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Abstract

Metaphorical reasoning explains how people can interpret abstract representations through a

complex activity and then apply them to new problems. In particular, metaphors can facilitate both

conceptual understanding and problem solving by a) intuitively justifying mathematical operations,

b) integrating mathematical knowledge, c) enhancing the computational environment, and d)

improving recall. My empirical analysis examined audiotaped interviews of twelve novice middle

school students and five expert masters graduates solving three tasks involving negadve numbers.

Through a variety of spatial and quantity metaphors, these students reasoned metaphorically not

only to understand and solve these problems but also to evaluate and justify their solutions.

Experts articulated more metaphors and reasoned with them seixtively. In contrast, novices

employed metaphorical reasoning less skillfully, but they used it more frequently.
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Metaphorical Reasoning in Mathematics:

Experts and Novices Solving Problems with Negative Numbers

Students who believe mathematics is full of meaningless symbols unrelated to daily life

have a historical precedent set by the distinguished logician, Augustus de Morgan (1898). He

wrote:

The imaginary expressions and the negative expression (-b) have this resemblance, that

either of them occurring as the solution of a problem indicates some inconsistency or

absurdity. As far as real meaning is concerned, both are equally imaginary, since 0-b is as

inconceivable as -\ (p. 73).

de Morgan an-lhis contemporaries had a consistent set of rules for arithmetic operations with

negative numbers, so he had the necessary algorithmic knowledge to solve problems (Boyer,

1991; Crowley & Dunn, 1985). However, de Morgan lacked an interpretive framework in which

negative numbers were meaningful. Many researchers have focused on the algorithmic rules and

the notation used for manipulating negative numbers (Musser, 1972; Tatsuoka, 1984; Tatsuoka,

Birenbaum & Arnold, 1989; van Engen, 1972), but few researchers have analyzed subjects'

conceptual understanding.' In contrast, this study examines, in fine grained detail, experts and

novices solving a variety of problems by metaphorically imposing meaning on negative numbers.

This study addresses three central questions. What contribution does metaphorical

reasoning offer to mathematical development? What tyt;i3s of metaphors do people employ to

solve problems involving negative numbers? And how do subjects reason metaphorically?

This paper begins with a theoretical discussion of metaphorical reasoning. Next, the

methodology is described, followed by examples of the subjects' metaphors. Then, I compare

novice and expert metaphorical reasoning. Finally, this paper concludes with a discussion of the

results and their implications.

Theoretical Framework

This section examines mathematical thinking both as cutting down to the bare essentials of

a problem (through abstract representations) and as building up and using additional resources (in

complex situations). Then, through the mediation of metaphorical reasoning, I explore how people

learn to manipulate abstract representations through a complex activity and apply them to new

problems.

Abstract Representations

The standard translation view of applying mathematics (see Figure I) generally includes

four stages: a) selecting the essential features for abstract representation, b) applying mathematical

rules to produce a result, c) translating the result back to produce a meaningful solution, and d)

verifying the solution within the situation's constraints (Davis & Hersh, 1981).

4



4

Insert Figure 1 about here

Abstract representations are symbols or displays that facilitate problem solving because

they a) index key features of the situation with a compact form and b) can be transformed by a set

of mathematical rules applicable in many situations. The compact forms facilitate human

processing by reducing the memory and attention needed to apply the mathematical rules.

Consider the following situation: Is $500 enough to purchase six chairs, each costing $83? Figure

2 illustrates two solutions showing that $500 is sufficient.

Insert Figure 2 about here

In contrast, using only English words complicates not only the solution but also subsequent

verification attempts:

Eighty-three multiplied by six is eighty times six plus three times six. Eighty times six is

four hundred and eighty. Three times six is eighteen. Four hundred and eighty plus

eighteen is four hundred ninety-eight

Furthermore, the mathematical rules apply across a divese range of situations, so that changing the

particulars (chairs) typically does not alter the computation. For example, a virtually identical

process can be employed for calculating whether six gardens, each with perimeters of 83 feet, can

be enclosed with 500 yards of picket fencing. Thus, problem solvers can use a common setof

mathematical rules to manipulate compact, abstract forms acrossdiverse situations.

To facilitate students' manipulation of these abstract forms, several researchers have

designed new mathematical representations (Reuss tier, 1993; Shalin & Bee, 1985). For example,

Shalin and Bee (1985) advocate using symbolically malted boxes to represent different types of

quantitles such as extensive (e.g. 5 zebras, 3 quarts of milk) and intensive e.g. 90 km/hr, $1

/gallon). To represent a problem, a person creates a network of individual quantities and their

arithmetic relations (See Figure 3).

Insert Figure 3 about here

The few viable combinations of quantity typs and arithmetic operations provide additional

constraints to steer users away from errors. These researchers generally advocate teaching optimal

abstract representations to improve problem solving proficiency. Upon mastery of these compact

forms and their accompanying rules, students can then apply them to a diverse range of situations.

Complex Situations
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Educators and researchers who focus on the manipulation of abstract representations risk

minimizing the importance of complex problem situations. By applying rules to abstract forms in

isolation, students may not know how to cut down to the essential features of the situation. They

may ignore critical aspects of the problem or apply abstract forms in inappropriate situations. Even

worse, the translation view does not characterize the solution of complex problems such as

carpeting an entire house. Creating and specifying problems, prioritizing different goals, and

exploiting multiple perspectives are missing from the translation view. In contrast, researchers

examining complex situations examine how people can improve their problem solving by building

up and using additional resources. This section discusses how added complexity can facilitate both

conceptual development and problem solving.

Facilitating Conceptual Development. A complex situation provides valuable resources for

comprehension of abstract representations. During an activity (e.g. Saxe's (1991) Treasure Hunt

game), teachers and students begin with common reference points (gold, ships) and agree upon

common goals (search for gold, accumulate wealth). Moreover, they can solve problems that arise

through experiential analogs of mathematical representations (computing change for a purchase).

By executing actions that correspond to arithmetic operations (exchanging money for goods) and

documenting them with mathematical representations (displaying the current assets e.g. "3024"),

students may make sense of the mathematics through the activity.. By providing students with

common reference points and motivating them with meaningful goals, activities encourage them to

interpret novel abstract forms through meaningful actions.

In many complex problems, one must choose the appropriate representation(s). Standard

textbook exercises primarily drill manipulations of isolated mathematical representations (e.g.,

Dolciani, Sorgenfrey, & Graham., 1985; Graham & Sorgenfrey, 1983; Saxon, 1985; Sobel,

Maletsky, Golden, Lerner, & Cohen, 1986; Yanker, Vannatta, & Crosswhite, 1981).

Applications (in the form of word. problems) typically provide protruding key features that cue the

mathematical representation covered in the current chapter. When faced with a complex problem

however, students may find that the appropriate representation is no longer transparent (Cobb,

Yackel & Wood, 1992). Instead, they must identify both the critical aspects of the pru:tem and the

mathematical representation(s) that will yield productive manipulations. By beginning with a

complex problem that embeds representations within the activity, students are more likely to

identify other situations in which these representations can be applied productively (Saxe, 1991;

Cobb et al., 1992; Williams Kamii, 1986). Additional complex problems can help students

refine these application conditions. For example, the exchange rate of dollars to dimes remains

fixed but not dollars to British pounds. Consequently, instruction within a complex activity may

help students identify application conditions for particular mathematical representations.

Finally, regular use of complex situations helps students extend both the form and the
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content of their mathematical competencies. Instead of simple computational exercises or skeletal

word problems, complex problems provide students with the opportunity to create integrated

mathematical views. In addition, they can incorporate mathematics learned in previous units,

thereby utilizing a broader range of mathematical skills and concepts. Complex problems enable

students to practice and to evaluate a wider range of their mathematical abilities in more diverse

situations.
Facilitating Problem Solving. Complex situations can also provide useful resources for

problem solving. Instruction that emphasizes manipulations of abstract representations risk

encouraging students to choose a mathematical form prematurely. Although word problems can be

quickly translated into a mathematical representation, tackling a complex problem may require

elaboration and exploitation of the setting's resources.

Several researchers have shown that people solve problems concerning concrete, familiar

situations more easily than their isomorphic, abstract counterparts (Cummins, Kintsch, Reusser &

Weimer, 1988; Hudson, 1983; Reusser, 1985). Moreover, van Dijk & Kintsch (1983) and

Johnson -Laird (1983) argue through situation models and mental models resvxtively that this

effect stems from people imagining the situation holistically to facilitate their problem solving. In

particular, Hall, Kibler, Wenger, & Truxaw (1989) show that many successful students solving

algebra word problems (e.g. where do two trains moving at different speeds towards each other

meet?) created additional resources (e.g., drawings and narratives) to reason directly within the

situation. Hall et al. (1989) call this phenomenon model based reasoning, and characterize four

uses of it preparatory problemcomprehension, problem ,iolving, evidence gathering, and error

recovery. Thus, elaborating the situation facilitates problem solving by providing additional

constraints and resources.

People may also exploit materials in their immediate surroundings. In Lobato (1991), a

subject explained that if he had single dollar bills, he would place them on particular stationary

store items to determine how much he could afford. Thus, he reduced a potential arithmetic

problem to a correspondence problem. (See Carraher (1986), Greeno (1991), Lave (1988),

Scribner (1986), and Williams & Kamii (1986) for additional examples). Capitalizing on available

resources can reduce the complexity of the problem.

In short, examining complex problems can facilitate both mathematical development and

problem solving. Activities can provide common reference points for students and teachers, often

motivating students to learn abstract represtations through meaningful goals and actions.

Furthermore, students learn to identify application conditions for each mathematical representation.

By solving complex problems regularly, students can both practice and evaluate a wider range of

their mathematical abilities in more diverse situations. Students can also elaborate the problem

situation to create additional constraints and resources. Finally, they can exploit available
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resources in the problem setting to reduce the complexity of the problem.

