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Abstract
Analogy appears to be one of the most important mechanisms underlying

human thought, at least from the age of about one year. A powerful way of

understanding something new is by analogy with something which is
known. The research community has given considerable aitention to
analogical reasoning in the learning of science and in general problem

solving, particularly as it enhances transfer of knowledge structures. Little

work, however, has been directed towards its role in children's learning of
basic mathematical ideas. This paper examines analogy as a general model
of reasoning and highlights its role in children's mathematical learning. A

number of principles for learning by analogy are proposed. These form the
basis for a critical analysis of some commonly used concrete analogs. The

final section of the paper addresses more abstract analogs, namely,
established mental models or cognitive representations which serve as the
source for the construction of new mathematical ideas.
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REASONING BY ANALOGY IN CONSTRUCTING MATHEMATICAL

IDEAS

It has been argued that much of human inference is basically analogical

and is performed by using schemas from everyday life as analogs (Gentner,

1989; Halford, 1992). Given that analogy is a very natural and ubiquitous

aspect of human cognition, analogical reasoning would seem to lie at the
very core of our cognitive processes. It is even used by very young

children under appropriate conditions (Brown, Kane, & Echols, 1986; Crisafi

& Brown, 1986; Gholson, Dattel, Morgan, & Eymard, 1989; Goswami, 1991).

Such reasoning is also responsible for much of the power, flexibility, and

creativity of our thought (Halford & Wilson, 1993; Holyoak & Thagard,

1993).

In 1954, Polya devoted an entire volume to the use of analogy and
induction in mathematics. le he demonstrated how analogies can

provide a fertile source of new problems and can enhance problem-solving

performance, his ideas were not widely adopted, largely because they were

descriptive rather than prescriptive (Schoenfeld, 1992). More recent

studies however, have given greater attention to analogical reasoning in
general problem solving, particularly as it enhances transfer of knowledge

structures (e.g., Bassok & Holyoak, 1989; Gentner, 1989; Holyoak & Koh,

1987; Novick, 1990, 1992). While research has also addressed the role of

analogy in science learning (e.g., Clement, 1988; Duit, 1991; Gentner, 1982;

Gentner & Gentner, 1983), little work has been directed towards its role in
children's learning of basic mathematical concepts and procedures. Studies

which have focussed on mathematics have looked at how high school or

college students apply newly learned formulas to related problems (e.g.,
Bassok & Holyoak, 1989; Novick, 1988).

4
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The purpose of this paper is to examine analogy as a general model of
reasoning and to highlight its role in children's learning of mathematics.

Since the research community has focused largely on the role of analogical

reasoning in general problem solving, the first section of this paper reviews
some of the major findings in this area. From this review, a number of

principles for learning by analogy are proposed. These form the basis for a

critical analysis of some commonly used concrete analogs. The final section
of the paper addresses more abstract analogs, namely, established mental

models or cognitive representations which serve as the source for the
construction of new mathematical ideas. Examples are drawn from the
areas of numeration and algebra.

The Nature of Analogical Reasoning
Polya (1954) defined analogous systems as those that "agree in clearly

definable relations of their respective parts" (p. 13). The definition

commonly used today, and adopted in this paper, is that of Gentner's (1983;
1989), namely, an analogy is a mapping from one structure, the base or

source, to another structure, the target. The system of relations that holds
among the base elements also holds among the target elements. Normally

the source is the part that is already known, whereas the target is the part
that has to be inferred or discovered. A simple everyday example is shown
in Figure 1. The source comprises two elements, dog and pup, and the
relation, "parent of," between them. The target comprises the elements, cow
and calf, with the same relation between them. There is a mapping from
source to target such that dog is mapped into cow, and pup into calf, and the
relation between dog and pup then corresponds to the relation between cow
and calf. The important component here is the relation, "parent of." The
attributes of the elements are not mapped, that is, the attribute "barks" is
not mapped from dog to cow.
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INSERT FIGURE 1 ABOUT HERE

An analogy utilizes information stored in memory (Halford, 1992). For

example, the base in Figure 1 includes knowledge that a pup is an offspring

of a dog. In this way, a model of analogical reasoning shares common

features with knowledge-based models of reasoning (e.g., Carey, 1985; Chi &

Ceci, 1987). However as Ha Hord (1992) notes, analogies go beyond the

information retrieved because the interaction of the base and the target

produces a new structure that extends beyond previous experience.

Furthermore, employing an analogy can open up new perspectives for both

perceiving and restructuring the analog (Duit, 1991). The acquisition of this
new structure is in accord with the constructivist views of children's

learning; that is, learning is an active construction process that is only

possible on the basis of previously acquired knowledge (Baroody &

Ginsburg, 1990; Davis, Maher, & Noddings, 1990; Duit, 1991; von Glasersfeld,

1990). In other words, learning is fundamentally concerned with

constructing similarities between new and existing ideas.

A typical case of analogical reasoning in elementary mathematics is the
use of concrete aids in developing numeration understanding. The concrete
representation is the source and the concept to be acquired is the target.

The value of these analogs is that they can mirror the structure of the

concept and thus enable the child to use the structure of the analog

representation to construct a mental model of the concept. This is
illustrated in Figure 2 where base-ten blocks are used to convey the
meaning of a two-digit numeral, 27. Here, the 2 ten-blocks represent the

digit "2" in the tens' place of the numeral, that is, there is a mapping from
the source, the two ten-blocks, to the target, the digit 2. The 7 single blocks
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represent the 7 ones in the ones' place of the numeral (i.e., there is a

mapping from the source, the set of 7 blocks, to the target, the digit 7). The

MAB material is an effective analog since it clearly mirrors the target
concept. However not all of the analogs commonly used in classrooms

display this feature, as indicated later.

INSERT FIGURE 2 ABOUT HERE

Analogical Reasoning in General Problem Solving
Analogical reasoning plays a significant role in problem solving.

