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In applications of covariance structure modeling (CSM),

researchers often conclude, whether on the basis of overall

and/or component measures of fit, that their models fail to

exhibit acceptable levels of fit. Model misfit may be due to a

number of factors including assumption violations, model

underidentification, poor measurement, inadequate substantive

theory, or a combination of the above. If one can rule out the

first three reasons for misfit through examination of component

fit measures, as suggested by nreskog and Sorbom (1988, pp. 40-

42), the lack of fit is likely due to inappropriate model

specification.

In the presence of model misspecification, the researcher

essentially has three options: report the model as is, test

several-plausible, alternative models, or attempt to locate the

source of misfit in the original model. While some might argue

for the first option (Steiger, 1990), examination of the applied

literature provides little evidence that this is the choice of

most applied researchers. Others promote the practice of testing

multiple a priori models (Browne & Cudeck, 1989; Cudeck & Browne,

1983; MacCallum, Roznowski, & Necowitz, 1992), but this approach

is seldom realized. The most popular practice is to conduct a

"specification search" (Learner, 1978) for the purpose of

conducting post hoc model modifications, with the resulting

modified models often used as the basis for subsequent

reformulation of theory.
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There are several strategies available for conducting

specification searches. Probably the most commonly employed of

which is use of the "modification index" (MI) produced by LISREL.

For each fixed parameter, the MI indicates the approximate

decrease in the overall likelihood-ratio x2 test that would occur

if the corresponding parameter were freed (SOrbom, 1989). The MI

is used to test the hypothesis that a single constrained

parameter is zero in the population. Typically, the MI is used

in what MacCallum et al. (1992) have called "sequential model

modification." Using this approach, researchers free the

parameter having the largest MI, reestimate the model, and

continue this process until the model has reached an acceptable

level of fit. Other strategies for conducting specification

searches include Chou and Bentler's (1990) multivariate Lagrange

Multiplier and Wald tests, which are generalizations of the MI

and LISREL's "t" values, respectively, and the combined

MI/expected parameter change statistic (Kaplan, 1989; Saris,

Satorra, & Sorbom, 1987), which provides a test of the

"practical" significance of a modification.

The application of model modification procedures is quite

popular in practice. A survey of covariance structure modeling

applications in the psychological literature conducted by

Breckler (1990), found that of 72 CSM applications reviewed, 28

reported post hoc model modifications to improve overall model

fit. MacCallum et al. (1992) examined an additional 28 papers,
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of which 9 acknowledged having modified initial models to improve

fit.

Despite its popularity, the use of post hoc model

modification is a data-driven procedure that is characterized by

capitalization on chance. Cliff (1983) noted that when ex post

facto analyses are conducted under the guise of confirmatory.

hypothesis testing, the relevant probability distributions are no

longer valid. Although Cliff and others (Learner, 1978; Steiger,

1990) have cautioned against the use of post hoc model

modifications, little is actually known about the extent to which

post hoc procedures in CSM do capitalize on chance.

In statistical analyses such as analysis of variance (ANOVA)

or regression, methods have been developed to control Type I

errors among post hoc tests. The most well-known of these

methods is the Scheffe S test (Sheffe, 1953), which maintains the

experimentwise error rate at any preselected value for all

possible comparisons. There are no similar procedures in CSM,

despite the sometimes immoderate application of post hoc modeling

procedures. Furthermore, unlike tests in ANOVA or regression for

which error rates related to post hoc analyses are known, error

rates associated with tests of misspecified parameters in CSM are

unknown.

A recent study by MacCallum et al. (1992) appears to be the

only study to date that has examined the sampling stability of

post hoc model modifications. They found that modifications were

highly inconsistent across repeated samples even with sample size

r;
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as high as 1,200, where only 6 of 10 searches resulted in the

same final model. Stability of modifications decreased with

sample size until there were no searches resulting in the same

modified models when sample size was 250 or less. Overall, the

authors concluded that they would have little confidence in the

validity of modified models, except with extremely large sample

size. The study by MacCallum et al. was limited, however, in

that the authors used an empirical data set for which the

underlying population model was unknown, they did not manipulate

levels of misspecification, and they used only 10 replications

per sample size. Furthermore, use of nonsimulated data precluded

their control of pertinent model charp2tqristics, such as size of

factor loadings.