Metaphorical Reasoning
Activities provide meaningful complex situations for students to build understanding of

abstract representation manipulation, but the connection between meaningful action and abstract

form remains unclear. In particular, examining complex situations can notexplain the successful

use of simple abstract forms in future problems. Metaphorical reasoning explains how

mathematical understanding is both initially built up from complex situations and then eventually

trimmed down for diverse application.

This section begins with an introduction to metaphorical reasoning. Then, I specify several

dimensions along which to organize different metaphors, followed by a discussion of the benefits

and limitations of metaphorical reasoning. Finally, I contrast metaphorical reasoning against other

types of reasoning.
What is Metaphorical Reasoning? Reasoning through a metaphor, such as VARIABIFS ARE

BOXES WITH NUMBERS INSIDE,2 views a less familiar target situation (variables) through the lens

of a familiar source situation (boxes) (Mack, 1979; Lakoff & Johnson, 1980; Johnson, 1987;

Lakoff 1987; Pimm, 1987).3 In general, metaphors are a) unidirectional, b) alignments (not

similarities), and c) imaginative constructions. Since people do not use the unknown to make

sense of the known (people do not use variables to understand boxes), metaphors are

unidirectional. Bi-directional perspectives that view the connection as the locus of meaning (Lesh,

Landau, & Hamilton, 1983) fail to account for the absence of metaphors such as UP IS FUTURE,

CONTAINERS ARE MINDS, etc. (Lakoff & Johnson, 1980; Lakoff & Turner, 1991). Furthermore,

the source and target need not share any common attributes that facilitate the person's metaphorical

understanding. On the contrary, comprehending a metaphor may engender creativity and

imagination on the part of the learner. To make sense of the VARIABI FS ARE BOXES metaphor, a

student (let's call her Ma) must impose her understanding of boxes on to variables, namely that

the contents of the boxes are a) not always the same, b) visible if the value of the variable is known

and c) hidden from view if the variable's value is unknown. This relationship is not an inherent

and transparert similarity between boxes and variables, but a constructed alignment of the two

situations that enables the person to make sense of the target (variables).4 Consequently, Ana may

engage in a process of negotiation with the teacher (and other students) to determine an appropriate

alignment between the souf:e and the target. Then, he imposes her understanding of the source

(boxes) on to the target (variables) metaphorically tc! understand and to solve algebraic problems .5

In general, metaphorical reasonitlg builds understanding of an unfamiliar target phenomenon by

imposing the idsguity of a familiar source on to it.6

General Dimensions of Metaphorical Reasoning. Metaphors are personal constructions,

typically with idiosyncratic understandings. Consequently, they do not easily lend themselves to
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strict classifications. Nevertheless, one can contrast them along six dimensions, three concerning

potential understanding (source comprehension, targetcomprehension, and sysiernaticity) and

three regarding actual use (operational level, detail, and automaticity).

A person's metaphorical comprehension depends upon the degree of prior comprehension

of both the source and the target as well as the systematicity of connections between them. Upon

hearing the metaphor PRIME NUMBERS ARE PRIMARY COLORS (Noldor, 1991), a layperson may

simply view prime numbers as less complex than other numbers. If he does not recognize the

phrase "primary colors," he may not understand the metaphor at all. In contrast, a person who

understands how combining primary colors can generate other colors can build a metaphorical

understanding of prime numbers as generators of composite numbers. Therefore, person's

potential for metaphorical understanding of the target depends on his comprehension of the source.

People's prior target comprehension also affects their metaphorical reasoning. In the

absence of any target knowledge, a person imposes the identity of the source situation on to the

target, so that the target has all the attributes of the source.? For example, a novice reasoning

through PRIME NUMBERS ARE PRIMARY COLORS may believe that because the number of primary

colors is finite, the number of primes is also finite. However, mathematicians know that there are

an infinite number of primes.8 Thus, a person can use their target comprehension to recognize the

limitations of a particular metaphor. Moreover, existing target knowledge can compete with the

metaphor and discourage its use altogether. In Resnick & Omanson (1987), several students

learned an exchange metaphor for multi-digit subtraction, but used their previous faulty algorithms

to solve problems. Existing target knowledge curtails metaphorical reasoning through a particular

source.
Metaphorical reasoning is also a function of the metaphor's systematicity, the number of

correspondences between the source and the target. Intricate links may connect a metaphor's

source and target as in AN EQUATION IS A BALANCED SCALE.9 Both sides of the equation (scale)

must have the same value (weight). Adding (placing) or subtracting (removing) the same values

(weights) from both sides does not change the equality (balance). Reflexivity, symmetry, and

transitivity of values (weights) among other correspondences also apply.") In contrast,

PROBABILISTIC OUTCOMES ARE PATH BRANCHES has relatively few correspondences (at least for

the author). Of the many possibilities (destinations) for a given event (region), only one outcome

will occur (one path will be traversed) with a particularprobability (path width). In short, the

degree of metaphorical reasoning depends on the intricacy of correspondences between the source

and the target.

Actual use of metaphorical reasoning also falls along three dimensions: operational level,

detail, and automaticity. Operational metaphors yield specific actions that correspond to

mathematical thinking. Consider how Ana can metaphorically reason via GEOMETRIC FIGURES
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ARE PATHS to find the perimeter of a polygon. After choosing a starting point, Ana can walk

along the sides of the figure, adding each length, until she returns to the starting point. In contrast,

FUNCTIONS ARE MACHINES does not specify actions and does not facilitate mathematical

operations. This is probably the most critical dimension for students since the operational level of a

metaphor describes the number of productive metaphorical actions, and hence the metaphor's

utility.
Metaphorical reasoning occurs in different degrees of detail. Ma's initial reasoning

through the AN EQUATION IS A BALANCED SCALE metaphor may include working on an actual

balance to solve algebraic problems. As Ma becomes more proficient with this metaphor, she

recognizes that she uses some aspects more than others. Although she frequently performs the

same operation on both sides of the equation (balanced scale), she rarely utilizes her understanding

of the "=" as a fulcrum. Consequently, we would expect a person learning a novel metaphor to

display elaborate metaphorical reasoning, but an experienced user to exhibit less detail while

solving the same problem.

Metaphorical reasoning may also be automated through frequent use to create autonomous

target reasoning. By recalling only the results in the target, the person does not reason

metaphorically through the source. Consider SIMILAR POLYGONS ARE UNIFORM STRETCHES.

By reasoning through this metaphor, Ma learns that growing (or shrinking) a triangle by a

constant factor creates a perfect match for any mathematically similar triangle, and also yields

proportional corresponding sides. Later, she may use the proportional sides result to solve a word

problem without imagining a growing (or shrinking) triangle. Strictly speaking, she is no longer

reasoning metaphorically. Unlike other forms of automation (such as Anderson's (1985)

knowledge compilation) in which the original relationships are lost however, the familiarity of the

source allows people to recreate its metaphorical alignment with the target. 11 People can both

automate their metaphorical reasoning and retain access to it.

In short, metaphors are personal constructions that can be compared and contrasted along

dimensions concerning potential understanding (source comprehension, target comprehension, and

systematicity) and dimensions regarding actual use (operational level, detail, and automaticity).

During metaphorical reasoning, the person frames his understanding of the target through a known

and understood source. While greater source comprehension increases a person's potential

metaphorical reasoning, greater prior target comprehension tends to curtail it. The systematicity

dimension describes the intricacy of the connections between the source and the target, thereby

capturing the extent of metaphorical reasoning. Meanwhile, the operational level of a metaphor

characterizes its utility through the number of productive metaphorical actions. Through

experience, a person learns to adapt the level of detail to the demands of the problem. Finally, a

person may automate his metaphorical reasoning to create autonomous target reasoning, but he

"0
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retains access to the metaphor through a familiar source.

Benefits of Metaphorical Reasoning. As productive pedagogical tools, metaphors can a)

build upon intuitions, b) enhance the computational environment, c) integrate mathematical entities,

d) facilitate memory recall, e) form composite models and f) provide a form of limited assessment.

To demonstrate each of these benefits, I shall use an extension of the "number line" metaphor

which I have named ARITHMETIC IS MOTION ALONG ALINEAR PATH (see Appendix A).12 In this

version, the default direction is to face the positive direction. A subtraction operation indicates that

the person should turn around, and a negative number indicates that the person should walk

backwards.
Consider how the ARITHMETIC IS MOTION metaphorhelps students make sense of "7 - (-

2)" by building on their spatial intuitions. Typically, students learn this by rote (subtracting a

negative is adding a positive). Building on the familiar experience of walking however, this

metaphor tells Ana to walk forward seven steps (to location "7"), turn around, and walk

backwards two steps (to location "9"). By turning around and walking backwards, Ana moves as

if she were walking forward. Note how a person reasoning through this metaphor can both

distinguish the minus sign from the negative sign and understand their relationship. Ana's capacity

for metaphorical reasoning through ARITHMETIC IS MOTION depends on her understanding of the

source, motion. In general, people can readily build metaphors upon their intuitive understanding

of familiar sources.
Reasoning through the ARITHMETIC IS MOTION metaphor also facilitates problem solving

by enhancing the computational environment. Firstly, a student can metaphorically compute

arithmetic expressions by counting steps. As discussed in the prior paragraph, Ma can compute

by taking metaphorical steps. In addition, a student can also evaluate solutions through this

metaphor's spatial constraints. Any negative answer to the problem "7 - (-2)," such as "-5," must

be incorrect because a person can not take two steps from "7" and reach a location in the negative

region. Therefore, students can solve problems through metaphorical computations and ev uate

their solutions through metaphorical constraints. Moreover, these actions and constraints

determine the operational level of a person's particular metaphor, while the detail and automaticity

dimensions capture the efficiency of a person's metaphorical reasoning.

