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ABSTRACT

The present paper suggests that multivariate methods ought to be
used more frequently in behavioral research, and explores the
potential consequences of failing to use multivariate methods when
these methods are appropriate. The paper explores in detail two
reasons why multivariate methods are usually vital. Three general
analytic premises provide a framework for the discussion.




Hinkle, Wiersma and Jurs (1979, p. 415) noted that "it is
becoming increasingly important for behavioral scientists to
understand multivariate procedures even if they do not use them in
their own research."” And recent empirical studies of research
practice do confirm that multivariate methods are employed with
some regularity in behavioral research (Elmore & Woehlke, 1988).
However, empirical studies of practice indicate that univariate
analyses, and particularly ANOVAs, still remain the dominant
analytic choices in published research (Edgington, 1964, 1974;
Elmore & Woehlke, 1988; Goodwin & Goodwin, 1985; Willson, 1980).

The purpose of the present paper is to suggest that
multivariate methods ought to be used more frequently in behavioral
research, and to explore the potential consequences of failing to
use multivariate methods when these methods are appropriate. The
paper explores in detail two reasons why multivariate methods are
usually vital.

But, before these two issues are considered, it may be helpful
to review three general premises regarding statistical analyses.
The implications of these premises for multivariate analyses will
then briefly be considered.

Three Premises and Their Implications for Multivariate Analyses

Premise #1: Al]l Statistical Analyses are Correlational

All classical parametric methods are least squares procedures
that implicitly or explicitly (a) use least squares weights to
optimize explained variance and minimize model error variance, (b)
focus on latent synthetic variables, and (c) yield variance-
accounted-for effect sizes analogous to r?. Put more
parsimoniously, all classical analytic methods are correlational
(Knapp, 1978; Thompson, 1988a). Designs may be experimental or
correlational, but all analyses are correlational. In fact, all
parametric analyses can be represented as bivariate analyses
invoking Pearson product-moment correlation coefficients (Thompson,
1984, 1991).

The data (n=25) in Table 2, involving variables Y, X; and X,
from Edwards (1985, p. 41), can be used as a heuristic to partially
illustrate (a) the importance of weights in all analyses, (b) the
obsession in all analyses with latent or synthetic variables, as
against observed variables, and (c) that all analyses yield
variance-accounted-for effect sizes analogous to r’. The tabled
data were analyzed using the SPSS program reported in Appendix A.

INSERT TABLE 1 ABOUT HERE.

When variables X, and X, are used to predict Y, the SPSS
analysis yields the results presented in Table 2, reported in
exactly the format output by SPSS. The Table 2 results indicate
that the variance-accounted-for effect size for this analysis, R?,
was 15.470%, and thus R was .39332.

INSERT TABLE 2 ABOUT HERE.




The table also reports the unstandardized B weights that can
be applied to the observed variables, X, and X,, to optimize the
prediction of Y; for each of the i=25 subjects. Applying optimal
weights to observed variables ylelds a score for each subject on
the synthetlc variable, Y;, a variable that is latent since the
variable is not directly observable. The equation here takes the
form: "

Yy <====Y; = a + B (X)) + B, (Xy)
For the Table 1 data, as noted in Table 2, the unstandardized B
weights are:
Y, <=-=- Y, = +9.930727 + +.113561 (X;) + +.098024 (X,)

If the varlables are standardized, - the optimal weights are
designated B weights as against B welghts. Because the regression
surface always contains that coordinate defined by the means of all
the variables involved in the analysis, and since the mean of all
the standardized variables is 0, the additive, a, weight is always
0 for standardized data. Thus, the regression equation for
standardized data simplifies to:

Zyi <==== Yz = By (2xy) + By (Zxx)
For the Table 1 data, also as noted in Table 2, the standardized f
weights are:
Zy, <==== ¥, = +.124569 (Zy1) + +.332448 (Zyy)

Table 2 also reportg scores on both versions of the synthetic
variable, predicted Y (Y;), for all i=25 subjects in the example
data set. However, a second set of synthetic variables is present
in the data set too. This set represents the deviation scores
between the related actual and predicted variable scores for the
i=25 subjects. These deviations take the form, respectively:

g = Y, - Y,
and R
€ = Zyy - Yy
Table 2 also reports these "error" scores for all ji=25 subjects.

As implied by this discussion, all analyses involve two
classes of variables: observed variables, and latent or synthetic
variables. In the present example, for both the unstandardized and
the standardized forms of the data, there are 3 observed variables,
and 2 latent variables. Thus, the data set involves a total of 5
variables.

These data can alsq be used tp make three conceptual points:

1. Conceptually, the Y; (or the Y,) scores can be thought of as
the predicted portion of Y;. Therefore, logically Ry .y xix:
shovrld always exactly equal Yy . yuare

2. Conceptually, the Y; (or the Y,;) scores can be thought of as
the predicted portlon of Y;, and the e; scores represent the
unexplained portion of Y;. Therefore,hby defini{ion, the
scores on the two synthetic variables, Y, (or the Y,) and e
(or e;), will always be correlated 0 w1th each other.

3. Conceptually, the Y¥; (or the Y,;) scores can alternatively be
thought of as the predlctlvely'useful portion of the predictor
variables, discarding the predictively useless part of the
predicter variables. Since the e, scores represent the
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unexplained portion of the ¥, scores, therefore, logically each

predictor will always be correlated 0 with the synthetic
variable, e;.
These expectations are confirmed within the results reported in
Table 3.

INSERT TABLE 3 ABOUT HERE.

The various tabled results illustrate the (a) use of least
squares weights to optimize explained variance and minimize model
error variance. Changing any cf the weights reported in Table 2 in
any way would, for t data in hand, (1) increase the discrepancy
between the actual Y, scores and the predicted scores Y;,, i.e.,
result on the average in larger absolute e, scores (or e? scores),
and (2) result in a smaller Iy..ywmr ©Or Vvariance-accounted-for
effect size. These are the optimal weights for these data.

All classical parametric methods use such least sgquares
weights to optimize prediction, in just this way. However, many
researchers do not. recognize that such is the case, because most
computer packages do not print the least squares weights that are
actually invoked in ANOVA, for example, or when t-tests are
conducted. Thus, some researchers unconsciously presume that such
methods do not invoke optimal weighting systems.

The tabled results also illustrate the (b) focus on latent
synthetlc variables in all analyses. The fact that the multiple
correlatlon, Rywinxix2r €QUALS Ty g 1At indicates that the synthetic
variable is 1mp11c1tly the focus of multiple regression ana1y51s.
In fact, the synthetic variables scores are the focus in all
classical parametric analyses (cf. Thompscn, 1991).