The ability to access a known problem (i.e., a base or source problem)

that has an identical goal structure to the new problem to be solved
(target problem) can enhance problem-solving performance (Holyoak &
Koh, 1987; Novick, 1988, 1992; Novick & Holyoak, 1991). This analogical
transfer involves constructing a mapping between elements in the base
and target problems, and adapting the solution model from the base
problem to fit the requirements of the target problem (Novick, 1992).
To illustrate this process, we consider some studies of children's skills in
solving analogous problems.

In a study by Holyoak, Junn, & Billman (1984), children as young as
4 years were able to solve problems using a solution to an analogous
problem. Two bowls were placed on a table, one which contained

gumballs within the child's reach, and one out of reach. The child was
provided with a walking cane, a large rectangular sheet of heavy paper,
and a variety of other objects. The goal was to transfer the gumballs
from the near bowl to the far bowl without leaving the seat. One

solution is to use the cane to pull the far bowl within reach. Another is
to roll the paper into a tube, and roll the gumballs down it into the other
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bowl. Children were told stories that required them to solve analogous

problems, such as a genie who transferred jewels from one bottle to

another by rolling his magic carpet into a tube, or by using his magic

staff to move the distant bottle nearer. Four-year-olds were able to

solve the problem even when the similarities between source stories

and the target problem were relatively low. For example, in one

experiment, the source story involved Miss Piggy rolling up a carpet to

transfer jewels to a safe. Given that there are not many similarities

between a magic carpet and a square of cardboard, or between a bowl

and a safe, it appears that the children were using the relational

mappings to some degree to help them solve the problems. However the

young children's solution processes were fragile and easily disturbed by

things such as adding extra characters to the stories or altering goals.

Evidence that children can use analogical reasoning in solving more

complex problems has been provided in a series of studies by Gholson and

his colleagues (Gholson, Eymard, Long, Morgan, & Leeming, 1988; Gholson et

al., 1989). They used the well-known farmer's dilemma, the missionaries

and cannibals, and the three-disk tower-of-Hanoi puzzles, together with a

number of isomorphs, with children aged 4-10 years. There was a

sequence of moves that was common to each type of problem, as can be

seen in the farmer's dilemma. A farmer has to move a fox, a goose, and

some corn in a wagon which will only transport one thing at a time. The

problem is to move all three things without ever leaving the fox with the

goose, or the goose with the corn, because in either case the former would

eat the latter. Tl:e solution is to take the goose first, then go back, take the

fox, then take the goose back, then take the corn, then go back, then take

the goose again. The structure of this task is similar to the tower-of-Hanoi

puzzle, in that both involve a sequence of forward and backward moves.

Excellent isomorphic transfer was shown, even by the youngest children.

8
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Gholson et al. (1989) suggest this might have been because extensive

experience with the source tasks gave the children plenty of opportunity to

acquire a high quality representation of the source.

In a recent study by English (reported in English & Halford,

forthcoming), 9 to 12 year-olds from low, average, and high

achievement levels in school mathematics were individually

administered sets of novel combinatorial and deductive reasoning

problems presented in concrete and isomorphic written formats. The

order of presentation of these formats was counterbalanced for each

problem type. The concrete combinatorial problems involved dressing

toy bears in all possible combinations of colored T-shirts, pants, and

tennis rackets. The number of combinations ranged from 9 to 12. The

isomorphic written examples required the child to form all possible

combinations of: a) colored buckets and spades, b) colored shirts, skirts,

and shoes, and c) greeting cards featuring different colors, lettering, and

messages. The hands-on deductive problems entailed working through

a series of clues to determine how to: a) arrange a set of playing cards,

b) stack a set of colored bricks, and c) match names to a set of toy

animals. In the isomorphic written examples the child used given clues

to determine: a) the locations of families in a street of houses, b) the

location of a particular book in a stack of books, and c) the identification

of personnel who played particular sports. Upon completion of each of

the sets of combinatorial and deductive problems, children were asked

whether solving one set (either hands-on or written) assisted them in

solving the other set. Children were also asked if they could see ways in

which the problem sets were similar.

Results to date indicate that, on the whole, the older children were

better able to identify the structural similarities between the problems

I'l
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than the younger children. There were however, several cases in which

the younger children performed better than their older counterparts in

recognizing these similarities. This was also the case for children in the

lower achievement levels who often performed just as well, if not better,
than the high achievers. For example, 9 year-old Hay ley, a low achiever,

stated that the sets of combinatorial problems were similar because "you

have to use combinations ... you have to do them in a method so you

don't get get two exactly the same." On the other hand, Nicholas, a high-

achieving 9 year-old, commented that the problems were "about

dressing ... about matching colors." The older children frequently made

mention of the similarity in the number of sets that had to be matched.

For example, 12 year-old Natalie commented that the last two written

problems (of the form, X xYx Z) were like the last two hands-on

examples because they had "three things to match up."

For the deductive reasoning problems, most children recognized that

the problems involved an arrangement of items or a matching of names
with items. As Kerry, a low-achieving 9 year-old stated, "In the books'

problem, you had to stack them and in the cards' problem you had to
arrange them across." Most children were also able to recognize the

similarity in item arrangements, for example, "The houses problem is like
the cards problem because you have to work out which ones go next to each
other. And the tower (of blocks) is like this one (stack of books) because

you have to stack them up in the right order" (Hayley, 9 year-old low

achiever).

Few children however, commented on the nature of the clues per se,
such as the extent of information they provided, or the need to look for
related clues. James, a high-achieving 12 year-old commented on the fact
that there was one clue which provided a starting point: "The five houses

, Arl
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along the street is like the cards problem because you knew where one was

and then you had to figure out where the others would go.... there's sort of a
trick to it. You got one of them (referring this time, to the stacking

problems) and you had to figure out which went on top and which went

below." It is worth mentioning the response of 12 year-old Natalie when

asked if solving one set of deductive reasoning problems helped her

solve the other. She claimed, "I did each (set of problems) separately. I

didn't relate them." When questioned on the similarities between the

problem sets, she commented, "You've got to match stuff up with other

stuff but otherwise I don't relate problems as I don't really look at that

sort of thing."

