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Chapter 1

INTRODUCTION AND OVERVIEW

1.1 INTRODUCTION

One of the main issues in test theory and the practice of educational testing is differential item
functioning (DIF) or itein bias (Lord, 1980). Items in educational or psychological tests show
DIF when the probability of a correct response among equally able test takers is different for
various racial, ethnic, or gender subgroups (Mellenbergh, 1989). Although researchers have
offered many methods for the detection of biased items, they have seldom offered explanations
why items show DIF. Moreover, most of the methods are focused on the detection of biased
items when models for binary (incorrect/correct) answers are used.

Recently, DIF detection research has addressed the differential functioning of all
response alternatives in an item (e.g. Scheuneman, 1987; S=hmitt, 1988). The main question in
these studies is whether bias can be located in a differential selection of response alternatives in
multiple-choice items. As an extension of the terminology of DIF, differential alternative
functioning (DAF) exists when the attractiveness of the response alternatives of the item is
different for equally able test takers. The attractiveness of an item represents the probability that
a subject who does not know the correct answer will choose that alternative.

In this dissertation, the problem of both DIF and DAF detection in multiple-choice items
is addressed. In Section 1.2 the issues of DIF and DAF will be discussed, whereas in Section 1.3
various item bias detection approaches are described. In this study the focus of attention is on
one of these approaches: item bias detection based on item response theory. The approach will
be discussed in Section 1.4. In Section 1.5 research strategies are described to explain why an
item is biased. Section 1.6 deals with the statistical model on which the proposed item bias
detection method will be based. Finally, in Section 1.7 a summary of the contents of the
following chapters is given.

St
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6 : Chapter 1

1.2  TEST ITEM BIAS

One of the most complex and confusing issues in educational and psychological assessments is
test and item bias, where bias means that a subset of the total group of examinees (referred to as
Focal group) responds in a different way to a specific test or item than the remainder of the
population or another subgroup (referred to as Reference group) does. Generally, a test or item is
biased if it functions differently for different groups. Bias can best be understood within the
context of validity and faimess of tests for all persons. A test is biased or unfair if test scores,
and hence the predictions or decisions based upon the scores of the test, are different for equally
able subjects (Cleary, 1968). In other words, a test is unbiased and fair if the same predictions
and decisions are made for equally able persons, regardless of group membership. Analogously
an item is unbiased when subjects with the same ability have the same probability of responding
correctly to the item. The following example will illustrate this.

In Kok (1982) bias in multiplication items was studied through a manipulation of the
subjects’ skill on possible bias factor. Of the administered multiplication items some items were
written in the native language (i.e. Dutch), whereas for the other items Roman numerals were
used. Moreover, the subjects were divided into two groups. Subjects from one group were
trained with regard to Roman numerals, whereas the other group got no training. It is not
surprising that the probability of responding correctly to a Roman numeral item for the trained
group on the items is higher than that for the untrained group; this result would lead to the
assumption that the item is biased. Since the difference in these probabilities may also be a result
of a difference in ability, this assumption may be incorrect. If the test was to be used at an end-
of-year examination of the subject’s knowledge of multiplication techniques, the untrained group
might receive low grades that did not reflect their real knowledge of multiplication techniques.
The use of the test is then unfair and biased. On the other hand, if only the native language items
were used for the examination and if there is no other biasing factor, the test would not be biased
against the untrained group. Low scores would reflect the lack of knowledge of multiplication
techniques,

The above example demonstrates two major points of bias. In the first place, faimess and
bias are functions of the test used and they depend on the population measured and the use of
measurement. Secondly, if a test is biased it does not mean that all the items of the test are
biased. Generally, when a test is biased one or a few of the items are also biased. However, if
there is no evidence that the test is biased, the items in the test can still be biased, because it
might be the case that bias of one item is compensated by bias of another item.

14




Introduction and overview 7

As already observed, a single test item is biased if subjects with the same ability have a
different probability of answering the item correctly. Since the probability of answering the item
correctly is related to the difficulty of the item, DIF indicates that the difficulty of the item may
be different for various equally able subgroups.

Generally, if significant differences in proportions of correct answers are found for
equally able groups, DIF has been shown. It should be noted that if there is no evidence that the
difficulty of an item is different for various equally able subjects, the item may still be
functioning differently. Multiple-choice items, for instance, are functioning differently if the
attractiveness of the incorrect alternatives (i.e. distractors) are different for various subgroups.
Green, Crone and Folk (1989) stated that "although group differences in distractor choice have
no effect on test scores, because all distractors are wrong, group differences might indicate that
the item was functioning differently for the various subgroups. Items that have different
meanings to different groups would seem to be biased in a very fundamental sense" (p. 148).
Extending the terminology of DIF, an item shows differential alternative functioning (DAF) if
the attractiveness of the altematives of an item is different for equally able subjects.

Although DAF might have no consequences for the number of correct scores on the test,
it can provide the test constructor with information about content areas that are problematic in
terms of bias, which can then be accounted for in future test constructions. The next example of
Veale and Foreman (1983) illustrates this.

A sample of 98 black and 412 white students from grade six were asked to pick the
correct sentence from the following four sentences: (A) Janies takes her work seriously; (B)
Janies work take too much time; (C) Working with books are my favourite thing; (D) Things
people likes to do is their business. The p-values (i.e. proportion correct) were .45 for the black
students and .73 for the white students. Further, in this item, ten percant of the white students
were strongly attracted to distractor C, which was probably the most difficult distractor to '
eliminate, due to the juxtaposition of "books”, "are” and "my". On the other hand, the black
students were heavily drawn to distractor D; thirty percent of the blacks students have chosen
that alternative. In the diagnosis of the source of the bias, distractor D seemed to be the source of
the bias, because the construction "Things people likes to do ..." is one which occurs frequently
in everyday "street” language of black children. Based upon this result, test-constructors might
revise distractor D into "People does not like to work too hard" and change the stem of the item
into "Pick out the sentence below that uses correct standard English”. These revisions provide
better directions to the student to discriminate between street language and correct standard
English. They also focus the student on the exact purpose of the item. However, the intent of the
original item has been maintained; the critical diagnosis of subject-verb agreement has been
preserved.

15




8 ‘ Chapter 1

Generally, the attractiveness of the alternatives depends on the insight a subject has into
the solution of the item. Some wrong alternatives appeal to subjects who do not know the
solution of the item; other distractors provide reasonable but wrong alternatives that might be
chosen according to partial knowledge of the solution of the item. Since the insight a subject has
into the solution of the item not only depends on the ability level of the subject, but also on the
difficulty of the item, the attractiveness of the alternatives will also depend on the difficulty of
the item. However, the probability of a subject responding correctly to an item not only depends
on the difficulty of the item, but also on the attractiveness of the correct alternative. If the
problem imposed by the item is relatively difficult, whereas at the same time the attractiveness
of the correct alternative is great, a subject with a low ability still has a good chance of
responding correctly to the item.

This means that a difference in functioning of a multiple-choice item may be caused by
the item difficulty, the attractiveness of the alternatives, or both. Therefore, in the decision
whether a multiple-choice item functions differently for equally able subjects, a distinction
should be made between DIF and DAF. In this dissertation the issue of simultaneously detecting
both types of item bias in multiple choice items will be addressed.

Before we discuss this issue in more detail (Section 1.6), we will first discuss methods for
detecting biased items (Sections 1.3 and 1.4) and methods for explaining why an item is biased
(Section 1.5).

1.3  ITEM BIAS DETECTION METHODS

At first sight the determination of DIF may scem to be simply a matter of comparing the
conditional proportion of correct answers or the proportions of incorrect alternatives for the two
groups. If significant differences in the proportion of correct answers are found for equally able
subgroups, DIF has been shown to exist. Analogously, DAF has been shown to exist if
significant differences in the conditional proportions of incorrect alternatives are found for
equally able groups.

Many detection methods have been proposed to find biased items (Baron, 1988; Berk,
1982; Osterlind, 1983; Rudner, Getson & Knight, 1980a, 1980b). Generally, these methods can
be divided into a group of unconditional methods and a group of the earlier conditional methods.
The difference between the two groups can be described as follows (Mellenbergh, 1985). In both
detection methods bias is regarded as an interaction between groupmembership and item
difficulty: The differences in item difficulty between groups is not constant for all items, and
items that deviate from the general trend are considered to be biased. Conditional detection

16




Introduction and overview 9

methods consider an item to be biased if the item is functioning differently for subjects with the
same ability. In the unconditional detection methods, however, the condition of equal ability of
the subject is not considered and are therefore based on a incorrect definition of DIF.

In order to give a complete (historical) survey of the item bias detection methods, both
unconditional detection methods and conditional detection methods will be briefly described and
discussed below. For a complete and detailed discussion of these methods, the above mentioned
references and the papers of Shepard, Camilli and Averill (1981) and Shepard, Camilli and
Williams (1984, 1985) are recommended.

1.3.1 Unconditional methods
There are two groups of unconditional bias detection methods: methods based on analysis of
variances (ANOVA) and those based on transformed item difficulties (TID).

In the ANOVA approach it is incorrectly assumed that the interaction effect of groups by
items on the variation in item scores, is a valid indicator of DIF. If the null hypothesis of no
significant interaction effect of groups by items is rejected, The existence of DIF is inferred.
Since for groups of unequal ability, however, item by group interaction will occur in completely
unbiased tests, it cannot be corncluded that the item shows DIF merely because the null
hypothesis is rejected. Hunter (1975) illustrated this problem by showing that items of different
overall difficulty will always "...show an item by group interaction in any situation in which the
two groups differ in achievement level” (p. 10). Examples of DIF detection studies with the
ANOV A methodology are those of Cardall and Coffman (1964) or Cleary and Hilton (1968) .

In the delta plot method of Angoff (1972; Angoff & Ford, 1973), also called the
transformed item difficulty (TID) approach, two sets of itcm p-values are computed, one for the
Focal group and one for the Reference group. Each p-value is transformed to normal deviates.
Then for each item in the test the pair of normal deviates is plotted in a bivariate scattergram and
a baseline is drawn from the lower left to the higher right. This baseline represents the best fit of
the scattergram and it will be used to gauge the amount of bias. The distance between a
particular item and the baseline will then be used to indicate the magnitude of DIF. Items which,
according to a method of outlier or residual analysis, deviate greatly from this line are regarded
as showing DIF. Sometimes the delta plot method is used as a post-hoc procedure to ANOVA,

One disadvantage of the delta plot method is that it will produce spurious evidence of
DIF unless the items are all equal in discrimination or the groups being compared do not differ in
average performance (Angoff, 1982; Hunter, 1975; Lord, 1977). To correct for these sources of
error, Angoff (1982) proposed to adjust the delta plot method for item-test correlation or to
match the groups on ability befo.ehand. In the latter case, the adjusted delta plot method would
be a conditional item bias detection method.

17




10 Chapter !

In the papers of Echternacht (1974), Jensen (1980), Rudner, Getson and Knight (1980a,
1980b) and Stricker (1981), several variations of the delta plot method can be found.

1.3.2 Conditional methods _

Both the delta plot method and ANOVA do not consider the ability level of the subjects directly,
which may lead to questionable decisions about the presence of DIF in items. For instance,
interactions of groups by items on the variations in item scores can occur in any test regardless
of DIF (Hunter, 1975). When a test in English is administered to students from different school
grades, the use of ANOVA would lead to the decision that the items show DIF. However, this
may be not correct, because school grade may be associated with the response 1o the test. In this
case & latent trait, such as an English language ability, may be used to explain the significant
interaction effect of groups by items.

