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Teaching Mathematics for Learning with Understanding
in the Primary Grades

Research is beginning to provide some perspective on what it means for students to learn

mathematics with understanding (Hiebert & Carpenter, 1992), but there is little definitive evidence

about how instruction should be designed to facilitate learning with understanding. Classical

experimental paradigms in which variables are systematically manipulated have not proved

particularly successful in resolving the issue. A thesis of this paper is that learning with

understanding is possible under a variety of conditions. It is not the use of particular instructional

activities or materials that leads to learning with understanding; rather it is critical is that instruction

provides an environment that fosters understanding. Exactly what that means is the subject of the

remainder of this paper.

We attempt to shed some light on how learning with understanding occurs in classrooms by

describing critical features of four instructional programs designed to foster understanding of

mathematical concepts and skills. To provide a focus for our analysis, we consider how

understanding develops within a spacified Content domain, multidigit numbers and operations. This

selection was based on the belief that learning of what has traditionally been considered

computational skills offers an ideal site for developing understanding of fundamental number

concepts. However, our conceptions of fundamental number concepts and skills and how those

concepts and skills are acquired are very different from what has been the norm in traditional

classrooms. Furthermwe, the projects described in this paper share the assumption that the

learning of what has traditionally been considered computational skills can support the development

of an attitude toward learning mathematics in which understanding is thought to be critical and

reasoning and communication are viewed as an essential component of learning mathematics.

We start with a brief discussion of understanding. Next we describe how multidigit number

concepts and operations are learned in each of the four programs. Finally, we discuss some factors

that are common to all four programs as well as some salient differences among them.

Understandino Understanding

Our working definition of understanding follows the analysis of Hiebert and Carpenter

(1992) and others that characterizes understanding in terms of how knowledge is connected.

Broadly speaking, knowledge that is understood is rich in connections. But this does not imply that

all connections among constructs signify understanding. Particular connections among constructs

may in fact 3present misconceptions, whereas true understanding of a particular construct may

require that knowledge is connected in very specific ways. Thus, it is critical to have some

knowledge about the nature of the connections that are constructed.

Starting with the assumption that understanding can be described in terms of how
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knowledge is connected, differences in goals of instruction of different procrams may be

characterized in terms of the kinds of connections that are considered to be most central. Any

program that is concerned with learning with understanding must develop connections between

conceptual knowledge and the procedures children use to solve problems, but how these

connections are established and which connections are vital may differ among programs.

Much work in mathematics is based on representing quantitative situations and then

operating on these representations. Connections can be built among the different forms of

representation (physical, pictorial, symbolic, spoken and written words) and within a particular

representation form.

Connections between different forms of representation include relating written numerals with

spoken words, relating physical and pictorial collections grouped by tens with numerals and spoken

number words, and relating manipulations of physical materials with procedures with numerals.

Symbols and symbolic procedures also can be given meaning by relating them to problem situations

that children understand. For example, operations of addition and subtraction can be defined by

relating them to joining, separating, comparing, and part-whole problem situations that most young

children intuitively understand well before they encounter the formal operations of arithmetic

(Carpenter, 1985; Fuson, 1992).

By connections within a representation form we mean noticing patterns and regularities

within a system. This would include becoming aware of patterns within the standard notation

system and using these regularities to develop additional concepts and procedures and to solve

problems. For example, children who understand regrouping for two and three digit numbers can

extrapolate that knowledge to larger numbers. Connections within a representational form also are

represented by children justifying or extending a procedure by appealing to the properties of the

number system itself rather than to some external referent like base ten blocks. For example, a

child may draw on implicit knowledge of commutativity and associativity to add 58 + 36 by first

adding 50 and 30 and then-adding on 8 and then 6 more. This does not mean that the child could

state the principles or apply them in more general cases, but the child does appear to have some

implicit knowledge of properties of numbers and operations to which new concepts and procedures

can be connected.

Another critical kind of connection is between a mathematical construct or procedure and

its purposes. An example is the procedure of adding from right to left in most conventional

algorithms for adding multidigit numbers. The purpose of adding this way instead of from left to

right is to eliminate the need to write intermediate partial answers when a column adds up to more

than ten. The procedure is efficient, but there is little evidence that many children understand the

purpose for adding numbers in this way. Without this understanding the procedure can appear
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arbitrary.

Specific examples of how these three dimensions of understanding are played out in

children's learning of multidigit number concepts and operations are discussed in some detail in the

sections that follow.

