we encounter a situation, very interesting from the point of view
of psychology, that the child does not attach equal importance to all
the features of an object. The features that, for the child, are the most
similar to the object given as a model in the task, come into the focus

. of the child’s attention and thus are, in a way, singled out, abstracted
from other features which, thereby, shift to the peripheries of atten-
tion. It is here that the process of abstraction appears for the first time
in all its clarity. This abstraction is frequently poorly differentiated in
nature because it is a whole group of inadequately differentiated fea-
tures that is abstracted (often based only on a confused impression of
commonality) rather than sharply isolated features. Nonetheless, the
child’s integral perception has been overcome. Features have been
differentiated into two unequal groups . . . The concrete object with
all its features, in all its empirical completeness, no longer enters into
the complex: it is no longer included into the generalization. As it
enters the complex, it now leaves some of its features on the thresh-
old. As a result, it is impoverished. Those features that serve as a
foundation for its inclusion in the complex emerge in special relief in
the child’s thinking. (Vygotski, ibidem, p. 147)

Thus, at some point of his or her pre-school life, the child starts to
identify features of objects and to discriminate between the more and the less
significant in view of some generalization.

The same phenomenon may occur at an older age, when the child — a
student — builds up his or her understanding of abstract concepts. For exam-
ple, at some point in the process of understanding the topic of equations at the
high-school level, the student must identify the simultaneous occurrence of
variables and the equals sign as features characteristic of equations before he
or she starts to conceptually think of equations as equality conditions on
variables.

It is such identification of the ‘characteristic’ features of objects that further
leads to the development of the categorical meaning of words (connotations).

After the preliminary phase of identification, in the aim of generalization,
of whole groups of features, poorly discriminated from one another, there
comes the phase of building up generalizations on the basis of an identification
of a single common feature.

Generalizations thus constructed are called ‘potential concepts’. They are
still pseudoconcepts from the point of view of the kind of criteria that make
up their categorical meaning: the above mentioned ‘single common feature’
remains concrete and factual. Very often this common feature is related to the
function of the object or its role in a particular situation. And thus, for exam-
ple, a dog would be that who guards the house, and an equation — something
you solve for x, a function — something you find the values of, put them in
a table and draw a graph.

In the phase of potential conceptualizations
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.to define an object or meaning of word means for the child to say
what it does, or, more frequently, what can be done with it. When
the issue is the definition of abstract concepts, it is the active situation,
the equivalent of the child’s word meaning, that advances to the fore-
front. In a study of thinking and speech, Messer gives a typical ex-
ample of a definition of an abstract concept that was elicited from one
of his subjects who was in the first year of instruction. The child said:
‘Intelligence is when I am thirsty but do not drink from a dirty pond.’
This type of concrete functional meaning is the sole mental founda-
tion of the potential concept. (Vygotski, ibiden, p. 159)

As, in generalizing, the child becomes more and more able of founding
the thinking on the same single feature, he or she goes beyond complexization
and approaches true conceptualization via the intermediary phase of ‘potential
concepts’.

‘Potential concepts’ are called potential because they contain in them-
selves the possibility of becoming fully fledged concepts, once the feature that
lies at their basis detaches itself from the concrete, the factual, the situational.

A remark that occurs to me at this point is that what the so-called ‘con-
textual’ or ‘situational’ mathematics movement in mathematics education
proposes to do is, in fact, to engage students in constructing pseudo-concepts
and potential concepts (or, rather, I should say, ‘pre-concepts’ because we are
speaking of real and not of experimental concepts), that is, in generalizations
that are already based on an identification of a single feature but are still very
closely linked to concrete situations. This is not a bad idea, altogether, if we
admit that, in constructing a new concept, the student has to pass through
syncretization and complexization and that pre-concepts is the necessary phase
in the transition to conceptual thinking.

Moreover, not much more than pre-concepts can be expected before the
age of adolescence. Students may not be able to focus their attention on the
definitional single and abstract feature of objects, taking them in all their
actual and situational richness. But, it is important to be aware that one can-
not expect that older students will develop conceptualizations spontaneously
by themselves, through some ‘necessary, natural law of evolution’. It is the
teachers’ and adults’ role to provide the youth with challenging theoretical
questions and problems in and out of school setting to open the ‘gate to
conceptual thinking' for them (Vygotski, ibidem, pp. 191, 212).

The Development of the Operation of Synthesis: Conceptual T hinking

The construction of a concept involves a substantial use of the operation of
abstraction of features and the synthesis of these features into a coherent whole.
One can speak of conceptual thinking when such abstfact syntheses become
the fundamental form of thought with which the subject perceives and inter-
prets reality (ibidem, p. 159). The synthesis itself is a culmination of a series
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of identifications, discriminations and generalizations. The crucial role in this
operation is played by the ‘functional use of the word’.

The concept arises in the intellectual operation. It is not the play of
associations that leads at its construction. In a unique combination, all
the elementary intellectual functions participate in its formation. The
central feature of this operation is the functional use of word as a
means of voluntarily directing attention, as a means of abstracting and
isolating features, and as a means of the synthesizing and symbolizing
these features through the sign. (Vygotski, ibidem, p. 164)

The formation of a concept involves not only the synthesis that allowed
to isolate the necessary and sufficient criterion of its meaning; this synthesis
must also grasp the concept’s relations with other concepts, ideas, judgments.
Concepts do not exist in isolation. A concept is immediately embedded into
a system of ideas and judgments.

The concept actually does find its natural place in judgements and
conclusions, acting as a constituent of them. The child who responds
with the word ‘big’ when presented with the word ‘house’, or with
the phrase ‘apples hang from it’ when presented with the word ‘tree’
proves that the concept exists only within a general structure of
judgements, that it exists only as an inseparable part of that structure.
(ibidem, pp. 163-4)

Vygotski claims that having judgments, being able to formulate judgments
about objects precedes the ability to define concepts involved in these
judgments.

Adolescence does not automatically trigger conceptual thinking in chil-
dren. As in other areas of their mental and physical development, early ado-
lescence is a very stormy time of transition and change: ‘the period of crisis
and maturation’ (ibidem, p. 160). )

Several clashes characterize this beginning phase of conceptual thinking.
Among them is the discrepancy between the ability to ‘do things with’ a
concept, i.e., use it, make it work, and the ability to think and speak about
it, in particular, to define it in general terms.

In the concrete situation, the adolescent forms the concept and applies
it correctly. However, when it comes to the verbal definition of this
concept, the adolescent’s thinking encounters extreme difficulty. The
concept’s definition is significantly narrower than the concept as it
is actually used. This indicates that the concept arises as the result
of processes other than the logical processing of certain elements of
experience. Moreover, it comes into conscious awareness and acquires
a logical character at a comparatively late stage of its development . . .
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In our experiments we often observed a situation where the child or
adolescent correctly resolved the task involved in the formation of the
concept. However, in providing a definition of the concept he had
formed the same child sank to a more primitive level and began to
enumerate the concrete objects grasped by the concept in a particular
situation. Thus, the adolescent uses the word as a concept but defines
it as a complex. This type of oscillation between thinking in com-
plexes and thinking in concepts is characteristic of the transitional
age. (ibidem, p. 161)

Another difficulty experienced by adolescents is that of transfer of con-
cept from one concrete situation to another. However, this difficuity is quite
quickly overcome. A more serious problem is related to the transfer of a
concept from abstract definition to concrete situations (i.e., when it comes to
its interpretations and applications). But even that should normally be over-
come by the end of the transitional age.

Rather early, children are able to use words in their correct meanings;
they may not always be aware of their own thinking in making the choice of
the right word. They are not able to use a word ‘intentionally’.

Vygotski gives an example of 7-8-year-old children, who when asked to
explain what does the word ‘because’ mean in the sentence: ‘I am not going
to school tomorrow because I am ill', would .give answers like: ‘this means
that he is ill', ‘this means he will not go to school’. Or, when asked to
complete the sentence *This man fell off his bike, because . ..’, they would
answer: ‘he fell off his bike because he fell and then he hurt himself’, ‘because
he broke his leg, his arm’.

For Vygotski, an awareness of one’s own thinking processes, a conscious
and intentional (and not just spontaneous or imitative) use of words is exactly
that which founds the conceptual thinking. Now, because awareness and
intentional use of one’s own-thinking processes presupposes their general-
ization, and generalization is nothing but a constitution of a hierarchy, then
conceptual thinking must be systemic. Indeed, for Vygotski, awareness of
concepts and their systemic character are synonymous (ibidem, p. 192).

One important consequence of this, and Vygotski stresses it very strongly,
is that the system of concepts cannot be given (transmitted) to the child from
outside. The systemic character of thought is synonymous with awareness
and awareness is always an awareness of one’s own thought. In order to be
aware of one’s own thoughts and thinking processes one must first have these
thoughts and experience these thinking processes.

.. . the system — and the conscious awareness that is associated with
it — is not brought into the domain of the child’s concepts from
without: it does not simply replace the child’s own mode of forming
and using concepts. Rather, the system itself presupposes a rich and
mature form of concept in the child. This form of concept is necessary
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so that it may become the object of conscious awareness and systema-
tization. (ibidem, p. 192)

The domain par excellence of systematization is the domain of scientific
concepts (ibidem, p. 212). This is why learning at school is so important.
Scientific concepts precede the spontaneous concepts in the development of
the child, and in fact, foster their development.

The Spiral Development of Real Concepts in a Child

The systemic character of generalizations is more visible in the real processes
of concept formation than in the experimental setting, where the child is
usually given the task of forming some artificial concept independently from
his or her previous knowledge and experience. A generalization is always
built on some previous generalizations. The development of generalizations
resembles a spiral and not a series of concentric circles (ibidem, p. 229).

In an example taken from research on the development of mathematical
ideas Vygotski shows how algebraic thinking develops upon the arithmetic
thinking and transcends it through generalization.

An analysis of the development of preschooler’s general representa-
tions (which correspond to the experimental concepts that we call
complexes) indicated that general representations — as a higher stage
in the development of word meaning — emerge not from general-
ization of isolated representations but from general perceptions. That
is they emerge from the generalizations that dominated the previous
stage . . . In our study of arithmetic and algebraic concepts we estab-
lished an analogous relationship between new generalizations and those
that precede them. Here, in studying the transition from the school
child’s preconcepts to the adolescent’s concepts, we were able to
establish what is in essence the same thing that we established in pre-
vious research on the transition from generalized perception to general

representations (i.e., from syncretic images to complexes). (ibidem,
p. 230)

Vygotski describes the preconcept of number as ‘an abstraction of number
from the object and a generalization of the quantitative features of the object’
(ibidem). The concept of number, on the other hand, is ‘an abstraction from
the number [of things] and a generalization of any relation between numbers’
(ibidem).

Thus, the concept is an abstraction and generalization of thoughts about
thoughts, while the preconcept is an abstraction and gencralization of thoughts
about things. The concept is not an evolution of the pre-concept: it is a leap to

a new and higher level of thought; it is thinking about the thoughts of the
previous levels.
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Vygotski seems to be saying that the concept of number belongs to
algebraic thinking; arithmetic thinking is concerned with at most the preconcept
of number. Algebraic thifking is based on a generalization of one’s own
arithmetical operations and thoughts and is, therefore, characterized by free
acting in and on the arithmetical domain. In algebra, arithmetic expressions
can be transformed, combined according to the general laws of arithmetic
operations and not just calculated, ‘executed’ like in the frame of arithmetic
thinking. Operations are independent from the particular arithmetic expres-
sions they are involved in. 2 + 3 for an arithmetically thinking school child is
5, period. 2 + 3 for the algebraically thinking adolescent is a particular case of
a+ b, where a, b are any real numbers. For the algebraically thinking adoles-
cent arithmetical operations are special cases of the more general algebraic
notions.

As long as one works within a system without being aware of its laws,
one is tied up in it. Awareness brings about freedom and control over the
system. Once the system is seen as one of the possible systems, a way is open
to new systems, new generalizations and syntheses, new understanding.