Finally, the tabled results also illustrate that all classical
parametric analyses (c) yield variance-accounted-for effect sizes
analogous to 2. These statistics can equivalently be
conceptualized as (a) the ratio of explained to total variance
(c.f. the sum-of-squares between divided by the total sum-of-
squares) or as (b) the squared correlation between synthetic
varizble scores and other scores. Again, many computer packages do
not automatlcally print eta’? or other variance-accounted-for r?
effect sizes present in analyses such as ANOVA or t-tests, so many
researchers fail to appreciate that all analyses are correlational,
but these effect sizes are always present (Snyder & Lawson, 1993).

emise : OVA Analyses Do Not in and of Themselves
Yield the Capacity to Make Causal Inferences

In a seminal article, Cohen (1968, p. 426) noted that ANOVA
and ANCOVA are special cases of multiple regression analysis, and
argued that in this realization "lie possibilities for more
relevant and therefore more powerful exploitation of research
data.”" Since that time researchers have increasingly recognized
that conventional multiple regression analysis of data as they were
initially collected (no conversion of intervally scaled independent
variables into dichotomies or trichotomies) does not discard
information or distort reality, and that the "general linear model"




...can be used equally well in experimental or non-
experimental research. It can handle continuous and
categorical variables. It can handle two, three,
four, or more independent variables... Finally, as
we will abundantly show, multiple regression
analysis can do anything the analysis of variance
does--sums of squares, mean squares, F ratios--and
more. (Kerlinger & Pedhazur, 1973, p. 3)

Discarding variance is not cenerally good research practice

(Thompson, 1988b). As Kerlinger (.986, p. 558) explains,
...partitioning a continuous variable into a
dichotomy or trichotomy throws information away...
To reduce a set of values with a relatively wide
range to a dichotomy is to reduce its variance and
thus its possible correlation with other variables.
A good rule of research data analysis, therefore,
is: Do not reduce continuous variables to
partitioned variables (dichotomies, tcrichotomies,
etc.) unless compelled to do so by circumstances or
the nature of the data (seriously skewed, bimodal,
etc.).

Kerlinger (1986, p. 558) notes that variance is the "stuff" on
which all analysis is based. Discarding variance by categorizing
intervally-scaled variables amounts to the "squandering of
information" (Cohen, 1968, p. 441). As Pedhazur (1982, pp. 452-453)
notes;

Categorization of attribute variables is all too
frequently resorted to in the social sciences... It
is possible that some of the conflicting evidence in
the research 1literature of a given area may be
attributed to the practice of categorization of
continuous variables... Categorization leads to a
loss of information, and consequently to a less
sensitive analysis.

One reason why researchers may be prone (a) to categorizing
continuous variables and also (b) to overuse of ANOVA is that some
researchers unconsciously and erroneously associate ANOVA with the
power of experimental designs. As Thompson (1993) noted,

Even most experimental studies invoke intervally
scaled "aptitude" variables (e.g., IQ scores in a
study with academic achievement as a dependent
variable), to conduct the aptitude~-treatment
interaction (ATI) analyses recommended so
rersuasively by Cronbach (1957, 1975) in his 1957
APA Presidential address. (pp. 7-8)

Thus, many researchers employ interval predictor variables, even in

experimental designs, but these same researchers too often convert
their interval predictor variables to nominal scale merely to
conduct OVA analyses.

It is true that experimental designs allow causal inferences
and that ANOVA is appropriate for many experimental designs.
However, it is not therefore true that doing an ANOVA makes the
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design experimental and thus allows causal inferences.
Humphreys (1978, p. 873, emphasis added) notes that:

The basic fact is that a measure of individual

differences is not an independent variable [in a

experimental design], and it does not become one by

categorizing the scores and treating the categories

as if they defined a variable under experimental

control in a factorially designed analysis of

variance.
Similarly, Humphreys and Fleishman (1974, p. 468) note that
categorizing variables in a nonexperimental design using an ANOVA
analysis "not infrequently produces in both the investigator and
his audience the illusion that he has experimental control over the
independent variable. Nothing could be more wrong." Since all
analyses are correlational, and it is the design and not the
analysis that yields the capacity to make causal inferences, the
practice of converting intervally-scaled predictor variables to
nominal scale so that ANOVA and other OVAs (i.e., ANCOVA, MANOVA,
MANCOVA) can be conducted is inexcusable, at least in most cases.

As Cliff (1°87, p. 130, emphasis added) notes, the practice of

discarding variance on intervally scaled predictor variables to
perform OVA analyses creates problems in almost all cases:

Such divisions are not infallible; think of the

persons near the borders. Some who should be highs

are actually classified as lows, and vice versa. In

addition, the "barely highs" are classified the same

as the "very highs," even though they are different.

Therefore, reducing a reliable variable to a

dichotomy makes the variable more unreliable, not
less.

These various realizations have led to less frequent use of
OVA methods, and to more frequent use of general linear model
approaches such as regression (Elmore & Woehlke, 1988). However,
canonical correlation analysis, and not regression analysis, is the
most general case of the general linear model (Baggaley, 1981, p.
129; Bagozzi, 1981; Fornell, 1978, p. 168). In an important
article, Knapp (1978, ©p. 410) demonstrated +this in scme
mathematical detail and concluded that "virtually all of the
commonly encountered tests of significance can be treated as
special cases of canonical correlation analysis." Thompson (1988a,
1991) illustrates how canonical correlation analysis can be
employed to implement all the parametric tests that canonical
methods subsume as special cases.
Premise #3: Stg;;gt;cgl Signlflcance Tests Do Not Evaluate

Results Wi Replicate

Science is about the business of identifying relationships
that recur under stated conditions. Unfortunately, too many
researchers, consciously or unconsciously, incorrectly assume that
the p values calculated in statistical significance tests evaluate
the probability that results will replicate (Carver, 1978, 1993).
Such researchers often explain what p calculated is by invoking
vague amorphisms such as, p calculated (or statistical significance
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testing) evaluates whether results "were due to chance'.

It is true that statistical significance tests do focus on the
null hypothesis. It is also true that such tests evaluate sample
statistics (e.g., sample means, standard deviations, correlations
coefficients) in relation to unknowable population parameters
(e.g., population means, standard deviations, correlations
coefficients).

But far too many resea- -:hers incorrectly interpret statistical
significance tests as evaluating the probability that the null is
true in the population, gjven the sample statistics for the data in
hand. This would, in fact, be a very interesting issue to
evaluate.

If p calculated informed the researcher about the truth of the
null in the population, then this information would directly test
the replicability of results. Assuming the population itself
remained stable, future samples from the population, if
representative, should yield similar results. In this case,
results for which the null was found to not be true in the
population would therefore be likely to be replicated in future
samples from the same population where the null would also likely
be rejected. Unfortunately, this is noet what statistical
significance tests, and not what the associated p calculated values
evaluate.

