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To this end, the following section discusses the interplay of reasoning per
se and the universe of discourse in which a problem is framed. Educational
testing alternative psychological paradigms, and inferential tasks thus
entailed, are then considered. Implications of cognitive psychology for test
theory are discussed and illustrated with examples from current projects.

Evidence and Inference

Inference is reasoning from what we know and what we observe to
explanations, conclusions, or predictions. We are always reasoning in the
presence of uncertainty. The information we work with is typically
incomplete, inconclusive, amenable to more than one explanation. We must
apply in educational assessment many of the same skills needed in such fields
as troubleshooting, medical diagnosis, and intelligence analysis. We attempt
to establish the weight and coverage of evidence in what we observe. But the
very first question we must address is "Evidence about what?" There is a
crucial distinction between data and evicknce: "A datum becomes evidence in
some analytic problem when its relevan:..e to one or more hypotheses being
considered is established. . . . [Elvidence is relevant on some hypothesis if it
either increases or decreases the likeliness of the hypothesis. Without
hypotheses, the relevance of no datum could be established" (Schum, 1987,
p. 16).

Test data, like clues in a criminal investigation, acquire meaning only in
relation to a network of conjectures. The same observation can be direct
evidence for some conjectures and indirect evidence for others, and wholly
irrelevant to still others. In criminal investigations, we construct our
conjectures around notions of the nature of crime, of justice, of proof, of
human nature itself (compare the proceedings of contemporary trials with
those of the Inquisition). The conjecture we might entertain under one
conception of justice, let alone the kind of data we would seek to support it,
might not even be possible to express under an alternative conception. In
educational assessment, we construct our conjectures around notions of the
nature and acquisition of knowledge and skill.

An example hints at directions we need to explore. The Mathematical
Sciences Education Board (MSEB) recently published a collection of prototype
assessment tasks designed to allow children to "demonstrate the full range of
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TEST THEORY RECONCEIVED'

Robert J. Mis levy
Educational Testing ServiceiCRESSF

Introduction

Test theory, as we usually think of it, is part of a package. It encompasses
models and methods for drawing inferences about what students know and
can doas cast in a particular framework of ideas from measurement,
education, and psychology. This framework generates a universe of discourse:
the nature of the problems one defines, the kinds of statements one makes
about students, the ways one gathers data to support them. Test theory, as we
usually think of it, is machinery for inference within this framework.

The emerging paradigm of cognitive psychology also generates a universe
of discourse, engendering its own kinds of scientific and applied problems,
suggesting alternative models for the nature and the acquisition of
competence, prompting new considerations about how to collect and interpret
evidence. Just as under the standard testing paradigm, however, we face
such questions as: What kinds of evidence are needed to support inferences
about students? How much faith can we place in the evidence, and in the
statements? Are elements of evidence overlapping, redundant, or
contradictory? When must we ask different questions or pose additional
situations to distinguish among competing explanations of what we see?
Aspects of the models and methods that have been developed within the
framework of standard test theory can be extended, augmented, and
reconceived to address problems cast in a broader univei-3e of discourse about
students' learning. It is necessary, however, to disentangle the statistics from
the psychology in standard test theory; to distinguish how we are reasoning
from what we are reasoning about.

I An earlier version of this paper was presented at the annual meeting of the National Council
of Measurement in Education, Atlanta, April 1993. Comments by the discussants Bob Glaser,
H.D. Hoover, and Dick Snow have been incorporated, along with comments from Isaac Bejar,
Kalle Gerritz, and Howard Wainer.
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their mathematical power, including such important facets as
communication, problem-solving, inventiveness, persistence, and curiosity"
(MSEB, 1933, p. iii). Figure 1 is part of one task. A National Research Council
newsletter stated that "rather than focusing on rote recall and routine
arithmetic, [the prototypes] measure the ability to understand and apply
higher-level concepts" (Push & Hicks, 1993, p. 7).

A graph and a series of questions may indeed stimulate interesting
mathematical thinking on the part of students. They may, further, evoke
behavior that tells us something about that thinkingdata that may turn out
to be useful evidence for conjectures we are interested in. But they do not, in
and of themselves, "measure" anything. Exactly what aspects of thinking do
we want to talk about, and how do we relate what we observe in this specific
situation to a more abstract level of discourse? Do we want to speak beyond this
particular graph and set of questions, to, say, how students might handle
different questions about the same graph? Or similar graphs with different
questions? Or tasks that don't involve graphs at all, but require explanations of
mathematical concepts? Should we summarize our observations in terms of a
single aspect of students' solutions or many? In terms of numbers, ordered
categories, qualitative distinctions, or some mixture of these? We must start by
determining just what we want to talk about.

Paradigms

Thomas Kuhn (1970) used the term "paradigm" to describe a set of
interrelated concepts that &allies research in a scientific field. A paradigm
gives rise to what I've been calling a "universe of discourse." Of all the
phenomena that we can experience directly or indirectly, a paradigm focuses
on patterns in a circumscrIbed domain. The patterns determine the kinds of
things we talk about; the characteristics, the particular things we say. (In
formal scientific work, the patterns might be expressed as models; the
characteristics, as values of variables in models.) A paradigm determines
what we construe as problems, and how we evaluate our attempts to solve
them. Some examples of paradigms are Newtonian and quantum mechanics;
the geocentric and the heliocentric views of solar system; and, most pertinent
to our present concerns, trait, behavioral, and cognitive psychological
paradigms.

6
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Prototype from Measuring Up
Six children are in a checkers tournament. The figure below shows the results
of the games played so far. Arrows point in the direction of the loser. For
example, Alex won his game against Lee.

1. Who won the game between
Pat and Robin?

2. Make a table showing the
current standings of the six
children.

Dana

3. Dana and Lee have not played yet.
Who do you think will win when they
play? Explain why you think so.

0 1992 National Research Council

Figure 1. A mathematics task prototype.
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No paradigm is all-encompassing. Birnbaum (1991, p. 65) describes the
view that ". . . problem-solving depends on the manipulation of relatively
fragmented and mutually inconsistent microtheorieseach perhaps
internally consistent, and each constituting a valid way of looking at a
problem: 'This will allow us to say, for example, that some [set of beliefs] is
more appropriate than some [other set of beliefs] when confronted with
problems of diagnosing bacterial infections. Scientists are used to having
differenteven contradictorytheories to explain reality . . . Each is useful in
certain circumstances' (Nilsson, 1991, p. 45)."

Sometimes paradigms address overlapping phenomena. When two
observers view the same event through the lens of different paradigms,
however, they attend to different aspects of what they see, and make different
connections to other concepts. Where Priestly "saw" dephlogistated air,
Lavoisier "saw" oxygen (Kuhn, 1970, p. 118). Confusion reigns when different
paradigms use the same words with different meanings, as the same
observation can lead to contradictory conclusions. We shall discuss an
example from test theory below, concerning how to "account for the difficulty"
of assessment tasks.

Most scientific research is carried out within an existing paradigm.
Kuhn used the term "normal science" for solving the outstanding puzzles a
paradigm poses. Normal science improves measurements, develops
inferential machinery, works out relationships in greater detail, extends ideas
to new situations, and integrates previously separate elements. Applied
problem solving takes the same flavor. The concepts and patterns of a
paradigm are taken as givens, into which the elements of a particular
application are mapped. These structures guide data gathering,
interpretation, and decision making.

Kuhn studied "scientific revolutions," in which a new major paradigm
displaces an existing paradigm. A paradigm shift can be precipitated by a
paradigm's failure to deal with some outstanding problemperhaps a puzzle
that is intractable as framed in the existing paradigm, or a problem it cannot
frame at all. New concepts arise; new relationships are highlighted. Some
concepts and relationships overlap with those of the previous paradigm, as do
methodologies and phenomena addressed, but the essential organizing
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structure changes. A paradigm shift redefines what scientists see as
problems, and reconstitutes their tool kit for solving them. Previous models
and methods remain useful to the extent that certain problems the old

paradigm addresses are still meaningful, and the solutions it offers are still
satisfactory, but now as viewed from the perspective of the new paradigm.

Psychological Paradigms and Test Theory

Particular forms of tests and assessments represent particular forms of discourse,
that is, they produce particular ways of talking and communic ling with others
about the schooling and education process. (Berlak, 1992, p. 1.86)

I like this quotation for two reasons. The first is that it connects how we
think about assessing with how we think about learning and teaching. The
second was actually a reason I didn't like it when I first saw it: the order is
backwards. A conception of student competence and a purpose for assessment
should determine the kind of information one needs, which should in turn
suggest ways to get students to reveal something about their competencies,

that is, the forms of assessment. But Berlak's description does reflect common
practice. Too often, an assessment form is adopted without conscious
consideration of the purpose of the assessment e ul the nature of competence
that should underlie the effort. A universe of discourse is instantiated by
default, often presuming concepts and values of the paradigm that gave rise to
that form of a.sessment.

Making a rational choice of assessment methods requires thinking these
issues through. The following sections discuss implications that the trait,
behaviorist, and cognitive psychological paradigms hold for test theory. We
cannot deeply pursue here all the ways in which different purposes entail
different evidential requirements, even under a given conception of
competence (see Millman & Greene, 1989, on dimensions of purpose that also
shape the form of assessment). Purposes mentioned in the following
discussion include selecting students into fixed alternatives, monitoring the
progress of groups of students, and planning instruction for individual
students.
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Trait Psychology and "Mental Measurement"

The most familiar tools of standard test theory began to evolve a century
ago under the paradigm of trait psychology, initially in a quest to "measure
people's intelligence." Messick (1989, p. 15) defines a trait as "a relatively
stable characteristic of a personan attribute, enduring process, or
dispositionwhich is consistently manifested to some degree when relevant,
despite considerable variation in the range of settings and circumstances."
These invented (hence, inherently unobservable) numbers are proposed to
locate people along continua of mental characteristics, just as their heights
and weights locate them along continua of physical characteristics.

When Spearman used scores on knowledge and puzzle-solving tasks to
"measure intelligence," the notion of a trait was not new. Paul Broca and
Francis Galton had attempted to assess "intelligence" in the previous century,
Broca by charting cranial volumes, Galton by measuring reaction times. Nor
was the idea of observing behavior in samples of standardized situations new.
Three thousand years ago the Chinese discovered that observation of an
individual's performance under controlled conditions could support accurate
predictions of performance under broader conditions over a longer period of
time (Wainer et al., 1990, p. 2). The essence of mental measurement was,
rather, a confluence of these concepts: identifying "traits" with tendencies to
behave in prescribed ways in these prescribed situations. Variables so defined
were viewed as the way to characterize peoplethe psychologyand test
scores as the way to obtain the requisite evidencethe methodology:
"Intelligence is what tests of intelligence test, until further scientific
observation allows us to extend the definition" (Boring, 1923, p. 35). As in
physical measurement, great care was taken to define the tasks, the conditions
under which they were administered, and the rules for mapping observations
to summary scores.

This psychology and the methodology suited the mass educational system
that also arose in the United States at the turn of the century (Glaser, 1981).
Educators viewed their challenge as selecting or placing large numbers of
students in instructional programs, when resources limited the amount of
information they could gather about each student, constrained the number of
options they could offer, and precluded much tailoring of programs to
individual students once the decision was made. This view of the problem

1 0
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context encouraged building student models around characteristics that were
few in number, broadly construed, stable over time, applicable to wide ranges
of students, and discernible with data that were easy to gather and interpret.