The Psycho-genetic Roots of Epistemological Obstacles

In the experiment with the notion of equipotence involving children 10-12
and 14-year-olds (Sierpinska and Viwegier, 1992), it appeared less difficult for

the 10-year-old Agnés to accept the equipotence of given infinite sets than for
the 14-year-old Martha, who never accepted the equipotence unconditionally.
Also, Agnés was swift in grasping the main argument for the equipotence of
natural and even numbers while Martha argued very strongly against it and
it took her a long while to discover an inconsistency in her reasoning. But: she
discovered it! She was able to reflect on and judge her own thinking and was
certainly more aware of the difficulties inherent in the notion of equipotence,
of its non-intuitiveness.

While Agnés’ thinking was still very complexive in nature, Martha cer-
tainly thought conceptually of infinity and subsets although her concepts were
not exactly those we know from studying Mengenlehre. For her, ‘infinity’ was
something ‘as large as we wish’ and therefore impossible to count, and a sub-
set was a part with less elements than the whole. These concepts, embedded
in a whole system of her other concepts and beliefs (also about the nature of
scientific knowledge) functioned as obstacles to her acceptance of the pro-
posed definition of ‘as many as’ and, evenn more 50, to its logical consequences
(especially to the equipotence of natural and even numbers) and Martha was
aware of it.

Systemic thinking cannot bear inconsistencies and Martha struggled
to remove hers from her system, first, by trying to undermine the above
mentioned consequence of the definition of ‘as many as’. When she failed —
and she admitted it by discovering an inconsistency in her arguments — she
proposed to reject the definition itself. She would rather change the axioms
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of the theory than any of what she considered as fundamental truths or
‘basic statements’ (to use the term of Popper and Lakatos, see Lakatos, 1978b).
Informed that, in the mathematical theory, ‘as many as’ is understood in very
much the proposed way and the equipotence of natural and even numbers is
accepted as a theorem, she fell into frustration and dramatically declared herself
disappointed with mathematics. In spite of this frustration or maybe exactly
because of it we may say that, by the end of the experiment, Martha’s under-
standing of mathematics was much deeper than in any of the younger children.

We say that, in Martha, her concepts of infinity and subset functioned as
epistemological obstacles because, first of all, they were concepts (not com-
plexes), parts of a system of concepts, ways of thinking and beliefs and there-
fore they could not be removed or changed without injuring the whole system.
Second, they belonged to the sphere of scientific thinking and its foundations;
they were linked with beliefs about what knowledge is and what makes it
valid. .

It seems that one cannot sensibly speak of epistemological obstacles in
children before they reach the age of conceptual thinking.

Things went easier with the younger children because they did not have
to overcome epistemological obstacles. The epistemological obstacles still re-
mained to be constructed.

And constructed they are in the child’s development and socialization,
gradually, on the basis of the child’s experiences with, first, the concrete sets
and concrete numbers of things, small numbers of things, and then, inferences
about large numbers and the inner invisible structure of things — thus tran-
scending the immediate experience and the possibilities of actual counting.

First generalizations are built on images of the concrete and the finite. No
wonder they resemble so much their archetypes. A point is a very tiny dot,
infinity is ‘so many that you cannot count’ etc. Concepts cannot be given to

. the child, ready made, in the verbalized form or symbolic representation. The

child has to construct them as generalizations of his or her previous general-
izations and it is quite natural that the adolescent’s first concepts may bear little
resemblance to the fully fledged ones developed by generalizations made by
mathematicians in their adult, mature, and often genius lives. And thus they
become obstacles to understanding the theories.

In our experiment, younger children, too, experienced difficulties in
understanding why some of the given sets could be regarded as having ‘as
many elements one as the other’. But these difticulties were not a consequence
of an epistemological obstacle. If they could not understand the statement it
was not because it didn’t fit into what they already knew. They would not
bother about fitness or consistency. They just struggled for finding a way to
explain it to themselves, for finding a way to make it acceptable from their
own point of view. And, in the frame of complexive thinking, this meant
finding some concrete way of actually matching the elements of the two sets
together in pairs. It was not necessary, for these children, to actually perform
the matching. Not any more. They were much too far advanced in their
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complexive thinking. It was enough to be able to imagine how this can be
done, and to show it with a vague gesture. Arguments why the method of
pairing would work were not felt as necessary by the children in the case of
two lines. If argumentation appeared in the case of natural and even numbers
it is because the elements could not be represented on a sheet of paper in a way
that would show all their elements matched simultaneously. The preblem was
much more abstract and it was not obvious that the method of matching
1 with 2, 2 with 4 etc., would indeed work. A verbal argument was neces-
sary and Agnés was able to find it: the sets are infinite and infinity is come-
thing that never ends, so you never run short of these even numbers to match
with the natural numbers. The challenge of the situation was so big that it
almost pulled Agnés beyond her complexive thinking. Of course, the chances
of her staying there were probably minimal. It could be seen, however, that
rational and deductive argumentation, and good understanding of unbounded-
ness of the set of natural numbers were all within Agnés’ zone of proximal
development.

This is how, according to Vygotski, the child is able to transcend his or
her actual ways of thinking. The challenging questions posed by the adult lead
the child’s thinking beyond the forms he or she is using and sometimes force
it into forms that are much more elaborate. Concepts develop this way, but,
simultaneously, the seeds are thrown of future epistemological obstacles. The
obstacles grow on the soil of complexive, childish, thinking — they have
genetic roots. But the fertilizers (the challenges that make them grow) come
from the surrounding culture, from the implicit and explicit ways in which
the child is socialized and brought up at home, in the society, in the school
institution.

It is to the cultural roots of epistemological obstacles that we turn now.

The Cultural Roots of Epistemological Obstacles

What the child will ‘complexize’ and the adolescent ‘conceptualize’, or, to put
it differently, what each of them will attempt to understand and how will they
understand it depends not only on the particularities of the human brain and
on the constraints of the genetic development but also and foremost on the
culture into which the child is socialized. The languape used in the child’s
environment may favour certain images rather than other. For example, cer-
tainly the abundance of nouns in some languages and the way abstract con-
structs are spoken about inspire a way of understanding that ‘reify’ the world,
fills it up with stable and fixed ‘things’ rather than with processes, dynamic
changes and different forms of energy constantly changing from one to an-
other (Lakoff and Johnson, ibidem). Atoms like little billiard balls, geometrical
points like little dots, arranged as beads in a necklace — these are the images
conveyed to the child by the way these concepts are spoken about.

An object of understanding must be noticed to become an object of
under tanding. But what to notice, and what are the noticed things signs of
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— this is learned, acquired through the processes of socialization and educa-
tion. A mother will teach her child to eat with a spoon — to notice this object
and identify it as a tool for bringing the food to the mouth and not to throw
it at the dog. In a mathematics class, when teaching word-problem solving,
the teacher will point to information that is relevant from the mathematical
point of view, and discard that which is irrelevant. In a ‘buying and selling’
problem, it is not relevant whether the apples bought were McIntosh or
Golden Delicious, or whether the buyer’s name was Yi-Ching or Eddy. What
counts is the price and the quantity of purchased goods. This teaching to
attend to numbers only is so successful that when asked the now legendary
problem: ‘There are 5 goats and 7 sheep aboard a boat. How old is the cap-
tain?’ the students almost unanimously respond: ‘35’.

In different cultures, different things are attended to. Numbers and
counting are important in certain cultures. Children are trained in memorizing
the sequence of numerals and a child who ‘can count up till 100" at the age of
4 is praised by everybody around. Some cultures have not found it worth-
while to invent numerals above a certain small number, and do not bother to
think about numbers as objects in themselves.

The child learns by imitating the behaviour of adults. He or she learns
also what the adults would wish him or her not to learn, in the hope that the
child will be a better and ‘revised’ version of themselves. Schemes of behav-
iours induce schemes of thinking. The child acquires, without knowing it,
certain schemes of approaching problems and solving them.

Cultures determine their own epistemological obstacles — things that are
so obvious, so natural that nobody would think of questioning them [lest he
or she be branded a blasphemist!]. First, one would have to be aware of them
being obstacles indeed. And being aware of an obstacle can be very close to
its overcoming. :

Anthropologists have tried to make us more aware of the implicit, the
unspoken, the ‘hidden dimension’ of our culture (Hall, 1969, 1976, 1981;
Hook, 1969). They have tried to explain the difficulty of communication
between different ethnic groups. But there may be similar difficulties in com-
munication between the scientific community and the laymen, the teachers
and the learners, the scientific thinking and the everyday thinking.

The cultural dimension of mathematics learning is more and more
taken into account in mathematics educational research (Bishop, 1988, 1991;
Chevallard, 1990, 1992; Keitel et al., 1989; Mellin-Olsen, 1987; Vasco, 1986,
to name but a few). In a review of a book devoted to the relationship between
the cultural development and the development of arithmetical skills, strategies

and concepts in young street candy sellers in Brazil (Saxe, 1990), Alan Bishop
writes:

These arc fascinating and challenging times in mathematics education,
as the influences from anthropology are forcing us to reshape our
constructs and our methodologics. Research like Lave’s is making us
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reexamine our problem solving research ideas to take full account of
the social situation in which the problem is framed. The ethnographic
research approach and its associated assumptions are becoming more
acceptable within our research community. Ethnomathematics is an
ever growing field with enormous implications for both curriculum
deveiopment and pedagogical practice in all countries. The develop-
ing field of cultural psychology . .. is going to have a profound in-
fluence on psychological theory and will also, in my view, have
challenging implications for all of us in mathematics education.
(Bishop, 1991)

These words were written in 1991. One might get the impression that
the ‘cultural’ trend in mathematics education is very recent. In fact, the cul-
tural dimension in the study of the teaching and learning processes in math-
ematics appeared at least as far back as in the mid-1970s in the French and
German didactics of mathematics under the influence of sociologists of edu-
cation such as, for example, Basil Bernstein. Education started to be viewed
as ‘transmission of culture’, and a mearis for its ‘reproduction’ (e.g., Bernstein,
1971; also, Marody, 1987). Guy Brousseau’s concepts of ‘contrat didactique’
and ‘situation didactique’, Yves Chevallard’s ‘“transposition didactique’, Heinrich
Bauersfeld’s studies of the invisible culture of the mathematics classroom —
the discovery of patterns anc routines of the classroom communication — are _
all based on a holistic view of institutionalized learning as part of a certain
culture and a culture itself.

"What I personally have reached for in the anthropological thought are
the theoretical considerations of E.T. Hall (1981) — his ‘theory of culture’ —

which appears to quite convincingly explain eplstemologlcal obstacles as a
cultural phenomenon

The ‘Cultural Triad’

Hall describes culture as a ‘form of communication’ (Hall, ibidem, p. 49) or as
‘a learned and shared way of behaviour’ (p. 66). Teaching and learning are
crucial in a culture. Hall claims that ways of teaching determine, in a sense,
all other components of culture, and learning is an activity just as important
for survival as sleep, water and food.

He speaks of the ‘fundamental triad’: three levels of experiencing the
world by man, three ways of transmission of this experience to children, three
types of consciousness, three types of emotional relations to things: the ‘for-
mal’, the ‘informal’, the ‘technical’.

The ‘formal’ level is the level of traditions, conventions, unquestioned
opinions, sanctioned customs and rites that do not call for justification. The
transmission of this level of culture is based on direct admonition, explicit
correction of errors without explanation (‘don’t say “I goed”, say “I went” ).
Built up over generations, the formal systems are normally very coherent. For

161




PAFullToxt Provided by ERIC

Understanding in Mathematics

people living in cultural communities, they play a role analogous to that
which instinct has for animals.

The informal level is the level of the often unarticulated schemes of be-
haviour and thinking. Our knowledge of typing, or skiing, or biking belongs
to this level of culture if we do not happen to be instructors of these skills.
This level of culture is acquired through imitation, practice and participation
in a culture, and not by following a set of instructions. Very often neither the
imitated nor the imitating know-that some teaching~learning process is taking
place.

At the technical level, knowledge is explicitly formulated. This knowl-
edge is analytical, aimed to be logically coherent and rationally justified.