It is true that the p(robability) values calculated in
statistical significance testing, which range from 0 to 1 (or 0% to
100%), do require that a "given" regarding the population
parameters must be postulated. The characteristics of the
population(s) directly affect what the calculated p values will be,
and are considered as part of the calculations of p.

For exanple, if we draw two random samples from two
populations, both with equal means, then the single most likely
sample statistics (i.e., the sample statistics with the largest p
calculated value) will be two equal sample means. These sample
results are the most likely for these populations. But these exact
same sample statistics would be less likely (i.e., would yield a
smaller p calculated value) if the two populations had parameter
means that differed by one unit. And the sample statistics
involving exactly equal sample means would be still less likely
(i.e., would yield a still smaller p calculated value) if the two
population means differed by two units.

Indeed, specific population parameters must unavoidably be
assumed even to determine what the p calculated is for the sample
statistics. Given that population parameters directly affect the
calculated p(robability) of the sample statistics, one must assume
particular population parameters associated with the null
hypothesis being tested (e.g., specific means, medians, standard
deviations, correlation coefficients), because there are infinitely
many possibilities of what these parameters may be in the
population(s).

Oonly by assuming specific population parameters can a single
answer be given to the question, "what is the p(robability) of the
sample statistics, assuming the population has certain parameters?"
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Without the assumption of specific population parameters being true
in the population, there are infinitely many plausible estimates of
P, and the answers to the question actually posed by statistical
significance testing become mathematically indeterminate.

- Classically, to get a single estimate of the p(robability) of
the sample statistics, the null hypothesis is posited to be exactly
true in the population. Thus, statistical significance testing
evaluates the probability of the sample statistics for the data in
hand, given that null hypothesis is presumed to be exactly true as
regards the related parameters in the population.

Of course, this p is a very different animal than one which
evaluates the probability of the population parameters themselves,
and the statistical significance testing logic itself means that p
evaluates something considerably less inveresting than result
replicability. As Shaver (1993) recently argued so emphatically:

[A] test of statistical significance is not an
indication of the probability that a result would be
obtained upon replication of the study. A test of
statistical significance yields the probability of a
result occurring under [an assumption of the truth
of] the null hypothesis [in the population], not the
probability that the result will occur again if the

study is replicated. Carver's (1978) treatment
should have dealt a death blow to this fallacy....
(p. 304)

Furthermore, the requirement that statistical significance
testing presumes an assumption that the null hypothesis is true in
the population is a requirement that an untruth be posited. As
Meehl (1578, p. 822) notes, “As I believe is generally recognized
by statisticians today and by thoughtful social scientists, the
null hypothesis, taken 1literally, is always false." Similarly,
Hays point out that "[t]here is surely nothing on earth that is
completely independent of anything else [in the population]. The
strength of association may approach zero, but it should seldom or
never be exactly zero."

One logic explaining why the null cannot be true in the
population is mathematical. There are infinitely many possible
parameters (e.g., means, standard deviations) in the population(s).
Probability is the frequency of occurrence of an event divided by
the total number of possible events. Therefore, the "point
probability" of any single event (e.g., two populations with
exactly equal means, a population with the parameter correlation
coefficient exactly equal to zero) in the population is infinitely
small. Thus, the probability of the null hypothesis being exactly
or literally true in the population is infinitely small.

There is a very important implication of the realization that
the null is not literally true in the population. The most likely
sample statistics for samples drawn from populations in which the
null is not 1literally true are sample statistics which do not
correspond to the null hypothesis, e.g., there are some differences
in sample means, or r in the sample is not exactly 0. Whenever the
null is not exactly true in the sample(s), then the null hypothesis
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will always be rejected at some sample size. As Hays (1981, p.
293) emphasizes, "virtually any study can be made to show
significant results if one uses enough subjects."

Although statistical significance is a function of at least
seven interrelated features of a study (Schneider & Darcy, 1984),
sample size is a basic influence on significance. Thus, some
researchers (Thompson, 1989, 1993) have advocated interpreting
statistical significance tests only within the context of sample
size. In any case, all this means that:

Statistical significance testing can involve a
tautological 1logic in which tired researchers,
having collected data from hundreds of subjects,
then conduct a statistical test to evaluate whether
there were a lot of subjects, which the researchers
already know, because they collected the data and
know they're tired. This tautology has created
considerable damage as regards the cumulation of
knowledge... (Thompson, 1992b, p. 436)

Thus, statistical significance testing can be a circuitous
logic requiring us to invest energy to determine that which we
already know, i.e., our sample size. And this energy is not
invested in judging the noteworthiness of our effect sizes or the
replicability of our effect sizes, since statistical significance
testing does not evaluate these considerably more important issues.
The recent Summer, 1993, special issue (Vol. 61, No. 4) of the
dournal of Experimental Education provides a lucid and thorough
treatment of these and related matters. Decades of effort "to
exorcise the null hypothesis" (Cronbach, 1975, p. 124) continue.

jcati of t ee ises i i tic

These three premises have implications for correctly
conducting multivariate analyses. First, because all classical
parametric analyses are positively biased in the effect sizes they
yield, we should estimate the magnitude of this bias as part of the
interpretation of all analyses. It is true that all parametric
methods yiell positively biased estimates of effects, because all
these analyses use least squares weights to optimize prediction,
and "one tends to take advantage of chance [both sampling and
measurement errors}] in any situation where something is optimized
from the data at hand" (Nunnally, 1978, p. 298).

Traditionally, many researchers recognized that so-called
"correlational analyses" (e.g., r, multiple regression, canonical
correlation analysis) vyielded positively-biased effects, and
therefore eschewed these analyses. However, all analyses are
correlational and invoke least squares weights, so exactly the same
dynamics occur in so-called, incorrectly-called, "non-correlational
analyses" (e.g., the OVA methods, t-tests).

We can take this positive bias into account in several ways.
For example, we can apply statistical corrections to our variance-
accounted-for effect size estimates (see Snyder & lLawson, 1993;
Thompson, 1990). Alternatively, we can employ replicability
analyses, such as cross-validation, the jackknife, or the
bootstrap, to empirically estimate the degree of positive bias (cf.
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Thompson, 1993, in press). But however we do so, we should
consider the positive bias in. our detected effects as part of
result interpretation.

Second, because statistical significance does not evaluate the
importance of results, effect sizes should initially be
subjective..y evaluated during interpretation, to determine if the
results are noteworthy and worth more detailed interpretation. As
Thompson (1993) argued,

Statistics can be employed to evaluate the
probability of an event. But importance is a
question of human values, and math cannot be
employed as an atavistic escape (a la Fromme's
Escape from Freedom) from the existential human
responsibility for making value judgments. If the
computer parckage did not ask you your values prior
to its analysis, it could not have considered your
value system in calculating p's, and so p's cannot
be blithely used to infer the value of research
results. (p. 365)

Third, because all classical parametric analyses create
synthetic variables that become the focus of the -analysis, the
nature of the synthetic variable should be explored as part of the
analysis, once it is decided that the origins of detected effects
are worth exploring. There are two ways to explore the nature of
the latent or synthetic variables in our analyses.

