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Testing the Robustness of DIMTEST on Nonnormal Ability
Distributions

Abstract

DIMTEST is a statistical test procedure for assessing essential unidi-
mensionality of binary item responses. The test statistic T used for testing
the null hypothesis of essential unidimensionality is a nonparametric statis-
tic. That is, there is no particular parametric distribution assumed for the
underlying ability distribution or for the item characteristic curves generating
item responses in the mathematical derivation of probability distribution of
the statistic T. The purpose of the present study is to empirically investigate
the robustness of the statistic T with respect to ability distributions. Several
nonnormal distributions, both symmetric and nonsymmetric, are considered
for this purpose. In addition, test length and sample size are used as param-
eters in the present study.
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Currently, unidimensional IRT models are most commonly used mod-

els for drawing inferences about an examinee's standing on a trait of interest
based on his/her responses to a set of items. Assessment of unidimensionality
of item response data is therefore essential prior to applying any unidimen-
sional model to data so that meaningful inferences can be drawn about the
examinee's relative standing on the trait of interest. DIMTEST is a statis-
tical procedure to assess for unidimensionality of binary item response data.
It was first developed by Stout (1987) and subsequently refined by Nandaku-

mar and Stout (1993). DIMTEST was developed to assess whether a given
data of item responses fit an essentially unidirnensional model. That is, it
assesses if there is one dominant ability (proficiency) driving item responses.
DIMTEST is a nonparametric test, which means that there is no particu-
lar parametric distribution assumed for the underlying abilities or for the
type of item characteristic curves (ICCs) generating the item responses in
the mathematical derivation of probability distribution of the test statistic
T. The only asumptions made in the development of DIMTEST methodol-
ogy are: a) essential independence, b) random sample of examinees from a
population, and c) monotonitically increasing item response functions.

The assumption of essential independence is crucial for the DIMTEST
procedure to work well. The assumption of essential independence requires
that conditional item responses be independent of one another when condi-
tioned upon the dominant ability. This is a weaker form of the assumption
of local independence which requires conditioning on all abilities, major and
minor, influencing item responses rather than just the major ability.

In all simulation studies conducted so far (Nandakumar, 1991; Nan-
dakumar and Stout, 1993; Stout 1987) the examine abilities were generated
from the standard normal distribution. In practical 'applications, however,

it is possible to observe nonnormal ability distributions. Therefore, it is im-
portant to know how DIMTEST performs in these situations. Athough on
theoretical basis it should perform well, we need to establish this empirically.
The purpose of the present study is therefore to do a detailed and extensive
investigation of robustness of DIMTEST on various nonnormal ability distri-
butions that may underlie item responses. Six different ability distributions
were considered with varying levels of test lengths and sample sizes. For each
case of ability distributions it was of interest to note if the observed level of
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significance matches that of the nominal level across sample sizes and test
lengths. Also, of interest was to observe if the distribution of Ts follows a
normal distribution for different ability distributions.

In order to eliminate the indeterminacy that exists between the ability
distribution and the functional forms of the item characteristic curves (ICC),
throughout, we fix the ICCs to be of logistic form while varying the ability

distributions.

DIMTEST Procedure

The hypothesis to test for essential unidimensionality can be stated as

1/0 : dE = 1 vs. Hl : dE > 1

where dE denotes essential dimensionality.

DIMTEST assesses unidimensionality of a given set of item responses
(found as a result of administering a set of items to a group of examinees)

by splitting the items into three subtests: two short subtests AT1 and AT2,
and a large subtest PT. Items of AT1 are first selected so that they are
dimensionally homogeneous. Items of AT2 are matched in difficulty to the
items of AT1 and the rest of the items form the subtest PT. There are several
methods to select AT1 items. Simple factor analysis can be used to select
AT1 items. Using factor analysis, a small set of items with highest loadings of
the same sign on the second factor are selected (Nandakumar Sz Stout, 1993;
Stout, 1987). Expert opinion is another method to select AT1 items. Based

on experience, one can select a small set of items (not more than one-quarter
of total items) believed to be measuring the same trait (Nandakumar, 1993).

Alternatively, le can use hierarchical cluster analysis to select AT1 items
(Roussos, Stout, and Marden, 1993). In the present study factor analysis
was used to select AT1 items.

