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Abstract
To conduct a Monte Carlo study in discriminant analysis, one

is faced with many questions. What is the value of p, the number
of variables in each population? What are, ti,k, the mean vectors?
What are the covariance matrices, Ik? Are they equal? What is the
degree of separation between populations, Aii? What are the sample

sizes, nk? How many replications are needed?
The purpose of the current study is to present an overview of

the Monte carlo studies in discriminant analysis. We will try to
give examples of answers to the above questions through a brief
literature review of the topic. The study contains a -zevIew of
articles on the topic of discriminant analysis in which Monte Carlo
sampling techniques were used. The articles covered many research
points such as comparing error rate estimates, evaluating different
discriminant rules, and studying the outlier influence. The study
may be of assistance to researchers who are interested in conduct-
ing Monte Carlo studies, especially in the process of choosing the
values of the parameters or facto;s under consideration.
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1. INTRODUCTION

Naylor, Balintfy, Burdick, and Chu (1966, p. 3), defined

simulation as a numerical technique used to conduct experiments on

a digital computer, which involves certain types of mathematical

and logical models that describe the behavior of a system over

extended periods of time. It is a technique of performing sampling

experiments on a model of a system. Naylor et al. (pp. 5-7) desc-

ribed many situations in which simulation can be successfully used.
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Examples of such situations are: (a) It may be either impossible

or very expensive to obtain data from certain phenomena in the real

world; (b) The observed system may be too complex to be described

in terms of a set of mathematical equations for which the analytic

solutions are obtainable; (c) Even if the mathematical model can be

formulated tL describe some system of interest, it may not be pos-

sible to obtain a solution to the model by straightforward analytic

techniques; and (d) It may be impossible or too expensive to vali-

date experiments on the mathematical model describing the system.

Naylor et al. (1966, pp. 8-9) listed some reasons for using

simulation analysis:

1) Simulation can be used to experiment with new situations

about which we have little or no information so as to prepare for

what may happen.

2) Detailed observation of the system being simulated may lead

to a better understanding of the system and to suggestions for

improving it, suggestions that otherwise would not be apparent.

3) The experience of designing a computer simulation model may

be more valuable than the actual simulation itself. For example,

the knowledge obtained in designing a simulation study may suggest

changes in the system being simulated. The effects of these

changes can then be tested via simulation before implementing them

on the actual system.

4) Through simulation, the effects of certain informational,

organizational, and environmental changes on the operation of a

system could be studied, by imposing some alterations in the model
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of the system and observing the effects of these alterations on the

system's behavior.

5) Simulation makes it possible to study and experiment with

the complex internal interactions of a given system whether it be

a firm, an industry, an economy, or some subsystem of one of the

these.

6) Simulation can be used as a pedagogical device for teaching

both students and practitioners basic skills in theoretical analy-

sis, statistical analysis, and decision making.

7) Operational gaming has been found to be an excellent means

of stimulating interest and understanding on the part of the

participant, and in particular useful in the orientation of persons

who are experienced in the subject of the game.

8) Simulation of complex systems can yield valuable insights

into which variables are more important than others in the system

and how these variables interact.

9) Simulation can serve as a "pre-service test" to try out new

policies and decision rules for operating a system, before running

the risk of experimenting on the real system.

10) Simulations are sometimes valuable in that they afford a con-

venient way of breaking down a complicated system into subsystems,

such of which may then be modeled by an analyst or team that is

expert in that area.

11) Simulation makes it possible to study dynamic systems in

either real time, compressed time, or expanded time.

12) When new components are introduced into the system, simu-

lation can be used to help foresee bottlenecks and other problems

that may arise in the operation of the system.
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Computer simulation also enables us to replicate an experi-

ment. Replication means rerunning an experiment with selected

changes in parameters or operating conditions being made by the

investigator. Simulation is indeed an invaluable and very versa-

tile tool in those problems where analytic techniques are inade-

quate. However, it provides only statistical estimates rather than

exact results, and compares alternatives rather than generating the

optimal one.

