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I. Introduction
With a rapid progress of computer technologies, now we can program a well-controlled "cogni-

tive experiment in computer software, accomodate the software in a number of microcomputers,
and have each trained experimenter carry one of the microcomputers and collect data, con-
ducting the experiment on the individual basis. In this way, we can easily collect data for
several hundred individual subjects without using too much time. With such a set of data not
only we can observe each individual's behavior intensively but also observe his/her behavior in
perspective, clarify individual differences, etc.

Tatsuoka (1985, 1990) has developed a method for diagnosing misconceptions, skill and
knowledge acqusition combining deterministic concepts of attribute and ideal response patterns
with a latent trait 0 .

Di Bello, Stout and Roussos (1993) have proposed a model for cognitive assessment:

P9(a,0) = (1 p)[dg s Pg(0 Acg) + (1 d2)P9(0)] ,

where g denotes item, cx is an attribute pattern, which is expressed as a sequence of k

O's (= nonpossession) and l's (= possession), 0 is the latent residual ability, p is the slip
probability, dg is the probability to select the strategy represented by the vector qg , for
answering item g , which is expressed as a sequence of k O's (= not needed) and l's (=
needed), sag is the conditional probability of applying qg correctly, given that qg is selected,
A is a constant usually set equal to 2.0, cg is a measure of completeness of qg , P9(0) is

the probability of correctly applying all required attributes other than those indi:ated in the
qg vector which follows the one-parameter logistic model (Rasch model), and Pg(a, 0) is the
conditional probability of correct answer to item g , given cx and 0 .

In these approaches, the latent ability 0 is used more or less as an insignificant element.
Samejirna (1993a, 1994a) has proposed the competency space approach for cognitive assessment,
in which a multidimensional latent space is used. Unlike other approaches, the competency
space approach uses latent ability spaces agressively, making attribute mastery diagnosis easy
and more precise, assessing ability to use mastered or partially mastered attributes, etc.

II. Developmental Changes
When our interest in assessing children's skills of addition, multiplication, fractions, neg-

at.ve numbers, etc., mastery or non-mastery of these skills may cover all important aspects.
Developmental psychology tells, however, that there are more attributes to acquire and use as
one grows and becomes capable of handling more complex problems, and also each attribute
becomes more complex. Thus attribute mastery itself becomes more complicated, and also ac-
quisition of attributes and ability to identify necessary attributes, which have already mastered
or partially mastered, structure them for solving a new problem, and use them innovatively,
etc., will gradually be differentiated. As one becomes more mature and challenges intellectual
tasks, such dynamics becorae more and more important.
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To give an example, we come across graduate students who are excellent in course work, but
cannot design dissertation research, which is essential for a Ph. D. candidate. Such individuals
lack ability to identify the necessary attributes in, and retrieve them from, our long term
memory, structure them well, etc. Unlike domain knowledge, it is more difficult to assess such
dynamics and screen applicants for graduate programs in terms of this kind of ability before
decision has to be made as to whether an applicant should be accepted or rejected. Thus
cognitive diagnosis should deal with both of these two differentiated aspects, whereas this may
not be very important when we deal with children.

III. Competency Space Approach

Competency space approach assumes that mastery of an attribute is a continuous process,
although observable indices may be just mastery and non-mastery. Thus a continuous latent
variable is hypothesizcd behind each attribute mastery. The approach is more or less focused
on situations in which:

1. Our target populations of individuals are on relatively high levels of intellectual ma-
turity, and ability to use mastered attributes in innovative ways has become more
important.

2. Thus two subspaces are considered in the competency space, although a clear-cut
separation may not be feasible. Let 0 denote the competency space, which is
multidimensional. This competency space is decomposed into two subspaces, such
that

= [0:3, ej
where the subspace Oa deals with attribute masteries, or domain knowledge, and the
subspace Ob concerns with ability to use the mastered attributes dynamically.

It is conceived that, as one grows and becomes intellectually more mature, the roles of the
subspace 06 will become more important.

An advantage of the competency space approach is the possibility of reducing the dimension-
ality of 0 , as factor analytic ideas indicate. Operationally, reduction of dimensionality can be
done by transforming the manifest variables to the set of principal components, and discarding
those components the variances of which are negligibly small; this can also be done by using the
factor analysis model, discarding the unique factors. Note, however, that these procedures are
justifiable only when the unique factor variances are all negligibly small. If some of them are
large enough, ;.hese unique factors should be included in determining the dimensionality
of ea .

