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A Comparison of Best Model Selection Criteria
in

Multiple Regression

Multiple regression permits model testing wherein a set of

independent variables are hypothesized to predict a dependent

variable. Oftentimes when the set of variables selected do not

significantly predict, the researcher searches for a "subset" of

variables that provides the best predtion model. The various

multiple regression stepwise methods have been extensively .used

for this purpose. Prior research, however, has indicated that

the all possible subset approach is preferred over the stepwise

methods in determining the best model (Berk, 1978; Thayer, 1986;

Davidson, 1988; Henderson & Denison, 1989; Welge, 1990; Thayer,

1990). Thompson et al. (1991), in further crticizing stepwise

methods, recommended that effect sizes be computed for each "all

possible" subset equation and that the subset model which has the

desired effect size be chosen.

Zuccaro (1992) investigated the use of the Cp criteria in

contrast to the stepwise methods for determining the best set of

predictors using a sample data set. The Cp statistic measures

the total squared error variance in each subset model containing

p predictor variables [error variance plus the bias introduced by

not including important variables]. Findings suggested that the

selection of the best subset model with the lowest bias is

indicated by the smallest Mallows Cp criteria (Mallows, 1966;

1973), especially in the presence of multicollinearity. Pohlmann

(1983) noted that multicollinearity among predictor variables
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didn't affect the Type I error rate, but did affect the Type II

error rate and width of the confidence interval. Findings

suggested that sample size and model validity could compensate

for multicollinearity effects, especially when certain research

questions required models with highly correlated predictors, e.g.

Y = (31X1 + 132X2i + e.

The principal component regression (PCR) approach has also

been proposed as a criteria for selecting the best predictor

model. The method appears to be useful when predicting values in

one sample based upon estimates from another sample and when

multicollinearity exists among a set of variables (Morrison,

1976) . The rationale for using a PCR approach is when the mean

squared error of a biased estimate is smaller than the variance

of an unbiased estimate. The PCR method, however, is not

appropriate for multiple regression subset models containing

interactions (Aiken & West, 1993) nor when models depict

nonlinear correlated predicter sets. The PCR method creates a

set of new variables called principal components, which are

uncorrelated or orthogonal, and therefore preclude it from being

used in these types of models.

A review of the literature indicated that researchers misuse

stepwise methods to determine the best predictor set Or interpret

the importance of predictor variables (Huherty, 1989; Snyder,

1991; Thompson, 1989; Thompson et al., 1991, Welge, 1990).

Stepwise methods inflate Type I error rates by not using the

correct degrees of freedom in calculating the change in 122.
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Additionally, researchers incorrectly interpret the order of

variable selection as defining the "best set" of variables in the

predictor set. Also, the order of variable entry is

misinterpreted as determining which variables are the important

predictors.

The all possible subset approach is recommended as an

alternative over stepwise methods for selecting the best set of

predictor variables. Several criteria, however, are available

for selecting the best subset model: R2 , Adj. R2, MSE, Cp, or

the principal component regression method. How do these criteria

compare when selecting the best subset model? When might a

'.:esearcher choose one criteria over another for selecting the

best model? The principal component regression method, which

determines the best model for prediction by redefining the

theoretical model, appears. more useful when estimates from one

sample are used to predict in another sample. The Cp statistic

is useful when the predictor set is correlated, whereas the

principal component method creates a set of orthogonal

predictors. A comparison of the selection criteria and the PCR

approach will permit an investigation of their usefulness for

subset model selection. An applied example will illustrate a

comparison of the criteria and afford further discussion. The

objective of this study, therefore, was to compare the various

model subset selection criteria and provide guidelines for the

selection of the best "subset" model.
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METHODS AND PROCEDURES

Subiects

Subjects came from a cohort of students accepted into the

Texas Academy of Mathematics and Science (TAMS) at the University

of North Texas in Fall, 1993. TAMS is an early college entrance

program in which students earn approximately 60 hours of college

credit by taking University of North Texas courses. Students

enter TAMS at the beginning of their llth year in high school.

