
DOCUMENT RESUME

ED 370 763 SE 053 846

AUTHOR Schroeder, Thomas L.
TITLE Mathematical Connections: Two Cases from an

Evaluation of Students' Mathematical Problem
Solving.

PUB DATE Mar 93
NOTE 15p.; Paper presented at the Annual Meeting of the

National Council of Teachers of Mathematics (Seattle,
WA, March 29-30, 1993). For a related paper, see SE
053 847.

PUB TYPE Reports Research/Technical (143)
Speeches/Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Algebra; Foreign Countries; Geometry; Grade 10; High

Schools; *High School Students; Interviews;
Mathematical Applications; *Mathematics Education;
*Problem Solving; Qualitative Research; Trigonometry;
*Word Problems (Mathematics)

IDENTIFIERS *Connections (Mathematics); Factoring (Mathematics);
Pythagorean Theorem

ABSTRACT
The importance accorded mathematical connections in

the professional literature is not properly reflected in the
relatively small number of empirical investigations of students'
rm.thematical connections. The purpose of this study was to
investigate the mathematical connections that students form and use
in solving nonroutine problems. Two main types of mathematical
connections are: internal (across mathematical topics) and external
(between mathematics and its applications in other fields or in the
real world). Tenth-grade students (n..17) were interviewed while
solving one of two nonroutine problems, one involving algebra and
internal connections, the other involving geometry and external
connections. The two problems elicited a wide variety of responses
and seemed to require students to operate metacognitively, to
recognize the purposes for the mathematical tools they study, and to
identify subgoals along the road to a solution, and therefore seem to
be a worthwhile means of exploring students' abilities with
mathematical connections. (MKR)

***********************************************************************

Reproductions supplied by EDRS are the best that can be made
from the original document.

***********************************************************************



Research Symposium:

Mathematical Connections: Instances from Research

Mathematical Connections:

Two Cases from an Evaluation of Students' Mathematical Problem Solving

Thomas L. Schroeder

Mathematics & Science Education Department

University of British Columbia

Presented at the 1993 NCTM Research Presession

Seattle, Washington March 29-30, 1993

N.B.: After September, 1993 send correspondence to:

U.5. DEPARTMENT OF EDUCATION
Office of Educahonal Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

X This document has been reproduced as
received from the person or organization
originating it

0 Minor changes have twin made to improve
reproduction quality

Point! of view Of opinions stated m this docu-
went do not necessarily represent official
OERI position or pohcy

Thomas L. Schroeder
Department of Learning and Instruction

Graduate School of Education
State University of New York at Buffalo

Buffalo, NY 14260 1000

2

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Thomas L. Schroeder

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."



Mathematical Connections:

Two Cases from an Evaluation of Students' Mathematical Problem Solving

"Mathematic al Connections" is one of four main themes running through the
National Council of Teachers of Mathematics (NCTM) Curriculum Standards (NCTM,
1989), yet a cursory review of mathematics education research does not reveal a great deal
of research that seems to be specifically focussed on students' abilities to form
mathematical connections or on teachers' instructional activities designed to promote
mathematical connections. Part of the reason for the apparent lack of research may be that
what disciplined inquiry there is in this area is found in reports of evaluation or assessment
projects, rather than in work identified as reseal-A. If so, students' abilities with
connections may be only one of a large number of valued outcomes, and hence not
prominent in the report of fmdings. In any case, the importance given to mathematical
connections in the professional literature does not seem to be matched by reports of
empirical investigations of mathematical connections. The purpose of this paper is to
present and discuss some fmdings of an evaluation project focussing on qualities of
students' mathematical problem solving (Schroeder, 1992b) that bear on the question,
"What abilities to form and to use mathematical connections do students demonstrate when
solving non-routine mathematical problems?"