Many studies have shown that novices tend not to focus on the

structural features of isomorphic problems especially when they have

different surface features or when the surface details provide

misleading cues (Chi, Feltovich, & Glaser, 1981; Gentner, 1989; Gentner &

Toupin, 1986; Holyoak et al., 1984; Novick, 1988, 1992; Reed, 1987;

Silver, 1981; Smith, 1989). This means that the surface features in a

novice's model of a target problem will likely serve as retrieval cues for

a related problem in memory. On the other hand, studies have shown

that similarity among surface details, or superficial similarity, promotes

"reminding," that is, assists novices to notice a correspondence between

their mental model of 4 base problem and the new target problem

(Gentner & Landers, 1985; Reed, 1987; Ross, 1984, 1987). However

while surface similarity can facilitate children's retrieval of the base
problem. its usefulness for analogical transfer is once again governed by
their ability to detect the structural correspondences between the base

and target problems (Gentner & Landers, 1985).
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Component Processes in Analogical Problem Solving

It is worth reviewing the component processes entailed in solving

problems by analogy (Gholson, Morgan, Dattel, & Pierce, 1990), since

these processes apply equally to the use of analogy in learning

mathematical ideas. Firstly, the solution to the source or base problem

(e.g., the gumballs problem cited earlier) must be learned. Secondly, the

base problem must be represented in terms of the structural features of

a generalizable mental model, rather than in terms of particular surface

details such as the specific attributes of the items (Gentner, 1983;

Holland, Holyoak, Nisbett, & Thagard, 1986). Thirdly, the child must

notice the correspondence between the target problem (e.g., the genie

problem cited earlier) and the base problem and retrieve the base in

terms of its generalizable strucure rather than in terms of specific

surface details such as bottles or jewels (Gholson et al., 1990). Finally,

the child must map, one-to-one, the structural features of the source and

target and then carry out the required problem-solving activities

(Gentner, 1983; Holyoak, 1985). As a result of successfully transferring

the base solution to the target problem, studehts at all proficiency levels

are likely to induce a more abstract knowledge structure encompassing

the base and target problems (Novick, 1992). The ability to abstract the

structural components of a problem domain facilitates solution of

subsequent analogous problems and is particularly important in

children's mathematical development.

We can view the solving of these analogous problems in terms of

mapping the states, goals, and operators (or techniques) of the novel

problem into the familiar one. These processes can be represented by a

conventional structure-mapping diagram, as shown in Figure 3. These

diagrams indicate how the elements of one structure map onto the

elements of another such that any relations, functions, or

12
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transformations between elements of the first structure correspond to

relations, functions, or transformations in the second structure (Halford,

1993).

INSERT FIGURE 3 ABOUT HERE

As indicated in Figure 3, the source is the problem-solving procedure

used previously on a now-familiar problem. The components of the

structure-mapping are states and goals, and the relations are the operators
that transform the initial state into one or more subgoals and then into the
final goal state. The target is the novel problem. As shown in the diagram,

the states, goals, and operators of the novel problem are mapped into the
familiar one. In the case of Holyoak et al.'s (1984) hollow-tube problem,

the initial state is that the gumballs are in one bowl, the goal is to have

them in the other bowl, and the operator is to move them down the tube.

The subgoal is to construct the tube and the operator is to roll a sheet of
cardboard to achieve this. The source is the similar "genie" problem, with

the genie's jewels in one bottle being the initial state. The goal was to have

them in another bottle, with the operator being to roll them down a tube
made from the magic carpet (assuming the tube was a subgoal achieved by

commanding the carpet to roll itself into a tube). More complex examples,

such as the missionaries and cannibals problem, would obviously involve a
greater number of subgoals and operators.

More complex processes are involved in solving nonisomorphic

problems where one of the problems comprises concepts or relations

that cannot be mapped into the concepts or relations in the other (Reed,
1987). Gentner (1989) uses the term, transparency, to define the ease
with which it can be decided which attributes and relations in the base

13
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domain should be applied in the target domain. Transparency would

obviously be highest for equivalent problems where both the story

context and relational structures correspond, and lowest for unrelated

problems in which neither of these corresponds. In the case of

nonisomorphic problems where only some of the concepts and relations

correspond, procedural adaptation (Novick, 1988, 1992) must be carried

out. This involves correctly representing both the base and target

problems in terms of their structural features, noticing the differences,

and then modifying the procedures in the base to enable a one-to-one

mapping between the modified base and the target (Gholson et al.,

1990).

To illustrate this procedure, we consider two problems from

Novick's (1992) work:

Base problem.

A small hose can fill a swimming pool in 10 hours and a large hose can fill
the pool in 6 hours. How long will it take to fill the pool if both hoses are

used at the same time?

Target problem.

It takes Alex 56 minutes to mow the lawn and it takes his older brother

Dan 40 minutes to mow the lawn. Dan mowed half the lawn on Saturday.

On Sunday the two boys work together to mow the other half of the lawn,

but Dan starts 4 minutes after Alex. How long will each boy work on

Sunday?

(Novick, 1992, p. 175).

The equation given to students for the base problem was (1/10)h +
(1/6)h = 1. The equation which had to be generated for the target

problem was (1/56)m + (1/40)(m 4) = 1/2. Solving the target problem

14
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by analogy with the base problem requires students to realize firstly,

that the right-hand-side of the base equation refers to the quantity of

task completed together by the two hoses ("workers"), which is not

necessarily the entire task. This generalization is reflected in the

base/target correspondence 1 := 1/2. Secondly, students must realize

that the workers need not work the same amount of time. If Dan

corresponds to the large hose, the generalization can be seen in the

correspondence (1/6)h Is' (1/40)(m 4). The remaining components of

the equation for the target problem (i.e., 1/40, 1/56, and (1/56)m) can

be generated through substitution (Novick, 1992, p. 175).

Principles of Learning by Analogy
To this point, we have highlighted a number of key features of

analogies and the processes involved in reasoning by analogy in problem

solving. Since these have significant implications for mathematics

learning, we review them in terms of a number of learning principles.

In proposing these principles, we draw upon some of Gentner's (1982)

criteria for effective analogs.

Recall that reasoning by analogy involves mapping from one

structure which is already known (base or source) to another structure

which is to be inferred or discovered (target).