Teaching for Understanding: Four Examples

Four examples of programs designed to help children learn number concepts and operations

with understanding are: (a) the Supporting Ten-Structured Thinking projects (STST), directed by

Karen Fuson at Northwestern University, (b) the Conceptually Based Instruction project (CBI),

directed by James Hiebert and Diana Weame at the University of Delaware, (c) Cognitively Guided

Instruction (CGI), directed by Thomas Carpenter, Elizabeth Fennema, and Megan Franke at the

University of Wisconsin, and (d) the Problem Centered Mathematics Project (PCMP), directed by

Piet Human, Han lie Murray, and Alwyn Olivier at the University of Stellenbosch in South Africa.

All four programs take a problem-centered approach to teaching multidigit number concepts

and operations. What this means is that the learning of multidigit concepts and procedures is

perceived as a problem-solving activity rather than as the transmission of established rules and

procedures. Teachers do not demonstrate procedures or expect all children to use a particular

algorithm, Children spend a great deal of time working out their own procedures for solving place

value and addition and subtraction problems and sharing and discussing alternate strategies with

their classmates. The intent is to convey to stmients the importance of working out a strategy for

solving the problem and then sharing and reflecting on alternative strategies.

In all four projects, the teacher plays an active role in the classroom by posing the

problems, coordinating the discussion of strategies, joining the students in asking questions about

strategies, and occasionally sharing an alternative strategy. The intent is to create an environment

in which the construction of strategies is problematic and in which teachers support students'

efforts to deal with such problems. In traditional instruction, teachers often do more than serve as

a resource or guide. By intervening too much or too deeply, teachers can easily remove the

problematic nature of learning multidigit operations. This does not mean that teachers in the four

project classes do not provide input to classroom discussion, but they must be sensitive to convey

to the students that they can figure out strategies for dealing with multidigit numbers and do not

need to appeal to the authority of the teacher to ascertain whether a procedure is correct or
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acceptable.

Su000rtina Ten-Structured Thinking (STST)

The Supporting Ten-Structured Thinking (STST) project has engaged in three related series

of studies. The first studies focused on small groups of second grade children using base-ten

blocks to invent procedures to add and subtract four-digit numbers(Fuson & Fraivillig, 1993; Fuson,

Fraivillig, & Burghardt, 1992). The second set of studies were case studies of two children using a

computer base-ten microworid to invent multidigit procedures (Fraivillig, Fuson, & Thompson,

1993). The current studies focus on supporting urban, low SES Latino children's mathematical

thinking (Fuson & Perry, 1993; Fuson & Smith, 1994). The recent studies go beyond the earlier

studies in that they provide specific supports for linking single-digit and multidigit numbers and for

relating written numerals and spoken number words. The recent studies also present problems in

real world situations familiar to children.

The STST project provides the most explicit guidance and support for making connections

between representations of the four projects. As with the other three projects, multidigit

procedures are constructed by the children themselves, either individually or collectively, so that

the learning of multidigit procedures is viewed as problem-solving rather than as the acquisition of

established procedures. The recent STST studies also rely primarily on word problems set in a

context rather than horizontally or vertically presented calculations presented on worksheets. What

distinguishes the STST project from the other three projects is (1) connections are much more

explicitly drawn between representational forms in order to give meaning to multiunit numbers and

operations on them and (2) children are provided specific conceptual supports to provide

quantitative meaning to procedures and word problem situations.

When children or the teacher disduss multiunit numbers and operations on them, they

consistently specify relations between number words, numerals, and quantities; and conceptual

supports are provided that make the connections more apparent. Initially children are expected to

demonstrate explicit connections between symbolic procedures for adding and subtracting and
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operations on base ten blocks or other materials that show ones, tens, and hundreds. Thus, when

children describe a procedure that they have invented, they are expected to be able to justify each

step in the procedure by showing how it corresponds, to a legitimate manipulation of the physical

multiunit quantities. Children describe and justify their solution in words as they relate their written

solutions to the corresponding physical representation. Having to describe how their operations on

written symbols correspond to manipulations of the multiunit quantities maker it less likely that

children simply imitate the solutions of other children and more likely that they understand the

solutions that they generate.