No other study of specificatim searches has considered the

issue of stability of searches per se,:although the search

histories provided by MacCallum (1986) could be used to roughly

assess stability. Examination of these search histories reveals,

not surprisingly, that final models obtained through

modifications were less stable with increasing initial

misspecification. Other studies of specification searches have

used single samples (i.e., Silvia & MacCallum, 1988), empirical

data (i.e., Kaplan, 1989), or population data from which no

samples were drawn (i.e., Hutchinson, 1993; Kaplan, 1988;

Tippets, 1991), which has precluded any exploration of the

sampling variability of model modifications. The Monte Carlo

study by Chou and Bentler (1990) did use 100 samples per cell,
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but did not provide sufficient detail about modifications to

permit assessment of modification consistency across the samples.

The present study extends the work of MacCallum et al.

(1992) by examining the problem of chance model modifications

within the framework of a Monte Carlo simulation. The stability

of post hoc model modifications was examined under varying levels

of sample size, model complexity, and severity of

misspecification.

Method

Design and Procedures

Hypothetical population models created for this study were

two- and four-factor oblique confirmatory factor analysis (CFA)

models, with four and eight secondary loadings, respectively (see

Figures 1 and 2). Both models have four primary indicators per

latent variable. Although neither model is extremely complex,

Model B is the more complex of the two because its additional

latent variables require estimation of a greater number of

parameters, i.e., for the correctly specified models, Model A

requires estimation of 21 parameters while Model B requires

estimation of 46 parameters. Degrees of freedom for Models A and

B are 15 and 90, respectively.

Insert Figures 1 and 2 Here

The decision to limit this study to CFA type models rather

than structural models was based on the difficulty of isolating
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the effects of misspecification of measurement parameters from

the misspecification of structural parameters as noted by

Anderson and Gerbing (1988) and Kaplan (1988). Therefore,

because the issue of stability in post hoc model modification is

not well understood, it was decided to avoid the potential

problem of confounded measurement and structural

misspecification.

Four levels of misspecification were imposed on

Models A and B by incorrectly constraining complex factor

loadings to zero. This type of error was chosen because it

is thought to mimic what is seen in practice. In applications of

CFA, researchers often attempt %.-.o force simple structure on their

models because of the obvious interpretational simplicity. When

these models fail to fit the data adequately, researchers engage

in specification searches to locate and modify errors which will

improve the fit of their models. In CFA applications, these

modifications frequently involve the estimation of complex

loadings or the relaxation of constraints on correlated

residuals. Although the latter practice is seldom substantively

justifiable (Fornell, 1983; Gerbing & Anderson, 1984),

modification of correlated residuals was permitted in this study

to demonstrate the potential problem associated with this

practice.

The four levels of misspecification differed in terms of

number and size of omitted loadings. Omitted loadings were

comprised of either all secondary loadings or half secondary and
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half primary loadings. MisspecificationL for Model A involved

incorrectly fixing to zero 2 secondary, 1 primary and 1

secondary, 4 secondary, or 2 primary and 2 secondary loadings.

Misspecifications for Model B included incorrectly omitting 4

secondary, 2 primary and 2 secondary, 8 secondary, or 4 primary

and 4 secondary loadings. While all omitted secondary loadings

had population values of .4, omitted primary loadings had

population values of either .6 or .7.

It was decided that although the number of levels of

misspecification would be the same for both models, the disparity

in model size necessitated different numbers of errors per level

for the two models. For example, four errors of omission in

Model A would be considerably more serious than the four errors

in Model B, which has more parameters. Consequently, levels of

misspecification were nested within Models A and B, although

proportions of misspecifications were roughly equivalent. The

proportions of errors per parameters estimated were approximately

.11 (2 errors in Levels 1 and 2) and .24 (4 errors in Levels 3

and 4) for Model A, and .10 (4 errors in Levels 1 and 2) and .21

(8 errors in Levels 3 and 4) for Model B.

