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Abstract

This study investigated the robustness of the James second-order test (James,
1951: Wilcox, 1989) and the univariate F' test under a two-factor fixed-effect ANOVA
model where cell variances were heterogeneous and/or distributions were non-normal.
Using.compﬁter simulated data (SAS/IML [1989]), Type I error rates and statistical power
for the two tests were estimated. With data sampled from normal distributions, the F test
was not robust to variance heterogeneity for equal or unequal sample sizes, but the James
second order test was robust in thesc situations. With normal distributions, equal
variances, and equal sample sizes, the magnitude of power difference between the two
tests was generally small when testing the main effects, but the magnitude of power
difference between the two tests varied when testing the interaction effzacts. With data
sampled from non-normal distributions, although the James second-order test generally
was liberal when the population distribution was skewed, the current study showed that
the test was robust under several non-normal distribution situations. Additionally, the
robustness of the James second-order test in factorial designs may be affected by
combinations of non-normal distributions, sample sizes, and variance patterns. (The F test
was not examined under non-normal distributions because the F test does not provide a

valid test for many heterogeneous variance situations.)
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A number of studies have investigated the robustness of ommibus tests when
testing the equality of K rﬁeans under variance heteroscedasticity and/or distribution non-
normality. The univariate F-test, the Brown and Forsythe (1974) F'-test, the Welch (1951)
tesf, and the James (1951) second-order test are the omnibus tests most frequently
considered. Earlier studies that dealt with the validity of omnibus tests under variance.
heterogeneity and/or distribution non-normality include Brown and Forsythe (1974),
Clinch and Keselman (1982), Wilcox, Charlin, and Thompson (1986), and Oshima and
Algina (1992a). These studies sho.wed that neither the F-test nor the alternatives
adequately control the Tvpe I error rate under the nominal significance level when
extreme violations of the variance equality and/or normality occur.

Wilcox (1988) proposed a new alternative, H, which was computationally simpler
than the James second-order test. Wilcox showed that although the H test has properties
comparable to the James second-order test, it was slightly less powerful the James second-
order test. Wilcox (1989) proposed a modification of the H-test, H,, , which was shown to
provide statistical power more comparabie to the James second-order test. Oshima and
Algina (1992a) pointed out that the Wilcox (1988) study focused on the effect of variance
heterogeneity for both the James second-order test and the H test when sampling from
normal distributions. Non-normality was studied but not in combination with variance
heterogeneity. They argued that not considering the impact of the combined violations of
variance homogeneity and distribution normality was an important omission. Their
investigation of the robustness of the James second-order test and Wilcox H,, test under
heteroscedasticity and non-normality revealed that the empirical Type I error rates for
both tests were affected when variance homogeneity and distribution normality both were

violated. They also indicated that the magnitude of difference between the empirical Type

s
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I error rate and nominal « level is positively related to the degree of asymmetry; the
greater the degree of asymmetry, the greater difference between the empirical Type I
error rate and nominal « level.

While most of the investigations into the robustness of ANOVA have concentrated
on the one-factor design, Milligan, Wong, and Thompson (1987) investigated the
robustness properties of nonorthogonal two-way fixed-effect ANOVA models. They
concluded that each of the standard computational routines of ANOVA for unequal cell
size was not robust to the assumptions of variance homogeneity or normality. When
sample sizes were equal, however, they found that violating the homogeneity of variance
assumption had little effect on the actual Type I error rate. Although they suggested four
alternatives for dealing with unbalanced designs with variance heterogeneity or non-
normal distributions, Keppel (1991, p. 283) stated that none of these alternatives is as
effective as avoiding unequal sample sizes in the first place. Nonethelgss, this alternative
is often not an option in applied research where unbalanced designs are common.

