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Teaching Mathematics for Learning with Understanding
in the Prirnary Grades

Resaarch is beginning to provide some perspective on what it means for students to learn
mathematics with understanding (Hiebert & Carperiter, 1992), but there is little definitive evidenca
about how instruction should be designed to facilitate learning with understanding. Classical
experimental paradigms in which variables are systematically manipulated have not proved
particularly successful in resolving the issue. A thesis of this paper is that learning with
understanding is possible under a variety of conditions. It is not the use of particular instructional
activities or materials that leads to learning with understanding; rather it is critical is that instruction
provides an environment that fosters understanding. Exactly what that means is the subject of the
remainder of this paper.

We attembt to shed some light on how learning with understanding occurs in classrooms by
describing critical featuras of four instructional progfams designed to foster understanding of
mathematical concepts and skills. To provide a focus for our analysis, we consider how )
understanding develops within a spacified content domain, multidigit numbers and operations. This
selection was based on the belief that learning of what has traditionaily been considered
computational skills offers an ideal site for developing under;tanding of fundamental number
concepts. However, our conceptions of fundamental number concepts and skills and how those
concepts and skills are acquired are very differant from what has been the norm in ;traditional
classrooms. Furthen:mc;‘e, the projects described in this paper share the assumption that the
learning of what has traditionally been considered computational skills can support the deveiopment
of an attitude toward learning mathematics in which understanding is thought to be criticai and
teasoning and communication ars viewed as an essential component of learning mathematics.

We start with a brief discussion of understanding. Next we describe how multidigit number
concépts and operations are iearned in each of the four programs. Finally, we discuss some factors
that are common to all four programs as well as some salient differences among them.

nderstandi n . in

Our working definition of understanding follows the analysis of Hiabert and Carpenter
(1992) and others that characterizes understanding in terms of how knowledge is connected.
Broadly speaking, knowledge that is understood is rich in connections. But this does not imply that
all connections among constructs signify understanding. Particular connections among constructs
may in fact :present misconceptions, whereas true understanding of a particular construct may
require that knowledge is connected in very specific ways. Thus, it is critical to have some
knowledge about the nature of the connections that are constructed.

Starting with the assumption that understanding can be described in terms of how .
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knowiledge is connected, differences in goals of instruction of different procrams may be

characterized in terms of the kinds of connections that are considered to be most central. Any
program that is concerned with learning with understarnding must develop connections between
conceptual knowledge and the procedures children use to solve problems, but how these
connections ara established and which connections are vital may differ among programs.

Muéh work in mathematics is based on representing quantitative situations and then
operating on these representations. Connections can be built among the different forms of
representation (physical, pictorial, symbolic, spoken and written words) and within a particular
representation form.

Connections betwaeen different form*ls of representation include relating written numerais with
spoken words, relating physical and pictorial collections grouped by tens with numerals and spoken
number words, and relating manipulations of physical materials with procedures with numerals.
Symbols and symbolic procedures also can be given meaning by relating them to problem situations
that children understand. For example, operations of addition and subtraction can be defined by
relating them to joining,' separating, comparing, and part-whole problem situations that most young
chiidren intuitively understand waell kefore thay encounter the formai operations of arithmetic
(Carpenter, 1985; Fuson, 1992). )

By connections within a representation form we mean noticing patterns and fegularities
within a system. This wouid include becoming aware of patterns within the standard notation
system and using these regularitias to develop additional concepts and procedures and to solve
probleims. For example, children who dnderstand regrouping for two and three digit numbers can
extrapoiate that knowledge to larger numbers. Connections within a representational form also ars
represented by children justifying or 2xtending a procedure by appealing to the properties of the
number system itself rather than to some external refarant like base ten biocks. For example, a
child may draw on implicit knowledge of commutativity and associativity to add 58 + 36 by first
adding 50 and 30 and then-adding on 8 and then 6 more. This does not mean that the child could
state the principies or apply them in more general cases, but the child does appear to have some
implicit knowledge of properties of numbers and operations to which new concepts and procedures

“can be connected.

