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Abstract

Multiple hypotheses testing in the context of a

correlation matrix is used to compare the statistical power

of the original Bonferroni with six modified Bonferroni

procedures wiAch control the overall Type I error rate.

Three definitions of statistical power are considered: 1)

detecting at least one true relationship, 2) detecting all

true relationships, and 3) the average power to detect true

relationships. Simulation resulcs show no difference

between the seven methods in detecting at least one true

relationship; but all six modified Bonferroni procedures are

more powerful than the miginal Bonferroni procedure to

detect all true relationship power and average power. Among

the six modified Bonferroni procedures, small differences

were observed, with the Holm procedure having the lowest

power and the Rom and the Holland-Copenhaver (step-up)

methods having the highest power.
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I t

Statistical Power of Modified Bonferroi Methods

There have been several discussions on the issue of

controlling the overall Type 1 error rate in situations

where multiple tests are conducted simultaneously. The

simplest and perhaps the best known approach is to divide

the acceptable overall risk of a Type I error by the number

of hypothesis tested. This approach is known as the

original Bonferroni method. Two advantages of this approach

are that it is easy to apply and it can be used in many

different multiple-testing situations (e.g. contrast

analyses, univariate ANOVA tests following a significant

multivariate test). A disadvantage of this approach,

however, is that the statistical power to detect individual

true differences can be low. A number of modifications to

the original Bonferroni procedure have been developed and

applied. Five of these alternatives were developed by Holm

(1979), Holland and Copenhaver (1987), Hochberg (1988),

Hommel (1988), and Rom (1990). The objective of these

modifications is to increase the statistical power without

increasing the risk of a Type I error.

Li, Olejnik, and Huberty (1992) compared the five

modified Bonferroni procedures with the original Bonferroni

using 50 correlation matrices reported in the applied

research literature. The results of their study indicated

very little difference in the number of hypotheses rejected



by the six methods. A major limitation of their study was

that since they used real data sets the true relationships

among the variables could not be known. Consequently,

differences between Type I errors and true relationships

could not be distinguished. In addition it was not possible

to study different definitions of power (Einot & Gabriel,

1975): all true relationships, at least one true

relationship, and average power.

Amplications of six Modified Bonferroni Procedures

Dunnett and Tamhane (1992) categorized these procedures

in three groups: single-step (SS), step-down (SD), and step-

up (SU). The SS procedure (original Bonferroni) sets a

single criterion for testing all individual hypotheses. The

SD and SU procedures order the hypotheses to be tested by

their p-values, and then compute adjusted significant levels

for each individual hypothesis. The SD (Holm, Holland-

Copenhaver) procedures start the testing with the hypothesis

with the smallest p-value, whereas the SU

(Hochberg,Hommel,Rom) start the testing with the hypothesis

with the largest p-value. In this study, we use a to denote

the overall Type I error rate per matrix, a' to denote a

criterion for testing an individual hypothesis, i to

indicate the order of the hypotheses, and m as the total

number of hypotheses tested.

Original Bonferroni Procedure (SS)

The original Bonferroni procedure computes a'=a/m. The

hypotheses with p < a' are rejected.



Holm Procedure (SD)

Holm (1979) proposed sequentially setting diferrent

significance levels for rejecting each individual

hypothesis: let pm,,p0,0 be the ordered p-values and

Hm,...,H00 be the corresponding hypotheses. Holm procedure

rejects Hm to H6.0 if i is the smallest integer such that

pm>a/(m-i+1).

Holland and Copenhaver procedure (SD)

Let pm,.,p00 be the order p values and Hm,.,Hom be

the corresponding hypotheses. Suppose i is the smallest

integer. The Holland-Copenhaver procedure rejects Hm to H(4)

von-i+1)
such that pm>1-(1-a)

Hochberg Procedure CSU)

Hochberg (1988) developed the first step-up approach.

Hochberg procedure rejects Hm to Hm for any i=m,m-1,...1 if

pma/ (m-i+1) .

Hommel Procedure (SU)

This procedure includes two stages. The first stage

uses the obtained p-values to compute the number of members

in J. The second stage obtains the significance level of

rejection using a'=a/j', where y is the largest number in J.