Wilcox (1989) generalized his H,, test for situations involving a factorial structure,
the U test. After comparing the robustness properties of the U test and the James
second-order test ur “er various heterogeneous variance conditions, Wilcox (1989)
concluded that both the U test and the James second-order tests (a) performed well under
null conditions and that they generally controlled the Type I error rate under the nominal
a level: (b) provided sufficient power under non-null conditions; and (c) can be extended to
higher-order designs. Hsiung, Olejnik, and Huberty (1994), however, showed that the U
test does not adequately control the Type I error rate when the sample sizes are unequal

and population means differ from zero. Therefore, Hsiung et. al concluded that the U test

|




James and F Tests
5
is invalid for most practical situations and recommended the James second-order test for
factorial designs.

After conducting a meta-analysis on the robustness of ANOVA to variance
heterogeneity, Harwell, Rubinstein, Hayes, and Olds (1992) concluded that there is an
absence of well-documented omnibus tests that can be applied to two-factor fixed-effects
ANOVA cases. They advised that there is a need for an investigation into the robustness
of available omnibus tests in two-factor ANOVA models. Responding to this call for
further study of two-factor fixed-effect ANOVA models, the current investigation examines
the robustness of the F-test and the James second-order test under heteroscedasticity
and/or non-normality. Oshima and Algina (1992a) had shown that the James second-order
test was affected by asymmetric distributions in a single factor design, but they only
included two asymmetrical non-normal distributions (i.e., the Beta and the Exponential
distributions). Moreover, the Exponential non-normal distribution is not common in
applied research. Fleishman (1978) indicated that the "typical’ non-normal empirical
distributions are with the degree of skew less than 0.8 and the magnitude of kurtosis
between -0.6 and +0.6. The current study, therefore, examines robustness of the
univariate F-test and the James second-order test in two factor designs witp data sampled
from more typical non-normal distributions. !

Method

The present study included five two-factor fixed-effect ANOVA models: 2 x 2, 2 x 3,
3 x 3,3 x4, and 4x4. Each model was studied under at least six conditions with each
condition defined by sample sizes, population variances, and population distributions. Not
all models were included for all conditio_ns. Fifteen population distributions were

considered; each population distribution was defined by the degrees of skew and kurtosis.
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Twenty-six variance patterns were selected; each variance pattern consisted of different
cell variances (Table 1 lists the characteristics of the 26 variance patterns). The sample
sizes, variance patterns, magnitude of skew, and magnitude of kurtosis are reported in

Tables 2 to 8 along with the results.

Insert Table 1 About Here

The present study used SAS/IML (SAS Inc, 1989) software to generate the data and

compute the test statistics. Using the SAS-RANNOR function, scores for each cell were

conditions and the cell ;, mean equaled & under the non-null conditions. Using the
Fleishman (1978) transformation procedure, data were transformed to have a distribution
with the target degrees of skew and kurtosis. For each condition, 10,000 replications were
generated and the proportion of times the omnibus tests were rejected at the « = .05 level
was recorded. A test was concluded liberal if its empirical Type I error rate exceelded

.0544 (i.e.. greater than the two standard errors of the nominal significance level).

i
|
generated independently, Yy ~ (4, o jkz). Each population mean equaled 0 under the null

For each replication, the data were analyzed by using the univariate F-test and the
James second-order test. For the James second-order test formula refer to Wilcox [1989];
for the univariate F-test the unweighted means solution (regression approach) was used.
Results
Tables 2 and 3 present the results for the F-test and the James second-order test
based on small (average cell size equals 5, Table 2) and large (average cell size equals 25,
Table 3) sample sizes when sampling from normal upulation distributions. Balanced,

slightly unbalanced, and extremely unbalanced designs were considered. Each table




James and F Tests
7
includes three variance patterns with the coefficient of variance variation (Keselman &

Rogan, 1978) ranging between 0 and 1.18.

Insert Tables 2 and 3 About Here

Results from Tables 2 and 3 reveal that, under heteroscedasticity, the F-test can
have empirical Type I error rates greater than the nominal significance level even when
sample sizes are equal. These results contradict Milligan, Wong, and Thompson (1987),
who concluded that the F-test is valid under heterogenous variances when sample sizes
are equal. The present results support Wilcox’s (1987) cautionary note that, while equal
sample sizes may réduce the effect of heterogeneous variance on the Tvpe I error rate, the
F-test may still be liberal if the degree of variance heterogeneous is great. In the present
study, the small sample sizes variance ratic of 3:1 was sufficient to invalidate the
univariate F-test.

