
DOCUMENT RESUME

ED 367 540 SE 054 017

AUTHOR English, Lyn D.
TITLE Children's Construction of Mathematical Knowledge in

Solving Novel Isomorphic Problems in Concrete and
Written Form.

PUB DATE [931

NOTE 61p.

PUB TYPE Reports Research/Technical (143)

EDRS PRICE MF01/PC03 Plus Postage.
DESCRIPTORS Academic Achievement; Case Studies; *Cognitive

Development; *Cognitive Style; Constructivism
(Learning); Elementary Education; Foreign Countries;
Grade 4; Knowledge Level; Learning Processes;
*Learning Strategies; Mathematical Models;
Mathematics Achievement; Mathematics Education;
*Problem Solving; *Word Problems (Mathematics)

IDENTIFIERS *Analogical Reasoning; Australia (Brisbane);
*Combinatorics; Hands On Experience; Representations
(Mathematics)

ABSTRACT
The focus of this report is children's construction

and analogical transfer of mathematical knowledge during novel
problem solving, as reflected in their strategies for dealing with
isomorphic combinatorial problems presented in "hands-on" and written
form. Case studies of 9-year-olds, one low and one high achieving in
school mathematics, serve to illustrate a general progression through
three identified stages of strategy construction (non-planning stage,
transitional stage, and odometer stage). The important role of
domain-general strategies in this development is highlighted. It was
found that achievement level in school mathematics does not predict
children's attainment of the third stage, as evidenced by the
low-achieving student's construction of sophisticated combinatorial
knowledge and the high-achieving student's failure to do so.
Children's ability to recognize structural correspondence between two
isomorphic problem sets and the extent to which this facilitates
problem solution are also reported. The study concludes that: (1)

Children can construct important mathematical ideas through solving
novel problems; (2) Level of achievement in school mathematics is not
a reliable predictor of ability to solve novel problems; (3) Bright

students' ability to generate ideas for themselves can be inhibited
by formal mathematical rules; and (4) Assessment of students'
mathematical competence must include a range of novel problems.
(Contains 72 references.) (MDH)

***********************************************************************
* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

***********************************************************************



CHILDREN'S .2ONSTRUCTION OF MATHEMATICAL KNOWLEDGE

IN SOLVING NOVEL ISOMORPHIC PROBLEMS IN CONCRETE AND

WRITTEN FORM

Lyn D. English PhD

Associate Professor of Mathematics Education

Centre for Mathematics and Science Education

Queensland University of Technology

Locked Bag #2

Red Hill

Brisbane

Queensland

Australia, 4059

E-mail: L.English@qut.edu.au

RUNNING HEAD: Children's Construction of Mathematical

Knowledge
"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Lyn D. English

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

U S. DEPARTMENT OF EDUCATION
Office of Educatnal Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as
received from the person or organization
originating it

0 Minor changes have been made to improve
reprOductfon quality

Points Of sfew Of Opinions stated in this docu
ment do not necessarily represent official
OEPI position or policy



2
Children's construcaon of mathematical knowledge

Abstract
The focus of this report is children's construction and analogical transfer

of mathematical knowledge during novel problem solving, as reflected in

their strategies for dealing with isomorphic combinatorial problems

presented in "hands-on" and written form. Case studies of low and high

achieving 9 year-olds in school mathematics serve to illustrate a general

progression through three identified stages of strategy construction. The

important role of domain-general strategies in this development is

highlighted. Included in the study's findings is the fact that

achievement level in school mathematics does not predict children's

attainment of the third stage, as is evidenced by the low-achieving

student's construction of sophisticated combinatorial knowledge and the

high-achieving student's failure to do so. Children's ability to recognize

structural correspondence between the two isomorphic problem sets and

the extent to which this facilitates problem solution are also reported.
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CHILDREN'S CONSTRUCTION OF MATHEMATICAL KNOWLEDGE IN

SOLVING NOVEL ISOMORPHIC PROBLEMS IN CONCRETE AND

WRITTEN FORM

While the mathematics education community has espoused the

importance of developing children's problem solving and reasoning skills

(e.g., National Council of Teachers of Mathematics, 1989), studies on

children's competence in solving novel mathematical problems have not

been prolific. The bulk of the research in this field has examined

children's skills in solving routine arithmetic problems (e.g. Bisanz &

Lefevre, 1990; Carpenter, Moser, & Bebout, 1988; Hamann & Ashcraft,

1985; Siegler & Jenkins, 1989). These studies have shed considerable

light on children's strategy discovery and generalization in numerical

operations where accuracy, speed, and retrieval have been of prime

concern (e.g. Siegler & Jenkins, 1989). Considerably less attention has

been devoted to children's construction of strategies in solving novel

problems that do not involve routine computations. Problems where

children can create, test, and modify their own solution strategies, while

at the same time acquire important mathematical principles, play a

significant role in the development of children's mathematical power.

Such problems are particularly worthy of investigation and should form

a significant component of the mathematics curriculum.

The focus of this report is children's construction and analogical

transfer of mathematical knowledge during novel problem solving, as

reflected in their strategies for dealing with isomorphic combinatorial

problems presented in "hands-on" and written form. The present study

extends previous work on children's learning in the combinatorial

domain (e.g., English, 1991a,b; 1992) and is part of a larger project on

children's combinatorial and dedIctive reasoning (English, 1993a). Prior



4
Children's construction of mathematical knowledge

to addressing the present study, we review briefly the different

opinions on what constitutes a strategy and then examine some ideas on

children's construction of mathematical knowledge as reflected in their

strategy development. The role of domain-general strategies in

children's knowledge construction is highlighted here. We conclude this

introductory section with a discussion on children's analogical transfer in

solving isomorphic problems.

The Nature of Strategies

While there are diverse opinions on what constitutes a strategy

(Bisanz & Le Fevre, 1990), there is nevertheless some agreement on its

key features. It is usually accepted that strategies are "goal-directed

operations employed to facilitate task performance" (Bjorklund &

Harnishfeger, 1990, p.1). They are frequently seen as domain specific

(Pressley, Borkowski, & Schneider, 1987) and designed to facilitate both

knowledge acquisition and utilization (Prawatt, 1989). Some view

strategies as necessarily involving a choice of procedures (Siegler &

Jenkins, 1989), with the procedure being invoked in a "flexible, goal-

directed manner ... that influences the selection and implementation of

subsequent procedures" (Bisanz & Le Fevre, 1990, p.236). Procedures

which create new procedures or alter old ones in flexible ways are also

considered strategic (Bisanz & Le Fevre, 1990).

There are others who emphasize the "potentially conscious and

controllable" nature of strategies (Bjorklund, Muir-Broaddus, &

Schneider, 1990; Pressley et al., 1987), as well as the "dynamic

interaction" of strategies, one's knowledge of the strategies, and one's

monitoring of their implementation (Pressley, Forrest-Pressley, Elliott-

Faust, & Miller, 1985). Within the framework of the present study,

strategies are viewed as goal-directed procedures which facilitate both
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problem solution and acquisition of domain-specific knowledge. They

are also seen as potentially conscious and controllable.

Children's Construction of Mathematical Knowledge During
Problem Solving

Children's construction of mathematical ideas during the course of

problem solving is a fundamental goal of mathematics education (Davis,

1984; English, 1992; Schoenfeld, 1992; Maher & Martino, 1992). This

knowledge construction is reflected in children's strategy development

as they attempt to master a challenging problem situation (English,

1992; Ericsson & Oliver, 1988). Research in the last decade has

presented convincing evidence that children do behave strategically,

that they are able to direct their own learning, and can acquire a

knowledge of the domain in which they are working (e.g., Burton, 1992;

DeLoache, Sugarman, & Brown, 1985; English, 1991a; Gelman & Brown,

1986; Gelman & Greeno, 1989; Karmiloff-Smith, 1979, 1984; Martino &

Maher, 1991).