It may be advisable to use both factor analysis and the principal component analysis. Factor
analysis will tell how many unique factor variances are substantially large, and with this number
added by the number of common factors becomes the estimated dimensionality of 0 . This
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number should be checked against the results of the principal component analysis, to find out
if it agrees with the number of principal components whose variances are not negligibly small.
If it does, then those components with negligibly small variances can be discarded; if it does
not, include more components to make it agree. This is important for making assessment in
Oa accurate.

Once this has been done, the remaining principal components must be rotated to make each
dimension meaningful. An appropriate method will be oblique pattern matrix rotation (e.g.,
Law ley & Maxwell, 1971), devising the pattern matrix to decompose 0 into the subspaces
0. and 06 .

It should be noted that the estimated dimensionality of 0 partly depends on the homo-
geneity of the target population. If individuals of the target population are educated fairly
similarly, for example, the structure of the latent variables behind attribute masteries will be
relatively simple. If the target population consists of people with variously different cultures,
for example, the competency space will require a larger dimensionality. Thus Cross-validation
of the dimensionality is necessary, in order to make the usefulness of the operationally defined
competency space broader.

ASSESSMENT IN Oa

Higher mental processes include not only more complicated attributes, but also a /arger
number of attributes. This will require more elaborate methodologies in assessing mastery
or partial mastery of attributes in the subspace 00, , and also with a powerful methodology
cognitive assessment will become more precise and informative.

Grades of Attainment

Assessment in the subspace Oa deals not only with the dichotomous categories of mastery
and non-mastery but also partial mastery, with the introduction of the concept of the grade of
attainment, in an effort to make the diagnosis more precise and informative.

Take trigonometry, for example. There are many problem solving tasks which require some
levels of attainment toward mastery of trigonometry, but not the complete mastery of trigonom-
etry. For some problems, understanding sine, cosine and tangent on the triangle level without
dealing with negative values (grade 1) may be sufficient. For some others, understanding those
concepts on the triangle level with possibly negative values (grade 2) may be required, or those
on the unit circle level using radians (grade 3) may be mandatory.

Thus diagnosis will be made more precisely, and the number of attribute patterns, and hence
that of non-fuzzy response patterns will increase. Table 1 presents sixteen conceivable states of
attribute mastery when there are four attributes, A, B, C and D, on the left hand side. Since
at least one attribute is needed to make an item, in this example there are fifteen conceivable
types of items requiring one or more attributes. The non-fuzzyresponse patterns of these fifteen
items corresponding to the sixteen states of attribute masteries are given on the right hand
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side of Table 1.

Insert Table 1 About Here

If the grade of attainment is accomodated and the states of attribute mastery are described
by 0 , 1 (grade 1 attainment) and 2 (mastery), then the number of conceivable states of
mastery will be increased to 34 = 81 , and there will be eighty conceivable types of items.
If a test includes all these types, then there will be the same number of non-fuzzy response
patterns. Also the number of possible fuzzy response patterns becomes enormous.

A strength of the competency space approach is that all these response patterns can be
hadled without difficulty, by virtue of the graded resp9nse model (Samejima, 1969, 1972, 1994c).
Thus there is no need to attempt to reduce the number of response patterns, nor to classify
them into a smaller number of categories.

The relationship between each grade of attainment toward mastery of an attribute and 0a
is probabilistic, rather than deterministic, with the reduction of the dimensionality of the latent
space. This is illustrated by the curves in Figure 1, when ea turns out to be unidimensional.

Insert Figure 1 About Here

It is important to select a suitable model out of the family of graded response models
(Samejima, 1972, 1994c), and criteria for this selection will be discussed later. Also as an
example of suitable models for cognitive assessment, the acceleration model (Samejima, 1994c)
will be introduced and discussed later.

Attribute Diagnosis

Attribute diagnosis in the sense of Tatsuoka (1985, 1990) and of Di Bello, Stout and Roussos
(1993) can be done practically in the same way in the competency space approach.

Let g denote an attribute, and A'g be a grade of attainment toward mastery of each
attribute, and xg (= 0,1, ..., m9) denote its realization. The operating characteristic, Px,(0a)
of the grade x.a means the conditional probability, given ea , with which the individual gets
sg , that is,

Pxg(0a) prob.[Xg = xg ea] .

For a set of n (> 1) attributes, a response pattern, denoted by V , indicates a sequence of
Xs, for g = 1,2, ...,n , and its realization, v , can be written as

v 1 xg .