One way to explore the character of the synthetic variables is
to evaluate the standardized weights used to create the synthetic
variables. All parametric analyses involve standardized weights
similar to the beta weights generated in regression. As Thompson
(1992a) noted,

These weights are all analogous, but are given
different names in different analyses (e.g., beta
weights in regression, pattern coefficients in
factor analysis, discriminant function coefficients
in discriminant analysis, and canonical function
coefficients in canonical correlation analysis),
mainly to obfuscate the commonalities of [all]
parametric methods, and to confuse (graduate
students. (pp. 906-907)
If all standardized weights across analytic methods were called by
the same name (e.g., beta weights), then researchers might
(correctly) conclude that all analyses are part of the same general
linear model.

A variable given a standardized weight of zero is being
obliterated by the multiplicative weighting process, indicating
either that (a) the variable has zero capacity to explain
relationships among the variables gor that (b) the variable has some
explanatory capacity, but one or more other variables yield the
same explanatory information and are arbitrarily (not wrongly, just
arbitrarily) receiving all the credit for the variable's predictive
power. On the other hand, as the standardized weights for
variables deviate more from zero, these variables have more power
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to explain relationships among the variables.

Because a variable may be assigned a standardized
multiplicative weight of zero when (b) the variable has some
explanatory capacity, but one or more other variables yield the
same explanatory information and are arbitrarily (not wrongly, just
arkitrarily) given all the credit for the variable's predictive
power, it is essential tc evaluate other coefficients in addition
to standardized weights during interpretation, to determine the
specific basis for the weighting. Just as it would be incorrect to
evaluate predictor variables in a regression analysis only by
consulting beta weights, it would be inappropriate in multivariate
analyses to only consult standardized weights during result
interpretation (Borgen & Seling, 1978, p. 692; Kerlinger &
Pedhazur, 1973, p. 344; Levine, 1977, p. 20; Meredith, 1964, p.
55) .

One candidate for this second way of evaluating variable
importance involves <calculating the bivariate correlation
coefficients between the observed variables and the predicted
latent or synthetic variable(s). These correlation coefficients
are called structure coefficients (Thompson & Borrello, 1985).

Two Reasons Why Multivariate Methods Are Usually Essentjal

There are two reasons why multivariate methods are so
important in behavioral research. These are elaborated by Fish
(1988) , and explored in more detail here.

olli " i twvise" Type Rates

First, mn ivariate me ds limit inflation of e I
"experimentwige" erroxr rates. The seriousness of "experimentwise"
error inflation, and what to do about it, are both matters
prompting some disagreement (e.g., Bray & Maxweli, 1982, p. 343,
1985, p. 10; Hummel & Johnston, 1986). But it is clear that,
"Whenever multiple statistical tests are carried out in inferential
data analysis, there is a potential problem of ‘'probability
pyramiding'" (Huberty & Morris, 1989, p. 306). And as Morrow and
Frankiewicz (1979) emphasize, it is also clear that in some cases
inflation of experimentwise error rates can be quite serious.

Most researchers are familiar with "testwise" alpha. But while
"testwise" alpha refers to the probability of making a Type I error
for a given hypothesis test, "experimentwise" error rate refers to
the proba! ility of having made a Type I error anywhere within the
study. When only one hypothesis is tested for a given group of
people in a study, "experimentwise" error rate will exactly edqual
the "testwise" error rate. But when more than one hypothesis is
tested in a given study with only one sample, the two error rates
may not be equal. ' ,

Given the presence of multiple hypothesis tests (e.g., two or
more dependent variables) in a single study with a single sample,
the testwise and the experimentwise error rates will still be equal
only if the hypotheses (or the dependent variables) are perfectly
correlated. Logically, the correlation of the dependent variables
will impact the experimentwise error rate, because, for example,
when one has perfectly correlated hypotheses, in actuality, one is
still only testing a single hypothesis. Thus, two factors impact
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the inflation of experimentwise Type I error: (a) the number of
hypotheses tested using a single sample of data, and (b) the degree
of correlation among the dependent variables or the hypotheses
being tested.

When the dependent variables or hypotheses tested using a
single sample of Jata . are Dperfectly |uncorrelated, the
experimentwise error rate (a,,) can be calculated. This is done
using the Bonferroni inequality:

Apw = 1l - (1 - aTW)Kl
where k is the number of perfectly ur.correlated hypotheses being
tested at a given testwise alpha level (ary).

For example, if three perfectly uncorrelated hypotheses (or
dependent variables) are tested using data from a single sample,
each at the aw=.05 1level of statistical significance, the
experimentwise Type I error rate will be:

- = 1= (1 - .05)%
= 1 - ( .95 )3
= 1 - (.95(.95)(.95))
= 1= ( .9025 (.95))
= i - .857375

Cpw .142625-

Thus, for a study testing three perfectly uncorrelated
dependent variables, each at the aw=.05 level of statistical
significance, the probability is .142625 (or 14.2625%) that one or
more null hypotheses will be incorrectly rejected within the study.
Most unfortunately, kncowing this will not inform the researcher as
to which one or more of the statistically significant hypotheses
is, in fact, a Type I error. Table 4 presents these calculations
for several conventional ary levels and for various numbers of
perfectly uncorrelated dependent variables or hypotheses.

INSERT TABLE 4 ABOUT HERE.

But these concepts are too abstract to be readily grasped.
Happily, Witte (1985, p. 236) explains the two error rates using an
.intuitively appealing example involving a coin toss. If the toss of
rF2ads is equated with a Type I error, and if a coin is tossed only
once, then the probability of a head on the one toss (ay), and of
at least one head within the set (apy) of one toss, will both equal
50%.

If the coin is tossed three times, rather than only once, the
"testwise" probability of a head on each toss is still exactly 50%,
i.e., ap=.50 (not .05). Now the Bonferroni inequality is a
literal fit to this example situation (i.e., is a literal analogy
rather than a figurative analogy), because the coin's behavior on
each flip is literally uncorrelated with the coin's behavior on
previous flips. That is, a coin is not aware of its behavior on
previous flips and does not alter its behavior on any single flip
given some awareness of its previous behavior.

Thus, the "experimentwise" probability (o) that there will
be at least one head in the whole set of three flips will be
exactly:

dgw = 1- (1 - ap)k
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= 1~ (1 - .50)%
= 1~ ( .50 )3
= 1 -~ (.50(.50)(.50))
= 1= ( .2500 (.50))
= 1 = .125000

Qpy = .875000

Table 5 illustrates thess concepts in a more concrete fashion.
There. are eight equally likely outcomes for sets of three coin
flips. These are listed in the table. Seven of the eight equally
likely sets of three flips involves one or more Type I error,
defined in this example as a heads. And 7/8 equals .875000, as
expected, according to the Bonferroni inequality.