When challenged with problem situations, children are thought to

cycle through various steps as they build representations of those

situations (Davis, 1984). We review these steps in the light of our

current work on children's development of mathematical models

(English & Halford, forthcoming). Children must firstly examine the

problem for cues or clues that might guide the retrieval from memory of

a relevant mental model of a related problem or situation. We define

mental models as "representations that are active while solving a

particular problem and that provide the workspace for inference and

mental operations" (Halford, 1993, p.23). After retrieving a model that

might be useful in solving or in trying to solve the problem, children

attempt to map the model onto the problem data. If the mapping

6
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appears adequate, that is, if there is a correspondence between the

elements of the mental model and the data of the problem, the model

can be used to commence the solution process. However retrieving an

appropriate mental model may not be automatic or easy for children,

especially when the prc;)lem presents a novel situation. Children's

attempts at making a suitable mapping may involve rejecting,

modifying, or extending the retrieved model or perhaps replacing it with

another model. This necessitates frequent checking of the

correspondence between the model and the problem data. When a

suitable mental model of the problem situation has been constructed,

other techniques (e.g., setting subgoals) may be brought into play to

assist in the solution process. As children progress on the problem, they

may recycle through the previous steps in an effort to construct a more

powerful model of the problem situation and its solution process. This

construction process is considered responsible for children's

development of new mathematical ideas.

Children's progression through such a cycle was evident in the

longitudinal research of Maher, Martino, and Alston (1993) and Maher,

Martino, and Davis (in press). They identified three major stages

through which children proceed in solving a novel problem. New ideas

are seen to emerge in each stage and form the basis and motivation for

the development of other ideas. One such problem required children to

build as many -towers as possible of height four cubes, from plastic cubes

in two colors. The children were to convince their peers that they had

solved the problem, namely, that there were no duplicates and that none

had been omitted. In the first stage of solving this problem, children

displayed "random creativity" where they made whatever towers they

could think of that had not already been constructed. They then began

to detect relationships between two towers, such as opposite colors in

7
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corresponding positions. They monitored for any duplicated

arrangements by comparing a newly formed tower with those already

constructed. The children's proof of completeness included statements

of the type, "I can't think of any more!" In the second stage, children

progressed from these random methods to using local systems of

organization where where they noticed patterns among sets of towers

and discovered new ways of grouping them, such as inverting a tower

and its opposite to form another set of towers. Some children began to

realize though, that their local organization schemes were inadequate to

account for all the possibilities. They then began to search for an overall

scheme for organizing and exhausting all pcssible combinations, for

example, forming towers with no red cubes, then towers with one red

cube, two red cubes, and so on.

Children's development of mathematical ideas may also be viewed

in terms of principled knowledge of the problem domain (Gelman &

Meck, 1986; Gelman & Greeno, 1989). This theory posits that children's

initial understanding of the domain is principled, albeit in a "limited and

implicit way." (Gelman and Greeno, 1989, p.126). As children gain

experience with this domain, they acquire a knowledge of its principles

and also demonstrate a more explicit or stateable understanding of

these. Early principled knowledge directs attention towards domain-

relevant inputs and guides the learning of new principles. This view is

consistent with the well established notion that prior knowledge in a

domain determines what and how other information is encoded and

learned (Resnick, 1986; Siegler & Jenkins, 1989).

A model of principled learning also provides a means of determining

whether children have an implicit theory about a domain. The more

children's knowledge can be characterized in terms of the principles of

8
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the particular domain, the more it can be said they have a "theory"

(Gelman & Greeno, 1989, p. 130). Children's competence in the domain

is vie7,ed in terms of their ability to generate competent plans of action

that meet the constraints of the knowledge principles in that domain.

&cause this planning component must determine whether a chosen

strategy meets the requisites dictated by the principles, it can serve as a

potential source of feedback to children solving a novel problem. If the

requisite conditions are not met, the plan or its execution can be rejected

or terminated. This means that the child can start again, without being

explicitly told to do so.

An important component in children's knowledge construction

during problem solving is their application of domain-general strategies

(Alexander & Judy, 1988; English, 1992; English & Halford, forthcoming;

Kuhn, Amsel, & O'Loughlin, 1988). These general strategies include

those that perform a self-regulatory or metacognitive function and

include skills such as planning, predicting, monitoring, checking, and

revising (e.g., Brown & Campione, 1981; Lawson, 1984; Pressley &

Ghatala, 1990; Schoenfeld, 1992; Sternberg, 1985). Davis (1984) refers

to similar skills in his discussion on children's "meta-analyses" of their

construction activities where they assess their progress or lack of
progress during problem solution (p. 307). The process of knowledge

construction and the application of domain-general strategies are seen to

occur simultaneously during the problem-solving episode (Davis, 1984),

with the nature of their interaction determining the extent of goal

attainment (English, 1992).

The fact that, in the absence of instruction, children do modify

their ideas and actions in their efforts to solve a novel problem

highlights the important contribution of these general strategies (Kuhn &

9
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Phelps, 1982; Kuhn et al., 1988; Pressley et al., 1987). Children's

capacity to monitor their actions, noting the relationship between their

outputs and the problem goal, can foster the construction of

mathematical ideas. Through problem experience, children acquire not

only knowledge about the particular problem domain, but also

knowledge about their own strategies as they apply to the problem.

That is, they come to realize how a particular strategy works, why it

works, and why it is the most appropiiate for the problem. They also

become aware of less efficient strategies, why these do not work or why

they are inappropriate for the problem, and the errors that can result

from their use (Kuhn et al., 1988). It has been claimed that these self-

regulatory strategies contribute not only to children's knowledge

construction during a problem-solving episode but also to continued

growth of the cognitive system (Scardamalia & Bereiter, 1985).

Children's Analogical Transfer in Solving Isomorphic

Problems
A significant factor in children's construction of ideas during

problem solving is their ability to access a known problem (base or

source problem) that has an identical goal structure to the new problem

to be solved (target problem). Many studies have shown that exploiting

the structural correspondences between a base problem and an

analogous target problem can enhance problem-solving performance

(Holyoak & Koh, 1987; Novick, 1988, 1992; Novick & Holyoak, 1991).

This analogical transfer involves constructing a mapping between

elements in the base and target problems, and adapting the solution

model from the base problem to meet the requirements of the target

problem (Novick, 1992).

10
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Before children can make use of analogical transfer however, they

must liotice the correspondence between the target problem and the

base problem and retrieve the base in terms of its generalizable

structure (Gholson, Morgan, Dattel, & Pierce, 1990). Sthdies have shown

though, that novice problem solvers often have difficulty in detecting

structural similarities between problems that have different surface

features (Novick, 1988). This is largely because novices tend to focus on

salient surface features such as the specific objects and terms

mentioned, rather than the structural features, such as how the entities

in the problem are causally interrelated (Chi, Feltovich, & Glaser, 1981;

Gholson et al., 1990; Novick, 1988, 1992; Silver, 1981). This means that

the surface features in a novice's model of a target problem will likely

serve as retrieval cues for a related problem in memory. On the other

hand, studies have shown that similarity among surface details, or

superficial similarity, promotes "reminding," that is, assists novices to

notice a correspondence between their mental model of a base problem

and the new target problem (Gentner & Landers, 1985; Reed, 1987; Ross,

1984, 1987). While surface similarity can facilitate children's retrieval

of the base problem, its usefulness for analogical transfer is governed by

their ability to detect the structural correspondences between the base

and target problems (Gentner & Landers, 1985).