Another critical kind of connection is between a mathematical construct or procedure and
its purposes. An example is the procedure of adding from right to left in most conventional
algorithms for adding multidigit numbers. The purposé of adding this way instead of from left to
right is to eliminate the need to write intermediate partial answars when a column adds up to more
than ten. The procedure is efficiant, but there is little evidence that many children urderstand the
purpose for adding numbers in this way. Without this understanding the procedure can appear
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arbitrary.

Specific exampies of how these three dimensions of understanding are piayed out in
children’s learning of multidigit number concepts and operations are discussed in some detail in the
sactions that follow.

Teachina for Understanding: Four Examples
Four examples of programs designed to help children learn number concepts and operations
with understanding are: (a) the Supporting Ten-Structured Thinking projects (STST), directed by
Karen Fuson at Noﬁhwestern University, (b) the Conceptually Based Instruction project (CB),

" directed by James Hiebert and Diana Wearne at the University of Delaware, (c} Cognitively Guided

Instruction (CGI), directed by Thomas Carpenter, Elizabeth Fennema, and Megan Franke at the
University of Wisconsin, and (d) the Problem Centered Mathematics Project (PCMP), directed by
Piet Humar_1, Hanlie Murray, and Alwyn Olivier at the University of Stellenbosch in South Africa.

All four programs take a problem-centered approach to teaching multidigit number concepts
and operations. What this means is that the learning of multidigit concepts and procedures is
perceivgd as a problefn-solving activity rather than as the transmission of established rules and

procedures. Teachers do not demonstrate procedures or expect all children to use a particular

- algorithm. Children spend a great deal of time working out their own procedures for solving place

value and addition and subtracion problems and shariing and discussing alternate strategies with
their classmates. The intent is to convey to students the importance of working out a strategy for

solving the problem and then sharing and reflecting on alternative strategies.

In all four projects, the teacher plays an active role in the classroom by posing the
problems, coordinating the discussion of stratagies, joining the students in asking questions about
strategies, and occasionélly sharing an alternative strategy. i‘he intent is to create an environment
in which the construction of strategies is probleratic and in which teachers support studerits’
efforts to deal with such problems.. In traditional instruction, teachers often do more than serve as
a resource or guide. By intervening too much or too deeply‘, teachers can easily remove the
problematic nature of learning multidigit operations. This does not mean that teachers in the four
project classes do not provide input to classroom discussion, but they miust be sensitive to convey
to the students that they can figure out strategies for dealing with multidigit numbers and do not

need to appeal to the authority of the teacher to ascertain whather a procedure is correct or
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acceptable.
n- hi

The Supporting Ten-Structured Thinking (STST) project has engaged in three related series -
of studies. The first studies focused ori small groups of second grade children using base-ten
blocks to invent procéedures to add and subtract four-digit numbers(Fuson & Fraivillig, 1993; Fuson,
Fraivillig, & Burghardt, 1992]. The sacond set of studies were case studies of two chiidren using a
computer base-ten microworld to invent multidigft procedures (Fraivillig, Fuson, & Thompson,
1993). The current studies focus on supporting urban, low SES Latino children’'s mathematical
thinking (Fuson & Perry, 1993; Fuson & Smith, 1994). The recent studies go bayond the earlier
studies in that they provide specific supports for linking single-digit and multidigit numbers and for
relating written numerals and spoken number words. The racent studies also present problems in
real world situations familiar to children.

The STST project provides the most explicit guidance and_ support for making connections
between representations of the four projécts. Ag with the otljer three projects, multidigit
procedures are constructed by the children themselves, eéither individually or collectively, so that
the learning of multidigit procedures is viewed as problem-solving father than as the acquisition of
established procedures. The recent STST studies also rely primarily on word problems set in a
context rather than horizontally or verticaily preéented calculations presented on worksheets. What
distinguishes the STST project from the other three projects is (1)' connections are much more
explicitly drawn between representational forms in order to give meaning to multiunit numbers and
operations on them and (2) children are provided specific conceptual supports to provide
quantitative meaning to procedurwvs and word problem situations.