It is assumed that local independence (Lord & Novick, 1968) holds, so that within any group
of individuals all characterized by the same value of 0 the distributions of xg 's are all



independent of each other. (The acceptability of this assumption is determined when we decide
on the dimensionality of 0 operationally.) Thus the operating characteristic, of the response
pattern v is defined as

13,(0,,,) prob.[V = v = fJ px9(0) ,

x9Ev

which is also the likelihood function, L(v I 0) , for V = v .

Using this likelihood function, the maximum likelihood estimate of the pos'tion of each
non-fuzzy response pattern, as well as of each fuzzy response pattern, can be obtained. Thus
an examinee with a given response pattern will be assigned to one of the non-fuzzy response
patterns in terms of his/her state of attribute mastery, selecting one with the shortest distance
in Oa or based on the likelihood ratio, etc.

Because of the introduction of the grade of attainment, this d;agnosis can be done more
precisely, that is, instead of deciding on either mastery or non-mas!ery of each attribute, the
grade of attainment in the attribute in question is diagnosed for non-mastery individuals.

ASSESSMENT IN ea

The graded response model (Samejima, 1969, 1972, 1994c) takes essential roles in the as-
sessment in the subspece Ob . If the number of observable steps in, say, problem solving, then
the amount of information will be increased and the estimation of the subject's position in Ob

will become more accurate. This is important, for screening graduate program applicants in
terms of this aspect of suitability for a future Ph. D., for example, will be done with little risk.

Suppose, for example, that a cognitive process, like problem solving, contains a finite or
enumerable number of steps. For convenience, let g be a problem, and xg be a step. The
graded item score x.c, should be assigned to the individuals who have successfully completed
up to the step x9 but failed to complete the step (xg + 1) .

Let /%9(0b) be the processing function (Samejima, 1994c) of the graded item score xg 7

which is the probability with which the individual completes the step xg successfully, under
the joint conditions that:

1. the individual's position is Ob , and

2. the steps up to (x9 1) have already been followed and completed successfully.

It is assumed that Mx9(0b) is either strictly increasing in any dimension of 01, or constant,
for xg = 1, 2, ..., mg . This assumption is reasonable considering that each item has some direct
and positive significance to the ability measured.

Let (mg + 1) be the hypothesized graded item score adjacent to and above mg . Since
everyone can at least obtain the item score 0 , and no one is able to obtain the item score
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(m9 + 1) , it is reasonable to set

= 1
Mx9 (06)

for xg = 0

for xg = mg + 1 ,

for all 06 . Thus the operating characteristic, Px9(0b) , of the graded item score x9 is given
by

1-1 x(0) [1-m(.9+,)(00]
.<.,

This provides the fundamente framework for the general graded response model.

Let /3;9(0b) denote the conditional probability with which the individual of ability
follows and completes the cognitive process successfully up to the step x9 , or further. Thus

PZ,(eb) = fJ Alt,(0,) .

.<.9

This function is called the cumulative operating characteristic (Samejima, 1994c), although
cumulation is in the opposite direction. Thus the operating characteristic, .19(0b) , can also
be expressed by

Ob

Px,(Ob) = P:9(0b) /7,g+j)(eb)

It is obvious that ./39(06) is also either strictly increasing in 06 or constant for all Ch , and
assumes unity for xg = 0 and zero for x9 = rn9 + 1 for the entire range of 06 . From this
Px9(0b) , the operating characteristic, Pi,(Ob is obtained by

P(06) _= prob.[V = v I Ob] = fl /-)9(01,) ,
z9Eu

which is aiso the likelihood function, L(v Ob) , for V = v . Thus the maximum likelihood
estimate of the individual's position in 06 is obtained using this L(v I Ob)

Since experiments consist of continuous discoveries, it will be wise to use a nonparametric
approach for estimating the operating characteristics (e.g., Leveine, 1984; Samejima, 1983,
1993a, 1994b) before fitting any parametric model. Figure 2 illustrates a nonparametrically
estimated curve using simulated data, by the differential weight procedure of the conditional
p.d.f. approach (Samejima, 1994b). Unlike the logistic curve, which was fitted to the theoretical
curve and plotted in the same figure, the curve obtained by the differential weight procedure
can disclose non-monotonicity of the theoretical curve. Thus for any identified pattern of
behavior shared by a subgroup of individuals it will be better that the operating characteristic
be estimated nonparametrically.

Insert Figure 2 About Here
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If no strong relationship with any dimension of the subspace 8 4 is found out, that is, each
and every curve turns out to be fiat, the pattern of behavior is called diffused. Some possible
interpretations are that the pattern of behavior under observation may have multiple meanings,
it may be an indicator of the dimension Ob does not include and addition of a new dimension
in Ob may be necessary, etc. In any case, search for the true reason is mandatory.