They live on campus in a special residence hall and take regular

university courses in mathematics, science and the humanities.

After two years, participants receive a special high school

diploma and have amassed at least 60 hours of college credit.

Each year approximately 200 high school sophomores, who have met

the selection criteria and completed the 10th grade, are accepted

into the Texas Academy of Mathematics and Science.

In the study year, TAMS accepted 204 students. Of these,

156 students attended an August orientation, which occurred a

week prior to their first semester of college coursework, and

completed the LASSI. There were 80 females and 76 males who

participated in the study. The students who took the LASSI were

similar in demographic background and academic ability as

previous classes because of the academy's consistent admission

requirements and pool of applicants. The participants SAT-M and

SAT-V means and standard deviations, respectively, were: M=651,

SD=57; and M=530, SD=75.
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Instrument

The LASSI is an English language assessment tool designed to

measure college students' use of learning and study strategies.

It was designed to provide assessment and pre-post achievement

measures for students participating in a learning strategies and

study skills project. A high-school version is available, but it

was not recommended for use with accelerated students in these

programs (Eldredge, 1990). The LASSI can be administered in a

group setting in approximately 30 minutes. The carbonless test

format allows participants to score their own assessment and take

a copy of the results with them from the testing session.

The LASSI's ten subscales focus on thoughts and behaviors

related to successful learning. The ten subscales are (1)

attitude; (2) motivation; (3) time management; (4) anxiety; (5)

concentration; (6) information processing; (7) selecting the main

ideas; (8) study aids; (9) self-testing; and (10) test strategies

(for more details see, Weinstein, 1987) . Reliability studies

reported Cronbach alpha internal consistency values ranging from

.70 to .86 and test-retest reliabilities from .70 to .85.

Validity studies have also reported normative data for high

school and college students with different instruments for each

group (Weinstein, Palmer, & Schulte, 1987) . Students respond to

individual items on each subscale usim, a five-point scale: (5)

very typical of me; (4) fairly typical of me; (3) somewhat

typical of me; (2) not very typical of me; and (1) not at all

typical of me. Some item values are reverse keyed before being
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added to obtain a subscale score. The subscale scores are

compared by graphing them onto a normal curve equivalent

percentile chart.

According to the LASSI user's manual (Weinstein, 1987),

students scoring above the 75th percentile do not need to improve

that specific skill or strategy. Students scoring between the

75th percentile and the 50th percentile should consider

improvement. Students scoring below the 50th percentile on a

subscale need assistance to improve that skill or strategy. For

example, students scoring below the 50th percentile on the

anxiety subscale would be considered anxious about being in

college. Likewise, students scoring below the 50th percentile on

the motivation subscale lack appropriate motivation to do college

level work effectively.

Research guestion

The research question of interest was whether the ten LASSI

subscales could predict a student's college grade point average

after one semester of college coursework. A related question

pertained to whether a "subset" of the ten LASSI subscales could

better predict college grade point average for this sample of

students. Students not maintaining at least a 2.50 grade point

average after one semester of college coursework were dismissed

from the Academy. Knowledge of which subscales are best

predictors of college grade point average will aid staff in

identifying potential at-risk students upon entering the Academy.
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Data Analysis

The SAS statistical program is in the Appendix. The

student's college grade point average was predicted by the ten

LASSI subscales with the SELECTION statement requesting the best

subset model criteria. A monotonic relationship existed between

R2 and Adjusted R2, in fact, r = 1.00 across all subset sizes. A

monotonic relationship also existed between Cp and MSE, in fact,

r = 1.00 across all subset sizes. In addition, both R2 and

Adjusted R2 had a perfect inverse relationship to both Cp and

MSE, i.e. r = -1.00, across all subset sizes.