When children or the teacher discuss muitiunit numbers and operations on them, they
consistently specify relations between number words, numerals, and quantities; and conceptual
supports are provided that make the connections more apparent. Initially children are expected to

demonstrate explicit connections between symbolic procedures for adding and subtracting and
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operations on base ten blocks or other materials that show ones, tens, and hundreds. Thus, when
children describe a procedure that they have invented, they are expected to be able to justify each
step in the procedurs by showing how it corresponds to a legitimate manipulation of the physical
multiunit quantities. Chiidren describe and justify their solution in words as thay relate their written
solutions to the corresponding physical répre_sentation. Having to describe how their operations on
written symbols correspond to manipulations of the muitiunit quantities makes it lass likely that
children simply imitéte the solutions of other children and more likely that they understand the
solutions that they generate.

STST instruction also provides conceptual supports to méke connections between number
words and multiunit groupings more éxplicit. The English words used to dencte numbers less than
one hundred do not support connections as weil as the words for larger numbers do. With
numbers larger than one hundred, the spoken number word_s specifically designate the multiunits
and the number of each multiunit. We say "eight thousand three hundred” to designate 8 groups
of a thousand and 3 grodps of a hundred. With numbers less than one hundred the designation of
units in European languages is less explicit and is irregular in several ways. The number names do
neot clearly emphasize the groupings of. tens; in English we say "forty” rather than "four ten.” The
probiems are even more acute for numbers in the teens. Numbers in the tesns are designated by a
single word, and the first syllable of the word denotes the units rather than the tens. For example,

in the word geventeen the number of ones is said before the number of tens, which often results in

children writing nineteen as 71.

To make the connection between spoken number words and multiunit groupings i‘nore
explicit, STST students learn a spoken number word system iri which multiunits are explicitly
named. Children say "four tens and five ones” rather than "forty-five” and "one ten and seven
ones” rather than "seventeen.” When children are first .learning multidigit condepts, they use this

system ag well as than the standard number words when they talk about numerical situations.

STST also structures instruction to take advantage of the properties of larger numbers that




support the development of muitiunit concepts. Because the English spoken number names for

larger numbars support connections between number names and collected multiunits, instruction
movaes quickly to incorporate three- and four-digit numbers.

STST instruction also supports specific solutions of singie-digit addition and subtraction that
involve grouping by ten. Sums and differencas are chunked to make a ten and some ones (e.g. 8
+5 = 8+ 2+ 3 = 10 + 3). There is a direct connaection between these solutions and the
Name Ten number system described above (10 + 3 translates directly to one ten three), and they
are easily integrated into children’s solutions of multidigit addition and subtraction problems.

Il In ion l

The Conceptually Based instruction project {CBIl; Hiebert and Wearne,1992; 1993} starts
with the hypothesis that connections do not have to be formed by developing step-by-step one-one
correspondences between written notation and physica{ representations. Rather the focus is on
having children reflect on similarities and differences highlighted by the different representation
forms. Hiebert and Wearne also assume that these comparisons cah be drawn most productively
when the matarials and symbols are hoth used as aids or tools for solving problems rather than
studied outside of a problem context or used only for demonstration,

Several principles have guided the development of instructién to support students’ efforts
to make connections. First, external representations {(physical, pictorial, verbal, éymbolic) are used
as tools for demonstrating and recording guantities, acting on quantities, and communicating about
quantities. Second, once a particular representation is introduced (e.g., base-ten blocks), it is used
consistantly to allow students to prac_tice using it as a tool and to bacome familiar wifh the uses
and connections it affords. Third, the representations are used to solve problems as well as being
analyzed as interesting anifacts in their own right. Fourth, class discussions focus on how the
reprasentations can be used and on how they are similar and different. The general aim of these

principles is to help students bacome comfortable with different forms of representition and to

* build relationships between them.
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Several additioﬁal guidelines were followsad in designing instruction. Physical materials and
verbal stories are used as the initial representations for quantities and actions on quantities.
Pictures of the physical materials that have been manipulated by the students are then used for
convenience and for focusing class discussion—s. Finally, written symbols are introduced as efficient
ways of recording the quantities and actions that have been explored and discussed using the other
representations. Once a particular form of rapresentation is introduced, it is used continually and
interchangeably with previous forms.

