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Item Response Theory (IRT) is often used in language testing and language testing research. The
properties of IRT models such as the Rasch model offer many advantages in the construction of
measurement instruments and in the building of theoretical models or constructs of language
proficiency. An important requirement is that for these properties to apply, the degree of fit of a data
set to the model must be assessed. In this approach, as in any statistical testing of a hypothesis, the
objective of the researcher is to falsify the model. The researcher sets up a hypothesis, which (s)he
believes to be true. Subsequently (s)he collects data in an attempt to prove the model wrong. If this
attempt is not successful, i.e., the data do fit the model, then the researcher can safely assume that,
at least for the data used, there is no need to reject the model.

This research was undertaken to investigate the influence of sample size on (1) the statistical
test of data-model fit and, (2) the invariance of parameter estimates. Data from the July 1993
administration of the Examination of Dutch as a second language to about one thousand candidates
were collected. The examinations comprise separate tests for reading, listening, writing and speaking.
For the present study the resultc of Listening Comprehension test were used. One group of examinees
was divided in several randomly assembled subsamples, differing in size. Independent analyses of the
subsamples are run to assess the influence of sample size on the output variables. Secondly, a subset
of items from the total test was selected for which statistical model fit could be shown and stability
of data-model fit and invariance of item and person parameters over several randomly drawn
subsamples was evaluated.

The results of this study show that estimates of model-data fit and item and person parameters
is highly dependent on sainple size, but that estimates will be stable for randomly drawn subsamples
from a large sample for which statistical fit can be shown.

The advanteges of 1RT are a direct result of the strong assumptions underlying 1RT models.
However, in language testing research the sample sizes used by researchers are often so small that it
is highly unlikely that the measurement model can be falsified. A serious implication of the present
study then would be, that many reported studies in language testing research should be reconsidered
as to their claims with respect to theory building.

Item Response Thew y (IRT) is often used in language testing and language testing
research. This is because the properties of IRT models offer many advantages for
constructing measurement instruments and building theoretical models or
constructs of language proficiency. Successful application of IRT, however, is
possible only when all assumptions underlying a particular IRT model are met. In
other words, the theoretical advantages apply only if the chosen model actually fits

Cr" the data.

This is of course a well known fact in theory, but in marw practical applications of
IRT, reports on model-data fit are missing and the results calibration are used
without any information on the fit of the chosen model to I, .1 data set. In the best

o of cases the model-data fit study begins, and, ends with a simple report of the test
statistic, based on some statistical test of model fit.
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The model-data fit study, however, requires more than a statistical test of fit,
because all known statistical tests are very sensitive to sample size. As Hambleton
and Swaminathan (1985, pp. 154-155) have shown, the number of misfitting
items increases with increasing sample size. Consequently, if a researcher would
wish to insure statistical fit, (s)he would be wise to base the analysis on a small
sample. However, when using a small sample, there is only one type of result of
statistical modelling which allows clear and categorical conclusions, that is, when
the test statistic shows statistical misfit. The conclusion in that case must be that
there is little probability for the researcher to make a Type I error, i.e., to reject the
model on the basis of the data whereas in actual fact the model does apply. If, on
the other hand, the model cannot be rejected on the basis of a small sample data
set, the researcher should suspend judgement until more data have been gathered,
because the probability of a Type II error, i.e., erroneously accepting the model,
depends directly on the power of the statistical test and therefore on the sample
size (Hambleton, 1989, p.173). In other words, statistical model fitting is justifiable
only for the purpose of rejecting the hypothesis of model-data fit, but is an
insufficient basis to decide on acceptance of the hypothesis of model-data fit.

Sample size, however, does not only influence the statistical model test, but all
other results of the calibration too. For example, Hambleton and Cook (1983, pp.
43-46) have shown that sample size has a substantial impact on the precision of
the size of the standard error of estimates. From this point of view they
recommended sample sizes of over 200 examinees. In a simulation study Ree and
Jensen (1983) analyzed the effect of sample size on the intercorrelation of known
and estimated item parameters using a three parameter model and confirmed that
stable estimates of item discrimination and guessing parameters can be attained
only with sample sizes of over 2000. Tang, Way and Carey (1993) report simi:sArly
poor stability of item parameters, especially the a- and c-parameters, for sample
sizes of less than 2000.