A Brief History of Test Theory

Test theory research over the century exhibits the extensions,
generalizations, and increasing technical sophistication within a given
paradigm that mark "normal science"in this case, within the paradigm of
characterizing people's tendencies to behave in prescribed ways in prescribed
settings. The inferential considerations that motivate these developments
merit a brief review because they transcend the substantive content of the
psychological paradigm under which test theory arose; analogous
considerations arise no mater which psychological paradigm underlies an
assessment. We highlight the interplay between the substantive content of the
paradigm (the semantics) and the methodology of reasoning within the
paradigm (the syntax).

Eageworth (1888, 1892) and Spearman (1904, 1907) launched classical test
theory (CTT) by applying mathematical models and statistical tools from
physical measurement to what were, under the paradigm, comparable
problems in mental measurement. CTT views the average of 1-for-right/0 -for-
wrong results from a sample of test items from a domain as a noisy measure
of an examinee's "true score." While each individual item taps different skills
and knowledge in different ways for different people, a total score accumulates
over items a general tendency to answer items from the domain correctly, and
conveys direct evidence for conjectures about a variable so construed (Green,
1978). Different random samples of tasks from the same domain, or parallel
tests, are alternate sources of information about tendencies to behave in the
prescribed manner in these situations. Scores on parallel tests are direct
evidence, each with the same amount of weight and the same scope of
coverage, about the same true score.

The key inferential concept in test theory is conditional independence.
Stated generally, variables may be related in a population, but independent
given the values of another set of variables. The paradigm of a field supplies
concepts, variables, and conditional independence relationships. In CTT,
interest centers on the unobservable variable "true score," with observable
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scores on parallel tests posited to be conditionally independent given true score.
Judah Pearl argues that inventing intervening variables such as true scores is
not merely a technical convenience, but a natural element in human
reasoning:

[C]onditional independence is not a grace of nature for which we must wait
passively, but rather a psychological necessity which we satisfy actively by
organizing our knowledge in a specific way. An important tool in such
organization is the identification of intermediate variables that induce conditional
independence among observables; if such variables are not in our vocabulary, we
create them. In medical diagnosis, for instance, when some symptoms di7ectly
influence one another, the medical profession invents a name for that interaction
(e.g., "syndrome," "complication," "pathological state") and treats it as a new
auxiliary variable that induces conditional independence; dependency between
any two interacting systems is fully attributed to the dependencies of each on the
auxiliary variable. (Pearl, 1988, p. 44)

Spearman's methodological insight (as distinct from his thoughts about
human abilities per se) was this: conditional independence of observable test
scores, given an unobservable "intelligence" variable, would imply particular
patterns of relationships among the observable scores (Spearman, 1904, 1927).
This insight provides a framework for organizing observations, and for
quantifying and (at least in principle) disconfirming conjectures about
behavior in terms of hypothesized traits. Test theorists have since been
working out the logic of inference in terms of unobsPrvabie variables: exploring
the possibilities and the limitations, developing statistical machinery for
estimation and predictionin short, learning how to reason within the
paradigm of mental measurement.

The original indicator of a test's evidential value under CTT was
reliability, the correlation between parallel forms in a specified population of
examinees.2 This definition reflects the classic norm-referenced usage of
tests: locating people along a single dimension, for selection and placement
decisions. A high reliability coefficient indicates that a different sample of
tasks of the same kind would order the examinees similarly, leading to the
same decision about most of them. Reliability is a sensible summary of the

2 Even if only one form of a test existed, an estimate of its reliability could be obtained
nevertheless from the internal consistency of its canstituent elements; e.g., for tests of
exchangeable items, the average correlation among all possible half-tests, adjusted upwards to
account for their shorter length.

12
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evidence a test provides in this specific context (a particular group of students
and a domain of tasks), for this specific purpose (lining the students up
comparatively for selection or placement) under this specific psychological
paradigm (assuming that lining them up according to true scores would
capture what matters). Reliability does not characterize the evidence test
scores might provide about other conjectures, even those framed within the
CTT paradigm; for example, whether a student's true score is above a
specified cutoff value, or the magnitude of change in true score from pretest to
posttest.

Extending the Methodology to Behavioral Psychology

Messick's phrase "relatively stable" softens the extreme early conception
of a traitwhich might be described as "inborn and unchangeable"and
acknowledges the extended range of phenomena to which the models and
methods of CTT came to be applied. We hope that a student's tendency to
perform well on mathematics tasks will change, through instruction and
experience. At any given point in time, however, one might contemplate
gauging her overall proficiency with respect, to specified domains of tasks, as
defined perhaps by this week's lesson, or by a consensually defined collection
that "a minimally competent eighth grader" ii her state "should be able to
answer." This usage extends the application of CTT machinery beyond the
original selection and placement decisilne, to planning and evaluating
instruction from the perspective of behavioral psychology:

The educational process consists of providing a series of environments that permit
the student to learn new behaviors or modify or eliminate existing behaviors and to
practice these behaviors to the point that he displays them at some reasonably
satisfactory level of competence and regularity under appropriate circumstances.
The statement of objectives becomes the description of behaviors that the student is
expected to display with some regularity. The evaluation of the success of
instruction and of the student's learning becomes a matter of placing the student in
a sample of situations in which the different learned behaviors may appropriately
occur and noting the frequency and accuracy with which they do occur. (Krathwohl
& Payne, 1971, pp. 17-18)

The familiar standardized achievement test consists of a sample of tasks
in an area of learning, and students' "true scores" are tendencies to make
correct responses rather than incorrect responses, for example, or to write

13
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coherent rather than disjointed essays. The object of inference in this case is
not a "trait" in Galton's or Spearman's sense, but simply a summary of a
behavioral tendency in a class of stimulus situationsan "overall proficiency"
in the prescribed domain of tasks. CTT's data-gathering methodologies and
inferential machinery for summarizing behavior in samples of prescribed
situations were thus extended to instructional problems cast in behavioral
psychology.

Generalizability theory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972)
broadened the notion of the evidential value of an observed test score, taking
into account the conditions under which the data were obtained and how they
were to be used. The statistical machinery of generalizability theory first
characterizes the variation associated with facets of observation, such as
samples of tasks and students, and, when judgment is involved, numbers and
assignment patterns of raters. It can then quantify the evidence that scores
from a observational setting convey for such various inferences as
comparisons between examinees, of examinees against a fixed criterion, and
of changes over time; in terms of the domain of tasks as whole, with different
numbers or kinds of raters, in different subdomains (e.g., what does a
student's narrative essay tell us about how well she can write friendly letters?),
and so on. Generalizability theory expands the range of conjectures one can
address, but still within a universe of discourse in which inferences still
concern "overall tendency toward specified behavior in a specified domain," as
defined from the point of view of the test designer.

Item Response Theory

A source of dissatisfaction with CTT early on was that its
characterizations of examinees (e.g., domain true score and percentile rank)
and tasks (e.g., percent-correct and item-test correlation) were tied to specific
collections of examinees and tasks. Item response theory (IRT; see Hambleton,
1989, for an overview) originated in the early 1940s as an attempt to
characterize examinees' proficiency independently of the tasks they happened
to have taken, and tasks independently of the examinees who happened to take
thema goal inspired by the analogy to physical measurement. Like CTT,
IRT addresses examinees' proficiency in a domain of tasks. Beyond CTT, IRT
posits a functional relationship between proficiency and probability of correct

14
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response to a given item that is the same for all examinees. That is,
differences in students' chances of success are modeled as depending solely on
their values on the single overall-proficiency variable (e.g., tendency to mark
correct answers in this domain of test items). Such a pattern cannot be
expected a priori for simply any domain of tasks and any group of students.
(And, as we discuss below, there are inferences for which this pattern is not
the one we need to model!) However, when we do successfully construct an
assessment context in which observations do approximate this pattern, we are
justified in using a formal measurement framework to guide inference in that
context (Wright, 1977).

IRT helped solve practical problems that could be expressed in the mental
measurement paradigm but were poorly handled with CTT tools, such as
constructing tests with desired properties and tailoring tests to individual
examinees.3 The IRT formulation lends itself well to the machinery of
statistical inference. The relationships among observable variables, and by
implication between observable and hypothesized unobservable variables, are
laid out more explicitly than in CTT. Rapid progress has been made by
applying recent developments in statistics to IRT (e.g., Bock & Aitkin, 1981;
Lord, 1980; Mislevy, 1991). And Georg Rasch (1960) solved a central theoretical
question of mental measurement by explicating the class of models under
which, if true, examinees could be compared independently of the items they
responded to, and items compared regardless of the sample of examinees who
responded to them.4 Note that these are all issues of how to reason within a
paradigm, of syntax within a universe of discourse. Determining the real-
world contexts for which the models are appropriate is quite a separate issue.

In statistical framework, estimation tools strengthen inference under the
assumption that a model is correct. Just as importantly, however, diagnostic
tools help determine when .and where the model failsat once improving

3 This is due to the use of a more powerful conditional independence relationship. Rather than
CTT's test level conditional independence of scores on parallel tests given true score, IRT is
based on item level conditional independence, namely responses to items given the
hypothetical proficiency variable. One can thus combine evidence from individual test items
in far more flexible arrangements than parallel testsat the cost, of course, of verifying a
more restrictive model. It is important in a given application to explore how the particular
ways the model fails to fit will affect the particular inferences one wants to make.

4 See Andrich (1988) for a discussion of Rasch's approach as a paradigm shift in test theory.
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applications within the paradigm and providing clues to see beyond it: "To the .

extent that measurement and quantitative technique play an especially
significant role in scientific discovery, they do so precisely because, by
displaying serious anomaly, they tell scientists when and where to look for
new qualitative phenomena" (Kuhn, 1970, p. 205). We shall say more in
Example 1 about the importance of din gnostic tools for using IRT in light of
results from cognitive psychology.

In addition to IRT, a separate stream of test theory research has been the
analysis of relationships among scores from different tests. Factor analysis,
structural equations modeling, and multitrait-multimethod analysis all
address patterns in correlations among scores of several tests, in hopes of
better understanding the meaning of variables so defined. A researcher might
seek to identify recurring patterns in tests with systematically varying tasks;
for example, looking for broadly defined tendency to perform well on scientific
inquiry tasks, using scores from multiple-choice items, computer simulations,
and laboratory notebooks (Shavelson, Baxter, & Pine, 1992). Additional tests
with the same formats, but with, say, mathematics content, might be added to
see whether examinees vary systematically as to their performance in various
formats, as distinct from their proficiencies in the content areas (Campbell &
Fiske, 1959).

These correlational tools are the main way test theorists have sought to
establish the weight and coverage of evidence test scores provide for
inferencesin a word, validity. Early selection and placement applications
focused exclusively on the correlation between the scores used to make
decisions and the scores summarizing outcomes of subsequent programs,
calling this number the validity coefficient. Contemporary views of validity
even within the paradigm (Messick, 1989) are considerably broader:

Validity is an integrated evaluative judgment of the degree to which empirical
evidence and theoretical rationales support the adequacy and appropriateness of
inferences and actions based on test scores or other modes of assessment. . . .

fW1hat is to be validated is not the test or observation device as such but the
inferences derived from test scores or other indicatorsinferenci:s about score
meaning or interpretation and about the implications for action that the
interpretation entails .. .