The uniqueness of the Hommel procedure is that it not only

considers the order of the tests but also takes the obtained

p-values into the calculation while computing the a'.

Let J={i'ef1,...ml:porR+m>ka/i' ;k=1,...i).. Then, if J

is nonempty, reject Hm whenever pm ..a/j with j'.=max J. If 3



is empty, reject all Hm(i=1,...m).

Rom Procedure (SU)

Rom (1990) developed a very complicated procedure.

With this procedure, we denote Hm as the hypothesis with

the largest p-value and H(m) as the hypothesis with the

smallest p-value.

The testing starts by comparing pm with am' and stops

whet: pm<am. Then Hm to H04.0 are retained and Hm to H(m) are

rejected. The computing equation for solving (zits can be

divided into three parts. The first part is a1+a2+...+ai-1

and the second part is

(a0)14)*(i ) (a31-2)+...-1-( i ) (0164)7). The third part is
L

to solve for ai, which is subtract the second part from the

first part, and divide the difference by i.

Holland and Copenhaver procedure (SU)

An approach not previously considered is an aplication

of the Holland and Copenhaver as a step-up procedure. The

Holland-Copenhaver step-up procedure may be described as

follow: let pm ,,..,poo be the order p-values and Hm

be the corresponding hypotheses. Suppose i is the

14,1144-0
.largest integer from 1 to m such that pm<1-(1-a) the

Holland-Copenhaver step-up procedure rejects Hm to H0.0 and

retain Hm to Ho

Li, Olejnik, and Huberty (1992) demonstrated the

numerical examples for Bonferroni and five modified

Bonferroni procedurr.s.



Purpose

The purpose of the present study is to address the

limitations of the previous investigation by studying the

Type I error rate and the three conceptualizations of power

using computer simulation methods. In addition a sixth

modified Bonferroni method is introduced. The Holland-

Copenhaver approach uses a step down method. That is after

ordering the p-values, hypotheses are tested from the

smallest to largest p-value. We test the hypotheses from

the largest to the smallest p-value, thus a step-up

approach. This step-up approach is similar to the Hochberg

method. The present study also uses the correlation matrix

as the context for multiple tests.

Method

Computer programs were written using SAS/IML (1990) to

generate correlation matrices for the purpose of comparing

the differences in statistical power and Type I error rates

among the seven methods. Four factors are considered:

number of variables, sample size, overall Type I error rate,

and the number of true relationships in a given -atrix.

Data were generated for 4 and 6 variables with the overall

Type I error rate set at .05 and .20. The true

relationships among the variables were simulated for the

following situations: To study the Type I error rates all

variables generated are independent of each other; To study

the three conceptualizations of power, matrices are

generated in which one, two, three, or five pairs of



variables are correlated .4 or .2 while the others are

independent. The partial Type I error rates are also

considered.

The SAS-RANNOR function is used to generate the normal

random numbers. The matricab: containing true relationships

are cenerated using the procedure suggested by Kaiser &

Dickman (1962). For each condition, 10,000 replications are

generated. The program includes the following modules: (1)

Compute a correlation coefficient from the generated random

numbers, (2) Compute a p-value corresponding to each

correlation coefficient, (3) Sort all computed p-values in a

correlation matrix by ascending order, (4) Apply original

Bonferroni procedure and the six modified Bonferroni

procedures to each of the correlation matricies, using

overall Type I error rate per matrix of .05 and .20. The

number of hypotheses rejected by each procedure is recorded.

Under the complete null, the proportion of matrices

rejecting at least one hypothesis is recorded. For non-null

matrices the proportion of matrices in which all true

relationships are identified are recorded as well as the

proportion of matrices in which at least one true

relationship is detected and the average power for detecting

the true relationships.



Rpsults

Tyma_argr_Rataq. Table 1 presents the proportion of

matrices in which at least one correlation was declared

significant when there were no true relationship among any

of the variables. All seven methods provided empirical Type

error rates less than the nominal significance levels of

.05 and .20 when the number of variables equaled four and

six. These results provide a partial check of our computer

programs.