The R2 statistic is calculated as the SSregression/SStotal and is

the most commonly used and reporteu value in determining the

proportion of variance in the dependent variable accounted for by

the independent variables (Pedhazur, 1982) . The adjusted R2

value, which corrects for the number of predictors in the model,

is computed as: R2 [p(1-R2)/N-p-1] (Norusis, 1979). In

determining the number of variables to include in the regression

model, the researcher will typically test for significant

increments in R2 values between models with differing numbers of

predictors. The mean square error (MSE) value is an unbiased

estimate of a2, the variance of e, which represents random error

and accounts for variation due to other factors. The MSE

statistic is computed as: SS,/df,.

The Mallows' Cp statistic with the intercept term is

calculated as: Cp = (1-R2p)(n-T) / (1-R2T) (n 2p), or alternatively

without the intercept term as: Cp = (SSEp/MSE) (n 2p) + 1
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(Freund & Littell, 1991) . Mallows' Cp is useful in measuring the

level of bias in the parameter estimates (pj). The Cp criteria

has also been recommerded for determining the best set of

predictors. The PROC PRINCOMP procedure was used to create ten

orthogonal principal component variables. The principal

component variable parameter estimates were computed using the

PROC REG procedure. The number of significant principal component

parameter estimates were then identified. These procedures are

outlined in the SAS System for Regression manual (Freund &

Littell, 1991).

RESULTS

The optimum subset model should generally be one that

produces the minimum error sum of squares (MSE), or equivalently

maximizes the R2 value. The procedure for finding the optimum

subset of all possible subset sizes requires computing 2'

equations. The ten subscale predictors in the model yielded 1024

regression equations (2') with associated selection criteria

statistics (Note: The determination of the number of subset

equations generated for p predictor variables from an m variable

full model is: ml/[p1(m-1:) 1). For example, the number of 2

variable subset equations (p) generated from a 10 variable model

(m) would be 45).

The correlation matrix, means and standard deviations of the

ten LASSI subscales are in Table 1. The intercorrelations among

the subscales indicated that Anxiety/Worry was not significantly

i0
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correlated with Time Management, Information Processing, Support

Techniques/Materials, and Self Testing/Class Preparation. The

lowest subscale mean was on Selecting Main Ideas.

Insert Table 1 Here

The best subset model for each subset size with the

corresponding selection criteria are in Table 2. A combined

criteria, minimum error sum of squares (MSE) with maximum R2,

indicated a five variable sub6et model. In contrast, the Cp

criteria indicated a four variable model. The four variable

subset model for predicting college grade point average consisted

of the four subscales: Motivation, Anxiety/Worry, Support

Techniques/Materials, and Self Testing/Class Preparation. The

fifth variable indicated in the combined criteria selection was

Information Processing.

Insert Table 2 Here

The Cp criteria also indicated the bias in having too many

variables in the model. Large Cp values indicated equations with

larger mean square error. If Cp > (p + 1), for any subset size

p, then 1-ias was present. If Cp < (p + 1), for any subset size

p, then the model contained too many variables. A plot of the Cp

11
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values against the number of predictors, compared to a plot of

the (p + 1) values, has been recommended for determining the best

subset model (Mallows, 1973).

The present pattern of Cr values for the various subsets of

size p are typical when multicollinearity is present. The Cr

values initially become smaller, but then start to increase. The

plot of Cr values is similar to a "scree" plot in factor analysis

and as such a multiple regression method might also be useful in

determining the number of variables to retain (Zoski & Jurs,

1993) . The best subset model is indicated when the Cr values

begin to increase and cross the (p + 1) values (see Figure 1).

Insert Figure 1 Here

Principal components were obtained by computing eigenvalues

from the correlation matrix. The correlation matrix was used so

that variables were not affected by the scale of measurement as

in the use of a variance-covariance matrix. Since eigenvalues

are the variances of the principal component variables, the sum

of the eigenvalues equal the number of variables in the full

model, just as the sum of standardized variable variances would

equal the number of variables. This sum is the measure of the

total variation in the data set.