STST instruction also provides conceptual supports to make connections between number

words and multiunit groupings more explicit. The English words used to denote numbers less than

one hundred do not support connections as well as the words for larger numbers do. With

numbers larger than one hundred, the spoken number words specifically designate the multiunits

and the number of each multiunit. We say "eight thousand three hundred" to designate 8 groups

of a thousand and 3 groups of a hundred. With numbers less than one hundred the designation of

units in European languages is less explicit and is irregular in several ways. The number names do

not clearly emphasize the groupings of tens; in English we say "forty" rather than "four ten." The

problems are even more acute for numbers in the teens. Numbers in the teens are designated by a

single word, and the first syllable of the word denotes the units rather than the tens. For example,

in the word seventeen the number of ones is said before the number of tens, which often results in

children writing nineteen as 71.

To make the connection between spoken number words and multiunit groupings inore

explicit, STST students learn a spoken number word system in which multiunits are explicitly

named. Children say "four tens and five ones" rather than "forty-five" and "one ten and seven

ones" rather than "seventeen." When children are first learning multidigit condepts, they use this

system as well as than the standard number words when they talk about numerical situations.

STST also structures instruction to take advantage of the properties of larger numbers that

7
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support the development of multiunit concepts. Because the English spoken number names for

larger numbers support connections between number names and collected multiunits, instruction

moves quickly to incorporate three- and four-digit numbers.

STST instruction also supports specific solutions of single-digit addition and subtraction that

involve grouping by ten. Sums and differences are chunked to make a ten and some ones (e.g. 8

+ 5 = 8 + 2 + 3 = 10 + 3). There is a direct connection between these solutions and the

Name Ten number system described above (10 + 3 translates directly to one ten three), and they

are easily integrated into children's solutions of multidigit addition and subtraction problems.

Conceptually Based Instruction (CBI)

The Conceptually Based instruction project (CBI; Hiebert and Wearne,1992; 1993) starts

with the hypothesis that connections do not have to be formed by developing step-by-step one-one

correspondences between written notation and physical representations. Rather the focus is on

having children reflect on similarities and differences highlighted by the different representation

forms. Hiebert and Wearne also assume that these comparisons can be drawn most productively

when the materials and symbols are both used as aids or tools for solving problems rather than

studied outside of a problem context or used only for demonstration,

Several principles have guided the development of instruction to support students' efforts

to make connections. First, external representations (physical, pictorial, verbal, symbolic) are used

as tools for demonstrating and recording quantities, acting on quantities, and communicating about

quantities. Second, once a particular representation is introduced (e.g., base-ten blocks), it is used

consistently to allow students to practice using it as a tool :ind to become familiar with the uses

and connections it affords. Third, the representations are used to solve problems as well as being

analyzed as interesting artifacts in their own right. Fourth, class discussions focus on how the

representations can be used and on how they are similar and different. The general aim of these

principles is to help students become comfortable with different forms of representrition and to

build relationships between them.

8
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Several additional guidelines were followed in designing instruction. Physical materials and

verbal stories are used as the initial representations for quantities and actions on quantities.

Pictures of the physical materials that have been manipulated by the students are then used for

convenience and for focusing class discussions. Finally, written symbols are introduced as efficient

ways of recording the quantities and actions that have been explored and discussed using the other

representations. Once a particular form of representation is introduced, it is used continually and

interchangeably with previous forms.

Classroom lessons are organized around the solving of several problems, usually drawn

from a common theme or scenario. The problems are constructed so students can solve them with

strategies already in their repertoire or with new, more efficient strategies. This feature is intended

as a support for connecting new knowledge with prior knowledge.

During the first few days, only blocks are used to solve problems. The reasons for this are

(1) to encourage all the students to become familiar with the features of the blocks, (2) to develop

class discussions in a context in which all students can participate (The referents for the discussion

are relatively unambiguous and all students are equally familiar with them.), and (3) to provide a

referential base that students can later use to support their inventions and/or explanations (The

blocks can serve as a ready referent for students when they explain or defend their strategies.).

After students have some experience with the blocks, written symbols are used, and students

develop more sophisticated strategies with blocks and written symbols simultaneously. Each child

has a full set of blocks, and they are always available. By the end of first-grade, almost all

students are familiar with the tool-like power of the blocks. At the least, they can be used as a

default option and/or can be used to check the outcome of a newly invented mental or written

strategy for adding or subtracting two-digit numbers. By the end of second grade, most students

use written symbols to solve two- and three-digit problems, but they continue to use blocks to

check their answers or to help them invent strategies for new kinds of problems.