In the remainder of this chapter, bias detection methods will be discussed that account for
the different ability of the subjects. In these methods the total number of correct scores on a test
is used as a measure of ability, and an item is defined to be functioning differently, if for all
subjects at the same evel of total number correct scores, the proportion of correct responses or
the proportion of incarrect alternatives is different for various groups of subjects.

These conditic nal bias detection methods can be divided into four groups: methods based
on chi-square statistics, on factor analysis, on distractor analysis and on item characteristics
curves (ICC).

In Chi-square methods (Marascuillo & Slaughter, 1981; Mellenbergh, 1982;
Scheuneman, 1979) the subjects are divided into a number of score levels according to their
scores on the test under study. To examine whether an item shows DIF, the proportions of
correct responses for the Focal and the Reference group are then compared within each score
level. In this technique for each score level an expected set of proportions of correct responses is
calculated for the two-way group membership by response contingency tables, assuming
independence. Then for each table Pearson chi-square statistics are calculated and summed up
across score levels. If the calculated chi-square is statistically significant, the item shows DIF.
Otherwise, the item does not show DIF. Essential in this technique is the absence of the use of
the distribution of correct responses across ability levels. Since there is a wide variety available
of statistical DIF detection methods based upon chi-square procedures, only the one that has
received a great deal of attention [ately will be discussed: the Mantel-Haenszel (MH) statistic.

The Mantel and Haenszel (1959) statistic, adopted for DIF analysis by Holland and
Thayer (1988), also compares the item performance of a Reference and Focal group, across
different score-levels. The MH procedure is as follows. First the subjects in the Reference and
Focal group are divided into subgroups at different score-levels. Then for each score-level for

18




Introduction and overview 1

both groups the odds ratio of the p-value is computed. Finally, it is tested whether for some of
the score levels, the odds ratio for the Focal and for the Reference group differs by a constant
factor o

q/(l-gp) = app/(l-py), forallk=1,..K

in which K denotes the number of score levels and py and gy denote the p-values in the Focal
and in the Reference group for each score level k. When ot is not significantly different from the
value one, it may be concluded that the item shows no DIF, which means that both groups
perform equally well on the item when their abilities are taken into account.

Let Ay and Cy; be defined as the number of subjects in the Reference group and Focal
group at score-level k who answered the item correctly. Finally, let By and Dy be similarly
defined for the number of subjects who answered the item incorrectly. The MH odds ratio
estimator is then defined as

Omh = Z(AgDy/Ny) / Z(BRCy/Ny)

where Z is the summation over all score-levels k (k=1,...,K) and N, is the total number of
subjects at scqre level k. To test whether the observed ouyp, is significantly different from one,
Mantel and Haenszel (1959) proposed the chi-square statistic MH-CHISQ with one degree of
freedom,

MH-CHISQ = (I £ Ay, - £ E(A)i - 0.5)2 / Z var(Ay),

where E(Ay) and var(Ay) denote the expected value and variance of Ay under the null
hypothesis that the factor Oyp, equals one. According to Holland and Thayer (1988) this chi-
square test offers a powerful test of the null hypothesis.

To summarize, the use of the MH statistic for DIF analysis can be viewed as an extension
of the ideas behind the chi-square procedures of Marascuillo and Slaughter (1981), Mellenbergh
(1982), and Scheuneman (1979). It provides not only a more powerful test for examining DIF,
but it also produces a measure of the degree of DIF showed by the studied item. Additional
details concerning the MH technique as used in educational testing can be found in Holland and
Thayer (1988), Linacre and Wright (1986), and Raju, Bode and Larsen (1987).

In Bias detection strategies based on factor analysis an attempt is made to explain the test
performance by underlying factors (i.c. dimensions or traits). Different sets of factor loadings for -
a Focal and a Reference group may indicate that the two groups are not responding to the items

13




12 Chapter 1

in the same manner. If that is the case, a test would be considered biased and the item with the
largest difference in factor loadings shows the most pronounced DIF. Examples of bias detection
methods based on factor analysis can be found in Green (1976), Green and Draper (1972) and
Merz (1973, 1976). The approaches of Green and Draper are attractive in the sense that item
variances are partitioned into culture-specific and culture-common sources, whereas Merz’s
approach has the advantage that variances attributable to racial, ethnic or gender factors can be
distinguished.

Despite the fact that the factor analytical techniques deal with the underlying abilities of
the examinees, these technigues are not recommended for the analysis of test bias or DIF. The
main reason is, that the decision problems that beset factor analysis in general are increased
when these techniques are applied to item bias. See Rudner and Convey (1978) and Rudner,
Getson and Knight (1980a) for a discussion of these problems.

The distractor response analysis approach focuses on the differential attractiveness of the
distractors. If a significant test reveals that the equally able Focal and Refercnce group are
differently attracted to an item distractor, the null hypothesis of no difference in the groups’
relative frequency distribution for distractors may be rejected, and it may be concluded that DAF
exists. Just like the chi-square approach, in the distractor strategy a conditioned difference in
proportions is examined. In the papers of Green, Crone and Folk (1989) and Veale and Forman
(1983) some applications of this approach are given. For instance, Green, Crone and Folk
perform a loglinear analysis of the subgroup by number correct score by distractor contingency
table for each item. They test the null hypothesis that the interaction between subgroup and
distractor is not needed to explain the observed item responses. If the data cannot be explained
without the interaction of subgroup by distractor, they define the item to show DAF. In a similar
approach, Veale and Foreman define an unconditional model that incorporates parameters
representing (a) achievement differences across groups and (b) differences in alternative
difficulty. Their method also provides information about the source of the bias, so the item may
be revised to eliminate the bias, rather than eliminating it.

Finally, the ICC approach for the detection of DIF is derived from the item response
theory (IRT). Since the contents of this dissertation is focused on this approach, it will be
discussed separately in Section 1.4.

1.3.3 Comparison of the item bias detection methods

Comparative studies of the above item bias detection methods (Ironson & Subkovak, 1979;
Rudner, Getson & Knight, 1980a; Shepard, Camilli & Averill, 1981; Shepard, Camilli &
Williams, 1984, 1985) show that the examination of item bias is improved when methods take
the ability into account. Furthermore, methods based on IRT appear best, the delta plot method is
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Introduction and overview

poorest and the chi-square methods are in between (Baron, 1988). The delta plot method is
acceptable, however, when the differcnce in ability between the Focal group and the Reference
group is small and DIF is more the result of the difficulty of the item rather than of its
discriminating power. Furthermore, on both logical and empirical grounds (Ironson & Craig,
1982; Shepard, Camilli & Averill, 1981), Scheuneman’s (1979) earlier chi-square method has to
be replaced by the full chi-square procedure. Finally, the IRT method is preferred theoretically
(Lord, 1977; Petersen, 1977), but in some cases it is not better than the chi-square method. The
Monte Carlo study of Rudner, Getson and Knight (1980b), for example, shows that both the
three-parameter logistic model and the chi-square method with five score-levels produced fairly
accurate results under all investigated conditions. Moreover, comparative studies of the Mantel-
Haenszel procedure and a procedure based on IRT models showed that, under the Rasch model,
the identity of ICCs across groups of subjects implies that the MH null hypothesis is met
(Holland & Thayer, 1988). However, identity of the ICCs does not imply that the MH null
hypothesis is met when the item response functions are monotonic and where local independence
holds (Zwick, 1990). For example, when each item has the same item response function in the
Focal and the Reference group and the ability distributions are ordered, the MH procedure will
show DIF which, moreover, favors the group with higher ability.

1.4 ITEM BIAS DETECTION BASED ON ITEM RESPONSE THEORY
AND LATENT CLASS ANALYSIS

As mentioned before, in this section DIF detection will be approached from an item response
theory (IRT) perspective. In Section 1.4.1 the basic ideas underlying IRT will be discussed.
Then, in Section 1.4.2, DIF detection methods based on IRT models will be discussed. Finally,
the latent class model will be discussed.

1.4.1 Item Response Theory

Over the last twenty years DIF detections methods have been proposed that are based on IRT.
An IRT model describes the probability of a correct response to a dichotomous item as a
mathematical function of person and item characteristics. These functions are known as the item
characteristic curves (ICCs). The simplest IRT model is the following Rasch (1960/1980) model,
which has only one item parameter (the difficulty parameter):

(L.1) P(Yj: 118) = cxp(e-ﬁj)/(l + cxp(@-ﬁj)) .
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in which P(Yj:lle) is the probability of a correct answer to item j of a subject with ability 8 and
5 j is the difficulty parameter of item j. The Rasch model is a special case of the following three-
parameter logistic model (Bimbaum, 1968)

(1.2) P(Yj=118) = ; + (1-) exp(e(O-8;)V[1 + exp(o5(®-5;)

where @ and ¥ are the item discrimination and guessing parameter, respectively. The guessing
parameter ¥; can be seen as the probability of a correct response to item j if © — - oo, Examples
of other IRT models are the two-parameter logistic model (Maxwell, 1959), the partial credit
model (Masters, 1982), the linear-logistic model (Fischer, 1973; Scheiblechner, 1972) and the
normal ogive model ( Lord, 1980; Lord & Novick, 1968). This list is not exhaustive. The only
IRT model addressed in this dissertation is the Rasch model.

One of the common assumptions in IRT is the unidimensionality of the ability space.
Unidimensionality is undetstood to mean that the number of abilities that accounts for the
subjects’ performance on the test equals one.

Another common assumption in IRT is the local independence of items, which means
that for a fixed subject, response on any item is independent of the response on the other items in
the test. Consider, for example, a test consisting of k items, where each has two response
categories: incorrect (0) and correct (1). Further, let Yj denote the observed response on item j
(=1,...,k) and let the response pattem of a subject on all k items be denoted by Y=(Y 1400 Y-

Then the probability P(Y=yl8) that a subject with ability ® will have response pattern y on the k
items is equal to

(1.3) P(Y=yl0) = P(Y]=y10) ... P(Yy=yk!0) .

Thus local independence means that the simultaneous probability is the product of the
independent item probabilities.

One of the main features of the Rasch model is that the equations for the estimation of
the item parameters can be obtained independently of the ability parameters, and vice versa
(Fischer, 1974, 1987; Glas, 1989). Finally, Fisher's information can be used as a measure for the
accuracy of a test at ability level 8, because it is inversely proportional to the asymptotic
standard error of the maximum likelihood ability estimates at this ability level (Lord, 1980).

1.42 DIF and IRT Models
With IRT an unbiased item can be defined as follows: An item is unbiased if the ICCs for the
various groups are identical. Conceptually, this definition and the definition of DIF as mentioned
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in Section 1.2 are alike. Mathematically, this definition implies that an item shows DIF if the
ICC is different for any subgroup. This means that, in the Rasch model, the probability of a
correct response to item j in subgroup i (i=1,...,g) is equal to

(1.4) p(Ylj=l 10) =exp(® -Sij)/[ 1 +exp(® -5 |j)] ,

in which P(Yij=ll9) is the probability of a correct answer to item j of a subject with ability 0
from subgroup i, and sij is the difficulty parameter of item j in subgroup i. If the item is
unbiased then the difficulty parameter sij is equat over all subgroups, i.e. sij = Sj for fall
subgroups i.