INSERT TABLE 5 ABOUT HERE.

Researchers control "testwise" error rates by picking small
values, usually 0.05, for the "testwise" alpha. "Experimentwise"
error rates can be limited by employing multivariate statistics to
test omnibus hypotheses as against lots of more discrete univariate
hypotheses.

Paradoxically, although the use of several univariate tests in
a single study can lead to too- many null hypotheses being
spuriously rejected, as reflected in inflation of the
"experimentwise" error rate, it is also possible that the failure
to employ multivariate methods  can lead to a failure to identify
statistically significant results which actually exist. Fish (1988)
and Maxwell (1992) both provide data sets illustrating this equally
disturbing possibility. This means that the so-called "Bonferroni
correction" is not a satisfactory solution to this problem.

The "Bonferroni correction" involves using a new testwise
alpha level, apw*, computed, for example, by dividing ap, by the
number of k hypotheses in the study. This approach attempts to
control the experimentwise Type I error rate by reducing the
testwise error rate level. However, the use of the "Bonfe:rroni
correction" does not address the second (and more important) reason
why multivariate methods are so often vital, and so even with this
correction univariate methods usually still remain unsatisfactory.
Multjvariate Methods Honor the Nature of Reality

Multivariate methods are also often vital in behavioral
research because multivariate methods best honor the reality to
which the researcher is purportedly trying to generalize. As noted
previously, since statistical significance testing and error rates
may not be the most important aspect of research practice
(Thompson, 1989, 1993), this second reason for employing
multivariate statistics is actually the more important of the two
grounds for using these methods.

Implicit within all analyses is an analytic model. Each
researcher also has a presumptive model of what reality is believed
to be like. It is critical that our analytic mcdels and our models
of reality match, otherwise our conclusions will be invalid. It is
generally best to consciously reflect on the fit of these two
models whenever we do research. Of course, researchers with
different models of reality may make different analytic choices,
but this is not disturbing since analytic choices are
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philosophically driven anyway (Cliff, 1987, p. 349).

But Thompson (1986, p. 9) notes that the reality about which
most researchers wish to generalize is usually one "in which the
researcher cares about multiple outcomes, in which most outcomes
have multiple causes, and in which most causes nave multiple
effects." Given such a model of reality, it is critical that the
full network of all possible relationships be considered
simultaneously within the analysis.

Most researchers recognize that independent variables can
interact with each other to create important and independent
effects on the dependent variable. Table 7 illustrates these
effects for the heuristic example data presented in Table 6. Here
the analyses involved scores on the variables, 2, A and B. The

analyses were performed with the SPSS command file contained in
Appendix B.

INSERT TABLES 6 AND 7 ABCUT HERE.

In these analyses there is a zero effect size for the main
effect, A, in the one-way ANOVA for only that independent wvariable.
The effect size for the main effect, B, for the cne-way ANOVA for
only that independent variable is also zero.

However, when all thrsze variables are 51mu1taneously
considered in a single two~way factorial ANOVA, the eta? effect size
of 100% is detected for the two-way 1nteractlon effect, because the
full network of variable relationships is now evaluated within this
single analysis. "It is exactly for this reason that most
researchers conduct factorial analyses when they use OVA methods.

But since all analyses are correlatibonal, the designation of
which variable sets are on which side of the analytlc equation is
arbitrary, because the relationship between variables sets is
unaltered by exchanging the two variable sets. Thus, interactions
can also occur among dependent variables, and these relationships
are equally important to consider.

Table 8 illustrates this possibility using variables X and ¥
and group membership variable B from Table 6. Neither of the two
ANOVASs yleld statistically significant effects. And the eta? effect
sizes (eta’® = SOSyprwemn/SOSrora) associated with these analyses,

respectively 7.9% and 1.0%, might be deemed not noteworthy by some
researchers.

INSERT TABLE 8 ABOUT HERE.

But when these same data are analyzed using a one-way MANOVA,
as reported in Table 8, the result is statistically significant,
even at a;4=.001. Furthermore, a multivariate variance-accounted-
for effect size here can be computed as 1 - lambda, and for this
analysis the estimate would be .39888 (1-.60112 = .3%888 or
39.888%) .

Clearly, the multivariate analysis of the Table 6 data yields
radically different results than the univariate analysis of the
same data. The reason 1is that the multivariate analysis
simultaneously considers all the relationships among all the
variables, and for these data honoring the relationship between the
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two dependent variables makes a big difference.

Conceptually, dependent variables can interact in a
multivariate analysis, just as independent variables can interact
in a multirway ANOVA. Thus, Tatsuoka's (1973, p. 273) previous
remarks remain telling:

The often-heard argument, "I'm more interested in
seeing how each variable, in its own right, affects
the outcome" overlooks the fact that any variable
taken in isolation may affect the criterion
differently from the way it will act in the company
of other variables. It also overlooks the fact that
multivariate analysis--precisely by considering all
the variables simultaneously--can throw light on how
each one contributes to the relation.

Put differently, the latent variable that is actually analyzed
in the multivariate analysis is more than the conceptual sum of the
parts of the two variables taken separately, because the latent
variable created in the multivariate analysis takes into account
the relationships among all the variables.

The results reported in Table 9 can be used both (a) to
reinforce the notion that all parametric analyses are interrelated
and (b) to make explicit the synthetic variable that is actualiv
analyzed in the multivariate analyses. A one-way MANOVA yield.
identical results to those in a discriminant analysis. In fact,
the discriminant analysis usually yields more interpretive
information that a classical MANOVA (Borgen & Seling, 1978), and

therefore one-way MANOVAs are best conducted in the form of
discriminant analysis.

INSERT TABLE 9 ABOUT HERE.

Table 10 presents the latent variables actually analyzed in
the MANOVA/discriminant analysis. These latent variables were
computed by the applying the standardized discriminant function

coefficients, which are just like regression beta weights, to the
data in a z-score form.

INSERT TABLE 10 ABOUT HIRE.

Table 11 presents the ANOVA on thece discriminant scores
conducted within the SPSS command file presented in Appendix B. The
eta’? effect size for this analysis (39.88758%) matches the
multivariate effect size for the Table 8 results.

INSERT TABLE 11 ABOUT HERE.

The degrees of freedom (1/30) in the Table 11 analysis are
correct for an ANOVA, i.e., for a two-group one-way ANOVA involving
a single dependent variable. But the latent variables actually
represent two dependent variables for the two-group problem, so the
degrees of freedom actually should be 2/29. When the ANOVA is
recalculated using the correct degrees of freedom, the Table 11
ANOVA F-calculated for the multivariate latent variable also
matches “he MANOVA results reported in the bottom section of Table
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8.