Apparently unaware of these basic requirements from statistical theory and their
confirmation by empirical findings, researchers in many practically oriented studies
in the field of language testing use extremely small samples to prove their
structural theories. To our knowledge, none of these studies is supported by
practically oriented studies analyzing the invariance of parameter estimates based
on small samples.

In this paper we present the results of a study, which analyzes the effect of the
sample size on a) the statistical test of data-model fit and, b) on the invariance of
parameter estimates.

We have based our study on the Rasch model. Among the family of IRT models the
one parameter Rasch Model has been shown to yield stable estimates with smaller
samples than are needed using other IRT models (Bo Idt, 1994; Lord, 1983).
Therefore, if the effect of sample size on statistical tests of fit and on the
invariance of parameters can be shown to be substantial for the Rasch model, than
it will certainly effect these statistics in other IRT models.
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METHOD

Subjects

The total sample was formed by 973 candidates taking the test of Listening
Comprehension Test in the July 1993 test form of Examination I of Dutch as a
second language test. For the first part of the study all subjects in this total sample
(ST) were randomly divided over five subsamples (S1,..., S5) increasing in size.
Furthermore, all subjects in subsamples 1 and 2 (S1 and S2) were joined to form
a new subsample (S12) making it equal in size to subsample 4, and all subjects in
subsample 4 were randomly redistributed over two new subsamples (S4a and S4b)
in such a way to make them equal in size to subsamples 1 and 2 respectively. For
the second part of the study 43 subjects with incomplete records (skipped items)
were removed from the data file. The remaining 930 candidates formed a selection
of the total sample (STs). Subsequently these were randomly divided over two
subsamples of equal size. A complete overview of all (sub)samples is provided in
Table 1.

Table 1
Overview of Samples: Names, Codes and Sizes

Sample Name Sample Code Sample Size

Total Sample ST 973

Subsample 1 S1 100
Subsample 2 S2 150
Subsample 3 S3 200
Subsample 4 S4 250
Subsample 5 S5 273

Subsample 1 + 2 S12 250
Subsample 4A S4a 100
Subsample 4B S4b 150

Selected Total STs 930
First Half Selected Total S 1/2 s.1 465
Second Half Selected Total S 1/2 s.2 465

Instruments

All examinees took the Listening Comprehension test of the July 1993 version of
the Test of Dutch as a Second Language, prepared by the Language Department
of CITO. Tha July 1993 form of the test consists of 46 multiple-choice items,
scored dichotomously and aims at assessing the ability of examinees to understand
Dutch spoken spontaneously in settings such as interviews, instructions, news,
and messages.
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Procedures

Data of all samples were analyzed according to the One Parameter Logistic Model
implemented in the computer program OPLM (Verhelst et al., 1993). OPLM is a
member of the class of one parameter models proposed by Rasch (1960) but
allows the researcher to plug in integer discrimination parameters. While thus
providing a means to weigh items differentially, full advantage is taken of the
property of sufficient statistics available in Rasch models for the estimation of item
difficulty parameters and thus allowing for statistically sound tests of data-model
fit.

For each subsample dataset, the Rasch model item parameters were estimated by
a conditional maximum likelihood (CML) method. Given the estimate of the item
parameters, the ability parameters were estimated using an unrestricted maximum
likelihood method. Modei fit of the data was evaluated using a method proposed
by Glas (1988; 1989). The method is based on a suggestion for a test of fit by
Martin L6f (1973), but does not make the assumption that the number of subjects
obtaining a particular score is a Poisson-distributed random variable. The method
provides an overall test of fit and also a means for identifying persons and items
contributing to lack of model fit. Model fit can be tested using score groups, i.e.,
subsets of persons obtaining equal scores. For long tests, with a large number of
score groups, adjacent score groups can be combined in subgroups, each
containing an approximately equal number of subjects from the total sample.