Since for a chosen IRT model the ICCs are determined by the item parameters, the
statistical question in DIF detection is whether the item parameters for the Reference and Focal
groups differ significantly. An item is said to be biased if the difference between the item
parameter estimates for the Reference and Focal groups is significant under a certain IRT model.
In view of the variety of IRT models and approaches to parameter estimation and hypothesis
testing, there are different approaches for the detection of significant differences between ICCs.
Some of these methods are based on marginal maximum likelihood estimation (Thissen,
Steinberg & Gerhard, 1986; Thissen, Steinberg & Wainer, 1993), others on the loglinear
formulation of the Rasch model (Kelderman, 1989; Kelderman & Macready, 1990) or on
generalized least square estimation (Muthén & Lehmann, 1985). In all three approaches
likelihood ratio tests are used for the evaluation of the significance of the observed differences
between two groups. A fourth detection method is also based on marginal maximum likelihood
estimation, but here the ratios of the parameter estimates to their standard errors are used to test
whether the item parameters differ significantly across groups (Bock, Muraki & Pfeiffenberger,
1988; Muraki & Engelhard, 1989). In Thissen, Steinberg, and Wainer (1993) a good survey of
these detection methods is given. They conclude that each of the four methods implements
estimation and hypothesis testing for distinct subsets of IRT models and that they perform as
expected when the model is appropriate for the data. Therefore, the choice between these four
methods must be made with respect to the assumptions of the model.

In the literature there are also entirely descriptive IRT based bias detection methods
(Hambleton & Swaminathan, 1985; Linn, Levine, Hastings & Wardrop, 1981). In most of these
methods the area between the ICCs of the Focal and Reference group is used to examine the
existence of DIF (Raju, 1988; Rudner, Geston & Knight, 1980a, 1980b; Shepard, Camilli &
Averill, 1981; Shepard, Camilli & Williams, 1984). The paper by Raju offers formulas for
computing the exact area between the two ICCs of the one-, two-, and three-parameter models
under the restriction that the guessing parameters are equal for both ICCs. In the other references
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the area between the ICCs of the two groups is computed by integration over an ability interval.
The use of the area between two ICCs for DIF detection may be worthwhile. However, most of
these methods are not associated with any inferential statistics that can be used for DIF detection.

1.4.3 Latent Class Models

In most cases it is assumed that the ability parameter 6 is a continuous latent variable. However,
there are also response models for which it is assumed that the latent space is discrete. These
models are known as the latent class analysis (LCA) models. Thissen and Mooney (1989) wrote:
"IRT modelis are developed as tools for measurement, whereas LCA models are presented
primarily as structural models for observed item response data. ... The crucial difterence between
IRT models and LCA models is that IRT models are based on the relationship of the probability
of a particular item response with a continuous latent variable” (p. 300-301).

Each point in the discrete latent space corresponds to a latent class. The probability of a
positive response of a subject to each of the items is completely specificd by these latent classes
and the conditional probabilities of a correct response to the item, given the subject’s
membership in the latent space. In contrast to IRT models with continuous latent traits, no
specific functional form is assumed for the conditional probabilities. .

Justas in the IRT case, local independence is assumed in LCA, which means that within
a latent class the responses to items are all independent. For example, consider again a test
consisting of k items, where each has two categories: incorrect (0) and correct (1), respectively. '
Let Yj denote the observed response on item j (j=1....,k) and let the responsc pattern of a subject
on all the k items be denoted by the vector Y=(Y},....Yk). Further, let T denote the number of
latent classes, X be the random variable associated with the latent classes, P(X=x) be the
probability that a subject will be in the xzh latent class (x=1....,T) and P(Y j=yjIX=x) be the
conditional probability that a subject will score response category ¥j (yj=0.l) given that the
subject is in the xth latent class. Then the probability P(Y=y) that a subject will have response
pattern y on the k items is in a LCA model equal to

(1.5) P(Y=y) = £ P(X=x) P(Y | =yIX=x) ... P(Yy=y}!X=x) .
X

in which Z, is the summation over all latent classes x (x=1.,....T).

For the detection of bias, Model (1.5) has to be extended to include a variable which
denotes group membership. Let i (i=1....,8) denote the group membership of a subject, then the
probability that a subject from group i will have response pattern y is equal to
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(1.5) P(Y=yli) = £ P(X=xli) P(Y =y i.X=x) ... P(Yg=ypli, X=x) ,
X

in which P(X=xli) is the probability that a subject from group i will be in the xzh latent class and
P(Y | =y1li,X=x) is the conditional probability that a subject will score in response category Yjr
given that the subject is in the xh latent class and in group i.

If the marginal distribution of subjects over the latent classes is equal over all groups,
then P(i,x) = P(x) for all groups i. If the association between item j and the latent classes is equal
in all groups, then P(Yj=yjli,X=x) = P(Yj=yle=x) for all groups i and latent classes x. If this is
the case, then item j shows no DIF (Clogg & Goodman, 1985; Mellenbergh, 1985, 1989).
However, item j shows DIF if the marginal probability P(Yj=1.i) is not equal in all groups i.

1.5 RESEARCH STRATEGIES FOR THE EXPLANATION OF ITEM BIAS

Traditionally, most of the previous mentioned item bias detection methods focus on the detection
of biased items. Only a few item bias detection methods also try to examine why an item is
biased. For example, item bias detection methods based on distractor analysis not only yield
information about whether an item is biased, but it also provides information about which
alternative of the item was likely to be responsible for the bias (Green, Crone & Folk, 1989;
Veale & Foreman, 1983). However, these item bias detection methods are not among the best
detection methods. The method of Green, Crone and Folk, for instance, is not based on an IRT
model and the method of Veale and Foreman does not control for ability.

Of course there are several research strategies to explain item bias, but not all of them
have been applied in empirical research. For instance, Ackerman (1992) suggested to explain
item bias frcm a multidimensional perspective. The idea behind his strategy is that "if two
different groups of subjects have differcnt underlying multidimensional ability distributions and
the test items are capable of discriminating among the levels of abilitics on these multiple
dimensions, then any unidimensional scoring scheme has the potential to produce item bias” (p.
67). Ackerman’s strategy can be viewed as an extension of the strategies of Kok (1988) and
Shealy and Stout (1991). Kok presented a mathematical model to explain how DIF can occur
because of multidimen-ionality, and Shealy and Stout presented a detailed theoretical analysis of
DIF from a similar perspective as Kok.

In Smith and Camilli (1988) the question “What caused the bias?" is replaced by the
question “Who caused the bias?". The idea behind their strategy is that it is not always the group
as a whole that causes the bias, but a recognizable subgroup within the disadvantaged group. For
example, suppose that the correct answer of an item is B, but that a highly plausible distractor is
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C. Impulsive subjects may then be much more likely to select C and will not look further. If
impulsiveness is more prevalent in one group than in the other, the item may show DIF. So, if
DIF can be explained by certain characteristics of some subjects in the disadvantaged group,
then it should be possible to identify these aberrant subjects and examine how these subjects
differ from the other subjects in the group. Explaining DIF from the perspective of the subject is
not usually done. However, it is a strategy which should not be neglected, because DIF involves
not only the test items, but also the test takers (Linn & Harnisch, 1981).

In order to summarize, bias may be explained by either qualitative, correlational, quasi-
experimental or experimental strategies (Mellenbergh & Kok, in press). The differences between
these strategies can be described as follows. In the qualitative strategy a study is made of either
the item content or the subjects’ cognitive process when answering the item, whereas in the
correlational strategy the relations between the item responses and variables of interest are
studied. Examples of these variables may be subjects characteristics or item characteristics.
Furthermore, in quasi-experimental studies either the predetermined groups of subjects or the
predetermined groups of items are compared. Finally, in experimental studies the subjects
characteristics or the characteristics of the items are manipulated. Examples of the applications
of these strategies can be found in Lucassen and Evers (1984), Scheuneman (1987), Subkoviak,
Mack, Ironson, Craig (1984) and Van der Flier (1982) respectively.

A problem of the above item bias research strategies is that all of them are follow-up
analyses. One of the item bias detection methods has to be used to detect the biased items, and
only then one of the research strategies can be used to examine "What" or "Who" caused the bias
or to examine the bias from a multidimensional perspective. This makes the examination of item
bias not only difficult and problematic, but also inefficient. Therefore, a development of DIF
detection methods that give more information about the nature of DIF may be appreciated.

1.6 TOPIC OF THE DISSERTATION

In the previous sections several questions were raised. In the first place, bias in multiple-choice
items may be caused by a combination of the difficulty of the item and the attractiveness of the
alternatives. In nearly all of the existing item bias detection methods, however, only one type of
bias at the time is considered.

Secondly, although item bias can be defined and biased items can be detected, only minor
attention has been given to the explanation of the bias factor. In practice, biased items were
removed from the test and the test was claimed to be fair with respect to the groups investigated.
The advantages of knowing why an item is biased, for test construction, has been neglected for a
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long time. However, in the last decade researchers have become aware of the fact that
knowledge about factors causing bias can prevent the occurrence of biased items in new tests.
This consideration has resulted in several research strategies for the examination of item bias.
These research strategies, however, are not only difficult and problematic to apply, they also
consider one type of item bias at the time and are therefore inefficient. In this study we will
propose an item bias detection method that makes it possible to test whether an item shows DIF,
DAF, or both.

As far as we know there are only a few IRT models that make it possible to distinguish
between DIF caused by the difficulty of the item and DIF caused by the attractiveness of the
alternatives. A model that may come first to mind is the three-parameter logistic model.
However, the guessing parameter (i.e. ) of this model denotes the attractiveness of the correct
alternative, whereas (1-y) denotes an overall attractiveness of the distractors. So the three-
parameter logistic model does not account for differences between the attractiveness of the
different distractors. Other models which can be used are the multiple-choice model of Thissen
and Steinberg (1984), the model of Lord (1983) or the solution-error response-error model of
Kelderman (1988). All three models not only concentrate on the observed responses, but also on
the process leading to these observed responses. In this way it should not only be possible to test
whether an item is biased, but also to get more information why an item is biased. For example,
before a subject responds to a multiple-choice item, (s)he must first recognize and solve the
problem imposed by the item, and then choose one of the alternatives. At each level of this
process there may be danger of bias. For instance, the probability that a subject can recognize
and solve the problem depends on the difficulty of the item, which may vary across different
subgroups. If this difficulty is not equal for different subgroups, then the item shows DIF.
Furthermore, whether or not the subject has solved the problem, (s)he has to select one of the
alternatives, and this may depend on the attractiveness of the alternatives. If the attractiveness of
the alternatives differs for subjects from different subgroups, then the item shows DAF. In this
study the solution-error response-error model (SERE) of Kelderman (1988) is used to examine
both types of bias. Since the SERE model will be formulated and discussed more extensively in
Chapter 2, only a brief description of the model is given here.

The SERE model is a loglinear Rasch model with latent classes and can be regarded as a
two-process model. The first process determines whether or not a subject will be able to solve
the problem imposed by the item. For this process, in the SERE model a distinction is made
between a "Know" state, in which the subject has complete knowledge of the solution to the
item, and a "Don’t know" state. The probability that the subject is in the "Know" state rather than
the "Don’t know" state is assumed to be governed by the Rasch model. The responses of the
solving process will be referred to as idealized responses or latent responses.
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In the second process the answer of the subject on the item is determined. Whether or not
the subject is in the "Know" state, (s)he has to choose one of the alternatives of the item. If the
subject does not know the solution to the item, the choice of an alternative may depend on the
attractiveness of the alternatives, which may be different for different alternatives, including the
correct one. On the other hand, if the subjects is in the "Know" state, it may be expected that the
correct answer will be chosen. However, the subject may choose also one of the distractors
because of a writing error.