Because sampling from a particular distribution involves the

use of random numbers, a simulation study is sometimes called a

Monte Carlo study. The term "Monte Carlo" was introduced during

World War II, as a code word for the secret work at Los Alamos; it

was suggested by the gambling casinos at the city of Monte Carlo in

Monaco. The Monte Carlo method was then applied to problems

related to the atomic bomb.

Monte Carlo methods have been used for evaluating multidimen-

sional integral and differential equations, and for simulating some

parameters of queues and networks. Sampling random variates from

probability distributions is another field of Monte Carlo applica-

tions. Perhaps, the Monte Carlo method is now the most powerful

and commonly used techniqt 7. for analyzing complex problems.

Rubinstien (1981, p. .A) listed three differences between the

Monte Carlo method and simulation:

1. In the Monte Carlo method time does not play as substantial

a role as it does in stochastic simulation.

2. The observations in the Monte Carlo method, as a rule, are

independent. In simulation, however, we experiment with the model

over time so, as a rule, the observations are serially correlated.
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3. In the Monte Carlo method it is possible to express the

response as a rather simple function of the stochastic input

variate. In simulation, the response is usually a very complicated

one and can be expressed explicitly only by the computer program

itself.

2. MONTE CARLO STUDIES AND DISCRIMINANT ANALYSIS

Three of the main reasons for conducting a Monte Carlo study

in discriminant analysis are: a) The observed system may be too

complex to be described in terms of a set of mathematical equations

for which the analytical solutions are obtainable; b) It may not

be possible to obtain a solution to the model by straightforward

analytical techniques; and c) It may be impossible or too expen-

sive to validate experiments on mathematical model describing the

system. These three reasons are valid for the areas of: 1)

Studying outlier detection and influence; 2) Comparing error rate

estimates; 3) Evaluating discriminant rules; and 4) Studying a

discriminant rule behavior under nonoptimal conditions.

In general, the main steps to conduct a Monte Carlo study in

discriminant analysis are as follows:

1. Specify the parameters of interest such as the number of

variables (p), the mean vectors (lh, k = 1,...,K), the covariance

matrices (/k, k = 1,...,K) and/or the degree of overlap/separation

between the groups (in terms of the Mahalanobis distance or the

expected error rate).

2. From each population Gic, sample n vectors of size p x 1,

with the mean vector Ilk, and covariance matrix Ikr specified in the

previous step.
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3. Use the vectors from step 2 to construct a discriminant

rule.

4. Using the discriminant rule from step 3, calculate some

statistics of interest ( e.g., the hit rates).

5. Replicate steps 2 through 4 many times, and calculate the

averages and the standard deviations and any other statistics or

estimates of interest.

6. Analyze and interpret the results by graphical or inferen-

tial methods.

There are three distinct methods of performing the six steps

specified above. The main difference among these three methods is

concerned with the second step mentioned above, namely, generating

a multivariate vector from a population with some parameters.

The first and most popular method is to generate samples from

populations with specified parameters using a random number genera-

tor. This method is usually referred to as Monte Carlo sampling,

Monte Carlo simulation, or simulation experiment (see for example,

Hora & Wilcox, 1982, Remme, Habbema & Hermans, 1980, Sadek &

Huberty, 1992, and Snapinn & Knoke, 1989).

In the second method, populations Gk (k = 1,...,K) of sizes Nk

with the specified parameters are generated. Then, samples of

sizes nk are selected with replacement from that population (each

multivariate observation has a probability 1/Nk of being represent-

ed in the sample). The main problem here is that some observations

may be represented more than once in the same sarple. This will

depend on the population size, Nk. Another concern with this

method is the choice of the population sizes (Nk) which are sup-

posed to be infinite. The question here is how large Nk should be
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considered infinite? This method is known as the resampling

technique or bootstrapping (as examples, see Chatterjee & Chatter-

jee, 1983, Efron, 1983, and Freed & Glover, 1986).