During a usual class period, the scenario for the day is presented along with a first problem.

9



9

After the problem is solved, either individually or in small (spontaneously constructed) groups,

students share their strategies. Because base-ten blocks are always available, the strategies rely

either on written symbols, blocks, or a combination of the two. Occasionally, students solve the

problem without blocks or written symbols but this is not common, probably because they are

asked to recall later how they solved the problem and because mental calculation is not explicitly

encouraged. Strategies are then discussed by encouraging students to ask questions if they do not

understand, to comment on the strategy, and to compare it to others they have used or shared.

'Explicit attention is paid to the similarities between strategies with the blocks and strategies with

written symbols. After the discussion, a second problem is posed, and the lesson continues in this

way.

It should be noted that each form of representation affords and constrains strategies in

particular ways. The base-ten blocks, example, support regrouping strategies, especially in

subtraction contexts that students perceive to require a take-away action. Discussions of

connections between written and physical strategies in this context help to illuminate how

regrouping is used in subtraction, because one must trade a ten for 10 ones or put a ten with the

ones in order to take away more ones than are initially present.

Cognitively Guided fEugas-'r i n

Cognitively Guided Instruction (Carpenter & Fennema, 1992; Carpenter, Fennema, &

Franke, 1992) is not a program of instruction in a traditional sense. There is no curriculum or

recommended activities. CGI focuses on teachers' knowledge. The goal is to help teachers better

understand children's thinking so that they can build on the knowledge that children already have.

It is up to the teachers to decide how to use that knowledge. However, in spite of the fact that

there is no specified program of instruction, there are certain common features in many CGI

classrooms. Although there are wide variations among classes, the following description captures

some of the features that characterize instruction of multidigit number concepts based on in depth

case studies of selected classes (Carpenter, Franke, Fennema, Weisbeck, & Ansell, in preparation).

1 0



10

In these Cognitively Guided Instruction classes, procedures for operating on multidigit

numbers develop as natural extension of the procedures that children use to solve problems

involving single units. When children enter school, most of them are able to solve a variety of

basic word problems by modeling the action or relationships described in the problems. Initially

they model the problems by using some kind of counters to represent the quantities, action, and

relationships in the problems. Over time these physical modeling strategies are absti acted and

breviated as children begin to use counting strategies and derived facts. Essentially the same

pattern occurs for children's solutions of problems with multidigit numbers. Children's symbolic

procedures evolve out of direct modeling strategies with tens materials.

Word problems provide the basis for almost all instruction. In the early grades, teachers

begin by giving children a variety of word problems that can be solved by modeling and counting

using single counters. Teachers do not demonstrate the solution to problems, but a great deal of

time is spent discussing alternative strategies for solving each problem. The disCussions serve as

models for other children, and they provide an opportunity for children to reflect on their own

solutions. Initially children solve problems involving multidigi; numbers by modeling the problems

with single unit counters. These solutions do not require any real conceptions of place value

beyond the ability to count.

In the classes studied there was very little specific instruction devoted to place value

instruction per se. Children engaged in a few activities in which they grouped collections of

objects by ten or counted objects grouped by ten, but these activities did not seem to play a major

role in children acquiring place value concepts. Essentially children appear to learn place value

concepts as they explore the use of ten blocks and other base-ten materials to solve word

problems and listen to other children explain their solutions with the blocks.

Typically base-ten materials, connected ten blocks or stacking cubes stored in rods of ten

cubes, may be made available as early as the first or second week of school in the first or second

11
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grade. Children initially use these materials as single units to solve problems, counting each of the

individual units in the ten blocks. The tan blocks simply serve as convenient collections of unit

counters that do not get mixed up. With teacher encouragement, some children come to recognize

that they do not have to count all the individual units in the tens block each time they construct a

set. At first they may count on by one from ten. Soon they construct two-digit quantities by

making collections of tens and ones.

At first most children are relatively inflexible in constructing and counting sets using tens.

They may solve an addition problem by making each of the addends by counting collections of ten

but then find the sum by counting the total by ones. Place value concepts emerge over time.

There are a variety of direct modeling strategies that children use to solve different word problems.

Some of the strategies are more sophisticated than others in that they are more efficient and

involve more flexible use of place value concepts. The transition to using more sophisticated

strategies may be facilitated by teacher probes (Ns there an easier way to count those? Is there

something you can do so that you can take away 87"), by the selection of problem types and

numbers in problems, and by listening to other children demonstrate how they solved a given

problem.

