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Abstract

The concept of control is fundamental to comnarative research. In research designs where
randomization of observational units is not possible, control has been exercised statistically from a single
covariate by a process of residualization. In this paper, we consider an alternative to control by statistical
adjustment. The alternative, known as subclassification on the propensity score, was developed primarily
for biostatistical applications. The illustration included in the paper will demonstrate applicability to
psychological research as well. Subclassification on the propensity score has several advantages over
residualizing as a means of control. First, it allows control on many covariates. Second, it allows one to
assess how well bias in the covariates has been reduced. Third, interactions with covariates can be
followed by simple effects more readily than with residualization. Finally, subclassification on the
propensity score requires fewer assumptions than residualization.
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Introduction
The concept of control is fundamental to comparative research. In his chapter on the introduction
to basic concepts in experimental design, Kirk (1982) discussed the control of nuisance variables,
“Nuisance variables are undesired sources of variation in an exp ~riment that may affect the dependent
variable" (p. 6). Cochran (1983) recommended control as a meax:y to reduce bias and increase precision in

non-randomized designs. It is the primary objective of this paper to review how control may be applied to
non-randomnized designs. A research design will be included to provide an extended illustration.

"Four approaches can be used to control nuisance variables. One approach is to hold the nuisance
variable constant for all subjects” (Kirk, 1982, p. 6). A second approach is to randomize the assignment
of subjects to treatment. A third approach is to subclassify on important covariates and include the
subclasses in the research model. A fourth approach is to perform a statistical adjustment such as is done
in analysis of covariance (e.g., Benjamin, 1967; Huitema, 1980).

The first approach to control tends to limit the generalizability of research results. Approach two
requires the ability to randomize treatment assignment, There are two broad classes of research design
where such randomization is not possible. Observat.~nal studies (Cochran, 1983), or quasi-experimental
designs (Campbell and Stanley, 1963), represent a class of designs where interest centers on the effect of
intervention in the absence of randomization. According to Holland (1986), the units in these designs are
"potentially exposable" to the treatments. The study of causal inference requires that units be potentially
exposable.

In some designs, a subject's characteristic rather than an intervention defines his or her group
membership. In these designs, units are not potentially exposable and causal inference cannot be
examined. Even in designs with no prospect for causal inference, the use of control may be desired (cf.,
Benjamin, 1967; Wilder, 1968).

When many sources of potential bias threaten the interpretation of a non-randomized design, both
subclassification on covariates and statistical adjustment become difficult to implement. Until statistical
procedures capable of incorporating many covariates were recently developed, investigators controlled on
a limited number of the most important covariates.

Rosenbaum and Rubin (1984) demonstrated how a large number of covariates can be controlled in
the comparison of two non-randomized treatments. They recommended use of the "propensity score" to
reduce potential confounding due to uncontrolled covariates. "The propensity score is the conditional
probability that a unit with vector x of observed covariates will be assigned to treatment 1" (Rosenbaum
and Rubin, 1984, p. 516). They show that "subclassification on the population propensity score will
balance x, in the sense that within subclasses that are homogeneous in the propensity score, the
distribution of x is the same for treated and control units."

In practice, propensity scores must be estimated, and subclassification on the estimated propensity
score usually balances the covariates only approximately. Propensity scores may be estimated by posterior
probabilities from any classification procedure. In practice, logistic regression provides an appropriate
means to estimate propensity scores because it can effectively utilize both quantitative and qualitative
covariates (Press & Wilson, 1978). Sub-classification using more than 4 or 5 subclasses usually gains
very little (Cochran, 1983). However, there are instances where estimated propensity scores can be used
to form matched pairs, thus turning a "between blocks" variable into a "within block” variable,

Rosenbaum and Rubin (1985) provide an example of forming matched pairs from estimated propensity
scores. Another interesting application is found in Rosenbaum (1986).