The process of teaching [at this level] has a planned, coherent form
... Knowledge belongs to the instructor. His skills are function of
his knowledge and analytical abilities. If he has clearly and conscien-
tiously analysed the material, his presence is not even necessary. He
can write it on paper or record on tape. .. [Like the formal educa-
tion] the technical education starts with errors and correction of errors,
but a different tone is used here and the student is being explained his
error. (ibiders., pp. 82, 84-5)

In terms of the triad, Hall then defines culture, taken at any given point,
as ‘made up of forinal behavior patterns that constitute a core around which
there are certain infornial zdaptations. The core is also supported by a series
of technical props’ (ibidem, p. 91).

It is necessary to stress that the contents of the levels of culture are not
something stable and fixed once and for all; not only these contents change
considerably from one culture to another, they also change within one cul-
ture. Elements of the formal level can be pushed into the implicit and infor-
mal. Sometimes an idea is born within the technical sphere which contradicts
the common beliefs of the formal level and is being publicly rejected by those
who consider themselves responsible for the standards, whether scientific or
moral or religious or other. But with time, use and thoughtless repetition the
idea may shift to the formal level and become a new kind of belief. Indred,
‘every really significant scientific idea is born as a heresy and dies as a preju-
dice’ (Cackowski, 1992).

I promised, in Chapter 4, to show how one can establish a ‘homo-
morphism’ between Hall’s cultural triad and Foucault’s épistéme. Here is a
suggestion: Foucault’s épistém¢ can be regarded as related categories, rules of
sense and rules of rationality prevalent in a given epoch and culture (Skarga,
op.cit.). These three villars seem to correspond to the three levels of culture:
the formal, the informal and the technical. Categories normally function
without much justifica‘ion, directing the thought, determining the important
questions; it is around them that a whole world view is built up. When they
start to be questiciicd, tie society is ready for a change. The rules of sense are
usually not fully articulsted and can be unconscious, but they are what guides
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. the way of making sense of events, phenomena, texts; they order the world.
We can say that they belong to Hall’s ‘informal level’. The rules of rationality,
in their turn, are more appropriately piaced on the ‘technical level’ of culture.
Different epochs characterize rationality in different ways, but explicitness,
articulation of meanings, justification of statements, generality are probably
the common features. Differences appear in the standards of this articulation,
Justification, generality. _

In the sequel we shall use the language of Hall’s ‘triad’ to speak about the
cultural constraints of epistemological obstacles in mathematics.

The Mathematical Culture

Mathematics can be regarded as a developing system of culture and a sub-
culture of the overall culture in which it develops (Wilder, 1981).

Also in the mathematical culture three levels of experiencing mathemat-
ical thoughts, three ways of transmission of this experience to others, three
types of consciousness, three types of emotional relations can be distinguished:
‘the formal’, the ‘informal’, and the ‘technical’.

Let us assume that the ‘technical’ level of a mathematical culture is the
level of mathematical theories, of knowledge that is verbalized and justified in
a way that is widely accepted by the community of mathematicians. In the
following, the formal and the informal levels of culture will be discussed in
more detail — they are the hotbed of epistemological obstacles.

At the ‘formal’ level, our understanding is grounded in beliefs; at the
‘informal’ level — in schemes of action and thought; at the ‘technical’ level —
in rationally justified, explicit knowledge.

In a mathematical culture the fundamental role is played by the ‘informal’
level. This role is both positive and negative. The ‘informal’ level of a math-
ematical culture is the level of tacit knowledge (Polanyi, 1964), of unspoken
ways of approaching and solving problems. This is also the level of canons of
rigour and implicit conventions about, for example, how to justify and present
a mathematical result. Today, for example, to write in a mathematical paper
that a certain theorem has exceptions would be exhilarating. But, as we
already mentioned, in the nineteenth century, it was perfectly acceptable for
N.H. Abel to write such a sentence with respect to the well-known C “«chy’s
theorem that the limit of a convergent sequence of continuous functions is a
continuous function (Lakatos, 1978a).

Example: culturally bound notions of rigour in mathematics

Another example of a historical difference in viewing mathematical rig-
our is given by Kvasz (1990). It is related to the problem of convergence of
power series. At the time when the expansion of real functions in power series
had known its apogee, mathematicians did not find it necessary to prove the
convergence of the series. For example, in the expansion:

sin x = x - 1/31x* + 1/5!x°* —. ..

.
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the existence of the sine was guaranteed by its geometrical meaning. Series
were just a computational tool. If the tool works then the series must con-
verge to sin X. This was, as Kvasz calls it, a realistic approach to mathematical
objects.

The realistic point of view is based on the belief in the existence of
.ome reality — geometrical, physical or other, which solves all ques-
tions of existence. So the mathematician needs not to take care of
them, and not because he is not rigorous enough but because it does
not make sense. (Kvasz, 1990)

This realistic approach became untenable when complex functions started
to be studied. For example. the equation

e* =1+ ix + 1/2U(ix)? +. ..

cannot be regarded as a description of €™, otherwise well defined as an object.
Its existence can only be guaranteed by a proof of convergence of the series.

We came from the realistic to the nominalistic point of view. Here
the symbols refer to no reality. They are mere abbreviations for other
syntactical expressions. So the question of convergence becomes very
important. Only if the convergence of the series has been proved, we

have the right to use the symbol e*. (Kvasz, ibidem)

[End of example]

The ‘formal’ level of mathematical culture could be regarded as the level
of beliefs, convictions and attitudes towards mathematics, ideas about its nature,
relation to reality, etc. The belief in the absolute infallibility of mathematical
theories, the conviction that mathematics is rigorous, or, on the other hand,
the conviction that mathematical proofs rely on formal and conventional tricks,
and that, therefore, mathematics is completely useless from the point of view
of knowledge about the world and reality, are examples of elements of the
‘formal’ level. :

Another element of this level is what is usually called the ‘mathematical
folklore’, i.e., what is ‘known’, what is so obvious, that nobody bothers to
prove it any more. In particular, the so called ‘cultural intuition’ belongs here
(Wilder, ibidem, p. 133). What Wilder calls ‘cultural intuition’ are the convic-
tions concerning the basic mathematical notions, which are taken for granted
by mathematicians in a given epoch. The existence of such ‘cultural intuition’
at each moment of the development of mathematics has been formulated as
a law of this development (law 9) by Wilder. Here are some examples of such
‘cultural intuitions™:

* the belief of the early Greek mathematical community in the com-
mensurability of all line segments;

¥
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* the pre-Grassmann-Hamilton belief that all algebras and operations on
numbers must be commutative;

* the pre-Bolzano- Weierstrass intuition concerning real continuous func-
tions; in particular, that any such function can be non-differentiable in
at most a finite number of points;

» the conviction that the unit sphere cannot be decomposed into a finite
number of parts, from which two unit spheres could be composed
(a conviction refuted by Banach and Tarski in 1924, with the help of
the Axiom of Choice).

Let us remark that the way in which Wilder presents his examples of
cultural intuitions shows his own, rather platonistic, attitude towards the nature
of mathematics. Mathematical ideas seem to pre-exist, and the task of math-
ematics is to discover them, give them names, find relations between them.
First experiences in a given domain allow to formulate certain guesses (or
‘intuitions’ in Wilder’s terminology) that can be refuted in the course of fur-
ther research into the nature of mathematical objects. But isn’t it rather that
what we make research into are the logical consequences of definitions and
assumptions we have deliberately chosen ourselves? We might have chosen
a definition of function that would not let in the plague of functions without
derivatives. We might have not accepted the Axiom of Choice into the foun-
dations of mathematics. Didn’t we have the Choice?

In a ‘formal’ or ‘technical’ way we can acquire certain knowledge about
mathematics, we can learn algorithms, some methods of proof (mathematical
induction, reductio ad absurdum, etc.), solving some ‘typical’ problems, ready
and written parts of a theory. We can be passive users of mathematics. But it
is only on the ‘informal’ level, by working with mathematicians, through
‘imitation and practice’ as Polya used to say, that we can learn to pose sensible
questions, put up hypotheses, propose generalizations, synthesize concepts,
explain and prove.

‘Informal’ knowledge and understanding is thus an indispensable support
of any creative thinking in mathematics. On the other hand, however, this
same knowledge and ways of understanding, as not fully conscious, and
unquestioned, and drawn from experience in concrete situations, can guide
our thinking in new situations in a way that will make the resolution impossible.
Reiterating attempts, we may unconsciously always apply the same schema
of thought or action, bewildered by the fact, that what has always worked
so well suddenly fails us completely. It is only an awareness of what was the

‘obstacle’ that allows us to overcome the impasse and change our ways of
understanding .

T he Interplay Between the Three Levels of Mathematical Culture

The formal, the informal and the technical, albeit autonomous from the point
of view of their identity, are in constant mutual interaction. This feature of

1 E‘) 165

8% i




Upnderstanding in Mathematics

culture makes possible the cultural changes, the downfall of world views, the
rise of theories that bring about changes in our representations of the structure
of matter, of time and space, of number ... This feature of culture makes
understanding possible.

On the one hand, the formal and the informal affect the technical; on the
other — the technical ‘creates very quickly its own formal system’ (Hall,
ibidem, p. 81). As Bachelard said:

Knowledge acquired through a scientific effort can decline itself: the
abstract and sincere question gets used, the concrete answer remains.
At this point the spiritual activity. inverts and blocs itself. An episte-
mological obstacle encrusts itself on the unquestioned knowledge.
Intellectual habits, once healthy and useful, can, at the long term,
impede the research. ‘Our mind — rightly says Mr Bergson — has an
irresistible tendency to consider as clearer the idea that serves it more
often’. (Bachelard, 1983, pp. 14-15)

What is considered as obvious and natural, what is unquestioned, will, in
some measure, determine what will be considered as problematic: what ques-
tions and hypotheses will be posed and what will be the ways of attacking
them.

On the other hand, the problems will determine the results that will be
obtained, i.e., what will be considered as the ‘justified body of scientific or
technical knowledge’.

The way in which the ‘technical sphere’ can affect the ‘formal’ sphere is
described by Hall as follows:

Science, whose nature is, as we think, technical, has developed a
series of formal systems that nobody puts into question. They are
linked with the methodology of scientific research, with the stress put
on the objectivism of members of the scientific community, on their
loyalty to their own work and the work of others. In fact, a part of
what is being called science, should be classified as a new formal
system, which quickly takes the place or replaces the older formal
systems, concentrated around popular beliefs and religions. .. The
so-called social sciences or the behavioral sciences are saturated with
the ritualized procedure transmitted by professors to those who will
later transmit it to their students. Rumour has it that a certain zealant
of scientific sociology has elaborated an index, with the help of which
one can evaluate the degree of ‘scientificity’ of a given publication.
The scale is based on the ratio main text — annotations, and on the
number of statistical data in the text. (Hall, 1981, p. 81)

Example: beliefs related to Hilbert’s programme of finitistic proofs
In the history of mathematics, the successes of formalization at the turn
of the century have encouraged Hilbert to formulate a programme full of
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optimistic belief in the possibility of carrying through finitistic proofs of con-
sistency of the fundamental mathematical theories. This belief had driven
mathematicians’ and logicians’ ‘technical’ activity for several decades and
reached its culmination, in 1930, with Gédel’s proofs of the impossibility of
proving the consistency of arithmetics with the methods of arithmetic.

This result has caused confusion among philosophers of mathematics.
The myth of absolute infallibility of mathematics was seriously shaken.

Morris Kline (1980) writes,

The logicists, formalists and set theorists rely on axiomatic founda-
tions. In the first few decades of this century this type of foundation
was hailed as the choice basis on which to build mathematics. But
Godel’s theorem that no one system of axioms embraces all of the
truths that belong to any one structure, and the Lowenheim-Skolem
theorem shows that each embraces more than was intended. Only the
intuitionists can be indifferent to the problems posed by the axio-
matic approach.

To top all the disagreements and uncertainties about which foun-
dation is the best, the lack of proof of consistency still hangs over the
heads of all mathematicians like the sword of Damocles. No matter
which philosophy of mathematics one adopts, one proceeds at the
risk of arriving at a contradiction. (Kline, 1980, p. 310)

After Godel some philosophers tried to find a way out of this feeling of
uncertainty. In fact, some of them proceeded to build their certainty on this
uncertainty. This is how the philosophy of Lakatos could be described, per-
haps. In the years 1960-70 Lakatos started to promote a philosophy of
fallibilistic mathematics: mathematics as a ‘quasi-empirical science’. Accord-
ing to Lakatos (1978b), the basic logical flow in mathematics is not the trans-
mission of truth through the channels of deduction from axioms to theorems,
but rather the retransmission of falsity from the special statements (the so-
called ‘basic statements’) towards the axioms. In this approach, axioms are but
‘working hypotheses’, and if it turns out, on the basis of the axioms, that one
of the basic statements does not hold, then one would rather change the
axioms than reject the statement.