With unequal sample sizes and unequal variances, the F-test can be either
conservative or liberal depending upon the relationship between the patterns of
heterogeneity and the sample sizes. This relationship has been shown repeatedly in
previous research on the effect of variance heterogeneity on ANOVA Type I error rates. It
has been suggested that the effect of variance heterogeneity in unbalanced designs can be
reduced if sample sizes are large (e.g., Maxwell and Delaney [1990, p. 110]). The results
presented here support that belief to degree, but even with relatively large samples with
extreme sample size inequality, the F-test had empirical Type I error rates less than the

nominal significance level. These results support Wilcox’s (1987) position that it is
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difficult to know how large a sample size is needed to reduce the effects of unequal
variances.

The James second-order test had the Type I error rates that ranged between .0456
and .0530 when sample sizes were large and ranged between .0420 and .0544 when sample
sizes were small across both balanced and unbalanced designs. These results support the
conclusion that the ejames second-order test is robust to variance heterogeneity for equal
or unequal sample sizes when the population distributions are normal.

Table 4 presents the empirical power estimates for the univariate F-test and the
James second-order test when sampling from normal population distributions with equal
variance and equal sample sizes. Results show that for many of the hypotheses tests, the
Jarnes second-order test is only slightly less powerful than the univariate F-test. The
power difference between the two tests is in the range of magnitude from .000 to .052
when testing main effects and is in the range of magI}itude from .000 to .202 when testing

interaction effects.

Insert Table 4 About "Jere

Results show that when testing the main effects, the magnitude of power difference
between the two tests was generally small. However, when testing the interaction effects,
the magnitude of power difference between the two tests varied. The magnitude of the
power difference depends on the number of interaction contrasts that are conducted.
Wilcox (1989) suggested using the Bonferroni procedure to adjust the nominal « level for
each contrast (i.e., «’ = « / [min(J, K) - 11 ). This approach reduces the statistical power

of the James second-order test if the minimum of (J, K) » 3. Using the Holland-
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Copenhaver (1987) enhancement to the Bonferroni procedure would likely reduce the
power difference between the F-test and the James second-order test.

Results for the James second-order test when data were sampled from non-normal
distributions are reported in Tables 5 through 7. Univariate F-test results are not
included in these tables since, as shown previvusly, the F-test does not provide a valid test
for many situations where variances are heterogeneous.

Table 5 presents the results for the James second-order test for the two by four
fixed-effects ANOVA model. A total of 72 conditions were considered; each condition was
defined by the sample size (design type), distribution type, and variance pattern. Three
distributions were considered. They were (a) normal distribution, (b) positively skewed-
leptokurtic non-normal distribution (skew = 1.75 and kurtosis = 3.75), and (c¢) platykurtic
non-normal distribution (skew = 0, kurtosis = -1.0).

Consistent with Tables 2 and 3, the James second-order test was valid when the
assumption of normality was m... But when data were sampled from a population
distribution that was skewed,. the James second-order test frequently had Type I error
rates greater than the nominal significance level. With the same non-normal distribution,
the test was more liberal when sample sizes were extremely unequal than when sample
sizes were equal or slightly unequal.

When data were sampled from the platykurtic non-normal distribution, the James
second-order test was robust when sample sizes were equal or slightly unequal, but
appeared to be liberal when sample sizes were extremely unequal.

Although the James second-order test may be liberal when the assumption of
normality is violated, the current results show that the test is robust under several non-

normal distribution situations. It appears that in a factorial design, the robustness of the
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James second-order test mayv be affected by combinations of non-normal distributions,
sample sizes, and variance patterns.

Table 6 presents the results for the James second-order test under a four by four
fixed-effect balanced factorial design. A total of 72 conditions were included with each
condition being defined by the sample size, variance pattern, degree of skew, and degree of

kurtosis.