If r 3trong relationship between the pattern of behavior and any dimension of the competency
space is discovered, the pattern of behavior is said to be concentrated. The next step is to
tentatively parameterize the nonparametrically estimated operating characteristics to make
mathematical handling easy, using a semi-parametric models such as Ramsay Sz Wang's (1993).
After this, some appropriate graded response model, such as acceleration model, can be fitted
(cf. Samejima, 1994c). A similar approach can be used for any identified buggy pattern of
behavior, which can also be useful in cognitive diagnosis.

If we only have data of a limited number of subjects, we could replace the estimated operat-
ing characteristic by the sum of the estimated conditional distributions of the latent trait, given
the maximum likelihood estimates of the trait, in order to obtain some amount of information.
These conditional distributions can be obtained in the processes of nonparametric estimation of
the operating characteristics, such as the differential weight procedure and the simple sum pro-
cedure of the conditional p.d.f. approach (Samejima, 1994b). Figure 3 illustrates concentrated
and diffused patterns of behavior.

Insert Figure 3 About Here

INSTRUMENTS

It may be feasible to categorize cognitive procses into the following three categories with
respect to their assessabilities:

1. Assessable by paper-and-pencil tests.

2. Difficult to be assessed by paper-and-pencil tests, but assessable by computerized
tests, using figural responses, etc.

3. Not assessable by either of them, and intensive observations in experimental situations
are needed.

With advancement of computer technologies, category 2 will take more and more from
category 3. Category 1 has advantage over the other two categories in the economy of time and
cost, however. Since we cannot aford to conduct research which belongs to category 2 without
a sizable research money, it may be wise to start with paper-and-pencil tests, to find out how
far we can go with them.
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In practice, we may develop relatively simple items requiring a small numbers of attributes,
which are basically used for diagnosing the grade of attainment toward mastery of the at-
tributes, and also more complex multi-attribute items that require dynamics of innovative use
of the mastered or partially mastered attributes, etc. The resulting test will consist of such
different types of questions.

IV. Example

We are in the process of collecting data, using a paper-and-pencil test on trigonometry for
the first year high school students in Japan. At the moment, there are only 41 protocols. From
these protocols, the strategy matrix (Di Bello, Stout & Roussos, 1993) has been made.

TEST ITEMS

There are 12 items in the test, and they are as shown below. They were taken from the
original test of 17 items. Thus five items, (1)2., (2)2., (3)1., (4)1. and (4)4., re left blank.

(1) Obtain the values of the following.

1. sin 900 -I- cos 180° + tan 45°

2.

3. sin 1.-1-1 cos Hrl cos [21] sin 1-L7r1L 3 j 6 j 3 6

(2) Simplify the following.

1. (sin 0 + cos 0)2 + 10tan 021
1-f-tan2

2.

(3) Obtain the following when 0 is an angle in the third quadrant and sin 0 cos 0 = .

1.

2. sin 0 + cos 0

(4) Solve the following trigonometric equation and inequality when x is as given
in the brackets.

1.

2. 2 cos x + 13- < 0 (0° < x < 360°)

3. 2 sin2 x + cos x 2 = 0 (0 < x < 27r)

4.

(5) Suppose that AB = 5 , BC = 8 and B = 60° in the triangle ABC.

1. Obtain the length of AC.



2. Obtain sin A .

3. Obtain the radius of the circumscribed circle.

4. Obtain the area of the triangle ABC.

(6) In the triangle ABC, we set BC = a and CA = b . When
a' cos A sin B = b2 sin A cos B , what shape does the triangle ABC have?
Explain it in a concrete way.

(7) In the triangle ABC, suppose that sin A : sin B : sin C = 7 : 8 : 13 . Obtain
the largest angle.

Since this test is a part of the term examination, and the main objective of the exami-
nation was to find out the students' achievement in trigonometry aftef a quarter of learning,
most questions require orthodox approaChes based on the mastery of attributes. A few items,
including (6), may require some dynamics, however. The expected correct answers to these
twelve items and the item score matrix are presented in Appendices 1 and 2, respectively.

ATTRIBUTES AND STRATEGY MATRIX

The attributes required in solving these trigonometry problems are .stratified, in the sense
that mastery of an attribute in each phase requires mastery of some or all attributes in the
previous phases.