Although children may be particularly dependent on surface cues for

the retrieval of a base problem, there is some evidence that even

preschoolers can overcome similarity in appearance in categorizing

objects if they are given relevant information, including age-appropriate

materials and procedures (Carey, 1985; Gelman & Markman, 1986).

Gentner (1989) reports on a study (Gentner & Toupin, 1986) in which 4-

6 year-olds and 8-10 yLar-olds were asked to transfer a story plot from

one group of characters to another. Two factors were varied, namely,

11
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systematicity of the base domain, that is, the relational structure of the

original story, and the transparency of the mapping, that is, the degree

to which the target objects resembled the corresponding base objects.

The systematicity of the original story was manipulated by adding

beginning and ending sentendes that expressed a causal or moral

summary. Transparency was varied by changing the similarity of the

corresponding characters. In a high-transparency mapping, the new

characters (e.g., squirrel, elk, toad) resembled the original characters

(e.g., chipmunk, moose, frog). In the medium-transparency mapping,

three unrelated animals were used, while in the low-transparency

mapping, the new characters were similar to the original characters but

occupied noncorresponding roles.

Gentner and Toupin (1986) found both transparency and

systematicity to be important in determining transfer, with the two age

groups displaying different patterns. For both age groups, transfer

accuracy was almost perfect in the high-transparency condition, but

lower in the medium-transparency and lower still, in the low-

transparency condition. Systematicity also had strong effects for the

older age group. Even in the most difficult mapping conditions, thP 9

year-olds performed almost perfectly when they had a systematic

relational structure to hold onto. Informal observations showed that

these children monitored any object-similarity-based errors they made

and corrected them by utilizing the systematic causal structure of the

story. The 5 year-olds, in contrast, sLowed no significant effects of

systematic base structure. All that mattered to these younger children

was the transparency of the object correspondences. The results of this

study and others (e.g., Holyoak, Junn, & Billman, 1984; Smith, 1989)

indicate a developmental shift from a reliance on surface similarity, and

especially on transparency of object correspondences, to the use of

12
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relational structure in analogical mapping (Gentner, 1989). This has

significant implications for the development of children's mathematical

problem solving, in particular, their ability to abstract important

structural principles of a problem domain.

In our discussion to date we have argued firstly, that children

construct important mathematical ideas as they develop strategies for

solving a novel problem. Secondly, we have claimed that they cycle

through a sequence of steps in building and refining these ideas.

Thirdly, we have suggested that these ideas may reflect an underlying

principled knowledge of the problem domain. We have also highlighted

the interactive role of domain-general strategies in this construction

process. Finally, we have emphasized the importance of children's

ability to access a known or base problem that has an identical goal

structure to the target problem to be solved. As children reflect on

earlier problem-solving experiences and re-analyze them in the light of

their newly constructed knowledge, they are frequently able to

generalize particular solution strategies (Brown, 1989; Maher, Martino, &

Alston, 1993).

We address these issues in the present report. More specifically, we

examine two case studies in an effort to shed light on the following

questions:

1. How do children construct strategies for solving two sets of

combinatorial problems, one presented in hands-on format and the

other, as isomorphic written problems? What role does their use of

domain-general strategies play in this construction?

2. How does this strategy development change between the problem

sets?

13
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3. What does children's strategy development suggest about their

construction of combinatorial knowledge?

4. Do children recognize the structural correspondence between the

problem sets and use this to facilitate problem solution?

The tasks for this study were deliberately chosen to challenge

children's thinking and encourage them to develop their own ideas

about a novel domain. The combinatorial domain was considered

eminently suited to this purpose.

The Combinatorial Domain

Combinatorics, involving the selection and arrangement of objects in

a finite set, lends itself to the design of problems that are challenging

while at the same time, meaningful, to children. Furthermore,

combinatorial tasks can be solved at different levels of sophistication

and can be readily modified to accommodate individual needs.

The domain is of significance from a mathematical perspective. It

comprises a rich structure of important mathematical principles which

underlie several areas of the curriculum, including counting,

computation, and probability. In simple mathematical terms,

combinatorics may be viewed as the operation of cross product. The

cross product of two sets, X and Y, is the set of combinations obtained by

systematically pairing each member of X in turn with each member of Y,

as shown in Figure 1 (v). In more complex examples involving

combinations of three elements, each member of set X must be

systematically matched with each member of set Y and set Z, as shown

in Figure 2 (v). This tree diagram represents the most efficient way of

forming X x YxZ combinations. However there are several other, less

14
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efficient, methods of generating these combinations, as can be seen in
the remaining tree diagrams. We revisit these in a later section.

INSERT FIGURES 1 AND 2 ABOUT HERE

In addition to its mathematical importance, the combinatorial

domain is of developmental significance. It is a major component of

Piaget's theory where it plays a significant role in cognitive development

(Piaget, 1957; Flavell, 1963). The combinatorial system is evident in a

subject's ability to "link a set of base associations or correspondences

with each other in all possible ways so as to draw from them the

relationships of implication, disjunction, exclusion etc." (Inhelder &

Piaget, 1958, p.107). The key cognitive strategies here are isolation or

control of variables, and systematic combination. The appearance of a

systematic method of generating combinations is said to occur at the

onset of the formal operations stage (Piaget & Inhelder, 1975).

In sum, the problems chosen for this study draw upon a clearly

defined body of mathematical knowledge which is within the grasp of

elementary school children. The tasks allow for different levels of

solution which enable children to apply their existing, informal

knowledge to initial problem solution and to subsequently build on this

knowledge as they construct new ways of tackling the problem. The

problem tasks are described in the next section.

Method

Subjects
The current study is part of a larger project involving 288 children

from grade levels 4 to 7 (8 years 11 months to 12 years 7 months). The

children who feature in this report are both 9 year-olds in their fourth

15
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year of school. James attends a small state school in a middle class

suburb of Brisbane, Australia, while Kerry attends a large catholic school

in a predominantly low socio-economic suburb of the same city. James

is considered by his teacher to be a high achiever in school mathematics

while Kerry is regarded as a low achiever.

Instruments
The present study involved two sets of isomorphic combinatorial

problems. One set comprised three hands-on tasks and the other, three

written tasks. The hands-on problems required children to dress toy

bears in all possible combinations of colored tops and pants (first

problem in the set) or colored tops, pants, and tennis rackets (remaining

two problems). The first hands-on problem was a two-dimensional task

(X x Y) comprising 3 sets of colored tops and 3 sets of colored pants (9

combinations altogether). The remaining two problems were of a three-

dimensional structure (X x Y x Z), with one problem involving 2 sets of

tops, 2 sets of pants, and 2 sets of tennis rackets (8 combinations), and

the other, 2 sets of tops, 3 sets of pants, and 2 sets of tennis rackets (12

combinations). The bears were made of thin wood and were placed on a
stand. This enabled the children to see clearly the outfits they had

formed. The clothing items were made of colored card and were backed

with adhesive material to facilitate the dressing process.

The set of written problems corresponded in structure to the

hands-on problems, that is, the first problem was of the form, X x Y,

with a total of 9 combinations. The remaining two problems were of the

form, X xY x Z, with 8 and 12 possible combinations respectively (these

appear as an appendix). The three written problems also shared some

of the surface features of the hands-on tasks, in particular, that of color.

Problems 1 and 3 were set in different contexts to that of the hands-on

16
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problems, while the second written problem featured a similar clothing

context to the hands-on problems. In contrast to the concrete problems,

these written examples required children to construct an abstract

representation of the problem. However children were able to use

recorded notation (e.g., listing, diagrams) as an aid in formulating their

ideas.