Different kinds of inferences from test scores may require a different balancing of
evidence, that is, different relative emphases in the range of evidence presented.

16



14 CRESST Final Deliverable

By evidence is meant both data, or facts, and the rationale or arguments that
cement those facts into a justification of test-score inferences. . . . One or another

. . . forms of evidence, or combinations thereof, have in the past been accorded
special status as a so-called "type of validity" (e.g., content, criterion, predictive,
concurrent, and construct validity). But because all of these forms of evidence bear

fundamentally on the valid interpretation and use of scores, it is not a type of
validity but the relation between the evidence and the inferences drawn that should
determine the validation focus. (Messick, 1989, p. 13ff)

At its leading edge, if not in everyday practice, test theory for the mental

measurement paradigm has come of agein the sense of having developed
methodological tools for gathering and interpreting data, and a coherent
conceptual framework for inference about students' tendencies to prescribed

behaviors in prescribed settings. The question is the extent to which the
inferences we now want to make for guiding and evaluating education can be

framed within this universe of discourse.

What Overall-Proficiency Measures Miss

Evidence can now be brought to bear on inferences about students' overall

proficiency in behavioral domains, for determining a student's level of
proficiency, comparing him to others or to a standard, or gauging change

from one point in time to another. Summarizing competence in these terms
suits the kinds of low-resource, long-lasting decisions it was designed for:
sorting, assigning, or selecting students into educational activities
presumably with the general objective of helping students become more
proficient. Conjectures about the nature of this proficiency or how it develops

fall largely outside the mental-measurement paradigm's universe of
discourse. As Stake (1991, p. 245) notes, "The teacher sees educbfif--,-% '.n terms

of mastery of specific knowledge and sophistication in the perfurmance of

specific tasks, not in terms of literacy or the many psychological traits
commonly defined by our tests."

Cronbach and Furby's (1970) "How should we measure `change'or
should we?" reflects the frustration of recognizing vital questions beyond a
paradigm's reach. After cogently analyzing the subtleties of inference about
change under CTT, they lament an overarching inadequacy of all of the
techniques they discuss:

17
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Even when (test scores] X and Y are determined by the same operation [e.g., a given
CTT or IRT model for specified behavior in a specified domain of tasks), they often
do not represent the same psychological processes (Lord, 1958). At different stages
of practice or development different processes contribute to the performance of a
task. Nor is this merely a matter of increased complexity; some processes drop out,
some remain but contribute nothing to individual differences within an age group,
some are replaced by qualitatively different processes. (p. 76)

The criterion-referenced testing movement of the 1960s (e.g., Glaser, 1963)
attempted to bring the machinery of the mental measurement paradigm to
bear on instructional problems by defining behavioral domains with greater'
specificity, so that educators could infer in detail what students could and
could not do. Merely providing detailed descriptions of performance proves
insufficient to make test scores relevant, however, if it fails to address the
underlying knowledge, skills, and strategies that lead to performance and
serve as the foundation for further development (Glaser, 1981).

Implications of Cognitive Psych& gy for Test Theory

Most contemporary research into human abilities takes place within
neither the trait nor behavioral psychological paradigms, but within what has
come to be called the cognitive paradigm. Cognitive functions include "such
activities as perceiving relationships, comparing and judging similarities and
differences, coding information into progressively more abstract forms,
classification and categorization, memory search and retrieval" (Estes, 1981,
p. 11), and, more to our point, learning and problem solving. Cognitive
psychology explores just how it is that people do these things. Three working
propositions from cognitive psychology (paraphrasing Lesh Lamon, 1992,
p. 60) hold implications for education:

1. People interpret experience and solve problems by mapping them to
internal models.

2. These internal models must be constructed.

3. Constructed models result in situated knowledge that is gradually
extended and decontextualized to interpret other structurally similar
situations. With use, aspects of mapping and problem solving become
automated.

18
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People Interpret Experiences and Solve Problems by Mapping Them to Models

Knowledge structures have been studied as "mental models" (Johnson-
Laird, 1983), "frames" (Minsky, 1975), and "schemas" (Rumelhart, 1980). A
schema (using Rumelhart's term inclusively for convenience) can be roughly
thought of as a pattern of recurring relationships, with variables that in part
determine its range of applicability. Associated with this knowledge are
conditions for its use. Rumelhart (1980, p. 33ff) views schemas as "the building
blocks" of cognition: "Schemata are employed in the process of interpreting
sensory data (both linguistic and nonlinguistic), in retrieving information
from memory, in organizing actions, in determining goals and subgoals, in
allocating resources, and, generally, in guiding the flow of processing in the
system."

Moreover, "it looks like schemas are the key to understanding expertise"
(VanLehn, 1988, p. 49). While experts in various fields of learning do generally
command more facts and concepts than novices, and have richer
interconnections among them, a key distinction lies in their ways of viewing
phenomena, and representing and approaching problems (e.g., Chi, Feltovich,
& Glaser, 1981, on physics; Lesgold, Feltovich, Glaser, & Wang, 1981, on
radiology; and Voss, Greene, Post, & Penner, 1983, on social science). The
advanced concepts that college physics students acquire can be organized
around informal associations or naive misconceptions (Caramazza,
McCloskey, & Green, 1981). They tackle problems less effectively than expert
physicists, whose more appropriate schemas lead them to the crux of the
matter (Chi et al., 1981):

Schemata play a central role in all our reasoning processes. Most of the reasoning
we do apparently does not involve the application of general purpose reasoning
skills. Rather, it seems that most of our reasoning ability is tied to particular
bodies of knowledge. . . . Once we can "understand" the situation by encoding it in
terms of a relatively rich set of schemata, the conceptual constraints of the
schemata can be brought into play and the problem readily solved. It is as if the
schema already contains all of the reasoning mechanism ordinarily required in
the use of the schemata. Thus, understanding the problem and solving it is nearly
the same thing. (Rumelhar+, 1980, p. 55ff)
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Internal Models Must Be Constructed

...11

A schema is "instantiated" when we perceive some of its relationships in
a situation, which focuses our attention on filling in other variables, inferring
additional relationships, and checking for specifics at odds with usual
expectations. Much of this activity is unconscious and automatic, as when we
process individual letters in the course of reading a text. Sometimes aspects of
it are conscious and deliberate, as when we try to determine the text's
implications. "The total set of schemata instantiated at a particular moment
in time constitutes our internal model of the situation we face at that moment
in time" (Rumelhart, 1980, p. 37). No act of cognition is purely passive or data-
driven; we must ever and always construct meaning, in terms of knowledge
structures we have created up to that point in time. Thus,

. . . it is useful to think of a schema as a kind of informal, private, unarticulated
theory about the nature of events, objects, or situations that we face. The total set of
schemata we have available for interpreting our world constitutes our private
theory of the nature of reality. (Rumelhart, 1980, p. 37)

Situated Knowledge Is Extended and Decontextualized; Procedures Are
Automated.

If perception is an active process (selecting, building, and tailoring
representations from currently available schemas), then learning is all the
more dynamic: extending, modifying, and replacing elements to create new
structures. In some cases learning is merely adding bits to existing
structures. Sometimes it involves generalizing or connecting schemas. Other
times it involves wholesale abandonment of major parts of schemas, with
replacement by qualitatively different structures (Rumelhart, 1980). The
parallels between the development of personal knowledge within an individual
and public knowledge in scientific community have not gone unnoticed:

The process of knowledge acquisition can be conceptualized as involving different
kinds of changes; some require the enrichment of existing knowledge structures,
and others require the creation of altogether new structures. Current discussions of
the notion of restructuring in knowledge acquisition differentiate between weak
and radical restructuring. Weak restructuring involves the creation of new,
higher-order relations between existing concepts, whereas radical restructuring
involves a fundamental change in schemata, similar to paradigm shifts in the
history of science. (Vosniadou & Brewer, 1987, p. 62)

40
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Far less is known about actual mechanisms underlying these changes
than about conditions that seem to facilitate them (the bottom line for educators
anyway): One encounters a situation with enough that is familiar to make it
meaningful for the most part, but with unanticipated patterns or
consequences. Vosniadou and Brewer (1987) suggest Socratic dialogues and
an fogies as pedagogical techniques to facilitate restructuring. Using them
effectively requires taking into account not only the target knowledge
structures, but the learner's current structures. Lesh and Lamon (1992, p. 23)
describe the use of case studies in fields where the goals of instruction are
associated with the construction of models for building and understanding
complex systems. Relationships in the specific case are highlighted as the
foundation of recurring patterns, which are then relate 1. to other specific cases
to promote the construction of more general encompassing structures.

With practice, some kinds of information processing are automatized, or
"compiled." Young children learn to recognize letters and words with
concentration and conscious effort; practiced readers are practically unaware
of individual words as they grapple with the concepts, the motivations, the
implications of the texts they encounter. Similar phenomena occur in every
field of learning. A skilled roentgenologist, for example, quickly identifies a
spot in a chest X-ray as a tumor, although to a novice it looks like any other
shadow on the plate (Lesgold et al., 1981).

Are Schemas "Real"?

The previous sections fall into the easy style of talking about schemas as if
they correspond directly to something inside people's headsnot at all unlike
the language of intelligence testing. But the reality of knowledge structures as
we have described them is actively debated in the artificial intelligence (AI)
community. Rodney Brooks's mechanical "creatures" display such complex
activities as following people around a room and finding electrical outlets to
recharge their batteries, using only layers of parallel primitive units that
communicate in primitive ways. Although a schema theory could "explain"
his creatures' behavior, Brooks (1991) emphasizes that they incorporate no
central representation of concepts. In contrast, most AI researchers do
explicitly code the relationships that constitute concepts into their programs,
and others,
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. . . connectionists[,] seem to be looking for explicit distributed representations to
spontaneously arise from their networks. We harbor no such hopes because we
believe representations are not necessary and appear only Li the eye or mind of the
observer. (Brooks, 1991, p. 154)

For cognitive science, determining the locus and mechanisms of
knowledge structures is the paramount objective. With the benefit of
hindsight, our successors may see this as a guiding vision to exciting
breakthroughs, or as naive a dead end as the alchemists' quest to transform
lead into gold. Schema theory has today the ontological status Spearman's g
had nearly a century ago: a conceptual tool for talking about certain patterns
that seem to recur in human behavior, possibly useful for solving some
practical problems. For educators, the objective is discovering when and how
planning instruction in this framework helps students learn. For those of us
in test theory, the objective is determining how to gather and interpret
information to guide these efforts. If nothing else, the cognitive paradigm
generates, where the trait paradigm could not, a common universe of
discourse for learning and assessment.