People can also integrate target (mathematical) entities metaphorically through the source

situation (motion) if they understand the source sufficiently and develop adequate systematicity

across the source and the target. Consider multiplication and division via ARITHMETIC IS

MOTION. For any multiplication, M x N (such as -7 x 4), the first number indicates the number of

steps and the second indicates the step size. Hence, multiplication is repeated addition (repeated

steps). If M is negative (-7), then the person must turn around initially. So, -7 x 4 can be

computed by turning around to face the negative direction and taking seven steps, each 4 units

11
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long, to reach location "-28." If N were negative, the person walks backward. A division

problem (P/Q) asks how many steps of size Q a person should take to go to P. Therefore,

division is the opposite of multiplication, as addition and subtraction are directional opposites.

Note how this metaphor can help students understand the distinction between 4/0 and 0/0.13 For

4/0, the student must go to location "4" with steps ofsize 0, which is impossible. For 0/0, the

student can go to "0" with any number of steps of size 0. Since there are an infinite number of

answers, not a unique one, theexpression "0/0" is indeterminate. Thus, metaphorical reasoning

can integrate arithmetic operations (+, x, /) and mathematical notions of impossibility and

indeterminateness through actions and relationships in the source.

The coherent integration of mathematical entities through the source situation and increased

systematicity also facilitates memory recall (Reynolds and Schwartz, 1983). Consider the

difference between a teacher telling Ma that 010 is indeterminate and Ana engaging in a motion

metaphor-based activity. When told by her teacher, Ma memorizes the fact. In the motion

metaphor activity, she can access additional methods such as recalling the activity or the

metaphorical actions to regenerate the result. Metaphors built on intuitions differ from other forms

of automated knowledge because people can readily access familiar experiences to regenerate the

alignment between the source and target. People can use metaphors to improve their recall of both

facts and procedures through their memory of richer meaningful experiences and through re-

derivation by metaphorical operations.

People can employ multiple metaphors either simultaneously or sequentially. Consider how

Ana uses several metaphors to solve the problem X + 6 = 4. She may think about this problem as

a balance with a box and six weights on one side and four weights on the other, thereby reasoning

through both the VARIABLES ARE BOXES WITH NUMBERS INSIDE and the EQUATION IS A

BALANCED SCALE metaphors simultaneously. In this compodtemetaphoi, the box has weights

inside rather than simply numbers.14 In general, composite metaphors tend to have greater

systematicity. To solve the problem, she must isolate the variable (box) and move all the numbers

(weights) to the other side of the equation (scale). Since Ma knows that subtracting (removing)

the same number (weights) from both sides does not change the equality (balance), she subtracts

(removes) six from both sides. Subtracting (removing) six (weights) from the left side leaves the

variable X (box), but how does she subtract six (weights) from two (weights)? She may employ

the ARITHMETIC IS MOTION metaphor. By drawing, a number line, Ma metaphorically solves "4 -

6" by moving forward four steps, turning around, end taking six steps to reach "-2" (see Figure

4).

Insert Figure 4 about here

12
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(Note that the EQUATION IS A BALANCED SCALE metaphor treats number as a weight, but the

ARITHMETIC IS MOTION metaphor treats number as a displacement.) People may reason through

multiple metaphors both simultaneously (forming composite metaphors) and sequentially.

Finally, students may employ metaphorical reasoning to assess their new understanding of

the target by creating metaphors with different sources. They can ask themselves the following

questions: What is the most systematic and detailed metaphor 1 can create using matter and anti-

matter as a source domain for arithmetic? What are the limitations of the metaphor? In general, a

student can assess his understanding of a mathematical topic by generating new, systematic

metaphors and recognizing their limitations.

In short, students can benefit from metaphorical reasoning in at least six ways. Teachers

can help students build metaphors upon their intuitive understanding of familiar experiences.

Then, students can solve problems through metaphorical computations and evaluate their solutions

through metaphorical constraints. By exploiting the coherence of the familiar source experience(s),

students can integrate target mathematical relationships. This integration of mathematics also

facilitates recall through the readily accessible source. Students can also reason through multiple

metaphors both simultaneously and sequentially. Finally, swdeths can generate additional

metaphors to assess their mathematical comprehension.

Limitations of Metaphorical Reasoning. Metaphors can obscure, omit, and contradict

standard mathematics because they build on sources that fundamentally differ from the target

mathematics. Firstly, metaphors do not provide equal attention to all relevant mathematical

relations. Consider multiplicative inverses in the ARITHMETIC IS MOTION metaphor. To compute

the multiplicative inverse (2/3) in traditional mathematics, Ana takes its reciprocal (3/2). In

contrast, metaphorically computing the multiplicative inverse does not highlight its reciprocal

nature (how many steps of 2/3 ,should you take to reach 1?). Furthermore, this metaphor

omits the mathematical notion of multiple levels of infinities. At best, positive infinity and negative

infinity are the locations furthest from the origin in each direction. Finally, metaphors can

contradict traditional mathematics. As discussed earlier, PRIME NUMBERS ARE PRIME COLORS

suggests that there are only a finite number of primes. Consequently, students must construct

additional target knowledge (through other metaphors or other means) to compensate for the

shortcomings of reasoning through a particular metaphor. As discussed earlier, prior target

comprehension can curtail metaphorical reasoning by Tverruling inappropriate metaphorical

entailments. Since metaphors can obscure, omit, and j,:ven contradict standard mathematics,

treating them as absolute rules rather than tools for inquiry leaves one vulnerable to these potential

pitfalls.

Summary of Metaphorical Reasonin. Metaphorical reasoning explains how abstract

representations can be understood through prior experiences. In general, metaphors are
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imaginative interpretations of a target situation using selected aspects of an alignment between the

source and the target. Furthermore, people's metaphors fall along several dimensions: source

comprehension, target comprehension, systematicity, operational level, detail, and automaticity. In

the course of learning and problem solving, students can reason metaphorically to build upon

intuitions, enhance the computational environment, integrate mathematical entities, facilitate

memory recall, form composite metaphors and assess their mathematical understanding. Since

metaphors build on sources that fundamentally differ from the targets however, metaphorical

reasoning can downplay, omit, and contradict aspects of traditional mathematics.

Abstract Representations. Complex Situations. and Metaphorical Reasoning

Students need not isolate abstract representations, complex situations and metaphorica!

reasoning from one another. Although instruction can employ each one individually, educators can

coordinate them to maximize students' mathematical understanding. Abstract representations, such

as mathematical symbols, serve as easily manipulable compact forms that index more complex

information. Acting as place holders, they allow people to mark important information and direct

their attention to other aspects of the problem. Meanwhile activities provide students with

important source experiences. By directing students toward particular relationship 'a, teachers can

highlight source knowledge amenable to metaphorical reasoning in the target. Let us begin with an

activity in a complex situation such as marching in a parade. By providing common reference

points (motion, direction) and by motivating students with meaningful goals (preparing for a

parade), an activity enables students to perform meaningful actions (marching in step). Abstract

representations such as mathematical symbols (e.g., 3 - 5) are embeddedwithin the activity to

index particular actions (walking backwards). Then, through metaphorical reasoning, students

interpret the manipulation of mathematical representations (target) through the meaningful

experiences of the activity (source). In the previous example, "3 - 5" is understood as walking

forward three steps, then turning around and walking five steps. When faced with a novel

situation, people may solve the problem metaphorically through the parade activity. Consider a

group of children acting as bank tellers and customers. How much money remains in a person's

account after a series of financial transactions? Although the students know that arithmetic

operations on negative numbers are necessary, they art' not yet familiar with the algorithmic

process. Therefore, they turn to the parade's marching actions to guide them through the steps.

By forming a transitive metaphor, intuitive understanding of earlier activity -> mathematical

symbol use -> manipulation in new problem, the students rely on their understanding of the earlier

activity to perform mathematical calculations to solve the current problem (see Figure 5).

Insert Figure 5 about here
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In this view, every transfer to a new problem entails a metaphorical mapping (e.g., mathematics

-> new problem), so that the application of a particular mathematical algorithm to a new situation

can not be assumed. The solution process relies in part on the ease with which the problem solver

constructs the metaphor and reasons within it. As students automate their metaphorical reasoning

through frequent use, they rely less on the original activity and can use the mulls quickly as facts.

However, students still retain access to their metaphoricalunderstanding through their familiar

source experiences. Later on, the limitations of their metaphorical must be addressed as well

(perhaps through another metaphor). Of course, choosing appropriate activities, metaphors and

representations are each challenging tasks. Nevertheless, integration of all three holds out the

promise of both intuitive understanding ane. proficient problem solving.

Contrast vi..h other Types of Reasoning

To further clarify metaphorical reasoning, I contrast it with three other types of reasoning:

a) situated reasoning b) example-based reasoning, and c) symbolic mnemonics. In addition, I

demonstrate how the analogical reasoning view fails to account for the phenomena I have described

as metaphorical reasoning.
Situated reasoning exploits the immediate environment directly. Gibson (1966, 1979)

argues that a person or an animal's environment encourages or affords particular behaviors.