Classroom lessons are organized around the solving of several problems, usuaily drawn
from a common theme or scenario. The problems are constructed so students can solve them with
strategies already in their repertoira or with new, more efficient strategies. This feature is intended
as a support for connecting new knowledge with prior knowledge.

During the first few days, only blocks are used to solve problems. The reasons for this are
{1) to encourage all the students to become familiar with the features of the blocks, (2) to develop
class discussions in a context .in which all students can participate (The referents for the discussion
are relatively unambiguous and all students are equally familiar with them.), and (3) to provide a
referential base that students can later use to support their inventions and/or explanations (The
blocks can serve as a ready referent for students when they explain or defend their strategies.).
After students have some experience with the biocks, written symbols are used, and students
develop more sophisticated stratedies with blocks and written symbols simultaneously. Each child
has a full set of blocks, and they are always available. By the end of first-grade, almost all
students are familiar with the tool-like power of the blocks. At the least, they can be used as a
default option and/or can be used to check the outcome of a newly invented mental or writte_n
strategy for adding or subtracting two-digit numbers. By the end of second grade, most students
use written symbols to solve two- and three-digit problems, but they continue to use blocks to
check their answers or to help them invent strategies for new kinds of problems.

During a usual class period, the scenaric for the day is presented along with a first problem.
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After the problem is solved, either individually or in small (spontaneously constructed) groups,
students share their strategies. Pecause base-ten blocks are always available, the strategies rely
either on written symbols, blocks, or a combination of the two. Occasionally, students solve the
problem without blocks or written symbols but this is not common, probably because they are
asked to racall later how they solved the problem and becausa mental calcuiation is not 6xplicitly
encouraged. Strategies are then discussed by encouraging students to ask questions if they dn not
understand, to cémment on the strategy, and to compare it to others they have used or shared.
‘Explicit atfention is paid to the similarities beméen strategies with the blocks and strategies with
written symbols. After the discussion, a second problem is posed, and the lesson continues in this
way. |

~ It shouid be noted that each form of represantation affords and constrains strategies in
particular ways. The base-ten blocks, for example, support regrouping strategies, qspecially in
subtraction contexts that studsnts perceive {0 require a take-away action. Discussions of
connections betw-een written and physical strategies in this context help to illuminate how
regrouping is used in subtraction, becausa one must trade a ten for 10 ones or put a ten with the

ones in order to take away more ones than are initially present.

Cognitively Guided instruction (Carpenter & Fennema, 1992; Carpenter, Fennema, &
'Franke, 1992) is not a pfogram of instruction in a traditional sense. There is no curriculum or
rscommended activities. CGl focuses on teachers’ knowledge. The goal is to help teachers better
understand children’s thinl{ing s9o that they can build on the knowledge that children already have.
It is up to the teachers to decide how to use that knowledge. HOWOVOI.', in spite of the fact that
there is no specified program of instruction, there are cémin common features in many CGl
classrooms. Although there are wide variations amonrg classes, the following description captures
some of the features that characterize instruction of multidigit number concepts based on in depth

case studies of selected classes (Carpenter, Franke, Fennema, Waisback, & Ansell, in preparation).
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In these Cognitively Guided Instruction classes, procedures for opciating on multidigit
numbers develop as riatural extension of the procedures that children use to solve problems
invé)!ving single units. When childreﬁ enter school, most of them are able to solve a variety of
basic word problems by modeling the action or ralationships described in the problems. Initiaily
they model the problems by using soma kind of counters to represent the quantities, action, and
relationships fn the problems. Over time these physical modeling strategies are abstiacted and
« "breviated as children begin to use counting strategies and derived facts. Essentially the same
pattern occurs for children’s solutions of problems with multidigit numbers. Children’s symbolic
procedures evolve out of direct modaeling strategies with tens materials.