Designing the problems from simple to more complex in each set

facilitated observation of children's strategy development as they tried

to accommodate the more difficult three-dimensional examples. It was

hypothesized that this would encourage children to construct a more

sophisticated knowledge of the combinatorial domain, a knowledge that

comprised at least an implicit understanding of domain-specific

principles. To assist in the subsequent analysis of children's knowledge

construction, we review briefly the structure of these problems with

specific reference to the concrete examples.

Problem Structure

As children attempt to solve these problems, they must meet

certain constraints imposed by the problem goal (Glaser & Pellegrino,

1982). The minimum set of constraints that children must meet in

solving these problems is as follows:

1. A constraint on the types of items to be combined. That is, items of

the same type cannot be combined, such as two tops or two pants. A

combination must comprise one top and one pair of pants (and a tennis

racket).

2. A constraint on similarity across combinations. That is, given the

ordered pairs of items (a, b) and (c, d) where a and c represent any tops

and b and d any pants (in the case of the two-dimensional problems),

different combinations will result if any of the following is adhered to:

17
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i. a is different in color from c, and b is different in color from d;

a is the same color as c, and b is different in color from d;

a is different in color from c, and b is the same color as d.

A particular case of these constraints warrants citing:

iv.. a is the same color as b, and c is the same color as d, but a is

not the same color as c.

This fourth constraint allows items within a combination to be the

same color (e.g. red top/red pants) while items across combinations

must be different (e.g. red top/red pants and blue top/blue pants).

An awareness of the above constraints would be sufficient for a

trial-and-error approach to problem solution where items would be

generated in a random fashion, as indicated in Figure 1 (i), then selected

and combined according to the above rules. Since there would be no

evidence of forward planning in such behavior (Rogoff, Gauvain, &

Gardner, 1987, the children's self-monitoring processes would be

particularly important.

On the other hand, the most efficient strategy for solving the

problems would reflect a clear plan of action with a focus on the overall

goal of generating all possible combinations (Rogoff et al., 1988). In

contrast to the novice strategies, where an item is not selected more

than once in succession, the expert strategy involves the repeated

selection of an item (referred to here as, "holding an item constant") and

systematically matching it with each of the other, "varying" items.

These latter items are varied in a cyclic fashion, as shown in Figure 1 (v)

(Y1, Y2, Y3, Yl, Y2, Y3..). Because this method resembles the working of

an odometer in a car, it has been labelled the "odometer" strategy

(English, 1988; Scardamalia, 1977). In the case of the two-dimensional

18
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problems (X x )) there is only one item to be held constant at any one

time, as indicated by items X 1..3 in Figure 1 (v). For the three-

dimensional problems however, there are two items (X1..2 and Y1..3)

which are held constant at any one time. The item which is changed

least often (X1-2), that is, the slowest moving dimension, is referred to

here as the major constant item; the item that is changed more

frequently (Y1_3), the faster moving dimension, is termed the mi nor

constant item (refer Figure 2 v).

It is worthwhile noting that, for young children in particular, the

repeated selection of an item seemingly goes against the problem goal of

different combinations. An earlier study (English, 1988) had shown that

some children are initially reluctant to select an item more than once in

succession, perhaps because they interpret "different" to mean "different

in all ways" and thus see the goal of "all different outfits" as an

indication to make each new outfit completely different from the

previous outfit(s). It thus seems that children avoid repeating the

selection of an item because they see it as going against the problem

goal. Such behavior reflects the difference-reduction method of problem

solving (Anderson, 1985, p. 206) where problem solvers attempt to

make the current state as similar as possible to the desired goal state.

However a correct solution frequently involves going against the grain of

similarity (Anderson, 1985). In the case of the present problems,

selecting the same item in succession is a key feature of the most

efficient combinatorial strategies.

Procedure
The children were administered the problems on an individual

basis by a research assistant who is a qualified teacher. Each child's

responses were videotaped for sul ;quent analyses. The presentation

19
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of the two problem sets was counterbalanced, that is, half the children in

the original sample received the hands-on problems prior to the written

problems, while the other half received the reverse of this.

For the hands-on problems, children were initially given one

familiarization task to ensure they understood the idea of forming

different outfits. The goal here was to simply "dress the bears." The

task: was designed to test children's color recognition, as well as to

establish an understanding of the terms, "outfit,"and "same/different

outfits." The latter term was crucial in the interpretation of the problem

goal, especially when a common item was present. For example, the

outfits, red top/blue pants, and red top/yellow pants are different from

each other even though they have a common item. In working the

familiarization task, children were not given any information that could

bias their performance on the two problem sets.

In each of the hands-on tasks, children were provided with more

materials (both bears and items) than were needed. This was to ensure

the children did not use item depletion as a signal that they had solved

the problem. The children were expected to complete each problem

without assistance and were asked to explain their procedure at the end

of each problem.

The written problems were administered to each child on a

worksheet with space provided for the child's working. The research

assistant read through each problem with the child and ensured that the

child understood the problem goal. For example, in the first problem, it

was emphasized that a set must comprise one bucket and one spade and

that each set must be different from all other sets. It was also explained

that a particular bucket (or spade) could be used more than once. For
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the few children who asked, it was stated that a blue bucket could be

matched with a blue spade. As the children worked through the written

problems, they were encouraged to "talk aloud" about what they were

doing. It was explained that they could use the space on the sheet to

help them work out the problem, however no mention was made of any

particular strategy, such as dra ing a diagram.

Analysis of children's responses

Each child's videotaped response on each problem was analyzed in

terms of accuracy (i.e., whether the correct solution was produced), the

solution strategy employed (i.e., the way in which items were selected

and combined), and, in addition for the written problems, the type of

written procedure used (e.g., use of systematic listing, tree diagram).

The solution strategies children employ in solving two- and three-

dimensional combinatorial problems had been identified previously (e.g.,

English, 1991a,b; 1993b) and are reviewed in the next section. These

strategies were used here to classify children's responses on each

problem. To facilitate the classification process, each child's response on

each problem was converted to a tree diagram. These diagrams provide

an effective visual representation of the generation of combinations

(DeGuire, 1991; Graham, 1991) and enabled the child's solution strategy

to be identified readily.

Children's Combinatorial Strategies

For each of the two-dimensional and three-dimensional problems,

children's strategies reflect three main stages of development (cf. Maher,

Martino, & Alston, 1993). The first stage entails random, trial-and-error

procedures that are devoid of any global planning components. In the

second stage, children display transitional strategies where they adopt

an identifiable pattern in their selection of items to combine, however
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the pattern is not the most efficient for task solution. In the final stage,

children construct odometer (or "almost odometer") strategies. These

are the most efficient for problem solution because of their generative

nature, that is, they provide an organizational structure for generating

all possible combinations. These stages are described below for each of

the two- and three-dimensional problems. Reference is made to the tree

diagrams shown in Figures i and 2.

Two-dimensional Strategies

Non-planning Stage

In this stage, children adopt a trial-and-error approach to problem

solution, selecting items in a random manner. This strategy is

represented by the first tree diagram of Figure 1. Children's checking

actions play an important role here, with the effectiveness of these

actions largely determining goal attainment (English, 1992).

Transitional Stage

During this stage, children construct a pattern for selecting their

items. This pattern is of an alternating or cyclic nature and is usually

confined to one item type, as indicated in Figure 1 (ii) and (iii) (X1, X2,

X3, X1, X2, X3 ) At the beginning of this transitional stage however,

children do not continue their pattern throughout problem execution

and revert to a trail-and error approach (as indicated by the final three

combinations of Figure 1 [ii], namely, X2/Y3, X3/Y1, X1/Y2).

Odometer Stage

This is the most sophisticated stage where children construct a

procedure which provides a global framework for solving the problem.