Moreover, these affordances are relational and dependent on the features of the person that engages

in the activity. For example, a sturdy, knee-high rock affords sitting more so than a shouldex-high

boulder. Several researchers (Brown, Collins & Duguid, 1989; Lave, 1988; Lobato, 1991;

Scribner, 1986) emphasize the frequent utilization of theirenvironment to solve math problems. In

Lave (1988), a person obtains 3/4 of 2/3 of a cup of cottage cheese without any arithmetic

computation. Using a measuring cup, he scoops out 2/3 of a cup of cottage cheese. Then he

divides it ii.to four sections with a knife and removes one of them. Like situated reasoning,

metaphorical reasoning also relies on human experience but invokes a prior situation to frame the

current problem.
Reasoning through examples (Neves, 1981; Rissland, 1985), like metaphorical reasoning,

also uses a prior situation. However, an example-based reasoner searches for a prior source that is

virtually identical to the current problem situation, unlike metaphorical reasoning which

acknowledges a non-isomorphic source. After mapping the appropriate entities from the source to

gthetw et, the example-based reasoner tries to repeat his actions in the prior solution. For example,

consi'ler a textbook problem with a given solution:

A train must travel 300 miles to Chicago. If it moves at 75 mph, how much time will pass

before it reaches Chicago?

300 miles/ 75 mph = 4 hours.

Example-based reasoning succeeds in word problems such as:

'5
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Ana is driving at 60 mph. How much time will Ana need to reach her aunt's home which

is 240 miles away?

At a strictly computational level, the student can simply replace numbers. For example, 75 has

"mph" next to it and so does 60, so replace 75 with 60. Similarly, replace 300 miles with 240

miles and divide (240/60 = 4 hou. However, problems such as the following are more difficult:

Pedro must travel 300 miles to reach his uncle's house from work, and he drives at 60

mph. If he has already driven for an hour, how much longer will it take for him to reach

his uncle's house?

Instead of incorporating the hour already traveled, the example-based reasoner substitutes the

numbers as before to obtain 300/60 = 5 hours rather than 4 hours. Since example-based reasoning

simply replicates a prior solution, the problem solver is vulnerable to differences between the

source and the target.

Symbolic mnemonics rely on the serendipity of the notation to encode a memory aid. They

are independent of the underlying conceptual meaning and depend solely on perceptual cues and

transformations. Alliteration (square's sides same) and rhymes (Yol five times five/that's twenty-

five) can help students remember mathematical relationships. Or, students may learn that 7 - (-2) =

7+2 by imagining that one of the -'s rotates itself ninety degrees and moves on to the other "-" to

form a "+." Like metaphors, symbolic mnemonics depend on external aids outside of the current

situation. However, they employ serendipitous notation and 'anguage, not familiar experiences.

Advocates of analogical reasoning claim that a person learns through analogical reasoning

to view the target in a more abstract way, namely through an abstraction of common relations of

the source and the target (Gentner, 1989; Gick & Holyoak, 1980, 1983; Holland, Holyoal-,

Nisbett, & Thagard, 1986; Holyoak & Thagard, 1989). This claim has both theoretical and

empirical shortcomings. This abstraction view fails to account for numerous metaphors and for the

genesis of higher order relations in the target. Lakoff & Johnson (1980) and Lakoff & Turner

(1989) argue that this abstraction view fails to explain spatial and structural metaphors that have no

common intersection such as MORE IS UP, HAPPY IS UP, LOVE IS A JOURNEY, SEEING IS

TOUCHING, etc. Moreover, to recognize the common higher order relations, a person must

develop them in the target before analogical reasoning can occur. If a person does not know much

about the target (or has a non-normative understanding of it), he can not reason analogically.

Therefore, analogical reasoning requires significlint, prior, normative understanding of the target as

well as the source. Empirically, Gick & Holyoat (1983) demonstrate that their abstractions

(principles, summaries and diagrams) facilitate, but do not necessitate problem solving in limited

situations. Moreover, at least 50% of the subjects in each experiment solved the problems

analogously without abstractions, whether produced by the researchers or by themselves.

Abstractions may help, but they are neither necessary nor sufficient for analogical reasoning. In
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short, the abstraction view fails to explain entire classes of metaphors, requires significant prior

understanding of the target, and provides reasoning tools that are neither necessary nor sufficient

for analogical reasoning.

In summary, metaphorical reasoning differs from situated reasoning, example-based

reasoning, symbolic mnemonics, and analogical reasoning. Unlike situated reasoning which only

relies on the resources in the current environment, metaphor reasoning requires employment of a

prior situation. Although example-based reasoning also uses a prior situation, it searches for an

identical problem to replicate the prior solution. As a result, example-based reasoning is vulnerable

to critical differences between the two problems. In contrast, metaphorical reasoning

acknowledges the inherent differences and creates an imaginative interpretation of the current

situation by aligning aspects of it with a prior situation. Symbolic mnemonics rely on a notation's

serendipitous characteristics, whereas metaphors rely on a person's meaningful experiences.

Finally, the analogical reasoning through abstraction view fails to explain entire classes of

metaphors, requires significant prior understanding of the target, and provides reasoning tools that

are neither necessary nor sufficient for analogical reasoning.

Research Questions Regarding Ne', tive Number Metaphors

The empirical portion of this paper explores the nature of the subjects' metaphors and their

uses while solving problems involving negative numbers. In particular, which metaphors, if any,

do they invoke? How detailed are they? How do their metaphors differ from one another?

Also, how do subjects' metaphorical reasoning facilitate their problem solving? Do they

metaphorically compute results? Do they evaluate their progress through metaphorical constraints?

Do they metaphorically justify their solutions? Can they readily access these metaphors? How

reliable are these metaphors?

Method

This study employed semi-structured interviews (Bernard, 1988) to examine the subjects'

metaphorical reasoning through a triangulation of verbal, written and behavioral data (Jick, 1983).

The analysis consisted of two major sections: identifying different metaphors (and their variations)

and coding subjects' metaphorical reasoning. After incorporating subjects' gestures (Kendon,

1981, 1990; McNeil, 1992) from my field notes into the transcripts of the audio tapes, I employed

open coding (Strauss, 1987) to collect comments and gestures that could be construed as parts of

metaphors (Lakoff & Turner, 1991). Through axi4l coding (Strauss, 1987), I refined the

metaphor categories by examining variations amonlg the subjects' metaphors. Then the secondl;talf

of the analysis coded the subject's metaphorical reasoning as: understanding the problem,

computing results, evaluating their progress, and/or justifying their solutions. In addition, the

analysis included coding the accessibility and the reliability of their metaphors. Data sources

included audio-taped interviews of 12 middle school students and 5 masters graduates, their
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written work, and field notes. (Videotape is preferable, bu t the author lacked access to such

resources.)

Procedure

Each subject worked alone on three consecutive tasks in the given order. The interviewer

encouraged the subjects to describe their solution process by thinking aloud, occasionally

prompting for greater detail. Although pen and paper were provided, the subjects .sere not

required to use them. After each subject completed the set of tasks, the interviewer asked for

clarification of unfamiliar actions.

Participants

The novices differed from the experts both in schooling and in academic ability. The

twelve novices were private school students from a seventh grade algebra class. Six to eight weeks

before their interviews (which spanned three weeks), they completed a unit on arithmetic

computations with negative numbers. According to their math teacher, they were mostly of

average math ability. (On the negative number exam, all scored above 80%, two above 90%).

The math teacher' described her instruction on negative numbers as "pretty consistent with

the textbook." 15 After she had introduced negative numbers with temperatures below zero and

owing money, she presented the number line and the special rules for negative number arithmetic.

The students practiced the computations, but were not given any word problems to solve.

In contrast, the five experts were all high academic achievers as indicated by their masters

degrees. Furthermore, each of them completed at least two years of college mathematics,

suggesting a high level of mathematics sophistication as well. Aside from number lines, these

subjects could not recall much about their classroom instruction.

All subjects were paid for their participation.

Tasks

This study examined the subjects' metaphors and their uses through a triangulation of data

from three tasks. I chose three tasks that were likely to induce metaphorical reasoning. The first

problem, set in a stock market, required the subjects to perform several arithmetic computations

with negative numbers. The second, an ordering problem, can be solved quickly by reasoning

through a spatial metaphor (ARITHMETIC IS MOTION). Finally, the last task asked them directly for

their images of negative numbers and ways of teaching the topic.

The first half of the stock market problem (See Appendix B) asked title subject to calculate

the day's earnings or losses given a particular set of transactions. The interviewer provided a short

written description of buying and selling metals (gold, silver, copper or platinum) to which

subjects could refer at any time. The transactions listed on a computer printout included both the

number of ounces of a metal either purchased or sold and the change in price per ounce. The

solution entailed multiplying the ounces by the change in price per ounce for each transaction and
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totaling the results. On this particular day, the overall result was a loss. In the second half of the

problem, each subject could break into the computer account and change a single number by 5 (+5

or -5) to maximize their profit. The second question asked for the number of different ways in

which the person wins money overall.

The second problem asks the subject to order the following six numbers from least to

greatest: 15, -7/8, -21, 4, 1/6, -3 (see Appendix C). One possible solution is to find the least

number through pair-wise comparisons using mathematical rules (e.g. positive numbers are greater

than negative ones), then fmd the least of the remaining numbers and so on until all the numbers

are ordered.
In the last task, the interviewer asks tble subject for images of various expressions such as

-5 + 8, 7- -2, -2 x 3, and -2 x -3 (see Appendix D) and then to simulate teaching each expression to

a sixth grade friend.

Coding and Sco

This ect7' -xi describes the coding scheme and presents examples of each category. After

describing evidence for a metaphor, I discuss the coding for particular types of metaphorical

reasoning and for the metaphors' accessibility and perceived reliability.

Evidence for a subject employing a metaphor included a) introducing a different situation,

b) coherence within the invoked situation, and c) using an inference pattern from the invoked

situation in the problem situation. For example, Ma might say, "Minus forty minus ten is minus

thirty [-40 - 10 = -30]. Wait, I'm moving ten to the left, so it'll be more negative." By

introducing motion into the problem, she interprets "-10" as "moving ten to tl-le left." The spatial

inference of moving further into a region manifests itself in arithmetic as a "more negative" result.