The principle on which the test of fit is based can be summarized as follows.
Suppose the test consists of k items, and G subgroups are formed. For every
subgroup (indexed g, so g =1,..., G) and every item (indexed i, so i =1,..., k) the
number of correct responses is computed, these frequencies are denoted by m9i.
Let Ec(m9;) stand for the conditional expectation of m91, evalu3ted using conditional
maximum likelihood of the item parameters. Then the deviances, d9; = mo-Ec(mo)
can be used to determine item fit. To evaluate the size of the deviances, a scaled
deviance, d.9; =d0/(varc(mo))Y2, is computed, which has an approximately standard
normal distribution.

To obtain a formal measure of overall model fit, all deviances must be combined
into a quadratic form, indexed R1c, which has an asymptotic chi-square
distribution. For a detailed description of this global fit statistic one is referred to
Martin L6f (1973) or Glas (1988; 1989). For every item the scaled deviances can
be squared and summed over subgroups to obtain an index of item fit which has
an approximate chi-square distribution with a number of degrees of freedom equal
to the number of score groups minus one.

For the first part of the study test calibration runs were made separately for the
total sample and for all subsamples (excluding S1/2s subsamples). In this way 9
different sets of item and ability estimates were obtained. After converting the
separate estimates to a common scale, the results of these calibrations were
checked on two aspects:

1) the stability of the model-data fit statistics for the different calibrations;
2) the invariance of item and ability estimates.
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For the second part of the study items were deleted in an iterative procedure
described by De Jong (1983) and De Jong and Glas (1987) in order to obtain a
subset of items which formed a Rasch scale. Subsequently test calibration runs
were made for the total sample, for the selected sample and both halves of the
selected sample. Finally, calibration runs were made using all samples used in the
first part of the study.

RESULTS AND DISCUSSION:

1. THE EFFECT OF THE SAMPLE SIZE ON THE STATISTICAL TEST

Table 2 presents classical test statistics analysis, the statistics and the level of
significance of the statistical test for model-data fit and the number of misfitting
items for different subsamples.

Table 2:
Results of calibration runs on total test for different sample sizes

Sample N Mean SD
(raw score)

Alpha' Rle P Number of
misfitting
items(p < .05)

S1 100 30.02 7.03 .82 88.675 .5197 2
S2 150 29.42 7.87 .86 137.348 .0339 6
S3 200 31.04 7.95 .87 232.577 .0000 7
S4 250 30.52 7.89 .87 247.780 .0000 7
S5 273 30.47 7.76 .86 295.246 .0000 10
ST 973 30.39 7.80 .86 568.172 .0000 22

S4A 100 31.96 7.44 .86 137.348 .0010 8
S4B 150 29.55 8.04 .87 202.461 .0001 6
S12 250 29.66 7.55 .85 188.315 .0013 6

a: Cronbach's Alpha
b: Ric is a statistic of total model-data fit

The results presented in Table 2 confirm the results reported by Hambleton and
Swaminathan (1985, pp. 154-155) and demonstrate the effect of the sample size
on the number of misfitting items. Likewise, with increasing sample size the
probability of total model-data misfit increases too. As can be seen, the data do
not fit the model even for S12 which is simple union of S1 and S2, where for each
of these statistical model-data fit is apparent.

The comparison of the statistics for total model-data fit shows that there are two
pairs of samples with equal sizes (S1-S4A and S2-S4B) in each of which one
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sample leads to a different conclusion than the other if the outcome of the
statistical test of model-data fit is taken as a sufficient proof of actual fit. If a study
were based on either sample S1 or S2 the conclusion of the naive researcher
would be that the model fits the data. lf, on the other hand either sample 54A or
S4B were used this same researcher would have to conclude to the opposite. In
this way, depending on the desired outcome anything can be proved. This result
shows that the problem of model-data fit goes beyond the statistical test of fit.