There are several advantages of subclassifying on the estimated propensity score rather than

performing a statistical adjustment using some of the more important covariates. First, the design and .
model are simpler. If four subclasses are used in a two group design, the design becomes a 4 x 2 factoria.
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model. Cell means within subsclasses are readily compared and reduction in error variance is readily
assessed. Second, fewer 2~sumptions are required for subclassification than for statistical adjustment.
Third, the effectiveness of subclassification to balance all the covariates is readily assessed by examining a
4 x 2 analysis of variance for each covariate. By doing so, inadequacy of estimated propensity scores can
be found and often corrected.

Research Design

The study used to illustrate the application of the propensity score was designed to compare
physiological variables of 34 subjects coming from a home with a family history of hypertension with 46
subjects who had no history of hypertension. Since the distinction between the two groups is drawn on’
the basis of a demographic characteristic of the subjects and is not potentially exposable, this is not an
observational study, nor a quasi-experimental design. Although causal inference is inappropriate to this
study, it is clearly a non-randomized design. Making comparisons between those with and without a
parental history of hypertension will be improved by balancing on a number of baseline covariates.

A number of cardiovascular measures were taken during a 20 minute resting baseline period. The
variables included minute by minute estimates of diastolic and systolic blood pressure, mean arterial
pressure, and heart rate. These measures, plus a body mass index, provided a pool of variables from
which the covariares were to be selected.

On a separate day one week later, physiological measures were observed during three treatment
periods. Subjects were observed during a pre-task anticipation period, during a period where subjects

participated ..1 a digits backward task, and during a period of mental arithmetic. During each period,
measures of systolic and diastolic blood pressure were collected to be used as the response variables.

Selection of Covari

The pool of potential covariates supplied by the 30 minute resting period was well in excess of 100
variables. With only 80 subjects, clearly not all variables avaiiable from the resting period could be
utilized in the development of the propensity score. In addition to the large number of variables in the
covariate pool, missing data due to equipment failure created an additional complication.

To cope with the issues of missing data and large numbers of variables, we decided to consolidate
the variables in the pool by calculating selected statistics for the resting measures of diastolic and systolic
bloed pressure, mean arterial pressure, and heart rate. Two different sets of statistics were examined. For
each of the four cardiovascular measures, Covariate Set 1 consisted of the following quantiles: the
median, the interqu. ttile range, the 5th percentile, and the 95th percentile. These 16 variables, plus the
index of body mass, , rovided the 17 covariates from which the propensity score for Covariate Set 1
would be estimated and assessed

Covariate Set 2 was inspired by growth curve modelling. It included coefficients derived {rom
regressing each set of 30 resting measures on a quadratic function of the serial order of the measure. The
correlations among the coefficients were reduced by using a hierarchy of models: (1) an intercept only
model; (2) 2 model linear in serial order; and (3) a model quadratic in serial order. The highest level
coefficient from each of the hierarchy was selected as a covariate. A similar method is used in the creation
of orthogonal polynomial coefficients. These 12 coefficents, plus the mean of minutes 21-25 for each
resting measure, produced the set of 16 variables in Covariate Set 2. The mean of minutes 21-25 for each
resting measure of cardiovascular activity was selected due to anslyses showing that a nadir resting value
occurs at this point (Jorgensen, Schreer, & Gelling, 1990).

Rosenbaum and Rubin (1984) selected covariates to include in their .ogistic regression estimate of
the propensity score by use of "an inexpensive stepwise discriminant analysis." We had fewer covariates,
and they were consistent with a classification of variables suggested by Mosteller and Tukey (1977) for
variable selection in multiple regression. "Key carriers" are covariates “that we want to include in any
regression"” (p. 393); “promising carriers ... deserve somewhat special attention." "The haystack (is) a
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motley collection of other carriers that deserve limited attention." Following the advice of Mosteller and
Tukey (1977), while making use of the relationship between discriminan® analysis and multiple regression
(Flury and Riedwyl, 1985), we proceeded with variable selection as foliows.