Considerations for Test Theory

Essential characteristics of proficient performance have been described in various
domains and provide useful indices for assessment. We know that, at specific
stages of learning, there exist different integrations of knowledge, different forms
of skill, differences in access to knowledge, and aifferences in the efficiency of
performance. These stages can define criteria for test design. We can now propose
a set of candidate dimensions along which subject-matter competence can be
assessed. As competence in a subject-matter grows, evidence of a knowledge base
that is increasingly coherent, principled, useful, and goal-oriented is displayed,
and test items can be designed to capture such evidence. [emphasis original]
(Glaser, 1991, p. 26)

We must begin every application by asking "What do we want to make
inferences about?" and "Why do we want to make them?" The answers should
be driven by the nature of the knowledge and skills we want to help students
acquire, the psychology of acquiring that knowledge, and a determination of
who will use the information (teachers, parents, legislators, researchers, the
students themselves) and how they will use it. There is no single "true" model
for educational testing, but only models more or less useful for various
purposes, by virtue of the information they convey. There is no single "best"

92
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method for gathering data, but only methods more or less effective at evoking

evidence for the infeiences to be made. These factors can vary dramatically

across applications, with seemingly antithetical approaches sharing only a
mandate to provide information consistent with a conception of how
competence develops in a learning area; for example:

John Anderson's intelligent tutoring systems (ITSs; see, e.g.,
Anderson & Reiser, 1985) characterize competence in a domain such
as LISP programming as the capacity to utilize a specified set of
production rules, or condition-action relationships. The tutor models a
student in terms of which production rules she has mastered, and
estimates her current status from the frequency with which she
employs production rules in appropriate situations. These estimates
are the basis of comments to the student, problem selection, and
subsequent instruction. All students are expected to incorporate these
production rules in their eventual model, regardless of the exact
structure any student actually internalizes (e.g., understandings may
be very different for student who enters already knowing FORTRAN),
and only apparent production-rule usage is monitored. Thus, not all
aspects of the structures of students' developing knowledge are
modeledonly key aspects deemed sufficient to guide instruction and
monitor targeted competencies.

The American Council of Teachers of Foreign Language (ACTFL)
Proficiency Guidelines describe stager of developing language in
reading, writing, speaking, and listening (ACTFL, 1989). Table 1
contains excerpts from the reading guidelines. These generic scales
are based on theories of language acquisition, as observed across
languages; guidelines for specific languages help examiners map
observed behavior to this more abstract frame of reference. Note the
guidelines' distinction between familiar and unfamiliar contexts.
Since what's familiar to one student is unfamiliar to another, the
same behavior from two students can lead to different interpretations
in light of additional information. Note also that the grain-size of these
guidelines is too coarse for specific instructional guidance. Two Mid-
Novice students, for example, might require different experiences to
progress to High Novice. Finally, note that mapping behavior to the
ACTFL guidelines requires judgment. We shall return in Example 2
to the problem of making abstractly stated guidelines meaningful in
practice.

Whatever the paradigm, learning area, or assessment method, whenever
the results affect education we are responsible for assuring that the weight
and coverage of evidence are appropriate to their use. As Messick (1992, p. 2)
points out, "validity, reliability, comparability, and fairness are not just
measurement issues, but social values that have meaning and force outside of
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measurement wherever evaluative judgments and decisions are made." This
is where test theory, broadly construed, comes in. It means defining what we
wish to accomplish, specifying what we need to know about students to achieve
it, and constructing a framework in which we can determine how well we're
doing. Only then can we tell if we're succeeding, see where we are falling
short, and glean clues to improve efforts to achieve our stated goals.

The paragraphs below discuss pervasive issues that arise when one
attempts to frame assessment within a cognitive paradigm. The discussion is
general and discursive, but each holds specific implications for models and
methods in any given application. The examples that follow the discussion,
therefore, will show how we grapple with some of these issues in three current
projects.

The nature of the "student model." Test theory is statistical machinery for
reasoning from studenta' behavior to conjectures about their competence, as
framed in a particular conception of competence. In a particular application,
this conception takes the form 3f a set of aspects of skill and knowledge that are
important for the job at hand, be it guiding further instruction or
summarizing the stages of competence students have reached. These are the
variables in a "student model," as I use the term: a simplified description of
selected aspects of the infinite varieties of skills and knowledge that
characterize real students. Depending on the purpose, one might distinguish
from one to hundreds of aspects. They might be expressed in terms of
numbers, categories, or some mixture; they might be conceived as persisting
over long periods of time, or apt to change at the next problem-step. They
might concern tendencies in behavior, conceptions of phenomena, available
strategies, or levels of development. These variables are not directly
observable. We observe only students' behavior in limited circumstances
indirect evidence about competence as more abstractly conceived in the student
model.

My use of the term "student model" is much broader than its typical use in
AI, where "student model" usually means "runnable model," or a set of rules
and conditions for their use that can be applied to provide an answer to any
problem in a domain of interest (Clancey, 1986). As in Anderson's LISP tutor,
this can include incomplete or erroneous rules, to mimic the behavior of
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students with incomplete or erroneous understandings. In my usage, this is
indeed an instance of a student model; but so are "domain true scores" from
CTT, status on ACTFL scales of demonstrated capabilities in second language,
and categorizations of mastery of generally-stated skills in high school
algebranone "true," yet all potentially useful for certain real-world
educational problems.

Obviously any student model oversimplifies the reality of cognition
(whatever that may be!). In real-world educational assessment, utility is the
bottom line. Greeno (1976, p. 133) points out that "it may not be critical to
distinguish between models differing in processing details if the details lack
important implications for quality of student performance in instructional
situations, or the ability of students to progress to further stages of knowledge
and understanding."5 For inance.ite feedback for short-term instructional
decisions, as in intelligent tutoring systems, there is a need for more detail in
the student model. Enough information may be otherwise available about the
student, however, that great detail is not required over a broad range of aspects
of competence, but only those involved in the immediate decision. For
accountability purposes, a coarser grain-size will suffice, although ideally the
student model should be construed as a collapsing of a model that makes sense
at the fine grain-size (see Example 1 below). Coherence of competence models
in this manner allows feedback to be consistent with the learning model, even
if it does not provide sufficient detail for all purposes under that conception.

The student's point of view. When assessment inferences are grounded
in the cognitive paradigm, one must determine the extent to which the student
model should reflect the student's perception of the tasks in the domain. The
standard mental measurement paradigm attends to the problem stimulus
only from the tester's point of view, administering the same tasks to all
examinees and recording outcomes in terms of behavior categories applied in
the same way for all examinees. Behavior constitutes direct evidence about
behavioral tendencies. But in problem solving, "the search process is driven by

5 An analog is the Smith & Wesson "Identikit," which helps police construct likenesses of
suspects. Faces differ in infinitely many ways, and skilled police artists can sketch
infinitely many possibilities to match witnesses' recollections. Communities that can't
support a police artist use an Identikit, a collection of face shapes, noses, ears, hair styles, and
so on, that can be combined to approximate witnesses' recollections from a large, though finite,
range of possibilities. The payoff lies not in how close the Identikit composite matches the
suspect, but whether it aids the search enough to justify its use.
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Ethel products of the understanding process, rather than the problem stimulus

itself" (VanLehn, 1988, p. 6). Because different knowledge structures can lead

to the same behavior, observed behavior constitutes indirect evidence about

cognitive structure. Increasingly many right/wrong item responses drive the
uncertainty about a student's true score to zero without providing insight into

the skills and strategies she employs.

Again the guiding principle is purpose. For example, effective tutoring
demands an understanding of individuals' current knowledge. Instruction
based on analogy fails when students are not familiar with the context and

relationships the analogy is meant to extend. The relevant questions for
tutoring are not "How many items did this student answer correctly?" or "What

proportion of the population would have scores lower than his?" but, in
Thompson's (1982) words, "What can this person be thinking so that his

actions make sense from his perspective?" and "What organization does the
student have in mind so that his actions seem, to him, to form a coherent

pattern?" On the other hand, behavioral summaries may suffice for
monitoring progress, as long as appropriate mechanisms are in place to guide

progress along the way. Coaches find it useful to chart pole vaulters' highest
jumps to track performance, even though details of form, approach, and
conditioning must be addressed to improve performance. Examples 1 and 2

below show how CTT and IRT, with their purpose and usage properly
(re)conceived, can serve this monitoring function in ways compatible with a
conception of how proficiency develops.

Compared with inference about behavioral tendencies, a chain of
inference that ends with conjectures about knowledge structures has
additional links, additional sources of uncertainty, that require us to work both
harder and smarter. Working harder means, first, knowing how competence
in the domain develops. The inferential challenges we routinely face under
the standard mental measurement paradigm, such as limited information
and multiple sources of uncertainty, do not disappear when interest shifts to
inference about cognitive structure. But principled reasoning now demands,
in addition to theory about inference under uncertainty, theory about the
nature and acquisition of competence in the domain. What are the important
concepts and relationships students are to learn, and how do they learn them?
What evidence must we see to gauge their progress, and help determine what
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they should do next? Working harder also means having to gather more
evidencetypically not just more of the same kind of data, as in CTT and IRT,
but of multiple kinds of evidenceif we want to disambiguate competing
explanations of behavior (Martin & VanLehn, in press). And gathering and
interpreting direct evidence for development over time or for productive
performance requires more resources than the indirect evidence provided by
familiar achievement tests.

It follows that working smarter first means being clear about exactly
what inferences we want to make. This done, working smarter next means
using strategies and techniques analogous to those long used to make
inference under the mental measurement paradigm more efficacious:
knowing exactly what it is we want to make inferences about, so we don't
waste resources collecting data that hold little value as evidence for our needs.
Identifying, then reducing, sources of uncertainty all along the chain of
inference, as when training judges to use a rating scheme, or tuning tasks to
evoke evi _ence about the skills of interest while eliminating extraneous
sources of difficulty. Using data-capture technologies to reduce costs (e.g.,
Bennett, 1993, on AI scoring). Capitalizing on statistical design and analysis
concepts to increase efficiencies (e.g., Shoemaker, 1975, on matrix sampling
for assessing groups rather than individuals). Finally, working smarter
means recognizing the role of conditionality in inference.

The role of conditionality in inference. The "traits" that achievement tests
purportedly measure, such as "mathematical ability," "reading level," or
"physics achievement," do not exist per se. While test scores do tell us
something about what students know and can do, any assessment task
stimulates a unique constellation of knowledge, skill, strategies, and
motivation within each examinee. To some extent in any assessment
comprising multiple tasks, what is reiatively hard for some students is
relatively easy for others, depending on the degree to which the tasks relate to
the knowledge structures that students have, each in their own way,
constructed. From the behavioral perspective, this is "noise," or measurement
error, leading to low reliability or low generalizability under CTT, low item
discrimination parameters or low person-separation indices under IRT. It
obscures what one is interested in under that perspective, namely, locating
people along a single dimension as to a general behavioral tendency; tasks that
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don't line up people in the same way are less informative than ones that do.
(Hence the so-called "low generalizability" phenomenon often associated with

performance assessment; Shavelson et al., 1992.)

These interactions are fully expected from the cognitive perspective, since

knowledge typically develops first in context, In is extended and
decontextualized so it can be applies more broadly to other contexts. How to

handle interactions depends again on the way competence develops in the area

of interest and on purpose of assessment. The same task can reveal either
vital evidence or none at all, depending on the relationship of the information it

carries to what is known from other sources of information. The test theory of

the standard mental measurement paradigm does not addresses this principle

at the level of the tasks, but at the level of the combined test score. The greater
investment that each task demands and the more contextual knowledge it

demands, the less efficient this approach becomes. The in-depth project that
provides solid assessment information and a meaningful learning experience

for the students whose prior knowledge structures it dovetails, becomes an
unconscionable waste of time for students for whom it has no connection.