All True Relationship Power. The proportion of

matricies in which all of the true relationships were

detected by the seven procedures are reported in Tables 2

through 5. All six of the enhancements to the Bonferroni

procedure were more sensitive than the original Bonferroni

approach 1.n detecting all true relationships. The

difference between the original Bonferroni and the

enhancements increases as the number true relationships

increase. Very small differences in statistical power

however were found between the six enhancements to the

original Bonferroni method. The Holm procedure consistently

had the lowest sensitivity in detecting all true

relationships while the Rom and the Holland-Copenhaver step-

up procedures had the greatest power.

At Least 0Ae True Rela_tipriship Power. Tables 6 and 7

presents the proportion of matrices in which at least on

true relationship was detected when the significance level

equaled .05 and .20 respectively. The results indicate

10



almost no difference between the original Bonferroni and the

enhancements.

Average Power. The average proportion of true

relationships detected per matrix is presented in Tables 8

and 9. The original Bonferroni procedure had the lowest

average power but the enhancement procedures offered only a

small, generally between two and three percent, increase in

average power.

Conclusions

The Bonferroni method for controlling the Type I error

rate over a series of hypothesis tests has been pc;ular

among researchers because of its computational simplicity

and wide applicability. Its major limitation has been a

reduction in statistical power for the hypothesis tests as

the number of tests increase. In recent years several

efforts have been made to increase the statistical power of

the Bonferroni method. Analytic studies of these

enchancements have shown that they do provide greater

sensitivity to true relationships than the original

Bonferroni but the magnitude of that difference has not been

clear. Similarly, comparisons between the enhancements have

been shown analytically that some alternatives are more

powerful than others but again the magnitude of the

difference has not been clear. The greater statistical

power has generally come as a result of increase

computational difficulty.

Li, Olejnik, and Huberty (1992) raised some question as

1 1



to the utility of the enchancements when they showed very

small differences between the alternatives and c ly modest

increases in power over the original Bonferroni. They used

real data sets where true relationships could not be

distinguished from Type I errors.

In the present study we used computer generated data to

investigate Type I error rates and three definitions of

statistical power to compare six suggested enhancements to

the Bonferroni and we proposed still another enhancement

that has not been previously considered based on the

Holland-Copenhaver approach. Our results show that for all

three definitions of power, the new step-up Holland-

Copenhaver and the Rom procedures tend to be have the

highest power among the seven procedures. Because the Rom

procedure is more complicated, we recommend the Holland-

Copenhaver (step-up) procedure to be used. Moreover,

results from this study are consistent with 1) Hommel

(1989) that the Hommel procedure is at least as powerful as

the Hochberg procedure, and in general more powerful. The

power difference however is in the third decimal place. 2)

Dunnett and Tamhane (1992) that power increases yielded by

the Hommel and the Rom procedures over the Hochberg

procedure are marginal at the best, with the Rom procedure

being slightly superior. c) Hochberg and Benjamin (1990)

that Holm procedure is sharper than the original Bonferroni

and the Hochberg procedure is sharper than the Holm

procedure. All six modified Bonferroni procedures are

12



superior to the original Bonferroni procedure under all true

relationship power and average power. However, we gain

less than 2% when alpha is small (i.e.,.05) and less than 5%

when alpha is .20 under the average power definition. Under

all true relationship power we gain greater power only when

alpha is large (.20) and there are large number of true

relationships in the matrix. Therefore, while we agree with

Holland and Copenhaver (1987) that a modified Bonferroni

procedure should be used in situations where the original

Bonferroni would otherwise be the method of choice, we have

been disappointed with the magnitude of the power increase.