This procedure is characterized by an odometer pattern in item selection

where an item of one type is held constant (e.g., item X1 in Figure 1 [v])
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while items of the other type are varied systematically (e.g., Y1, Y2, Y3 of

Figure 1 [v]). Notice how the cyclic pattern of the transitional stage is

retained here and coordinated with the use of a constant item. Once this

constant item has been exhausted (i.e., all possible combinations with

that item have been formed), a new constant item is chosen and the

process repeated (i.e., X2 is matched, in turn, with Y1, Y2, and Y3 of

Figure 1[v]). The use of a constant item reduces the number of new

selections of item X, hence rendering this stage the most efficient.

During children's construction of this odometer strategy, they

frequently display one or more weaknesses. These include a failure to

exhaust a constant item (frequently the omitted combination is formed

at the end of task execution, as indicated in Figure 1 [iv]), an "over-

exhaustion" of a constant item (the child normally detects the duplicated

combination and corrects this without requesting assistance), or a failure

to recognize problem completion upon exhaustion of all constant items

(in this instance, the child attempts to create further combinations but

soon realizes this cannot be done).

Three-dimensional strategies

The key feature of the three-dimensional strategies is children's

ability to deal simultaneously with the major and minor constant items.

The ability to hold these items constant until they are exhausted does

not emerge until the third stage.

Non-planning Stage

This is the least efficient of the three-dimensional stages, since

children do not follow any identifiable pattern and make the greatest

number of new selections of items X and Y, as indicated in Figure 2 (i).
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They do not exhaust any major constant items and exhaust less than half

of the minor constant items.

Transitional Stage

During this stage, children begin to exhaust more of the minor

constant items, thus reducing their number of new item selections (refer

Figures 2 [ii] and [iii]). In the early part of this stage, children may not

exhaust all of the minor constant items, as shown in Figure 2 (ii), but do

so later in the stage (Figure 2 [iii]). They do not exhaust either of the

major constant items. This occurs in the odometer stage.

Odometer Stage

In this final stage, children are able to coordinate the repeated

selection and subsequent exhaustion of both major and minor constant

items. Initially, children may only exhaust one of the major items, as

indicated in Figure 2 (iv) (i.e., X1 is matched, in turn, with each of Yi..3,

which is also systematically matched with each of Z1_2). They finally

master the exhaustion of both constant items, as shown in Figure 2 (v).

This strategy involves the least possible number of new X and Y item

selections.

Results

We now illustrate children's construction of these strategies by

considering the two case studies. We address our original research

questions by firstly focussing on this strategy construction and on the

role of domain-general strategies in this process. This analysis will then

enable us to compare children's strategy development across the

problem sets (both within and between subjects) and will provide the

bases for inferring their construction of combinatorial knowledge.

Finally, we will examine children's ability to detect the structural
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correspondence between the problem sets and consider whether this

facilitated problem solution. We begin our discussion with James'

responses.

James

Recall that James was aged 9 years 4 months and was in his fourth

year of elementary school. He attended a state school situated in a

middle class suburb and was considered a high achieving student in

school mathematics. James was administered the written problems

prior to the hands-on problems.

Like several of the other high achievers in the larger sample,

James did not use any notation to represent his ideas in solving the

written problems, preferring instead to determine the combinations

mentally. Given the number of combinations to be formed, it is of no

surprise that he failed to generate the correct combinations for each of

the written problems. His response to the first written problem was as

follows:

O.K., let's see. Two..., no, that is not exactly right because you can

make much more. I like to do these in my head. I'm counting up

each one. I'm going 2, 4, like that. Green and orange, red and

purple, green and purple, that's 6.

The research assistant asked him how many sets he had made. James

repeated the sets he had already made and then continued:

Blue and orange, red and blue, five sets, and green and blue. O.K.

Red and purple, oh, I said that. Green and orange, red and purple.

That's 8 sets. That's all I can think of.

While James applied some general monitoring procedures in an

effort to keep track of his combinations, he nevertheless had difficulty
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in generating all of the possible sets. Had he been able to follow some

pattern, he might have been more successful here.

His performance on the remaining two written problems was not

significantly better, although he did progress towards the transitional

stage in the second problem where he exhausted a few of the minor

constant items (but not all), as indicated in the following transcript:

O.K. St.," can do green, yellow, and orange.

Oh! She can do red skirt, white T-shirt, and blue sandals. Two.

And she can have red, yellow, and orange.

She can have green, yellow, and orange.

She can also have green, white, and blue.

I think that's 4, no 5.

And she can have red, yellow, and orange.

She can have white, yellow, and orange. Oh no.

She can have green, yellow, and orange.

She can wear red, yellow, and orange.

She can have red, white, and orange. Nine.

She can have white, green, and orange. That's ten.

She can have white, green, and blue. Eleven.

She can have yellow, green, and blue. That is twelve.

She can also have yellow, green, and orange, and yellow, red, and

blue.

That's 14 altogether.

In the above problem, James demonstrated quite an amazing

mental capacity in his effort to generate and monitor combinations

without the aid of notation. Because he duplicated combinations, James

produced nearly double the number required. Had he been able to
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exhaust more of his items, James would have been better able to keep

track of his combinations.

James adopted an unusual approach to the third written problem.

He read the problem silently to himself after the research assistant had

read it aloud with him. After thinking for a few minutes, he stated:

Forty-nine. I squared it. I counted up each type. I counted up

green, yellow, Christmas, birthday, Easter, gold lettering and silver

lettering, and I squared it. My answer is forty-nine.

When asked why he squared the seven, James gave a somewhat

confused reply:

Well, I was thinking about this problem (referring back to the

previous problem), yellow and white, that's two. Three, four, five,

six (counting the other items in the second problem). Now true,

there might be more but I thought maybe if I squared it, I might get

the answer because ..... it's kind of hard to explain. I'm trying ....

what I'm getting at is, if you squared it, you could find out that you

couid ... make all different combinations like that, but you couldn't

go over what you could square. You couldn't go over the square root

once you'd squared it.

It is interesting here how James used the previous problem to help

him recall a rule that might expedite the solution of this more complex

exa.nple. Unfortunately, James incorrectly mapped his mental model of

this rule onto the data of the third problem. His mental representation

of this rule seems to have included" some understanding of the

relationship between squaring a number and finding the square root;

this, of course, was not relevant to the present problem. The fact that

James linked the squaring of a number with the generation of all

possible combinations could mean that he had met the formal
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combinatorial rule some time i.i his informal experiences with number

(he had not been taught combinatorics in school). However his mental

model of such a rule was clearly erroneous.

James' lack of significant improvement on the second set of

problems (dressing the bears) suggests that he simply mapped some of

his procedures for solving the written examples onto these hands-on

problems, without building on these strategies.

the first hands-on problem was basically one

although there was an emerging awareness of

the selection of an item, as can be seen in the

given shortly. James solved this first problem

combinations, as follows:

orange pants and blue top

blue pants and orange top

green top and blue pants

blue top and pink pants

blue top and blue pants

green top and orange pants

orange pants and orange top

green top and pink pants

His strategy for solving

of trial-and-error,

the efficiency of repeating

explanation of his strategy

by initially forming 8

At this point, the child spent considerable time checking for further

possible combinations by making trial outfits with the remaining items

in front of him. He then stated, "I'm afraid there aren't any more, I

don't think .... oh, there might be ...." He checked again and then

completed the final combination, namely, pink pants and orange top. On

completion, he stated, "I'm afraid that's all I can do."
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When asked to explain his strategy for solving this first hands-on

problem, James simply recalled his selection of items for the first four

combinations. When he reached the fifth outfit (blue top and blue

pants), he explained:

... when I got to this one, I thought, O.K., maybe I should just put the

whole lot on like a tracksuit. I thought when I got to the fifth one, I

thought I might as well not waste my patterns here. I thought I

might as well put in a matching thing (pointing to the blue top of the

fourth bear) and the same with this one (pointing to the orange

pants of the seventh bear and indicating it was also used to dress

the sixth bear). On this bear (the seventh, orange pants and orange

top) I was about to put blue and orange but I thought, "No." And

then for this one (the eighth, green top and pink pants) I thought of

green and thought, "yes," I can do green and pink and with the last

one I did orange and pink, and I thought, well, I can't do any more.