Consider, for example, a course that helps middle school students
developing their understandings of proportionality. Each student might begin

in a context with which she was personally familiar, perhaps dividing pizzas

among children or planning numbers of fish for different sized aquariums.
Early assessment would address each student's understanding of

proportionality, conditional on the context in which she was working. Having
everyone answer a question about the same context or about a randomly-
selected context would not be an effective way to gather evidence about learning
at this stage. Over the next few weeks, each student might carry out several
investigations, eventually moving to unfamiliar contexts. Now a random
sample of tasks would be a useful check on the degree to which each student,
starting from his or her own initial configuration of knowledge, had developed
a schema general enough to apply to all the contexts in the lesson. A final
project might challenge students to push proportionality concepts in contexts
they chose themselves. Judges would map performance in possibly quite
different contexts to a common framework of meaning, rating the degree to
which various aspects of understanding had been evidenced. As in the early
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assessment, inference at this higher level of competence would be again
conditional on the context in which it has been evinced.

We can now see how such an apparently straightforward term as
"difficulty" can take contradictory meanings under different paradigms. We
agree that when students respond to different assessment tasks, our
inferences should somehow "take the difficulty of the tasks into account." But
difficulty from whose point of view? The examiner's, in ignorance about the
student, or the student's? The true concern is a deeper question: Given
observations in different settings, how do we draw inferences about
competence as defined in such-and-such a way? The same data can have
different meanings under two different conceptions of competence. The word
"difficulty" may be used in each case, but to describe qualitatively different
patterns among people, skills, and performancesneither right or wrong,
both well-defined and useful within their respective universes of discourse:

For inferences about overall proficiency in a domain of prespecified
tasks, "difficulty" is defined empirically from the tester's point of view.
Under CTT, "difficulty" means the proportions of people who would
answer an item correctly. Under IRT, it means items' relative
likelihoods of correct response at different levels of overall proficiency.6
Suppose we must predict whether Mary or Charlie would correctly
answer more tasks from a domain, knowing only that Mary succeeded
on a task most people missed and Charlie succeeded on a task most
people got right. The smart money is on Mary.

From the cognitive perspective, "knowing a task's difficulty" means,
for a given student, knowing how to interpret the evidence her
performance conveys about her competence, in light of how
competence develops in the domain. This may require interpretation
in light with other information. For example, knowing the reader's
familiarity with the content of a text is important for interpreting her
behavior in terms of the ACTFL levels. Securing additional
information can be explicit, such as knowing she studied Spanish, or
implicit, such as knowing that this was the problem context she chose
(e.g., give a talk on a topic you have done research on). In light of
additional information, the same observed behavior can have different
implications for different students, while different behaviors can map
to the same conclusion.

For example, consider the two tasks, (a) What is the word for "pencil" in
Spanish? and (b) What is the word for "pencil" in Russ'an? In terms of

6 The same ideas generalize to measured responses and to ordered levels of response quality.
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specified-behavior-in-a-specified-domain, the Russian task is "more difficult"
for American college students simply because fewer know Russian than know
Spanish. A correct answer to the Russian task "is awarded more credit" than
a correct answer to its Spanish counterpart, in terms of expectations for
responses to items in the domain not yet observed. But suppose that in
learning both languages, "pencil" is frequently used (one of the 1000 most
common words) and is introduced at a similar point in classes. If the
competence of interest is "development along the ACTFL scale in a foreign
language," then the evidence for ACTFL proficiency from either item for an
examinee studying that language will be similar. The items are "equally
difficult" from this perspective.

Examples

Example 1: Integrating Cognitive and Psychometric Models to Measure
Document Literacy

Summary test scores, and factors based on them, have often been thought of as
"signs" indicating the presence of underlying, latent traits. . . . An alternative
interpretation of test scores as samples of cognitive processes and contents, and of
correlations as indicating the similarity or overlap of this sampling, is equally
justifiable and could be theoretically more useful. The evidence from cognitive
psychology suggests that test performances are comprised of complex assemblies of
component information-processing actions that are adapted to task requirements
during performance. The implication is that sign-trait interpretations of test
scores and their intercorrelations are sr.perficial summaries at best. At worst, they
have misled scientists, and the public, into thinking of fundamental, fixed entities,
measured in amounts. Whatever their practical value as summaries, for
selection, classification, certification, or program evaluation, the cognitive
psychological view is that such interpretations no longer suffice as scientific
explanations of aptitude and achievement constructs. (Snow & Lohman, 1989,
p. 317)

Snow and Lohman note that sometimes it really is useful to know how
proficient students are in certain domains of problems, as indicated by their
performance on a sample of them. But while the trait and behavioral
paradigms end with statements about tendencies in behavior, a cognitive
perspective can offer benefits even when we do use standard test theory to
gather evidence in such applications:
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Defining and structuring the domain of tasks.
Enriching the interpretation of scores.
Reducing costs and gaining efficiencies.
Improving the quality of the tasks.
Identifying students for whom the single-number score is misleading.

This section illustrates some of this potential in a line of research being
pursued by Kathy Sheehan and me. We focus here on the measure of
document literacy introduced in the Survey of Young Adult Literacy (SYAL;
Kirsch & Jungeblut, 1986). SYAL included 63 tasks designed to evoke the skills
needed to locate and use information contained in non-prose formats such as
forms, tables, charts, signs, labels, indexes, schematics and catalogs. Most of
the tasks require open-ended responses. For example, respondents were
directed to fill in a deposit slip, determine eligibility from a table of employee
benefits, and follow a set of directions to travel from one location to another
using a map. Interviewers administered the tasks to a nationally
representative sample of approximately 3,600 young adults. In addition to
information About responses to individual tasks, the survey was charged with
providing summaries of performance in the population. To this end, an IRT
model was fit, and distributions of overall proficiency in terms of an IRT
variable were produced.

An item response theory (IRT) model gives the probability that an
examinee will make a particular response to a particular test item as a
function of unobservable parameters for that examinee and that item. Our
example uses the Rasch for dichotomous items:

exp[x, ( 0 )31)1

[i + exp(0
)]

(1)

where Xj is the response to Item j (1 for right, 0 for wrong); 9 is the examinee
proficiency parameter; and pi is the difficulty parameter for Item j. Rewriting
this expression as the logarithm of the odds that the respondent would respond
correctly (denoted 13)1(0)) as opposed to incorrectly ( P 0(0)) focuses attention on
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the presumed lack of interaction between the difficulty of an item and
individual respondents:

en[P,,(0)/P,o(0)] = 0 --- /3). (2)

The IRT model, in and of itself, simply does not address the question of

why some items might be more or less difficult than others. Fitting an IRT
model is an empirical exercise, capturing and quantifying the patterns that
some people tend to answer more items corractly than others, and some items

tend to be answered correctly less often than others. The conception of
document literacy competence embodied by the IRT model is simply the
tendency to perform well in the domain of tasks.

From a cognitive perspective, what makes a task difficult for a particular

individual is the match-up between her knowledge structure and the demands

of the task. As discussed above, these match-ups can vary substantially from

one person to another for any given task. An IRT item difficulty parameter
captures only a population-level characteristic, the relative ordering of items

on the average. The summaries of the difficulties of items and the

proficiencies of persons that the IRT parameters embody miss information to

the extent that items are hard for some people and easy for others.

It is sometimes possible, nevertheless, to characterize tasks from an
expert's point of viewthat is, in terms of the knowledge, operations, and
strategy requirements, and working memory load of an ideal solution. One
may thus gain insights into the features of tasks that tend to make them
relatively easy or hard in a population of examinees. For example,
Scheuneman, Gerritz, and Embretson (1991) accounted for about 65% of the
variance in item difficulties in the Reading section of the National Teacher
Examination (NTE) with variables built around syntactic complexity, semantic
content, cognitive demand, and knowledge demand.

Scheiblechner (1972) and Fischer (1983) integrated such cognitive
information into IRT with the Linear Logistic Test Model (LLTM), which
models Rasch item difficulty parameters as linear functions of effects that
correspond to key features of items. Mislevy (1988) extended the LLTM to allow
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for variation of difficulties among items with the same key features, by
incorporating a residual term to yield

= + Ej,
k=1

(3)

where rik is the contribution of Feature k to the "difficulty" of an item, for
k=1,...,K item features; qkj is the extent to which Feature k is represented in
Item j; and Ei is a N(0,02) residual term, with (estimated) variance 2.

Sheehan and Mislevy (1990) implemented this model with item features
from Mosenthal and Kirsch's (1991) cognitive analysis of the difficulty of
document literacy tasks. Their system begins by characterizing the
information contained in documents and document task directives according
to three basic levels of organization: (a) the organizing category, (b) the specific
category, and (c) the semantic feature. Semantic features are bits of
information that belong to specific categories, which are nested within distinct
organizing categories. Specific categories can also be nested within other
specific categories; complex documents can have several levels of nested
specific categories. Using this characterization, Kirsch and Mosenthal
defined three classes of variables they expected to correlate with task difficulty:
(a) variables that characterize the length and organizational complexity of the
materials which document tasks refer to; (b) variables that characterize the
length and organizational complexity of task directives; and (c) variables that
characterize the difficulty of the task solution process. They are listed in
Table 2.

These features accounted for about 80% of the variance of the IRT task
difficulty parameters (f3). The structural complexity of material and directives
were important factors, but the highest contributions were associated with
process variables. The details of such analyses help item writers control the
difficulty of the tasks they develop. No items in this study were exceptionally
easier or harder than their modeled features would suggest. Such outliers
would direct item writers' attention to tasks that might be unexpectedly
difficult for irrelevant reasons, or unexpectedly easy because of unintended
cues.
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Table 2

Task Features Codings for the Document Literacy Model

Materials variables

(1) The number of organizing categories in the document;

(2) The number of organizing categories in the document that are embedded;

(3) The deepest level of embedding for an organizing category;

(4) The number of specific categories in the document;

(5) The number of specific categories in the document that are embedded; and

(6) The deepest level of embedding for a specific category.

Directive variables

(1) The number of organizing categories in the directive;

(2) The number of organizing categories in the directive that are embedded;

(3) The deepest level of embedding for an organizing category;

(4) The number of specific .categories in the directive;

(5) The number of specific categories in the directive that are embedded; and

(6) The deepest level of embedding for a specific category.

Process variables

(1) Degree of Correspondence. This variable is scored on a one-to-five integer scale. It
indicates how explicitly the information requested in the directive or question matches
the corresponding information in the text, with higher values indicating less explicit
correspondence and therefore, more difficulty. For example, tasks requiring a single
literal match are scored one, tasks requiring an inferential text-based match are scored
three, and tasks requiring matches based on specialized prior knowledge are scored
five.

(2) Type of Information. This variable concerns the type and number of restrictive
conditions that must be held in mind when identifying and matching features. Lower
values on a one-to-five scale signify less restrictive conditions.

(3) Plausibility of Distractors. Document tasks typically require the examinee to skim an
entire document to locate a piece of requested information. Since any piece of
information in the document could be interpreted as the requested information,
document task "distractors" include all pieces of information embedded in the
document. The degree of plausibility of a distractor is measured by the extent to which the
information embedded in the document shares semantic information with the correct
answer to the question or directive. This variable is scored on a one-to-five scale, with
lower numbers indicating less shared semantic information and higher numbers
indicating more.

Note. Based on the analysis of Mosenthal and Kirsch (1991).
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The location of items along the Rasch IRT proficiency scale is directly
related to the measures of individuals' proficiencies: items' /3 values indicate
the probabilities of success from people at given levels of 9. Modeling the
locations of tasks with particular configurations of processing requirements
on this scale indicates what a person at a given level of IRT proficiency might
be expected to do in terms of requirements of tasksa probabilistic link
between empirical IRT summaries of observed response arid cognitive
explanations. While the IRT 9 still only captures overall competence, this
connection adds a layer of meaning to score interpretation.