For the third method, real data sets are used to represent

populations. Then, with replacement, samples are drawn from this

data set. In this case, the population parameters are calculated

from the data set. A good example of this procedure is given in

Huberty, Wisenbaker, and Smith (1987). Two main problems with this

approach are that a real data set has a relatively small size, and

represents a unique situation.

Regardless of the method used, to conduct a Monte Carlo study

in discriminant analysis, one is faced with many questions. What is

the value of p, the number of variables in each population? What

are, [Ak, the mean vectors? What are the covariance matrices, Ek?

Are they equal? What is the degree of separation between popula-

tions, Aij? What are the sample sizes, nk? How many replication

are needed?

3. CHOICE OF FACTORS FOR A MONTE CARLO STUDY

IN DISCRIMINANT ANALYSIS

The purpose of the current study is to present an overview of

the Monte carlo studies in discriminant analysis. This overview

would help one to make reasonable choices of the value(s) of the

parameters to be used in a Monte Carlo study in a discriminant ana-

lysis. A review of some published articles on the topic of discri-

minant analysis in which Monte Carlo sampling techniques were used

was conducted. The articles covered many research points such as

comparing error rate estimates, evaluating different discriminant
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rules, investigating variable selection methods, and studying.the

outlier influence. Most of these articles were published in

various journals such as Communications in Statistics, Computa-

tional Statistics & Data Analysis, Decision Sciences, Journal of

American Statistical Association, Multivariate Behavioral Research

and other statistical and statistics-related journals.

In the current section, a discussion of the choice of the

discriminant analysis parameters values is given. Subsection 3.1,

deals with the choices of the populations parameters such as the

mean vectors, Ilk, the covariance matrices, II,' and Mahalanobis

distance between the groups, 1. Subsection 3.2 deals with the

choices of number of observations in each group (sample sizes), the

number of variables in each population (dimensionality) and the

number of groups, K. Subsection 3.3 deals with the number of

replication in a Monte Carlo study.

3.1 Choice of vfr, Eu, and A

The mean vectors, Ilk, covariance matrices, Elc I and Mahalanobis

distance, Aij, are related through the relationship

= E-1 (Pi 11.1) Then, determining two of the

above three terms implies the determination of the third term. It

is common to study the effect of i when one studies the outlier

influence, compares error rate estimates or evaluates a discrimi-

nant rule. The effect of hetrogeniety of the covariance matrices

is usually investigated when one evaluates a discriminant rule

based on data from normal distribution.
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The most important factor here is Aij, the degree of overlap/

separation between groups i,j (i,j= 1,..,K) in terms of Mahalanobis

distance. Two alternatives are available.

First, choose the covariance matrix and the mean vectors, then

the value of Mahalanobis distance is calculated from the above

equation. Examples of this are found in Chatterjee & Chatterjee

(1983), Friedman (1989), Joachimsthaler & Stam (1988), Koehler &

Erenguc (1990), Lahiff & Whitcomb (1990), McLachlan (1980), Moore,

Whitsitt & Landgrebe (1976), Raveh (1989), Remme, Habbema & Hermans

(1980), Stam & Ragsdale (1992) and Young et al. (1986). This app-

roach is typically used if the degree of overlap is not a factor to

be studied. In mathematical programming approach the degree of

overlap may be specified in a different way rather than Mahalanobis

distance. Examples of this kind are found in Freed & Glover (1986)

and Rubin (1990).

Second, choose the values of Mahalanobis distance and the

covariance matrix, then the mean vect'lrs could be determined from

the above relationship. Here, the degree of overlap/separation

between the groups is a factor to be studied. The choice of the

mean vectors and the covariance matrix are selected to produce some

specific values of A.