The observed responses are the result of the second process. In the SERE model the
relationship between the latent responses and the observed responses-are modelled by
conditional probabilities. Since these conditional probabilities indicate the attractiveness of the
alternatives, we will refer to these conditional probabilities as attraction parameters.

The SERE model can be seen as Macready and Dayton’s (1980) extension of Goodman’s
(1975) model for scaling response patterns, but in which the deterministic Guttman (1950) model
is replaced by the Rasch model. The SERE model is akin to the latent trait models of Lord
(1983) and Thissen and Steinberg (1984). In these models it is assumed that subjects in the
“Don’t know" (Thissen & Steinberg, 1984) or "Undecided” (Lord, 1983) latent state arrive at an
observed response by guessing. However, the SERE model is a more general model (Kelderman,
1988).

Furthermore, the SERE model represents one of the efforts to relate IRT models to LCA
models. Other efforts were made by Bock and Aitkin (1981), Dayton and Macready (1980),
Formann (1985), Kelderman and Macready (1990), Mislevy and Verhelst (1990), Rost (1990,
1991) and Yamamoto (1987, 1988). In all these models an attempt is made to combine the
advantag -s of the IRT and LCA models into one single model so that more information on the
knowledge of the subject can be obtained. For example, with LCA models it is possible to make
a statement about the subjects’ cognitive structure of understanding and misunderstanding a
certain ability, such as arithmetic, foreign language and so on. Furthermore, LCA models have
the advantage that the theory for maximum likelihood estimation and likelihood-ratio testing are
well developed. On the other hand, with IRT models it is possible to attach scale values to
subjects that represent the ability of the subject. The combination of the advantages of the IRT
models and the LCA models into one model is very interesting for the study of DIF.

1.7 OVERVIEW OF THE FOLLOWING CHAPTERS

In Chapter 2 we will show that the SERE model can be used for examining DIF in multiple-
choice items through a combination of the usual notion of DIF for correct/incorrect responses
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and information about DIF contained in each of the alternatives. In the method proposed
incomplete latent class models are used to examine whether DIF is caused by the attractiveness
of the alternatives, the difficulty of the item, or both.

As Kelderman (1988) has shown, parameter estimates can be computed when the
programs LCAG (Hagenaars & Luijkx, 1990) and LOGIMO (Kelderman & Steen, 1988) are
used. The underlying estimation method of these programs, however, becomes unpractical when
the number of items is large. In Chapter 3 a method of parameter estimation is described that is
based on dividing the whole item set in several subsets. We will show that, dependent on the
number of items in each subset, the parameters of the SERE model can be estimated much more
efficiently, both in terms of computer storage and processing time needed. Since information
about the joint relationships among the items may be lost when the set of items is divided into
subsets, the estimators of the parameters will, however, not be efficient.

Chapter 4 contains a simulation study of a DIF detection method based on the SERE
model with an examination of the estimation method introduced in Chapter 3. The main
questions considered are: (1) Can DIF still be detected if the number of items or the number of
subjects is small?; (2) How do the values of the parameter estimators differ from the true
model?; (3) Is this deviation consistent in the sense that the differences tend to decrease when the
number of subjects increases?

The SERE model as described in Kelderman (1988) and Chapter 2 deals with a one-
dimensional continuous latent trait. The production of one altcrnative response may, however,
require quite another ability from the subject than the production of another answer. Besides,
some responses may require the repeated application of an ability, whereas others may require
only a single application of that same ability. This would mean that, although a multiple-choice
item has one correct alternative, incorrect responses might often be chosen after cognitive
activities similar to those necessary to arrive at the correct response. Therefore, in Chapter 5 the
SERE model is generalized to a multidimensional polytomously scored latent response model.
When this generalized SERE model is used, it is not only possible to detect both types of DIF,
but also to explain DIF according to the ideas of Ackerman (1992), Kok (1988) and Shealy and
Stout (1991). However, this point will not be further pursued in this dissertation.

Chapter 6 contains the summary of this dissertation as well as an overview of features of
the on the SERE model based DIF detection methods that need further investigation.
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Chapter 2

THE EXAMINATION OF DIFFERENTIAL ITEM
FUNCTIONING DUE TO ITEM DIFFICULTY
AND ALTERNATIVE ATTRACTIVENESS*

2.1  ABSTRACT

A method for analyzing test item responses is proposed to examine differential item functioning
(DIF) in multiple-choice items through a combination of the usual notion of DIF for
correct/incorrect responses and information about DIF contained in each of the alternatives. In
the method proposed incomplete latent class models are used to examine whether DIF is caused
by the attractiveness of the alternatives, difficulty of the item, or both. DIF with respect to either
known or unknown subgroups can be tested by a likelihood ratio test statistic which is
asymptotically distributed as a chi-square random variable.

2.2 INTRODUCTION

Items in educational or psychological tests may show differential item functioning (DIF). This
means that the probability of a correct response among equally able test takers is different for
various racial, ethnic, or gender subgroups. An educational or psychological test consisting of
many items with significant DIF may be unfair for certain subgroups, and it is important to
identify these items, so that they can be improved or deleted from the test. Many DIF detection
methods have been proposed since Binet and Simon (1916) drew attention to this problem.
Reviews of previous DIF (also called item bias) detection methods are given by Berk (1982),
Osterlind (1983), and Rudner, Getson and Knight (1980a).

. This chapter is a slightly revised version of P. Westers & H. Kelderman (1992). Examining Differcatial Item
Functioning Due to Item Difficulty and Altcrnative Attractiveness. Psychometrika, 57, 107-118. Printed by
permission of the publisher.
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In the last decade, the DIF detection methods have been improved to provide a better
basis for matching on ability. In various methods the number correct score of the test has been
used for this ability matching (Holland & Thayer, 1988; Mellenbergh, 1982; Scheuneman,
1979). Recently, DIF detection methods have been proposed which are based on item response
theory (IRT) (Baker, 1977; Lord, 1980; Mellenbergh, 1989; Muthén & Lehmann, 1985; Wright,
Mead, & Draba, 1975). Thissen, Steinberg, and Wainer (1993) give an overview of IRT-based
DIF detection methods and demonstrate their use. They also discuss DIF detection methods
which can be used with multiple choice items, where the response alternatives are also potential
sources of DIF.

Green, Crone, and Folk (1989) focus on the differential attractiveness of the incorrect
responses (or "distractors”). If a particular distractor is more attractive to subjects from one
subgroup than from another, Green et al. conjecture that "...the item probably means something
different to the different groups” (p. 147). They perform a loglinear analysis of the subgroup x
score group x incorrect response contingency table for each item, to detect distractors that are
more popular in one subgroup than in another. A similar approach of Veale and Foreman (1983)
is based on the notion that examinees’ responses to the incorrect alternatives provide more and
beiter information conceming DIF than their responses to the correct alternative. Their model,
called the overpull probability model, incorporates parameters representing (a) achievement
differences across groups and (b) differences in alternative difficulty. Their proposed method
also indicates the likely source of the bias so that the item may be revised to eliminate the bias
rather than discarding the item. The methods proposed by Green et al. and Veale and Foreman
have certain drawbacks; the Green et al. method, for example, is not based on an IRT model and
the Veale and Foreman method does not control for ability. In the DIF detection method
proposed in this chapter these two problems are avoided.

Another source of DIF in multiple choice items deals with the differential difficulty of
the problem to be solved. An item may show DIF if it is more difficult for some subgroup than
for others, even if they are equally able on the trait of interest (Lord, 1980; Rudner, Getson, &
Knight, 1980a). In this chapter a DIF detection method is described that separates both sources
of bias. In the proposed method, a distinction is made between a "Know" state in which the
subject has complete knowledge of the answer and a "Don’t know" state. Furthermore, it is
assumed that if the subject is in the "Know" state, (s)he will give the correct answer. Here the
probability that the subject is in the "Know" state is assumed to be govemned by the Rasch
(1960/1980) model. If the subject is in the "Don’t Know" state, (s)he will choose the most
attractive alternative, where the attractiveness of an alternative may be different for various
alternatives, including the correct one.
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The proposed DIF detection method differs from that of Thissen, Steinberg, and
Fitzpatrick (1989), who distinguish between a "Don’t know" state and a state in which the
subject has partial or complete knowledge of the answer. In the "Don’t know" state, the subject
guesses the answer as before, but in the "Partial knowledge" state (s)he may select a response
alternative according to response probabilities that are governed by Bock’s (1972) nominal
response model.

The proposed method is simpler than that of Thissen, Steinberg, and Fitzpatrick (1989).
This simplicity has two advantages. In the first place, the method proposed here contains fewer
parameters; for example, for a four-choice item the proposed model has five item parameters,
while the model of Thissen et al. has fourteen. Obviously, if the sample is not very large, the
parameters of the model by Thissen et al. cannot be estimated reliably. So, in that case, one may
be inclined to "buy information by assumption” and use the simpler model. Secondly, the
proposed model can be easily formulated as a latent class analysis (LCA) model (Kelderman,
1988). LCA models have been used extensively for measurements in sociology, psychology, anc
education (Clogg, 1981). There is a well-developed theory for maximum-likelihood estimation
and likelihood-ratio testing of the LCA models (Goodman, 1978; Haberman, 1979; Lazarsfeld &
Henry, 1968). By comparing the fit of different LCA models, DIF in the attraction of the
alternatives and DIF in the parameters of the Rasch model can be tested separately (Kelderman,
1989; Kelderman & Macready, 1990). The model can also be extended to latent classes, so that
the subgroups for which an item shows DIF may be latent.

A model for multiple choice items is developed below and formulated within the latent
class framework. Different models for the detection of DIF are formulated, including a provision
for the definition of the subgroup as a latent variable. A computationally efficient estimation
method is described and illustrated with empirical data.

23 A MODEL FOR MULTIPLE-.CHOICE ITEMS THAT ACCOUNTS
FOR THE SELECTION OF EACH ALTERNATIVE

Let us suppose that each subject, randomly drawn from a population of subjects, responds to k
test items, where the answer to item j may be any one of the rj responses, denoted by ¥j
(yj=l,...,rj). Let X indicate the latent response of the subject, taking values Xj=l if the subject is
in the "Know" state (i.e. the subject has complete knowledge of the answer), or xj=0 if the
subject is in the "Don’t know" state. The random variables associated with Yj and x; are denoted
by Yj and Xj (j=1.....k), respectively.
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The relationship between the latent response X and the observed response ¥j is described
by the conditional probability

@n (bx Yj = P(yjlxj)

XY

in which the superscripts, in symbolic notation, indicate that the random variables X and Yjare
involved in the conditional probability. For the sake of simplicity, the notations ¥j» Xj» et cetera in
the probabilities are used for Yj=y;» Xj=x;, et cetera.

The assumption is that if the subject has complete knowledge of the answer (x 1), the
correct alternative is chosen; that is, (D)I(J J must equal 1 if ¥j is the right altematlve and 0 if ¥
is the wrong alternative. If the subject is in the "Don’t know" state (xJ—O). ¢>0.| J can take on
any value from O to 1 as long as the sum of the probabilities for all values of ¥j (1 through r; ) is
1. The latent responses are assumed to be governed by a one-parameter-logistic model (Rasch,

1960/1980), in which the probability of a latent response x;, given that the subject has ability 0,
is

2.2) P(lee) exp(x ©- 8_,))/[1 +exp(8-9; )]

and 8 j is the difficulty of item j.

Assuming that ¥j only depends on X and that Xj only depends on the latent ability 8, we
have

2.3) P(yj18) = «be J+<b’fj Jexp(e -8;)V1+exp(@-8)] .