Subjects' gestures (bouncing her finger to her left ten times) and drawings (hatch marks on a line)

provided additional evidence. If Ma said, "On the calculator, -40 goes down to -50" however,

she would not be metaphorically solving the problem. Although she refers to a different situation,

she recalls only the result, not an inference pattern. Her use of "down" suggests that sne interprets

the relation between the numbers through a MORE IS UP metaphor, but she does not invoke a

spatial inference pattern to compute the result. Hence, she may understand the situation spatially,

but does not solve the problem spatially. (Since students can alternate between arithmetic facts (5

+ 3 = 8) and metaphorical operations at any time, each metaphorical operation between two

numbers was counted as a separate instance of metaphorical reasoning.)

This study examines whether people metaphorically a) understand problems, ti;) compute

results, c) evaluate via metaphorical constraints and d) justify answers. For example, a person

may metaphorically understand the ordering problem (15, -7/8, -21, 4, 1/6, -3) as identifying

relative location on a number line. To compute the answer metaphorically, Ma draws a line and

places each number at its appropriate location. She may employ metaphorical constraints to
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evaluate the status of her solution, for instance, "negative numbers must be on the left side of

zero." Finally, she may justify her answer on the basi3 of this spatial metaphor, "1/6 is greater

than -21 because 1/6 is on the right side of -21." Another person, say Brett, may solve it

differently. Brett understands the numbers as greater and lesser values, not locations. To solve

the problem, he compares pairs of numbers using mathematical rules such as "for x, y E 9t-, if lx1

> lyl, then x < y." His constraints are likewise mathematical, such as "the result a < b, b < c, and c

< a indicates an error." Finally, Brett justifies his results with mathematical axioms.

The author and he coder also evaluated the accessibility and reliability of each person's

metaphor(s). To classify a person' accessibility to a metaphor, the subjects were asked for their

images and metaphors directly in the third part of the interview. In addition, the coders checked

for difficult situations in which the subjects could productively apply a metaphor they used earlier,

but did not. In these situations, the coders categorized these subjects' metaphorical reasoning as

context-dependent Otherwise, their metaphorical reasoning was classified as readily available. To

determine the reliability of a person's metaphor, each subject was asked if the metaphor(s) worked

for all arithmetic problems. In addition, the coders examined if the subject accepted the conclusion

of the metaphor when it conflicted with another result computed in a different manner.

The author and another coder scored the transcripts separately using the author's guidelines

described above. Troublesome cases were discussed and consensually scored.16

Results

The subjects did not simply invoke arithmetic facts or rely on the problem situation to solve

the problems. Nearly every subject (16/17, 94%) explained arithmetic expressions with negative

numbers metaphorically. Fifteen people (88%) spontaneously reasoned metaphorically at least

once while solving the first two problems. A large percentage of both novices (R/12, 67%) and

experts (4/5, 80%) reasoned with a spatial metaphor in the ordering problem. However, only one

expert (20%) reasoned metaphorically in the stock market problem whereas nine novices (75%) did

so. Table 1 summarizes the percentage of subjects who reasoned metaphorically in each problem.

After describing the variety of metaphors among the subjects, I compared experts' and novices'

reasoning through these metaphors.

Insert Table 1 about here

i

A Variety of Metaphors

The subjects in this study did not reason through one common metaphor but through a

wide range of them, with varying parts, actions, and forms. These metaphors fall into two

categories: space and quantity. Experts articulated significantly more metaphors (m=2.80) than
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novices (m=0.91, /15.-- 10.4588, p. < .01, two taxied test). Whereas all experts reasoned with at

least one metaphor from each category, novices used at most one metaphor. Nine of the twelve

novices reasoned with spatial metaphors and two with quantity metaphors.

Spatial Metaphors. The most common spatial metaphor in this study imagines each number

to be a location along a linear path, the number line described in many mathematics textbooks.

OHe, an expert, employed a minimal number line to solve the ordering problem (15, -7/8, -21, 4,

1/6, -3). (See Figure 6. Subjects are indicated by their initials (OH) and the subscript indicates a

novice (n) or an expert (e). "I" refers to the interviewer.)

OHe: Fifteen, [writes "15" near the center of the paper]

negative seven-eighths, [writes "-7/8" two inches to the left of 15]

negative twenty-one, [writes "-21" two inches to the left of -7/8]

four, [writes "4" between -7/8 and 15, half an inch to the

right of -7/8]

one-sixth, [writes "1/6" between -7/8 and 4]

negative three. [writes "-3" between -7/8 and -21]

Insert Figure 6 about here

OHe wrote down the numbers in the ordergiven by the problem at particular places, suggesting

that he identified the locations of each number relative to "15." OHe both interpreted and solved

this problem metaphorically. All of the subjects' spatial metaphors seemed to be variations of this

one.
The remainder of this section describes how the operations, components and orientations of

the subjects' spatial metaphors varied. Most subjects discussed addition or subtraction of a

positive number as a unidirectional movement, forward or backwards, regardless of the location.

In contrast, JON differentiated the consequences of ais metaphorical actions according to the

region, positive or negative. In following excerpt, he computed -120 40 during his solution of

the stock market problem.
JON: I have a negative one twenty. I'd go one sixty, and minus forty, then I'd go

forward instead of going backward. Instead of going, it would go forward and in

this scale,'7 excer
it

it would be going backwards, you know. It'd be...

BecOse it's a negi;tive?

JON: Yeah, because it's a negative...

You switch everything?
JON: Yeah, you switch them. Think of the opposite of what I'm saying. I would be

going forward, but it would be going sort of backward, you know. It would be
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going backward except it would be going forward.
JOn argued that the magnitude of the result, -160, increases while the result itself is mathematically

less, adding that subtracting 40 in the negative region has the opposite effect that it has in the

positive region.

So

JOE: I'm just thinking about how to say this. Instead of going this way [points to the

right] and adding, I would be adding, but it would be going this way [points to the

left].

If this were addition?
JOE: Yes. This is for subtraction. It would be going forward. It's sort of like if you're

adding something except it's going to be the opposite way.

JOn's focus on going forward suggested a focus on increasing magnitude, rather than

mathematically greater. Although JOn did not draw a diagram for his metaphor, one can depict it

as two distinct regions with complementary location-dependent operations (see Figure 7).18

Insert Figure 7 about here

In the negative region, subtraction had the effect of adding or "going forward." By switching them

--vThink of the opposite of what I'm saying" --addition decreased a number's magnitude in the

negative region and thus had the effect of subtraction. In addition to understanding this problem
and computing this solution metaphorically, JOn also integrated addition and subtraction through

this metaphor.
Only one subject demonstrated a metaphorical action for subtracting a negative number (7 -

-2). Other subjects explained that subtracting a negative was equivalent to adding a positive (7 +

2) by appealing to slogans ("minus minus is plus") or to authority ("that's what Ms. G told

us"). Three experts also employed symbolic mnemonics ("the two negatives join together and

make a plus"). However, only YOe reasoned about this situation metaphorically. Routinely

subtracting smaller positive numbers from larger positive numbers (e.g. 130- 80), he suddenly had

to compute 130 - -40. Noting that he had passed the "zero line," he demonstrated his solution by

drawing a number line and a curve highlighting the distance between -40 and 130 (see Figure 8).

Insert Figure 8 about here

Other subjects' spatial metaphors lacked particular components. For example, NIn's

spatial metaphor omitted fractions. She solved the ordering problem through pair-wise

comparisons to obtain the following solution: 1/6 -7/8 -3 -21 4 15. Next, she evaluated her
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initial solution metaphorically.
NIA: Wait a minute, negative three is further to the right on the scale so it's not as worse

off, so twenty-one is smaller then.I9

Then, the interviewer asked her to explain parts of her solution, including her ordering of -21 and

-7/8.
How about negative twenty-one and negative seven-eighths?
Negative seven-eighths is smaller because fractions is smaller than a whole number.

And one-sixth is less than negative twenty-one?
Um-hmm, because it's a fraction.

So all fractions are less than whole numbers?

NIA: Yes! Especially since these don't even out into a whole number.

Umm, are fractions en the scale?

NIA: Scale? Oh, no. That's just for whole numbers.

NIA's spatial metaphor did not include fractions. Other novices, such as FAA, omitted zero from

their metaphors. While calculating -4 + 5, she drew a vertical line and labeled evenly spaced hash

marks with integers from -5 to 4, but omits 0 (see Figure 9).

Insert Figure 9 about here

FAA: We're at negative four, we want to go up from negative four, 20 so we add five to it

and [her pen begins at "-4" and bounces upward five times, but skipping zero] we

get positive two.

By omitting zero from her diagram, her metaphorical computation yielded an incorrect answer.

Like many novices; FAA's vertical metaphor also differed in orientation from the textbook

horizontal number line. Novices also employed mirror image and diagonal number lines. In
ELA's mirror image number line, he switched the negative and positive regions whilecomputing 1

5 (see Figure 10).

Insert Figure 10 about here

However, ELA used a traditional number line at other times and commented on his atypical

construction, "our teacher usually does it the other way, so it's positive over here [points to the "-

4 "]. "" Finally, CYA mapped a strikingly graphic image on to her integers.

Are there any pictures that you use to help you [to compute -5 + 8]?

CYn: Well, there's one, kind of that my mom did when she was trying to help me with

my homework one night, kind of like, um if there's sea level and there's a
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mountain coming up and then there's like a big ravine going below the water, then

it's minus five plus eight, you walk up toward sea level and keep going and then

you'd be like up to three on the mountain, so that'd be positive three, and that's

what I usually think of, that's what I try to remember, cause then it makes it easier,

then I don't get as confused as it's just one long line that just keeps going.
Later, CYn drew a graphical representation of her metaphor (see Figure 11).