Sample sizes for this study were 200, 400, 800, and 1,200.

Two hundred was chosen as the lowest size based on studies by

Boomsma (1982; 1987) which demonstrated that parameter estimates

based on maximum likelihood estimation were robust against sample

sizes as small as 200. The inclusion of 1,200 as the largest

sample size stemmed from the conclusion by MacCallum et al.
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hoc model modifications were not entirely stable

size as high as 800. Consequently, even though

1,200 might be considered unrealistically large

researchers, it was included to provide

for revealing potential effects of

methodological interest.

In order to keep the design at a manageable level, certain

factors were held constant in this study. For example, loading

sizes, although mixed, were kept at the same levels throughout

the study. Loadings of .6, .7, and .8 were chosen to be

sufficiently large to ensure proper parameter estimation but not

so large as to risk the appearance of Heywood cases. Boomsma

(1982) warned that the risk of Heywood cases inzreases when

loadings are "too" large because their associated item

unicoenesses are sampled around zero. The size: of all secondary

loadings was .4, which was at least .2 less than any of the

primary loadings.

Another variable held constant in this study was the type of

misspecification. Only incorrectly omitted factor loadings were

modeled. Studies by Farley and Reddy (1987) and Kaplan (1988)

have shown that errors of omission are considered much more

serious than errors of inclusion because they not only lead to

decrements in fit but they also result in biased parameter

estimates.
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Data Generation

Population covariance matrices were produced within LISREL

VII (Joreskog & Sarbom, 1988) using procedures described by

Joreskog and Sorbom (p. 212-213). Parameters were set equal to

the values in Figures 1 and 2, with an identity matrix serving as

a "dummy" input matrix for this procedure. The fitted covariance

matrix generated as standard output was then used as the input

matrix for the LISCOMP (Muthen, 1988) data generation procedure.

Based on the population input matrix, LISCOMP generated and

output into a stacked ASCII file sample covariance matrices,

which the LISREL VII program read for the analyses. One hundred

samples were generated per model for each of the four sample

sizes for a total of 800 samples. Maxima., likelihood estimation

via the LISREL VII program was used for estimating parameters.

Misspecified models were created by fixing to zero

parameters known to be present in the population model.

Specification searches were hierarchical in nature, with

parameters having the largest MI being freed at successive steps.

Consistent with the technique employed by MacCallum et al.

(1992), a maximum of four modifications was made for each of the

3,200 searches (i.e., 2 models x 4 misspecification levels x 4

sample sizes x 100 replications each). MacCallum et al.

concluded that specification searches which extended beyond four

modifications "served little purpose," and that later

modifications frequently reflected chance sample characteristics.

Hutchinson (1993) also found that well-fitting models were
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obtained with no more than four modifications even under severe

misspecification. In the event that overall model

nonsignificance was obtained (i.e., x2 with R > .05) or only

trivial (i.e., R > .01) MIs remained prior to the four

modifications, searches were terminated at that point. This

process was automated using the "automatic modification" option

available in the LISREL program. The automatic modification

option essentially conducts sequential model modification

internally, by successively freeing parameters with largest MIs,

reestimating the model, and repeating this cycle until no more

significant (i.e., R < .01) MIs remain. It should be noted that

the rather mechanical search procedure used in this study is not

optimal, but reflects what is frequently seen in CSM

applications. It was chosen to demonstrate the potential

severity of capitalization on chance when these types of data

driven search procedures are used.

Data Analysis

To assess stability of post hoc model modifications search

histories were recorded and the results reported descriptively in

tables. Recorded information included for each of the 3,200

searches, values of largest MIs at each step, p-values for

overall model fit, along with the parameters freed. To obtain

the desired information from the LISREL analyses, a program was

written in REXX which "stripped" the target information from the

LISREL output listings and saved it into separate ASCII files for

each cell in the study.