If item responses were driven by an essentially unidimensional model,

items of all the subtests (AT1, AT2, and PT) would be of similar dimension.
On the contrary, if item responses were driven by a multidimensional model,
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items of AT1 will be dimensionally homogeneous and differ from the rest of
the items in the dimensional structure.

Item responses of the subtest PT are used to group examinees into
K subgroups. Item responses of the subtest ATI are u- d to compute two
variance estimates al and kk within each subgroup and their difference is
appropriately standard.ed and summed across subgroups to arrive at the
statistic T1 given by

1 /"--- Cr2 ,k1

k=1 S k j

where Cri is the variance estimate of the AT1 subtest among examinees in

the subgroup k, and "Ok is the estimate of the "unidimensional" variance
computed by summing the item varinances of the subtest AT1. S k is the
appropriate standard error computed for the subgroup k (for details see Nan-
dakumar & Stout, 1993).

Similarly item responses of AT2 are used to compute variance esti-
mates within subgroups and their difference is standardized and summed
across subgroups to arrive at the statistic 7'2. Stout's statistic T to assess for
essential unidimensionality is then given by

T2T=

which follows the standard normal distribution when the null hypothesis of

essential unidimensionality holds.

When the null hypothesis of essential unidimensionality holds, the two
variance estimates Pk and 6-(2.1,k should be approximately equal resulting in a
small value for T1. Although this is generally true, in certain situations T1
could be inflated under Ho due to difficulty nature of items in ATI or due to
shortness of the subtest PT (Nandakumar, & Stout, 1993; Stout, 1987). In
such situations the statistic T2 was designed to correct T1 for inflation due
to statistical biases. Consequently, under 1/0, T.will be small leading to the
tenability of 1/0. On the other hand when H1 holds, the difference in the
variance estimates will be large leading to the rejection of Ho.

5

6



The performance of DIMTEST has been studied extensively through
Monte Carlo simulations in various test settings by varying parameters such
as test length, sample size, ICC type, correlation between abilities, and the
degree of multidimensionality (Nandakumar and Stout, 1993; Nandakumar,
1991; Stout, 1987). It has also been studied for its perfoLmance on vari-
ous real tests (Nandakumar, 1993). It has been found that DIMTEST has
maintained desirable type-I error with high power een when the correlation
between abilities is as large as 0.7.

Method

In order to study the robustness of the statistic T due to different ability
distributions, a modest size simulation study was designed with three factors
varied: the type of ability distribution, test length, and sample size. Six
different types of ability distributions were considered to generate examinee
abilities normal distribution, bimodal distribution, positively skewed dis-
tribution, negatively skewed distribution, "positive" chi-square distribution,
and "negative" chi-square distribution.

Bimodal distribution was chosen to represent a situation where two
radically different types of examinees take the test. The bimodal distribution
was formed as a mixture of two normal distributions with equal probabilities
for each component in the mixture. The means of each of the components
were -1.5 and 1.5. The mean of the bimodal distribution is 0 and the variance
is 3.25.

The positively skewed distribution was chosen to represent a situation
where most examinees are of low to moderte ability. The mean of this dis-
tribution is 0 and the variance is 1. The positively skewed distribution was
generated using the power method suggested by Fleishman (1978). Using
this approach a transformation is applied to a random variable from a nor-
mal distribution as follows:

Y = a + bX cX2 dX3

where X follows the standard normal distribution and the constants a, b, c,
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and d are the weights. Fleishman (1978) lists in a table these weights for
different values of skewness and kurtosis. In our study we took appropriate
weights to have a skewness of 0.75 and a kurtosis of 0.5. These values of
skewness and kurtosis were chosen because it is believed, based on empirical
observaions, that a "typical" nonnormality occurs with skewness less than
0.8 and kurtosis between -0.6 and 0.6 (Fleishman, 1978).

The negatively skewed distribution was chosen to represent a situation
where most examinees are of moderate to high ability. The mean of this
distribution is 0 and the variance is 1. This distribution was generated sim-
ilar to the positively skewed distribution with appropriate weights for the
negatively skewed distribution to reflect a skewness of -0.75 and a kurtosis

of 0.5.