Insert Figure 11 about here

In short, the subjects' spatial metaphors generally resembled a number line. However, the

actions, components and orientations of the subjects' metaphors varied. Several novices employed

different corresponding actions in their metaphors without derailing their problem solving. In

contrast, the components (or their absences) were central to the subjects' accurate arithmetic

computations. Finally, they recognized that the metaphor's orientation could vary without

significantly affecting its use.

Quantity metaphors. The subjects discussed two types of quantity metaphors. Both

employed quantities of physical objects for positive numbers, and the metaphors differed primarily

in their interpretation of negative numbers.

Subjects who reasoned through object opposition metaphota viewed positive and negative

numbers as quantities of different objects. Moreover, the different objects neutralized each other
on a one to one basis. For example, AMn described his marbles and holes metaphor.

AMA: [reads] What images if any come to mind when you think of -5 + 8?

[answers] plus three.

Do you have any pictures or images?
AMA: I think of like holes and stuff. Like the negative five are like holes you know,

[draws five circles] and the, um, eight, positive eight are like marbles [draws eight

dots, five inside the five circles (see Figure 12)]. So the holes, um, eat up five of
them, and so there's three left, so the answer's three, positive three.

Insert Figure 12 about here

Although AMA solved thislproblem by factual recall, he understood it through a metaphor that

treats number as the quantity of a group of objects.2° Each hole matches up with a marble and
they cancel one another, leaving behind a quantity of marbles (or holes).

Subjects who reasoned through attribute opposition metaphors imagined both positive and

negative numbers to be quantities of the same object, but assigned attribute oppositions to them.
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For example, YOe said that he would teach "-5 + 3" through a metaphor based on owning and

owing.
YOe: I would change it to 3 - 5. I would bring in the notion of borrowing, um, I have

three toys let's say, and I have three toys and I have to give, i s say I was giving

gifts and I had to give five toys as gifts and I only have three, so I have to borrow

two more toys from someone, so I borrow it. I wind up with five I give the five

toys away, but at. the same time I owe someone two toys that I borrowed from. So

that owing is minus two.
YOe's metaphor relied on an understanding of social conventions, as well as physical objects.

Unlike AMn's metaphor, 10e employed the same objects (toys) for both positive and negative

numbers and used social attributes, possession and obligation, todistinguish them. The three toys

in his possession were mapped on to 3 while the five toys to be given over to someone else were

mapped on to "- 5." To fulfill the social commitment of givinggifts, he employed another social

practice, borrowing. Consequently, his result was also social, an obligation to repay two toys.

The quantity metaphors' actions and components did not vary, but the subjects used many

objects. Like most of their spatial metaphors, none of the subjects demonstrated a metaphorical

action for subtraction of a negative number (7 - -2). Finally, the specific form of the objects need

not be marbles or toys. SUe said °might that any objects may be used: "it's money, or it's

candies, or it's apples, or whatever you want"

In short, several subjects employed metaphors based on the quantity of groups of objects.

In both types of metaphors, positive and negative numbers were understood as quantities of

objects. Object opposition metaphors envisioned negative numbers as quantities of different

objects that neutralized positive objects on a one to one basis. On the other hand, attribute

opposition metaphors used the same objects for both positive and negative numbers, but assigned

attribute oppositions to each. In addition, the source of a metaphor can be socio-cultural rather

than physical. Like most of the spatial metaphors, the quantity metaphors also lacked a

corresponding action for subtraction of a negative. Finally, each of these versions differed in

form, as the objects and attributes varied.

Summary of Variety of Metaphors. Subjects described a wide range of metaphors that

were classified into two categories: space and quantity. (These two types of metaphors may be

part of a broader system of6iluality metaphors discussed in Lakoff (1992).) Then, I further divided

the quantity metaphors into abject oppositions and attribute oppositions. Within each category,

some of the subject's metaphors differed with respect to components; actions and fo:m. The

differences in the spatial metaphors' components and actions led to different behaviors and

different computations. However, the orientation of the spatial metaphors and the types of objects

and properties in the quantity metaphors did not significantly vary the students' reasoning.
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Comparison of Experts and Novices

Expert and novice metaphors. The metaphors of experts generally resembled those of

novices. However, experts' metaphors corresponded more closely to standard arithmetic (see

Table 2). Moreover, experts reasoned with significantly more types of metaphors (m = 2.80) than

novices (m. = 0.91, /15= 10.4588, 12 < .01, two-tailed test.), and they used multiple metaphors to

teach a single computation.

Insert Table 2 about here

Expert and novice metaphorical reasoning generally a) shared central correspondences, b)

lacked a metaphorical action for subtraction of a negative number (e.g. 7 - -2), and c) had little

detail. Both expert and novice spatial metaphors mapped locations on to numbers and motions on

to operations. In both expert and novice quantity metaphors, the objects mapped on to the

numbers. However, only one expert could metaphorically explain the subtraction of a negative

number (e.g. 7 - -2). The other subjects computed these arithmetic expressions through symbolic

mnemonics or through memorized facts. Finally, both groups expressed little detail in their

metaphorical reasoning.

Expert metaphorical reasoning, however, aligned more closely with standard arithmetic

than novice reasoning. All expert metaphors included corresponding components for zero and for

fractions, which some novice metaphors lacked. As a result, some novices metaphorically

computed incorrect results. In their spatial metaphors, all experts employed location-independent

actions and used textbook, horizontal number lines. In contrast, some novices used location-

dependent actions and drew vertical, diagonal, and mirror image number lines. Unlike the absence

of zero and fractions though, these differences in action and in form did not derail novice problem

solving. Finally, the two novice object opposition metaphors did not differ significantly from the

experts'.

Experts also described significantly more types of metaphors than novices. Whereas each

novice described at most one, experts had at least two. Moreover, each expert articulated at least

one spatial metaphor and at least one quantity metaphor. Experts also used multiple metaphors to

explain a single computation. For example, SUe explained -5 + 8 in the following ways:
SUe: -5 + 8 is you get a loss and you get a plus, it's my stock price, aid or you could

think of this, minus five is your investment, at first you have to put some money to
get some profit.

Is that how you think of minus five plus eight?
SUe: Minus five is your loss, minus is loss and plus is your gain. Or minus five isyour

debt and plus is your credit.
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SUe presented three subtly different economic metaphors: changes in a stock price, investment and

profit, and credits and debts. Then, she presents an owning and owing metaphor.

SUe: He has eight candies and he told me he would give me five candies, how many

candies would he have in his hand?

Finally, she added a spatial metaphor.

SUe: It's like when you go somewhere, and your parents give you directions that you

could go to five blocks to right hand side and you go uh, two blocks, two blocks to

the left side or whatever, but you draw the line here [draws horizontal line], then

it's like uh, you start from the*zero point [writes zero above the center of the line

and marks the line underneath with a hatch mark] and you move back and whenever

you find a positive, you move forward.

SUe imposed many different situations on to the expression -5 + 8, demonstrating both flexibility

and additional connections that novices seemed to lack.

Metaphorical Understanding. Novices typically employed metaphorical understanding for

both the arithmetic and ordering problems, whereas experts generally interpreted only the orde...'ng

problem metaphorically (see Table 3). Since many novices experienced difficulty with negative

number computations, they introduced an additional layer of metaphorical comprehension to

interpret them significantly more often than experts (115 = 2.181,12 < .05, two-tailed test). As

discussed earlier, the only instance of expert metaphorical understanding of arithmetic occurred

when YOe suddenly confronted a difficult problem. Otherwise, both novices and experts typically

employed simpler and more efficient number facts. In the ordering problem how ver, many

novices and experts interpreted it metaphorically to facilitate a simpler solution.

Insert Table 3 about here

Mttanborical Problem Solving. Experts avoided unnecessary metaphorical problem

solving in the stock market problem, but exploited it's efficiency in the ordering problem(see Table

4). Novices metaphorically computed arithmetic problems involving negative numbers

significantly more often (115 = 2.154, < .05, two-tailed test), but also required signi0;antly

more time (m = 44.41 minutes) than experts (m = 12.58 min) to complete the first problem (I15_=

3.997, R < .005, one-tailed test).

Insert Table 4 about here

In contrast, experts employed significantly more metaphorical operations in the ordering

problem than in the arithmetic computations (paired Nest. m = 3.8, 14 = 3.919, p_< .02, two-
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tailed). They also required less time than the novices to solve the ordering problem (expert

0.49 minutes, novice m = 1.31, Its = 1.991, 12 < .06, one-tailed). Although experts reasoned

through metaphorical operations more often than novices in the ordering problem, this difference

was not statistically significant Ws = 1.530, 11> .10). Experts required less metaphorical

interpretation, but recognized when to capitalize on it.

Evaluating Solutions through Metaphorical Constraints. A few novices, but no experts,

evaluated their progress through metaphorical constraints (see Table 5). Most novices (67%) did

not stop to evaluate their work at all, but simply moved from one problem to the next. The

remaining novices applied mathematical rules and symbolicmnemonics as well as metaphorical

constraints to evaluate their solutions. In contrast, the experts checked their work for mistakes, but

relied on their knowledge of mathematical facts (20 + 30 = 50) and relationships (each positive

number is greater than each negative number). In the words of OHe, "I just look at it [-5 + 8],

and I know it's 3, that's how I check it." Most novices did not examine their work at all while

experts used arithmetic facts and mathematical rules to evaluate their solutions.

Insert Table 5 about here

Justifying Solutions Metaphorically. Novices justified their solutions by referring to a

metaphorical explanation significantly more often than experts (to = 2.256, p. < .05, two-tailed

test, see Table 6). Novices not only reasoned metaphorically, but also relied on metaphorical

explanations as the foundation for their work. In contrast, experts never invoked metaphorical

explanations for their solutions. In the first problem, they often referred to the stock market

situation as the basis of their solution. To justify their answers in the ordering problem, they

pointed to mathematical rules, even though they used the number line to identify the location of

each number. Whereas many novices based their solutions on metaphorical reasoning, experts

appealed to either the problem situation or the mathematical rules.