In the foregoing, we indicated that an item shows DIF if the probability of a correct response
among equally able test takers is different between subﬁoups With respect to (2.3), this means
that if item j shows DIF, the attraction parameter & .l J and/or the difficulty parameter 8

did not have the same value for all subgroups. So the {wo sources of DIF (attractiveness of the
alternatives and difficulty of the item) are well-defined by the model.

In order to formulate a complete model, the response pattern of a subject on all the items
in a test is denoted by the vector y=(y{....,y). The vector of latent responses of a subject is
denoted by x=(xj,....xk). The corresponding random variables are denoted by Y and X.
Furthermore, F(@) denotes the continuous distribution function of the latent ability 6,
8=(81.....8) the vector of item difficulties and t=x1+...+xy the number correct score. With the
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use of (2.1), (2.2), and the assumption of local independence of the ¥j and X variables, the
marginal probability of the observed responses y can be written as

24) P(y) = Ej P(ylx, 0) P(xi{0) dF(8)
X

k vy k i
=Z[0 & )0) lexp(-Z xJ-Sj) fexp(tG)C(G.S)'ldF(e) ,
x j=1 %) =177

in which

k
C©8)= T [1+exp(@-3)).
J=

and X, is the summation over all possible latent response patterns X=(X] e Xk )-

In order to detect DIF in multiple-choice items, (2.4) must be extended to include
subgroups. In order to keep the main idea of this section in proper perspective, subgroups have
been ignored so far but they will be considered in a later section.

In the next section we will formulate the model as an incomplete latent class model. The
integral in (2.4) will then be absorbed into a latent class parameter that depends only on the
number correct score t, which implies that it is not necessary to specify the distribution function
F(0) any further.

2.4 THE MODEL WRITTEN AS AN INCOMPLETE LCA MODEL

Kelderman (1988) showed that the model in (2.4) is an incomplete latent-class model in the
sense of Haberman (1979, chap. 10).

-y oToXl  ofk oX1Y1 _ ¢pXkYk
@.5) P(y) ;Ltbttbi(l ~RkoXIN ok k.

with
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-

7 = exp(18)C(0,5) 14F(®) ,

-00

and for j=1,....k,
X o 5
d xj‘ = exp(-xJSJ) .
and in which the at t ract ion parameters are subject to the restrictions
2.6) o5 +.+ X5 =1, (=1,...k).
J J)

In this model, each value of x represents a latent class. The model in (2.5) is incomplete, because
for certam given values of X only a limited number of combinations (Y1.....Yy) are possible.
Since d> depends on an underlying latent trait distribution F(8), these parameters are subject to
the followmg complex inequality constraints (Cressie & Holland, 1983; Kelderman, 1984):

T yq
det(ud) II 1_0 )= 0,

and
det.(l @ +s+l" rS_0)>0
in which
{ k2 if k is even,
q =
! &-1)12 ifk is odd,
{ &-2)12 if k is even,
27 | @nn if k is odd,

and det.(l - I? s =0) defines the determinant of a matrix with row index r and column index s,
both running from zero to q.
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Since it is not our objective to fit a model for the data, but only to decide if a certain item
shows DIF, we will follow Cressie and Holland and ignore these inequality constraints. The
resulting model, the so-called generalized Rasch model, provides an easy way to decide whether
or not an item shows DIF. The generalized Rasch model is also equivalent to the “conditional”
Rasch model; that is, a Rasch model in which there is a conditioning on the number correct score
(Kelderman, 1984). The incomplete table methodology can be used to formulate several
hypotheses about DIF by specifying altemative models that contain additional subgroup-
dependent parameters.

2.5 TESTING FOR DIF BY RELATED LCA MODELS

An item can show DIF in two different ways. First, as indicated before, an item shows DIF if
equally able individuals from different subgroups have different probabilities of "Knowing" the
answer. This will be referred to as DIF in the latent response. It was assumed earlier that if
subjects are in the "Know" state, they will choose the correct alternative. But if subjects are in
the “Don’t know" state, they may choose any of the alternatives. Therefore, an item also shows
DIF if the attractiveness of the alternatives varies from subgroup to subgroup conditioned on
ability. This will be referred to as DIF in the attraction parameters or differential alternative
functioning (DAF).

In order to detect DIF, the model in (2.5) is reformulated as

. IT ,IX X +IX1Y X1 Y
2.7 Pvi) = £ MO @0k 0171 @Kk,
@D o) x X ixg T 1x1y] IXKkYk

in which P(yli) is the conditional distribution of observed response y given observed subgroup i
(i=1,....g) and each term on the right side is equal to the corresponding term on the right side of
(2.5), extended with the subgroup.

In the model in (2.7), all items are considered to show DIF both in the latent response and
the attraction parameters. If some items show DIF neither in the latent response nor in the
attraction parameters, the $parameters for these items are restricted. If, for example, in a
certain model Item 1 shows no DIF in the latent response, the ® R‘ll parameters are restricted in
the following manner

Xi_ _ IX}
Cblxl-—...—d’gxl .

,
{
<o
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In the next subsections, models are formulated for the study of the two types of DIF.

2.5.1 DIF in the Latent Response
In order to test whether the interaction between subgroup i and the latent response to Item 1 is
zero (i.e. whether Item 1 shows DIF in the latent response), an alternative model is formulated as

. IT X1 4X9 Xt +X1Y X1 Y
2.8 P(yl q>ld>2d>kq>11..q>kk.
28, oh) = 'b Ix] Tx2™ Txg X1y XkYk

The model in (2.8) can be obtained from (2.7) by setting all ®-parameters, excluding the
difficulty parameter of Item 1, equal for all subgroups:

IX: X; _ X .
‘blx _tng _tbx (G=2....k)
and
IX;Y; IX:Y; X;Y; :
Y == =¢ =1,...k
Iy’ = = Paxyy = Pl G=tnd
This alternative model is compared with
. IT ;. X X1 £ X1Y XY
29 Pl—thtbltbktbll 0Kk
@9 i X1 Xk X1y XkYk

in which all & parameters are set equally across subgroups. If a statistical test of the difference
between the models is significant, we may conclude that the difficulty of Item 1 varies from
subgroup to subgroup. In this case, subjects in one subgroup may find it more difficult to solve
the problem than subjects in another subgroup.

2.5.2 DIF in the Attraction Parameters

In order to test the null hypothesis that the interaction between the subgroup and the observed
response to Item 1 is zero (i.e. whether Item 1 shows DIF in the attraction parameters), (2.9) is
compared with the altemative model

. IT Xi alX1Y] aX2Y Y
2, = L oXk plX1Y1 gX2Y2 LKk
(2.10) POl = % 0 cbx ok o 1X100272 . ar

37




Multiple Choice Items

in which, similar to (2.8), all @parameters, except for the attraction parameters for Item 1, are
set equal across subgroups. If the statistical test is significant, we may conclude that the
attractiveness of the Item 1 alternatives varies from subgroup to subgroup. In (2.8) and (2.10)
the ®-parameters are specified to test for DIF for only one item. Obviously, similar model ten
can be specified for two or more items if necessary. It is also possible to define models in whi
one item shows DIF in the latent response and another (or the same) item shows DIF in the
attraction parameters.

2.6 PARAMETER ESTIMATION AND MODEL TESTING

Let Dixy be the number of individuals in subgroup i with X=x and Y=y under a certain mode!
and let mjxy be the expected value of njxy. Although njyy is not observed, it is possible to
estimate the expected value Mixy of Dixy» and the ®-parameters from the observed Njy (or ny
the subgroup is unobserved) by the method of maximum likelihood. To illustrate this, consid
the model in (2.7). The likelihood equations for (2.7) would be (Haberman, 1979):

o b, medd =RDY Gl
1 it liyJ lxjyj
in which
IT IX:Y; i e .
and n; andng, ] are the numbers of individuals in subgroup i with T=t, Xj=x;, and Y;=)

{tl‘ and mg(YJ are the expected values of n; ' and nlx;,YJ ,

it ixy
respectively. If the subgroup i is not observejd, Niy and mjy in (2.11) have to be replac'w by !
and my, respectively. The likelihood equations can be solved by the iterative proportional it
algorithm or the scoring algorithm (Goodman, 1978; Haberman, 1979). The iterative
proportional fitting algorithm is preferred, because it is less sensitive to the choice of startin|
values. Similar likelihood equations can be formulated for the restricted models.
The overall goodness-of-fit of an incomplete latent-class model can be tested by the

Pearson statistic (Q) or the likelihood-ratio statistic (LR) (see Haberman, 1979). Both statist
are asymptotically distributed as chi-square with degrees of freedom equal to the difference

respectively. Furthermore, m IT
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between the number of possible response patterns y (or this number multiplied by g if the
subgroup is observed) minus one and the number of estimable parameters. The number of
estimable parameters of a model should be equal to the rank of the information matrix
(Goodman, 1978; McHugh, 1956).

By the difference in the likelihood-ratio test statistics for two models (LR(a;b)), it can be
tested whether the alternative model b yields a significant improvement in fit over the restricted
model a, which is a special case of model b. Under the assumption of model a, LR(a;b) is
asymptotically chi-square distributed with degrees of freedom equal to the difference in the
numbers of estimable parameters in both models (Bishop, Fienberg, & Holland, 1975).

27 AN EMPIRICAL EXAMPLE

As an example, four items from the Second International Mathematics Study in the Netherlands
were analyzed (Eggen, Pelgrum, & Plomp, 1987). Each item was a five-choice item with only
one correct alternative. A sample of 3002 students was drawn from two types of schools for
lower secondary education in the Netherlands. To illustrate the use of quasi-loglinear models for
the detection of DIF, the students’ level of education was chosen as the grouping variable:
subgroup MAVO (intermediate general education) and subgroup HAVO/VWO (higher general
education and pre-university education).

The models in (2.8) and (2.10) were fitted to the data with the computer-program LCAG
(Hagenaars & Luijkx, 1990). LCAG is a program for the estimation of the parameters of
loglinear models with latent variables, and yields, beside the estimated latent conditional
probabilities (i.e. the attraction parameters), the estimated expected frequency distribution of the
latent variables within the model. From this frequency distribution the difficulty parameters were
estimated through LOGIMO (Kelderman & Steen, 1988). LOGIMO is a general computer
program especially written for the analyzation of loglinear IRT models. In both programs the
efficient IPF algorithm is used for the estimation of the parameters.

In the first series of analyses, each item was separately tested for DIF in the latent
response or in the attraction parameters. For example, to test if Item 1 showed DIF in the latent
response, we postulated that the difficulty parameter of Item 1 was the only parameter that varied
between the two groups. The models in (2.8) and (2.10) were compared to (2.9) to test for DIF in
the latent response and for DIF in the attraction parameters, respectively. Table 2.1 shows the
values of the likelihood ratio test and the degrees of freedom for the models in (2.8) and (2.10),
for each item separately. In both tests, group membership (i.e. the level of education) was
assumed to be known.
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Tabie 2.1

Likelihood-ratio tests statistics for the detection of DIF in the data from the Second International
Mathematics Study

DIF in the DIF in the
latent response atiraction parameters
Item Likelihood-ratio df Likelihood-ratio df
1 1.701 1 26.519* 4
2 4.720* 1 21.340* 4
3 1.747 1 6.033 4
4 .018 1 52.595* 4

Note: Tests marked with an asterisk are significant (ot = .05).