Usually various values of A are chosen such that they repre-

sent small, moderate, and large overlaps. However, the number of

chosen values for A varies from one study to the other. For exam-

ple, Joachimsthaler & Stam (1988) and Koehler & Erenguc (1990) used

one value of 1 for A. The values of A = 1, 2, and 3 were chosen by

Lachenbruch, Sneeringer, & Revo (1973), the values of .5, 1, 1.5

were chosen by Sadek & Huberty (1992), and 14 values of A between
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0 and 4 were chosen by Glick (1978) Some examples are summarized

in Table 1 below.

Table 1: Examples of choices of Mahalanobis distance A

Authors Chosen values of A

Dorans (1988) 1, 1/2, 2, 1/8

Ganesalingam & McLachlan (1980) 1, 1.5, 2, 3

Ganeshanandam & Krzanowski (1989) 1.01, 2.53
Glick (1978) 0, .1, .2, .4, .5, .6,

.8, 1, 1.25, 2(.5)4
Greene & Rayens (1989) 1.5, 2, 3, 5, 5

Hora & Wilcox (1982) 1, 2

Lachenbruch, Sneeringer & Revo (73) 1, 2, 3

Lesaffre, Willems & Albert (1989) V.5, 1, 1/2, 2

McLachlan (1980) 1, 2

Sadek & Huberty (1992) .5, 1, 1.5
Snapinn & Knoke (1984 & 1985) 0,.5, 1, 1.5, 2, 2.5, 3

Snapinn & Knoke (1989) 0, 1, 2, 3

Young, Marco & Odell (1986) 1.01, 1.31, 1.55

If the two populations are multivariate normal with equal

priors, there is a relationship between the expected misclassifi-

cation rates and Mahalanobis distance. Mahalanobis distance is

selected so that a desired misclassification rate is attained (for

example, a Mahalanobis distance value of 3.29 would produce a mis-

classification rate of .10). Examples of the application of this

idea are found in Bayne et al. (1983), Lachenbruch & Mickey (1968),

Page (1985), and Vlachonikolis (1986). A summary of these choices

is given in table 2 below.

Table 2: Examples of choices of Error rates

Authors Chosen values of error rate

Bayne et al. (1983) .05, .15, .25, .351.45

Lachenbruch & Mickey (1968) .05, .1, .15, .20, .25, .30

Page (1985) .10, .20, .30

Remme, Habbema, & Hermans (1980) .10

Sadek & Huberty (1992) .15, .30, .45

Vlachonikolis (1986) .30, .50, .70

10
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The identity matrix, I, is the most common choice for the

covariance matrix. For example, see Greene & Rayens (1989), Joa-

chimsthaler & Stam (1988), Koehler & Erenguc (1990), Lachenbruch &

Mickey (1968), Lahiff & Whitcomb (1990), McLachlan (1980), Page

(1985) and Sadek & Huberty (1992).

Different forms of Ek (instead of a common Z) are required if

the effect of hecrogeniety of the covariance matrices is under

investigation. Usually this takes place when one compares discri-

minant rules that includes the quadratic discriminant rule. Using

different forms of Ek are also found when the researchers use real

life data. Examples of the first situation are found in Freed &

Glover, 1986 (Z2 = II, 9ZI), Friedman, 1989 (II, = k.Il, k = 1,2,3),

Greene & Rayens, 1989 (XI = I, E2 = (1/32).1, (1/8).1, (1/2),I),

Joachimsthaler & Stam, 1988 (Z2 = Zi, 221, 4Z,), Koehler & Erenguc,

1990 (Zi Z2= 131 ir 2Z1, 4Z1) Raveh, 1989 (Z2 = Xi, 3E1, 4Zi) , Remme,

Habbema, and Hermans, 1980 (22 = II, 2/1, 411, 16Z1), and Rubin, 1990

(22 = 9I1).

After selection of the covariance matrix, the mean vectors which

produce some values of Mahalanobis distance must be determined.