12
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Based on this information, dependent variables included the

number of different parameters freed in the final models per cell

across all replications, the frequency of the most commonly

occurring final model per cell, and the number of times per cell

that the model generating the data was recovered. This latter

measure is for continuity with previous studies of specification

searches, which have focused on recovery of "true" underlying

models. A somewhat arbitrary criterion for model modification

stability was established as the occurrence of 90 or more of the

same respecified models for a given cell.

Results

Recovery of Population Models

Recovery of population models, while not a measure of

modification stability per se, was included as a criterion in

this study to provide comparability with previous research on

model modifications. The number of times per cell that

specification searches identified population models is presented

in Table 1. Examination of the table reveals that level of

misspecification did have an effect on recovery of population

models as expected, with greater recovery at Levels 1 and 2.

With the exception of Level 3, which was imposed by incorrectly

omitting 4 (two-factor model) or 8 (four-factor model) secondary

loadings, rates of population model recovery were quite similar

for the two- and four-factor models across sample size and levels

of misspecification.

13
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Insert Table 1 Here

For the two-factor model at Level 3, modifications resulted

in the population model only 4 times out of 400 replications;

however, for the four-factor model at Level 3, population model

recovery was considerably higher and increased rather,

dramatically with sample size. This suggests that there might

have been something anomalous about the behavior of specification

searches in the two-factor model when the Level 3

misspecification was imposed.

Larger sample sizes resulted in greater recovery of

population models across most conditions. Using a criterion of

90 out of 100 replications as a descriptive index of consistency,

population models were consistently recovered for both the two-

and four-factor models when sample size was at least 800 at

Levels 1 and 2 and for the four-factor model when sample size was

1,200. Sample size had no effect on recovery of the population

model for the two-factor/Level 3 condition.

Because the recovery of population models was so poor under

some conditions, the potential success of stopping criteria other

than overall nonsignificance or the four modification maximum was

examined. At the smaller sample sizes, for example, it appeared

that low statistical power may have hindered population model

recovery in some cases when nonsignificant overall x2 values were

reached prior to freeing all omitted population parameters. In

14
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some samples, searches resulted in no modifications at all

because initially misspecified models were associated with

nonsignificant x2 tests. In addition, there were instances where

specification searches detected subsets of the population

parameters, but the stopping criteria precluded detection and

subsequent freeing of the remaining parameters. In many of these

cases, had searches continued beyond nonsignificance, additional

population models would have been found. For example, in the

two-factor model at Levels 1 and 2 when N=200, in each case an

additional 26 population models would have been identified during

extended searches.

Overall, liberalization of stopping criteria would have

improved population model recovery more for the four-factor model

than for the two-factor model in all sample size and

misspecification conditions. In every cell, the corresponding

number of population models found after extended searches was

higher for the four-factor model, even when the recovery based on

the original stopping criteria had been hotter for the two-factor

model. This disparity was greatest at Level 3 where extended

searches would have raised rates o.:4 recovery for the four-factor

model to 98 or higher for all sample sizes greater than 200. In

contrast, extended searches 311 the two-factor model would only

have retrieved an additional two population models across all

four sample sizes. It appears that alternative stopping criteria

would not have ameliorated the poor performance of specification

searches for the two-factor model at Level 3.
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To determine if differences in power might offer a plausible

explanation for some of the findings, power analyses were

conducted on selected samples for several cells in the design,

using the procedures described by Saris et al. (1987). Within

conditions, power was not especially enlightening in terms of

explaining differences in population model recovery. When N=200,

values of power were so erratic that they did not appear to

exhibit any particular pattern. For example, in the two-factor

model at Level 1, in one of the samples in which the population

model was recovered, power for both omitted population parameters

was > .80, which is what one might expect. Similarly, in one of

the samples in which only one of the two population parameters

was freed, power was .83 for the correctly identified parameter

and only .49 for the parameter not found in the specification

search. This is also a pattern one might expect. However, there

were also samples which successfully recovered the population

model despite having low power (i.e., < .60) to detect either

parameter. Apparently, power to detect particular parameters

alone does not determine rates of population model recovery.