Word problems provide the basis for almost all instruction. In the early grades, teachnrs
begin by giving children a variety of word problems that can be solved by modeling and counting
using single counters. Teachers do not demonstrate the solution to problems, but a great deal of
time is spent discussing alternative stratedies for solving each problem. The discussions serve as
models for other children, and they provide an opportunity for children to reflect on their own
solutions. Initially children solve probiems involving multidigi: numbers by modeling the problems
with single unit counters. These solutions do not require any real conceptions of place value
beyord the ability to count.

In the classes studied there was very litfle spacific instruction devoted to place value
instruction per se. Children engaged in a few activities in which they grouped collections of
objects by ten or counted objects groupsd by ten, but these activities did not seem to play a major
role in children acquiring place value concepts. Essentially children appear to learn place value
concepts as they explore the use of ten blocks and other base-tan matarials to solve word
problems and listen to other children explain their solutions with the blocks.

Typically base-ten materials, connacted ten biocks or stacking cubes stored in rods of ten

cubes, may be made available as early as the first or second week of school in the first or second

11
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grade. Childran initially use these materials as single units to solve problems, counting each of the
individual units in the ten blocks. The ten blocks simply" serve as convenient collections of unit
counters that do not get mixed up. With teache:r ancouragement, some children come to recognize
that they do nct hava to count all the individual units in the tens block each time they construct a
set. At first they may count on by one from ten. Soon they construct two-digit quantities by
making collections of tens and ones.

At first most chuldren are relatuvely inflexible in constructing and counting sets using tens.
They may solve an addmon problem by making each of the addends by counting collectuons of ten
but then find the sum by counting the total by ones. Place value concepts emerge ovc- time.
There are a variety of direct modeling strategias that children use to solve different word problems.
Some of the strategies are more sophisticated than others in that they are more efficient and
involve more flexible use of place value concepts. The transition te using more sophisticated
strategies may be facilitated by teacher probes ("Is there an aasier way to count these? Is there
something you can do so that you car take ;way 8?77), by the selaction of probiem types and
numbers in problems, and by listening to other children demonstrate how they solved a given
problem.

Teachers also use a mix of addition, subtraction, multiplication, and division problems
involving different number combinations in.a given lesscn. For some problems children can use
tens relatively easily, but for others it is more difficult. As a consaquence, even children who can
use tens biocks to solve some problems frequently fall back to using single unit counters for others.
For example, children can combine tens and ones in adding 23 and 48 without actually exchanging
ones for tens. Children can simply count on 11 more after combining the tens to get 60. On the
other hand, partitioning a collection of 42 objects into 3 equiva'lent sets does requife a tens-ones
exchange. Thus, children have to evaluate whether they can use tens to solve a particular

problem. There is not a single way of solving problems or using ten blocks that is practiced

repeatedly.
g 4
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Over time children become increasingly flexible and efficient in the use of base-ten
matorials. As their use of the materials becomes more automatic, they come to depend less on the
manipulations of the physiéal materials themselves. Over time they are able to abstract their
solutions with physicai materials so that they can add and subtract multidigit numbers without
them.

Throughout the year different chiidren in a CGl class operate at_ many differant levels with
respect to place-value knowledge. One important consequence is that there is no prevalent
strategy that ail chiidren use at a particuiar point in time. Children have the latitude to use a
strategy that makes sense tc them at the time. A consequence of the variety of stratedies in use
at any given time is that children have the opportunity to learn more advanced strategies by |
interacting with other students who are using them. Thus, although children are not asked to
relate specific components of different representations to one anothar, they continuously shift
among representations both in their own solutions of different problems and in their discussions of
different strategies for the same ﬁrob!ems with clagsmates. It is hypothesized that the continuing
discussion of multiple representations and moving back and forth among representational types is
'v_vhat helps children to see the connections among different rapresentations even though' specific
mappings are not specified.