The number of misfitting items in the different analyses also shows a substantial
variance. Only 16 out of the total 46 items fit for all 9 analyzed samples and only
item 1 misfits in all analyses. The remaining 29 items, 64% of the total number,
fit in some analyses and show misfit in others. Ultimately this means that the
persistent researcher could always find a sample providing statistical support for
rejecting or accepting any item.

Table 3 presents the results of the first set of calibration runs for the second part
of the study. First the results of total sample (ST) based n the complete set of
items is reproduced from Table 2 for easy comparison. Next the results of a
calibration after removing subjects with incomplete records is presented (STs).
Removal of incomplete records did not result in any substantial changes of the
statistics reported. The following three rows in Table 3 present the results of
calibrations of a selected subset of items forming a Rasch scale, first for the total
group (minus incomplete records) and secondly, for calibrations based on data from
the randomly assembled two halves of STs (STs 1/2 .1 and STs 1/2.2).

Table 3
Results of calibration runs on total test and selected subtest
for different sample sizes

Sample N Mean SD Alpha' R1 Cb P Number of
(raw score) misfitting

items(p < .05)

Total test (k = 46)
ST 973 30.39 7.80 .86 568.172 .0000 22
STs 930 30.56 7.82 .86 548.708 .0000 21

Selected subtest (k = 21)
STs 930 14.59 4.33 .82 79.430 .0473 1

SY2s.1 465 14.76 4.32 .82 77.248 .0663 2
S1/2s.2 465 14.41 4.32 .81 79.146 .0495 0

a: Cronbach's Alpha
b: R1 c is a statistic of total model-data fit

The results presented in Table 3 show that once a Rasch scale has been formed
basic statistics are independent of sample size or composition, mean scores,
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standard deviations, reliability indices (alpha), item fit statistics, and number of
misfitting items remain essentially invariant over calibrations.

To further substantiate these findings the results of calibration runs using the
subset of items that form a Rasch scale on all samples used in the first part of the
study are presented in Table 4.

Table 4
Results of calibration runs on selected subtests for different sample sizes

Sample N Mean SD
(raw score)

Alpha' R1 CI) p Number of
misfitting
items(p < .05)

51 100 14.65 3.93 .77 46.27 .2294 1

S2 150 13.85 4.21 .80 41.15 .4200 1

S3 200 14.99 4.35 .83 78.93 .0512 3
S4 250 14.58 4.40 .82 42.67 .9558 2
S5 273 14.35 4.43 .82 71.91 .1396 1

ST 973 14.49 4.34 .82 84.72 .0195 3

S4A 100 15.31 4.17 .82 15.96 .7193 1

S4B 150 14.09 4.48 .82 47.56 .8776 1

S12 250 14.17 4.12 .79 60.10 .4719 1

a: Cronbach's Alpha
b: R1 c is a statistic of total model-data fit

Table 4 clearly shows that all basic statistics remain essentially invariant once the
Rasch model has been shown to fit the data.

2. INVARIANCE OF ITEM AND ABILITY PARAMETERS

The application of Item Response Modelling makes sense only in the case of model-
data fit. That is why in the next analysis we will use the results of the calibrations
based only on the first two subsamples, for which there is at least a statistical
proof of model-data fit. If the reported fit-indexes were indeed sufficient ground for
acceptance of the hypothesis of model-data fit, the model's properties should hold
and item and ability parameters should be invariant.

A method to checking model features is to divide a sample randomly into two
subsamples and compare the results of the separate calibrations of these
subsamples. Figure la presents the scatterplot of estimated b-values, based on the
calibrations of two random subsamples from Sample 1, and Figure 1 b presents
these results for subsamples from Sample 2. Clearly the b-value estimates are far
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from being invariant. Note ,however, that for the subsamples from Sample 2,
which contain more subjects, the correlation between b-values is larger (rs, =
0.749 and rs2 = 0.897).