Insert Table 6 About Here

When the assumption of variance homogeneity was met, but normality was violated,
the James second-order test had empirical Type I error rates that did not exceed two
standard errors above the nominal significance level. However, the James second-order
test was conservative when sample sizes were small - empirical Type I error rates were
generally less than two standard errors below the nominal significance level.

The James second-order test appeared to be liberal when the degree of skew was
equal to or greater than 1.0. Yet, the patterns of sample size, variance, and degree of
kurtosis also had some effect on the robustness of the test.

With the same degree of skew, the current results show that the James second-
order test had greater Type I error rates when the degree of kurtosis was small than when
the degree of kurtosis was large.

Table 7 presents the resulis for the James second-order test under two by four
balanced and unbalanced fixed-effect designs, Data were sampled from 12 non-normal

distributions; each distribution was defined by the degrees of skew and kurtosis.
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Insert Table 7 About Here

When the variances were equal and the degree of skew was less than 1.50, the
James second-order test generally controlled the Type I error rate under the nominal
criterion « level. But the James second-order test appeared to be liberal when the degree
of skew was equal to 1.50. With the same degree of skew, the test generally had greater
Type I error rate when the degree of kurtosis was small than when the degree of kurtosis
was large. Finally, it appears that a balanced design might reduce the effect of skewed
distributions somewhat. However, as demonstrated in Tables 6 and 7, a balanced design
cannot be relied on to pro.vide a valid test when distributions are skewed.

Conclusions

Contrary to what some believe (Milligan, Wong, & Thompson, 1987), the urivariate
F-test for a factorial design is not robust to the violation of the equal variance assumption
when sample sizes are equal. The present study shows that the actual Type I error rate
for the F-test can exceed the nominal significance level when sample sizes are equal but
cell variances differ by as small as a 3 to 1 ratio. The James second-order test, on the
other hand, control the actual risk of a Type I error under the nominal significance level
(e = .05) when sampled populations have normal distributions. Further, the study
provides some evidence indicating that when all parametric assumptions are met, the
James second-order test provides statistical power comparable to the univariate F-test at
least for hypotheses on main effects. Considerably lower power might be obtained for the
interaction test depending on the dimensions of the factorial structure. The lower power

can be attributed to the use, in the present study, of the Bonferroni adjustment for

12
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multiple hynothesis tests. If one of the enhancements to the Bonferroni method was
used, the power difference between the univariate test and the James second-order test,
however, would be reduced. In addition, if an omnibus test is of interest and it is
reasonable to assume normal population distributions, the F-test should be abandoned in
favor of the James second-order test.

Micceri (1989) reported that sampling from normal population distributions may be
the exception rather than the rule in educational research. With both skewed-leptokurtic
and platykurtic distributions, the James second-order test may not adequately control the
risk of a Type I error to the nominal significance level. The degree of non-normality,
variance heterogeneity, and the inequality of sample sizes all can affect the actual risk of a
Type I error rate. The results of the present study did not make clear the exact
relationship among these three factors. However, it did appear that having equal sample
sizes can reduce the effect of non-normal distributions and heterogeneous variances on the
Type I error rate.

Finally, Keppel (1991, p. 105) indicated that the James second-order test, the
currently favored procedure, is "simply too complicated for general use." Recently, Oshima
and Algina (1992b) developed a SAS/IML program for one-factor designs and Hsiung,
Olejnik, and Oshima (1994) developed a SAS/IML program for two-factor fixed-effect
designs. Lix and Keselman (1994) have developed a more general program to compute
approximate degrees of freedom tests for both univariate and multivariate omnibus tests
as well as tests for contrasts. With these computer programs available for application of
alternative tests to the univariate F-test, the "disadvantage" of being computationa™

intense should not be a limitation.
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Table 1.
Summary Table for the Characteristics Variance Patterns Considered.
Variance Pattern
Partern Within Row Cross Average Row Within Column Cross Average Column
1 Egqual Equal Equal Equal
2° | Equal Unequal Unequal Equal
P Unequal Equal Equal Unequal
4 Unequal Equal Unequal Equal
5¢ Unequal Equal Unequal Unequal
6* Unequal Unequal Unequal Equal
7' Unequal Unequal Unequal Unegqual