Every time I finished one, I'd check up on all the others. If I did

find a pattern to be the same, then I'd take that one off and think

hard about the next one. You may have noticed when I was stuck a

bit, I went like that (putting his hand to his head). I thought of the

pattern.

James' reference to a "pattern" in the above explanation involved

repeating the selection of an item to generate a new combination. He

seemed aware of the need to develop some generative procedure,

suggesting that he was beginning to construct some knowledge of the

combinatorial domain. However he did not build on these ideas as he

worked the remaining problems. The increase in problem complexity

could have been a contributing factor here, although our next case study,
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Kerry, moved into the final odometer stage on a complex, 2 x 3 x 2

example.

Notice how James monitored his actions in this first hands-on

problem by checking each combination after he had formed it (a

discussion on the different types of scanning actions children display in

checking their combination: ?pears in English, 1991a). He obviously

considered it important to use such thorough checking; in fact, without

it, he would not have solved the problem. This highlights the important

role of domain-general strategies in the absence of a strong body of

domain knowledge (English, 1992).

In solving the second hands-on problem, James again used a trial-

and-error approach in forming the first four outfits. He then repeated

the selection of two items in forming the fifth and sixth combinations.

After the seventh outfit, he stated that he had solved the problem.

When encouraged to look for further combinations, James explained:

I could do more, but the thing is, if I did do more, he (the bear)

would still have the same colors but he'd be different. I'll show you

what I mean. Instead of having his blue racket in his right hand,

he'd have it in his left hand.

On being reminded of the meaning of a "different outfit," James

proceeded to form two additional combinations, one of which was a

duplicate of a previous outfit. James' explanation of his strategy was

similar to the previous problem and indicated that he was aware of the

value of repeating an item selection. However he did not appreciate the

need to exhaust an item. When he had difficulty in constructing a new

combination, he just looked back at an outfit that he had formed earlier

and used it again with modification (e.g., changed the tennis racket). He
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was clearly still at the beginning of the transitional stage in his

construction of combinatorial ideas.

3 0

The final hands-on problem was considerably more difficult for

James; in fact, he reverted to the non-planning stage in solving this. He

duplicated combinations in constructing the first six outfits but soon

corrected these. In forming the remaining combinations, James spent

considerable time in making trial combinations and checking them

against the previous outfits. He commented at this point, "It's getting

hard." However he managed to form all but one of the remaining outfits.

His explanation of his approach reflected a reliance on trial-and-error

and efficient checking. He also appeared to be more interested in

matching colors of items within a bear (e.g., giving a bear an orange

racket and orange pants) than in repeating the selection of items, as is

evident in his explanation:

.... The next one (yellow top, pink pants, and orange tennis racket)

was all different and so was the next one. The next one (yellow top,

orange pants, and orange tennis racket) had the tennis racket

matching the pants and the next two didn't have anything the same

.... then the ninth one, I gave him an orange racket to match his

orange pants and a blue shirt which I hadn't used .... and the last one

I gave an orange racket, a blue shirt, and pink pants because I hadn't

used these. And this poor bloke (pointing to a remaining undressed

bear), well, he didn't get dressed.

On completing all of the problems, James was asked whether

solving the first written set helped him with the second hands-on set.

He replied:

No, with some and yes, with others.
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The first one (the first written problem) gave me an idea about

making different sets and everything. I found it a bit harder though

because I didn't actually have anything like I did with the bears,

that you could put on and look at. The second (written) problem

was good because that helped me match up things like with the

tennis ones (the hands-on problems). The third (written) problem

didn't really help me because I just took a guess at that and used my

own theory of squaring. I used my own theory about it and I just

squared it.

James was also asked if he could see any ways in which the hands-on

problems were similar to the written examples. He responded:

Yes, the second one (written problem) is the one that has the most in

common with these (the hands-on problems) because to match up a

T-shirt with a skirt and sandals is kind of like how you have to

match up a tennis racket, pants, and a T-shirt, and that's mainly the

one I'd say helped most. This one (the first written problem), you

just had to match up two things, but they did help me a bit. They

prepared me in matching them all up, gave me an idea. That's right.

3 1

It is interesting that James commented on the usefulness of the

hands-on materials in the second problem set, especially since he did

not use any form of notation to represent his ideas in the written

problems. It may be that he had not been encouraged to do so in school

or more likely, he felt that he had no need to use notation because of his

confidence in his mental computation. In reflecting on problem

similarity, James could see the parallel between the clothing problem in

the written set and those of the hands-on set. This is not surprising,

given that the resemblance between the problem items would create a

high-transparency mapping condition for the child (Gentner, 1989). This
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similarity in surface features appeared to alert James to their structural

correspondence which he saw in terms of matching items. He did not

comment though, on the idea of all possible different matchings.

Nevertheless, his responses here support our earlier discussion on how

superficial similarity can help novices notice a correspondence between

their mental model of a base problem and a new target problem. It is

clear that the third written problem, in which James "guessed" and

constructed his "own theory of squaring," did not assist him in solving

the hands-on problems. The child's discussion gave no indication of

whether he recognized any structural similarity between this problem

and the other examples.

In reviewing James' performance, there appear a couple of

interesting features worth mentioning. Firstly, while James could

effectively describe and justify his strategies, he did not make much

progress in his construction of combinatorial ideas. This is despite the

fact that he seemed very aware of his own thinking. However he was

skilled in his use of domain-general strategies, as could be seen in the

way he monitored his actions throughout problem solution. Had James

not been competent here, he would have had great difficulty in solving

the problems. These general strategies clearly compensated for his lack

of sophisticated combinatorial knowledge.

3 2

The second factor pertains to James' mental capacity for generating

combinations without the use of notation. Given his precocity here, it is

tempting to speculate that James was of the opinion that "people who

are good at math do it in their heads." The application of his "squaring

theory" also suggest that he had been exposed to advanced formal

mathematics for which he was not ready. Our second case study, Kerry,
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a low achiever in school mathematics, provides an interesting contrast to

James.

Kerry

Recall that Kerry was aged 9 years 5 months and was a grade four

student at a large catholic school in a predominantly low socio-economic

area. She was considered a low achieving student in mathematics.

Kerry was administered the hands-on problems prior to the written

examples.

3 3

In contrast to James, Kerry was not as vocal in her discussion of

her actions, yet made greater progress in her strategy construction. She

commenced the hands-on problems at the non-planning stage where she

relied on a trial-and-error procedure. She correctly formed the first five

combinations, then paused for some time to generate a further three

outfits. She realized that she had made the eighth outfit the same as the

first and so removed the items. When asked if she could make further

combinations, Kerry continued to create an additional two, making 10 in

total. She realized that she had duplicated outfits and, although she

made some modifications, was unable to correct all of her errors. When

asked to describe the method she used, Kerry stated, "I just kept on

checking back to the last one so that I knew I didn't do the same." This

checking procedure however, was not sufficiently thorough for her to

detect all of the duplicated combinations.