Two ways of determining the shape of the mean vector are found in

the literature. The first one is to choose two vectors in such a

way that the difference between the two vectors is spread among all

variables, so that each element in the first vector differs from

the corresponding element in the second vector by a constant (e.g.,

IAT1 = (2,2,2,2), RT2 = (1.5,1.5,1.5,1.5). Examples of that choice

are found in Ganesalingam& Mclachlan (1989), Joachimsthaler & Stam

(1988), Koehler & Erenguc (1990), Lahiff & Whitcomb (1990), Raveh

(1989), and Snapinn & Knoke (1989). If the covariance matrix is
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the identity matrix, as a general rule, RI. and may be chosen so

that p.T1 = wi t

The second one is to chooSe two vectors differing by only one

element (e.g., Wi= (0,0,0,0), iirj= (2,0,0,0)). Examples of that can

be found in Friedman (1989, Lachenbruch, Sneeringer, & Revo (1973),

Lachenbruch & Mickey (1968), Page (1985), Remme, Habbema, and Her-

mans (1980) and Snapinn & Knoke (1984). If the covariance matrix

is the identity matrix, then, the choice of = 1T ± (A,0,...,0)

produces the required squared Mahalanobis distance, A2.

3.2 Choice of p, Kr and nt

When the study involves a number of dimensions, various values

of p are to be considered, otherwise, only one value of p is consi-

dered. It is up to the researcher to determine the value (s) of p

which he/she will take into consideration. One value of p was con-

sidered by various authors. Chatterjee & Chatterjee (1983), Glick

(1978), and Moore, Whitsitt, & Landgrebe used only p = 1. Bayne at

al. (1983), Freed & Glover (1986) Fukunaga & Kessell (1971), and

Rubin (1990) used p = 2. Joachimsthaler & Stam (1988), Koehler &

Erenguc (1990), and Stam & Ragsdale (1992) used p = 3. Young et

al. (1986) used p = 6, Dorans (1988) used p = 8, and Ganeshanandam

& Krzanowski (1989) used p = 10.

Two values of p were considered by Hora & Wilcox, 1982 (p = 5,

10), Greene & Rayens, 1989 (p= 4, 10), Lesaffre, Willems, & Albert,

1989 (p = 3, 5), Raveh, 1989 (p = 2, 3), and Snapinn & Knoke, 1989

(p= 10, 20). Three values of p were chosen by Ganesalingam & McLa-

chlan, 1980 (p= 1, 2, 4), Page, 1985 (p= 4, 8, 20), Remme, Habbema,

& Hermans, 1980 (p = 2, 6, 10), Sadek & Huberty, 1992 (p= 2, 4, 6),
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Snapinn & Knoke, 1984, Snapinn & Knoke 1985, and Vlachonikolis,

1986 (p = 1, 3, 5). More than three values of p were considered by

Friedman, 192q (p = 6, 10, 20, 40), Lachenbruch & Mickey, 1968 (p

= 2, 4, 8, 20).

Equal group sizes was a common choice for most of the studies.

Lachenbruch & Mickey (1968) suggested that nk; 3 is necessary to

obtain a reasonable hit rate estimate. Huberty, Wisenbaker, & Smith

(1987) recommended that a minimum nk/p ratio of approximately 3

might be considered a definition of a large group size. Most of

the reviewed papers satisfied the condition of Huberty, Wisenbaker

& Smith. Exceptions are found in some data conditions of Friedman

(1989), Greene & Rayens (1989), Lachenbruch & Mickey (1968), Page

(1985), Remme, Habbema, & Hermans (1980).

Around one third of the reviewed papers considered one value

for group size. Glick (1978) considered a group size of 10, Lahif

& Whitcomb used a group size of 16, Snapinn & Knoke (1984, 1985)

considered a group size of 25, while 50 observations per group were

used by Freed & Glover (1986), Koehler & Erenguc (1990), Raveh

(1989), and Rubin (1990).

When the effect of the sample size was under consideration,

researchers used different sample sizes. Two different ways of

selecting the group sizes were found in the literature. The first

was choice of nk as a multiple of p. The second, was direct deter-

mination of different values of nk. Examples of the former are

found in Hora & Wilcox, 1982 (nk = 3p, 10p), Lesaffre & Willems,

1989 (nk = 3p, 5p, 10p), and Huberty & Sadek, 1992 (nk= 3p, 6p, 9p).