Note. “For examples, Tables 2 and 3: all unequal variance patterns, Tables 5 and 8:
(1.1,1,1;9,9,9,9),and Table 6: (1, 1,1, 1; 4, 4, 4, 4 ; 16, 16, lﬁ, 16).
For examples, Table 5: (16,9, 4, 1: 16, 9, 4, 1) and
Tables 6 and 7: (1,4,9,16;1,4,9,16; 1, 4, 9, 16).
‘For examples, Table 5: (4,4, 1,1:1, 1, 4, 4) and
Table 7:(1,16.9.4:4,1,16,9:9, 4, 1,16 ; 16, 9, 4. 1).
‘For example, Tables 5 and 8: (16,9, 4, 1; 1, 4, 9, 16).
‘For example, Table 5: (16, 14, 12, 10; 2, 4, 6, 8).
For examples. Table 5: (16, 14, 12, 10 ; 8, 6, 4, 2) and
Table 6: (1,4, 9, 16 ; 16, 13,8, 1;4, 9, 16, 1).

o,
)]
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Table 2

Type I Error Rate for the Univariate F test and the James Second-Order Test in
Balanced/Unbalanced Two by Two, Two by Three, or Three by Three Fixed-Effect Factorial
Designs with Small Sample Sizes

F test James Test
Type of Design Type of Design

Sample Size Variance  Factor  BA® su® EU* BA® su® EU*

2x2 1,1 Ap 0479 0552 0499 0440  .0453  .0535

*BA: Balanced Design 11 Bey 0479  .0534  .0481 .0445  .0480 .0544
(5,535, 5) AxB 0471 0575 .0501  .0439  .0476  .0529

"SU: Slightly Unpalanced 3.1 Apw 0518 . 0552  .0:36 .0358 .0481  .0581
‘EU: Extremely Unbalanced ’ B,  .0331  .0534  .0142 .0465 .0473  .0496
6,2;%93) AxB .0545 0575 .0112  .0476  .0487 .0499

16, 1 Ape. 0628  .0629  .00:5 .0493  .0479  .0481

16,1 Be,  .0572  .0801  .0029  .0421  .0445  .0480

AxB 0626  .0855  .00:7 _ .0453  .0493  .0496

2x3 L1 Ap. 0506 .0499 0505 .0472  .0481  .0538

*BA: Balanced Design v Beal 0486  .0498  .0581 .0426  .0428  .0332
(55,535 5,5 AxB 0479 0523 .0557  .0423  .0448  .0337

"SU: @ ghey Unpaanced 31,1 Ape 0507 0277 L0125 .0450  .0451  .0463
EU: Extremely Unbalanced S11 Beo 0572 0278 .0108  .0422  .0449  .0483
8,5 2;94,2) AxB .0607  .0258  .0092 0445 0452 .0446

16, 1, 1 Ape 0828 0193  .0014 0467  .0495  .0440

16, 1.1 Bey .0869  .0259  .0019  .0437  .0416  .0431

_ AxB 0850 0276 .0020  .0430  .0434  .0450
3x3 L1, 1 A 0445 0488 L0464 .0395  .0421  .0407

*BA: Balanced Design ij :ld 1 Bey 0473 0317 0558 0436  .0442  .0420
5.5,5:5, 5, 55,5 ,9) AxB 0496 0503  .0532 0377 .0390 _ .0514
bs&,{: Shightly Upbalanecd 51,1 Apme 0524 0226 0091 .0449  .0439  .0408
EU: Estremely Unbalanced 3 i; I Be, 0578  .0240 0092 .0450 .0392  .0423
8 529, 4,2 8, 4%, 3) AxB 0806 .0212  .0061 _ .0365 _ .0370 _ .0484
16. 3. 1 Apwe 0865  .0104  .0005 .0494  .0470  .0453

18171 Bey 0845 0175 0013 0451 0427 0370

AxB .0966 .0151 .0008  .0:27 .0379 .0449

Note. Data were sampled from normal distributions. Shading indicates that the value is

greater than the criterion .0544 and the test has an inflated Type I error rate.
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Table 3