1. Phase 1: prerequisites

In this phase, easy tasks, such as addition and multiplication involving negative num-
bers, fractions, etc., are excluded, for all examinees seem to have mastered them.

(a) inequalities

(13) factorization

(c) distribution

(d) Pythagoras theorem

2. Phase 2: understinding of basic trigonometry

grade 1: sine, cosine, tangent on the triangle level, all positive vahies.

grade 2: the above, but inclusive of negative values.

grade 3: sine, cosine, tangent on the unit circle level, using radians.

3. Phase 3: laws and theorems

(a) area of a triangle using trigonometry

10 12



(b) sin2 + cos' 0 1

(c) tan 0 =
[ sin 0 1

1 cos 0 I

(d) In a triangle, a side facing to a larger angle is longer than a side facing to a smaller
angle.

(e) law of cosines: c2 a2 b2 2ab cos C

(f) law of sines:

grade 1:

grade 2:

[sinLA1 = [bsin.B1

[Tat-4]= [sinbB1 = [.*} = 2R

NOTE: a, b, c: sides; A, B, C: angles; R: radius of the circumscribed circle;
S: area

The strategy matrix of these items is provided by Table 2. In addition to the attributes, a
column is assigned for ability to restructure attributes and use them innovatively, etc., under
the heading, dynamics. When the grade of attainment is considered for an attribute, the grade
required for solving the item is written in the column; when only mastery and non-mastery
are used, * is given, meaning that mastery of the attribute is required for solving the item.
This table will become the most important information source when the pattern matrix is
determined in factor rotation for defining the competency space 0 , differentiating (4 from
G.

Insert Table 2 About Here

V. Mathematical Models
Here we only discuss mathematical models in the unidimensional latent space, although

many models suitable for cognitive assessment can be easily expanded to the multidimensional
latent space. Let 0 be the latent trait, which assumes any real number. Hereafter, all those
functions observed in the multidimensional latent space earlier in this paper will be transfered
to the corresponding functions of 0 .

Samejima (1972) has proposed a general theoretical framework of the graded response model,
in which the homogeneous case is distinguished from the heterogeneous case. The general
graded response model represents a family of mathematical models which deal with ordered
polychotomous categories in general. These ordered categories include: A, B, C, D and F in
the evaluation of students' performance, strongly disagree, disagree, agree and strongly agree
in a social attitude survey, partial credit given in accordance with the individual's degree of
attainment toward the solution of a problem, to give some examples.
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CRITERIA FOR EVALUATING MODELS

The general graded response model includes many specific mathematical models. In an effort
to select a right model, or models, for a specific psychological reality, the following features will
be considered as desirable.

1. The principle behind the model and the set of accompanied assumptions agree with
the psychological reality in question.

This is by far the most important criterion.

2. The model provides additivity in the operating characteristics of the item scores xg 's
(Samejima, 1994c).

Additivity holds if the operating characteristics belong to the same mathematical
model under finer recategorizations and combinings of two or more categories together.

This implies that the unique maximum condition is satisfied by the resulting operating
characteristics, if it is satisfied by those of the original xg 's .

Graded item scores, or partial credits, are more or less incidental. For example, it is
a general practice to reevaluate the grades, A, B, C, D, and F, in a required course to
pass and fail.

Also, with the advancement of computer technologies, it is quite possible to obtain
more abundant information from the individual's performance in computerized ex-
periments as we proceed in research, and thus we need finer recategorizations of the
whole cognitive process.

3. The model can be naturally generalized to a continuous response model. This criterion
is a natural extension of additivity.

4. The model satisfies the unique maximum condition (Samejima, 1969, 1972).

Satisfaction of this condition assures that the likelihood function of any response
pattern consisting of such response categories has a unique local or terminal maximum.

5. The model provides the ordered modal points of the operating characteristics in ac-
cordance with the item scores.

The acceleration model introduced here is a model constructed with these considerations in
mind. It is obvious that the first two criteria are most important for cognitive assessment.

ACCELERATION MODEL

The acceleration model is a family of models that belongs to the heterogeneous case, and is
specifically appropriate in cognitive assessment.

12 14



Consider a as problem solving that requires a number of subprocesses before attaining the
solution. It is assumed that there are more than one step in the whole process which are
observable. Graded item scores, or partial credits, 1 through mg , are assigned to the
successful completions of these separate observable steps. The processing function for each
xg (= 1,2, ..., mg) is given by

Ai x9(0) = [1119(0)1x9 ,

where ezg (> 0) is the step acceleration parameter.