The idea of mathematics presented by Lakatos in his Proofs and refutations,
is well rendered by Kline (ibidem) when he writes:

[mathematics] is a series of great intuitions carefully sifted, refined
and organised by the logic men are willing and able to apply at any
time. The more they attempt to refine the concepts and systematize
the deductive structure of mathematics, the more sophisticated are its
intuitions. But mathematics rests upon certain intuitions that may be
the product of what our sense organs, brains and the external world
are like. It is a lfuman construction and any attempt to find an abso-
lute basis for it is probably doomed to failure.
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Mathematics grows through a series of great intuitive advances,
which are later established not in »ne step but a series of corrections
of oversights and errors until the proof reaches the level of accepted
proof for that time. No proof is final. New counterexamples under-
mine old proofs. The proofs are then revised and mistakenly consid-
ered proven for all time . . . Actually the mathematician does not rely
upon rigorous proof to the extent that is normally supposed. His
creations have a meaning for him that precedes any formalization, and
this meaning gives the creations an existence or reality ipso facto. The:
attempt to determine precise metes and bounds of a result by deriving
it from an axiomatic structure may help in some ways but does not
actually enhance its status. (Kline, ibidem, p. 313)

Today’s mathematicians (when they care to bother about it) remain per-
plexed between the awareness of lack of absolute proofs of consistency and
the strong feeling of the soundness of the mathematics they create. [End of
example]

Another example of flow of elements of culture from the technical to the
formal level is supplied by the history of the so-called ‘principle of homo-
geneous quantities’.

Example: the principle of homogeneity: an axiom turned norm of

rigour .

The Definition V, 3 of the ‘Elements’ says: ‘Ratio is a quantitative relation
between two homogeneous quantities’. This definition has led to the rule: it
is impossible to speak about the ratio of two non-homogeneous quantities.
This rule became a kind of unquestioned dogma, very difficult to overcome.
One symptom of this obstacle was the reluctance, in kinematics, to consider
the ratio of distance to time as an expression of velocity. As the historians
Dedron and Itard remarked: ‘It is perhaps of interest to note that in none of
the work of seventeenth century applied mathematicians, except perhaps in
that of Wallis, do we find the modern definition of velocity as the quotient of
distance travelled divided by time, or the limit of this quotient as the time
interval tends to zero. Even for Euler, in Letters to a German Princess, ‘Velocity
is that well-known property whereby one says that in a certain time a body
travels a greater or less distance in space’ (Dedron and Itard, 1973, p. 192).

Of course, the life of the principle of homogeneity would not be as long
as it was, were it not consistent with other elements of the formal level of
mathematical culture. The principle of homogeneity is closely related to the
idea of discrimination between the discrete and the continuous quantities,
proposed in the ‘Elements’. Numbers could only be coefficients in equations
involving magnitudes. They showed how many times a given quantity has to
be taken. Quantities were represented geometrically as line segments (lengths),
parallelograms (areas), parallelepipeds (volumes). It does not make sense to
add a length and a volume, and even less to divide a length into a volume.
The expression a/b where a and b are quantities, could not be replaced by a
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number — result of division of the measure of a by the measure of b. A ratio
carried in itself the information about the quantities of the two magnitudes a
and b, the information about what is being compared to what. In a/b regarded
as a number this information is lost. [End of example]

The flow of elements of culture from one level to another has a dialectic
character: something that, on the technical level, is an achievement that pushes
the research forward, may become, on the formal level, a dogma that nobody
dares to shake. On the informal level — it may imprint itself as a scheme of
thought, a habit so natural that it becomes a part of ourselves.

A progress on the technical level always requires a certain overcoming of
our intellectual habits and of what we have considered as infallible truths —
the sacred cows of our minds.

At the same time, deprived from our beliefs, convictions and schemes of
thought, we would be totally helpless in front of any intellectual task. Ein-
stein wrote: . . . if the researcher went about his work without any precon-
ceived opinion, how should he be able at all to select out those facts from the
immense abundance of the most complex experience, and just those which
are simple enough to permit lawful connections to become evident’ (cited in
Holton, 1978, p. 99). Laws are not derived by induction from observation of
particular facts. Indeed, the very notion of ‘fact’ does not make much sense
prior to theory. However, these pre- supposmons are not taken at random —
they are guided by what is called the scientist’s ‘intuition’ which, in case of
individuals such as Einstein, means a global vision of the past and future
developments of a domain.

The situation is not very different in mathematics. Mathematicians do in-
cline themselves under the logical necessities of their proofs and verifications
and sometimes unexpected or paradoxical results are obtained. But the very
fact that some results are considered paradoxical proves the existence, also in
mathematicians, of what Holton calls ‘thematic presuppositions’, i.e., ‘the
unverifiable, unfalsifiable and yet not arbitrary conceptions and hypotheses’.

NIHIL NOV1

The vision of ‘good’ understanding in mathematics presented in this book,
full of metaphors of struggle, ‘overcoming’ obstacles, ‘breaking’ with a scheme
of thought, etc., is nothing new. This is just another way of saying that ‘there
is no royal road to geometry’. However, this seems to be more true today
than 2500 years ago. Haven't we less and less royal roads on Earth anyway?




References

Ajpukiewicz, K. (1934) ‘Sprache und Sinn’, Erkenntnis IV, pp. 100-38.

Ajpukiewicz, K. (1946) ‘O tzw. neopozytywizmie’, Mysl Wspolczesna 6-7,
pp. 155-76.

Ajpukiewicz, K. (1974) Pragmatic logic, Dortrecht, Boston, D. Reidel Publish-
ing Co., Warszawa, Polish Scientific Publishers.

Ajpukiewicz, K. (1985) Klasyfikacja rozumowan’, in Jezyk i poznanie, 2, pp.
206-25.

ARENDT, H. (1978) The life of the mind: 1. Thinking, New York, Harcourt
Brace Jovanovitch, Inc.

ARISTOTLE (1932) ‘Rhetoric’, in Cooper, L. The Rhetoric of Aristotle. An Ex-
panded Translation with Supplementary Examples for Students of Composition
and Public Speaking, New York, Appleton-Century-Crofts, Educational
Division, Meredith Corporation.

ARzARELLO, F. (1989) ‘The role of conceptual models in the activity of problem
solving’, Proceedings of the XIlIth Psychology of Mathematics Education
Conference, Paris, pp. 93-100.

ATweH, B. and Coorer, T. (1992) ‘The effect of gender and social class on
classroom communication in secondary school mathematics’, A contri-
bution to ICME7, Working Group 7: Language and Communication, Québec,
Canada.

AUSTIN, J.L. (1961) Philosophical Papers, Oxford, Clarendon Press.

BAcHELARD, G. (1970) La philosophie du non, Paris, Presses Universitaires de
France (First published in 1949).

BACHELARD, G. (1975) Le nouvel esprit scientifique, Paris, Presses Universitaires
de France (First published in 1934).

BACHELARD, G. (1983) La formation de I'esprit scientifique, Paris, Presses Uni-
versitaires de France (First published in 1938).

Baracuers, N. (1986) ‘Cognitive versus situational analysis of problem solv-
ing behaviors’, For the Learning of Mathematics, 6, 3, pp. 10-12.

BAr-HiLier, Y. (1971) Pragmatics of natural language, Dortrecht, Reidel.

BarToLini-Bussi, M. (1990) ‘Mathematics knowledge as a collective enter-
prise’, Paper read at the 4th conference on Systematic Cooperation be-
tween Theory and Practice, Brakel, Germany, September.

170

i !
18%




References

BarTOLINI-Busst, M. (1992) ‘Verbal interaction and mathematical knowledge:
Methodologies for transcript analysis’, A contribution to ICME7, Working
Group 7: Language and Communication, Québec, Canada.

BatTisTA, M.T. (1983) ‘A complete model for operations on integers’, Arith-
metic Teacher, 30, 9, pp. 26-31.

BauersreLD, H. (1983) ‘Subjektive Erfahrungsberiche als Grundlage einer
Interactionstheorie des Mathematiklernens und lehrens’, in BAUERSFELD, H.
u.a., Lernen und Lehren von Mathematik (Analysen zu Unterrichtshandeln II),
K&ln, Germany, pp. 1-56.

BAUERSFELD, H. (1990) ‘Activity theory and radical constructivism’ (Manuscript).

BAUERSFELD, H. and Zawapowski, W. (1987) ‘Metafory i metonimie w
nauczaniu matematyki’, Dydaktyka Matematyki, 8, pp. 155-86.

BepNarz, N. and GARNIER, C. (Eds) (1989) Construction des savoirs: Obstacles
et conflits, Montréal, Agence d’ARC.

BEDNARZ, N., JANVIER, B., MARy, C. and LEPAGE, A. (1992) L Algebre comme
outil de résolution de problemes: une réflexion sur les changements nécessaires
dans le passage d’un mode de traitement arithmétique & un mode de traitement
algébrigue (Actes du Colloque portant sur '’émergence de l'algebre),
Montréal, 10 April 1992, Publications of CIRADE, UQAM, November.

BERGERON, J. and Herscovics, N. (1982) ‘Levels in the understanding of
the function concept’, in vaN BARNEVELD, G. and VERSTAPPEN, P. (Eds)
Proceedings of the Conference on Functions, Enschede, The Netherlands,
National Institute of Curriculum Development.

BERGSON, H. (1975) Creative evolution, Westport, Conn., Greenwood Press.

BERNSTEIN, B. (1971) Class, codes and control, London, Routledge and Kegan Paul.

BeTH, E.W. and PiaGET, J. (1961) Epistémologie mathématique et psychologie
(Etudes d’épistémologie génétique publiées sous la direction de Jean Piaget,
XIV), Paris, Presses Universitaires de France, pp. 328-9.

BisHOP, A.]. (1988) Mathematics enculturation: a cultural perspective on mathematics
education, Dortrecht, Kluwer.

Bistop, A.J. (1991) ‘Toward a cultural psychology of mathematics — A
review of “Culture and cognitive development: Studies in mathematical
understanding” by Geoffrey, B. Saxe’, Journal for Research in Mathematics
Education, 22, 1, pp. 76-80.

Bowm, D. and Peat, D.F. (1987) Science, order and creativity, London, Routledge.

Borasl, R. and Rosk, B. (1989) ‘Journal writing and mathematics instruction.
Educational Studies in Mathematics, 20, 4, pp. 347-65.

BOYER, C. (1968) A history of mathematics, New York, Wiley and Sons.

BREIDENBACH, D., DugINsky, E., HAWKES, J. and NictioLs, D. (1992) ‘Develop-
ment of the process conception of function’, Educational Studies in Math-
ematics, 23, 3, pp. 247-86.

BrITTON, J., BURGESS, T., MARTIN, N., McLEoD, A. and Rosen, H. (1975)
T he development of writing abilities (11-18 ), London, Macmillan Education.

Brousseau, G. (1986) ‘Fondements et méthodes de la didactique des math-
ématiques’, Recherches en Didactique des Mathématiques, 7, 2, pp. 33-115.

171




Understanding in Mathematics

BRrousseau, G. (1989) ‘Le contrat didactique: Le milieu’, Recherches en Didactique
des Mathématiques, 9, 3, pp. 309-36.

BRUNER, J.S. (1973) “The growth of representational processes in childhood’,
in ANGLIN, J.M. (Ed) Beyond the information given. Studies in the psychology
of knowing, New York, W.W. Norton and Co. '

Cackowskl, Z. (1979) “The continuity and discontinuity of human cognition’,
Dialectics & Humanism, 2, pp. 125-36.

Cackowski, Z. (1987) Article ‘Fenomenalizm’, in Filozofia a Nauka — Zarys
Encyklopedyczny, Warszawa, Poland, Zaklad Narodowy im. Ossolinskich.