Clarity of Source Structure

The structure of the source should be clearly displayed and exvlicitly

understood by the child.

For an analogy to be effective, children need to know and understand

the objects and relations in the base. It is particularly important that the

child abstracts the structural properties of the base, not its superficial
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surface details. It will not be possible to map the base into the target, then

use the base to generate inferences about the target, unless this

understanding has been acquired and is readily available.

Clarity of Mappings

There should be an absence of ambiguity in the mappings from base to

target.

The child should be able to clearly recognize this correspondence

between base and target. When a base has to be recalled from memory,

it should be retrieved in terms of its generalizable structure rather than

in terms of particular surface details (Gholson et al., 1990). This is

particularly important in the development of abstractions. These are

formed from mappings in which the source, itself, is an abstract

relational structure, with few or no attributes. Hence if children are to

form meaningful abstractions, they must learn the structure of the

examples they experience. Good analogs can assist here because

mapping between an analog and a target example encourages children to

focus on the corresponding relations in the two structures (Halford,

1993).

Conceptual Coherence

The relations that are mapped from source to target should form a

cohesive conceptual structure, that is, a higher order structure,

According to Gentner's (1983) systematicity principle, relations are

mapped selectively, that is, only those that are mapped enter into a higher

order structure. For example, in using various concrete analogs to illustrate

grouping by ten, attention must be focussed on the corresponding relations

between the groups of items, not between the materials themselves (e.g.,

1 g
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the physical size relation between a bundling stick and an MAB mini is not

mapped).

Scope

An analogy should be applicable to a range of instances.

Analogies with high scope can help children form meaningful

connections between mathematical situations. For example, the "sharing"

analogy in teaching the division concept can be applied readily to both

whole numbers and fractions. Likewise, the area model can effectively

demonstrate a range of fraction concepts and procedures.

These principles prove to be particularly useful in assessing the

effectiveness of the analogs used in children's mathematical learning.

While we consider initially a selection of concrete analogs, they are by

no means the only analogs available. There are more abstract analogs

such as a mental model of arithmetic relations which can serve as an

effective source for algebraic learning; we address these in the final

section. Considerable concern has been expressed over teachers'

selection (or lack thereof) of concrete learning aids and the fact that

teachers are offered little assistance in making appropriate choices (Ball,

1992; Baroody, 1990; Hiebert & Wearne, 1992; Kaput, 1987). It is
understandable then, why some children see as many different concepts

as there are analogs, even though only one concept is being conveyed,

and why teachers often fail to consider the representations they are

using when trying to help children overcome these difficulties (Dufour-

Janvier, Bednarz, & Belanger, 1987). v,n the next section, we take a

critical look at some of these analogs and, using the principles we have

established, offer an assessment of their appropriateness for conveying

intended concepts.

17
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The Appropriateness of Concrete Analogs
Concrete analogs are generally considered to enhance learning by

helping children understand the meaning of mathematical ideas and their

applications. Analogs can model problem situations effectively, can

facilitate retrieval of information from memory, can verify the truth of

what is learned, can increase flexibility of thinking, and can generate new

ideas and unknown facts (Dienes, 1960; Fuson, Fraivillig, & Burghardt, 1992;

Grover, Hojnacki, Paulson, & Matern, in press; Halford & Boulton-Lewis,

1992; Kennedy, 1986; McCoy, 1990; NCTM, 1989; Sowder, 1989). However

analogs, in and of themselves, cannot impart meaning; mathematical ideas

do not actually reside within wood and plastic models (Ball, 1992; Wearne &

Hiebert, 1985). Furthermore, while analogs display many relevant features,

they frequently contain many irrelevant, potentially confusing features

(Hiebert, 1992). We cannot automatically assume that children will make

the appropriate mappings from the analog to the abstract construct,

especially when some of the analogs themselves, are complex.

Despite their significance in the mathematics curriculum, these analogs

have received little critical analysis, especially from a psychological

perspective (Ball, 1992). Furthermore, as Thompson (1992) points out, the

research findings on their effectiveness have been equivocal. Some studies

(e.g., Labinowicz, 1985; Resnick & Omanson, 1987) found little impact of the

base-ten blocks on children's facility with algorithms. Other studies (e.g.,

Wearne & Hiebert, 1988; Fuson & Briars, 1990) reported a positive effect of

these materials on children's understanding of, and skill with, decimal

numeration and multi-digit addition and subtraction. Still other studies

(e.g. Gilbert & Bush, 1988) have indicated that concrete analogs are not

widely used, with their overall use decreasing as grade level and length of

teaching experience increase.

18
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As we indicate in our analysis of these analogs, some materials may be

structurally simple, yet prove to be complex learning aids when applied to
target concepts which comprise inherently complex relations. This places

an additional processing load on children as they attempt to interpret the
arbitrary structure that has been imposed on the concrete analog to mirror
the structure of the target concept. This can result in a failure to acquire
the concept. We have chosen to analyze some of the well known analogs,

including colored counters or chips, the abacus, money, the number line,
and the base-ten blocks. By considering the processes involved in

interpreting these analogs, we attempt to illustrate how they can enhance
learning when their structure clearly mirrors the target but how they can

become complex aids when assigned an arbitrary, implicit structure.

Colored Counters or Chips

Discrete items such as counters and other simple environmental items

are typically used in the study of elementary number and computation.
These analogs do not possess inherent structure as such, that is, they do not
display in-built numerical relationships. However they can effectively

demonstrate the cardinality of the single-digit numbers. In this instance
there is just one mapping from the base (the set of counters) to the target
(the number name). When applied to the learning of basic number

concepts, colored counters score highly on clarity of source structure and
mappings. When used with the appropriate language and manipulative
procedures, these analogs can promote a cohesive understanding of single-

digit numbers and of the elementary number operations.