It is assumed that the whole process leading to the solution consists of a finite number of
clusters, each containing one or more steps, and within each cluster the parameters in Wx9(0)
are common. Thus, if two or more adjacent x9 's belong to the same cluster, then the
parameters in Wx9(0) are the same for these xg 's , and, otherwise, at least one of the
parameters is different.

Let w denote a subprocess, which is the smallest unit in the cognitive process. Thus each
step contains one or more w 's . Let 60 (> 0) be the subprocess acceleration parameter, and
then the step acceleration parameter, , for each of x9 = 1,2, ..., mg is given as the sum of

's over all w E xg . Thus we can rewrite the processing function in the form:

Mx9(0) = [1119(0)]E.E.96,

The name, acceleration parameter, comes from the fact that, within each step, separate sub-
processes contribute to accelerate the value of 0 at which the discrimination power is maximal
to its ultimate position (cf. Samejima, 1994c).

The acceleration model represents a family of models in which klf,(0) is specified by
a strictly increasing, five times differentiable function of 0 with zero and unity as its two
asymptotes, and

kliz9(0)

LQ
Lao kilr,(4)12

decreases with 0 . Thus the cumulative operating characteristic, P;(0) , is given by

P;(0) = .11.0[11(0)]u ,

and we obtain for the operating characteristic

.19(0) = JJ [4,(0)}c- [W(59+1)(0)]c-9+i}
u=0

If our experimental setting is improved and allows to observe the individual's performance in
more finely graded steps, then mg will become larger. It is obvious (Samejima, 1994c) that the
resulting operating characteristics still belong to the acceleration model: a partial satisfaction
of the additivity criterion. It is also obvious that the model can be generalized to a continuous
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response model as the limiting situation in which there are infinitely many subprocesses in each
step.

Here a specific model in this family will be introduced, in which klig(0) is given by

1

1 + exp [D ce,g(O 0.9)]
(1)

where D = 1.7 , and ax, (> 0) and 9q are the discrimination and location parameters,
respectively. Figure 4 illustrates the six operating characteristics with mg = 5 and the
parameters arg = 1.36517 , 1.03244 , 0.87524 , 1.09083 , 0.58824 , f3s, = 0.94260 ,

0.76985 , 0.03941 , 1.35406 , 0.80000 , and G, = 0.41972 , 0.51741 , 0.54196 , 0.60004 ,

1.00000 , for xg = 1 , 2 , 3 , 4, 5 .

Since we have

Insert Figure 4 About Here

odmax = T-1 Gg
[1 +

where Odmax indicates the value of 0 at which the processing function Mx9(0) is steepest, or
most discriminating, it is obvious that Odmax is a strictly increasing function of G, Applying
this for the subprocess acceleration parameter eti, , we can say that within each step separate
subprocesses contribute to accelerate Odmaz to its ultimate position.

It has been shown (Samejima, 1994c) that the unique maximum condition is satisfied in this
model. It has also been shown (Samejima, 1994c) that the orderliness of the modal points of
the operating characteristics practically holds in this model, except for very unusual cases.

PARAMETER ESTIMATION

In cognitive assessment, it is suggested to follow the procedure described below in parameter
estimation.

1. Use a nonparametric estimation method like Levine's (1984) or Samejima's (1983,
1993b, 1994b), and estimate the operating characteristics, Pr9(0) 's .

2. Tentatively parameterize the results using a very general semiparametric method, such
as Ramsay and Wong's (1993), in which not only the fit of Px9(0) but also that of
its first partical derivative with respect to 0 are considered.

3. From these results obtain the estimated processing function 114,(0) and its partial
derivative with respect to 0 .

4. Select three arbitrary probabilities, pi , p2 and p3 , which are in an ascending order,
and find out 01 , 02 and 03 , at which Ik9(0) equals pi , p2 and p3 , respectively.
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5. The estimated acceleration parameter ''xg is obtained as the solution of

03 02 log [( p2 )-1/exg 1] log [( p3 )-111.9 1]

02 01 log [( 1] log [( p2 )-1/ex9 1]
(2)

6. Obtain the estimate, ikg , as the solution of

ICixg(13sg)

1 25'

(3)

7. From these results obtain the estimate of cez, by

24'Xg:1-1

at 0 = . (4)
a

D A1e,g ao -9(0)

Note that this method can be applied for any curve as long as -A. :149(0) is available.
Suppose, for example, a model based on the individual choice behavior has been used, and
then the researcher decides to switch to this specific acceleration model for Cie rest of re-
search. The method just explained can be used directly. Figure 5 presents the operat-
ing characteristics in Masters' (1982) partial credit model, using as, = 1, 2,3, 4, 5, 6 and
/3z9 = 1.0,2.0,3.0, 3.5, 1.8,1.0 in Bock's (1972) multinomial model represented by

exp[akg 0 + Pkg]
Pk9(0) =

EuElfg exP[au 0 + r(3.]

with kg replaced by xg for xg = 0,1,2,3,4,5 , respectively.