Kerry also repeated outfits in the second and third hands-on

problems and again, was unable to make all of the required

modifications. However, she demonstrated a distinct improvement in

her solution strategy. She was now working in the transitional stage

where she reduced her number of new item selections by repeating the

selection of several minor items. However she was unable to exhaust all
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of these items. She demonstrated an efficient dressing procedure which

facilitated her procedure. Instead of completing the dressing of a bear

prior to moving onto the next one, she dressed the bears in pairs (or

occasionally in threes). She accomplished this by placing two identical

items on both bears (e.g., two grecil tops), followed by another two

identical items (e.g., two orange pants), and finally, changed the third

item in an alternating fashion (e.g., orange tennis racket, blue tennis

racket, orange tennis racket). This can be seen in the transcript of her

actions as she solved the third hands-on problem involving 12

combinations. Kerry formed her first 8 combinations as follows:

green top, pink pants, and orange tennis racket

green top, pink pants, and blue tennis racket

orange pants, blue tops, and orange tennis racket

orange pants, blue tops, and blue tennis racket

pink pants, yellow top, and orange tennis racket

pink pants, yellow top, and blue tennis racket

pink pants, green top, and orange tennis racket

orange pants, yellow top, and blue tennis racket

She then constructed the ninth, tenth, and eleventh bears

simultaneously, as follows:

yellow top, orange pants, and blue tennis racket

yellow top, pink pants, and blue tennis racket

yellow top, orange pants, and orange tennis racket

On realizing that the eighth and ninth bears were identical, Kerry

removed the top and tennis racket of the ninth bear and subsequently

formed three new outfits:

orange pants, blue top, and orange tennis racket
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orange pants, blue top, and blue racket

pink pants, green top, and orange tennis racket

She again attempted to correct the duplicated combinations but

was unable to make all the necessary modifications. Kerry was

apparently unaware that there were still corrections to be made for she

claimed that all of the outfits were different and that she had solved the

problem. Her explanation of how she constructed her combinations was

simply, "I just kept on changing the clothes every time I went and kept

on looking back." It would seem that she was aware, at least implicitly,

of her decision to dress two or three bears in the same two items and

vary the third.

Kerry's response to the first written problem was interesting.

After reading the problem, she stated immediately that there were

three combinations. When asked whether there were any more possible

combinations, Kerry began to use the clothing items from the hands-on

tasks to represent the problem data. She tried to match the colors of the

clothing items to the colors of the buckets and spades. She used a green

top for the green bucket, a blue top for the blue bucket, a pink top for

the red bucket, and orange and blue pants for the orange and blue

spades respectively. Kerry then placed an orange spade with a blue

bucket and stated, "Orange bucket, no, orange spade with a blue bucket,

and that's one. The red bucket and a blue spade, that's two." However

she became very confused when she attempted to use the tennis rackets

for spades because she did not have the correct colors. When asked if

there was another way in which she could solve the problem, Kerry

replied, "I could do it in my head but I can't work it out that way." She

then decided to use notation to represent the problem data.
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On the worksheet in front of her, Kerry recorded the colors of the

buckets under the heading "B" for buckets and repeated this for the

spades. She then drew lines to connect pairs of items, generating the

nine combinations, as shown in Figure 3. Her use of a uniform cyclic

pattern in selecting the spades (i.e., orange spade, purple spade, blue

spade, orange spade, purple spade....) facilitated the construction of these

combinations.

INSERT FIGURE 3 ABOUT HERE

3 6

Kerry remained in this transitional stage as she solved the second

written problem. While she repeated the selection of each T-shirt, she

did not exhaust these items and was unable to generate all eight items.

Kerry applied a similar procedure for represePting the problem data,

recording the letters of the T-shirt colors under the heading "T", the

colors of the skirts under "S," and the colors of the sandals under "SA."

She then rewrote each set of colors and drew lines between letters to

form her combinations. After making three outfits, Kerry recorded the

digit, "3". After constructing two more outfits, she crossed out this digit

and replaced it with "5". She claimed she was unable to form any more

than five outfits. This may have been due partly to the untidy nature of

her diagram.

It was on the third written problem that Kerry demonstrated the

greatest progress in her construction of combinatorial knowledge. Kerry

again represented the problem data by listing the first letter of each

item, that is, she listed, one under the other, the letters, G, Y, C, B, E, g,

and S for the colors, greetings, and letterings respectively. As before,

she drew lines to link the different items and verbalized her actions as

follows:
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A green Christmas with gold.

A green birthday card with gold writing, that's two.

A green card with Easter and gold writing, three.

At this point, the child recorded the digit, "3."

A yellow card with Christmas and gold lettering.

A yellow card with birthday and gold lettering.

A yellow card, Easter, and gold writing. Six.

The digit, "6" was recorded.

A green card with Christmas and silver writing.

A green card, birthday, and silver writing.

A green Easter and silver writing. That's nine.

The digit, "9" was recorded.

A yellow card with Christmas and silver writing.

A yellow card with birthday and silver writing.

A yellow card with Easter and silver writing. That's twelve and

that's all that you can make.

The digit, "12," was recorded.

Kerry had now progressed to the third stage where she was

employing a complete odometer strategy to solve the problem. That is,

she chose the gold and silver lettering as her major constant items and

used them repeatedly until they were exhausted. She did the same with

the minor constant items (the colors, namely, green and yellow) while

systematically cycling through the remaining items (the greetings,

namely, Christmas, birthday, and Easter).

Kerry's progress from her initial non-planning stage through to

this final stage reflects considerable growth in her construction of

combinatorial ideas. Her commencing mental model of problem solution

was simply one of joining items and ensuring that each new combination
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was different from all preceding combinations. While her general

monitoring strategies were not as effective as James', she nevertheless

continued to modify and extend her model as she worked through the

problems.

There were two major developments in Kerry's strategies for

solving the hands-on tasks. Firstly, she reduced the number of new

item selections by holding items constant and secondly, she incorporated

a cyr:lic pattern in her item selection. These were evident when she

chose tc dress two or three bears at a time using pairs of identical items

and systematically varying the third. The weakness of her model

however, was that she did not exhaust her major and minor items

before selecting new ones. This did not occur until she tackled the final

written problem.

3 8

On the first written problem, Kerry only used the cyclic component

of her model. Unlike James who was confident that he could solve the

problem mentally, Kerry attempted a concrete representation.

Presumedly, her experience in solving the hands-on problems taught

her the value of representing a problem in concrete terms. When this

representation did not work for Kerry, she turned to a diagrammatic

format involving literal symbols connected by lines to denote the

possible combinations. This enabled her to generate all of the required

combinations. On the second and third written problems however, Kerry

incorporated her strategy of holding items constant and finally

succeeded in exhausting each constant item.

We will revisit Kerry's construction of combinatorial knowledge in

the discussion section and will turn now to her comments on the

similarities between the two problem sets. When asked whether solving
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the hands-on problems assisted her in solving the written examples,

Kerry replied:

Yes, because you knew what you were supposed to do. Well, you

could look at them and see what colors they were and then you

could just join them up like I did.

When questioned on ways in which the two problem sets were

similar, Kerry responded, "All of them are. They have all got colors."

She was unable to suggest any other ways in which the problems were

similar. Given Kerry's limited explanations throughout the problem

session, it is not surprising that she was unable to comment further.

However it seems that the transparency feature of the problems, that is,

the similarity in the nature of the problem items, had a greater impact

on Kerry than the systematicity component, that is, the similarity in

relational structure. This contrasts with James' ability to detect the

structural correspondences as well as similarities and differences in

surface features.