Type I Error Rate for the Univariate F test and the James Second-Order Test in
Balanced/Unbalanced Two by Two, Two by Three, or Three by Three Fixed-Effect Factorial
Designs with Large Sample Sizes

F Test James Test

Type of Design Type of Design
Sample Size Variance  Factor _ BA® su® EU* BA® syt EU*
2x2 1,1 Apw 0517 0516 0497  .0514  .0518  .0484
“BA: Balanced Design bl B,  .0528  .0527 .0522  .0526  .0525  .0520
(25, 25 ; 25, 29) AxB 0463 .0519 0495  .0462 0515  .0512
'St f’éigvj“;é";ggf’gf)““d 3,1 An. 0463 0452 0132  .0456  .0518  .0479
“EU: Extremely Unbalanced 8.1 Beo 0511 0429 0150  .0505  .0485  .0475
(35, 15 ; 37, 13) AxB_ 0529 .0448 0152 .0518 _ .0501 _ .0336
16, 1 Appe 0320 .0410  .0029  .0490  .0499  .0481
16,1 Be,  .0526  .0428  .0039  .0497  .0528  .0529
AxB__ .0539  .0394  .0024  .0514  .0483 _ .0488
2x 3 11,1 Ag.  .0459  .0407 0531  .0458  .0498  .0332
*BA: Balanced Design L1 Be,: 0510  .0506  .0489 .0500 .0512 .0484
(25, 25, 25 ; 25, 25,25) AxB_ 0520 .0485  .0513 0525  .0492 0489
bs(gg’:’,_}isg,h;;}';g?}’glsf“;.f)d GLL A 04T 0459 0298 0468 0527 05L)
‘EU: Extremelv Unbalanced T Beo 0544 0503  .0275  .0466  .0527  .0511
(32, 25, 18 ; 30, 26, 17) AxB_ 0554 .0416 0292  .0485  .0459  .0488
16,1,1  Ap,  .0528 .0385 .0165  .0500  .0527  .0485
18,11 Be,  .0760 ..0535  .0287 0491  .0496  .0476
AxB 0824 0363 .0299  .0525  .0470 0524
3x3 1,1,1  Ap,.  .0482 0348  .0505  .0488  .0533  .0480
*BA: Balanced Design IT1  Be, 0515 0467 0526 0495 0468  .0492
38; %8: 20 AxB_ 0505  .0521 0562  .0491  .0477  .0460
20, 20, 20 3, 1,1 Ay, 0506 .0418  .0126  .0457  .0515  .0487
"SU: Slightly Ungalanced 11 Bey 0543 0451 0131 0491 0526  .0476
3% fg: 1 AxB .0590  .0426  .0081  .0481  .0462  .0487
EU: Extremely Unbalanced 18 b1 Amwe (0335 0321 0012 0535 0408 0524
Sg: %_8; ﬁ 16, 1 1 Beo) 0756  .0546  .0049  .0483  .0484  .0500
30, 21, 9 AxB 0857 .0560  .0022  .0478  .0453  .0474

Note. Data were sampled from normal distributions. Shading indicates that the value is

greater than the criterion .0544 and the test has an inflated Type I error rate.
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Table 4
Statistical Power for the Univariate F test and the James Second-Order Test in Ralanced

Two by Two, Two by Three, or Three by Three Fixed-Effect Factorial Designs

Sample Size Factor F test James Test Power Difference
(F test - James Test)
5, 3 Apow 7458 . 7314 .0144
2 Bey, 7438 7317 0121
AxB 7483 : L7847 .0136
5,5, Apou 5979 5855 0124
il Bgy, 7772 79245 0527
AxB 1742 L7250 0492
555 Apow 6136 5723 0413
3 0? <

553 Boy 6133 5703 .0430
AxB .8167 .6146 2021
25, 25 Apgu 5924 .5919 .0005
25, 25 - )
Bey, 6096 6091 .0005
AxB 5997 .5992 .0005
95, 25, 25 Agen 4492 4489 .0003
25, 25, 25 - p
Be,, 6292 6245 0047
AxB .6214 6187 .0027
20. 20. 20 Apow 3768 3720 .0048