Controlling the overall Type I error rate over a series

of hypothesis tests is an important topic of interest to

applied researchers and data analysts. A considerable

effort has gone into modifying the Bonferroni method in

order to increase statistical power. Results of the present

study appears that this effort has not been too successful

in improving the statistical power. Additional research in

this area is needed to develop still other alternatives that

may be more sensitive to true relationships than the current

enhancements and the original Bonferroni.
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Table 1 Type I error Rates

Bon Holm NCI Hb Homm Rom Hc2

.05

10 .051 .051 .053 .051 .051 .052 .053

30 .046 .046 .047 .046 .047 .047 .047

50 .051 .051 .052 .051 .051 .052 .052

100 .047 .047 .048 .047 .048 .048 .048

.20

10 .178 .178 .196 .179 .184 .197 .197

30 .182 .182 .201 .183 .189 .201 .202

50 .178 .178 .194 .178 .183 .194 .195

100 .189 .189 .203 .189 .194 .204 .204

.05

10 .050 .050 .051 .050 .050 .051 .051

30 .047 .047 .048 .047 .047 .048 .048

50 .049 .049 .050 .049 .049 .049 .050

100 .051 .051 .052 .051 .051 .052 .052

.20

10 .182 .182 .199 .182 .184 .199 .199

30 .179 .179 .199 .180 .182 .200 .200

50 .187 .187 .204 .187 .189 .205 .204

100 .179 .179 .196 .179 .181 .196 .196

Bon=Original Bonfarroni procedure
Holm=Holm procedure
Hc1=Holland-Copenhaver (step-down) procedure
Hb=Hochberg procedure
Homm=Hommel procedure
Rom=Rom procedure
Hc2=Holland-Copenhaver (step-up) procedure

1 6



Table 2 All true relationship power for alpha=.05 k=4

#ofsig.
correla
tion

n Bon Holm Hcl Hb Homm Rom Hc2

1

10 .058 .059 .059 .059 .059 .059 .059

30 .332 .334 .337 .334 .334 .337 .337

50 .613 .614 .617 .615 .615 .617 .617

100 .943 .943 .944 .943 .943 .943 .944

2

10 .004 .005 .005 .005 .005 .005 .005

30 .116 .133 .135 .133 .134 .135 .135

50 .370 .402 .405 .404 .405 .406 .407

60 .508 .541 .545 .541 .542 .545 .545

70 .643 .675 .680 .676 .677 .680 .681

80 .747 .771 .77- .772 .773 .774 .774

90 .821 .840 .8 .840 .841 .842 .842

100 .882 .896 .898 .896 .896 .898 .898

3

30 .004 .008 .008 .008 .009 .009 .009

50 .026 .043 .044 .044 .044 .044 .045

100 .211 .263 .264 .264 .265 .265 .265

200 .583 .643 .645 .644 .645 .645 .646

250 .708 .755 .757 .755 .756 .757 .757

300 .805 .843 .845 .844 .845 .846 .846

350 .872 .904 .906 .905 .905 .906 .906

400 .915 .937 .937 .938 .938 .938 .938

450 .947 .963 .963 .963 .963 .963 .964

17



Table 3 All true relationship power for alpha=.20 k=4

#ofsig.
correla
tion

n Bon Holm Hcl Hb Homm Rom Hc2

1

10 .160 .164 .174 .165 .167 .174 .175

30 .548 .552 .568 .553 .559 .569 .569

50 .785 .789 .801 .791 .794 .802 .803

100 .981 .981 .983 .981 .982 .983 .983

2

.292 .339 .359 .345 .351 .362 .363

.465 .510 .528 .515 .522 .531 .532

50 .615 .657 .672 .660 .665 .674 .676

.741 .771 .782 .774 .777 .783 .785

70 .840 .862 .872 .864 .867 .873 .874

80 .896 .914 .919 .915 .917 .919 .920

3

40 .069 .111 .121 .119 .124 .127 .130

50 .126 .185 .197 .193 .199 .203 .206

60 .177 .244 .262 .253 .258 .266 .270

70 .240 .319 .335 .326 .332 .338 .342

80 .309 .389 .407 .397 .404 .410 .414

90 .364 .449 .467 .456 .463 .470 .473

100 .415 .498 .514 .505 .510 .518 .521

150 .626 .695 .708 .700 .704 .710 .713

200 .761 .819 .826 .823 .826 .829 .830

250 .859 .895 .901 .898 .900 .902 .903

300 .916 .942 .946 .944 .945 .947 .947
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Table 4 All true relationship power for alpha=.05 k=6