The notion of mathematical connections in the Curriculum and Evaluation Standards
for School Mathematics is introduced as follows:

The fourth curriculum standard at each level is titled Mathematical
Connections. This label emphasizes our belief that although it is often
necessary to teach specific concepts and procedures, mathematics must
approached as a whole. Concepts, procedures and intellectual processes are
interrelated. In an important sense, "the whole is greater than the sum of its
parts." Thus the curriculum should include deliberate attempts, through
specific instructional activities, to connect ideas and procedures both among
different mathematical topics and with other content areas [emphasis added].
(NCTM, 1989, p. 11)

Later in the document the notion is elaborated with examples of questions and activities for
students in each of three grade ranges: K-4, 5-8, 9-12. Curiously, there is no mention in
the evaluation standards of assessment and evaluation of mathematical -onnections, other
than a brief reference under "mathematical disposition" to seeking information about
students' "valuing of the application of mathematics to situations arising in other disciplines
and everyday experiences" (NCTM, 1989, p. 233). One way of conceiving the two main
types of mathematical connections mentioned in the quotation above would be to call them
either internal connections (i.e. within mathematics, among mathematical topics) or external
connections (i.e. connecting mathematics with its uses and applications in other fields or in
the "real world"). In this paper, some results are reported of an evaluation of Grade 10
students' solving of two non-routine mathematics problems, one involving internal
connections, the other involving external connections.

The purpose of the original study was to provide a qualitative assessment of
students' problem solving focussing on the nature of students' thinking, their problem-
solving strategies and heuristics, the mathematical approaches that they selected, and the
ways they monitored their progress. In this paper certain findings of the project are
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reconsidered in terms of their implications regarding students' abilities to identify and use
mathematical connections of both types. The data of the study include interviewers' field
notes and students' written responses to non-routine problems presented in task-based
interviews with individual students or pairs of students. A wide range of apparatus, tools,
and supplies were provided for students to use in solving the problems. Since the particular
items at hand might influence students' perception of the nature of the problem, and since
some tools might facilitate or enhance the students' performance, care was taken to provide
items that could support the students' efforts (e.g. calculators, geometry sets, squared
paper, etc.). There was no assumption that students should use any particular ones of the
tools available, but evidence from the interviews suggests that some students took the
presence of some items as hints about how to solve the problems.

Before conducting the interviews, the project team produced an evaluator's guide
describing typical responses that students might be expected to give in solving each
problem. This was done to provide background for the interviewers and to prepare them by
sensitizing them to the range of approaches that students might take in solving the
problems. Particular behaviors that might be observed, as well as variations of the main
approaches that could be anticipated, were discussed. Interviewers were cautioned not to
assume that these would be the only possibilities and to remember that students' responses
might include features of several of the basic approaches discussed.

The evaluator's guide also suggested a number of possible interventions on the part
of the interviewer. Hints and follow-up questions that the interviewer might wish to use,
their purposes, and the circumstances under which it might be appropriate to use them were
discussed. The overall purposes of the follow-up questions and hints were to help students
to demonstrate all that they are capable of doing, to enable interviewers to understand more
fully the nature of the students' thinking, and, in some cases, to judge the students' abilities
to make use of information provided by the interviewer. In particular, some follow-up
questions were developed that would assess whether students could make use of
mathematical connections for which the question provides a hint.

For each problem a data collection form, designed to be a convenient and
standardized way of summarizing and reporting the students' work on the problem, was
developed. It was to be completed following the interview on the basis of notes taken by
the interviewer and the students' written work. The record sheet was intended to guide the
interviewer in reflecting on the interview, drawing conclusions from it, and reporting
observations in an informative and systematic way.

Case 1: A Problem Involving Internal Connections

The first problem, called the page number problem, was presented in written form:

A textbook is opened at random. The product of the numbers of the
facing pages is 3192. To what pages is the book opened?

Students were provided a sheet on which the problem was printed, a 5-function (+, x,
+, ) or scientific calculator, and additional plain paper for figuring.