From Table 2.1 we may conclude that, except for Item 2, the item difficulty parameters do not
vary significantly between the two subgroups (MAVO and HAVO/VWO). Only Item 2 shows
DIF in the latent response. When we take a closer look at the difficulty of Item 2, we can see that
it was substantially smaller for MAVO-students (597 = 1.90) than for HAVO/VWO-students
(812 =0.82). The difficulty parameters of the other threc Items I, 3, and 4 were -1.52,

-3.54, and 1.32, respectively. Please note that these items showed no DIF in the latent respunse;
therefore, the difficulty parameters were estimated by setting the item parameters equal in both
subgroups.

The test LR(2.9;2.10) reported in Table 2.1 also indicates that the attractiveness of the
alternatives to Items 1, 2, and 4 were significantly different for both subgroups. Estimates of the
attraction parameters for the alternatives of each item are presented in Table 2.2. These results
indicate that a HAVO/VWO-student is more likely to choose the correct alternative to Item 1
than a MAVO-student. On the other hand, a MAVO-student is more likely to choose the correct
alternative for Item 2, because the associated attraction parameter of the correct alternative for
Item 2 in this group is twice as large as the associated attraction parameter for a HAVO/VWO-
student. For both subgroups, however, the correct altemative is not the most attractive one.

The attraction parameters for the correct alternative of Item 4 are approximately the same
for both subgroups, but for the altenatives B and C, a curious difference exists between the two
subgroups. A HAVO/VWO-student would choose alternative B with almost the same probability
as a MAVO-student would guess alternative C, and (s}he would choose alternative C with almost
the same probability as a MAVO-student would choose alternative B. Item 3 shows no DIF in
the attraction parameters. However, the attraction parameter for the right alternative in the
subgroup HAVO/VWO " more than threc times as large as the associated attraction parameter
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Table 2.2
Attraction parameters for the alternatives of the four items

Alternatives Alternatives
Subgroup HAVO/VWO Subgroup MAVO
Item A B C D E A B c D E
1 073 033 ,685 .174 .035 211 .024 563 .193  .009
2 743 123 061 .045 .028 662 240 .068 .015 .015
3 06 296 .146 367 .085 140 468 (122 111 .159
4 110 355 .235 .092 ,208 068 241 341 084 266

Note: The correct alternatives are underlined.

in the subgroup MAVO. Nevertheless, this difference had no significant effect on the test for
DIF in the attraction parameters, because the item was very easy for both subgroups.

A major problem in DIF studies is the explanation of DIF when it is observed. Although
itis beyond the scope of this chapter, a tentative explanation for the observed DIF in the
attraction parameters of Item 4 is the subjects familiarity with the mathematical terms. In Item 4
(see Appendix A.1) the subject is asked to give the definition of a parallelogram. Since the
attraction parameters for the alternatives A, D, and E are approximately the same for the two
subgroups (see Table 2.2), the observed DIF in the attraction parameters is probably caused by
the alternatives B and C. Knowing the formulation of Item 4 we can conclude that a MAVO
student is probably more familiar with the mathematical terms axis of symmetry and diagonal
than a HAVO/VWO student.

In the forégoing analyses the two types of DIF were studied separately. Moreover, only
one item was evaluated at a time. As indicated earlier, it is possible to analyze models in which
more than one item shows DIF. In order to illustrate this possibility, a model was considered in
which Items 1, 2, and 4 show DIF in the attraction parameters and Item 2 shows DIF in the latent
response. This model shows considerable improvement in fit, compared to the model in (2.9)
(likelihood-ratio is 100.5 with 13 degrees of freedom). From Table 2.1 it also follows that this
model fits the data better than the models previously discussed. The estimated parameters,
however, do not differ much from the estimated parameters of the previous models; therefore,
they are not given.

In summary, the difficulty of the four items can be ordered in the following way:

83 <01 <84 < 82. That is, Item 3 is the easiest and Item 2 is the most difficult. The
attractiveness of alternatives of Items 1, 2, and 4 as well as the difficulty of Item 2 are not the
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same for the two subgroups. Item 3 shows no DIF in the latent response or in the attraction
parameters.

2.8 DISCUSSION

In this chapter we proposed an incomplete latent class model for the examination of DIF in
multiple-choice items through a combination of the usual notion of DIF for correct/incorrect
responses and information about DIF incorporated by each of the alternatives. In the method
proposed a distinction is made between a "Know" state in which the subject has a complete
knowledge of the answer and a "Don’t know" state. It is assumed that if the subject is in the
"Know" state, (s)he will give the correct answer. The probability that the subject is in the
"Know" state is assumed to be governed by the Rasch model. And, if the subject is in the "Don’t
Know" state, the subject will choose the most attractive alternative, in which the attractiveness of
the alternatives may be different for different alternatives, including the correct one. In order to
study DIF the model is extended with variables (observed or latent) which determine subgroup
membership. One of the main advantages of the proposed method is that it is not only possible to
test if a certain item shows DIF, but it is also possible to test whether this DIF is caused by the
difficulty of the item, the attractiveness of the alternatives, or both.

In most applications, the subgroup membership is determined by an observed variable
(e.g. sex). In some situations, however, subgrouping is suspected but the variable determining
subgroup membership cannot be observed (Kelderman & Macready, 1990; Mislevy & Verhelst,
1990). When no subgroup membership can be established, the subgroup variable in the proposed
method is also treated as a latent variable.

In this chapter all tests of DIF are two-sided. This means that it is not possible to test
directional hypotheses about DIF. The estimated difficulty parameters and the estimated
attraction parameters only give an indication of the direction of DIF. However, together with the
knowledge of the item, these estimated parameters may provide the test-constructor a better feel
for the reason why an item Joes or does not show DIF. Furthermore, if many items in a test show
DIF, it might be that DIF in one of the iteras in favor of a subgroup is compensated by DIF in
another item in favor of another subgroup. And, although DIF in the attraction parameters may
have no effect on test scores, it could indicate that the item was functioning differently for the
different subgroups.

At the present time the method is not very practical for a large number of polytomous .
items. This problem is due to the compvter program LCAG, in which in our case such a large
amount of memory space is required that it is impossible to consider more than four five-choice
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items at a time. A line of future research should be the development of an estimation method
which can handle many items.




‘Chapter 3

THE ESTIMATION OF THE PARAMETERS OF
THE SOLUTION-ERROR RESPONSE-ERROR MODEL
WITH THE USE OF SUBSETS OF ITEMS

3.1 ABSTRACT

In Westers and Kelderman (1992) the solution-error response-error model is formulated as a
latent class model for the incomplete subgroup x item response 1 x...x item response k
contingency table. Parameter estimates can be computed with the programs LCAG and
LOGIMO, but this becomes unpractical if the number of items is large. In that case the tables of
observed and expected counts become too large for computer storage in LCAG.

In this chapter a method of parameter estimation is described that is based on the division
of the entire item set into several subsets. The computational problem boils down to the
estimation of the parameters of a set of smaller solution-error responsc-error models. It is shown
that, depending on the number of items in each subset, the total number of cells in the tables of
observed and expected counts can be considerably reduced by this method. In this way, models

with a large item set may be computed much more efficiently, in terms of both computer storage
and processing time.

3.2 INTRODUCTION

In the solution-error response-error (SERE) model (Kelderman, 1988), a distinction is made
between a "Know" state, in which the subject has complete knowledge of the answer, and a
“Don’t know" state. The probability that the subject is in the "Know" state is assumed to be
governed by the Rasch (1960/1980) model. If the subject is in the "Don't know" state, the
subject will guess the most attractive alternative, where the attractiveness of an alternative may
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be dissimilar for different alternatives, including the correct one. The SERE model can easily be
formulated as a latent class analysis model (Kelderman, 1988) in which the structure of the
latent-class probabilities is explained by a loglinear Rasch model. In the SERE model, each
latent class corresponds with an idealized response pattern. The relations between these idealized
responses are explained by the loglinear version of the Rasch model (Kelderman, 1984).
Parameter estimates can be computed with the programs LCAG (Hagenaars & Luijkx, 1990) and
LOGIMO (Kelderman & Steen, 1988), but the software becomes unpractical if the number of
items is large (Westers & Kelderman, 1992). In the first place, in LCAG all cell frequencies,
including empty cells, have to be listed. Secondly, for each latent class both the probability for
the latent class and the conditional probabilities of the observed variables given the latent class,
have to be given in LCAG. By fulfilling these two requirements, LCAG requires such a large
amount of memory space that it is impossible to consider a large item set. Therefore, in this
chapter an alternative estimation method will be proposed for the SERE model that can handle a
larger set of items. In the remainder of this chapter, the proposed estimation method will be
described, but the maximum likelihood estimation methods that are currently in use will be
discussed first.

Latent class analysis (LCA) models have been used extensively for measurements in
sociology, psychology, and education (Clogg, 1981). There is a well-developed theory of
maximum likelihood estimation and likelihood-ratio testing of LCA models. McHugh (1956)
derived the maximum likelihood estimators, but his solution applies only to the unconstrained
model. Great progress was made when Goodman (1974b) described a particularly simple
iterative procedure which also has the virtue of automatically producing cstimates of
probabilities that always fall in the unit interval. Furthermore, it is very easy to modify the
procedure to satisfy a reasonable variety of other constraints on the parameters. This simple
iterative procedure is used in the program MLLSA (Clogg, 1977; Eliason, 1528), LCAG
(Hagenaars & Luijkx, 1990), PANMARK (van de Pol, Langeheine, & de Jong, 1989) and MIRA
(Rost & von Davier, 1992). The latter two programs are developed for some extensions of latent
class analysis that violate the basic assumption of local independence: the mixed latent Markov
model of Langeheine and van de Pol (1990; van de Pol & Langeheine, 1990) and the mixed
(polychotomous) Rasch model of Rost (1990, 1991).

Another estimation procedure based on the maximum likelihood principle is the method
of marginal maximum likelihood (MML). In this method the assumption is that the subjects are
drawn at random from a population of abilities. For the IRT model, the method of MML was
first applied by Bock and Aitkin (1981) and Thissen (1982). They used two methods of solving
the marginal likelihood equations: the so-called EM method and Newton-Raphson iterations. In
the paper by Paulson (1986), a review is given of the application of the EM algorithm of
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Dempster, Laird and Rubin (1977) to MML estimation of parameters in the LCA model. Pauison
also shows how the EM-algorithm can be used to obtain marginal maximum likelihood estimates
of the item response functions under the minimal monotone homogeneity assumption. To avoid
the unmanageability of the contingency table as the number of items increases, Paulson’s
algorithm deals with each individual response vector, rather than cell counts in a item 1 by item
2 by ... item k contingency table. Therefore, the effect of increasing the number of items has no
effect on the algorithm beyond the increase of running time, which is directly proportional to the
number of items (Isaulson, 1986).

Under certain item response models (Rasch, 1960/1980) it is possible, by conditioning on
the number correct-scores (i.e. the sufficient statistics), to get a conditional likelihood that only
depends on the item parameters. Conditional maximum likelihood (CML) estimation proceeds
under such models by maximizing this conditional likelihood. The advantages of CML
estimation are that the estimators of the item parameters are consistent and that the well-known
theorem on the asymptotic normality of ML estimators holds (Andersen, 1973). The
disadvantages of CML estimation are that this estimation method is only possible for the Rasch
model (Thissen, 1982) and that some information about the item parameters in the data is
disregarded. For a long time, CML estimation has only been possible for a small number of
items (Hambleton & Swaminathan, 1985), but Verhelst, Glas and van der Sluis (1984) and
Verhelst and Veldhuijzen (1991) have shown that as many as a thousand items can now be dealt
with. _

Although ML estimation has many appealing statistical properties, other good estimation
procedures are available. The methods based on minimum chi-square (MCS) is one of these
competing estimation methods. In the MCS procedures the data are grouped into mutually
exclusive and exhaustive classes, and distance functions of the observed and expected
frequencies in these classes are defined. Minimalizatiun of these distance functions provide the
parameter estimators of the model. Some well-known examples of MCS procedures are the
Pearson chi-square, the likelihood chi-square and Neyman’s reduced chi-square method. Most
minimum chi-square (MCS) estimates are much easier to evaluate than ML estimates (Cramér,
1946; Engelen, 1989), although the simplifications are only slight. For LCA models it can be
shown that MCS procedures fall into the multinomial case (Engelen, 1989); the only difference
with the ordinary Rasch model is that there are now latent classes of examinees instead of
individual examinees.