Thus, the focus in all parametrlc analyses on a latent or
synthetic variable is once again illustrated. The fact that
multivariate analyses investigate relationships involving a
multivariate synthetic variable has a very important implication
for analytic practice.

In classical ANOVA, post hoc comparisons are necessary to
determine which groups dlffer if (a) a statistically significant
omnibus test is isolated and (b) there are more than two groups
involved in the effect. But in multivariate analyses, such as
classical MANOVA, when there is a statistically significant omnibus
effect post hoc tests will be necessary to address either or both
of two questions: (1) which groups differ?, and (2) on which
dependent variables do groups differ? Thus, even when there are
only two groups in a multlvarlate ana1y51s, a statistically
significant omnibus result will still require post hoc exploration
to address the second question, (2) on which dependent variables do
groups differ?.

‘ Too often researchers use MANOVA to test the full network of
variable relationships, and if they obtain statistically
significant results then employ univariate ANOVAs or t-tests to do
the post hoc work. This is the so-called "protected F-test"
analytic approach.

The "protected F-test'" analytic approach is inappropriate and
wrong-headed. The multivariate analysis evaluates multivariate
synthetic variables, while the univariate analysis only considers
univariate latent variables. Thus, univariate post hoc tests do
not inform the researcher about the differences in the multivariate
latent variables actually analyzed in the multivariate analysis.

Understandably, Borgen and Seling (1978} argue:

When data truly are multivariate, as implied by the
application of MANOVA, a multivariate follow-up
technique seems necessary to ‘“discover" the
complexity of the data. Discriminant analysis is
multivariate; univariate ANOVA is not. (p. 696)
It is illogical to first declare interest in a multivariate omnibus
system of variables, and to then explore detected effects in this
multivariate world by conducting non-multivariate tests!
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Table 1
Edwards (1985, pp. 41-45) Data and Related Latent Variables

Id X1 X2 Y ZX1 ZX2 2y YHAT E YHARTZ EZ
111 38 10 -.05317 1.14354 -1.41426 14.90 -4.90 .37 -1.79
2 7 42 16 -1.38232 1.57344 77274 14.84 1.16 .35 .42
3 12 38 18 .27912 1.14354 1.50174 15.02 2.98 .41 1.09
4 13 36 15 .61141 .92859 .40824 14.94- .06 .38 .02
5 14 40 15 .94370 1.35849 .40824 15.44 -.44 .57 -.16
6 15 32 11 1.27599 .49868 -1.04976 14.77 -3.77 .32 -1.37
7 5 20 13 =2.04690 -.79102 ~.32076 12.46 .54 -.52 .20
8 14 44 18 .94370 1.78839 1.50174 15.83 2.17 .71 .79
9 14 34 12 .94370 .71363 -.68526 14.85 -2.85 .35 -1.04

.10 10 28 16 -.38546 .06878 77274 13.81 2.19 -.03 .80

11 8 24 10 =1.05003 =-.36112 -1.41426 13.19 =-3.19 -.25 -1.16

12 16 30 16 1.60828 .28373 .77274 14.69 1.31 .29 .48

13 15 26 15 1.27599 -.14617 .40824 14.18 .82 .11 .30

14 14 24 12 .94370 -.36112 -.68526 13.87 ~-1.87 .00 -~.68

15 10 26 12 -.38546 -.14617 -~.68526 13.61 -1.61 -.10 -.59

16 9 18 14 -.71774 -1.00597 .04374 12.72 1.28 -.42 .47

17 11 30 16 -.05317 .28373 77274 14.12 1.88 .09 .69

18 9 26 13 -.71774¢ -.14617 -.32076 13.50 -.50 -.14 -.18
19 7 18 11 -1.38232 ~1.00597 -1.04976 12.49 -1.49 -.81 -.54
20 10 10 17 -.38546 -1.86577 1.13724 12.05 4.95 -.67 1.81
21 912 8 =-.71774 ~1.65082 ~2.14327 12.13 -4.13 -.64 -1.51
22 10 32 18 -.38546 .49868 1.50174 14.20 3.80 .12 1.38
23 10 18 14 -.38546 -1.00597 .04374 12.83 1.17 ~-.38 .43
24 16 20 15 1.60828 ~.79102 .40824 13.71 1.29 -.06 .47
25 10 18 12 -.38546 -1.00597 -.68526 12.83 -.83 -.38 -.30

Note. Variables X, X,, and Y are from Edwards ‘1985, p. 41). The
latent/synthetic variables, YHAT and E, and YHATZ and EZ, were

computed by applying the weights from Table 2 to observed/manifest
variables, X, and X,.
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Table 4
Formula for Estimating Experimentwise Type I Error Inflation
When Hypotheses are Perfectly Uncorrelated

T Experimentwise
alpha Tests alpha
1 - (1~0.05) #* 1 =
i- 0.95 ) ** 1 = a
1 - 0.95 = 0.05000
Range Over Testwise (TW) alpha = .01
1 - (1-0.01) #%* 5 = 0.04901
1 - (1-0.01) %* 10 = 0.09562
1-(1-0.01) %*x 20 = ¢.18209
Range Over Testwise (TW) alpha = .05
1~ (1~-0.05) ** 5 = 0.22622
1 - (1-0.05) %* 10 = J.40126
1 ~(1-0.05) *%* 20 = 0.64151
Range Over Testwise (TW) alpha = .10
1 - (1 ~-0.10 ) #=* 5 = 0.40951
1 - (1-0.10 ) #=* 16 = 0.65132
1 -(1-0.10) ** 20 = 0.87842
Note. ##%" = "raise tc the power of".

‘These calculations are presented (a) to illustrate the
implementation of the formula step by step and (b) to demonstrate
that when only one test is conducted, the experimentwise error rate

equals the testwise error rate, as should be expected if the
formula behaves properly.