Insert Figure 5 About Here

In fact, the parameters in the acceleration model used in Figure 4 were obtained by the
parameter estimation method just described, from the A1x9(0) 's in Masters' model with the
above set of parameters, setting pi = 0.1 , p2 = 0.5 and p3 = 0.9 in (2). Compare Figure 5
with Figure 4. These two sets of curves are practically indistinguishable! The same procedure
was repeated by setting the values of pi , 7/2 and p3 to (0.2, 0.5,0.8) , (0.25, 0.50, 0.75) ,

(0.3, 0.5,0.7) and (0.3,0.6,0.7) , respectively, and the results turned out to be very similar.

The similarity of the two sets of curves exemplifies the fact that the acceleration model
provides varieties of different curves. This is a strength, for researchers who want to switch to
the acceleration model can do that without reanalyzing the protocols following the acceleration
model, if he/she uses the method just described.

The item response information function (Samejima, 1973, 1993b) of the graded item response
xg is defined by

a2
lx,(0) log 13g(0)

ao2
02 02

= E log Mu(0) log [1 Af(x9.4.1)(0)] .

u<x,
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Once this function is evaluated, The item information function, is obtained as its conditional
expectation, given 0 , that is,

4(0) E[Iz9(0) I 0] = E.I.z9(0)Pz9(0) .

The item information functions obtained in these two models proved to be fairly close to each
other (cf. Samejima, 1994c), as was expected from the similarity between the two sets of
operating characteristics presented in Figures 4 and 5.

ROBUSTNESS OF THE MODEL

The assumption that a single set of az and Ps exists within each step may be violated,
especially when nz, is small. Robustness of the acceleration model will handle this situation,
however. Suppose that we did not know there were two clusters involved, and treated them
as a single step, estimating the step parameters following this specific acceleration model, and,
later, with the improvement of the experimental setting, they were diSclosed as two separate
steps which belonged to two different clusters. The results oLtained by treating them as a
single step still provides good approximations, showing the robustness of the model.

Suppose, on the contrary, we need to combine two steps which do not belong to the same
cluster. Note that the resulting combined step will not belong to the acceleration model.
Using the method described earlier, we can approximate the operating characteristic of the
combined category following the acceleration model, and the result usually provides a good
approximation.

Figure 6 illustrates six step processing functions, the first three of which belong to a cluster
with az, = 1.0 and /3z9 = 1.0 , and the second three to another with az, = 1.0 and

= 1.0 , respectively, and the third parameters are ergs= 0.5,1.0,1.5, for the three steps
in each cluster. It is obvious that the operating characteristic of the combined category of any
two adjacent steps still belongs to this specific acceleration model, except for the combination
of xg = 2 and xg = 3 . The two more curves in the same figure are the product of Mz9(0) '
for x9 = 2 and x9 = 3 (solid line) and its approximation following the acceleration model (a
dash and two dots repeated), respectively.

Insert Figure 6 About Here

Figure 7 presents the operating characteristics of the seven steps, 0 through 6 , plus the
sum of two operating characteristics for xg = 2 and xg = 3 (solid line), and the approximated
operating characteristic (a dash and two dots repeated) obtained by fitting a single Mz(0) to
the product of the original M3(0) and M4(0) following this specific acceleration model. The
p1 , p2 , p3 used in this approximation were 0.21109, 0.48884, 0.79446 , and the corresponding
01,02,03 were 0.3,0.5,1.4 . The resulting estimated parameters obtained through (2), (3)
and (4) turned out to be: 4 = 1.11338 , = 0.43006 , and eiz, = 0.86888 .
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Insert Figure 7 About Here

The two curves for the combined category in Figure 7 overlap almost completely, showing
the robustness of the model. Thus Additivity of the operating characteristics practically holds
for this model.

The reasons for this robustness of this model comes from the fact that the two parameters,
and G, , work compensatorily to determine the steepness of Afx9(0) , while ez, alone

accounts for the shape of the curve. Thus a set of a large az, and a small 6x9 will provide
the steepness of the curve similar to the one resulted from a set of a small ax, and a large

The shape of the curve is largely determined by Gs, , however, as we can see in the earlier
observation that Odmax changes as a function of G, , thus together providing various shapes
and steepnesses.