Anticipated Solutions

Four fundamentally different methods or approaches for solving this problem were
anticipated: a guess-and-test or successive-approximations approach, a factorization
approach, an algebraic method, or a method using the square root operation. The guess-
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and-test or successive-approximations method involves estimating approximately how large
the two page numbers must be and then multiplying them to see whether the estimate is too
high or too low. Using this approach, the problem-solver may try to establish a range
within which the answer lies. For example, noting that 10 x 11 = 110 and that 98 x 99
= 9702 shows that the page numbers must be two-digit numbers. Noting that 50 x 50 =
2500 and that 60 x 60 = 3600 shows that the page numbers must be in the fifties. Further
analysis of the second approximation suggests that the two desired numbers are in the
middle fifties.

The factorization approach is based on the idea that the two factors of 3192 that are
to be found may be determined by breaking 3192 down (perhaps all the way to its prime
factors) and reassembling the pieces into two factors that are consecutive whole numbers.
If the problem solver adopting this approach happens to factor 3192 as
3192 =2x2x2x7x 57, it is fairly easy to see that the two desired factors are 56
and 57. The factorization 3192 =2x2x 2x3x 133 or the factothation to primes,
3192 =2x2x 2x3 x7 x 19, are not so helpful, but if they are combined with guessing
and testing, there may only be a few possibilities to test.

The algebraic approach entails assigning a variable to one of the two unknown page
numbers, writing the other page number in terms of the variable, expressing the condition
stated in the problem as an equation, solving the equation, and interpreting the algebraic
solution in terms of the problem. For example, if x is one page number then (x + 1) could
be the other. When their product x (x + 1) is set equal to 3192, the solution process
proceeds as follows.

x (x + 1) = 3192, so x2 + x = 3192, and x2 + x - 3192 = 0

This quadratic equation could be solved by factoring if the problem-solver knew two
integers whose difference is 1 and whose product is 3192, but that is just another way of
restating the problem, and the two numbers that satisfy both these conditions are not
obvious. However, reaching this point may suggest to the problem solver the factorization
method, which can be used directly as described above, or as a way of solving the
quadratic by factorizing it to (x + 57) (x 56). If the problem solver decides tnat
factorization is not feasible, the quadratic formula may be applied with a = 1, b = 1, and c =
-3192. This gives

-1 ± .N/ 1 (4).(-3192) -1 ± -4 12769 -1 + 113
x 2 2 2 56, -57

Since page numbers in books are not negative numbers, the required solution is x = 56 and
(x + 1) = 57.

The square root method is based on a recognition of the fact that the square root of
3192 will give the value of two equal numbers whose product is 3192. Thus, the two
consecutive whole numbers whose product is 3192 will be the whole numbers that lie on
either side of 41-0-2- = 56.4977... , i. e. 56 and 57. This method seems to be the most
direct and efficient one, but to think of applying the square root concept in this way
requires insight or inspiration. That is, the problem solver must see a mathematical
connection, and exploit it.

Hints and Follow-up Questions
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A number of hints and follow-up questions were prepared for difr ,rent situations
that might arise in the course of the interviews. Some were designed to help students
having trouble getting started with the problem, or to check that they understood that the
term "product" implies multiplication. Other questions were designed to suggest an
approach to students or even to steer them in the direction of a particular approach such as
guess-and-test or estimation, or an algebraic strategy.

Questions specifically related to the square root approach, most likely to be used
after the student hae found the solution by another approach, were also developed, some
before the interviews were conducted, others as a result of that experience. The intention of
these questions is to explore whether the student is able to understand the use of the square
root operation to solve the problem directly, even if he or she does not think of using it on
his or her own. These questions included, "If you had known the value of the square root
of 3192, would that have helped you to solve the problem? How?" and "Do you expect the
square root of 3192 to be a whole number?" If the student did not seem to see the
connection being hinted at, the interviewer might suggest that he or she fmd 43192 using
the calculator, and then ask, "Can you explain why the square root of 3192 falls right
between the two numbers that answer the problem?"