Table S
All Poussible Families of Outcomes
for a Fair Coin Flipped Three Times

Flip #
1 2 3
1. T : T 7T
2, H:T:T | P of 1 or moere H's (TW error analog)
3. T+t H:T | in set of 3 Flips = 7/8 = 87.5%
4., T : T ¢t H !
5. H: H: T ! or
6. H: T : H | where TW error analog = .50,
7. T:H:H | EWp=1-(1-.5)
8. H:H:H__ | =1 - (.5)3
=1- ,12%5 = ,875
p of H on
each Flip 50% 50% 50%

Note. The probability of one or more occurrences of a given outcome
in a set of events is 1 - (1-p)%, where p is the probability of the
given occurrence on each trial and k is the number of trials in a
set of perfectly independent events.
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Table 6
Data Illustrating Interaction Effects
Can Occur in Both Independent and Dependent Variable Sets

Ia A B Y X 2
1 1 1 4 2 5
2 1 1 5 3 5
3 1 1 4 4 5
4 1 1 4 & 5
5 1 1 3 4 5
6 1 1 6 5 5
7 1 1 5 6 5
g 1 1 7 5 5
9 2 1 6 6 15

10 2 1 8 6 15

a 2 1 7 615

12 2 1 9 7 15

13 2 1 8 7 15

14 2 1 8 8 15

15 2 1 o 8 15

lé 2 1 9 9 15

17 1 2 1 2 15

18 1 2 3 3 15

is 1 2 3 515

20 1 2 3 5 15

21 1 2 2 5 15

22 1 2 4 6 15

23 1 2 4 5 15

24 1 2.5 6 15

25 2 2 6 6 5

26 2 2 6 6 5,

27 2 2 6 7 5

28 2 2 7 7 5

29 2 2 7 7 8

30 2 2 8 9 5

2 2 8 9 5
2 2 9 9 5

Note. Data for variables B, X, and Y are from Fish (1988).




Table 7
Illustration that Independent Variables A and B from Table 6
Can Create Interaction Effects that Influence %

One-way ANOVA Predicting Z With Group Membership vVariable A

Sum of Mean Sig

Source of Variation Squares DF Square F of F

Main Effects .000 1 .000 .000 1.00

B .000 1 .000 .000 1.00

Explained .000 1l .000 .000 1.00
Residual 800.000 30 26,667
Total 800.000 31 25.806

One-way ANOVA Predicting 2 With Group Membership Variable B

Sum of Mean Sig

Source of Variation Squares DF Square F of F

Main Effects .000 i .000 .000 1.00

A .000 1 .000 .000 1.00

Explained .000 1 .000 .000 1.00
Residual 800.000 30 26.667
Total 800.000 31 25.806

o-w icti Z Wi rship Vvari A and B

Sun of Mean Sig

Source of Variation Squares DF Square F of F
Main Effects .000 2 .000
A .000 1l .000
B .000 1 .000
2-Way Interactions 800.000 1 800.000
A B 800.000 1 800,000
Explained 800.000 3 266,667
Residual .000 28 .000
Total 800.000 31 25.806

Note. This table presents the SPSS output exactly as it was
produced by the package.
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Table 8
Illustration that Dependent Variables (X and Y from Table 6)
Can Also Interact As Regards Their Relationships
with Each Other and a Group Membership Variable (B)

One- OVA icti Wi Group ip Variable B
Sum of Mean Sig
Source of Variation Squares DF Square F of F
Main Effects 1.125 1 1.125 .300 .588
B 1.125 1 1.125 .300 .588
Explained 1.125 i 1.125 .300 .588
Residual 112.375 30 3.746
Total 113.500 31 3.661
One-way ANOVA Predicting Y With Group Membership Variable B
Sum of Mean Sig
Source of Variation Squares DF Square F of F
Main Effects 12.500 1 12.500 2.577 .119
B 12.500 1 12.500 2.577 .119
Explained 12.500 1 12.500 2.577 .119
Residual 145.500 30 4.850
Total 158.000 31 5.097

One-way MANOVA Predicting X and Y With Group Membership Variable B
Multivariate Tests of Significance (§=1, M=0, N =13 1/2)
Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .39888 9.62150 2.00 29.00 .001
Hotellings .66355 9.62150 2.00 29.00 .001
Wilks .60112 9.62150 2.00 29,00 .001
Roys 39888

Note. This table presents the SPSS output exactly as it was

produced by the package.
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Table 10
The Latent Variables Scores and Other Results

CASE ACTUAL HIGHEST PROBABILITY 2ND HIGHEST DISCRIMINANT
SEQNUM GROUP GROUP P(D/G) P(G/D) GROUP P(G/D) SCORES
1 1 1 0.1337 0.9737 2 0.0263 2.2884
2 1 1 0.1518 0.9708 2 0.0292 2.2217
3 1 1 0.5862 0.5952 2 0.4048 0.2444
4 1 *=* ¢ 0.9911 0.7732 1 0.2268 =0.7776
5 1 %% 2 0.9380 0.7543 1 0.2457 -0.7110
6 1 1 0.7306 0.8566 2 0.1434 1.1331
7 1 *% 2 0.9557 0.7911 1 0.2089 =0.8443
8 1 1 0.1937 0.9642 2 0.0358 2.0884
9 1 1 0.4980 0.5437 2 0.4563 0.1111
10 1 1 0.2175 0.9604 2 0.0396 2.0218
11 1 1 0.7812 0.8432 2 0.1568 1.0664
12 1 1l 0.2434 0.9562 2 0.0438 1.9551
13 1 1 0.8328 0.8288 2 0.1712 0.9998
14 1 *% 2 0.4434 0.5088 1 0.4912 -0.0222
15 1 1 0.8852 0.8134 2 0.1866 0.9331
16 1 *% 2 0.4840 0.5350 1 0.4650 -0.0889
17 2 2 0.8328 0.7132 1 0.2868 =0.5777
18 2 hx 1 0.6329 0.6203 2 0.3797 G.3110
19 2 2 0.3450 0.9390 1 0.0610 =-1.7330
20 2 2 0.3450 0.9390 1 0.0610 =-1.7330
21 2 2 0.0575 0.9858 1 0.0142 -2.6883
22 2 2 0.3121 0.9447 1 0.0553 -1.7996
23 2 2 0.9911 0.7732 1 0.2268 -0.7776
24 2 2 0.9557 0.7911 1 0.2089 -0.8443
25 2 k% 1 0.4980 0.5437 2 0.4563 0.1111
26 2 k* 1 0.4980 0.5437 2 0.4563 0.1111
27 2 2 0.9027 0.8080 1 0.1920 =-0.9108
28 2 %% 1 0.4567 0.5175 2 0.4825 0.0444
29 2 k% 1l 0.4567 0.5175 2 0.4825 0.0444
30 2 2 0.7983 0.8385 l 0.1615 =1.0442
31 2 2 0.7983 0.8385 1 0.1615 =-1.0442
32 2 2 0.4840 0.5350 1 0.4650 -0.0889

Note. This table presents the SPSS output exactly as it was
produced by the package.




Table 11
ANOVA on Discriminant Latent/sSynthetic Variable
Using Both 1/30 and 2/29 Degrees of Freedom

One-way ANOVA Predicting Table 10 DSCORE1l With Group Membership

Varjable B

SUM OF MEAN F F

SOURCE D.F. SQUARES SQUARES  RATIO PROB.
BETWEEN GROUPS 1 19.9065 19.9065 19.9065 .0001
WITHIN GROUPS 30 30.0000 1.0000

TOTAL 31 49.9065

Note. eta’® = (19.9065 / 49.9065) = .3988758. eta = .3988758°5 =

.6315661.