VI. D iscussion

It is necessary to expand the acceleration model to the multidimensional latent space, in
order to use it effectively in the competency space approach. It can be done in the same way
the nomal ogive model on the continuous response level was expanded to the multidimensional
latent space (Samejima, 1974). Several other directions of expansion are conceivable, including
both compensatory and noncompensatory directions.

A slower, patient approach may be more productive, however, attempting to identify el,
of a relatively small dimensionality first. It is expected in the example given here that lab will
be unidimensional, for the population of individuals is' relatively homogeneous and the problem
solving is limited within trigonometry of the high school level in Japan. Once a uridimensional
lab has been identified, then the acceleration model can be tested to find out how well, or
badly, it works.

The competency approach can be more effectively used in research that belong to category 2,
in which an appropriate software for intensive observation of the individual's problem solving
behavior is developed and used. The only reason that such research has not been done yet
is that it takes a sizable amount of research money. It is the author's hope that both the
competency space approach and the acceleration model will be used by other researchers in
varieties of different situations and feedback information will be given in the near future, so
that the approach and the model can further be developed in useful directions.

NCME941.TEX
March 16, 1994
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APPENDIX 1

Correct Answers to the Twelve Test Items

(1) Obtain the values of the following.

1. sin 90° + cos 1800 4- tan 45°

= 1 + (-1) + 1 = 1

3. sin [+] cos [fir] - cos [1-1 sin [-56-7r1

= (-4-) (+)
(2) Simplify the following.

1. (sin 0 + cos 0)2 + r (1tan 0)2 1
1+tan2O j

= 1 + 2 sin 0 cos0 [ 1-2 tan B-Ftan2 0

]

1 3
2 4

1

4 = -1

= 1 + 2 sin 0 cos 0 + cos2 0 2 sin 0 cos 0 + sir? 0

= 1 + 1 = 2

(3) Obtain the following when 0 is an angle in the third quadrant and
sin 0 cos() = .

2. sin 0 + cos 0

(sin + cos 0)2 = 1 + 2 sin 0 cos 0 = 1 +1 = 2

sin 0 + cos 0 =

(4) Solve the following trigonometric equation and inequality when x is as given
in the brackets.

2. 2 cos x + \fa < 0 (0° < x < 360°)
N/5cos x <
2

150° < x < 210°

3. 2 sin2 x + cos x 2 = 0 (0 < x < 27r)

2(1 cos2 x) + cos x 2 = 0

2 cos2 x cos x = 0

cos x (2 cos x 1) = 0

= 7r 3 5X
2 2 3 3

(5) Suppose that AB = 5 , BC = 8 and B = 60° in the triangle ABC.

1. Obtain the length of AC .

20



b2 a2 c2 2ac cos B = 82 + 52 2 8 5 +
= 64 + 25 40 = 49

b = 7

2. Obtain sin A .

[ sinaA = [ sinb B

sin A = [id sin B = = ÷xia

3. Obtain the radius of the circumscribed circle.

[ sinbB = 2R

R= [ 2sibnB =
7 7 7V5

32
2

4. Obtain the area of the triangle ABC .

S = [a csin = 8 . 5 = 104

(6) In the triangle ABC, we set BC = a and CA = b . When
a2 cos A sin B = b2 sin A cos B , what shape does the triangle ABC have?
Explain it concretely.

cos A = [ b2
2 a2

2bc

2a +a2 b2
cos B =

r

2ac

sin A = [ 2-±i}

sin B =

a2 cos A sin B = a2 [
h2+,2_02 1 b

2bc j 21?

b2 sin A cos B = b2 a
13 [ a2 +2ra2c b2 I2

a2(b2 c2 a2) b2(a2 e2 b2)

a2c2 a4 b2c2 b4

c2(a2 b2) (a2 b2)(a2 b2) = 0

(a2 b2)(c2 a2 b2) = 0
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a2 62 = 0 4a=b isosceles triangle
or
c2 a2 b2 0 c2 a2 b2 right triangle

(7) In the tr.angle ABC, suppose that sin A : sin B : sin C = 7 : 8 : 13 .

Obtain the largest angle.

Isin% sinB6 .1 := si:C

a .= 7k , b = 8k , c = 13k

C is the largest angle.
c2 a2 b2 2ab cos C

cos C = a 2ab

C = 120°

47k2 64k2-169k2 -56 } 1.1]
2.7k.8k 112 2
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