Cackowskl, Z. (1992) ‘Przeszkoda epistemologiczna’, Kwartalnik Pedagogiczny
1, 141, pp. 3-14.

Cajori, F. (1929) A history of mathematical notation, II, Chicago, Open Court
Publications Co.

CARRAHER, T., CARRAHER, D. and SCHLIEMANN, A. (1985) ‘Mathematics in the
streets and in the schools’, British_Journal of Developmental Psychology, 3,
pp. 21-9.

CaucHy, A.L. (1821) Cours d’Analyse de I’Ecole Polytechnigue, le Partie, Ana-
lyse Algébrique, Paris, De I'lmprimerie Royale.

Cavaires, J. (1962) Philosophie Mathématique, Paris, Hermann.

Ces1ARl, M.L. (1983) A assimetria na relagao professor/alumno, um dos pilares da
dependencia cultural, social e economica, Federal University of Rio Grande
do Sul, Brazil. )

CHEVALLARD, Y. (1985a) La transposition didactique: du savoir savant au savoir
enseigné, Grenoble, La Pensée Sauvage Editions.

CHEVALLARD, Y. (1985b) ‘Le passage de I'arithmétique i I'algébre dans
I'enseignement des mathématiques au collége’, Petit x # 5, pp. 51-94.

CHevaLLARD, Y. (1990) ‘On nathematics education and culture: critical after-
thoughts’, Educational Studies in Mathematics, 21, pp. 3-27. -

CHEVALLARD, Y. (1992) ‘Concepts fondamentaux de la didactique: perspectives
apportées par une approche anthropologique’, Recherches en Didactique des
Mathématiques, 12, 1, pp. 73-112.

CHILVERs, P. (1985) ‘A consistent model for operations on directed numbers’,

' Mathematics in School, 14, 1, pp. 26-8.

CiviL, M. (1992) ‘Preservice teachers communicating mathematics’, A contri-
bution to ICME7, Working Group 7: Language and Communication, Québec,
Canada.

CremEenTs, K. (1981-1982) “Visual imagery and school mathematics’, For the
Learning of Mathematics, 2, 2, pp. 2-9; 2, 3, pp. 33-9.

Connotty, P. and ViLaroi, T. (Eds) (1989) Writing to learn mathematics and
science, New York, Teachers' College.

Cornu, B. (1981) ‘Apprentissage de la notion de limite: modéles spontanés
et modéles propres’, Proceedings of the Vth Psychology of Mathematics
Education Conference, Grenoble, pp. 322-6.

Cornu, B, (1983) ‘Quelques obstacles i I'apprentissage de la noticn de limite’,
Recherches en Didactique des Mathématiques, 4, pp. 236-68.

172

18}




References

CRANSTON, M.W. (1972) Philosophy and language, Toronto, CBC Learning
Systems.

Curcio, F.R. and ArtzT, A.F. (1992) “The effects of small group interaction
on graph comprehension of fifth graders’, A contribution to ICME7, -
Working Group 7: Language and Communication, Quebec, Canada.

Czezowski, T. (1959) Gléwne zasady nauk filozoficznych, Wroclaw, Poland,
Zaklad Narodowy im. Ossolinskich.

DANTO, A. (1969) ‘Semantical vehicles, understanding and innate ideas’, in
Hoox, S. (Ed) Language and Philosophy. A Symposium, New York, New
York University Press.

DavaL R. and Guisaup, G.T. (1945) Le raisonnement mathématique, Paris,
Presses Universitaires de France.

Davis, R.B. (1984) Learning mathematics: the cognitive science approach to math-
ematics education, New Jersey, Ablex Publishing Corporation.

Davypov, V.V. (1990) ‘The content and unsolved problems of activity theory’,
Paper presented at the 2nd International Congress for Research on Activ-
ity Theory, Helsinki, May 21-5.

Davypov, V.V. and RabzikHovski, L.A. (1985) ‘Vygotski’s theory and the
activity-oriented approach in psychology’, in WerTscH, J.V. (Ed) Culture,
communication and cognition. Vygotskian Perspectives, London, Cambridge
University Press.

DEDEKIND, R. (1963) Essays on the theory of numbers: 1. Continuity and irrational
numbers. II T he nature and meaning of numbers. (authorized translation by
Wooster Woodruff Beman), New York: Dover Publications.

DEeDRON, P. and ITARD, J. (1973) Mathematics and Mathematicians, Milton Keynes,
The Open University Press.

Dewey, J. (1971) How We Think? A Restatement of the Relation of Reflective
Thinking to the Educative Process, Chicago, Henry Regnery Co., A Gate-
way Edition (first published in 1910).

Doise, W. and Mucny, G. (Eds) (1984) The Social Development of Intellect,
Oxford, Pergamon Press.

DORIER, J.L. (1991) ‘Sur I'enseignement des concepts élémentaires d’algebre
linéaire A I'université’, Recherches en Didactique des Mathématiques, 11, 2.3,
pp. 325-64.

Douaby, R. (1986) ‘Jeu de cadres et dialectique outil-objet’, Recherches en
Didactique des Mathématiques, 7, 2, pp. 5-31. '
DORELER, W. (1991) ‘Forms and means of generalization in mathematics’, in
BisHop, A.J., MELLIN-OLSEN, S. and vAN DorMOLEN, J. (Eds) Mathemat-
ical Knowledge: Its Growth T hrough Teaching, Dortrecht/Boston/London,

Kluwer Academic Publishers.

Dusinsky, E. and HareL, G. (1992b) “The nature of the process conception
of function’, in DusiNnsky, E. and HareL, G. (Eds) The Concept of Func-
tion: Elements of Pedagogy and Epistemology, Notes and Reports Series of
The Mathematical Association of America.

Dusinsky, E. and LewiN, P. (1986) ‘Reflective abstraction and mathematics

173




Understanding in Mathematics

education: the genetic decomposition of induction and compactness’,
Journal of Mathematical Behavior, 5, pp. 55-92.

DummMETT, M. (1991) Frege: Philosophy of Mathematics, Cambridge, Mass.,
Harvard University Press.

DurkIN, K. and SHIRE, B. (1991) Language in Mathematics Education — Research
and Practice, Milton Keynes. Philadelphia, Open University Press.
DyrszLaG, Z. (1972) ‘O poziomach rozumienia pojec matematycznych’,

Zeszyty Naukowe WSP w Opolu, Studia i Monografie, 32.

DyrszLaG, Z. (1978) ‘O poziomach i kontroli rozumienia pojec matematy-
cznych w procesie dydaktycznym’, Zeszyty Naukowe WSP w Opolu, Seria
B: Studia i Monografie, 65.

DyRszLAG, Z. (1984) ‘Sposoby kontroli rozumienia pojec matematycznych’,
Oswiata i Wychowanie, 9, B, pp. 42-3.

EGReT, M.A. and Duvat, R. (1989) ‘Comment une classe de quatri¢me a
pris conscience de ce qu’est une démarche de démonstration’, Annales de
Didactique et de Sciences Cognitives, Université Louis Pasteur, IREM de
Strasbourg. '

FEYNMAN, R.P. (1965) The Feynman Lectures on Physics, 1, Reading, Mass.,
Addison-Wesley.

FoucauLt, M. (1973) The Order of Things. An Archeology of Human Sciences,
New York, Vintage Books.

FREUDENTHAL, H. (1973) Mathematics as an Educational Task, Dortrecht,
Holland, D. Reidel.

FREUDENTHAL, H. (1983) Didactical Phenomenology of Mathematical Structures,
Dortrecht, Holland, D. Reidel.

FRIEDMAN, M. (1988) ‘Explanation and scientific understanding’, in PrrT, J.C.
(Ed) T heories of explanation, New York, Oxford University Press.
Gacarsis, A. (1985) ‘Questions soulevées par le test de closure’, Revue Frangaise

de Pédagogie. 70, January-February-March, pp. 41-50. )

GiBsoN, J.J. (1986) The Ecological Approach to Visual Perception, Hillsdale, NJ,
Lawrence Erlbaum Associates.

GoLpsTEN, M. and GoLpsTEN, LF. (1978) How We Know. An Exploration of
the Scientific Process, New York and London, Plenum Press.

GReeNo, J.G. (1991) ‘Number sense as situated knowing in a conceptual
domain’, Journal for Reseach on Mathematics Education, 22, 3, pp. 170-218.

Grice, H.P. (1981) ‘Presupposition and conversational implicature’, in COLE,
P. (Ed) Radical pragmatics, New York, Academic Press.

GUTTIEREZ, A., JAIME, A. and ForRTUNY, J.M. (1991) ‘An alternative paradigin
to evaluate the acquisition of the Van Hiele levels’, Journal for Reseach on
Mathematics Education, 22, 3, pp. 237-51.

HACKING, 1. (1975) Why Does Language Matter to Philosophy, Cambridge, UK,

. Cambridge University Press.

HADAMARD, J. (1945) An Essay on the Psychology of Invention in the Mathematical
Field, New York, Dover Publications Inc.

Hawy, E.T. (1969) T he Hidden Dimension, New York, Anchor Press, Doubleday.

174

191

BEST COPY AVAILABLE




References

Hai, E.T. (1976) Beyond Culture, New York, Anchor Press, Doubleday,

HaiL, E.T. (1981) The Silent Language, New York, Anchor Press, Doubleday
(First edition: 1959).

HansoN, N.R. (1961) Patterns of Discovery, Cambridge, UK, Cambridge
University Press.

Hart, K. (1981) Children’s U nderstanding of Mathematics: 11-16, London, John
Murray.

HerenDeHL-HEBEKER, L. (1991) ‘Negative numbers: obstacles in their evolu-
tion from intuitive to intellectual constructs’, For the Learning of Math-
ematics, 11, 1, pp. 26-32. -

HEIDEGGER, M. (1962) Being and time, New York, Harper and Row.

HESENBERG, W. (1969) Der Teil und das Ganze, Munich, R. Piper and Co.
Verlag.

HempeL, C.G. and OpPENHEM, P. (1948) ‘Studies in the logic of explanation’,
Philosophy of Science, 15, pp. 567-79.

Herscovics, N, and BEerGeroN, J.C. (1989) ‘A model to describe the con-
struction of mathematical concepts from an epistemological perspective’,
Proceedings of the 13th Meeting of the CMESG, St. Catharine’s, Ont.,
May 26-31.

HirscH, E.D. Jr (1967) Validity in Interpretation, New Haven, Yale University
Press.

Horrer, A. (1983) ‘Van Hiele-based research’, in LaNDAU, M. and LEsH,
R. (Eds) Acquisition of Mathematical Concepts and Processes, New York,
Academic Press.

HorFmaN, M.R. and PoweLL, A.B. (1989) ‘Mathematical and commentary
writing: vehicles for student reflection and empowerment’, Mathematics
Teaching, 126, pp. 55-7.

HorstapTER, D.R.H. (1985) Metamagical Themas: Questing for the Esseice of
Mind and Pattern, New York, Bantam Books.

HovLtoN, G. (1978) The Scientific Imagination: Case Studies, Cambridge,
Cambridge University Press.

Hooxk, S. (Ed) (1969) Language and Philosophy. A Symposium, New York,
New York University Press.

Janvier, C. (1978) ‘The interpretation of complex cartesian graphs represent-
ing situations — studies and teaching experiments’, Doctoral dissertation,
University of Nottingham, Shell Centre for Mathematics Education and
Université du Québec 3 Montréal.

JonnsoN M. (1980) ‘A philosophical perspective on the problems of meta-
phor: A model of metaphoric comprehension’, in Honeck, R.P. and
Horeman, R.R. (Eds) Cognition and Figurative Language, Hillsdale, NJ,
Lawrence Erlbaum Associates.

Juszriewicz, A.P. (1976) Historia Matematyki, (2), Warszawa, Poland,
Panstwowe Wydawnictwo Naukowe.

KerreL, C., DaMErow, P., Bistor, A.J. and Gerbes, P. (Eds) (1989) Math-
ematics, Education and Society, Paris, UNESCO.

175

192




Understanding in Mathematics

KrAkiA, M., KLAkLA, M., NAwrockt, j. and Nowecki, B.J. (1992) ‘Pewna
koncepcja badania rozumienia pojec matematycznych i jej weryfikacja na
przykladzie kwantyfikatorow’, Dydaktyka Matematyki, 13, pp. 181-223.