A wide variation in the eigenvalues would suggel.: the

presence of multicollinearity among the variables. The number of

12
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eigenvalues greater than unity, as in factor analysis, would

indicate the number of variables from the full model that would

explain most of the variance in the data set. The eigenvectors,

in contrast, contain the coefficients for each principal

component variable. These coefficients are used to create the

observed values of the original variables. These observed values

are then used in multiple regression as orthogonal, uncorrelated

predictor values with no multicollinearity present. Table 3

contains the eigenvalues for the ten principal component

variables generated from the correlation matrix of the ten LASSI

subcales.

Insert Table 3 Here

Preliminary inspection of the eigenvalues indicates three

principal component variables that account for 72.4 % of the

variance in predicting college grade point average (7.24/10.00).

The first pri cipal component alone explained 46 %. The ten

principal component variables when analyzed in multiple

regression yielded an R2= .19, Adj. R2 = .13, and a MSE = .32

which is identical to the ten predictor model using the original

variables obtained from the subset model approach (Table 4).

Insert Table 4 Here
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A summary of parameter estimates in Table 5 indicates that

model components 1, 4, and 8 are significant relative to other

ix-incipal components in the full model. An examination of the

coefficients in the eigenvectors for these principal components

reveals which subscales contribute the most to the prediction of

college grade point average (see Table 6).

Insert Table 5 Here

Insert Table 6 Here

The first principal component indicates that all subscales

contributed to prediction. The fourth principal component

indicates that Attention, Anxiety/Worry, and Information

Processing are important. The eighth principal component

comprised Attention, Motivation, Time Management, Concentration,

Information Processing, and Support Techniques/Materials. The

fourth and eighth principal components suggested "factors" which

are secondary related to the primary construct tapped by the

LASSI subscales. Providing names for the principal components,

as in factor analysis, is subjective and only meaningful within

the context of interpreting scores. These principal comnonent

results clearly indicate that all ten subscales, when treated as

uncorrelated or orthogonal predictors, contributed to the

prediction of future college grade point average the same as the

14



set of ten correlated predictors in the ordinary least squares

approach.

SUMMARY

13

The Cp criteria was the lowest for a four variable predictor

model. This four variable subset model was verified by examining

where the plot of C, values against the (p + 1) values crossed.

The MSE criteria was also the lowest for the five variable model.

The R2 and Adjusted R2 criteria also indicated a five variable

model. The full model with all ten subscales as predictors

yielded the same result as the principal components method using

the first principal component eXtracted. The first principal

component yields the most variance accounted for in the set of

variables. The Cp criteria selected the smallest variable subset

model in the presence multicollinearity.

In using multiple regression it is important to have a

theoretical basis for the regression model and to consider sample

to sample fluctuations in R. A common misconception in multiple

regression is that the model with all the significant predictors

included is the best model. This isn't always the case. The

problem is that the b's and R2 values are data dependent due to

the least squares criterion being applied to a specific sample of

data. A different sample will usually result in different

parameter estimates and variance explained. Although the

standard errors of the b's do provide the researcher with some

indication of the amount of change expected from sample to

15
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sample, the fact remains that the estimates obtained from one

sample may predict poorly when applied to a new set of sample

data. The primary method to assess the change in R2 or b's is to

replicate the regression model using other sample data.

Bootstrapping, jacknifing, and cross-validation methods have also

become useful in indicating the variation in b's and R2 values

when estimates from one sample are applied to another sample.

The rationale behind a regression model is to estimate 02

(the true model's mean square error variance) . Since a2 is not

generally known, a researcher must estimate it from a knowledge

of prior research (02 = a'y.,), obtain estimates from a model

containing all theoretically relevant predictors, replicate the

study, or use bootstrapping, jacknifing, and cross-validation

methods. In this regard, effect size considerations, as

recommended by Thompson (1991), become important to consider.
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