Furthermore, McHugh (1956, Mooijaart, 1978) showed that the latent class model met
the requirements of the general theorem of Neyman (1949, p. 250), which implies that the
estimators obtained as the solution of the likelihood equations are, in fact, asymptotically
normally distributed, and are the "best" estimators in the sense that they have the smallest
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covariance matrix. Such estimators are called the best asymptotically normal (BAN) estimators.
Both the maximum likelihood estimator and the minimum chi-square estimator are examples of
BAN estimators.

The well-known algorithms of Goodman (1974a, 1974b) and Haberman (1979) for the
estimation of the parameters of loglinear models with latent classes (e.g. the SERE model) can
only be used for a small number of variables. For models with a large number of variables these
algorithms become very complex. For the general loglinear model an algorithm has been
developed which is based on a faster way of calculating the sufficient statistics of the parameters
in the model; the so-called marginalization-by-variable principle (Kelderman, 1992). In this
chapter another principle will be introduced, which has the advantage that for a large number of
items the parameters of the model can stil! be estimated by the well-known EM algorithm of
Dempster, Laird and Rubin (1977). The main idea of this new principle is to divide the entire
item set into several subsets. By doing this, the SERE model can be rewritten into a set of
smaller SERE models. By estimating the parameters of these smaller SERE models
simultaneously, it is possible to estimate the item parameters of the entire SERE model. A
similar approach has been developed by Mellenbergh and Vijn (1981) for the estimation of the
parameters in the Rasch model. Instead of the full item 1 x...x item k x sum-score table, they
studied the item response x sum-score tables for each item.

One of the main advantages of our approach is the decreased total number of cells in the
marginal contingency tables, especially when there are many items. A second advantage is the
decreased memory space needed to store information about the latent classes. In the third place,
the proposed procedure permits a practical use of (incomplete) response data. A disadvantage is
that some of the statistical efficiency of the estimators may be lost when the SERE model is
collapsed.

Below the solution-error response-crror (SERE) model for polytomous items will be
developed and formulated as an LCA model. A new computationally efficient estimation method
for the SERE model for large sets of polytomous items is described and its use is illustrated by
means of simulated data.

3.3 THE SOLUTION-ERROR RESPONSE-ERROR MODEL

Suppose that each subject, randomly drawn from a population of subjects, responds to k test
items, where the answer to item j may be any of the rj responses, denoted by ¥j (yj=l .....rj). Let
X indicate the latent response of the subject. The assumption is that the latent responses are
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governed by a one-parameter-logistic model (Rasch, 1960/ 1980), in which the probability of the
latent response X; (x_i=0,l), given that the subject has ability 6, is

@a3.1) P(lee) = exp(Xj(O—Sj))/[l + exp(O-Sj)]

and 8 is the difficulty of item j.

The relationship between the latent response x; and the observed response yj is descnbed
by the conditional probability

X:;Y
3.2) o = P(yjix;) ,
i¥i
Xj¥i

in which the superscripts are symbolic notations that indicate that the random variables Xj and
YJ are involved in the definition of the conditional probability. For the sake of simplicity, the
notation yjs» Xj, etc. in the probabilities is used for Yj-yj. XJ ;, et cetera.

To formulate a complete model, the response pattern of a subject on all k items in a test is
denoted by the vector y=(y1.....yk)- The vector of latent responses of a subject is denoted by
x=(X | ,....Xk). The corresponding random variables are denoted by Y and X. Let F(8) be the
continuous distribution function of the latent ability 8, 8=(8 1.....8k) and t=x1+...+xy the number
correct score. With the use of (3.1), (3.2) and the assumptions that y; depends only on xj, and x;
depends only on the latent ability level 8, Kelderman (1988) has shown that the marginal
probability of the observed responscs y can be written as a latent-class model in the sense of

Haberman (1979, chap. 10). If Zy is the summation over all possible latent response patterns
x=(X1....Xk)s then

T . X XY Y;
33 P =zd>d>1¢Xk Y1 XKk |
(3.3) ) z Xk X1Y1 Xk Yk

with

oT = [exp0)C(0.87 10F@),

-00

C(.8) = n (1 +exp®-3p],
J...




42 Chapter 3

and for j=1,...k,
@z;j =exp('-xj8j)
and in which the attraction parameters (de) are subject to the restrictions
X.Y: X:Y: _ .
(349 d)ijlJ +.t d>ijer =1, (=1,....k).

In this model, each value of the latent response vector x represents a latent class. If certain
conditional probabilities P(yjlx;) are specified to be zero, the model in (3.3) is incomplete,
because in that case, for certain given values of X, not all combinations of Y are possible.

Since the sum-score parameters (&) depend on the underlying distribution of the latent
scores, they are subject to complex inequality restrictions (Cressie & Holland, 1983). There are,
however, no restrictions on the sum-score parameters for the conditional Rasch model; that is, a
Rasch model conditioned on the number cotrect score (Kelderman, 1984). Throughout this
chapter we either assume that these restrictions hold or we work with the conditional model.

Furthermore, the multiplication of each difficulty parameter (&%) by a constant ¢ and the
division of each sum-score parameter (@D by ct, does not change the model in (3.3). This
indeterminacy can be removed by setting one of the item difficulties (8 ;) equal to zero.

3.3.1 Restrictions on the model parameters
In the same way as Goodman (1974b) formulated restrictions on the parameters of the LCA
models, restrictions may occur with respect to the parameters of the SERE model. In the first
place, the attraction parameters may be equated with each other or with a prespecified value.
Relevant constraints are, especially, those that set the attraction parameters to the values O or 1 to
indicate, for example in the case of multiple choice items, that a subject will choose the right
alternative if the subject is in the "Know" state (Westers & Kelderman, 1992). Secondly, equality
restrictions may be used to make the alternatives equally attractive. Like the attraction
parameters, the difficulty parameters may also be equated with each other or with a constant
(including 0). Finally, equality restrictions on the attraction parameters or difficulty parameters
may be used to examine differential item functioning (DIF) in polytomous or dichotomous items,
as discussed by Westers and Kelderman (1992).

For the general case of equality constraints, Mooijaart and van der Heijden (1992) have
shown that "... the EM-algorithm is not simple to apply because a nonlinear equation has to be
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solved. This problem arrives, mainly, when equality constraints are defined over probabilities in
different combinations of variables and latent classes” (p. 261). Mooijaart and van der Heijden
have given a simple condition in which, although the restriction remains that the probabilities in
different variable-latent class combinations are equal, the EM-algorithm is still simple tc apply.
In words their condition reads: "(1) In cases where each of the equality constraints holds only for
the parameters in one variable-latent class combination, the standard EM algorithm estimation
procedure gives correct results; (2) In cases where the number of elements of an equality set is
equal for different variable-latent class combinations, the standard EM algorithm estimation
procedure is correct, assuming that the fixed elements are zero. When the fixed elements are
non-zero, the condition is more complicated; (3) In all other cases, for each EM step, estimation
of the parameters has to be done by an iterative procedure” (p. 268).

The maximum likelihood estimates of the parameters of the model in (3.3) can then be
obtained by solving the likelihood equations by the iterative proportional fitting (IPF) algorithm.
Computer programs by Hagenaars and Luijkx (LCAG, 1990) and Kelderman and Steen
(LOGIMO, 1988) can be used to fit the model. The overall goodness-of-fit of a model can be
tested by the Pearson statistic or the likelihood-ratio test statistic (see Haberman, 1979). In the
next sections, we shall introduce a new method for obtaining the maximum likelihood estimates
of the parameters in the SERE model.

34 THE DIVISION-BY-ITEMS PRINCIPLE IN THE SOLUTION-ERROR
RESPONSE-ERROR MODEL

As already noted by Westers and Kelderman (1992), the model in (3.3) is only usable in practice
when the responses to few items are studied. One of the solutions to this problem could be not to
consider all items simultaneously. In this section a new estimation method is proposed which is
based on the division of the entire item set into several subsets. We will refer to this operation as
an application of the division-by-items (DBI) principle. In this section the new estimation
method is explained for péirs of items. It may be clear that the results in this section would not
change if we consider subsets of three or more items or subsets with unequal numbers of items.

Let P(y{.y7) be the probability that the observed response on item lis y] and the
observed response on item 2 is y,. If we let z=x+x7 and use conditional probability calculus
and elementary calculus, it can be shown that the model in (3.5) is also a latent class model (sce
Appendix A.2)

ERIC - 91)




44 Chapter 3

3.9 P(y1.y2)=Z ..Z P(y},... 4 =Z .. T P(y)
Y3 Yk y3 Yk

T X X X1Y XY
=3 % &:12 ¢l 72 $1F1 212
Xyxy Z X] X2 Xi¥y1  x2y2

in which
¢'Zrl2 = fexp(ze) {[1+exp(8-d 1)][l+e1ltp(6-82)]}'l dF(8),

which is similar to (3.3), except that here we consider two items and in (3.3) k items. This means
that, given the assumption of local independence, the SERE model is collapsible in the sense that
taking the marginal probability for two items from the entire SERE model yields the SERE
model for two items. We will refer to these smaller SERE models as the collapsed SERE models.
The way in which consistent and asymptotic normal estimators for the parameters of the SERE
model can be obtained from the maximum likelihood estimators of the collapsed SERE models
will be discussed in Section 3.5. However, since information about the joint relationships among
items may be lost when the SERE model is collapsed, these estimators will not be efficient.
Maximum likelihood estimates of the parameters of each collapsed SERE model can be obtained
by solving the likelihood equations by the iterative proportional fitting (IPF) algorithm.

In order to obtain the same measurements from different subsets of items, the subsets
must measure the same ability and the scores must be measured on the same scale. In that case
the subsets are said to be equated. Generally, subsets of items can be equated on the same scale if
each subset is directly or indirectly connected to all other subsets by common items (Wright,
1977). Fischer (1974, 1981) has shown that unique (conditional) maximum likelihood estimates
exist in the Rasch model, if and only if in every possible partition of the items into two
(nonempty) subsets, some subject has responded correctly to some item from the first subset and
responsed incorrectly to some item from the second subset. He has even generalized this
conditional for the case of the polytomous multidimensional Rasch model.

With respect to the condition of Wright, the division of the set of k items into a set of
non-overlapping subsets of items would not give the same (conditional) maximum likelihood
estimator in each subset. However, dividing the set of k items into the subsets (1,2), (2,3)....,(k-
1,k) would meet this condition. On the other hand, the division of the set of items in all possible
pairs of items would also meet this condition. There are many more ways of dividing the set of k
items into appropriate subsets. An important question is: what is the best selection of appropriate
subsets? To answer this question, criteria for an optimum division have yet to be constructed.

o1




Estimation method 45

Therefore, selecting the optimum division of the set of items into subsets should be a line of
future research. In this chapter we will use all possible pairs of items as subsets of items.