Results

Seventeen volunteers (9 females and 8 males) took part in interviews based on this
problem, nfteen were interviewed individually, the other two (both males) were
interviewed as they worked together. In the discussion which follows, the unit of analysis
is the interview, of which there were 16. The overall results showed that in eight of the
interviews (50%) the students solved the problem on link own, and that in eight interviews
(50%) the students solved the problem with help from the interviewer; in none of the
interviews did the students fail to solve the problem.

The total length of time spent in each interview ranged from 12 to 45 minutes with a
median of 27 and a mean of 26, and the time taken to reach a solution ranged from 2 to 32
minutes with a median and a mean of 13. Interviews in which the students solved the
probk.m on their own were noticeably shorter in time to solution than were the interviews
in which students received help from the interviewer. The median time to solution for
students who solved the problem on their own was 7 minutes as opposed to 15 minutes for
students who received help; the means were 6 minutes and 19 minutes respectively. In fact,
the two groups' distributions of time to solution did not overlap. However, the average
overall lengths of the interviews was about the same for both groups. All these time
measures include about three minutes spent exchanging introductions, recording facts such
as names and birthdates, summarizing interview procedures, and obtaining students'
consent to participate. An additional two or three minutes was taken showing students the
photographs and presenting the problem orally. Although these gross measures give a
sense of the extent of the interviews and an idea of how well the studeats performed, they
were not the focus of the analysis; the qualities of students' work was the main concern.

The initial approach adopted by most of the students was algebraic; in eleven
interviews (69%) students began by writing expressions or equations to represent the
situation. In a few cases, the students used two variables for the two page numbers, but all
of them soon switched over to single-variable expressions. In six of the interviews (38%)
the initial algebraic expression modelled the sum, rather than the product, of the page
numbers, and in most of these cases the error was not corrected until after the student
obtained a decimal value for one or both of the page numbers. In seven of the interviews
(44%) students made errors transforming equations involving "x ( x + 1)" or "x x x + 1.
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In twelve of the interviews (75%) the students sooner or later (and sometimes with help
from the interviewer) produced a correct quadratic equation to represent the situation, i. e.
x2 + x = 3192 or x2 + x 3192 = 0. However, none of the students found their first
solution to the problem by solving the quadratic. Several students commented that they had
studied "equations like these" (i.e. quadratic equations) quite a bit earlier in the school year,
but only two (13%) were able to recall how to solve the quadratic later in their interview.

Having tried to use algebra to solve the problem and having gotten stuck, two
students tried a guess and test approach, as did three other students for whom guess and
test was their initial approach. One student, asked if he could think of another way to solve
the problem, suggested factoring. His approach involved identifying successive small
numbers that are factors of 3192 and also listing the corresponding other factors. Before
abandoning this approach the student had constructed the following set of factors of 3192:
(1, 2, 3, 4, 6, 7, ..., 456, 532, 768 [incorrect, should be 798], 1064, 1596, 3192). He
gave up on this approach with the comment that it might take the whole day!

For the majority of students (67%) it was finding the square root that led to the
solution. In one case, the student applied this function to 3191 rather than 3192, having
incorrectly moved from "x ( x + 1) = 3192" to "x2 + 1 = 3192" to "x2 = 3191" to "x =
-4-31-91." In only three of these cases did the interviewer suggest using the square root; in
the rest of the interviews the students came up with the idea on their own. But in most of
these cases the students checked out their "guesses" of the page numbers (after taking the
square root) by multiplying them. Having "rounded" the square root 56.4977 to 56,
several of the students were unsure whether the other page number would be 55 or 57 and
just under half of them tried 55 x 56 before trying 56 x 57. These facts suggest that the
students who used the square root did so on a hunch, rather than understanding the
connection between "two nearly equal numbers whose product is 3196" and "two identical
numbers whose product is 3196."

Discussion

Although this problem may be seen as involving external connections to the extent
that students to represent the "real world" page numbers as mathematical expressions such
as x and (x + 1) and so on, the most interesting aspects of this problem have to do with
students' abilities to exploit or at least to understand the hiternal mathematical connections
between one or more of the approaches identified in advance. In the following paragraphs
we consider the evidence from the interviews that bears on the question of how and how
well students developed, understood, or used mathematical connections.