Recalculated ANOVA Using Actual Degrees of Freedom (2/29)

S0Ss arf MS Fcalc
19.9065 2 9.9533 9.6215
30.0000 29 1.0345

49.9065 31

Note. This upper ANOVA table presents the SPSS output exactly as
it was produced by the package.
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Appendix A
SPSS Command File for the Edwards (1985, pp. 41-45) Data

TITLE 'Edwards (1985, pp. 41-45) Example EDWARDS.SPS #####'

DATA LIST FILE=ABC RECORDS=1/1 X1 1-2 X2 4-5 Y 7-8

LIST VARIABLES=ALL/CASES=25/FORMAT=NUMBERED

SUBTITLE 'l. Multiple Regression $5$5$5558S"

REGRESSION VARIABLES=X1l TO Y/DESCRIPTIVES=DEFAULTS/DEPENDENT=Y/
ENTER 1!1 X2

subtitle '2. get z score version of the 3 observed variables'

descriptives variables=x1l to y/save

compute yhat=9.930726782+(.113561*x1)+(.098024%x2)

compute e=y-yhat

compute yhatz=(.124569*zx1)+(.332448*2zx2)

compute ez=zy-yhatz

list variables=all/cases=25/format=numbered

subtitle '3. show R Y with X1,X2 = r Y with YHAT, etc.'

correlaticns variables=x1l to y yhat vhatz e ez/
statistics=descriptives

Note. Commands in upper case letters were run first, to obtain the
information needed for the lower case commands, whlch were then
inserted, and the job was re-executed.




Appendix B
SPSS Ccommand File For Fish (1988) and Other Data

TITLE 'Demo Multivariate Important See Fish, MECD, Vol 21, 130-137"
DATA LIST FILE=ABC RECORDS=1/1
Al1B2Y3X412Z5-6
LIST VARIABLES=ALL/CASES=50/FORMAT=NUMBERED
SUBTITLE 'la Example Interaction of I.V. on Dependent @@@eg@’
ANOVA Z BY B(1,2)/STATISTICS=MEAN
SUBTITLE 'lb Example Interaction of I.V. on Dependent @@ege’
ANOVA Z BY A(1,2)/STATISTICS=MEAN
SUBTITLE 'lc Example Interaction of I.V. on Dependent @eeee’
ANOVA 2 BY A(1,2) B(1,2)/STATISTICS=MEAN
SUBTITLE '2a Show Can Have Interactions in D.V. Too #######'
ANOVA Y BY B(1,2)/STATISTICS=MEAR
SUBTITLE '2b Show Can Have Interactions in D.V. Too #######'
ANOVA X BY B(1,2)/STATISTICS=MEAN
SUBTITLE '2c Show Can Have Interactions in D.V. Too #######'
MANOVA X,Y BY B(1,2)/
PRINT CELLINFO(MEANS,COV,COR) HOMOGENEITY (BOXM}
SIGNIF (MULTIV EIGEN DIMENR) DISCRIM(RAW,STAN,COR,ALPHA(.99))/
DESIGN=B
SUBTITLE '3 Show One-way MANOVA is Discriminant $$$$5$85'
DISCRIMINANT GROUPS=B(1,2)/VARIABLES=X,Y/ANALYSIS=X,Y/METHOD=DIRECT/
SAVE = SCORES=DSCORE
STATISTICS 1,2,3,4,6,7,.8,9,11,13,14,15
SUBTITLE '4a Show Confidence Intervals About Centroids $%%%%%’
ONEWAY DSCORE1 BY B(1,2)/STATISTICS=ALL
SUBTITLE '4b Show Effect Size for Synthetic Variable Same %%%'
IF (B EQ 1)BCONTRAS=~1
IF (B EQ 2)BCONTRAS=1
REGRESSION VARIABLES=DSCORE1l BCONTRAS/DESCRIPTIVES=DEFAULTS/
DEPENDENT=DSCORE1/ENTER BRCONTRAS
SUBTITLE '5 Show Calculation of Discriminant Scores 111itlll’
LIST VARIABLES=ALL/CASES=5000/FORHAT=NUMBERED
COMPUTE PZX=(X-5.875)/(3.745833%*,5)
COMPUTE PZY=(Y~5.750)/(4.850000%*.5)
COMPUTE DS1=(-1.97800*P2X)+(2.10394*PZY)
LIST VARIABLES=ALL/CASES=5000/FORMAT=NUMBERED
SUBTITLE '6 Show Coefficient Relationshipg ***®**kkkkkdkdki?
CORRELATIONS VARIABLES=X Y PZX PZY B BCONTRAS DSl DSCORE1/
STATISTICS=DESCRIPTIVE
SUBTITLE '7a Graphically Show How Multivariate Can Matter~*"*'
TEMPORARY .
SELECT IF (B EQ 1)
REGRESSION VARIABLES=X Y/DESCRIPTIVES=DEFAULTS/DEPENDENT=Y/ENTER X
TEMPORARY
SELECT IF (B EQ 2)
REGRESSION VARIABLES=X Y/DESCRIPTIVES=DEFAULTS/DEPENDENT=Y/ENTER X
REGRESSION VARIABLES=X B/DESCRIPTIVES=DEFAULTS/DEPENDENT=X/ENTER B
REGRESSION VARIABLES=Y B/DESCRIPTIVES!DEFAULTS/DEPENDENT=Y/ENTER B
SUBTITLE '7b Plot X Across B(1l,2) KRR RRkRARARIRRINRN?
PLOT . :
VERTICAL='Variable X' MIN(1) MAX(9)/
HORIZONTAL='Variable B Group' MIN(.5) MAX(2.5)/
PLOT=X WITH B
SUBTITLE '7c Plot Y Acrogsg B(1l,2) **kkkkdkkkkhakhhhkhk?
PLOT
VERTICAL='Variable Y*' MIN(1l) MAX(9)/
HORIZONTAL='Variable B Group' MIN(.5) MAX(2.5)/
PLOT=Y WITH B
SUBTITLE '7d Plot DSCORE Acrogss B(l,2) **kkkkkkkdkhrhrkran’
PLOT
VERTICAL='Variable D' MIN(-4) MAX(4)/
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HORIZONTAL='Variable B Group' MIN{(.5) MAX(2.5)/
PLOT=DSCOREl WITH B
SUBTITLE '7e Plot Y and X Across B(l,2) ~arrrrsnnnanannaans
VALUE LABELS B 1 '1' 2 *'2°
PLOT
VERTICAL='Variable X'
HORIZONTAL='Variable ¥ ("1" = B Group 1, "2" = B Group 2)'/
PLOT=Y WITH X BY B