Problem C | Matl ics Proiact (PCMP)

The Problem Centered Mathematics Project (PCMP; Murray, Olivier, & Human, 1992;
Olivier, Murray, & Human, 1990 is based on an analysis which portrays the development of
children’s number concepts and computational strategies as proceeding through thrae basic leveis.
Level 1 is characterized by the ability to count a number of objects and a knowledge of the number
names and their associated numerals, withou* assigning meaning to the individual digits of a
muitidigit number. Typically children at this level salve addition and subtraction problems by direct
modeling with single counters. Level 2 understanding of number is characterized by the ability to

conceptualize number in the abstract, independent of immediate physical models. This ability
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comaes into play in children’s use of counting on and counting back strategies. It is not until Level
3 that children begin to use knowledge of place value to solve problems. At Level 3 they are able
to use the property of additive compasition of numbers 10 repiace a given number with two or more
numbers that are more convenient for computation. For example, they can interpret 34 as 30 + 4.
But children do not only group numbers into tens and ones. For some problems, particularly those
involving division, other groupings are more appropriate. For example, to share 5% candies among
three children, it would not be useful to decompose 51 into 50 and 1; a partition of 51 into 30 and
21 or 30, 12, and 9 would make more sensa.

Thus, the levels can be described in terms of children constructing increasingiy abstract
units of number. At Level 1 a number lil;e 27 means 27 c:ies; at Level 2 it means 27 ones and
also one 27; at Level 3 it means 27 ones and one 27, but also 20 and one 7 or 25 and one 2, etc.
The basic approach in PCMP classes is to help children to construct these increasingly
sophisticated concepts of different units, including ten, and to build these concepts on children’s
counting-based meanings by encouraging increasingly abstract counting :::trategies and child-
generated computational algorithms.

Instruction in PCMP classrooms systematically facilitatas the transifion through the three
levels of development described above by encouraging children to reflect upon their strategies for
solving problems and discuss them with other children. Number concept developmerit goes hand in
hand with children’s construction of computational algorithms, and little distinction is made
between the two. Each of the levels affords certain kinds of strategies, and children within each
level use methods for solving problems that are appropriate for that level. For example, children at
Levei 1 might add 28 + 15 by modeling the problem with counters and counting by ones. Children

at Level 2 may count on 15 from 28, and children at Level 3 may decompose the numbers so that
tens and ones can be added separately {20 plus 10 is 30, and 8 more is 38, and 2 mora is 40 and

then the 3 that is left from the 5 makes 43).

Children do not use structured manipulatives like basg-ten blocks that embody base ten
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groupings. Instead, they use loose counters, collect them into groups of ten, and count 10, 20,
30, 31, 32, 33, 34. Children have two sets of numeral cards: muitiples of ten and ones. To
represent the numeral 34, they take the 30 card and the 4 card and place the 4 over the zero of
30. Once children reach Level 3, the : ,presentation of two-digit numerals is therefore hqndled as
the juxtaposition of two numbers, a tens number and a ones number.

Computational procedures build directly on children’s number concepts and their knowledge
of properties of number operations rather than on connections to operations with manipulative
materials. Any computational procedure involves transforming the given task to cne or more easier
tasks that the child-already knows how to do. The process of changing the task to equivalent but
easier sub tasks involves three distinguishable sets of sub tasks; (1) transformation of the number,
(2) transformation of the given computational task, and {3) carrying out the computation. For
example, the addition of 24 + 38 involves the transformation of the numbers (24 = 20 + 4
and 38' = 30 + 8). The computational task (20 + 4) + {30 +8) is transformed to the
equivalent task {(20 + 30) + 8] + 4. Transformations of computational tasks depends on at least
implicit awareness of certain properties of operations {theorems in action), in this case tha
commutative and associative properties. The resuiting computations involve tasks that are familiar
and may be based on recall of known number combinations together with knowledge of number
concepts. 20 + 30 = 50; 50 + 8 = 58; 58 + 4 = 62.