It was anticipated that the connection between multiplication and factorization (as
inverse processes) might be used by the students, but in fact it was evident in the work of
only two interviews (13%). In one, the student came up with the idea of factoring on his
own, and systematically carried out his plan of writing all the factors of 3192 in order. He
persisted in this plan for some time, but gave up after listing factors from 1 up to 7 and
their counterparts from 3192 down to 456. The decision to abandon this method was
based on an assessment that it would take too long. Another student, having found the
solution initially by guess and test, and having been asked if she could do it another way,
was also asked whether she could "find out what numbers make 2500," since she had just
used 2500 and 3600 to establish the interval in which to search. The student replied
confidently that she could make a factor tree, and proceeded to do so. Then the interviewer
asked, "could you do the same with 3192?" This hint was greeted with the exclamation,
"Oh yes, my God!" (an expression of "Aha!" in the local dialect). Having completed the
factorization of 3192 to primes, the student commented, "I should be able to extract 56 x
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57." But only a short while later this confidence seemed to vanish as the student reported,
"I don't know why I'm doing this." These two instances both suggest that the students at
least understood, and perhaps could also develop for themselves, helpful mathematical
connections. In the latter case, at least, the strength and stability of the student's insight
seemed to be undermined by the need to wade through the details.

Possible connections between the quadratic equation in the form x2 + x = 3192 or
x2 + x 3192 = 0 and other mathematical ideas can also be seen. Although most of the
students had not had sufficient experience working with quadratic equations to be fluent
and confident using them, three students (19%) did take some halting steps in that
direction. In two interviews, the students wrote the form "x2 + x 3192 = 0" and
underneath it "(x J (x + = 0," and in both cases the solution had already been found
by another method. In one of these cases the student recognized that the previously found
solution x = 56 meant that (x 56) was a factor of the trinomial (thinking backward?), but
the other student did not see the connection and commented, "I've forgotten how to do
this."

The connections from "two consecutive numbers whose product is 3196" to "two
nearly equal numbers whose product is 3196" to "two identical numbers whose product is
3196" to "the square root of 3196" are ones that are quite useful in this problem. Of course,
the connection need not be elaborated in this way or to this extent; a person who "sees" this
connection may experience it as an intuition or a flash of insight, and that appears to be
what happened for more than half the students interviewed. An important aspect of this
connection has to do with the fact that because the square root of 3192 is between 56 and
57, these two numbers must be the factors. Quite a few students who found the square
root of 3192 or of 3191 followed up with a "guess" of the two page numbers, one being
the root "rounded off" to the nearest whole number, and the other being the next number up
or down. In actuality, this may not be so much a case of intuition as of elimination, since
the problem contains only one obvious bit or numerical data, the 3192, and the calculator
has only one readily available unary (i.e. single input) operation, the square root function.

Case 2: A Problem Involving External Connections

A second problem, called the dock problem, had content related to the Pythagorean
theorem. This task was presented to students orally by an interviewer who explained the
problem situation with the aid of photographs. Students were told that the waterfront
restaurant shown in Figure 1 has a dock, one part of which rises and falls with the tide.
Access from the fixed part of the dock to the floating part is by means of a ramp which is
relatively steep at low tide (Figure la), but less steep at high tide (Figure lb). Currently,
the lower end of the ramp rests on the floating dock (Figure 2a). As the floating dock rises
and falls, the end of the ramp scrapes across it causing scratches in the surface. In order to
prevent this damage, the owners of the dock plan to mount wheels on the lower end of the
ramp and tracks on the floating dock for the wheels to run in an arrangement similar to
the one shown in Figure 2b, which shows another dock nearby. The problem is to
determine how long the track needs to be. The data provided are that (1) the ramp is 18 m
long, (2) when the tide is at its highest, the floating dock is 1 m below the fixed dock, and
(3) when the tide is at its lowest, the floating dock is 6 m below the fixed dock.