The complexity of this analog increases significantly however, when it
is applied to the development of place-value ideas. In this instance the
analog takes on an arbitrary structure in order to mirror the structure of

19
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the target and, as such, the mappings between the source and target

become more complicated. This implied structure is of a grouping nature

where groups of counters or chips of one color are traded for a chip of a

different color to represent a new group. This single chip represents a

number of objects rather than a single object (LeBlanc, 1976). The analog

thus becomes an abstract representation because the value of a chip is

determined only by its color, which is arbitrary, and not by its size. For

example, if a red chip is worth one hundred, a blue chip worth one ten, and

a green chip worth one unit, then the numeral 364 would be represented

by three red chips, six blue chips, and four green chips. Because there is no

obvious indication of each chip's value, there is not a clear mapping from

the base material to its corresponding target numeral. In fact, there is a

two-stage mapping process involved, namely, from chip to color, then from

color to value. That is, the child must firstly identify the color of the chip

and then remember the value that has been assigned to that color (the

same situation exists with the Cuisenaire rods). This naturally places an

additional processing load on the child, especially if she does not readily

recall this value. Given the lack of clarity in its source structure and the

multiple mappings required, this material does not seem an appropriate

analog for introducing grouping and place-value ideas. It appears more

suitable for enrichment work.

The counters analog also increases in complexity when it is used as a

source for the part/whole notion of a fraction. For example, to interpret the

fraction of red counters in a set comprising 3 red and 5 blue counters, the

child must initially conceive of the set as a whole entity to determine the

name of the fraction being considered. An added difficulty here is that the

items do not have to be the same size or shape (in contrast to an area model

comprising, say, a rectangle partitioned into 8 equal parts). Hence the child

must see the items of the set as equal parts of a whole, irrespective of
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whether the items themselves, are unequal. While keeping the whole set in

mind, the child must identify all the red counters and conceive of them as a

fraction of this whole set. Since it is difficult to ascertain the whole and the

parts, which more or less requires simultaneous mapping processes, it is not

uncommon for children to treat the red and blue counters as discrete

entities and interpret the fraction as a ratio (i.e., "3 parts to 5 parts;" Behr,

Wachsmuth, & Post, 1988; Novillis, 1976). It is for this reason that the

analog comprising sets of counters is inappropriate for introducing the

part/whole construct (Hope & Owens, 1987).

In sum then, colored counters do have considerable scope and can be

an effective analog for early number and computation activities where

there is clarity of source structure and unambiguous mappings between

source and target. When the target concept increases in complexity

however, the analog also becomes more complex and does not mirror the

target as readily as before. The analog adopts an implied structure which

makes it difficult to form clear and unambiguous mappings between source

and target. In the case of the fraction example, the analog's structure

encourages children to focus on the inappropriate relation, namely, the

relation between the two colored sets instead of the relation between one

colored set and the whole set. This means the analog does not establish the

conceptual coherence required. However when used in conjunction with

other fraction analogs (such as area models) and when accompanied by the

appropriate language and manipulative procedures, this particular analog

can enrich children's conceptual understanding of the fraction concept.

The Abacus

The traditional classroom abacus consists of nine beads on each of

several vertical wires which designate the places in our number system.

There are no more than nine beads in any one column since "ten" is
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represented by one bead in the column immediately to the left (reflecting

the Egyptian system).

Since nine (not ten) beads on one wire are swapped for a single bead

on the next wire, it is more difficult for the child to see the intended

correspondence between the source and the target place-value ideas. While

all the beads are identical, except perhaps in color, they adopt different

numerical values depending on the position of the wire. The new single

bead has a value ten times greater than a single bead to its right, however

this relation is not explicit.

In interpreting a number on the abacus, the child must undergo a

three-stage mapping process, namely, from the number of beads on a

particular wire to the wire's position, then to the value of this position, and

finally, to the target numeral. This poses quite a high processing load for

the child. Given these complexities, the abacus is not an appropriate analog

for introducing grouping and place-value concepts. In fact, the child must

apply a prior understanding of these concepts when representing numbers

on this device. Hence the abacus is more appropriately used when the child

has acquired this knowledge.

Money

At first glance, money seems an appropriate and appealing analog. It

certainly has the desirable features of being real world and "hands-on" for

the child. However, this does not automatically qualify it as a suitable

analog for teaching number concepts and operations. Money is not unlike

the colored chip material in that the relationships between the

denominations are not immediately discernible. Furthermore, in some

currencies, there is a conflict of size and value. For example, in the USA, the

dime is smaller than the penny; in Australia, the two-dollar coin is smaller
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than the one-dollar coin. There is also the problem of some coins not fitting

nicely within the "ten-for-one" trades of our decimal system, for example,

the US nickel and quarter (Fuson, 1990).

Because the base-ten feature of decimal currencies is not explicit in the

material, the use of money to illustrate grouping and place-value concepts

presents complex mapping processes for the child. This is particularly the

case when money is used to illustrate decimal fractions. Children have

difficulty in seeing a particular coin as being a fraction of another,

particularly since the relative sizes of the coins do not suggest a fractional

relationship. Furthermore, through their everyday transactions with

money, children (and adults) come to see a particular denomination as an

entity in its own right, not as a fraction of some other denomination. Hence

for children to see 45 cents as 45 hundredths of a dollar, they must firstly

identify the four ten-cent coins as equivalent to forty cents and the one

five-cent coin as equivalent to five cents. Secondly, the child must identify

the one-dollar coin or note as one whole unit comprising 100 cents. There

is no visual indication, of course, that this is the case. Finally, children must

apply their understanding of the part/whole fraction concept to the

recognition that 45 cents is 45 hundredths of a dollar. Again, there are no

visual cues for this (that is, the child cannot place the 45 cents on top of the

one dollar to see that it "covers" only 45 hundredths of the dollar). The use

of money for this purpose thus entails several mappings and places a

considerable cognitive load on the child. As such, money is not a suitable

analog for establishing decimal fraction concepts and serves better as a
source of application activities. It is doubtful whether money would ever

be used as an analog if it were not so pervasive in our society.

The Number Line
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The number line is also an abstract analog which has enjoyed

popularity in the study of single-digit numbers and computations. However

because the number line is a continuous, rather than discrete, analog it is

not appropriate for children's early number experiences. Furthermore, the

analog does not display clarity of structure, nor clarity of mapping, because

the number of gradations on the number line does not correspond to the

numerals represented. For example, even though a child might be

instructed to make four "jumps" to reach the numeral "4," as shown in

Figure 4, there are, in fact, five gradations to this point. That is, the number

of gradations is one more than the corresponding numeral.