The standard vertical addition algorithm depends on theus very transformations, but the
transformations are hidden. In using a standard vertical algorithm, children often loose ;sight of the
fact that they are actually adding 20 and 30; they think of the addition in terms of columns of
numbers. 5 + 8 and 2 + 3. In PCMP classes the proceduras are carried out at the conceptual
level; children actually think of the addition as 20 + 30, not 2 + 3. Children never are expected
to use standard computational algorithms.

The instructional approach emphasizes the role of negotiation, interaction, and

communication between teacher and students and amoﬁgﬁtudents in the evolution of their
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cognitive processes. Problems are set to students in small groups. Students are expectad to
demonstrate and explain their methods, both verbally and in writing, with the teacher providing
needed suppoﬁ with respect to notati_on and terminology. Children are also encouraged to discuss,
compare, and reflect on different strategias, trying to make sense of other studants’ explanations,
thereby learning from each other. Teachers spend a great d;al of time listaning to pupils, accepting
their expianations and justifications in a nonevaluative manner, with the purpose of understanding
and interpreting children’s available cognitive structures. This enables the teacher to provide
appropriate further learning experiences that will facilitate the child’s development.
naliti i ' Progr

“In all four of the programs, the vast majority of time is spent engaged in activitias in which
connections between or within representational forms are made explivit. Children discuss multiple
strategies involving multiple representations; they use symbolic procedures in which connections to
basic numbar corncepts énd properties of operations are explicitly drawn upon. They are not
presented with procedures to follow; they are not expectad to engage in the syritactic manipulation '
of symbols. All four programs at least defer the use of traditional vertical algorithms for addition
and subtraction until children have demonstrated some basic understanding of muitidigit numbers

and procedures. In the Problem Centered Mathematics Project standard vertical algorithms are

never introcduced. |n contrast, traditionai programs of instruction fecus on one desired procedure
and attempt to move quickly to the practice of symbcglic skills. In these four programs, the time is

spent insuring that children's knowledge is connected rather than practicing skills.

A key feature of all four programs that insures that children must connect the concepts and
procedures that they are learning to their existing knowledge base is that all iearning, including in
particular the learning of multidigit procedures, is taken as a problem-solving activity. Children are
not previded with algorithms to learn; they must construct them themselves. Multidigit problems
can be solved with understanding' at a number of levels of sophistication, ranging from direct

modeling with counters or base ten blocks up to very abstract invented algorithms. Because
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child‘ren construct their own procedures thare is no reason to imitate a procedure that they do not
understand. As a consequence, children should recogrize the reason for each step in a procedure,
because they are the ones who decide what steps to follow. In other words, because children
construct and explain their own procedures, they should be able to connect the steps in the
procedureé to their purposes. Teachers ciearly communicate that specific solution strategies are
not expected, and the classroom environment is structured to encourage %hildren to construct
‘alternative strategiss. One of the critical factors in establishing this problem-solving environment is
that children are asked to describe and explain the strategias they usad to solve any given problem.
Children talk about how they solved a problem to the teacher, to other children or émall groups of
children, and to the whole class. This discussion of alternative strategies serves four important
functions: (1) It.commur:icates to children that alternative strategiés are valued. {(2) It forces
children to use procedures that they understand, because they need to understand whatever
procedure they use well enough to explain it. {3) Explaining procedures encourages children to
reflect upon them. Many researchers hiave pointed out the centr-' role that reflective abstraction
plays in the construction of abstract number concepts. Earlier in this paper we discussed how
operations with manipulative materials and abstract symbols can be linked through explanation and
reflaction. (4} Children can learn from one another. The explanations of other children provide
models of alternative strategies that children can use for themselves. This social construction of
knowledge is very different from situations in which the teacher presents a strategy for all children
to imitate. Children are not expected to adopt specific strategies that other children present.
Although interactions with other children influenca the strategies that any child adopts, they are
not in a position that they have to adopt any strategy that they do not understand.
Eundamental Differences