Recall, however, that this modeling is just "on the average." It only
relates the cognitive model to an analytic model that posits the items line up in
the same way for everyone. To some degree, what is easy for one person will be
hard for another. This interaction, missing from the IRT summary, can be
accessed through analyses of residuals from the model's fit. The same
processing-feature structure can be used to examine unexpected response
patterns of individual respondents, complementing overall-proficiency 0
estimates with diagnostic information.

We are now exploring the extent to which cognitive requirements (and
other sources of information about tasks) provide information about IRT item
parameters in a variety of applications. Even if the IRT paradigm is sufficient
for summarizing and monitoring purposes, exploiting information from the
cognitive perspective can reduce or even eliminate pretesting meant to
estimate item parameters (Mislevy, Sheehan, & Wingersky, 1993). This opens
the door to using IRT with tasks created on the spot with generative
algorithms founded upon cognitive processing models (Bejar, 1993; Irvine,
Dann, & Anderson, in press).

Example 2: AP Studio Art Portfolios

As compared to measurement, assessment is inevitably involved with questions of
what is of value, rather than simple correctness. Questions of value require entry
and discussion. In this light, assessment is not a matter for outside experts to
design; rather, it is an episode in which students and teachers might learn, through
reflection and debate, about the standards of good work and the rules of evidence.
(Wolf, Bixby, Glenn, & Gardner, 1991, pp. 51-52)
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Performance assessment commands attention partly because it provides
direct evidence about p '-oductive aspects of knowledge, and partly because of its

potential impact on educational practice"What you test is what you get'
(Resnick & Resnick, 1989). A distinguishing characteristic of performance
assessment is that the student's response is no longer simply and
unambiguously classified as right or wrong; judgment is required after the
response has been made. Performance assessment raises a' new set of
inferential issues, some of which have counterparts in multiple - choice testing,
but others for which we have much experience. Table 3 lists some of these
issues.? Many highlight dimensions along which performance assessment
systems and scoring systems vary. We need to learn more about the
consequences, costs, characteristics, advantages, type of evidence provided,
and so on, of these alternatives, so that wi can construct performance
assessment systems that provide the right kind al' evidence for a given purpose,
with the required weight and coverage of evidence, expending the right level of
resources.

In most performance assessments, judgment is the crucial link in the
chain of reasoning from performance to inference about students. As with our
opening example of directed graph for checker games, each of several tasks
may, in and of its6'f, stimulate the kind of creative or problem-solving thinking
we are interested into no avail unless we can distill from the performance
the critical evidence for the targeted inferences. It is thus essential to establish
a common framework of meaning among readers, shared standards for
recognizing what is important in performance and mapping it into a
summarizing structure. It is no less essential that the same framework of
meaning be common to students and teachers as well. Quite aside from the
important issue of fairnessand students should know the criteria by which
they will be evaluatedlearning the framework for evaluation can be an
essential part of learning what a course is supposed to teach, namely, the
characteristics of valued work (Wolf, Bixby, Glenn, & Gardner, 1991). The
instructional value of an evaluation scheme appears positively in cost/benefit
equation, along with more familiar characteristics such as inter-reader
agreement (Frederiksen & Collins, 1989).

7 This listing was prepared by Drew Gitomer, Carol Myford, and myself.
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Table 3

Some Inferential Issues in Performance Assessment

What is the student model? At one extreme, we can have a student model in performance
assessment quite analogous to that of multiple-choice assessment: We'd set up categories, and
model the student in terms of tendencies to behave in those ways across contexts.
Alternatively, we could have judges interpret behaviors on a more abstract scale, such as the
"levels of developing expertise in a content area." An example of the latter is the American
Council of Teachers of Foreign Languages (ACTFL) generic rubrics for reading, speaking,
listening, and writing, based on a functional model of language development.

High inference vs. low inference scoring. Low inference scoring systems summarize
behaviors into easily agreed-upon categories, while high inference systems summarize
observations in terms of more abstractly defined qualities. We see a trade-off in teacher
assessment: judges agree more closely in identifying behaviors, but feel that high-inference
interpretations in terms of "teaching-related traits" or "characteristics of teaching
interactions" are more closely tied to conceptions of competence.

Generalizability. Performance assessment tasks typically take more time than, say,
multiple-choice items. There is a tradeoff between the depth of information we can obtain in a
given context, and how broadly we can look at different contexts. What types of skills and
purposes call for depth? For some purposes, should we construct assessments that evoke a
combination of types of evidence, in order to learn something about depth and breadth?

Norm-referenced vs. criterion-referenced scoring. An example: In ARTS PROPEL, 8th- and
12th-graders' writing portfolios are rated on the same 1-5 scales for a variety of
characteristics. Should ratings of 8th-graders' work take into account that they are 8th
graders, so the same portfolio would receive lower ratings if were produced by a 12th grader?
Or should the meanings of the rating points be identical over grades? Both are options, and
each focuses information better for different purposes. One conclusion is, though, that all of the
judges should agree on how they are using the scale in this respect.

How can the meanings of scoring systems be communicated? Communication is required
among judges, certainly, for reliability; it seems equally important to communicate criteria to
students as well. The standard setting processes the College Board's Advanced Placement
(AP) program use to train judges works back and forth between examples and verbal rubrics.
Are different approaches better suited to different settings and different purposes? How about
when the very process of learning to understand evaluation criteria is an essential part of
developing competence in the domain? Does this weigh in favor of scoring systems with
educational pluses, even if they entail less agreement among raters?

Local vs. central scoring. Most current models have a core of central judges. To handle
portfolios from tens of thousands of students, California envisages local teacher ratings,
perhaps within a system of cross-validation and moderation. What tradeoffs are involved
with these models? What other models might there be? How do we match characteristics of
models with purposes, resources, and systemic consequences?

Product vs. process. It is often easier to judge products of performance assessment tasks that
yield products, than to judge the processes by which they were produced. For what purposes,
with what kinds of student models, should we judge process, and how do we best do so?

When do we need to know context andfor intentions? When is it necessary, to evaluate the
evidence a performance conveys, to take context into account? Context can include student
background as to education or culture. Context can be internal to the student as well: How does
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Table 3 (continued)

the student see the task, and how is he or she trying to accomplish it? The ACTFL rubrics
distinguish between texts familiar and unfamiliar to the examinee, and we need to know about
the relationship between the task and the individual student in order to draw inferences from
behavior to levels on the ACTFL scales.

What are the implications of choice? Assessing skills that develop and are evidenced only in
context becomes tricky when the context varies from student to student. Often students
themselves possess insight into the contexts that allow them to demonstrate what they can do.
Doctoral dissertations are an example. We miss the point if we require all students to write
dissertations on the same topic, or assign topics at random. We need to develop inferential
models to deal with evidence from performances in which students have varying kinds and
degrees of choice about what they will do.

The observer as a filter. Judges, as unique individuals, will see and interpret performances
in ways influenced by their own history, experiences, and values. How do we maximize the
extent to which they agree on what to look for and how to interpret it? How do we help them
understand their perspectives, and the impact on the judging processes? By what statistical
methods can we detect unusual judge/performance interactions?

Characteristics of different type of rubrics. Rubrics can be described as holistic, analytic, or
interpretive. They can be genericmeant to be used with any of a family of tasksor task
specific. What kinds of rubrics are suited to different purposes and situations? What are
tradeoffs as far as consistency, ease of learning, etc.? One might choose a generic rubric for
an assessment meant to span over time and across many tasks, for example, in preference to
more-easily-agreed-upon specific rubrics that provide evidence that is hard to connect.

Statistical machinery for analysis, summarization, and quality control. Too many
performance/judgment interactions will take place in most systems for a single person to
observe and evaluate. A mechanism is needed to bring together summary information for the
purposes of summarizing key aspects of the operation of the system as a whole, highlighting
aspects which might be improved by changing the system or the judge training, and flagging
anomalies in specific performance/judgment interactions that need attention. Traditional
generalizability analyses provide some of this, but are not adequate for all needs and purposes.
Latent variable mode's that model individual task and judge effects (e.g., Linacre'a (1989)
FACETS analysis) are a premising route.

Linking results from different tasks. Ties in with the aforementioned issues of
generalizability, statistical machinery, the nature of rubrics, and judge training. If different
students respond to different tasks at different points in time, how do we interpret evidence in a
common frame of reference? E.g., a co.imon generally-phrased rubric, with alignment
largely through the mechanism of shared meanings, as opposed to task-specific rubrics,
linked through statistical mechanisms and overlapping data.

Implications of assessment choices for the system. Practically all of the choices discussed
above have implications for the educational system in which the performance assessment is
taking place. They may have more or less impact. for better or worse, on students, teachers,
administrators, parents, and society. What are they, and how do we evaluate them? To what
degrees and in which contexts do they weigh into cost/benefit analyses of developing a
performance assessment system?

Note. Based on an internal memorandum by Drew Gitomer, Carol Myford, and Robert Mislevy.
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Carol Myford and I are working with the College Board's Advanced
Placement (AP) Studio Art program to explore issues in monitoring and
improving inference in performance assessment. Advanced Placement
assessments are meant to determine whether high school students exhibit
knowledge and skills commensurate with first-year college courses in a
content area. AP Studio Art is one of the nation's longest extant portfolio
rating systems. Students develop works during the course of the year, through
which they demonstrate the knowledge and skills described in the AP Studio
Art materials. The portfolios are rated centrally by artist/educators at the end
of the year, using standards sot in general terms and monitored by the AP Art
advisory committee. At a "standards setting session," the chief faculty
consultant and table leaders select portfolios to exemplify the committee's
standards. The full team of about 25 readers spends the equivalent of one day
of the week-long scoring session examining, discussing, and practicing with
these and other examples to establish a common framework of meaning.
Aspects of the assessment include ratings on three distinct sections of each
portfolio, multiple ratings of all sections for all students, and virtually
unbridled student choice in demonstrating their capabilities and creative
problem-solving skills, within the guidelines set forth for the sections.

Students may elect to participate in two types of portfolio assessment in
AP Studio Art, Drawing and General Art. We address General Art. Among
the requirements for each portfolio are four works submitted in their original
form; eight slides that focus on color and design, eight slides of drawings, and
four of three-dimensional work; and up to 20 slides, a film, or a videotape
illustrating a concentration on a student-selected theme. These requirements
ensure that evidence about key aspects of artistic development will be evoked
although the wide latitude of choice of medium and expression virtually
guarantees that the particular form the evidence takes will vary considerably
from one student to another. We have focused on Section A, the four works
submitted in original form to be rated as to "overall quality," and Section B, the
student's "concentration," the up-to-20 works mentioned above and a
paragraph or two describing the student's goals, intentions, influences, and
other factors that help explain the series of works.