For each Covariate Set, we defined key and promising carriers. To select from among the
promising carriers, all-subset regression (Hocking, 1976) was used with binary coded family history as
the response variable, and the key carriers forced into the model. A second regression analysis forced the
key and selected promising carriers into the model, and used stepwise procedures to examine the haystack
variables. The final logistic regression model consisted of the main effects selected and, following the
procedures of Rosenbaum and Rubin (1984), their two-way interactions. Care should be exercised not to
include interactions without the corresponding main effects (Peixoto, 1990).

For the quantiles in Covariate Set 1, median resting systolic blood pressure was selected to be the
single key carrier. Median resting diastolic blood pressure, median arterial pressure, median heart rate,
and body mass served as the promising carriers. Using the all-subset based on Mallows' Cp from PROC
REG (SAS, 1990), two promising carriers were added to the regression model: median resting distolic
blood pressure and median arterial pressure. Stepwise regression on the haystack of remaining variables
failed to add to the set of three carriers.

For Covariate Set 2, mean resting systolic and diastolic blood pressure were used as key carriers.
The promising carriers were means of resting systolic blood pressure, diastolic blood pressure, and arterial
pressure for minutes 21-25. Using all-subsct regression again, only mcan resting arterial pressure for
minutes 21-25 was added to the model. Stef wise regression on the haystack of remaining variables again
failed to add to the set of carriers selected previously.

To choose between the two covariate sets, canonical correlation analyses were performed, where
the left-hand variables were the carriers in a covariate set (three main effect variables and their two-way
interactions) and the right-hand variables were the six response variables. For each analysis, two
statistically significant canonical correlation were found (for Set 1:.76, .70; for Set 2: .75, .70).
Redundancy analysis results were similar for the two sets also, so, for this illustration, canonical
correlation analysis was of little help in choosing between the covariate sets. Because existing evidence
(e.g., Jorgensen et al., 1990) indicates that at least 20 minutes are required to achieve an accurate resting
blood pressure level, we decided to proceed with Covariate Set 2.

lassification on the Propensi T

. Using PROC LOGISTIC (SAS, 1990), the parameters of a logistic regression model were
estimated from the carriers in Cevariate Set 2. Propensity scores were estimated by evaluating the logistic
regression function for each subject. A schematic plot of estimated propensity scores for the two family
history groups is displayed in Figure 1. Some separation between the family history groups may be

observed for the propersity scores, suggesting the need to improve the balance between the two groups on
the covariates. -
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Figure . Schematic plot of propensity scores from Covariate Set 2.
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Four subclasses of equal size were formed from the estimated propensity scores. To assess the
effectiveness of subclassification to halance the groups on the 16 carriers of Covariate Set 2, two analyses
were performed for each carrier. First, a two sample t-test was performed on each carrier, using family
history as a two-level blocking variable. Second, a 4 x 2 analysis of variance was performed on each
carrier, using the two levels of family history and the four subclass levels as the blocking variables. Table
1 illustrates the effect of subclassification for one covariate - systoloic blood pressure. Table 2
summarizes the p-values for all the covariates. To achieve balance after subclassification, each covariate
should display a non-significant main effect due to family history, and a non-significant interaction
between family history and subclassification,

Table 1.
Evidence of Balance Between Family History Groups for Mean Sy:oiic Blood Pressure