Insert Table 6 about here

Access to Metaphorical Reasoning. Nearly all subjects readily accessed their metaphors as

needed (see Table 7). Each subject described the different metaphor; they had used when asked to

teach addition and subtractioni of negative numbers to a twelve-year old. Clio claimed that he

"instinctively imagine[d] a number line." However, some novices did not invoke their metaphors

in applicable situations. Despite employing their metaphors earlier in similar situations, they did

not invoke them when their metaphorical reasoning could have helped them overcome impasses.
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Insert Table 7 about here
------- ----------

Perceived Reliability of Metaphorical Reasoning. Most subjects also believed thatthey

could rely on their metaphorical reasoning to solve any arithmetic expression (see table 8).21

However, four novices successfully employed metaphors to compute arithmetic expressions, but

either doubted the validity of a metaphor-based solution or said that their metaphorical reasoning

was not always reliable. In addition, five novices faced contradictory conclusions from an

unexplained memorized rule and their metaphorical reasoning. Three chose the metaphor-based

results, one did not choose, and one chose the rule, (suggesting a preference for metaphor-based

conclusions, but not a unanimous one).

Insert Table 8 about here

Summary of Comparison. Expert and novice metaphorical reasoning differed both in

quality and in usage. Experts readily accessed their reliable metaphors and recognized applicable

problem situations. However, they generally used mathematical facts and rules for efficient

computation. In contrast, novices lacked ready access to their metaphors and had moredoubts

about their reliability. Nevertheless, they reasoned metaphorically more often both to understand

and to solve problems. Few novices and no experts evaluated their solutions through metaphorical

constraints. When asked to justify their results, experts appealed to either mathematical rules or the

problem situation. In contrast, many novices relied on metaphors to justify their results. While

experts reasoned through metaphors proficiently and rarely used them, novices displayed weaker

metaphorical reasoning and used it frequently.

Discussion

In this section, I discuss the subjects' metaphorical reasoning and speculate on the

development of novices into experts.

Subjects' Metaphorical

I begin by discussing the variety of the subjects' metaphors. Then, i examine where these

metaphors fall along the six dimensions described earlier. Finally, I analyze how the subjects

benefited by reasoning; through these metaphors.

Variety of Suktjects' Metaphors. There are at least three possible causes for the variation

among the subjects' metapnors. Since both the textbool: and the teacher introduce the number line,

we would expect many students to invoke a spatial metaphor. However, several students also

used metaphors that did not originate within the classroom. For example, CYn explicitly cited a

conversation with her mother (the mountain ravine metaphor). Others may have constructed their
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own metaphors. In addition, all experts extended their metaphors to include additional

mathematical concepts such as fractions but some novices did not.. Finally, students may adapt

their metaphor to the particular situation as EL did when he employed his mirror image number

line for computing "1-5." In short, metaphorical reasoning among individuals may vary due to

different origins, added extensions, or adaptations to problem situations.

Dimensions of Subjects' Metaphors. Although all subjects demonstrated adequate source

comprehension during metaphorical reasoning, experts differed from novices with respect to target

comprehension, systematicity, operational level, detail, and automaticity. No subject committed

errors in their source, indicating competent source comprehension. However, experts

demonstrated greater target understanding as indicated by their multipe metaphors and their

arithmetic facts and rules. Moreover, expert metaphorical reasoning displayed more systematicity

in contrast to novice reasoning which occasionally omitted components (fractions, zero) from their

spatial metaphors. Consequently, expert metaphors had a higher operational level than novice ones

even though novices reasoned through metaphors more frequently. Since novices employed more

detailed and less automatic metaphors, this study supports the following claim: As a person

develops expertise, he reasons with less detaileti metaphors and automates them.

Subjects' Benefits from Metaphor Reasoning. This study demonstrated how metaphorical

reasoning facilitated both conceptual understanding and problem solving through a) intuitive

justification, b) arithmetic integration, c) an enhanced computational environment, and d) improved

recall. Since these metaphors were built on an intuitive foundation, novices confidently appealed

to them to justify their mathematical operations. Subjects also used their intuitive source

experiences metaphorically to integrate multiple arithmetic operations. In addition, they solved

problems through metaphorical computations and novices evaluated their solutions with

metaphorical constraints. Finally, the tight connection between familiar intuitions and arithmetic

helped subjects reconstruct explanations for their arithmetic operations. In short, subjects reasoned

metaphorically to justify mathematical actions, integrate arithmetic relationships, compute

mathematical expressions, evaluate their solutions and recall explanations.

LkyolopmotirslianCreaSQEaggra
This section discusses the pitfalls of an expert-novice paradigm and the role of metaphors

in mathematical development.

Expert-novice intervention paradigm supporters argue that novices should imitate experts.

Since the stock market task results suggest that experts, unlike novices, do not reason

metaphorically, expert-novice paradigm advocates would discourage novices from reasoning

metaphorically. Stripping novices of their metaphorical reasoning however, neglects the potential

scaffolding role of metaphor as a transition to expertise. Moreover, the results of the ordering and

the image/teaching tasks both show that experts can reason through many systematic metaphors.
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Therefore, metaphors may play a greater role in mathematical development than is currently

acknowledged. Novices may initially understand a novel problem metaphorically. As they

familiarize themselves with more problems, they recognize the central operational parts of the

metaphor and begin omitting unneeded details. Eventually, they automate their computations so

that their reasoning is no longer metaphorical, using the target results without resorting to the

source. Therefore, expert-novice paradigm advocates risk neglecting the scaffolding available

through metiphorical reasoning.

Expert reasoning through multiple metaphors suggests greaterproblem solving power,

emphasizes application conditions, and mitigates the limitations of individual metaphors. The

multiplicity of expert metaphors resonates strongly with Moschkovich, Arcavi, & Schoenfeld

(1992) multiple views of linear functions, Dowker's (1992) multir arithmetic strategies and

Smith's (1991) .nultiple strategies for manipulating fractions. Moreover, metaphorical reasoning

is only one of many tools available to experts (others include symbolic mnemonics, examples,

etc.). With this diversity of mathematical tools, experts can solve a wider range of problems and do

so more efficiently. Rather than simply applying a single tool repeatedly to every problem,

expertise requires choosing the appropriate tool from a list of possibilitie% Finally, the diversity of

an expert toolbox mitigates the limitations of a specific tool (such as those inherent in any

metaphor) because the expert can employ other methods to cover otherwise vulnerable areas. An

expert with a diverse mathematical toolbox must recognize more application conditions, but he can

solve more problems, solve them more efficiently, and tolerate greater limitations on particular

tools.

Conclusion

In this study, I have argued that abstract representations, complex situations, and

metaphorical reasoning fit together theoretically and have shown empirically that both experts and

novices reason metaphorically in mathematics. Initially, students build up their understanding of

abstract representations metaphorically through meaningful complex situations, and then they trim

down the details during repeated metaphorical uses of abstract forms. They eventually learn to

apply the abstract forms without relying on the scaffolding of metaphorical reasoning.

Empirically, these subjects generated a variety of spatial and quantity metaphors. Some of the

differences between their mrphors arose from subjects extending their metaphors to include

additional mathematical conints. Others adapted their metaphors to particular situations.

Although experts can reason more adroitly through more metaphors, they do so relatively

infrequently, preferring more efficient mathematical facts and procedures. In contrast, novices

reason less proficiently through fewer metaphors, but do so more frequently. Subjects reasoned

metaphorically to justify mathematical actions, integrate arithmetic relationships, compute
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mathematical expressions, evaluate their solutions and recall explanations. As a result, this study

suggests that metaphors may play a central role in mathematical development by bridging novices'

intuitive understanding to expert mathematics.

Educators can use systematic metaphorical reasoning as a powerful, pedagogical tool to

cover mathematical topics and build on students' intuitive knowledge. When choosing metaphors,

curriculum designers must maximize both breadth and depth of coverage. As exemplified by

ARITHMETIC IS MOTION, reasoning through a single metaphor can explain many related

mathematical topics in rigorous detail. Since students must build mathematical understanding on

the foundation of their prior knowledge, they are more likely to reason through metaphors that rely

on intuitive sources (See Chiu & Gutwill (1993), diSessa (1993), Johnson (1987), Mandler

(1992a, 1992b), Ogbom & Bliss (1990) and Talmy (1988) for discussions of intuitions).

Virtually universal experiences such as eating and moving are likely candidates, but educators can

also capitalize on common cultural experiences. Promising pedagogical metaphors exhibit both

breadth and depth of coverage and build upon intuitive sources.

This study also shows that reasoning through a metaphor is not an atomic process, but

occurs in varying degrees. As a result, students require teacher guidance to use their metaphorical

reasoning appropriately. Firstly, the teacher must decide how to introduce a particular met:Thor

(e.g. posing a problem in an environment in which students are likely to generate the metaphor).

Then, she must focus their attention on important aspects and encourage them to extend their

metaphorical understanding. Therefore, the teacher plays an important metacognitive role by

helping students negotiate their way through the benefits and the pitfalls of metaphorical

reasoning.