The AP Studio Art portfolio assessment reveals the contrast between
"standardized" and "nonstandardized" assessments as a false dichotomy, a
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hindrance as we develop broader ranges of assessment methodologies. Any
assessment might be implemented in countless ways; there could be
differences, small or large, as to tasks, administration conditions, degree of
student choice, availability of resources, typeface, identity and number of
judges, and so on. Standardizing an aspect of an assessment means limiting
the variation that students encounter in that aspect as a way of sharpening the
evidence about certain inferences from what is observed, while perhaps
simultaneously reducing evidence about others. Did Duanli score higher than
Marilyn because she had more time, easier questions, or a lenient grader?
Standardizing timing, task snecifications, and rating criteria reduce the
chance that this was so; it simultaneously reduces information about the
differential settings in which they might do best. As in AP Studio Art,
assessing students' developing competence when there is neither a single path
toward "better" nor a fixed and final definition of "best" may require different
kinds of evidence from different students (Lesh, Lamon, Lester, & Behr, 1992,
p. 407). Questions about which aspects of an assessment to standardize to
what degrees arise under all purposes and modes of testing, and under all
views of competence. Answers depend on the evidential value of the
observations in view of the purposes of the assessment, the conception of
competence, and the requisite resource demands.

Our study uses two distinct perspectives, "statistical" and "naturalistic,"
which we believe are required in tandem to analyze and improve a system the
size of AP Studio Artcurrently some 7000 portfolios x 5 rating areas in each
portfolio x 2 or 3 ratings for each, totaling over 50,000 judgments! The
statistical component reflects recent thinking about quality control in industry
(e.g., Deming, 1980). One begins by establishing a statistical framework for
analyzing data, to quantify typical and expected sources of variation (in our
case, students, readers, and sections of the portfolios). Variability is present in
any system; within a statistical framework, typical ranges can be modeled.
For a system that is "under statistical control," sources of variability are
identified and observations tend to follow regular patterns. Modeling these
patterns is useful first because it quantifies the uncertainty for final inferences
(in our case, students' final ratings on a 1-5 scale) associated with steps or
aspects of the process, which can be monitored when the system is modified.
Secondly, the framework highlights observations that lie outside the usual
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ranges of variability, often due to special circumstances that can be
accommodated within the existing system or which may suggest changes to
the system. It is simply impossible for any one individual to become intimately
familiar with all 50,000 separate rating processes. This framework helps
focus attention where it is most needed.

For the statistical component of our project, we are using Linacre's (1989)
FACETS model, a generalization of Masters' (1982) PARTIAL CREDIT item
response theory model. FACETS provides a statistical model for ordered-
category scores, as functions of parameters for examinees, readers, tasks, and
other "facets" of the observation setting that may be relevant, such as reader
background and time of day. This model extends the regularity patterns
embodied in IRT beyond the "tendency for specified behavior on specified tasks"
paradigm in the following sense: Whereas IRT was invented to model
regularities in examinees' overt behavior in contexts considered invariant over
people, FACETS uses similar mathematical structures to model regularities
in readers' application of common standards to possibly quite different
behaviors in different contexts. In 1992, one student's concentration focused
on "angularity in ceramics," while another's dealt with an "application of
techniques from traditional oriental landscapes to contemporary themes." It
would be easier to compare students' performances if everyone were required
to work with angularity in ceramics, but that would provide no evidence about
a crucial aspect of development as an artist, namely conceptualizing and
confronting one's own challenges.8

Mathematically, the FACETS model is an extension of the simple Rasch
model shown in Equation 2. The logarithm of the odds that a portfolio section
with a "true" measure of 6 will receive from Judge j a rating in Category k as
opposed to Category k+1 on a scale with K ordered categories is given as

8 If we were to randomly assign multiple concentrations to each student, we could learn about
the interrelationships among them (in principleremember that it takes a whole year to do
just one concentration!). They might well be quite modest, indicating a "low generalizability"
problem from the mental measurement perspective in which the target inference would be how
one would perform on the domain of potential concentrations as a whole. But the point is that
how well the ceramics student would have done with oriental landscapes is irrelevant to the
inference we are really interested in. What really matters, and what we must check the
quality of, is our inference about the more abstractly defined qualities that should be evinced in
any student's chosen concentration.
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£n[Pi.k J.k+1(19)1= e- + (4)

where 4k is the "harshness" parameter associated with Judge j and 1. for
s=1,...,K, is a parameter indicating the relative probability of a rating in
Category s as opposed to Category s-1. An analysis of ratings of concentrations
only would have no repeated observations of students at all, but would focus on
patterns among the ratings of different readers. One could, by extending the
model further, explore whether students' performances across the sections of
their portfolios did function as repeated observations of a single variable; that
is, whether students tended to score well or poorly across the board. Then the
FACETS model would include an additional term for portfolio section, say nh:

th[Pki jc(0)/P ki.k+)(0)1= 9 rk (5)

In essence, FACETS fits a main-effects model to log-odds of ratings.
Variation among portfolios, as a main effect, is anticipated. These are
estimates of portfolio "measures," or estimates of values disentangled from the
effects of specific readers. Variation among readers, as a main effect, is not
desirable. It indicates that some readers tend to be more harsh or lenient than
others, no matter which portfolio they are rating. The uncertainty this entails
for final ratings can be reduced by improving feedback on the application of
standards to individual readers or in training sessions, or by adjusting scores
for individual readers. We found little variation of this type in the 1992 Studio
Art data, alleviating concerns about systematic differences between readers
from secondary and higher-education settings, with more or less experience
as an art educator, or with more or less experience as an AP reader.
Variation at the level of readers-by-portfolios, as indicated by residuals from
the main-effects model, is also undesirable but cannot be adjusted away by
statistical means when a reader rates a section only once. It may be reduced
by such means as improving reader training, sharpening the definition of
standards, or distinguishing aspects that should be rated separately.
Presaging the "naturalistic" component of our project, FACETS highlights
particular reader/portfolio combinations that are especially unusual in view of
the main effects.
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Statistical analyses can tell us where to focus attention, but they can't tell
us what to look for. These cases are unusual precisely because the expected
causes of variation do not explain them. For example, a harsh reader's rating
of 1 on a portfolio that receives l's and 2's from other readers is not surprising;
a lenient reader's rating of 1 for a portfolio that receives mostly 3's and 4's is.
Further insight requires information outside the statistical framework, to seek
new hypotheses for previously unrecognized factors. Such investigations
constitute the "naturalistic" aspect of our project. We identified 9 portfolios
each for Section A and Section B that received highly discrepant ratings from
two readers. (Currently, all such occurrences are identified and rectified by a
final rating from the chief faculty consultant.) We discussed each of these
portfolios with two experienced readers to gain insights into the judging
process in general, and into the features that made rating these particular
portfolios difficult. Table 4 samples excerpts from these discussions. Several
avenues for possible exploration were suggested, including the following:
continued development of verbal rubrics, particularly as a learning tool for
new readers; having students write statements for color and design sections,
as for concentrations, to help readers understand the challenges the students
were attacking; and refining directives and providing additional examples for
Section B to clarify to both students and readers the interplay between the
written and productive aspects of a concentration.

The attractive features of performance assessment include the potential
for instructional value and the elicitation of direct evidence about constructive
aspects of knowledge. Outstanding concerns include the weight of evidence it
provides and the question of accountability. The approach described above
addresses aspects of both concerns, for only by working back and forth between
statistical and naturalistic analyses can a common framework of meaning be
established, monitored, and refined over time. This study illustrates one
approach, using ideas originally developed under the mental measurement
paradigm but extended to a cognitive/developmental paradigm, to characterize
the weight of evidence about target inferences and to provide information to
increase the weight of evidence. By making the materials and results of such
a process public, one can assure parents and legislators of the meaning and
value of the work such assessments evoke, and of the quality of the processes by
which evidence about students' competence is inferred.
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Table 4

Excerpts From Discussions With. AP Studio Art Judges

A hypothesis for discrepant ratings for a concentration about angularity in ceramics

It: What we've done is selected portfolios that are problematic, and this is one of them. What do you
guess is problematic about this?

J: I think it's problematic . . . looking at something three dimensional in a two-dimensional format and not
being able to see any of the original work coming in that is three dimensional. Especially, with some of
them, you're not seeing more than one angle. . . . Now, we did have a problem with one today in the
gymnasium where there were photographs of three dimensional of four potsthey weren't any of
these. They were beautiful potsthe photographs weren'tbut that could have been a 1 and a 4.

On the nature of the task of rating AP portfolios

R: See, the portfolio doesn't work unless you have the criteria set before, because otherwise you just
become judges. And a judge goes on, if it's an open show, he picks the things he likes with only his
criteria. But if the criteria are set for the portfolio ahead of time, we have to subjugate thatour
criteria. And come in, and the criteria for this is this: By the end of a college freshman year in a college
entrance program, is this the work that would come out? And it wouldn't be high level if it were to
come out. There would be statements like this. This one I don't think would come out. I think the
drawing in here is too weak to come out. . . .

S: . . . When there's a discrepancy, when we're reviewing like openly here at the table, and once in a while
someone will say, "Well, gee, I gave that a 2," and someone else will say, "It's a 4," and we'll talk it out,
and then one or the other person begins to see that their own maybe personal opinion has pervaded
their judgment in such a way that they've been persuaded by something other than this kind of
ultimate sense of . . .

R: It isn't like voting.

S: It isn't like voting, but then suddenly the light has been shined on that part of themselves that might be
slightly tainted or biased by their preference for or against something, and that's when you see
someone sort of become persuaded that they may have been biased in their opinion. Not that they've
changed all they felt about it, but they can now raise themselves up to less self-involvedstep back
and see it more clearly having heard other people's verbalization. . . .

R: And it's usually bringing back. And it isn't making them change their mind about the way they feel,
but it's usually bringing them back to f o c u s on what this . .

Dealing with "uneven" sections

E: It's always troublesome, I think, when there's weak pieces and then some very, very strong pieces, you
know. I just really sort of sort them out and try to get an overall idea of what the student's doing. I sort
of wonder why some of them are in there. It's a perennial question.

R: But then you have to weigh the other body of work, and if it warrants consideration against the weak
pieces, then it can negate the effect of the weak pieces.
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Table 4 (continued)

On rating works on topics or media one personally reacts to negatively

B: Something that you're, in a sense, sick of seeing, or something that you maybe have been taught is not
proper subject matter or style, or whatever. With the kind of open arena that we have for art today, a
true artistic statement can be made in any number of ways, so I try to let myself be open and aware of
what this person might be trying to do. And if they are doing it well within that certain style, whether
it's something I quote "approve of or not. And, well for instance, one of the styles that comes up
frequently in these ratings is a comic book, a cartoon style, because the males in this age bracket are
really infatuated with drawing super heroes or metal mania, or something like that. So you see a lot of
it. I tend to spend more time looking at those than I do at some of the other portfolios. Not most of
them, but then some of the others are kind of questionable.

J: You try to bring all your aesthetics.

B: And I say, "Are they using the space well? Are they being inventive with how they're doing this, or are
they merely mimicking somebody and not doing a very good job of it?"

J: You almost go down a whole checklist of descriptorsline, space, color, texture.

B: I kind of drill myself. I put myself under the spot light.

J: And how do those apply to the rhythm, the balance, the content? Is there harmony, unity here?

R: So we're back to the formal stuff again?

J: Right, but I think that's what we have to rely on are those formal elements and principles.