Examples of the latter are found many articles. Two choices of nk

were considered by Friedman, 1989 (nk = 10, 20), Ganeshanandam &

13
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4. SUMMARY AND CONCLUSIONS

A brief summery of various authors' choices of K (numbcr of

groups), p (number of variables), nk (group size), group separa-

tion, and number of replications is given in Table 5. Our recom-

mendations for the choices of the discriminant analysis parameters

in a Monte Carlo study are as follows:

1. Three values of A would be' sufficient to represent low,

moderate, and high separation between groups. If applicable, the

expected error rate should be used to determine the desired group

separation levels.

2. If the effect of dimensionality is desired, different

values of p between 1 and 10 is suggested. In variable selection

studied, a larger number of variables may be desired.

3. Using nk as a multiple of p is preferable. Values of nk

between 3p and 10p are recommended.

4. Concerning number of replications, Sadek & Huberty (1992)

reported that gain one may obtain by increasing the number of

iteration from 2000 to 5000 is negligible. Because of the avail-

lability of computing facilities, one may get the advantage of

running a large number of iterations. The authors think that a

number of replication between 500 and 2000 would be sufficient.

5. Concerning the covariance matrices, no loss of generality

occurs when I = I, the identity matrix. Since the linear discrimi-

nant function can be thought of as first reducing the covariance

matrix to its principal components and then standardizing so that

the variation is equal in all directions. A similar justification

is given by Hand (1981, p. 139). For heterogeneous covariance

matrices II, = M.If wilere m is an integer, is recommended.
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Krzanowski, 1989 (nk= 25, 45), Ganeshanandam & McLachlan, 1980 (nk=

20, 50), McLachlan, 1980 (nk=20, 20), and Remme, Habbema & Hermans,

1980 (nk = 15, 35). Three choices of nk were considered by Bayne,

1983 (nk= 25, 50, 100), Chatterjee & Chatterjee, 1983 (nk = 10, 20,

50), Fukunaga & Kessell, 1971 (nk= 100, 200, 406), Snapinn & Knoke,

1984 (nk = 10, 20, 25), Stam & Ragsdale, 1992 (nk = 251 50, 100),

and Vlachonikolis, 1986 (nk = 50, 100, 200). The largest number of

choices for nk was used by Moore, Whitsitt & Landgrebe (1976) where

they used ten uifferent values of nk between 20 & 200 with an

increment of 20.

3.3 The Choice Of Number Of Replications

Most Monte Carlo experiments involve replicating the experi-

ment for a number of times. The number of replications varies from

one study to another. In the area of discriminant analysis, the

number of replications varied from 2 to 5000. A summary of some

choices is given in table 3 below. The number of replications may

vary in the same study. For example, Bayne et al., (1983) used

50000/nk replications, nk= 25, 50, and 100. Glick (1978) used 2000

and 4000 replications.

Table 3: Example of choices of number of replications

Replications Authors

2 Lachenbruch & Mickey, 1968.
25 Remme, Habbema, & Hermans, 1980.
40 Fukunaga & Kessell, 1971.
50 Page, 1985, Stam & Ragsdale, 1992, Vlachoni-

kclis. 1986.
100 Friedman, 1989, Joachimsthaler & Stam, 1988.

Mcle.lchlan, 1980, Raveh, 1989, Rubin, 1990, Sna-
pinn and Knoke, 1989, and Young et al., 1986.