Figure 1 and Figure 2 here.
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Anticipated Solutions

It was anticipated that students would approach the problem by drawing a diagram
and by recognizing the importance of two right trivngles, both having the 18 m long ramp
as the hypotenuse, one 1 m on its vertical side, the other 6 m tall. The difference between
the lengths of the horizontal sides of these two triangles is the required length of the track.
Thus the simplest method of solving the problem is to use the Pythagorean theorem to
determine the two unknown sides and then subtract. It was anticipated that students might
use other means of solving the problem such as construceng a scale drawing or applying
trigonometric ratios to calculate the unknown lengths.

Results

Seventeen volunteers (11 females and 6 males) took part in interviews based on this
problem; thirteen were interviewed individually, the remaining four in two same-sex pairs.
The students were provided with the photographs, a summary of the data, a scientific
calculator, tables of square roots and trigonometric functions, squared paper and plain
paper, and a geometry set (ruler, protractor, set square, and compass). In the discussion
which follows, the unit of analysis is the interview, of which there were 15. The overall
results showed that in five interviews (33%) the students solved the problem on their own,
and that in ten interviews (67%) the students solved the problem with help from the
interviewer; in none of the interviews did the students fail to solve the problem.

The total length of time spent in each interview varied from 22 to 50 minutes with a
medirin of 38 and a mean of 39, and the time taken to reach a solution ranged from 9 to 50
minutes with a median of 18 and a mean of 22. Interviews in which the students solved the
problem on their own tended to be somewhat shorter overall and noticeably shorter in time
to solution. The median time to solution for students who solved the problem on their own
was 10 minutes as opposed to 24 minutes for students who received help; the means were
13 minutes and 27 minutes respectively. All these time measures include about three
minutes spent exchanging introductions, reccrding facts such as names and birthdates,
summarizing interview procedures, and obtaining students' consent to participate. An
additional two or three minutes was taken showing students the photographs and
presenting the problem orally. Although these gross measures give a sense of the extent of
the interviews and an idea of how well the students performed, they were not the focus of
the analysis; the qualities of students' work was the main concern.

It was anticipated that students would draw diagrams both as a means of
understanding the problem and to facilitate their work on it. Although all students
eventually solved the problem using diagrams that included two right triangles, there were
wide variations in their initial drawings, some of which are shown in Figure 3. In these
early diagrams different features of the problem are prominent, and in some of them critical
features of the problem are misrepresented. For example, in two interviews students first
represented the situation as in Figure 3a with three parallel lines. Two students initially
drew diagrams similar to the one in Figure Sb with the track in the plane of the ramp rather
than the plane of the floating dock. The student who drew the diagram in Figure 3c
focussed on the rotation of the ramp about its upper end. As she examined the photos she
rotated her pencil holding the upper end stationary just above the paper and allowing the
point to trace out an arc on the paper.

Mathematical Connections
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Figure 3 here.

The five students who solved the problem on their own quickly produced
appropriate diagrams in which the two needed right triangles were prominent. In four cases
the triangles were drawn in two separate figuits; in one case they were overlapping as in
Figure 3f. In five of the ten interviews where the problem was solved with help from the
interviewer, students produced diagrams on their own which they used to make progress
toward a solution; the help they ieceived was unrelated to representing the problem in a
diagram.

In the remaining five interviews students received help that was related to
representing the situation in diagrams and identifying the relevant parts of diagrams they
had drawn. In one case, after the student had spent some time studying the photographs
and appeared to be stuck, the interviewer suggested that it might help to draw a diagram. In
two cases the students had drawn appropriate overlapping diagrams (similar to Figure 30,
but after several minutes had not made progress using them. In one of these cases the
interviewer asked, "Are there any triangles in the diagram that you could use?" and in the
other he said, "Would it help to draw two separate diagrams?" to which the student
immediately renlied, "You mean one for high tide and one for low tide?" Each of these
hints led immeaiately to progress toward a solution. The difficulties experienced in the
remaining two interviews seemed to be related to misconceptions regarding the names and
relative positions of the fixed dock, the ramp, the floating dock, and the linkages between
them. These students produced the initial diagrams shown in Figures 3g and 3h. Their
difficulties were resolved in question and answer exchanges between the interviewer and
the students which focussed the terms, the photos, the data, and the students' diagrams.