KLINE, M. (1980) Mathematics: The loss of Certainty, New York, Oxford
University Press.

KorzyBskl, A. (1950) Science and Sanity, Lakeville, Conn., International Neo-
Aristotelian Publishing Co.

Kortarsinskt, T. (1961) Elementy teorii poznania, logiki Sformalnej i metodologii
nauk, Wydanie Ii, przejrzane, Wroclaw, Poland, Zaklad Narodowy im.
Ossolinskich.

KRUMMHEUER, G. (1991) ‘Argumentations-formate in Mathematikunterricht’,
in Maier, H. and Voicr, J. (Eds) Interpretative Unterrichtsforschung, Kéln,
Germany, Aulis.

KRrYGowska, Z. (1969) ‘Le texte mathématique dans I’enseignement’, Educa-
tional Studies in Mathematics, 2, pp. 360-70.

Kvasz, L. (1990) ‘On understanding as standing under’, Proceedings of the
BISME-2, Bratislava, August 23-5, pp. 152-5.

Laporok, C. (1990) ‘Language and mathematics’, in NESHER, P. and KILPATRICK,
J. (Eds) Mathematics and Cognition, Cambridge (England), New York,
Cambridge University Press.

Lacomse, D. (1984) ‘Spécificités du langage mathématique et difficultés
pédagogiques résultantes’, in Signes et discours dans I’éducation mathématique
(Actes des Neuviémes Journées de 1'Education Mathématique), UER
Didactique, Université Paris VII.

Lakatos, 1. (1978a) ‘Cauchy and the continuum’, in Lakatos, 1. Philosophical
Papers of I Lakatos. Mathematics, Science & Epistemology, Cambridge, Mass.,
Cambridge University Press.

Lakatos, . (1978b) The Methodology of Scientific Research Programmes, Cam-
bridge, Mass., Cambridge University Press.

Lakorr, G. and JoHNsoN, M. (1980) Metaphors We Live By, Chicago, Univer-
sity of Chicago Press.

LamPERT, M. (1988) ‘The teacher’s role in reinventing the meaning of math-
ematical knowing in the classroom’, in Bexr, M.J., LACAMPAGNE, C.B.
and WHEELER, M.M. (Eds) Proceedings of the Xth North American chapter of
the Psychology in Mathematics Education Conference (NAPME), DeKalb, II,
pp. 433-80.

LANGE, JzN, J. DE (1984) ‘Mathematics for all is no mathematics at all’, in
Damerow, P. (Ed) Mathematics for All, Paris, UNESCO, pp. 66-72.
LEGRAND, M. (19¢1) ‘Genése et étude sommaire d’une situation co-didactique:
le débat scientifique en situation d’enseignement’, in LABORDE, C. (Ed)
Actes du Premier Colloque Franco-Allemand de Didactiqre des Mathématiques

et de l'Informatique, Grenoble, La Pensée Sauvage. _

Leniz, W.G. (1765) New Essays on Human Understanding (The 1982 edition:
translated and edited by Peter Remnant and Jonathan Bennett), Cambridge,
Cambridge University Press.

176




References

LeoNTEv, A.N. (1981) ‘“The problem of activity in psychology’, in WERTsCH,
J.V. (Ed) The Concept of Activity in Soviet Psychology, Armonk, NY, Sharpe.

LesH, R., LaNDAU, M. and HamiLTon, E. (1983) ‘Conceptual models and
apphed mathematical problem-solving research’, in LANDAU, M. and LesH,
R. (Eds) Acguisition of Mathematical Concepts and Processes, New York,
Academic Press.

LOCKE, J. (1690) An Essay Concerning Human U nderstanding (The 1961 edition:
edited with an introduction by John W. Yolton) Oxford, Clarendon Press.

Loska, R. (1992) ‘Teaching witkout instruction: the Socratic method’, A con-
tribution to ICME?7: Working Group 7: Language and Communication,
Québec, Canada.

Lusomirski, A. (1983) O uogolnianiu w matesnatyce, Wroclaw, Poland, Zaklad
Narodowy im. Ossolinskich.

LURIA, A.R. (1981) Language and Cognition, New York, John Wiley and Sons.

MAcE, W.M. (1977) ‘James J. Gibson’s strategy for perceiving: Ask not what’s
inside your head, but what your head is inside of’, in Snaw, R. and
BRANSFORD. J. (Eds) Perceiving, Acting and Knowing: Toward an Ecological
Psychology, Hillsdale, NJ, Lawrence Erlbaum Associates.

Maier, H. (1986) ‘Empmsche Arbeiten zum Problemfeld Sprache im Mathe-
matikunter:_ :at’, Zentralblatt fur Didaktik der Mathematik, 18, 4, pp. 137-
47.

Maier, H. (1992) ‘On verbal communication in mathematics classroom. How
does the character of language affect understanding’, A contr.bution to
ICMET7: Working Group 7: Language and Communication, Québec, Canada.

MatLg, G. (1990) ‘Semantic problems in elementary algebra’, Proceedings of
the BISME-2, Bratislava, August 23-5, pn. 37-57.

MARrODY, M. (1987) Technologie intelektu, Poland PWN.

Mastow, A.H. (1966) The Psychology of Science. A Reconnaissance, New York,
Harper and Row.

Mason, J. (1982) ‘Attention’, For the Learning of Mathematics, 2, 3, pp. 21-3.

Mason, J. (1989) ‘Mathematical abstraction as the result of a delicate shift of
attention’, For the Learning of Mathematics, 9, 2, pp. 2-8.

MasoN, J. and Davs, J. (1990) ‘On noticing in the mathematics classroom’,
Proceedings of the 4th Systematic Cooperation between Theory and Prac-
tice Conference, September, Brakel, Germany.

MELLIN-OLSEN, S. (1987) The Politics ofMathematxcs Education, Dortrecht, Hol-
land, Reidel.

MERLEAU-PONTY, M. (1973) The Prose of the World, Evanston, Northwestern
University Press.

Miit, J.S. (1843) ‘System of Logic ratiocinative and inductive, being a con-
nected view of the principles of evidence and the methods of scientific
investigation’, in RossoN, J.M. (Ed) (1973) Collected works of J.S. Mill,
7, Toronto, University of Toronto Press, Routledge and Kegan Paul.

MiNsky, M. (1975) ‘A framework for representing knowledge’, in WiNsSTON,
P. (Ed) The Psychology of Computer Vision, New York, McGraw-Hill.

177

19
vt




Understanding in Mathematics

Moraan, C. (1991) ‘Mathematics coursework: towards common understand-
ing’, Paper presented at the Group for Research into Social Perspectives
of Mathematics Education, London.

Morcan, C. (1992) ‘“Written reports of mathematical problem solving’, A
contribution to ICME7, Working Group 7: Language and Commun:cation,
Québec. Canada.

Nantass, N. and Herscovics, N. (1989) ‘Epistemological analysis of early
multiplication’, Proceedings of the XIIIth Psychology of Mathematics
Education Conference, Paris, pp. 93~100. "

. Neisser, U. (1991) ‘Direct perception and other forms of knowing’, in HoFFMAN
R.R. and PaLermO, D.S. (Eds) Cognition.and the Symbolic Processes. Applied
and ecological perspectives, Hillsdale, NJ, Lawrence Erlbaum Associates.

NewTON, 1. (1969) Mathematical principles of natural philosophy. Translated
into English by Andrew Motte in 1729. The translation revised and
supplied with an historical account and explanatory appendix by Florian
Cajori, New York, Greenwood Press.

Oaxs, A. and Rosg, B. (1992) ‘Writing as a tool for expanding student con-
ception of mathematics’, A contribution to ICME7, Working Group 7:
Language and Communication, Québec. Canada.

OcoeN, C.K. and RICHARDS, 1.A. (1946) T he Meaning of Meaning, New York,
Harcourt, Brace and Company (first published in 1923).

PEIRCE, C.S. (1906) ‘Prolegomena to an apology for pragmaticism’, The Monist,
16, pp. 492-546.

PEIRCE, C.S. (1955) Philosophical writings of Peirce, Selected and edited with an
introduction by Justus Buchler, New York; Dover Publications.

PeIRCE, C.S. (1984) Motes for lectures on logic to be given Ist term 1870-71,
MS 171: Spring 1870, In MoorE, E.C. et al. (Eds) Writings of Ch.S. Peirce.
A Chronological Edition, Bloomington, Indiana University Press, 2, pp.
1867-1871.

PeIrcE, C.S. (1986) ‘On the nature of signs, MS 214: Winter-Spring 1873, in
Fisct, M.H. et al. (Eds) Writings of Ch.S. Peirce. A Chronological Edition,
Vol 3. Bloomington, Indiana University Press, 3, pp. 1872-78.

PeLED, 1. (1991) ‘Levels of knowledge about signed numbers: effects of age
and ability’, Proceedings of the XVth Psychology of Mathematics Edu-
cation Conferer..e, Assissi, Italy, pp. 145-52.

PeNROSE, R. (1990) The Emperor’s New Mind. Concerning Computers, Minds and
the Laws of Physics, London, Vintage.

PERRET-CLERMONT, A.N. (1980) Social Interaction and Cognitive Development in
Children, London, Academic Press.

PERRET-CLERMONT, A.N. (1990) ‘Social psychology of transmission: negotia-
tion of knowledge and relationship between teachers and students’, Paper
presented at the Symposium on Research on Effective and Responsible
Teaching. University of Fribourg, Switzerland.

PeTrIE, H.G. (1979) ‘Metaphor and learning’, in OrTony, A. (Ed) Metaphor
and thought, Cambridge, Mass, Cambridge University Press.

178




References

PIAGET, J. (1958) ‘Problémes de la psychosociologie de I'enfance’, in GURviTCH,
G. (Ed) Traité de sociologie, 2, Paris, Presses Universitaires de France.

PIAGET, J. (1975a) The equilibration of cognitive structures: the central problem of
intellectual development, Chicago, University of Chicago Press.

PIAGET, J. (1975b) To understand is to invent. The future of education, New York,
The Viking Press (esp. the first chapter: A structural foundation for to-
morrow’s education. First published in ‘Prospects’, Unesco 1972).

PiAGET, J. (1978) Success and Understanding, London and Henley, Routledge
and Kegan Paul.

PIAGET, J. and GARCIA, R. (1989) Psychogenesis and the history of science, New
York, Columbia University Press.

Pimm, D. (1988) ‘Mathematical metaphor’, For the Learning of Mathematics, 8,
1, pp. 30-4. )
PimM, D. (1990) ‘Certain metonymic aspects of mathematical discourse’,
Proceedings of the XIVth Psychology of Mathematics Education Con-

ference, Vol. III, Mexico. July, pp. 129-36.

PimM, D. (1992) ‘Metaphoric and metonymic discourse in mathematics class-
rooms’, A contribution to ICME7, Working Group 7: Language and Com-
munication, Québec, Canada.

Prig, S. and KIEreN, T. (1989) ‘A recursive theory of mathematical under-
standing’, For the Learning of Mathematics, 9, 3, pp. 7-11.

PIriE, S. and SCHWARZENBERGER, R.L.E. (1988) ‘Mathematical discussion and
mathematical understanding’, Educational Studies in Mathematics, 19, pp.
459-70.,

Poincarg, H. (1952) Science and Method, New York, Dover (Translated by
Francis Maitland).

Poincarg, H. (1970) La valeur de la science, Paris, Flammarion.

PoLaNnyt, M. (1964) Personal Knowledge. Towards a Post-Critical Philosophy,
London, Routledge and Kegan Paul.

Pou1 ak, H.O. (1968) ‘On some of the problems of teaching applications of
mathematics’, Educational Studies in Mathematics, 1, pp. 24-30.

Pycior, H.M. (1984) ‘Internalism, externalism and beyond: 19th century British
algebra’, Historia Mathematica, 11, pp. 424-41.

RICHARDS, J. (1991) ‘Mathematical discussion’, in voN GLASERSFELD, E. (Ed) Rad-
ical Constructivism in Mathematics Education, Kluwer Academic Publishers.