150 Dorans, 1988, and Greene & Rayens, 1989.
500 Hora & Wilcox, 1982, Lesaffre & Willems, 1989,

Moore, Whitsitt, & Landgrebe, 1976.
1000 Freed & Glover, 1986.
2000 Glick, 1978, and Sadek & Huberty, 1992.
5000 Snapinn & Knoke (1984 & 1985).
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Table 5: Summary

Author(s) Notes 101) p°) nk°) Dist.") Rep.0) ,

1. Bayne et al.,

1983

Comparing

rules

2 2 25, 50,

100

.05(.10)
45*

50000/

nk

2. Chatterjee & Error rate, 2 1 10,20,50 2, 3 not

Chatterjee, 83 bootstrap given

3. Dorans, 1988 Error rate 2 8 20, 40, 1, V2, 2, 150

estimates 80, 160 V8

4. Freed & Glover,

1986

Evaluating

rules (MP)

2 2 50 .5, .75" 1000

5. Friedman, 89 Comparing 3 6, 16 n1+n2+n3 100

rules 20,40 = 40

6. Fukunaga & Error rate 2 8 100,200, 7 40

Kessell, 1971 estimation 400

7. Ganesalingam & Error rate 2 1,2,4 20, 50 1, 1.5, 100

McLachlan, 1980 estimates 2, 3

8. Ganeshanandam & Variable 2 10 25, 45 1.01, 50

Krzanowski, 89 selection 2.53

9. Glick, 1978 Error rate 2 1 10 14 values 2000,

estimates from 0: 4 4000

10. Greene & Comparing 4,8 4,10 6,9,31 1.5, 2, 150

Rayens, 1989 rules 13,21,51 3, 4, 5

11. Hora & Wilcox,

1982

Error rate

estimates

3 5, 10 3p, 10p 1 2 500

12. Joachimsthaler
& Stam, 1988

Comparing

rules (MP)

2 3 50 1 100

13. Koehler & Error rates 2 3 50 1 100

Erenguc, 1990

14. Lachenbruch & Error rate 2 2, 4, n1=4:25, .05(.05)

Mickey, 1968 estimates 8, 20 n2=n1, .30'

2n1,3n1

15. Lahiff & Error rates 2 2 16 1.06,2.12 N/A

Whitcomb, 1990 & outliers 2.83,4.24

16.Lesaffre, Will-

ems & Albert,89

Error rate

estimates

2 3, 5 3p,5p,

10p

V.5, 1,

V2, 2

500
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Author(s) Notes K") p") nk") Dist.(4) Rep.°)

17. McLachlan,
1980

Error rate,

bootstrap

2 2 4 5p, 10p 1 2 100

18.Moore, Whitsitt

& Landgrebe, 76

Hit rates 3 1 20(20)

200

.5, 2.75,

3.5

500

19. Page, 1985 Error rates 2 4, 10,20 .10, .20, 50

8, 20,40 .30'

20 25,50

20. Raveh, 1989 Discriminant

rules

2 2, 3 50 100

21. Remme, Habbema
& Hermans, 1980

Comparing

rules

2 2: 10 15, 35 .10. 25

22. Rubin, 1990 Comparing

rules:MP,LD

2 2 50 75 100

23. Sadek &
Huberty, 1992

Outliers 2 2,4,6 3p,6p,

9p

.5,1, 1.5 2000

24. Snapinn &
Knoke, 1984

Error rates

estimators

2 1,3,5 10,20,

25

0, .5, 1

1.5, 2,

5000

25. Snapinn & Error rates 2 1,3,5 25 0(.5)3 5000

Knoke, 1985

2 . Snapinn & Error rates 2 10, 25 100

Knoke, 1989 & selection 20 3

27. Stam &
Ragsdale, 1992

MP rules 2 3 25, 50,

100

V6.75=
2.598

50

28. Vlachonikolis,
1986

Error rates 2 1,3,5 50, 100,

200

.30, .50,

.70*

50

29. Young, Marco &
Odell, 1986

Dimension

reduction

3 6 10,30,50

170,90

1.01,

1.31,

100

1.55

Number of groups.
Number of variables.
Number of observations per group

Mahalanobis distance; refers to expected error rate concept;

: refers to a different concept of distance measure.

(5) Number of replications for every condition.

MP : Mathematical Programming approaches.
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