Discussion

It is interesting to speculate on why Kerry was better able to

construct combinatorial ideas than James, giv;n that neither child had

met these problems in school. The fact that Kerry worked the hands-on

problems prior to the written examples may have contributed to her

progress. On the other hand, unlike James, Kerry did not seem to

perceive the structural correspondence between the two problem sets.

She was also not as efficient in her use of monitoring procedures.

3 9

What Kerry did demonstrate though, was an active search for more

efficient methods of problem solution and, in so doing, was able to

modify and extend her initial mental model of the problem. Being
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aware of the limitations of generating a solution mentally, she

appreciated the value of concrete and diagrammatic representations in

formulating her ideas and made effective use of these. Kerry's efforts at

streamlining the solution process were particularly evident in the

second and third hands-on problems (X x Y x L) where she formed two

or three outfits simultaneously by holding two item pairs constant and

varying the third pair. Her preoccupation with this procedure however,

meant a decline in her monitoring processes with the result that she

could not correct all of her errors. Her acquisition of the expert

odometer strategy alleviated this difficulty. However Kerry could not

rely solely on such a procedure if she were presented with a similar

problem which comprised a hidden constraint on goal attainment. One

such task involves the use of clothing items with different numbers of

buttons instead of colors, with the goal being to form all possible

different button totals. Identical totals could result from combinations

formed from different items (e.g., a shirt with 2 buttons combined with

a skirt with 5 buttons and a shirt with 3 buttons matched with a skirt

with 4 buttons). Children who rely on their efficient procedures for

solving such a problem and do not monitor their actions thoroughly, or

at best, monitor only the items and not the button totals, do not detect

the duplicated combinations (English, 1992).

James presents a particularly interesting case. He was rated as a

high achieving student in mathematics, had an effective command of

language, was skilled in monitoring his actions, and demonstrated

insight into his own thought processes. In contrast to Kerry, he had

confidence in his mental capacity and relied on this to solve the written

problems. While he did an admirable job of keeping track of his

combinations, he nevertheless was unable to solve the problem. His

reluctance to use some form of written notation was a major stumbling
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block. In his search for an efficient method of solving the most difficult

written problem, James reflected on the data of the previous problem.

This prompted him to retrieve a formal mathematical "theory" which he

inappropriately mapped onto the data of this final written problem. It

is tempting to speculate that James viewed problem solving in terms of

retrieving an (apparently) appropriate rule and applying it to the

problem at hand. Nevertheless, James did see the value of concrete

representation after solving the hands-on problems. It is difficult to say

whether James would have made better progress if he had been given

these hands-on problems initially. While he did recognize the structural

similarity between the problems, he still did not construct any

sophisticated combinatorial ideas in solving these latter problems. This

suggests that he might not have been as successful as Kerry.

4 1

At this point, it is worth reviewing the children's knowledge

construction in terms of domain-specific principles (English, 1990;

Gelman & Greeno, 1989; Gelman & Meek, 1986). Recall that our analysis

of the problem structure highlighted the constraints imposed on the

child by the problem goal. The children's detection and correction of

duplicated combinations indicates that they were attempting to meet the

constraints on similarity across combinations. This suggests that they

had at least an implicit knowledge of the principle of difference. This

principle asserts that two or more combinations of items will be

different from each other if they differ in at least one item (English,

1990). An understanding of this principle is the minimum requirement

for operating in the first stage of strategy construction.

As the children moved into the transitional stage they began to

construct strategies that involved selecting items in a systematic cyclic

pattern, as well as holding one or more items constant. These actions
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imply at least an implicit knowledge of two major combinatorial

principles, namely, the principles of systematic variation and constancy

(English, 1990). We define these principles as follows:

Principle of systematic variation.

Within the one cycle of selection from discrete sets of items (i.e., the

selection of an item from each set), different combinations will

result if at least one type of item is varied systematically. For

example, given the sets of items X1_2, Yi_3, and Z1-2, different

combinations will result if the Y items are systematically varied

(e.g., X1/Y1/Z1; X2/Y2/Z2; X1/Y3/Z2).

Principle of constancy.

Within the one cycle of selection from discrete sets of items,

different combinations will result if at least one type of item is held

constant while items of at least one other type are varied

systematically (e.g., X i/Y1/Z1; X1/Y2/Z2; X1/Y3/Z1).

Kerry's transition into the final odometer stage reflected the

construction of two new combinatorial ideas, namely, the exhaustion of

constant items and recognition of problem completion (English, 1990).

We refer to these as the principles of exhaustion and constancy:

Principle of exhaustion.

A given constant item is exhausted when it can no longer generate

combinations which are different from existing combinations.

Principle of completion.

All possible combinations will have been generated when all

constant items have been exhausted.

An implicit understanding of the four principles of constancy,

systematic variation, exhaustion, and completion may be regarded as

essential to children's progression to the final stage of strategy
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construction. In contrast to Kerry, James did not demonstrate a

knowledge of constancy and hence did not move past the transitional

stage. Previous studies (e.g., English, 1988) have shown that once

children have constructed the odometer strategy, they can clearly

explain their procedure and can justify why it is the most efficient for

problem solution. Their explanations reflect an understanding of each of

these principles.

The children's responses to the present problems raise a number

of important issues for mathematics education. Firstly, the study

illustrates how children can construct important mathematical ideas

during the course of solving novel problems set within meaningful

contexts. When children lack formal domain knowledge, they rely on

their existing informal models of the problem situation, together with

their domain-general strategies, to generate a solution.

Secondly, children's level of achievement in school mathematics is

not a reliable predictor of their ability to solve novel problems. This

was evident in analyses of the entire sample of study participants where

low achievers were observed to progress to the odometer stage on the

present problems and also outperformed their high-achieving

counterparts in solving deductive reasoning problems (English, 1993a).

These low achievers were able to quickly detect relationships and

connections between items of information and used these to streamline

the solution process.

The third issue pertains to the mathematics presented to

seemingly "bright" students in mathematics. While not denying that

many high-achieving children thrive on abstract rules and procedures,

there is the danger of advancing these students in an inappropriate
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direction. Challenging students with sophisticated mathematical

concepts, without affording them the opportunities to generate the ideas

themselves, can contribute to children's construction of inadequate (and

erroneous) mathematical models. While James may not have acquired

his "theory" in this manner, his preoccupation with a formal

mathematical rule did inhibit his approach to problem solution and

limited his construction of more advanced mathematical concepts. His

reluctance to use concrete representations in modeling and solving the

written problems was also a major contributing factor.

The final issue addresses assessment practices in mathematics

classrooms. Assessment of students' mathematical competence must

include a range of novel problems that do not require children to draw

upon previously learnt mathematical rules. Such problems should

permit a variety of solution strategies and enable those children who

experience difficulty with formal computational procedures to construct

their own methods of problem solution. Children of this type, who are

often classified as low achievers, are capable of building sophisticated

mathematical concepts and should be given frequent opportunities to

demonstrate this.
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Appendix
Set of Written Problems

I. Tim has a green bucket, a red bucket, and a blue bucket. He also has

an orange spade, a purple spade, and a blue spade. How many different

spade and bucket sets can he make (a set has one bucket and one

spade)?

2. Marianne has a yellow T-shirt and a white T-shirt. She also has a

green skirt and a red skirt. With these, she can wear orange sandals or

blue sandals. How many different outfits can she make with these

items? (an outfit must contain a top, a skirt, and a pair of sandals)

3. The Select-A-Card company plans to make new boxes of greeting

cards. In each box there will be greeting cards that are:

either GREEN or YELLOW, and have

either CHRISTMAS greetings or BIRTHDAY greetings or EASTER

greetings, and have either GOLD LETTERING or SILVER LETTERING.

How many different greeting cards will there be in each box?
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Figure 3. Kerry's notation for the first written problem.