Dealing with "uneven" sections

E: . . . If half of them are excellent and the other half are not, how come? If they did four pieces of art
work, how can two be so great and the other two they selected. We don't know. Did the teacher give
them some bad advice? Did the teacher let the student just do it on his own? I mean, I've had
experiences where the student just loved this piece of work, and it was not that good. But they just
loved it, loved it. And when push came to shove, you know, I said my advice is this but you're the one
that's paying $65.00, and you're the one that's going to put those four in there. And I want it to be, you
know, you feel that whatever your grade was is the one that you really earned because that's what you
wanted in there. And that's the way the final decision needs to go.

P: I think when you have four pieces and one of them is truly bad, it's easy not to see that piece. The other
three carry the four. I think it's hard when you've got two and two, and sometimes even harder where
you have one that just really knocks your socks off, and then you have three that you think, "I don't
think this same person did this."

E: That's when you want that phone again.

13: Yeah, you want to say, "Who? What? Who? How?" . . . [But] I go with the benefit of the doubt
towards the student. Say I have one that's outstanding and three that are really, really horrible. To
me, that is a good, strong, high 2. Other people might disagree, but we are here for the kids. That's
that teacher behind me. I go for the student. I tend to think that he got poor advice somewhere along
the line.
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Example 3: Mixed Number Subtraction

The form of the data in this final example is familiarright/wrong
responses to open-ended mixed-number subtraction problemsbut inferences
are carried out in terms of a more complex student model suggested by
cognitive analyses. The model is aimed at the level of short-term instructional
guidance. It concerns which of two strategies students apply to problems, and
whether they can carry out the procedures that problems require under those
strategies. While competence in domains like this can be modeled at a much
finer grain-size (e.g., VanLehn's 1990 analysis of whole-number subtraction),
the model in this example does incorporate the fact that the "difficulty" of an
item depends on the strategy a student employs. Rather than discarding this
interaction as noise, as CTT or IRT would, our model exploits it as a source of
evidence about a student's strategy usage.

The data and the cognitive analysis upon which the student model is
grounded are due to Kikumi Tatsuoka (1987, 1990). The middle-school students
she studied characteristically solved mixed-number subtraction problems
using one of two strategies:

Method A:

Method B:

Convert mixed numbers to improper fractions, subtract, then
reduce if necessary.

Separate mixed numbers into whole number and fractional parts,
subtract as two subproblems, borrowing one from minuend whole
number if necessary, then reduce if necessary.

We analyzed 530 students' responses to 15 items. As shown in Table 5,
each item was characterized in terms of which of seven subprocedures were
required to solve it with Method A and which were required to solve it with
Method B. The student model consists of a variable for which strategy a
student uses, and which of the seven subprocedures he is able to apply. The
structure connecting the unobservable parameters of the student model and
the observable responses is that ideally, a student using Method X (A or B, as
appropriate to that student) would correctly answer items that under that
strategy require only subprocedures the student has at his disposal (see
Falmagne, 1989; Haertel & Wiley, 1993; Tatsuoka, 1990). However, sometimes
students miss items even under these conditions (false negatives), and
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sometimes they answer items correctly when they don't possess the requisite
subprocedures by other, possibly faulty, strategies (false positives). The
connection between observations and student-model variables is thus
probabilistic rather than deterministic.

Inference in complex networks of interdependent variables is a
burgeoning topic in statistical research, spurred by applications in such
diverse areas as forecasting, pedigree analysis, troubleshooting, and medical
diagnosis (e.g., Lauritzen & Spiegelhalter, 1988; Pearl, 1988). Inference
networks exploit conditional independence relationships. Current interest
centers on obtaining the distributions of selected variables conditional on
observed values of other variables, such as likely characteristics of children of
selected animals given characteristics of their ancestors, or probabilities of
disease states given symptoms and test results. If the topology of the
interconnections is favorable, such calculations can be carried out in real time
in large systems by means of strictly local operations on small subsets of
interrelated variables ("cliques") and their intersections. Lauritzen and
Spiegelhalter (1988), Pearl (1988), and Shafer and Shenoy (1988) discuss
updating strategies, a kind of generalization of Bayes theorem.9 Be land and
Mislevy (1992), Martin and VanLehn (in press), Mislevy (in press), and
Mislevy, Yamamoto, and Anacker (1992) show how inference networks can be
applied to problems in cognitive diagnosis.

Figure 2 depicts the structural relationships in an inference network for
Method B only. Nodes represent variables, and arrows represent dependence
relationships. The joint probability distribution of all variables can be
represented as the product of conditional probabilities, with a factor for each
variable's conditional probability density given its "parents." Five nodes
represent basic subprocedures that a student who uses Method B needs to solve
various kinds of items. Conjunctive nodes, such as "Skills 1 & 2," represent, for
example, either having or not having both Skill 1 and Skill 2. Each subtraction
item is the "child" of a node representing the minimal conjunction of skills

9 Calculations for the present example were carried out with Andersen, Jensen, Olesen, and
Jensen's (1989) HUGIN program and Noetic System's (1991) ERGO.
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needed to solve it with Method B. The relationship between such a node and an

item incorporates false positive and false negative probabilities. Cognitive

theory inspired the structure .of this network; the numerical values of
conditional probability relationships were approximated with results from
Tatsuoka's (1983) "rule space" analysis of the data, with only students
classified as Method B users. (Duanli Yan and I are working on estimating
conditional probabilities in this network with the EM algorithm.)

Figure 3 depicts base rate probabilities of skill possession and item
percents-correct, or the state of knowledge one would have about a student we
know uses Method B before observing any item responses. Figure 4 shows how

beliefs change after observing mostly correct answers to items that don't
require Skill 2, but incorrect answers to most of those that do. The updated
probabilities for the five skills shown in Table 6 show substantial shifts away

from the base-rate, toward the belief that the student commands Skills 1, 3, 4,

and possibly 5, but almost certainly not Skill 2.

We built a similar network for Method A. Figure 5 incorporates it and the
Method B network into a single network that is appropriate if we don't know

which strategy a student uses. Each item now has three parents: minimally

sufficient sets of subprocedures under Method A and under Method B, and the

new node "Is the student using Method A or Method B?" An item like 74. - 5 4. is

hard under Method A but easy under Method B; an item like 2 .15. -14 is just the

opposite. A response vector with most of the first kind of items right and those

of the second kind wrong shifts belief toward Method B. The opposite pattern
shifts belief toward the use of Method A. A pattern with mostly wrong
answers gives posterior probabilities for Method A and Method B that are about
the same as the base rates, but low probabilities for possessing any of the skills.
We haven't learned much about which strategy such a student is using, but we
do have evidence that he isn't employing subprocedure skills effectively.
Similarly, a pattern with mostly right answers again gives posterior
probabilities for Method A and Method B that are about the same as the base
rates, but high probabilities for possessing all of the skills. Results such as
these could be used to guide instructional decisions.
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Table 6

Prior and Posterior Probabilities of Subprocedure Profile

Skills) Prior probability Posterior probability

1 .883 .999

2 .618 .056

3 .937 .995

4 .406 .702

5 .355 .561

1 & 2 .585 .056

1 & 3 .853 .994

1, 3, & 4 .392 .702

1, 2, 3, & 4 .335 .007

1, 3, 4, & 5 .223 .492

1, 2, 3, 4, & 5 .200 .003

To connect this example with the criterion-referenced testing (CRT)
movement of the 1960s mentioned above, the groups of items with a common
skill-set parent in Figure 2 could be viewed as a sample of tasks from a
narrowly-defined behavioral domain, and probabilities of possessing the skill-
set might be viewed as a tendency to perform well in that domain. The present
model goes beyond the CRT framework in two ways. First, the
interrelationships among such mini-domains through the delineations of
procedure requirements within and across strategies provides the formerly
missing connection between competence in the mini-domains and how
competence develops: It develops as students learn skills and strategies that
cut across mini-domains in determinable ways. Secondly, the groupings of
items that are equivalent under Method A are different from the groupings
based on Method B. Recognizing that the salient features of an item depend on
how a student is approaching it takes a step toward addressing Thompson's
(1982) question, "What can this person be thinking so that his actions make
sense from his perspective?"

r7s 6
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This example could be extended in many ways, both as to the nature of the
observations and the nature of the student model. With the present student
model, one might explore additional sources of evidence about strategy use:
monitoring response times, tracing solution steps, or simply asking the
students to describe their solutions! Each has tradeoffs in terms of cost and
evidential value, and each could be sensible in some applications but not
others. An important extension of the student model would be to allow for
strategy switching (Kyllonen, Lohman, & Snow, 1984). Adults often decide
whether to use Method A or Method B for a given item only after gauging
which strategy would be easier to apply. The variables in this more complex
student model would express the tendencies of a student to employ different
strategies under different conditions. Students would then be mixtures in and
of themselves, with "always use Method A" and "always use Method B" as
extreme cases. Mixture problems are notoriously hard statistical problems;
carrying out inference in the context of this more ambitious student model
would certainly require the richer information mentioned above. Anne Be land
and I (Be land & Mislevy, 1992) tackled this problem in the domain of
proportional reasoning balance-beam tasks. We modeled students in terms of
neo-Piagetian developmental stages based on the availability of certain
concepts that could be fashioned into strategies for different kinds of tasks.
The data for inferring students' stages were their explanations of the
strategies they employed on tasks with various structures.

Inference network models can play at least two important roles in
educational assessment. First is the use exemplified above, short term
instructional guidance, as in an intelligent tutoring system. Drew Gitomer
and I are implementing probability-based inference to update the student
model in an ITS for trouble-shooting an aircraft hydraulics system (Gitomer,
Steinberg, & Mislevy, in press). Second is mapping the evidential structure of
observations and student knowledge structures (Haertel, 1989; Haertel &
Wiley, 1993). As both models and observational contexts become more
complex, we must carefully sort out the informational qualities of assessment
tasks to use them effectively.

)8
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Conclusion

Civil engineers designed bridges in 1893 using Euclid's geometry and

Newton's laws of mechanics, in the prevailing belief that the patterns they

embodied were the "true" description the universe. The variables were "the
universe's" variables, with applications departing from truth only in terms of

simplifications and measurement errors. The quantum and relativistic
revolutions shattered this view. Yet engineers today design bridges using
essentially the same formulas. Has anything changed?

The equations may be the same, but the conceptual framework within

which they are comprehended is decidedly not. Today they are now viewed as
engineering tools, justified to the extent that they capture patterns in nature
well enough to solve the problem at hand, even as judged by the standards of
the new paradigm. And while some engineers continue to attack problems
that first arose in previous paradigms with a toolkit that includes methods
developed under those paradigms, others attack problems that could not even
be conceived last centurysuperconductivity, microchip design, and fusion,
as examples. These problems demand a toolkit founded upon the concepts,
variables, and relationships of new paradigms; some familiar tools, albeit
reconceived, others totally new.

I see the analogous multiple paths of progress for educational test theory,

to support inference and decision making from the perspective of
contemporary psychology. Those of us in test theory must work with educators
and researchers in learning areas to develop models that express key aspects
of developing competence, and inferential methodologies that support
defensible and cost-effective data-gathering and interpretation in practical
problems. As the bridge-building analogy suggests, methodological tools
developed under the trait and behavioral paradigms, properly reconceived, will
serve this purposes in some applications; new tools will be needed for others.
Clearly there is a lot of work to do. There are many directions to move beyond
the simple psychological models and data types of familiar test theory, each
presenting its own challenges. If we view ourselves as specialists in evidence
and inference in school learning problems, as cast in psychological
frameworks that suit those problems, clearly we can help.
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