Moreover, examination of power values suggests that levels of

power not only depend upon model characteristics (Matsueda &

Bielby, 1986) or upon location of misspecifications (Saris et

al., 1987), but they also appear to depend upon the particular

sample used to test the model.

Between conditions there did appear to be some systematic

differences in power that were related to differences in
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population model recovery, with sample size having the most

dramatic effect as one might expect, Whereas power values were

noticeably inconsistent when N=200, power to detect omitted

population parameters was close to or equal to 1.0 when N=1,200

at all levels for the four-factor model, and at Levels 1, 2, and

4 for the two-factor model. Although power also increased with

sample size for the two-factor model at Level 3, the increased

power did not result in greater population model recovery. In

these cells, it appeared that in most samples power was highest

for correlated residuals in general, with one particular

correlated residual (i.e., 0650 consistently displaying power

close to 1.0. In contrast, power to detect the two-factor

population parameters was relatively low in most samples.

In comparing the two- vs. four-factor models at the same

level, the four-factor model had greater power to detect omitted

parameters of the same magnitude. For example, X93 and X52 both

had population loadings of 0.6. However, the power to detect X93

was generally around .95 or higher in the four-factor model while

the power to detect X52 in the two-factor model was less

consistent with power rang_ng between about .60 and .96. It

appears, therefore, that there might be some sort of sample size

by model interaction in terms of power, with power increasing

with sample size but at a higher rate for the larger model.

Sampling Stability of Model Modifications

From Table 2 it can seen that for both the two- and four-

factor models, modifications were quite stable when sample size
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was at least 800 and misspecification was at Level 1 or 2. In

addition, for the two-factor model, at Level 4 misspecification

with sample size of 1,200, the same model was recovered 89 times,

which was just under the a priori cutoff of 90. For both models,

stability was greatest for the Level 2 misspecification, which

was characterized by the omission of either one (two-factor) or

two (four-factor) primary loadings in addition to the omission of

an equal number of secondary loadings.

Insert Table 2 Here

Conversely, respecified models were least consistent at

Level 3 misspecification across virtually all sample size and

model conditions. Even at a sample size of 1,200, the most times

a single model was recovered at Level 3 for the two-factor model

was 25. Stability was greater for both models at Level 4, which

omitted either 2 (two-factor) or 4 (four-factor) primary loadings

in aduition to omitting an equal number of secondary loadings,

than at Level 3 which omitted only secondary loadings.

Another measure of stability, presented in Table 3, is the

number of different parameters freed per cell. On this basis,

there was a fairly clear superiority of the four-factor model

over the two-factor model in terms of modification stability.

In virtually every condition, MIs detected fewer different

parameters in the four-factor model, with the exception of Levels

1 and 3 at sample size 200, and Level 4 at sample sizes of 800

18
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and 1,200. The discrepancy is even more pronounced when one

considers the far greater number of potential parameters to be

freed in the four-factor model. In 9 of 16 cells, MIs detected

only population parameters in the four-factor model. Three of

these cells were at Level 3 misspecification which appeared to be

quite unstable on the basis of number of different final models.

The reason for this apparent contradiction in findings is the

imposition of a maximum of four modifications per respecified

model. While specification searches recovered over 45 different

models for each sample size of 400 or greater for the Level 3

misspecification, all of these models were comprised exclusively

of various subsets of the eight omitted population parameters.

Had these searches been continued to eight modifications, MIs

would have recovered the underlying population model in 98, 100,

and 100 percent of the replications, for sample sizes of 400,

800, and 1,200, respectively. In contrast, the corresponding

cells of the two-factor model exhibited considerable

inconsistency in the parameters freed. An interesting finding

with respect to the type of parameter freed was the far greater

number of correlated residuals identified by MIs in the two-

factor than the four-factor model for every cell in the study.