The "positive" chi-square distribution was generated by linearly trans-
forming a chi-square random variable as follows:

Y = (X 6) *0.55

where X follows the chi-square distribution with six degrees of freedom. After

a trial and error process a chi-square distribution with six degrees of free-
dom was chosen so that we have a reasonable distribution of abilities. The
other choices of degrees of freedom either had too little variance or too much
variance and was resulting in too many Os or ls in the response pattern. A

multiplicative factor of 0.55 was chosen in order to make the mode approx-
imately equal to -1 (the exact mode is -1.1). In this way this distribution
represents a situation where most examinees are of low ability. This distri-
bution has a mean of 0 and a variance of 3.63. The "negative" chi- square
distribution was obtained by changing the sign of the positive chi-square dis-

tribution to represent a situation where most examinees are of high ability.
The mode of this distribution is 1.1. The mean of the negative chi-square
distribution is 0 and the variance is 3.63. The main difference between the
skewed and the chi-square distributions is the variability among examinee
abilities. For the chi-square distributions higher proportion of examinees fall

into the extreme groups than the skewed distributions. Table 1 lists all the
distributions with their means and variances.



Four different sample sizes were considered: 500, 750, 1000, and 1500.
Two test lengths were considered: 20 and 50. These test lengths were consid-
ered to represent a typical "short" test and a typical "long" test. Examinee
responses were generated using the three-parameter logistic unidimensional
model given by

1 ciP(0) =
1 + exp(-1.7ai(O bi))

The item parameters of the SAT-verbal test were obtained from the literature

(Lord, 1968) in order to make the simulations as realistic as possible. The
SAT-verbal test consists of 80 items. The desired number of items were
randomly selected from the 80-item pool. For a given theta level and given
item, the probability of correct response was obtained using the above three-
parameter logistic model. A random number between 0 and 1 was generated
from a uniform distribution. If the computed probability, Pi(0) was greater
than or equal to the random number generated, the examinee was said to
have answered the item correctly and was given a score of 1; otherwise the
examinee was given a score of 0.

For each combination of theta distribution, test length, and sample size,
examinee responses were analyzed for unidimensionality using DIMTEST.
As explained before DIMTEST uses part of the sample for factor analysis to
select subtest items (if this method is chosen) and the rest of the sample is
used to compute Stout's statistic T. In previous studies it was shown that a
minimum sample of 250 is needed for factor analysis and a sample of 500 is
optimum. Therefore, in the present study a subsample of 250 examinees was
randomly selected from the given sample for factor analysis when the sample
size is either 500 or 750. And a subsample of 500 examinees was selected for
factor analysis when the given sample size was 1000 or 1500. In Tables 2-7,
second and third columns denote the sample sizes used for the factor analysis
(JF) and for computing the statistic (Js) for each simulation.

Examinee responses for each combination of factors were simulated 100
tims. Each time the responses were assessed for unidimensionality with the
nominal type-I error rate set to 0.05. The nui-nber of rejections for 100
replications was observed.
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Results

The observed type-I error rates (rejection rate) for all ability distribu-
tion types are listed in Tables 2-7. Each table contains results for one type
of ability distribution for all combinations of test lengths and sample sizes.
For each such combination, rejection rates for two values of T: 7', and Tp are
reported. The statistic T, denotes the conservative statistic and the statistic
Tp denotes the more powerful statistic. Te is the statistic that was originally
developed by Stout (1987) and was found to be slightly conservative. That
is, in simulation studies it exhibited, on the average, slightly lower observed

type-I error rate than the nominal error rate. The latter refined statistic Tp
(Nandakumar & Stout, 1993) has been found to be exhibiting an observed
type-I error rate that is closer to the nominal error rate with much higher

power than T. In previous simulation studies the Tp was also found to be
slightly inflated when small sample sizes (such as less than 1000) are as-
sociated with long tests (such as 40 or 50). DIMTEST reports both these
statistics.

Looking through the results in Tables 2-7 it can be seen that the ob-
served type-I error rate for both I', and Tp is less than or equal to the nominal

level of .05 for all distribution types and sample sizes when the test length
is 20. For the case of test lenght of 50, however, the observed type-I error
rate is within the nominal level only for the conservative statistic T, for all
distribution types and sample sizes. For the more powerful statistic Tp, there
is a slight inflation in some cases, especially when the sample size is less than
1000 with test length of 50. The most important result, however, is that the
results are consistent across all different distribution types for both statistics
T, and Tp, supporting the conclusion that both are nonparametric statistics
and hence robust against different ability distributions.