RICEUR, P. (1976) Interpretation Theory: Discourse and the Surplus of Meaning,
Fort Worth, Tex., The Texas Christian University Press.

RICE&UR, P. (1977) The Rule of Metaphor: Multidisciplinary Studies of the Creatjon
of Meaning in Language, Toronto, Buffalo, University of Toronto Press.

RiCEUR, P. (1981) Hermeneutics and the Human Sciences, Cambridge, Cambridge
University Press (Edited, translated and introduced by }J.B. Thompson).

Saxg, G.B. (1990) Culture and Cognitive Development: Studies in Mathematical
understanding, Hillsdale, NJ, Lawrence Erlbaum Associates.

ScHANK, R.C. and ABELsON, R. (1977) Scripts, Plans, Goals and U nderstanding,
Hillsdale, NJ, Lawrence Erlbaum Associates.

179

19_5,




Understanding in Mathematics

ScHoenrELD, A.H. (1987) ‘What’s all the fuss about metacognition?’, in
ScHOENFELD, A.H. (Ed) Cognitive Science and Mathematics Education, Hills-
dale, NJ, Lawrence Erlbaum Associates.

SFARD, A. (1991) ‘On the dual nature of mathematical conceptions: Reflections
on processes and objects as different sides of the same coin’, Educational
Studies in Mathematics, 22, 1, pp. 1-36.

SearD, A. (1992) ‘Operational origins of mathematical objects and the quan-
dary of reification — the case of function’, in HAReL, G. and DUBINSKY,
E. (Eds) The Concept of Function: Aspects of Epistemology and Pedagogy,
Notes and Reports Series of The Mathematical Association of America.

SraRD, A. (1994) ‘Reification as the birth of a metaphor’, For the Learning of
Mathematics, 14, 1, pp. 44-45.

SiERPINSKA, A. (1985a) ‘La notion d’obstacle épistémologique dans I’enseigne-

ment des mathématiques’, Actes de la 37e Rencontre CIEAEM, pp. 73—
95.

SIERPINSKA, A. (1985b) ‘Obstacles épistémologiques relatifs i la notion de limite’, -
Recherches en Didactique des Mathématiques, 6, 1, pp. 5-68.

SterpiNskA, A. (1987) ‘Humanities students & epistemological obstacles re-
lated to limits’, Educational Studies in Mathematics, 18, pp. 371-97.

SiERPINSKA, A. ( 1988) ‘Sur un programme de recherche 1ié 3 la notion d’obstacle
épistémologique’, in BEbNARZ, N. and GArNIER, C. (Eds) Construction des
savoirs, Obstacles et conflits, Montréai, Agence d’ARC.

SIERPINSKA, A. (1989) On 15-17 Years (ild Students’ Conceptions of Functions,
Iterations of Functions and Attractive Fixed Points, Preprint 454, Institute of
Mathematics, Pol. Acad. Sci. Warszawa, Poland.

SIERPINSKA, A. (1990a) ‘Epistemological obstacle and understanding — two
useful categories of thought for research into teaching and learning math-
ematics’, Proceedings of the 2nd Bratislava International Symposium on
Mathematics Education, pp. 5-20.

SIERPINSKA, A. (1990b) ‘Some remarks on understanding in mathematics’, For
the Learning in Mathematics, 10, 3, pp. 24-36.

SIERPINSKA, A. (1991) ‘Quelques idées sur la méthodologie de la recherche en
didactique des mathématiques liée 4 la notion d’obstacle épistémologique’,
Cahiers de Didactique des Mathématique, 7 (Tetradia didaktikes ton mate-
matikon), Thessalonique.

SIERPINSKA, A. (1992a) ‘On understanding the notion of function’, in DUBINSKY,
E. and HareL, G. (Eds) The Concept of Function: Elements of Pedagogy and
Epistemology, Notes and Reports Series of The Mathematical Association
of America.

SIERPINSKA, A. (1992b) “The diachronic dimension in research on understanding
in mathematics — usefulness and limitations of the concept of epistemo-
logical obstacle’, Talk given at the conference: Interaction between

History of Mathematics and Mathematics learning, Essen, November
2-5.

197




References

SIERPINSKA, A. (1992c¢) ‘What.stands under understanding’, Acta Didactica
Universitatis Comenianae, Mathematics, 1, pp. 1-28.

SIERPINSKA, A. (1993) ‘On the development of concepts according to Vygotski’,
FOCUS on Learning Problems in Mathematics, 15, pp. 2-3.

SIERPINSKA, A. and VIWEGIER, M. (1989) ‘How & when attitudes towards math-
ematics and infinity become constituted into obstacles in students’, Pro-
ceedings of the XIIIth Psychology of Mathematics Education Conference,
Paris.

SIERPINSKA, A. and VIWEGIER, M. (1992) ‘O powstawaniu przeszkod epistemo-
logicznych zwiazanych z pojeciem nieskonczonosci u dzieci 10-12 i 14
letnich, Dydaktyka Matematyki, 13, pp. 253-311.

SKARGA, B. (1989) Granice historycznosci, Warsaw, Poland, Panstwowy Instytut
Wydawniczy.

Skemp, R.K. (1978) ‘Relational and instrumental understanding’, Arithmetic
Teacher, 26, 3, pp. 9-15.

STEINBRING, H. (1993) ‘Problem in the development of mathematical know!-
edge in the classroom: the case of a calculus lesson’, For the Learning of
Mathematics, 13, 3, pp. 37-50.

STERRET, A. (Ed) (1990) ‘Using writing to teach mathematics’, The Math-
ematical Association of America.

THomas, R.S.D. (1991) ‘Meanings in ordinary language and in mathematics’,
Philosophia Mathematica, 6, 1, pp. 3-38.

TorT, M. (1974) Le quotient intellectuel, Cahiers libres, Paris, Maspero.

VAN HieLg, D. and P. (1958) Report on methods of initiation into geometry, in
FREUDENTHAL, H. (Ed) Gréningen, J.B. Wolters.

Vasco, C.E. (1986) ‘Learning elementary school mathematics as a culturally
conditioned process’, in WHITE, M.1. and PoLLAk, S. (Eds) The Cultural
Transition: Human Experience and Social Transformation in the T hird World

_and Japan, Boston, Routledge and Kegan Paul, pp. 141-73. )

ViaL, M., StamBak, M., and BURGVIERE, E. et al. (1974) ‘Charactéristiques
psychologiques individuelles, origine sociale et échecs scolaires’, in
‘Pourquoi les échecs scolaires dans la premiére année de la scolarité’,
Recherches Pédagogiques, 68, Paris, INRDP.

VoiGT, J. (1985) ‘Patterns and routines in classroom interaction’, Recherches en
Didactique des Mathématiques, 6, 1, pp. 69-118.

Vygortski, L.S. (1987) ‘Thinking and speech’, in RieBer, R.W. and CARTON,
A.S. (Eds) The Collected Works of L.S. Vygotski (Translations by Norris
Minick), New York, Plenum Press.

WiLDER, R.L. (1981) Mathematics as a Cultural System, Pergamon Press.

WiLLiams, S.R. (1991) ‘Models of limit held by college calculus students’,
Journal for Research in Mathematics Education, 22, 3, pp. 219-36.

WITTGENSTEIN, L. (1958) Philosophical Investigations (Translated by G.E.M.
Anscombe), Oxford, Basil Blackwell.

WITTGENSTEIN, L. (1969) The Blue and the Brown Books, Oxford, Basil Blackwell.

181

193,

+ .




Understanding in Mathematics

Yackee, E. (1987) ‘A year in the life of a second grade class: a small group
perspective’, Proceedings of the XIth Psychology of Mathematics Edu-
cation Conference in Monréal, Canada, pp. 208-14.

YOUNG, J.Z. (1960) Doubt and Certamty in Science, New York, Oxford Uni-
versity Press.




PAFullToxt Provided by ERIC

abstraction: in mathematical activity
61-2
reflected 103, 105
reflexive 103, 105
act, of understanding 2, 4, 5, 27-71, 44
and action 101
chain of 149
components of 39-62
conditions of 27
and construction of metaphor 96—101
lattices of xiv, 2
psychological conditions for 62-5
significant 123-5
students’ experience of 27
and young children 51
action: physical, to understanding 104
practical understanding 5
signyfying 105
activity: role of, in understanding 101-7
adolescents: and conceptual thinking
154
numerical continuum, and diffuse-
complexive thinking 149-50
affordance 7-8
aggregate: and unifying principle 33
aids: to understanding 65
Ajdukiewicz, K. xiii-xiv
definition of representations 49
definition of understanding 28-9
Pragmatic Logic 24, 42
theory of meaning 16
algebra 145
abstract 61
and content-specificity 41-2
and generalization 59
of structures 46
see also linear algebra
algebraic: logic 76
thinking 115, 157

Anglo-Saxon analytic philosophy 136
apperception: as basis of understanding

ap-prehensions 64, 65

arithmetic thinking 157

attention: as condition of understanding
62-4

awareness 155

Bachelard, G.: theory xii, 133-5
basis of understanding 29, 48-56
apperception as 55
constraints of 32-3
and example 88
and thoughts that [so and so] 56
Bolzano's theorem: and epistemological
obstacles 128-33

Cartesian critique of resemblance
135-6
categorical meaning 150
categories 133—4
categorizing: and classifying 57
Cavley-Hamilton theorem 115
chain-complexization 147-8
children: and acts of understanding 51
classroom, mathematics: communication
in 66
and didactical contract 65
language of 18-19, 66
cognition: and understanding 23
unity of 111
congnitive structure 119
colloquial expression: definition of 50
communication: figures of speech in 93
language of 66
in mathematics classroom 165-8
role, in understanding 66-8
situation of 65-6

<00, ...,




PAFullToxt Provided by ERIC

Index

complex: diffuse 149
and numerical continuum ir
adolescents 149-50
levels of 149
thinking in 155
complexive thinking 158-9
about equations {46—8
and language 145
complexization 144, 147
chain 147-8
comprehension 6, 64, 65
concept 7, 42, 144, 154, 155
abstract 152
development, Vygotski's theory of
xiii, 138-44
of image 9, 28
mathematical xi, 30-1
of meaning 13
potential 152-3
pre- 153, 156-7
understanding xiv, 3-4, 42-5
conceptual: domain 7, 53
maturity 83
potential 152-3
representation 10, 49, 51, 53, 54
thinking 143-4, 153-5, 158
understanding 11
conceptualization: and action 104-5
see also pseudo-conceptualization
conclusions, drawing: and thinking 55,
149
condensation point 132
connotations 152 .
consciousness: field of, order and
harmony in xiii, 32-3
meta-consciousness 63
content-specificity 41
continualism 109
continuity: functional 108, 128-30
of processes of understanding
107-10
of real numbers 78
structural 108
continuous function: see under function
continuous variable: see under variables
convergent series 121
critical moments 140
cultural: intuition 164-5
triad 161-9 passim
understanding 11
culture: and development 139-42
hidden dimensions 160
levels of 161-9 passim

184

roots, of epistemological obstacles
138, 159-69
theory of 134
curves: algebraic 99
transcendental 99