Insert Table 3 Here

Sample size also had a considerable effect on modification

stability across most conditions in the expected direction, i.e.,

19
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large samples generally exhibited more stable model

modifications, with the notable exception of the Level 3

misspecification. At Levels 1 and 2, using the aforementioned

cutoff of 90 or more same final models, modifications were quite

stable when sample size was at least 800. Table 3 shows similar

patterns in terms of different parameters freed, with numbers

decreasing as sample size increased. In the two-factor model

sample size seemed to have t'ie greatest impact at Level 4 where

MIs freed 26 different parameters across the 100 samples when

N=200 compared with only 5 when N=1,200.

Discussion and Conclusions

Results of this study in terms of recovery of population

models is somewhat supportive of findings by MacCallum (1986),

Silvia and MacCallum (1988), Tippets (1991), and Hutchinson

(1993) that more severe levels of misspecification re,ult in less

successful searches. Clearly overall recovery of population

models was higher for Levels 1 and 2 when compared with Levels 3

and 4, where Levels 3 and 4 had twice as many omitted parameters

as Levels 1 and 2. However, recovery was slightly higher for

Level 2 than Level 1, and for Level 4 than Level 3, even though

Levels 2 and 4 were characterized by the omission of primary as

well as secondary loadings. This was surprising given that the

omission of primary loadings was thought to be a more serious

type of error. However, it suggests that MIs may be more

sensitive to important specification errors than previously

thought (Kaplan, 1989; Matsueda & Bielby, 1986; Saris et al., 1987).
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A possible explanation is that despite the more serious

nature of erroneously omitting the larger and more substantively

important primary loadings, the greater magnitude of these

parameters may have made it easier for the MIs to detect them.

Thus, it is likely that there was greater power for locating

omitted primary loadings. This is encouraging given that

Matsueda and Bielby (1986) and Saris et al. (1987) had found the

MI to be unreliable in detecting large errors, sometimes

exhibiting high power for trivial parameters and relatively low

power for larger omitted parameters.

This study also supports the sample size effect found by

MacCallum (1986), whereby larger samples tended to result in

greater recovery of population models. It appears that for some

conditions, at least part of the sample size effect might have

reflected a lack of statistical power especially when

misspecificat:.on levels were relatively low. When searches were

allowed to continue beyond overall model nonsignificance,

recovery of population models improved dramatically at sample

sizes 200 and 400 at Levels 1 2 for both the two- and four-

factor models and for the four-factor model at Levels 3 and 4.

However, even with this improvement, rates of population recovery

never reached satisfactory levels for the two-factor model. When

sample size was 800 and 1,200, extended searches added no

additional population models in the two-factor case, while they

did improve recovery rates for the four-factor model. The

findings imply that the four-factor model might have been more

21
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sensitive to changes in power and that sample size might have

been a more influential factor in determining rates of population

model recovery for the four-factor model.

Regarding the stopping criteria employed in this study, use

of a fixed number of modifications is clearly not recommended as

a general practice. Results of this study demonstrated that such

a criterion might result in adequate recovery of population

models under some conditions but not under others. A decision to

limit modifications to a particular number would depend on a

variety of factors including size of the model, level of

perceived misspecification, number of subjects, etc. In

addition, the decision to extend searches beyond nonsignificance

in this study should not be construed as an endorsement of this

practice. It was merely done to determine what effect the

criterion of nonsignificance might have had on the successful

recovery of population models given the sample size dependency of

the overall x2 test.