It was anticipated that students would use the Pythagorean theorem to find the
horizontal dimensions of the two right triangles formed by the floating dock, the vertical,
and the ramp, and in all 15 interviews students obtained a solution in this way. In 11 of the
interviews (73%) students used the Pythagorean theorem without being given a hint that
they should do so, and without receiving any help in applying it to the figures they had
drawn. The helps and hints given in the remaining four interviews (27%) ranged from the
fairly oblique, "Is there any way you could relate the side you want to the sides you
know?" in one case, to the quite direct, "Would Pythagoras's theorem help?" in another. A
third student wondered aloud whether the angle was a 90° angle, and was asked by the
interviewer, "What if it was 900 and what if it wasn't?" to which she replied, "If it was, I
could use Pythagoras." In the fourth interview, the two students had spent more than 40
mhiutes trying various approaches without success, when one of them asked, "What's the
square root table for?" The students decided on their own that it could be a hint to use
Pythagoras, and before long they reached a solution by this method.

All of the students seemed to be quite familiar with the Pythagorean theorem,
although one student referred to his method as "using a theory," and another referred to it
as "Mr. So-and-So's method," presumably because that teacher had taught or reviewed it.
In cases where the students received hints related to the Pythagorean theorem, the hints
were mostly vague questions rather than direct hints, and they concerned whether to use the
Pythagorean theorem, not how to use it. There were no instances in which students made
errors using the Pythagorean theorem that they did not detect and correct by themselves
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(e.g. failing to square or take the square root, adding the squares rather than subtracting
them, making computational errors, etc.).

Application of the Pythagorean theorem was not, however, the first approach
adopted in all the interviews; in seven interviews (47%) students began by using or
proposing to use trigonometry. One student produced his first solution using trigonometry,
but most of the students abandoned this approach either because they ran into difficulties
with it or because they noticed that applying the Pythagorean theorem would be simpler. In
all cases where there was time available, students who had found the solution were asked if
they could solve the problem in another way. In six interviews (40%) students solved the
problem using trigonometry. In two interviews the students produced a trigonometric
solution without help from the interviewer, but assistance of various types was given in the
other four. Two of the students commented that they were just starting to learn
trigonometry in their mathematics class; they thought trigonometry could be used, but they
weren't sure they could do so successfully. The fact that the students had only recertly
begun studying trigonometry probably accounts for the large number of students who
thought of using it and for the difficulties they encountered in doing so.

Before the interviews were conducted it was anticipated that some students might
use scale drawing as a means of solving the problem, and for that reason a geometry set
was provided. None of the students proposed solving the problem with a scale drawing,
and two students thought it would not be possible when the interviewer suggested it.

Discussion

One of the most remarkable findings of this study was the amount of time that the
students spent working on the problem. By comparison with multiple-choice test items,
which students are expected to answer at the rate of about one per minute, or constructed-
response items, which take on the order of five minutes, this task was quite time
consuming, and there is a question whether the time required is justified by the information
obtained. The amount of time that the students spent is a measure of their perseverance with
the task and their willingness to reflect on and extend their work. One student, when asked
whether she could solve the problem in a different way, commented that solving problems
in more than one way was not something that was ever done in her mathematics class.

Students solved the dock problem without help from the interviewer in only 33% of
the interviews. One. way of interpreting this result is to say that the problem was relatively
difficult for them, but an analysis of the nature of the hints and help provided by the
interviewer suggests that what they needed was not direction about what to do, but
encouragement and help thinking about their plans for proceeding. The hints in the form of
questions which were described earlier which resulted in progress are typical of the internal
dialogue that many researchers have identified as crucial for success in problem solving.
The interviews suggest that students' cognitive monitoring needs to be developed, and this
problem may provide an appropriate context in which this development can take place.