20, 20, 20
20. 20. 20 Beg; 3739 3671 .0068
AxB 5234 4078 .1176

Note. Data were sampled from normal distributions. The true group mean difference was
created by adding a constant to each observation of the first cell (i.e., Cell_,;); the constant

b was set equal to 2.5 for n;, = 5 and was set equal to 0.9 for n;, = 25.
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Tvpe I Error Rate for the James Second-Order Test in Balanced/Unbalanced Two by Four
Fixed-Effect Factorial Designs with Normal/Non-Normal Distributions and

i
\
|
Table 5

Homogeneous/Heterogeneous Variances

Balanced Design

Slightly Unbalanced

Extremely Unbalanced

15, 15, 15, 15 18,16, 14, 12 92,18, 12, 8
15, 15. 15. 15 17, 16. 14. 13 24, 20.10. 6
L Distribution Distribution Distribution
\P‘Z?f er;;o Factor Normal Skew® ‘Platy® Normal Skew  Platy Normal Skew  Platy
1,1.1,1 Apow 0471 0473 0501  .0500  .0438  .0497  .0447  .0447  .0489
bhLL Beg, .0515  .0529  .0545  .0480  .0559  .0517  .0492  .0657  .0533
AxB 0502 0450 0518  .0482  .0381  .0498  .0482  .0378  .0516
1,199 Apow 0510  .0461  .0508  .0481  .0455 .0518  .0492  .0460  .0503
11,89 Beo .0466  .0738  .0514  .0465 - .0741 .0503  .0472  .0913  .0523
AxB 0497 .0392  .0522 0482  .0432 .0492  .0486  .0328  .0529
4,4.1,1 Agow 0511 0493  .0507  .0512  .0488  .0498  .0517  .0330  .0551
bl Beo, 0499 L0564  .0304  .0510  .0563  .0493  .0494  .0709  .0577
AxB 0488 0679 0521  .0490  .0884  .0515  .0521  .0761  .0584
16941 Apge 0495 .0528  .0500  .0523  .0486  .0505  .0505  .0518  .0483
841 Beo, 0459 L0765 0545  .0463  .0689  .0486  .0499  .0832  .0518
AxB 0476 0415  .0304 0474 0403 0491  .0500  .0411  .0496
16.9.4. 1 Ap. 0490  .0499  .0508  .0484  .0a91  .0522 0496  .0559  .0576
b4 916 Be,; 0492 0579 .0493  .0334  .0569 .0549  .0496  .0819  .0597
AxB 03506 0776 0515  .0504 _ .0747  .0543  .0497  .1002__ .0809
16.15.12,10 A, 0512 0498  .0508  .0308  .0345 .0512  .0467  .0439  .0507
©468 Bey .0486  .0586  .0526  .0490  .0365 .0507  .0324  .0654  .0500
AxB 0484 0325 0528 _ .04897  .0455  .0317 _ .0501  .0406  .0552
16,14,12,10  Ag,,, 0479  .0333  .0302 .67 .0520 .0522  .0521  .0489  .0486
5642 Bca 0502  .0367 0338  .0481  .0533 .0578  .0503  .0620  .0544
AxB 0480  .0438 0336 .0525  .0491  .0516  .0487  .0453  .0503
1,1.1,1 A 0493 0367 .0509  .0491  .0521 .0518  .0526  .0635  .0548
2989 g 0304 0812 .0546  .0463  .0543 .0514  .0501  .0762  .0608
AxB 0471 .0528 0577 .0464  .0521  .0495  .0498  .0704  .0630
Note. Shading indicates that the value is greater than the criterion .0544; the test has an
inflated Type I error rate.
“Skew: Skewed-leptokurtic non-normal distribution (skew = 1.75, kurtosis = 3.75).
"Platy: Platykurtic non-normal distribution (skew = 0, kurtosis = -1.0).
21)
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