. deduction: and reasoning 73-5

deductive directives of meaning 16
definitions: in mathematics 50
development: and culture 139-42
and instruction 139-40
as social affair 140~-2
social handicaps in 141-2
dialectical game: understanding as 120
didactical: contract 19
in mathematics classroom 65
engineering xii
explanation 77-8
and limit of numerical sequence
84-8
using examples 80-1
using models 81-3
transposition 83
directives of meaning 16
discontinualism 109-10
discovery: and understanding 69
discrimination: and understanding 57-8,
151-2
divergent series 120
doing: and knowing 104

empirical directives of meaning 16
cnactive representations 6, 51-3
passim '
environment, physical: and
understanding and meaning 7
meaning in 21-2
épistéme 24, 162
epistemological obstacles xi—xii, 121~-2,
123-8
and Bolzano theorem 128-33
as category of thought 133-7
construction of 158
cultural roots of 138, 159-69
developmental roots 138
psycho-genetic roots 157-9
relativity of 137
epsilon neighbourhood of a number 84,

equations: complexive thinking about
146-8
generalization, in solving 129
understanding 152




equilibration of cognitive structures:
Paiget’s theory of xiii, 32, 65
Erlangen Program 107
ethnomathematics 142, 161
essence: of thi.gs 35-7, 38~
essentialism: and phenomenalism 35-9
evaluation 123, 124
example: in didactical explanation
80-1
learning by 91
paradigmatic 88
role of 88-91 .
experiential understanding 34-5
explanation: didactic 77, 78
and proving 74-5
role of, in understanding mathematics
75-7
scientific 77
expressions 16—17
and objects 29
understanding 28-9

features: as classes of abstraction of
relations 31,
equity of 148
Fermat's Last Theorem 126 -
field of consciousness: equilibrium of
xiii, 32-3
-figures of speech: in understanding
92-101
fixed point: iteration of 89-91
fluent quantity 98-9
fluxions 98-9
formal: level of culture 161-9 passim
formalism, mathematical 38, 48
of linear algebra 45-7
formalization, non-thcoretical 111
Foucault, M.: theory 134-5, 136
frame: concept of, and understanding
70
French structural linguistics 136
Fuchsian functions 27, 63
function: concept of 39, 95
metaphors and metonymies, in
historical development of 98-101
continuous 128-30, 132
domain of 131
iteration of, and fixed point 89-91
limit of 97
meaning of term 20-1, 50, 100
at a point, value of 95
range of 131
functional thinking 131

generalization: analysis 131-3
and Bolzano’s theorem 128
development of 143-51
forms of 59
‘and metonymies 95
operation of 59
polemic 61
and understanding 58-60
Gestalt psychology xiii, 40, 57
group discussion: in classroom 66-7

Hall, E.T.: cultural triad theory 136,
138, 161-9 passim
harmony: and order, in field of
" consciousness 32-3
‘have some sense’: of something 10
hermeneutics: circle xiii
philosophy of xiii
Hilbert's programme of finitistic proofs
.166-8
historico-empirical approach:
significant acts of understanding
123-5
to understanding 120-3
holistic and configural understanding
1
homogeneity: principle of 168-9

iconic representations 6, 52, 53
identification: of crucial part of
geometric figure in a proof 57, 58
in understanding 56-7, 151-2
image, concept of 9, 28, 49, 52
inference: and reasoning 73-4
informal level of culture 161-9 passim
instruction: and development 139-40
integer numbers 81-3, 125-6
intention: as condition of understanding
63-4
interpretant: final 15
immediate 15
of sign 14, 15
interpretation, theory of 17
intuitions 169
cultural 164-5
intuitive understanding 12
invention: and understanding 69
iteration: of function, and fixed point
89-91
of piecewise linear function 90

Jordan canonical form 60, 81, 115
judgment: objective 113




PAFullToxt Provided by ERIC

Index

knowing: from doing 104

question, in process of 64

and understanding 68-9, 70
knowledge 109, 135

development, sequentiality of 122

psychogenesis 108

and questions 65

and representations 54

source of 41

and understanding 23

see also scientific knowledge
Kuhn's theory of scientific revolutions 137

Lakatos, 1., xii
and fallibilistic mathematics 167
lapguage 123, 135
as a calculus proceding according to
strict rules 17, 18
and complexive thinking 145
directives of meaning 16
games 17
of mathematics classroom 18-19, 66
as system of signs 15, 16-17
and thought 7i
use of 94
learning: how to 27
levels of understanding 119
limit: of function at a point 5
notion of 86-8, 97
of sequence 84-8
understanding concept of 42-5
linear algebra: formalism of 45-7
and generalization 59
metonymical use of variables 95-6
understanding 113-15
linear independence: concept of 47
definition 50
of vectors 46-7, 48, 51
linguistic description 52
logic, pragmatic xiii
logical empiricism 16

mappings, continuous 131, 132
invariants of 133
mathematical: concepts 30-2
culture 163-6
folklore 164
language in classroom 18-19
model 38
notion, essence of 38
objects 29-32
register, ambiguities in 21
rigour 163-4
situation 59

terms, descriptive meaning of 20, 21
texts 47-8
mathematics: absolute infallibility of 167
crisis in foundations 127
as dialectic game 30
generalization in 59
mathematizing: reality 38
in understanding 38
meaning Xxiii, 13
objectivity of 24-6
pre-existing 4
and significance 24-5
and signs 13-14
triangle of 14
and understanding 1-26
where to be found 14-15
mental modelling 7, 53-5, 119
concreteness of 55
mental operations: in understanding
56-62
metaphor: in development of concept of
function 98-101
as symptom, in act of understanding
96-101
uses of, in understanding 92-4
metaphorization 122--3
methodologies 111
metonymic abbreviation 99
metonymy: as act of generalization 95
in development of concept of
function 98-101
use of, in understanding 94-6
models: annihilation 82
conceptual 119
in didactical explanation 81-3
of understanding 117, 119-20
see also mental modelling

negative numbers 81, 83
neo-positivism 23, 109
nominalism 164
notations 8
Viéte's algebraic 8
notional comprehension 6
notions: reduction of 61
number: concept of 156-7
sense of 10, 55
numerical reckoning 9%
numerical sequence: limit of, and
didactical explanations 84-8

objectivity: of good understanding 113
of meaning 24-6
problem of 26




objects: and activity, in understanding
101, 102-3
as basis of understanding 32
categories of 31, 57
classifying 57
complex of 144
connecting 143
discrimination between 57-8
dynamical 14-15
and expressions 29
and functions 100-1
and generalization 58-9, 143
immediate 14
notion of 29-32
of signs 14-15, 29
and syncretization 144
transformation 103
of understanding 2, 4, 6, 29, 40-8,
65, 123, 149
and attention 63
change in identity 42
definition of 28-9 .
mathematical texts as 47-8
and meaning 23
notice of 159-60
and representations 49, 53
vagueness of 41
see also mathematical objects
obstacles: see epistemological obstacles
order: and Bolzano theorem 132
and harmony, in field of
consciousness 32-3

patterns: of solution 3
of understanding 2-3
phenomenalism 35-9, 69
Piaget, J., xiii, 5, 32
acts of thematization 4
- theory of -quilibration xiii, 32, 65,
120 ‘
positivism xii, 76
positivistic attitude 36, 37
Pragmatic Logic 24, 42
predict: ability to, and understanding
69-70
Primary Decomposition Theorem 115
problems: solving inverse 118
understanding 45
procedural representations 49, 51, 54
processes of understanding 2, 24,
72-111
proof 117
of consistency 168
and explanation 76-7, 78-80

finding 60
necessity of 54
Nervus probandi, 60
proving: process of 74
pseudo-conceptualization, as form of
generalization 150
psychological conditions: for an act
of understanding 62-5
psychogenesis: of knowledge 108
psycho-social conditions: and
development 141
Pythagorean theorem: as mathematlcal
situation 59

quantifiers: in mathematical logic 118
quantities 98-101 passim

-quantum theory: understanding 127

question: role of 65
and understanding 64-5
questioning: routine 67

radical: technique of finding 128-9
rationale: in explanation 76
rationality: rules of 24
rationalization 122-3
reality: changes of 102
mathematizing 38, 164
reasoning: and lattices of acts of
understanding 72-3
problem-directed 73
simple 73
spontaneous 73
and understanding 5, 12, 69, 73-5
recurring decimals 78
reductionistic understanding 34, 35
relative validity of statement within a
theory 150
relativity: of good understanding
112-17
reorganizations 125
need of 121-2
representations, mental 48-9
as bases of understanding 49~53
categorization 49-51
conceptual 49, 51, 53, 54
development of 8
enactive 6, 51-3 passim
general 156
iconic 6, 52
images 49
symbolic 7, 52
resemblances: and complexive thinking
145
result: from understanding 106

204

ty




PAFullToxt Provided by ERIC

Index

scientific explanation 36
scientific: knowledge 109, 126, 138
thinking 111, 158
understanding 348 passim
seeing 9-10, 102
seing-as 9~10
sense:  extraction of 32-3
horizons of 24
of permanence 38
rules of 24
see also number sense
sequence: convergent 87, 97
sequentiality: of knowledge
development 122
shared understanding 12
significance and meaning 24-5
significant implicit understanding
12 :
signs: interpretant 14-15
language as system of 15, 16
meaning of 13-14
object 14-15, 29
situated: cognition 11
understanding 11, 12
situation: mathematical 59
term of 58
social conditions: of act of
understanding 65-8
spatial understanding 11
students’ understanding xi--xv
acts of 27
diagnosing 117
mathematical explanations 7880
subject: generalizing 40
notion of 40
psychological 39, 40
understanding 39-40

.successive approximations: technique

of 128-9
suchness understanding 34-5
symbolic: function, of word 22,-
representations 7, 8, 52, 537
system 41
symbolism 83
symbols: mindless manipulation of
12
symptoms: and language 18
syncretic images 149
syncretization 144
synedoche 94
synonymity: of expressions 16
synonyms: of understanding 9-11
synthesis: and understanding 60-2
systemic understanding 34-5

188

209

tangent: notion of 43

‘teachers: behaviour, and child

development 141
didactical explanations of 80-8
teaching materials: development of
)
teaching methods: behaviouristic 68
constructivistic 68
content specific 41
technical tevel of culture 161-9 passim
terms, mathematics: primary meanings
21
secondary meanings 21
texts, mathematical: as objects of
understanding 47-8
thematic presuppositions 169
thematization 4, 106-74
thinking: and drawing conclusions 55
‘evel of 140
s*udents’ 68--9
se. also complexive thinking;
.conceptual thinking
thougat: experiment 7
and language 71
thoughts that [so and so] 49, 56
time: and flowing quantities 98
T-invariance 115-16
translation: of expressions 16
triadic relation: sign as 14
truth value: and meaning 76

understanding: adjectives associated

with 11-12 .

Ajdukiewicz’s definition 28—

approaches to research on 117-19

basis for 6

conditions of 123

correctness of 24

criteria for 24

cultural constraints 138, 15969

development constraints 59

different ways of 4-6

figures of speech for 92—101

genesis of 142-4

good 24, 70, 103, 112-37

level of xiv

and meaning 1-26

publications on 117-18

subject 29

synonyms of 9-11

theories of 119

understanding xi-xv

what it is not 68-71

sec also acts of understanding




Q

understandings 2
unifying principle: and understanding
33-4

values, set of: solidarity in 132
variability 131
variables: continuous 130-1, 132
vectors 96
linear independence of 46-7, 48, 51
and T-invariance 115-16

ERIC

PAFullToxt Provided by ERIC

Index

verbalization: of understandings 66, 68
Viéte’s algebraic notation 8
Vygotski, L.S. xiii
and development of generalization
144-51, 159
and pre-concept of number 156
theory of development of concepts
138-44

zone of proximal development 140




s

Studies in Mathematics Education Series : 2

‘Understanding in Mathematics

Anna Sierpinska

Anna Sierpinska's concern with the question of understanding has its
source in the practical problems of teaching mathematics and such
basic and naive questions as: How to teach so that students
understand? Why, in spite of all efforts of good explanation, do
students still not understand and continue to make nonsensical errors?
What is it exactly they do not understand? What do they understand
and how?

In asking these questions Anna Sierpinska sets out to tackle what
might truthfully be described as the central problem in mathematics
education: understanding in mathematics. Her inquiry draws together
strands from mathematics, philosophy, logic, linguistics, the psychology
of mathematics education and, especially welcome to an English-
speaking audience, continental European research. She considers the
contribution of social and cultural contexts to understanding, and draws
upon a wide range of scholars of current interest, including Foucault
and Vygotsky. The outcome is an important insight into both
understanding and mathematics, valuabie both for teacher and
mathematician.

Anna Sierpinska completed her Master of Mathematics degree under
Mostowski at the University of Warsaw and her doctorate in Didactics of
Mathematics under Zawadowski and Krygowska at Cracow. Her main
research interests are the nature of students' difficulties in understanding the
more advanced mathematics: infinite cardinal number, limits and continuity,
linear algebra. )

She is currently an Associate Professor in the Department of Mathematics and
Statistics at Concordia University, Montreal, Canada, on leave from the
Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland.

ISBN 0-75607-0334-2

Cover design by Caroline Archer || |||| ‘|
9780750703345

20°¢