#ofsig.
correla
tion

n Bon Holm Hc1 Hb Homm Rom Hc2

1

10 .030 .030 .031 .030 .030 .031 .031

30 .220 .220 .224 .220 .220 .223 .224

50 .496 .496 .500 .496 .497 .499 .500

100 .892 .892 .893 .892 .892 .893 .893

3

50 .113 .127 .130 .127 .128 .129 .130

60 .220 .238 .242 .239 .239 .240 .242

70 .355 .379 .384 .380 .380 .383 .384

80 .481 .507 .511 .507 .508 .511 .512

90 .607 .631 .635 .632 .632 .634 .635

100 .716 .736 .739 .736 .736 .738 .739

120 .857 .867 .868 .867 .867 .867 .868

130 .905 .915 .917 .915 .915 .916 .917

5

200 .211 .253 .256 .253 .253 .257 .256

250 .374 .418 .421 .418 .418 .423 .421

300 .509 .557 .559 .557 .557 .560 .559

350 .634 .678 .682 .678 .678 .683 .682

400 .750 .785 .786 .785 .785 .787 .786

450 .828 .853 .856 .853 .854 .857 .856

500 .890 .910 .912 .910 .910 .912 .912

550 .929 .943 .944 .943 .943 .944 .944

600 .954 .964 .965 .964 .964 .965 .965
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Table 5 All true relationship power for alpha=.20 k=6

#ofsig.
correla
tion

n Bon Holm Hai_ Hb Homm Rom Hc2

1

10 .085 .086 .093 .086 .087 .093 .093

30 .397 .399 .415 .399 .401 .416 .415

50 .672 .673 .687 .673 .675 .687 .687

100 .955 .956 .960 .956 .956 .960 .960

3

50 .315 .344 .362 .344 .348 .363 .364

60 .465 .499 .521 .500 .503 .521 .521

70 .606 .636 .654 .637 .640 .655 .655

80 .719 .744 .760 .745 .747 .761 .761

90 .807 .825 .837 .825 .827 .837 .837

100 .875 .890 .897 .890 .892 .898 .898

5

60 .014 .023 .026 .023 .023 .026 .026

100 .090 .122 .132 .122 .123 .132 .132

150 .250 .296 .311 .296 .301 .311 .311

200 .421 .478 .498 .479 .482 .498 .498

250 .590 .642 .659 .643 .646 .659 .659

300 .731 .775 .788 .776 .778 .788 .788

350 .819 .851 .861 .851 .853 .861 .861

2 0



Table 6 At least one true relationship power for alpha=.05

correl
ation

. Hcl Hb omm Rom Hc2

..i7 .117 .118 .119 .119

.566 .568 .572 .572 .572

.849 .851 .855 .854 .854

100 .996 .997 .997 .997 .997

.123 .124 .126 .126 .127

30 .527 .528 .531 .528 .534 .532 .532

50 .824 .824 .827 .825 .830 .827 .828

100 .994 .994 .994 .994 .994 .994 .994

10 .085 .085 .087 .085 .085 .086 .087

.538 .539 .544 .539 .542 .543 .544

.868 .868 .872 .869 .871 .871 .872

.999 .999 .999 .999 .999 .999 .999

.095 .095 .097 .095 .096 .097 .097

.564 .565 .569 .565 .568 .569 .569

50 .881 .882 .884 .882 .885 .883 .884

100 .999 _.999 .999 .999 1.00 .999 .999
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Table 7 At least one true relationship power for alpha=.20

k #ofsig
correl
ation

n Bon Holm Hcl
--

Hb Homm Rom Hc2

4

2

10 .293 .299 .319 .303 .310 .321 .321

30 .790 .793 .808 .796 .806 .811 .811

50 .956 .957 .962 .957 .962 .962 .962

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
_

3

10 .312 .316 .337 .318 .327 .339 .340 1

30 .778 .781 .797 .784 .797 .799 .799

50 .952 .953 .956 .954 .959 .957 .957

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6

3

10 .227 .230 .247 .230 .234 .248 .247

30 .782 .784 .798 .785 .790 .799 .799

50 .965 .965 .970 .965 .967 .970 .970

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5

10 .269 .271 .289 .272 .277 .290 .289

30 .808 .810 .826 .810 .817 .826 .826

50 .975 .975 .979 .975 .978 .979 .979

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 8 Avera e power for al ha=.05

k #ofsig
correl
ation

n Hon Holm Hcl Hb Homm Rom Hc2

4

(v

30
!