Teachers also use a mix of addition, subtraction, multiplication, and division problems

involving different number combinations in. a given lesson. For some problems children can use

tens relatively easily, but for others it is more difficult. As a consequence, even children who can

use tens blocks to solve some problems frequently fall back to using single unit counters for others.

For example, children can combine tens and ones in adding '23 and 48 without actually exchanging

ones for tens. Children can simply count on 11 more after combining the tens to get 60. On the

other hand, partitioning a collection of 42 objects into 3 equivalent sets does require a tens-ones

exchange. Thus, children have to evaluate whether they can use tens to solve a particular

problem. There is not a single way of solving problems or using ten blocks that is practiced

repeatedly.

12
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Over time children become increasingly flexible and efficient in the use of base-ten

materials. As their use of the materials becomes more automatic, they come to depend less on the

manipulations of the physical materials themselves. Over time they are able to abstract their

solutions with physical materials so that they can add and subtract multidigit numbers without

them.

Throughout the year different children in a CGI class operate at many different levels with

respect to place-value knowledge. One important consequence is that there is no prevalent

strategy that all children use at a particular point in time. Children have the latitude to use a

strategy that makes sense to them at the time. A consequence of the variety of strategies in use

at any given time is that children have the opportunity to learn more advanced strategies by

interacting with other students who are using them. Thus, although children are not asked to

relate specific components of different representations to one another, they continuously shift

among representations both in their own solutions of different problems and in their discussions of

different strategies for the same problems with classmates. It is hypothesized that the continuing

discussion of multiple representations and moving back and forth among representational types is

what helps children to see the connections among different representations even though specific

mappings are not specified.

problem Centered Mathematics Protect (PCMP)

The Problem Centered Mathematics Project (PCMP; Murray, Olivier, & Human, 1992;

Olivier, Murray, & Human, 1990) is based on an analysis which portrays the development of

children's number concepts and computational strategies as proceed;ng through three basic levels.

Level 1 is characterized by the ability to count a number of objects and a knowledge of the number

names and their associated numerals, withov assigning meaning to the individual digits of a

multidigit number. Typically children at this level solve addition and subtraction problems by direct

modeling with single counters. Level 2 understanding of number is characterized by the ability to

conceptualize number in the abstract, independent of immediate physical models. This ability

13
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comes into play in children's use of counting on and counting back strategies. It is not until Level

3 that children begin to use knowledge of place value to solve problems. At Level 3 they are able

to use the property of additive composition of numbers lo replace a given number with two or more

numbers that are more convenient for computation. For example, they can interpret 34 as 30 + 4.

But children do not only group numbers into tens and ones. For some problems, particularly those

involving division, other groupings are more appropriate. For example, to share 51 candies among

three children, it would not be useful to decompose 51 into 50 and 1; a partition of 51 into 30 and

21 or 30, 12, and 9 would make more sense.

Thus, the levels can be described in terms of children constructing increasingly abstract

units of number. At Level 1 a number like 27 means 27 e:ies; at Level 2 it means 27 ones and

also one 27; at Level 3 it means 27 ones and one 27, but also 20 and one 7 or 25 and one 2, etc.

The basic approach in PCMP classes is to help children to construct these increasingly

sophisticated concepts of different units, including ten, and to build these concepts on children's

counting-based meanings by encouraging increasingly abstract counting strategies and child-

generated computational algorithms.

Instruction in PCMP classrooms systematically facilitates the transition through the three

levels of development described above by encouraging children to reflect upon their strategies for

solving problems and discuss them with other children. Number concept development goes hand in

hand with children's construction of computational algorithms, and little distinction is made

between the two. Each of the levels affords certain kinds of strategies, and children within each

level use methods for solving problems that are appropriate for that level. For example, children at

Level 1 might add 28 + 15 by modeling the problem with counters and counting by ones. Children

at Level 2 may count on 15 from 28, and children at Level 3 may decompose the numbers so that

tens and ones can be added separately (20 plus 10 is 30, and 8 more is 38, and 2 more is 40 and

then the 3 that is left from the 5 makes 43).