INSERT FIGURE 4 ABOUT HERE

Dufour-Janvier, Bednarz, and Belanger (1987) cite other problems

associated with this analog. Included here is the tendency for children to

see the number line as a series of "stepping stones." Each step is conceived

of as a rock with a hole between each two successive rocks. This may

explain why so many secondary students say that there are no numbers, or

at the most, one, between two whole numbers.

A further difficulty with this analog is that it does not effectively

promote conceptual coherence. For example, since it is difficult to represent

the multiplication concept in ways other than repeated addition, there is the

danger of children seeing this operation simply in terms of repeated

"jumps." The number line is also limited in promoting understanding of the

other operations, such as subtraction where there is not a clear mapping

from the analog to the basic "take-away" notion to which children are

initially introduced. Given the difficulties associated with this abstract

analog, it would seem to be more appropriate for application activities
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where children can demonstrate their previously acquired numerical

understandings.

An even more difficult application of the number line (and other

comparable continuous models) is the representation of fractions (Bright,

Behr, Post, & Wachsmuth, 1988; Hiebert, Wearne, & Taber, 1991; Larson,

1980). As noted by Bright et al. (1988), there is firstly the problem of

length representing the unit. Since the number line acts like a ruler, there

is not only iteration of the unit but also simultaneous subdivisions of all

iterated units. Secondly, the model is totally continuous, that is, there is no

visual separation between consecutive units. This is in contrast to the

visual discreteness of the set and area analogs. As a consequence, children

may count the iterations rather than the intervals when attempting to

identify a given fraction. For example, the fraction marked on the number

line of Figure 5 could be interpreted as "four fifths" instead of "three

fourths." The third important difference between the number line and the

other fraction analogs is that it requires the use of symbols to convey the

fraction notion. As Bright et al. comment, the number line is made all the

more complex by its integration of two forms of information, namely, visual

and symbolic. The symbols can distract the student from any visual

embodiment of the fraction concept.

INSERT FIGURE 5 ABOUT HERE

In analyzing these complexities, it is easy to see why the number line is a

difficult analog for children. As indicated in Figure 5, several mappings are

enoiled in interpreting the target concept. Firstly, the spaces, not the

iterations, must be interpreted as fractional components. This involves a

mapping from the spaces (distance between iterations) to the notion of
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equal parts of a whole. Secondly, the number of spaces comprising a whole

unit must be identified and mapped onto the fraction name, that is, four

equal -naces -> foul ths. Thirdly, the point marked by the cross must be

interpreted as encompassing all of the spaces from the zero point. The

number of spaces to the cross must then be mapped onto the number of

fourths being considered (three spaces -> three fourths). Given the

complexity of this interpretation process, it appears that this analog would

serve better as a source of application activities, not as a means of

introducing the fraction concept.

Base-ten Blocks

The base-ten blocks (Dienes, 1960) are probably the most commonly

used analogs in the teaching of numeration and computation. Because the

size relations between the bocks clearly reflect the magnitude relations

between the quantities being represented, the blocks display clarity of

source structure and clear mappings to the target concept. The analog also

demonstrates high scope since it can be applied to a range of instances. For

example, when used in conjunction with a place-value chart, the base-ten

blocks can assist children in their understanding of the numeration of

multidigit numbers. The blocks can also demonstrate the regrouping and

renaming of whole numbers, and hence, can foster conceptual coherence of

our numeration system.

While the blocks represent a highly appropriate analog, their

effectiveness will be limited if children do not form the correct niappings

between the analog representations and the target concepts and between

their manipulations with the analog and the target procedures. This can

happen if the blocks are not arranged in accordance with the positional

scheme of our number system or if sets of blocks are combined in any

order, beginning with any size block and moving back and forth to trade for
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another size when necessary (Hiebert, 1992). Children's failure to form

connections between the analog representation and the target ideas has

been reported in several studies (Baroody, 1990; Davis, 1984; Resnick &

Omanson, 1987). Findings from other studies have shown that the nature of

the teacher's explanations during the learning sequence is a crucial

component in this process, with appropriate and frequent verbal

explanations seen to enhance learning (Fuson, 1992; Leinhardt, 1987; Stigler

& Baranes, 1988). The importance of children's verbal explanations, with

an emphasis on the quantities they are manipulating, has also been

highlighted (Resnick & Omanson, 1987).

While the base-ten blocks serve as an effective analog for whole

numbers, they take on an added complexity when representing decimal

fractions. Changing the values of the blocks to accommodate decimal

fractions poses a higher processing load for the child. For whole numbers,

the values assigned to the blocks normally remain fixed and children

associate a given block with its whole number value. When the blocks take

on new values, children are faced with additional mapping processes. For

example, if the flat block is assigned the value, one unit (or one one), the

long block is equal to one tenth and the mini, one hundredth. This means

that, to interpret the representation shown in Figure 6, children must firstly

identify the flat block as representing one whole unit. They must then

recall that the flat block is equivalent to ten long blocks as well as one

hundred mini blocks. Next, children have to perceive the long block as

equivalent to one tenth and the mini, one hundredth, of the flat block. This

process, itself, involves an application of the fraction concept. Once the

respective values of the blocks have been established, children must

interpret the decimal fraction being represented. If children do not make

all of the mappings required, there is the danger that they will interpret the
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decimal fraction as a whole number, record it as such, and simply insert a

decimal point.

INSERT FIGURE 6 ABOUT HERE

The complexity of the mapping processes involved here means that the

base-ten blocks can lose clarity of both source structure and mappings

when used as an analog for the initial representation of decimal fractions.

Since children have to apply an understanding of fractions in interpreting

this analog, it would seem more appropriate to employ less complex

analogs, such as partitioned region models, in introducing decimal fractions

and reserve the base-ten blocks for application activities.

In this section we have focussed on concrete analogs. We now turn to a

consideration of more abstract analogs, namely, established mental models,

which serve as the source for the learning of a new target concept or

procedure.