Figures I a, 1 b

The same procedure applied to a sufficiently large sample gives different results.
Figure 2 presents a scatterplot of item parameter estimates based on calibrations
of the two randomly assembled two halves of STs, STs 1/2 .1 and STs1A .2. The
figure demonstrates that the feature of invariance of item parameters holds when
statistical model-data fit is achieved for a sufficiently large sample.

Figure 2

A direct comparison of the estimates of b-values based on the calibrations in
Samples 1 and 2 also shows a fair amount of variation. The differences between
the two sets of b-value estimates for all test items are plotted on Figure 3. The
differences vary between -0.85 and + 1.27 which can hardly be taken as a proof
of feature of invariance.

Figure 3

To illustrate the impact of the differences as presented in Figure 3, suppose a
subject taking the test solves item 1 correctly and item 12 incorrectly. On the
basis of IRT we would conclude that the ability of this subject is somewhere
between la, and b12. If we used item parameter estimates based on Sample 1, this
would imply that the ability of this subject is in the interval [-1.35;-1.291, but using
estimates based on Sample 2 it would mean an ability estimate in the interval [-
2.62; -1.73]. Figure 4 presents the item characteristic curves of items 1 and 12
based on the calibration of both Sample 1 and Sample 2. The difference between
the two ability intervals clearly shows that the feature of invariance of ability
estimates doesn't apply.

Figure 4

8
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Another attractive feature of IRT is that the estimate of a subject's ability would
be the same if different subsets of items from a test were used. If the significant
statistical level of fit for the calibrations of Sample 1 and Sample 2 were sufficient
proof of true model-data fit, then it would hold for ability estimates based on these
subsets of items. However, the examples seem to indicate that the feature does
not hold and the next two studies provide further substantiation.

Firstly, we divided the test into two parts, where Part 1 comprises the first half of
the test, and Part 2 the second half. For each part a separate set of ability
parameters was estimated based on the calibrations of Sample 1 for Part 1 and on
Sample 2 for Part 2. The ability of all examinees in a third sample (Sample 3) was
estimated using both sets of ability parameter estimates. Figure 5 provides a
scatterplot of the abilities estimates and shows that the ability estimates are far
from being invariant. The correlation of the two estimates is 0.737.

Figure 5

Secondly, we divided the test into two parts according to the difficulty estimates
of the calibrations of Sample 1. Again the ability of the examinees of Sample 3
was estimated twice, using the Easy and Hard Subtest respectively. Figure 6
presents the scatterplot of ability estimates of subjects in Sample 3 based on East
and Hard Subtest calibrations of subjects in Sample 1. As could be seen the ability
estimates vary substantially over both calibrations. The correlation coefficient is
respectively 0.750, indicating that the basic advantage cf the item response
modelling does not apply in this case.

Figure 6

In other words, in spite of the statistical fit the model does not truly fit the data.
The main reason for this discrepancy is the small size of the samples, which cannot
insure stable estimates of item and ability parameters.

CONCLUSIONS:
The application of IRT provides many advantages to researchers in the field of
testing. Before application, however, the researcher has to be sure that the data
fit the chosen model. A statistical test of fit of the model as such is insufficient to
accept the hypothesis of model-data fit. The results of our study shown, that:

1. For one and the same test it is always possible to find samples with size
< 200 for which the statistics will allow to accept both hypotheses: Ho

1 0
-
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and H1;
2. Statistical fit for small samples does not insure invariance of item and

ability parameter estimates;
3. Statistical fit for large samples allows generalization to samples varying in

size and confidence that model features apply.

In language testing research the sample size used is often too small. Moreover,
model-data fit studies are usually missing, and in the best of cases begin and end
by simply reporting a fit statistic. However, the results of studies based on Item
Response Modelling are used for decision making and general conclusions. The
results of this study show that many studies in language testing research need
reconsidering as to their claims with respect to theory building.
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Scafterplot of b values
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Scatterplot of Ability Estirs

(Sample 3: r=0.737)
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Scatterplot of Ability Estimates
(Sample 3: r = 0.750)
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