Children do not use structured manipulatives like base-ten blocks that embody base ten

14
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groupings. Instead, they use loose counters, collect them into groups of ten, and count 10, 20,

30, 31, 32, 33, 34. Children have two sets of numeral cards: multiples of ten and ones. To

represent the numeral 34, they take the 30 card and the 4 card and place the 4 over the zero of

30. Once children reach Level 3, the 'presentation of two-digit numerals is therefore handled as

the juxtaposition of two numbers, a tens number and a ones number.

Computational procedures build directly on children's number concepts and their knowledge

of properties of number operations rather than on connections to operations with manipulative

materials. Any computational procedure involves transforming the given task to one or more easier

tasks that the child-already knows how to do. The process of changing the task to equivalent but

easier sub tasks involves three distinguishable sets of sub tasks; (1) transformation of the number,

(2) transformation of the given computational task, and (3) carrying out the computation. For

example, the addition of 24 + 38 involves the transformation of the numbers (24 = 20 + 4

and 38 = 30 + 8). The computational task (20 + 4) + (30 + 8) is transformed to the

equivalent task [(20 + 30) + 8] + 4. Transformations of computational tasks depends on at least

implicit awareness of certain properties of operations (theorems in action), in this case the

commutative and associative properties. The resulting computations involve tasks that are familiar

and may be based on recall of known number combinat!ons together with knowledge of number

concepts. 20 + 30 = 50; 50 + 8 = 58; 58 + 4 = 62.

The standard vertical addition algorithm depends on the very transformations, but the

transformations are hidden. In using a standard vertical algorithm, children often loose sight of the

fact that they are actually adding 20 and 30; they think of the addition in terms of columns of

numbers. 5 + 8 and 2 + 3. In PCMP classes the procedures are carried out at the conceptual

level; children actually think of the addition as 20 + 30, not 2 + 3. Children never are expected

to use standard computational algorithms.

The instructional approach emphasizes the role of negotiation, interaction, and

communication between teacher and students and amoMtudents in the evolution of their

15
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cognitive processes. Problems are set to students in small groups. Students are expected to

demonstrate and explain their methods, both verbally and in writing, with the teacher providing

needed support with respect to notation and terminology. Children are also encouraged to discuss,

compare, and reflect on different strategies, trying to make sense of other students' explanations,

thereby learning from each other. Teachers spend a great deal of time listening to pupils, accepting

their explanations and justifications in a nonevaluative manner, with the purpose of understanding

and interpreting children's available cognitive structures. This enables the teacher to provide

appropriate further learning experiences that will facilitate the child's development.

Commonalities and Differences Amon() the Four Programs

In all four of the programs, the vast majority of time is spent engaged in activities in which

connections between or within representational forms are made explicit. Children discuss multiple

strategies involving multiple representations; they use symbolic procedures in which connections to

basic number concepts and properties of operations are explicitly drawn upon. They are not

presented with procedures to follow; they are not expected to engage in the syntactic manipulation

of symbols. All four programs at least defer the use of traditional vertical algorithms for addition

and subtraction until children have demonstrated some basic understanding of muitidigit numbers

and procedures. In the Problem Centered Mathematics Project standard vertical algorithms are

never introduced. In contrast, traditional programs of instruction focus on one desired procedure

and attempt to move quickly to the practice of symbolic skills. In these four programs, the time is

spent insuring that children's knowledge is connected rather than practicing skills.

A key feature of all four programs that insures that children must connect the concepts and

procedures that they are learning to their existing knowledge base is that all learning, including in

particular the learning of muitidigit procedures, is taken as a problem-solving activity. Children are

not provided with algorithms to learn; they must construct them themselves. Multidigit problems

can be solved with understanding at a number of levels of sophistication, ranging from direct

modeling with counters or base ten blocks up to very abstract invented algorithms. Because
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children construct their own procedures there is no reason to imitate a procedure that they do not

understand. As a consequence, children should recognize the reason for each step in a procedure,

because they are the ones who decide what steps to follow. In other words, because children

construct and explain their own procedures, they should be able to connect the steps in the

procedures to their purposes. Teachers clearly communicate that specific solution strategies are

not expected, and the classroom environment is structured to encourage children to construct

alternative strategies. One of the critical factors in establishing this problem-solving environment is

that children are asked to describe and explain the strategies they used to solve any given problem.