Mental Models as Analogs

The term, mental models, has been used extensively in the psychological

literature (e.g., Johnson-Laird, 1983; Halford, 1993; Rouse & Morris, 1986).

Johnson-Laird considers mental models to be structural analogs of the world.

Halford (1993) adopts a broader perspective and views mental models as

representations wnich are active while solving a particular problem and

provide the workspace for inference and mental operations. According to

Halford, cognitive repiesentations are the workspace of thinking and

understanding and must have a high degree of correspcndence to the

environment that they represent.
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Mental models can be retrieved from memory where a particular

representation has been associated with that situation in the past. They can

also be transferred from another situation and used by analogy (Collins &

Gentner, 1987), or they can be constructed from components obtained from

both of these sources (Halford, 1993). Because mental models comprise

representations, and since analogies are mappings from one representation

to another, mental models can serve as analogies. We provide some

it.stances of these in the remainder of this section.

Use of Analogy in Multidigit Numeration

In using mental models as analogs, children need to explicitly recognize

the correspondence between their model of a particular mathematical

construct (i.e., the source) and the targeted construct. Consider firstly,

children's learning of the relationships inherent in our place-value system.

Children's introduction to multidigit numbers presents a new relational

construct for the child, namely, the periods within our number system. The

important feature of these is that the same set of relationships exists in

each period, that is, the ones' period comprises hundreds, tens, and ones of

ones, the thousands' period comprises hundreds, tens, and ones of

thousands, and the millions' period, hundreds, tens, and ones of millions.

This is readily demonstrated on a place-value chart. A meaningful mental

model of the "hundreds, tens, and ones" relations within the ones' period

can serve as an effective analog for the learning of larger numbers. As an

analog, it displays clarity of mappings since it is readily mapped onto each

period of a multidigit number, as indicated in the next paragraph. The

analog also promotes conceptual coherence of our number system because it

highlights the important place-value relations.

Using this analog to interpret a multidigit number involves a process of

mapping the "hundreds, tens, ones" model onto each new period within the
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number and assigning the appropriate period name. For example, to

interpret the numeral, 435 537, we firstly recognize that there are two

periods, the left-hand being the thousands' period and the right-hand, the

ones' period. By mapping the "hundreds, tens, ones" model onto each

period, the value of the number can be determined, that is, four hundred

and thirty-five thousand s and five hundred and thirty-seven ones. The

value of each digit can also be readily discerned, for example, the left-hand

"3" has a value of 3 ten-thousands because it is in the tens' place of the

thousands' period. Likewise, the right-hand "3" is worth 3 tens because it is

in the tens' place of the ones' period. Applying a mental model of these

periods is a less complex process for the child than the common procedure

for reading numerals identified by Fuson et al. (1992). They argue that

while number words are written down, left to right, in the order in which

they are said, the reading of a multidigit number involves a reverse right-

to-left process. That is, to read a numeral such as 4 289, the child must

look along the digits from right to left in order to decide the name of the

farthest left place (i.e., "ones, tens, hundreds, thousands"). The child can

then proceed to read the number name from left to right.

Use of Analogy in Interpreting Metric Measurements

A mental model of the positional relationships within the decimal

number system can serve as a useful analog in the understanding of metric

measurements. For example, to interpret a metric measurement such as 5.2

meters, we firstly map our knowledge of length relationships (i.e., 1 meter

is equivalent to 100 centimeters and 1000 millimeters) onto our knowledge

of decimal number positional relationships (i.e., 1 unit is equivalent to 100

hundredths and 1000 thousandths). This means the metric unit, meter, is

mapped onto the ones' or units' place, centimeter is mapped onto the

hundredths' place, and millimeter is mapped onto the thousandths' place, as

shown in Figure 7. By recording the metric measurement on the place-
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value chart, it can be seen that 5.2 meters represents 5 meters and 20

centimeters as well as 5 meters and 200 millimeters.

INSERT FIGURE 7 ABOUT HERE

Use of Analogy in Algebraic Learning

The final example we will consider is the use of analogy in algebraic

learning. It is posited that understanding algebra, as with other domains,

depends on constructing appropriate mental models of the essential

concepts. While arithmetic is primarily concerned with relations between

constants, algebra focuses on relations between variables. To understand

algebra then, means to have a mental model of these relations, and be able

to use this mental model to guide the development of appropriate

operations and strategies.

Variables can only be understood in terms of their relations to other

numbers, which may be either variables (e.g., x = 5y.) or constants (e.g.,

1 ogN2). Where these relations are defined by convention, and are part of

the number system, they will be relatively fixed. For example, the value of

I ogN2 will always have the same relation to the value of N , because of the

way log2 is defined. However when the relation is defined by a specific

expression, such as with x = 54, it is not fixed, and is not necessarily part of

any predefined system. In such cases, interpretation of a variable symbol

cannot be based on past experience with that particular symbol, but must

be based on conventions used to interpret such expressions. Children who

fail to understand this may try to relate the meaning of a variable to past

experience, and believe that, for example, ymust represent an item like

yachts (Booth, 1988) or must be equal to 25 because x is the 25th letter of

the alphabet. In the latter case, students are using their familiar arithmetic
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frame of reference (Chalouh & Herscovics, 1988). Given that this numerical

frame of reference is the only one available to beginning algebra students,

it seems appropriate to capitalize on it in the early stages.

The meaning of x in the expression x = 5, for example, can be

demonstrated by analogy with arithmetic. Just as relations between sets of

objects can be used as analogs of relations between constants, relations

between constants can be used as analogs of relations between variables.

Thus a mental model of x = 5y_ can be formed through one or more

arithmetic examples such as, 15 = 5 x 3, 30 = 5 x 6, 25 = 5 x 5, and so on.

Recognition of the correspondence between each of these examples and the

expression x = 5. is a form of analogical reasoning. So too, is the use of

specific numerical examples to illustrate the general assertion, logNa = alogN

for any for any N > 0 (NCTM, 1989).

Since algebraic relations can be understood by analogy with arithmetic

relations, we can analyze the processes involved in terms of analogy theory.