The strong sample size effect on stability of post hoc model

modifications seen in the study by MacCallum et al. (1992) was

also found in the present study. Specification searches

conducted with larger samples were clearly more consistent in

terms of producing the same modified models across repeated

samples. The present study differed from MacCallum et al.'s

study in determining the number of subjects required to minimize

capitalization on chance to an acceptable level. In the

MacCallum et al. study they found that even with a sample size of

22



1,200, only 6 out of 10 searches resulted in the same final

model. And stability deteriorated rapidly with smaller samples

until there were no two same final models recovered when N was

250. In contrast, the present study found that over 90% of

respecified models were the same at Levels 1 and 2 when sample

size was at least

consistent at all

al.'s study. The

22

800. Even at Level 4, modifications were more

sample sizes

disparity in

than they had been in MacCallum et

findings could be attributed to a

number of factors, including differences in model

size/characteristics, differences in initial model misfit, or the

nature of the misspecifications. However, because MacCallum et

al. used an empirical data set for which the underlying

population model was unknown, and because they reported so little

about the characteristics of their models, any definitive

statements concerning the disparate results would be unwarranted.

The strong sample size effect seen both in this study and in

the study by MacCallum et al. (1992) is undoubtedly related, at

least in part, to the influence of sample size on the sampling

variability of either the MIs, model parameter estimates, power,

or a combination of the three. As mentioned previously, a

limited power analysis conducted to explain differences in

recovery of population models revealed that power estimates were

highly inconsistent when N was small. It should be noted that

determination of power using Saris et al.'s (1987) procedure

involves use of the MI as an estimate of the noncentrality

parameter needed when using the power tables. Consequently

23
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power to detect a particular parameter is directly related to the

magnitude of the corresponding MI. This suggests that the

apparent effect of sample size on the sampling variability of

power estimates was actually mirroring the sampling variability

of the MIs.

The other related factor which possibly contributed to

differences in stability of specification searches across sample

size is the decrease in sampling variability of parameter

estimates found to be associated with increasing N (Boomsma,

1982; Gerbing & Anderson, 1985). MIs might have identified fewer

different parameters at larger sample sizes because the estimated

models were actually more consistent. However, it is most

probable that a combination of these factors operated to produce

the effect of sample size on stability of modifications.

In addition to the sample size effect, the results showed

some evidence of differences due to model complexity, with model

modifications being somewhat more stable in the four-factor than

in the two-factor model. Again, the slightly greater overall

consistency of modifications might have been a function of the

higher power found in the four-factor model when compared with

the two-factor model holding sample size and level of

misspecification constant. Differences between the two models

were most pronounced for the Level 3 misspecification.

A recent paper by Kaplan and Wenger (1993) offers some

possible insight into the deviant specification searches seen in

the two-factor model at Level 3. They demonstrated that the

24
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pattern of covariances among parameter estimates may be

responsible for Saris et al.'s (1987) observation that power can

be unequal for different misspecifications within a single model

even when the size of the misspecified parameters is the same.

It is possible, therefore, that the high power in the two-factor

model to detect correlated residuals might have indicated an

unusual pattern of covariances among the parameter estimates,

resulting in capricious modifications across different samples.

As mentioned earlier, results of the population model

recovery did not offer any support for the use of a fixed number

of modifications. Similarly, limiting modifications to a maximum

of four did not result in lower risk of capitalization on chance

as MacCallum et al. (1992) had suggested. In fact, doing so

actually resulted in less stable results when the number of

specification errors exceeded the Liumber of allowable

modifications.

Despite the criticism of the x2 test as being inflated at

large sample sizes, the stopping criterion of overall model

nonsignificance proved to be fairly useful when N 800. Use of

the p-value associated with the x2 test did not lead to

overfitting the model as one might expect in the presence of

large samples. However, when sample size was less than 800,

specification searches halted at nonsignificance did tend to end

before modifications could stabilize. Apparently, the MI did not

necessarily identify the same parameters in the identical order

or

11

across different samples, but did identify a set of parameters
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fairly consistently even if the order changed somewhat from

sample to sample.

Based on the results of this study, an alternative to the

number of modifications or overall nonsignificance as stopping

criteria might be inspection of the MIs for a distinctive drop in

successive values of the maximum MI. In the present study,

patterns of MIs closely paralleled the results achieved using

model nonsignificance as the stopping criteria. Conditions with

marked declines in values of MIs were also those that exhibited

greater modification consistency, while conditions with more

ambiguous patterns of MIs were the ones found to be unstable

using the other stopping criteria. This finding challenges the

argument by Saris et al. (1987) and Kaplan (1988; 1990) that the

MI does not reliably detect irportant misspecifications.