Metaphors have a great deal of potential, but their successful implementation requires

further evidence of their efficacy. In particular, how do students learn to reason through particular

metaphors? How do student create composite metaphors? The answers to these and related

questions may help Ana and other students challenge de Morgan's claim that some mathematical

entities simply do not make sense.
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Appendix A: Arithmetic is Motion Along a Linear Path metaphor

Number (target domain) < --

0 <
number <
positive number N <
negative number -N <
quantity <
absolute value <
additive inverse <

N is greater than M < --

N is less than M <--

Motion (source domain)

origin/starting point

location relative to the origin

location N steps to the right of the origin

location N steps to the left of the origin

movement

distance from origin

direction and steps to return to origin

location N is to the right of location M

location N is to the left of location M

Operations:

All arithmetic operations begin at the origin

The default operation is to face right and move forward in that direction

- N indicates N steps backwards

add N <-- move N steps (if N=0, then hop in place)

subtract N <-- turn around and move N steps

Multiplication

MxNe.g.-7x4
M determines number of steps e.g. turn around, and move 7 times

N determines the new step size e.g. each step is 4 units long

First execute the "-" signs by turning around the appropriate number of times.

Repeat M times: Move step size N
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Division
P/Q e.g. -20/ 2
P is the final destination

Q is the step size

How many steps of size Q should a person take to go to P?

(Do you need to turn around "-"?)

-20/2:

4 / 0:

0 / 0:

Turn around and make 10 steps, so the answer is -10.

How many steps of size 0 are needed to go to 4? impossible

How many steps of size 0 are needed to go to 0? any ...0,1,2...

39

38



39

Appendix B: Stock Market Problem

The stock market is a place for gambling, like a ca., 'no. In stock market gambling, you can buy

and sell things like gold and silver.

Suppose you BUY an ounce of gold for $100.

If the price increases, by $1, the next day, then you have $101 and you win.

If the price decreases (- $1), then you lose.

On the other hand, you SELL some of your silver for $50 an ounce.

If the price increases ($5) the next day, then you lose because you should have kept your

silver which is now worth $55 instead of $50.

TI the price decreases (- $3), you win by selling early and getting more money for it, $50

instead of $47.
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Arrowsmith Stock Market Summary

bought / sold(-)

ounces

gain / loss(-)

change per ounce Total

Copper 10 - $4

Gold 10 $8

Platinum - 40 - $1

Silver 30 $5

How much money did you win or lose?

41



It looks pretty bad, but fortunately, you're a computer expert. You can break into the computer

account and change any one of the numbers by 5 (either +5 or -5).

How many different ways can you change one number and win money overall?

42
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Appendix C: Ordering Problem

Put these in order from least to greatest

15 -21 4 1 -3

8 6
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Appendix D: Images of Arithmetic Expressions

What images, if any, come to mind when you think of -5 + 8?

[The interviewer then asks how the subject would teach this and then follow with similar questions

about 7 - -2, 3 - 5, -2 x 3, -2 x -3]
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Footnotes

'Davis (1984) describes students building understanding of negaive numbers through the

activity of adding and removing pebbles from a bag.

2A11 metaphor names are in small capitals.

3Also, see Clement & Brown's (1987) bridging analogies and Davis's (1982, 1984) pre-

assimilation paradigms.
41 prefer to view the situations as a source transparency placed over a target transparency,

so I use the term "alignment" rather than "mapping" to emphasize the relationships within the

source and within the target.

%Vletaphorical reasoning can create new entities and relationships in poorly understood

targets.
6The reader may wonder if building on familiar situations leads to infinite regress. Lakoff

(1987) argues that the human conceptual system rests on two complementary foundations: image

schemas and basic level concepts. Johnson (1987), Lakoff (1987), and Mandler (1992a, 1992b)

have argued that young infants construct image schemas from frequent bodily experiences. For

example, Johnson's (1987) source-path-goal image schema arises from an infant's experience with

motion. Rosch (1976) argues that people form basic-level concepts through perceptual and

functional interactions with the world. For example, people perceive an overall shape of a chair

and interact with it, by sitting on it and leaning against its back. Therefore, people build

metaphors upon situations interpreted through image schemas and basic level concepts.

Unfortunately, a detailed explanation of the relationship between image schemas, basic-level

concepts and metaphorical reasoning is beyond the scope of this paper.

7Lakoffs (1992) Invariance Hypothesis. In practice, a person must know something

about the target to recognize/experience it, so the source situation is never entirely imposed on the

target.
8Assume Pn is the largest prime. But adding one to the product of Pn and all smaller

primes (1 + P Pi, Pi= 2,3,5,...Pn) yields a number that is eitE-tr prime or has a prime factor larger

than Pn.
9See MacGregor (1991) for four additional metaphors for equations.

'°Reflexivity (a = a), symmetry (b = a, a = b), and transitivity (a = b, b = c, a = c).

Illn contrast, Searle's (1979) claims that metaphorical phrases understood automatically

must be dead metaphors, in which the source is lost and unrecoverable.

14 will refer to this metaphor as ARITHMETIC IS MOTION.

13A step size of zero is jumping up and landing in the same place.

14Lakoff & Johnson (1980) argue that metaphors need not be consistent, but must be
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coherent. For example, the following sentence combines the ARGUMENTS ARE PATHS and

ARGUMENTS ARE CONTAINERS : "If we keep going the way we're going, we'll eventually fit in

all the facts." Metaphorical coherence requires using different parts of the metaphor to avoid direct

contradiction (progress from PATHS and content from CONTAINERS).

15The teacher described her lecture to me four weeks after the students took their negative

numbers exam. However, she did .00t recall the students' comments. (Future studies would

benefit from classroom observations.) She used the Keedy & Bittinger (1987) Addison-Wesley

textbook.

16The author found 207 instances of metaphorical reasoning, and another coder found five

additional instances (212). There was 98% inter-coder reliability on categorizing the types of

metaphors, 91% on metaphorical understanding, 96% on metaphorical computations, and 94% on

both evaluations and justifications via metaphors. Judgments of both the subjects' accessibility to

their metaphors and their perceived reliability was at 94%.

t7Since several students referred to a scale (a bathroom scale as I learned upon further

questioning), they may have discussed this during class or outside of class.

18See Davis & Maher (1993) for a discussion of two-attribute vs. one-attribute

perspectives.

19This reference to "worse" occurs frequently, and may be an alignment of two metaphors:

GOOD IS UP and MORE IS UP. As a result, more corresponds to good/better and less

corresponds to bad/worse (Lakoff & Johnson, 1980).

20Indicated by his quick answer and his later comment, "I know it's three, but I think about

it this way."

21Except for subtraction of negative numbers 7- (-2) which they knew they could not

perform metaphorically.



TABLE 1.
\ . t or ,/' Ile I . I rill II I I I

Problem

Stock Market

Ordering

Images

Novices Experts (a =

75 20

67

92

80

100

47

46



TABLES 2.
% of Novices and Experts who Used Spatial or Quantity Metaphors Displaying Particular

Properties

Metaphor Properties Novices (( = 12) Experts (n. = 5)

Spatial 75 100

Standard Operations 58 100

Included Zero 58 100

Included Fractions 50 100

Standard Horizontal Form 42 100

a (-b) included 0 20

Quantity 17 100

Opposing Objects 17 100

Opposing Properties 0 80

Multiple Types of Objects 0 100

a - (-b) included 0 0
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Table 3.
Means of Novice and Expert Instances of_Metaphorical Understanding while Solving each Problem

Problem Novices (a = 12) Experts (II = 5)

Arithmetic 3.92 0.20

Ordering 2.58 4.00
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Table 4.

Means of Novice and Expert Instances of Metaphorical Operations while Solving each Problem

Problem Novices (n = 12) Experts (n. = 5)

Arithmetic 3.17 0.20

Ordering 2.58 4.00

*115 = 2.154,12. < 0.05, two-tailed test.
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Table 5.
Means of Novice and Expert Instances of_ Evaluations via Metaphorical Constraints in each

Problem

Problem Novices (ll = 12)

Arithmetic 0.25

Ordering 0.41

Experts (n = 5)

0.00

0.00
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Table 6.
Means of Novice and Expert Instances of Metaphorical Justifications in each Problem

Problem Novices (n. = 12) Experts (a = 5)

Arithmetic 1.25 0.00

Ordering 0.67 0.00
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Table 7.

11

Problem

Readily Accessible

Context dependent Access

aOne novice did not reason metaphorically to solve any of the problems.

Novices (a = 12)a

75

17

.5

53

Expere (n. = 5)

100

0
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Table 8.
% of Novices and Experts who Perceived Their Metaphorical Rosoning as Reliable.

Problem Novices (_n = 12)a

Reliable 58

Uncertain 33

Experts (n = 5)

100

0

aOne novice did not reason metaphorically to solve any of the problems.
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Figure Captions

Figure 1. A translation view of mathematical problem solving: representing the key problem

features, manipulating the representations, translating the result back into the problem situation,

and checking the solution.

Figure 2. A typical calculation (500 < 83 x 6) with mathematical representations.

Figure 3. Shalin and Bee's box representation for arithmetic word problems (6 chairs at $83 each).

Figure 4. Ma metaphorically computes "4 - 6" with the ARITHMETIC IS MOTION metaphor by

walking four steps to location "4," turning around, and taking 6 steps to "-2."

Figure 5. Students learn to use mathematical symbols by interpreting them metaphorically through

their intuitive understanding of the parade situation. When faced with a banking problem, the

students pick out important aspects such as the deposits and payments and decide that arithmetic

operations are necessary. Not yet familiar with the intricacies ofmulti-digit subtraction, they recall

their actions during the parade activity and reason metaphorically to perform the mathematical

manipulations.
Figure 6. 0He metaphorically solves the ordering problem by placing each number at a particular

location.
Figure 7. One possible representation of JOn's metaphor which employs different sets of

metaphorical operations for the positive and negative regions.

Figure 8. YOe's diagram for solving 130 - (-40), finding the distance between the locations "-40"

and "130."
Figure 9. FAn's vertical spatial metaphor without zero.

Figure 10. ELn's mirror image number line for solving 1 - 5.

Figure U. CYn's mountain-ravine metaphor.

Figure 12. AMn's holes and marbles metaphor for solving -5 + 8.
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