Children talk about how they solved a problem to the teacher, to other children or small groups of

children, and to the whole class. This discussion of alternative strategies serves four important

functions: (1) It communicates to children that alternative strategies are valued. (2) It forces

children to use procedures that they understand, because they need to understand whatever

procedure they use well enough to explain it. (3) Explaining procedures encourages children to

reflect upon them. Many researchers have pointed out the centr" role that reflective abstraction

plays in the construction of abstract number concepts. Earlier in this paper we discussed how

operations with manipulative materials and abstract symbols can be linked through explanation and

reflection. (4) Children can learn from one another. The explanations of other children provide

models of alternative strategies that children can use for themselves. This social construction of

knowledge is very different from situations in which the teacher presents a strategy for all children

to imitate. Children are not expected to adopt specific strategies that other children present.

Although interactions with other children influence the strategies that any child adopts, they are

not in a position that they have to adopt any strategy that they do not understand.

Fundamental Differences

Although the four programs all provide extensive opportunity for students to connect

emerging number concepts and procedures to previously established concepts and procedures,

there are fundamental differences in the nature of the connections and how they are formed. One
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of the fundamental differences is in the roles played by connections between and within

representational forms. -These differences are manifested in the children's use of manipulative

materials. The Problem Centered Mathematics Project does not employ structured base-ten

manipulative materials like base-ten blocks. In the other three programs structured ten materials

play a prominent role.

Within the three programs in which structured ten materials are used, there are critical

differences in the ways in which materials are used. In the Supporting Ten-Structured Thinking

project, specific attention is drawn to the connections between operations on base-ten blocks and

operations on symbols. Each step in the symbolic procedure is linked to the corresponding

operation on the base-ten blocks. In Conceptually Based Instruction step-by-step mapping enters

the class discussion as one way of justifying a particular procedure. However, step-by-step

mapping is not required; for some students procedures with blocks and written symbols do not

develop simultaneously. Procedures with blocks are developed first, and procedures with written

symbols are then developed by reflecting on the blocks procedures. In Cognitively Guided

Instruction, manipulations with blocks generally are not linked step-by-step to manipulations with

symbols. Symbolic procedures emerge as more efficient variants of procedures with blocks.

Connections between blocks and symbols are cons.ructed as children abstract the operations on

the blocks in creating their own ;nvented symbol procedures. Having children explain how

they solved problems with the blocks may play a significant role in extending the physical modeling

. strategies with base-ten blocks to more abstract symbolic procedures. When children talk about

combining tens, trading tens for ones, and the lika, their verbal descriptions of operations with

physical materials come to sound very much like the invented symbolic procedures that replace

them.

There has been a great deal of research on the question of the use of manipulative

materials. Initially the questions revolved around whether instruction with manipulative materials

was more effective than instruction in which children did not use manipulatives. Over time we
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have come to recognize that the question is not so simple as whether manipulatives are used or

not; rather the ways in which manipulatives are used and how they support understanding of

fundamental constructs is critical. We also see from these four projects that there may not be a

single best material or single best way to use materials to support the learning of specific concepts.

Instead, genuine understanding may occur under diverse conditions and along different paths.

This diversity also is reflected in the sequences in which concepts may be learned. There

has been an extended debate in the literature whether children should develop a relatively solid

understanding of basic multiunit concepts before they are asked to apply those concepts to add

and subtract multidigit numbers or whether the multiunit concepts are more effectively learned in

the process of using them to add and subtract (Baroody, 1990; Fuson, 1990). Our evidence

suggests that children can learn with understanding under both conditions. In the Conceptually

Based Instruction project children spend a substantial amount of time on grouping activities

designed to develop multiunit concepts before they are given problems involving addition and

subtraction of multidigit numbers. In the other three projects the learning of multiunit concepts is

more integrated with multidigit addition Jnd subtraction from the start.

Conclusion

We began the paper by defining the development of understanding as the process of

building connections. It is not SL. xising that the critical features shared by the four programs

engage students in building connections. Treating the development of procedures as a problem-

solving activity and asking students to share and explain their procedures encourages students to

reflect on procedures and on the properties of the whole number system. Reflection of this kind

involves drawing connections between forms of representation or drawing connections within a

particular form of representation, or drawing connections between a procedure and its purpose.

We cannot yet say exactly which connections are critical, and it appears that understanding may

be generated through a variety of different connections. Consequently, some differences between
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the programs that may be quite salient, such as whether physical materials are used and how they

are used, may not be essential for learning with understanding. What appears essential is that

students are provided with many opportunities to create connections through developing and

reflecting on procedures.
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