.341 .350 .353 .351 .353 .353 .354

50 .609 .626 .629 .627 .630 .630 .630

2

60 .713 .730 .733 .731 .732 .733 .733

70 .801 .818 .821 .818 .820 .821 .821

80 .865 .877 .878 .877 .878 .878 .878

90 .906 .915 .916 .915 .916 .916 .916

100 .939 .946 .947 .946 .947 .947 .947

3

30 .212 .219 .221 .220 .223 .222 .222

50 .397 .414 .417 .415 .418 .417 .418

100 .686 .709 .711 .710 .712 .711 .711

200 .860 .881 .882 .881 .882 .882 .882

250 .903 .918 .919 .918 .919 .919 .919

300 .935 , .948 .948 .948 .948 .949 .949

3

30 .226 .229 .232 .230 .231 .232 .232

50 .486 .495 .499 .495 .498 .499 .499

60 .604 .614 .617 .614 .616 .617 .617

70 .708 .719 .722 .720 .721 .722 _.722

80 .783 .794 .796 .794 .795 .797 .797

90 .846 .856 .858 .856 .857 .857 .858

100 .895 .902 .903 .902 .902 .903 .903

120 .950 .954 .954 .954 .954 .954

5

30 .147 .150 .152 .151 .152 .152

_.954

.152

50 .315 .323 .325 .323
,

.325 .325 .325

100 .605 .618 .620 .618
1

.620 .620 .620

200 .784 .798 .799 .798 .798 .800 .799

250 .843 .856 .857 .856
I

.856 .857 .857

300 .885 .897 .898 .897 .897 .898 .898

350 .919 .929 .930 .929 .929 .930 .930

400 .947 .954 .945 .954 .954 .955 .955
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Table 9 AverlumEower for alpha=.20

#ofsig
correl
ation

Bon Holm Hcl Hb Homm Rom Hc2

10 .160 .168 .180 .171 .176 .183 .183

2

30 .541 .566 .584 .570 .579 .586 .587

40 .680 .704 .716 .707 .714 .719 .719

50 .786 .807 .817 .809 .814 .818 .819

60 .860 .875 .882 .876 .879 .882 .883

70 .916 .927 .933 .928 .930 .933 .934

3

10 .116 .123 .133 .126 .131 .135 .136

30 .347 .399 .413 .403 .413 .416 .418

50 .571 .606 .617 .611 .619 .620 .622

70 .690 .726 .735 .729 .734 .736 .738

80 .735 .768 .777 .772 .776 .778 .780

90 .765 .799 .806 .801 .805 .808 .809

100 .791 .822 .828 .824 .827 .829 .830

150 .875 .898 .902 .900 .901 .903 .904

200 .920 .940 .942 .941 .942 .943 .943

3

30 .398 .409 .423 .409 .414 .424 .424

50 .681 .695 .712 .696 .699 I .709 .709

60 .775 .790 .801 .790 .793 .802 .802

70 .846 .858 .866 .858 .860 .866 .866

80 .896 .905 .912 .906 .907
/

.912 .912

90 .932 .938 .942 .938 .939 .942 .942

5

30 .245 .274 .287 .275 .280 .287 .287

40 .375 .390 .402 .390 .395 .403 .403

50 .457 .474 .485 .474 .479 .486 .486

60 .531 .549 .560 .550 .554 .561 .561

100 .702 .720 .728 .721 .723 .728 .728

150 .797 .813 .819 .813 .815 .819 .819

200 .859 .875 .880 .875 .876 .881 .881

250 .906 .920 .924 .920 .921 .924 .924
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