A random sample of these runs were selected and tested to see if the
distribution of Ts across 100 replications follows the unit normal distribution.
The results were positive confirming normal distribution for Ts.
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Summary and Conclusions

In summary, simulation results in the present study indicate that the
performance of Stout's statistics T, and Tr are consistent with their theo-
retical developments, in the sense that no particular shape is assumed for
examinee abilities. That is, these statistics are robust against the shape of
the abilty distribution. In the present study, both statistics 7', and Tp have
in general shown good adherence to the nominal level across all distributions.
As recommended previously (Nandakumar, Sz Stout, 1993), Tp is the recom-
mended statistic to use generally. In cases of small samples associated with
long tests (such as 50 items with less than 1000 examinees as seen in the
present study), however, it is advisable to look into both statistics.

The results obtained in this study were compared to those in De Cham-

plain and Tang's (1993) study where they looked at robustness of Stout's
statistic T and two other chi-squared based statistics to assesss unidirnen-
sionality on three theta distributions (normal, positively skewed, and neg-
atively skewed). In their study positive skewness was set to 0.75, same as
the present study. However, the negative skewness in their study was set to
-1.25, which is considered as not "typical" according to empirical studies of
nonnormal distributions (Fleishman, 1978). Their study used test lengths of
20 and 40 and sample sizes of 500 and 1000. De Champlain and Tang's study
showed inflation of type-I error rate for the statistic T for skewed distribu-
tions for both sample sizes and test lengths except for shorter length tests
and positively skewed cases. Comparing their results with those obtained
here we find that with a skewness of -1.25 all examinees were located in a
small ability range resulting in not having enough examinees at certain test
score levels leading to inconsistent values for T. Whereas in the case of pos-
itive skewed distributions the results are consistent in both studies. That is,
larger samples are needed with larger test lengths in order to use the more
powerful test statistic T.
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Table 1

Ability distributions and their means and standard deviations
Ability Distribution

Normal Bimodal
Positively

Skewed
Negatively

Skewed
"Positive"
Chi-square

"Negative"
Chi-square

Mean 0 0 0 0 0 0 0

Variance 0 1 3.25 1 1 3.63 3.63

Skewness0 0 0 0.75 0.75
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Table 2

Distribution of 0 : Normal

Test Length
N

Sample Size Rejection Rate
.-IF J.3 Tc Tp

20 250 250 1 4

20 250 500 1 5

20 500 500 1 5

20 500 1000 1 3

50 250 250 4 6

50 250 500 3 9

50 500 500 3 8

50 500 1000 4 7

Table 3

Distribution of 0 : Bimodal

Test Length
N

Samp.e Size

r IS
Rejection

Tc

Rate
TpJF

20 250 250 1 2

20 250 600 0 4

20 500 500 0 4

20 500 1000 0 3

50 250 25e 0 1

50 250 500 1 2

50 500 500 1 4

50 500 1000 2 5
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Table 4

Distribution of 0 : Positive Skewed

Test Length
N

Sample Size Rejection Rate

4 is Tc Tp

20 250 250 1 2

20 250 500 0 0

20 500 500 0 2

20 500 1000 1 3

50 250 250 3 9

50 250 500 1 10

50 500 500 0 5

50 500 1000 2 4

Table 5

Distribution of 0 : Negative Skewed

Test Length
N

Samp e Size Rejection Rate

iF iS Tc Tr,

20 250 250 0 3

20 250 500 0 3

20 500 500 1 5

20 500 1000 2 7

50 250 250 3 5

50 250 500 3 10

50 500 500 4 6

50 500 1000 2 5
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Table 6

Distribution of 0 : Positive x2

Test Length
N

Sample Size Rejection Rate
iF is Tc Tp

20 250 250 1 9

20 250 500 0 0

20 500 500 0 2

90 500 1000 1 3

50 250 250 3 9

50 250 500 1 10

50 500 500 2 4

50 500 1000 0 5

Table 7

Distribution of 0 : Negative X2

Test Length
N

Samp e Size Rejection Rate
ip is Tc Tp

20 250 250 3 5

20 250 500 2 9

20 500 500 3 5

20 500 1000 0 2

50 250 250 6 12

50 250 500 4 9

50 500 500 3 8

50 500 1000 2 6
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