One point which emerges immediately is that the arithmetic relation is the

source and the algebraic relation is the target. For example, to develop a

mental model of the relation, a(b + c) = d, we can take as the source, an

arithmetic example such as 3(2 + 1) = 9. For the analogy to be effective

however, the arithmetic relation, such as distributivity, must be well

learned. This was emphasized in our first principle of learning by analogy,

namely the need for clarity of source structure. The important point which

emerges from analogy theory is that learning algebra will depend crucially

on how well arithmetic relations are learned, because arithmetic relations

are the source for the initial understanding of algebraic relations (Booth,

1989; Chaiklin & Lesgold, 1984). Understanding arithmetic relations gives

children both a rationale for the arithmetic procedures which they learn in
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their elementary years, and provides a basis for the more abstract

understanding that is required in algebra (English & Halford, forthcoming).

Understanding algebra does not end with arithmetic analogs, of course. One

reason is that there are some inconsistencies between arithmetic and

algebra, as noted extensively in the literature (e.g., Booth, 1988; Chalouh &

Herscovics, 1988; Herscovics, 1989; Kieran, 1990, 1992; Matz, 1979, 1982;

Vergnaud, 1984). One of the most important differences is that in

arithmetic the answer to a problem is a specific constant, whereas in

algebra the answer is itself a relation. The solution to an equation is usually

a relation between one variable, on the left-hand side, and an expression

containing one or more other variables and constants on the right-hand

side. However while differences between algebra and arithmetic are clearly

important, it does not follow that arithmetic cannot be a useful analog for

algebra. There are also important differences between sets of discrete

items and numbers, yet sets are a useful analog for understanding

elementary number relations and operations. The value of analogies is

partly that they transcend domains which may be very different apart from

the relations they have in common. However the most important feature

about analogies in the present context is that they are an excellent way of

learning about relations, and they are a means by which relations that are

learned in arithmetic can be transferred to algebra. The better this is done

the more readily children can progress to a more abstract understanding of

algebra.

Another reason why understanding algebra does not remain tied to

arithmetic analogs, is that elementary algebraic relations can serve as

mental models for more advanced relations. In this case an elementary

relation serves as a source and the more advanced relation as the target. In
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other instances, an elementary relation in a conventional form can serve as

the source for a more sophisticated form of the same relation. For example,

consider the following two expressions: La = c_ and x)=s, If we

substitute z for (N + 2c)., the expressions are essentially the same. The fact

that different symbols are used is irrelevant. This correspondence is due to

common relations in the two expressions; specifically, one variable is

expressed as the product of two others. Therefore recognition of the

correspondence between the expressions is essentially the same kind of

process as is involved in analogical reasoning.

It follows that recognition of common relations in different expressions

is also a form of analogical reasoning. This process is commonly used when

deciding how to solve a problem such as x\,/ y = 1 + 2xq 1+y. Mathematicians

would recognize this as a case of the equation, ax = b + cx, with a solution of

the form, x = b/(a c), if a k c (Wenger, 1987). Recognizing the given

equation as a case of ax = b + cx is a form of analogy, in which the latter is

the source and former is the target. Once recognized, it should be clear

what procedure to adopt.

Concluding Points

Analogy appears to be one of the most important mechanisms

underlying human thought, at least from the age of about one year. A

powerful way of understanding something new is by analogy with

something which is known. This paper has examined analogy as a general

model of reasoning and has demonstrated its role in novel problem solving

and in children's basic mathematical learning. An analogy was defined as a

mapping from one structure, which is usually already known (the base or

source), to another structure that is to be inferred or discovered (the

target). Mathematical analogs range from elementary concrete models such

as counters, to abstract mental models such as arithmetic and algebraic
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relations. The value of these analogs is that they mirror the structure of the

targeted mathematical idea and thus enable children to use the structure of

the analog representation to construct a mental model of the new idea.

The important feature of analogies is that the structural

correspondence between the source and target is mapped, not the

superficial attributes of these elements. Relations are mapped selectively,

that is, only those relations that enter into a coherent structure are mapped.

One of the values of analogies is that they transcend domains which may be

vei different, apart from the relations they have in common. Since

analogies focus on common relational structures, reasoning by analogy is an

important process in children's mathematical learning. Effective analogs

can help children form the desired connections between mathematical

ideas. As noted in the Curriculum and Evaluation Standards for School

Mathematics (NCTM, 1989), children need to see mathematics as an

integrated whole and should be able to use a mathematical idea to further

their understanding of other mathematical ideas (p. 84).

While analogs may have the potential to enhance children's

mathematical learning, they often possess inherent or arbitrary structures

which can detract from their effectiveness. Effective analogs are those in

which the child clearly recognizes and understands the structure of the

source, can clearly recognize the correspondence between source and target,

and can make the required mappings from source to target. The analog

should facilitate the mapping of appropriate relations, that is, those that

form a cohesive conceptual structure. Analogs which are applicable to a

range of instances can help children form meaningful connections between

mathematical ideas. On the other hand, a given analog can prove to be

complex and confusing for children when its structure does not fully

correspond with that of the target. In this instance, the analog is given an
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arbitrary, implicit structure so that it will mirror the relations inherent in

the target. This modification can often result in loss of clarity of source

structure and hence of clarity of mappings from source to target.

As mathematics educators, we need to critically analyze the analogs we

use with our students and ensure that they do in fact, reflect the intended

mathematical ideas. We also need to make greater use of children's existing

mental models as analogs for new understandings. Provided these models

are well established, they can serve as a powerful source for the learning of

more complex relations. The use of analogy to construct these abstractions

is likely to result in more meaningful and productive learning.
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Figure Captions

Figure 1. An example of a simple analogy

Figure 2. An example of a mathematical analog: the base-ten blocks

Figure 3. A structure-mapping diagram of analogical problem solving

Figure 4. Lack of clarity of structure and of mapping in the number line

analog

Figure 5. Complexity of the number line analog in representing fractions

Figure 6. The base-ten docks as an analog for decimal fraction ideas

Figure 7. Mapping a metric measurement onto a model of decimal number

positional relationships
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