prior to subclassification Family History
Hypertensive Normal
weighted means 119.5 116.1
after subclassification Family History
Subclass Hypertensive Normal
0 114.2 111.5
1 114.7 114.3
2 119.5 119.8
3 123.9 123.8
unweighted means 118.0 117.4
Table 2.
Evidence of Balance Between Family History Groups for all Covariates
p-value x 100
Covariate before  for main effect for interaction
subclassification after after
subclassification subclassification
mean systolic blood pressure 2 56 g1
mean diastolic blood pressure 11 74 18
mean arterial pressure - minutes 21-25 31 77 64
mean arterial pressure 19 83 89
mean heart rate 45 58 79
linear coefficient - diastolic blood pressure 67 77 63
linear coefficient - systolic blood pressure 97 89 23
linear coefficient - arterial pressure 77 49 15
linear coefficient - heart rate 71 78 39
quadratic coefficient - diastolic blood pressure 56 . 91 , 88
quadratic coefficient - systolic blood pressure 42 38 32
quadratic coefficient - arterial pressure 68 66 71
quadratic coefficient - heart rate 31 85 45
mean diastolic blood pressure - minutes 21-25 14 73 8
mean systolic blood pressure - minutes 21-25 4 68 57
mean heart rate - minutes 21-25 37 52 92
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Tables 1 and 2 provide strong evidence that subclassification on the propensity score has balanced
the 16 covariates. Had lack of balance occurred, the opportunity exists for fine tuning the logistic
regression model by including extra covariates. This step was unneccessary for the illustration.

Statistical Analysi

Having demonstrated balance from the subclassification, the primary statistical analysis may
proceed. Each response variable (diastolic and systolic blood pressure) was measure during each of three
treatment periods: pre-task anticipation, digits backward, and mental arithmetic. A split-plot analysis of
variance was performed, using family history and subclassification as between-subjects variables and
treatment period as a within-subjects variable. The split-plot analysis of variance source table is presented
in Table 3. For comparative purposes, the split-plot analysis without the subclassification variable is also
included in Table 3.

Table 3.
Effect of Subclassification on the Analysis of Variance.
3a. Diastolic Subclassification Included Subclassification Excluded
Source MS F n-value MS F p-value
Between ’
History 0.0 0.00 1.00 168.2 1.16 0.29
Subclass 448.1 3.40 0.02
HxS 82.5 0.63 0.60
Error 131.8 145.2
Within
Treatment | 2616.2 113.92 0.00 2721.4 118.30 0.00
TxH 29.0 1.26 0.29 22.3 0.97 0.38
TxS 17.7 0.77 0.60
TxH%S 20.5 0.89 0.50
Error 23.0 23.0
3b. Systolic Subclassification Included Subclassification Excluded
Source MS F p-value MS F p-value
Between
History 20.6 0.12 0.72 239.9 1.04 0.31
Subclass 12140.5 7.50 0.00
HxS 550.5 3.33 0.02
Error 165.4 230.5
Within
Treatment | 3335.7 88.85 0.00 3717.6 94 .35 0.00
TxH 169.3 4.51 0.29% 135.8 3.45 0.03
TxS 46.1 1.23 0.60
TxHxXS 49.7 1.32 0.50
Error 37.5 39.4

Two conclusions are evident from Tables 1,2, and 3. First, subclassification on the estimated
propensity score can reduce bias attributable to covariates. Second, subclassification can improve the
precision of an analysis. The second point is apparent when the error MS with subclassification included
are compared to those with subclassification excluded. The error MS either stays the same or decreases.
Sometimes the decrease is dramatic, as happened with the "Between-Subjects” error term for systolic
blood pressure. Here, the MS error decreased by 28%, which represents an impressive gain in precision
due to including additional variables in the model. Of course, since the covariates are "between-subjects”
measures, they have little impact on the "within-subjects" error mean square.

7
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Alternative Analyses

The analysis above, incorporating subclasses into the model, can be viewed as an alternative to
more traditional methods based on statistical adjustment of the response variable. Such procedures include
the analysis of covariance and approximations to the analysis of covariance based upon the use of
regression residuals (Cochran, 1957).

The analysis of residualized gains reported in Table 4 tay be compared to those of Table 3. In the
analysis of residualized gains, the blood pressure measurements from each of the three treatment periods
are regressed on a comparable blood pressure measurement from minutes 21-25 of the resting baseline .
period. The identity of metric from baseline covariate to treatment response is the basis for the label
“residualized gains."