Although the four programs all provide extensive opportunity for students to connect
emerging number concepts and procedures to previously established concepts and procedures,

there are fundamental differences in the nature of the connections and how they are formed. Ons

¢
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of the fundamentai differances is in the roles played by connections between and within
representaticnal forms. -These differances are imanifested in the children’s use of manipulative
materials. The Probiem Centered Matheamatics Project does not employ structured base-ten
manipulative materials like base-ten blocks. in the other three programs structured ten materials
play a prominent role.

Within the three programs in which structured ten materials are used, there are critical
differences in the ways in which materials are used. In the Supporting Ten-Structured Thinking
project, specific attention is drawn to the connections between operations on base-ten blocks and
operations on symbols. Each step in the symbolic procedurs is linked to the corresponding
operation on the base-ten blocks. In Conceptudlly Based Instruction step-by-step mapping enters
the class discussion as one way of justifying a particular procedure. Howaever, step-by-step
mapping i; not required; for some students procedures with blocks and written symbols do not
develop simultaneously. Procedures with blocks are developed first, and procedures with written
symbois are then developed by reflecting on the blocks procedures. In Cognitively Guided
Instruction, manipulations with blocks generally are not linked step-by-step to manipulations with
symbols. Symbolic procedures emerge as more efficient variants of procedures with blocks.
Connections between blocks and symbols are cons.ructed as children abstract the operations on
the blocks in creating their own invented symbol procedures. " Having children explain how_
they solved problems with the blocks may play a significant role in extending the physical modeling
. Strategies with base-ten blocks to more abstract symbolic procadures. When children talk about
combining tens, trading tens for ones, and the like, their verbal descriptions of operations with
physical materials come to sound very much like the invented symbolic procedures that replace
them.

There has been a great deal of research on the question of the use of manipuiative
materials. Initially the questions revolved around whether instruction with manipulative materials

was more effective than instruction in which children did not use manipulatives. Qver time we
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have come to recognize that the quastion is not so simple as whether manipulatives are usad or
not; rather the ways in which manipulatives are used and how they support understanding of
fundamental constructs is critical. We also see from thess four projects that there may not be a
single best material or single best way to use materials to support tha learning of specific concepts.
Instead, genuine understanding may oi:cur under diverse conditions and along different paths.

This diver.sity also is reflected in the sequences in which concepts may be learned. There
has been an extended debate in the Iiiérature whaether children shouid develop a relatively solid
understanding of basic multiunit concepfs before they are asked to apply those concepts to add
and subtract muitidigit numbers or whether the multiunit concepts are more effectively learned in
the process of using them to add and subtract (Baroody, 1990; Fuson, 1990). Our evidence
‘'suggests that children can learn with undersfanding under both cqnditions. In the Conceptuqlly
Bésed Instruction project children spend a substantial amount of time on grouping activities
designed to develop multiunit concepts before they are given problems involving addition and
subtraction of multidigit numbers. In the other three projects the learning of multiunit concepts is

more integrated with multidigit addition und subtraction from the start.

Conglysion

We began the paper by defining the development of understanding as the process of
building connections. It is not si..yising that the critical features shared by the four programs
engage students in-building connections. Treating the development of procedures as a problem-
solving activity and asking students to share and explain their procedures sncourages students to
reflect on procedures and on the properties of the whola number system. Reflection of this kind
involves drawing connections between forms of representation or drawing connections within a
particular form of representation, or drawing connections between a procedure and its purpose.
Wae cannot yet say exactly which connections are critical, and it appaars that understanding may

be generated through a variety of different connections. Consequently, some differences between
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the programs that may be quite salient, such as whather physical materials are used and how they
are used, may not be essential for learning with understanding. What appears essential is that
students are provided with many opportunities to create connections through developing and

reflecting on procedures.
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