Because MIs share the same sample size dependency with the

overall x2 test, it is the relative rather than absolute size of

the MIs that should be considered. When values of MIs seem to

gradually decrease, even if still statistically significant, it

suggests that there may be a number of specification errors

present, but none of substantial size. Errors of this type are

more likely to reflect chance characteristics of the data.

Consequently, in practice one should probably try to limit model

modifications to correction of noticeably large specification

errors which would be more apt to replicate in other samples.

Several limitations of this study should be noted. First,

the decision to limit population models to two CFA models will

?6
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restrict generalizability of results to models of this type.

Related to this was the imposition of only one kind of

misspecification, i.e., incorrect omission of complex factor

loadings.

Another limitation was the use of only the MI for conducting

specification searches. Kaplan X1989) and Tippets (1991) have

shown that the use of the expected parameter change statistic

(EPC) or

offers a promising new strategy for conducting

question of interest is whether or not the EPC

as subject to sampling variability as the MI.

its standardized version (SEPC) in tandem with the MI

searches. The

and SEPC will be

Thus far studies

of the EPC/SEPC have been conducted with population data or in

single empirical samples, where sampling variability was absent.

A potential weakness in the design was possible confounding

of model and level of misspecification resulting from the nesting

of number of specification errors within model. While it is

unlikely that, say, two errors would have had the same impact on

the four-factor model as it did on the two-factor model, it is

also not known if doubling the number of errors in the

factor model provided the same r9lative level of

misspecification. While rates of population model recovery

stability of model modifications were slightly better in the

four-factor model, rates were not so different as to suggest

substantial disparity in misspecification. Conversely, measures

of fit suggested better fit for the two-factor model at all

levels of misspecification. However, there is no way to tell if

four-

and
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this was due to more severe misspecification in the four-factor

model resulting from a design flaw, or if the differences in fit

were simply reflecting a model complexity effect.

28
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Table 1
Number of Times Population Models Recovered Per Cell

N

Level of Misspecification

3

1 2 3 4

200

400

800

1,200

Two-Factor Model

23 26 0

64 78 2

94 93 2

94 93 0

6

35

76

89

200

400

800

1,200

Four-Factor Model

19 30 8 (44)

64 71 36 (98)

96 99 85 (100)

100 100 93 (100)

8 (29)

40 (78)

78 (91)

92 (99)

Note. Numbers in each cell are out of 100 possible. Levels

and 4 of the four-factor model represent number of population
models recovered if searches had been continued to
nonsignificance rather than being terminated at four

modifications. With the limit of four modifications imposed, the

eight omitted population parameters could not have been recovered

by four modifications. Values in parentheses represent number of

population models recovered if searches were continued to eight

modifications.
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Table 2
Frequency of Most Commonly Occurring Final Model Per Cell

Level of Misspecification

N 1 2 3 4

Two-Factor Model

200 23' 41 6 10

400 64' 78' 8 35'

800 94' 93' 11 76'

1,200 94' 93' 25 89'

Four-Factor Model

200 19' 30' 7 16

400 64' 76' 6 44

800 96' 99' 6 57

1,200 100' 100' 7 60

Note. Due to the limit of four modifications, the four-factor
Level 3 and 4 models could not have recovered the population.
model. Numbers are out of 100 possible.
' denotes population model.
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Table 3
Number of Different Parameters Freed Per Cell

Level of Misspecification

N 1 2 3 4

Two-Factor Model

200 13 16 24 26

400 10 10 24 18

800 8 6 20 9

1,200 8 8 17 5

Four-Factor Model
200 15 6 17 33

400 4 4 8 16

800 4 4 8 12

1,200 4 4 8 9

Note. Smaller numbers reflect greater modification stability.
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Figure 1. Population Model A
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Figure 2. Population Model B
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