Residualization does not require commensurable covariate and response measurements. An
interesting variation on the traditional method is the residualization of response measurements from the
covariate of propensity score. Residualizing based on the propensity score has the advantage that ail
measurements from the Covariate Set are being controlled, not just a covariate that represents the same

metric as the response variable. An analysis based upon residuals of blood pressure on propensity score is
included in Table 4 for comparative purposes.

Table 4.
Analysis of Variance Based Upon Residuals.

4a. Diastolic Residualized Gains Residuals from Propensity Scores
Source MS K p-value MS F p-value
Between
History 15.7 0.14 0.71 18.8 0.16 0.69
Error 109.0 117.8
Within
Treatment | 2732.0 119.94 0.00 2688.2 118.05 0.00
TxH 15.3 0.67 0.51 50.0 2.20 0.11
Error 22.8 22.8
4b. Systolic Residualized Gains Residuals from Propensity Scores
Source MS F p-value MS F p-value
Between
History 0.2 0.00 0.98 79.6 0.47 0.50
Erroxr 176.7 169.4
Within '
Treatment | 3710.1 94 .24 0.00 3654.1 95.64 0.00
TxH 144.0 3.66 0.03 226.3 5.92 0.00
Error 39.4 — 38.2

As measures of precision, error mean squares can be compared for the two types of analyses
presented in Table 4. This comparison yields no clear advantage in precision for either analysis. The
benefits of the regression adjustments used in Table 4 can be seen by comparing those analyses with the
unadjusted analysis found in the right-hand side of Table 3. Sizable reductions in the "between-subjects”
error mean squares are atiributable to the regression adjustments, especially for systolic blood pressure.

The regression adjustments used in Table 4 are intended not only to improve precision, but also to
reduce bias. Family history means are "balanced" on the covariate measure by the adjustment in the
residualized gains analysis, . One could speculate that family history means are being balanced for ail the
measurements in the Covariate Set by adjusting on the propensity score. The authors know ofno wayto
corroborate this speculation, however. The ability to confirm that family history means are at least

’8 [ B
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approximately balanced by subclassification on the propensity score (Tables 1 and 2) represents an
important advantage of that analysis over analyses that perform a statistical adjustment.

Another advantage of subclassifying on the propensity score can be observed in Tables 3 and 4. In
Table 3, we assess not only the main effect due to subclass, but also the interaction of subclass with
history and treatment. For systolic blood pressure, a History x Subclass interaction was found. Analysis
of simple main effects (Kirk, 1982) is easily performed and may provide additional insights into the
manner in which differences in family history depend upon covariate differences.

No main effect for the covariate, nor interactions between the covariate and other effects, are
present in Table 4. When analysis proceeds by statistical adjustment, it is assumed that no interactions
with the covariate exist. Because analysis of simple main effects is complex in this case, it is seldom
performed. johnson and Neyman (1936) derived an analysis of simple main effects when a covariate
adjustment is used.

Conclusions

Subclassification on estimated propensity scores provides a simple and effective mean to reduce
confounding in research design where treatments cannot be randomized. By balancing all known sources
of potential bias, the case for causal inference can be strengthened. However, as seen in the illustration,
subclassifying on estimated propensity scores has real value in designs where causal inference is not at
issue. In designs where a demographic characteristic (e.g., coronary artery disease or family history of
hypertension) defines the groups, there is great value in making comparisons between two samples within
subclassifications that are known to be well balanced with regard to all most of the available covariates.

The use of subclassification on estimated propensity scores shares two of the advantages of
analysis of residualized gains.
+ The precision of the analysis, as reflected by the error mean squares, is improved.

+ The bias, as measured by the difference in the means of a covariate, is eliminated.

Two additional advantages of subclassifying on estimated propensity scores are not readily available for
analysis of residualized gains.

+ The ability to investigate how effectively all the covariates have been balanced.

« The ability to investigate interactions with the covariates and easily proceed with an analysis of simple
main effects.
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