Although in five of the interviews (33%) students readily drew the two right
triangles that are key to solving the problem, in the majority of interviews (67%) they did
not. Representing the problem situation in a useful diagram was a major source of
difficulty. One reason for this may be that only one side of the two needed triangles, the
sloping ramp, is concrete; the other two sides must be constructed or imagined. One of
them is a vertical line extending downward from the point where the upper end of the ramp
meets the fixed dock to the plane of the surface of the floating dock. In the photographs one
cannot "see" this line, since it does not correspond to any structural element of the dock
system; it is an imaginary line through empty space. Similarly, the horizontal side is a line
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in the plane of the floating dock that starts on the surface of the dock where the scratches
are and that extends over the surface of the water (a fraction of a metre above it) until it
intersects with the previously described vertical. The students who made initial diagrams
like the one shown in Figure 3a have drawn horizontal lines representing the planes of the
fixed dock and the floating dock at high tide and at low tide, but the numeric values they
have written on this diagram are not measurements along these lines. Before these numeric
values can be put to use, vertical lines must be added to the diagram and the measurements
must be appropriately related to them. A key understanding required in order to construct
an adequate representation of the problem is that the given distances below the fixed dock
are measured along vertical lines, and that these verticals may be placed wherever it is
convenient or necessary, even through empty space.

The student who drew the diagram shown in Figure 3c saw the sloping ramp not as
the hypotenuse of a right triangle but as the radius of an arc, the path travelled by the lower
end of the ramp where the wheel is to be placed. Her diagram also contains two vertical
lines which could be marked to correspond to the given distances below the fixed dock, but
there are no horizontal lines corresponding to the fixed dock, or the track, or the horizontal
components of the ramp at high and low tides. Without such horizontal lines appropriately
identified with elements of the problem situation, this diagram is not particularly helpful. If
the student had added the dashed horizontal line shown in Figure 4 and had extended the
two original vertical lines to meet it, she would have had a complete and useful diagram in
which the lengths of the track and the horizontal components of the ramp can be found in
the plane of the fixed dock rather than in the plane of the floating dock as discussed
previously. However, it is probably unlikely to expect this, since the two triangles would
then be "upside down," and the horizontals would not he found in the plane of the floatin,
dock, but as projections onto the plane of the fixed dock. In one interview a diagram with
two separate triangles "upside down" was drawn; overlapping diagrams like the one shown
in Figure 3f were made in three of the fifteen interviews (20%).

Figure 4 here.

Conclusions and Implications

The two problems discussed in this paper with their two types of mathematical
connections are quite different in the logical, conceptual, and skill demands that they make.
Problems involving internal connections may be thought of as requiting understanding of
mathematical concepts and procedures while those involving external connections seem to
put more importance on understanding of "real world" situations and conventional ways of
representing situations with diagrams and quantitative and spatial language (e.g., "the
floating dock is 6 metres below the fixed dock."

Both internal and external connections seem to require students to operate
metacognively, to recognize the purposes for the mathematical tools they are studying, and
to identify subgoals along the road to a solution.

Although substantial variability was seen across students in the extent of their
mathematical connections and the rapidity with which they were formed, it seems safe to
say that many mathematical connections are not obvious to most students. Substantial
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amounts of time are required for students to ponder about them. Even when fairly broad
hints are given, students may not catch on quickly.

The two problems used in this study elicited a wide variety of responses. Therefore
they seem to be worthwhile means of exploring students' abilities with mathematical
connections. For students who do not solve these problems readily, the experience of
attempting them, and in particular of considering the hints and follow-up questions that
have been discussed, may be powerful in stimulating the formation and the valuing of
mathematical connections. Further work to develop additional appropriate tasks for
assessment and for instruction would be warranted.
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Figure I : A watelfront restaurant and its dock at low tide and at high tide.
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Figure 2: The lower end of the ramp at present and as proposed.
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Figure 3: Initial diagrams drawn by students.

Figure 4: Modified version of diagi tint in Figure 3 (c)
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