Since the subsets of items must not be distinct, the parameters of the collapsed SERE
models have to be estimated simultaneously. For example, the parameters (i.e. the attractiveness
of the alternatives and the difficulty) of an item in one subset have to be equal to the parameters
of the same item in other subsets. With pseudo-likelihood estimates this requirement can be met.

For the present model, a pseudo-loglikelihood can be expressed as the sum of the
loglikelihoods for subsets of items. A statistic maximizing a pseudo-likelihood will be termed a
pseudo-likelihood estimator. To prove the consistency and asymptotic normality of the
maximum pseudo-likelihood estimator, modified classical methods can be used (Amold &
Strauss, 1988). In the next section the pseudo-likelihood theory will be discussed in more detail.

One of the main advantages of the proposed estimation method is the decrease of the
total number of cells in the marginal contingency tables, especially when there are many items.
Most of the currently available algorithms require the storage of the full observed and expected

Table 3.1
Total number of cells in the observed contingency tables

Number of Number of Number cf items in each
items alternatives subset of items

2 3 4 5 all

6 2 60 160 240 192 64

3 135 540 1215 1458 729

4 240 1280 3840 6144 4096

7 2 84 280 560 672 128

3 189 945 2835 5103 2187

4 336 2240 8960 21504 16384

8 2 112 448 1120 1792 256

3 252 1512 5670 13608 6561

4 448 3584 17920 57344 65536

9 2 144 672 2016 4032 512

3 324 2268 10206 30618 19683

4 576 5376 32256 129024 262144

10 2 180 960 3360 8064 1024

3 405 3240 17010 61236 59049

4 720 7680 53760 258048 1048576

frequency tables. For example, if there are ten five-response items, each table will consist of
about 10 million cells, whereas, if the DBI principle is used, the number of cells equals to the
sum of the number of cells in the marginal frequency tables over all subsets. In Table 3.1 the
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total numbers of cells of the observed contingency tables are given for six to ten polytomous
items and for different numbers of items in each subset. It can be seen that for the proposed
estimation method these numbers remain within reasonable limits, especially for small subset
items, whereas for the currently available algorithms these numbers increase very rapidly.

Another advantage is associated with the storage of the latent class probabilities P(x) ¢
the conditional probabilities P(yjlx). Most of the currently available algorithms require the
storage of all these probabilities. This means that for the SERE model we have to store the
probabilities P(x) and P(yjlx) for all 2K latent classes. Calculations dealing with all these laten
classes become impractical very quickly as the number of items increases.

Finally, the proposed procedure permits a practical use of response data. Apart from
designs with complete data, designs with incomplete data can also be used. Data from any
subject, even when they respond to only two items of the test, can be used in the estimation o
the attraction parameters and the difficulty parameters. Of course, the data for these subjects ¢
only be used if the two items form one of the subsets in the proposed estimation method.

A disadvantage of the DBI principle is that information about the joint relagionships
among the items may be lost when the SERE model is collapsed.

3.5 THE ESTIMATION OF THE PARAMETERS OF THE SOLUTION-ERROR
RESPONSE-ERROR MODEL

The SERE model can be seen as an LCA model with a non-saturated loglinear model (i.. the
Rasch model) imposed upon the distribution of the latent classes. Therefore, the maximum
likelihood estimates of the parameters of the (collapsed) SERE model can be obtained by soly
the likelihood equations by a two-step algorithm. Let us first assume that the latent response
vector x was observed in addition to the observed response y. Then the solution would be at
hand; if the responses x and y are known, the maximum likelihood estimates of the parametes
the SERE model can be found by the usual maximum likelihood methods for the estimation ¢
the parameters of a model (Haberman, 1979; Hagenaars, 1988; Kelderman, 1988). However,
latent responses x are not observed, but they can be estimated from the estimated values of th
parameters of the SERE model. In the literature this method is known as the EM-algorithm
(Dempster, Laird & Rubin, 1977). By the E-step the expectation of the estimated observed
number of subjects with latent response x and observed response y given the number of subje
with observed response y can be found, and by the M-step the & parameters can be estimated
with complete data maximum likelihood techniques (Rubin, 1591).
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In the following sections we will describe the traditional estimation method for the SERE
model as discussed in Kelderman (1988) and Westers and Kelderman (1992), discuss the use of
the pseudo-likelihood theory in the case of the SERE model, and describe an estimation method
based on the pseudo-likelihood theory. Finally, the issue of the initial values and some indices
for testing whether an item shows DIF will be discussed.

3.5.1 Traditional estimation method for the SERE model
In the following treatment of the traditional estimation method, we will omit the superscripts in
the notation of the parameters.

Let mjyy = nj P(x,yli) be the expected number of subjects in subgroup i (i=1,...,g) with
latent response vector x and observed response vector y under the SERE model (3.3)

3.6) P(x,yli) = d’it (bixl d)i Xk d?i xqy1 ™ d’ikak ,
in which P(x,yli) is the conditional distribution of latent response x and observed response y
given observed subgroup i (i=1,...,g), n; is the number of subjects in group i and each factor on
the right-hand side corresponds with a factor on the right-hand side of (3.3) extended with a
variable i for group membership. If we assume that for a particular item j the conditional
probability (3.2) is zero for a certain combination of the latent response Xj and observed
response Yj, then the probability (3.6) equals zero.

Let nixy denote the unobserved number of subjects in subgroup i (i=1,...,8) with latent
response vector x and observed response vector y. If the latent response vector x were observed,

the likelihood equations for the model in (3.6) would then be (Haberman, 1979; Hagenaars,
1990)

Q3.7 m.__=n__, (=1.....k),
(3.8) m., =n.

in which m;; and n;; are the expected and observed number of subjects in subgroup i with sum-
score t.

However, the response vector x is latent and its scores cannot be directly observed.
Consequently, nj; and Njxy are not observed. Haberman (1979) has indicated that for LCA
models "the same likelihood equations apply as in the ordinary case in which all frequency
counts are directly observed, except that the unobserved counts are replaced by their estimated
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conditional expected values given the observed marginal tables" (p. 543). Let fixy be the
estimated observed number of subjects in subgroup i with latent response x and observed
response y given the observed marginal counts “iy=2x Nixy given by

39) fixy=mixy niy/miy .

in which mjy=E, mixy» and let fj; be the estimated observed number of subjects in subgroup i

with sum-score t defined as

(3.10) f. =X X ¢

= Cnoim
xﬁ‘;:mtxy"ly Ty

in which Zj, is the summation over all pr:ssible latent response patterns x with sum-score t. The
likelihood equations 3.7 and 3.8 can then be replaced by (Haberman, 1979)

(3.11) m o =f. (=1,... k),

Since the SERE model can be transformed into a latent class model, we can use Clogg and
Goodman’s (1985) extension of Goodman's (1974a, 1974b) variant of the EM-algorithm for
solving the likelihood equations. The algorithm works as follows.

First initial values for the parameters on the right-hand side of equation 3.6 are
determined. How the initial values can be determined will be discussed in Section 3.5.4. In view
of the chosen initial values for the parameter, mjxy is computed from (3.6) by

(3.13) Mixy = nj P(x,yli),
in which n; is the number of subjects in group i. The estimated observed frequencies fixy are
then computed by means of Equation 3.9. This is the Expectation step (E-step) of the EM-

algorithm. Next, in the Maximization step (M-step), the model parameters are obtained by
solving the Equations 3.11 and 3.12 for the model parameters.
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Since we assumed that the observed responses y only depend on the latent responses x
and the latent responses x only depend on the ability level 8, the attraction parameters and the
difficulty parameters can be computed separately. This can be seen when the joint distribution of
the latent responses given subgroup i is written in terms of the model parameters as follows

P(xli) =Z P(x,yli)

This expression does not contain the attraction parameters. Furthermore, if xlj is the set of all
latent responses x with Xj=Xj and if ylj is the set of all observed responses y with Yj=yj, then the
attraction parameters for item j in subgroup i are equal to

®  =Pyjx)={ I T PxyDV{ X Z P(x.yl)}.
1X5¥j yij xlj y xij

Now the expression does not contain the Rasch model parameters.

In the M-step, the attraction parameters can be directly computed from Equations 3.11
and 3.13 by

(3.14) (=1,...K).

& =f. I
ixy; o ixgyj X

and the Rasch model parameters are computed from the estimated observed counts fix=Zy fixy
as a solution to the likelihood equations

m.mj = fixJ- G=1.....k),

my = fj
contained in Equations 3.9 and 3.10. This can be done in the usual manner by means of the
iterative proportion fitting procedure (Goodman, 1974a, 1974b; Haberman, 1979; Kelderman,
1984). After the parameters of the SERE model are estimated new values for the estimated

observed frequencies fixy are computed in the E-step (3.10), and again in the M-step the model
parameters will be computed. This procedure is continued until the estimates converge.
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3.52 Restricted parameters

In the above algorithm the assumption was that the attraction parameters and the item difficulties
are different for various groups of subjects. Westers and Kelderman (1992) assumed that items
may show DIF both in the attraction parameters and in the latent response, where an item shows
DIF in the latent response if equally able subjects from various subgroups have different
probabilities of "Knowing" the answer, and an item shows DIF in the attraction parameters if the
attractiveness of the alternatives varies from subgroup to subgroup, conditional on their ability.
If we assume that an item, say item 1, shows no DIF in the attraction parameters, then for j=1
equation 3.14 is replaced by the equation (Clogg & Goodman, 1985)

P f /f

ix1yp = 'xpyp Cxp
Furthermore, if it can be assumed that an item, again say item 1, shows no DIF in the latent

response, then across groups the expected frequencies m;y are equated to the corresponding
marginal frequencies.

3.5.3 Pseudo-likelihood theory

As already noted, the traditional estimation method can not be used in practice when the number

of items is small. The division of the entire item set into several subsets, could lead to a solution

of this problem. This means, however, that the parameters of an item in one subset ought to be

equal to the parameters of the same item in the other subsets. Therefore, the parameters of the
collapsed SERE models have to be estimated simultaneously. By using pseudo-likelihood

 estimators (Amnold & Strauss, 1988) this requirement can be met.

In this section, the theory of pseudo-likelihood estimation as described in Amold and
Strauss will be discussed and applied to the SERE model. Whenever possible the same notation
will be used as in the previous sections.

Let, following Amold and Strauss, the k-dimensional vector Yjy, denote the observed
response pattern of the v#h subject in group i (i=1,...,g; v=1,...,n;) on the k items, and let A denote
a coordinate of the p-dimensional parameter space A. For the SERE model, the coordinates of A
are the ability parameters, the difficulty parameters and the attraction parameters for all g groups
and all k items. Furthermore, let S denote the class of selected subsets of items and let y;,, be
the random vector with the coordinates yjy of yjy for which item j is in the subset s. Finally,
denote, still following Amold and Strauss, the joint density of y;y by P(y;A.i) and the joint
density of y;y by Pg(ys:Ai). For the SERE model, both densities are given by Equation 3.3, but
for the second density k is equal to the number of items in the subset s.
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According to Arnold and Strauss the pseudo-loglikelihood of the data is then defined as
the sum over the subset s of the sum over all observations of the logarithm of the joint densities
Py(ys:A). A pseudo-likelihood estimator of A will be a statistic maximizing the pseudo-
loglikelihood with respect to A. This means that if for each subset s, Lg denotes the loglikelihood
of the collapsed SERE model, the pseudo-loglikelihood (PL) of the entirc SERE model is

PL=Z Lg.
s s

A pseudo-likelihood estimate of the parameters of the SERE model will be a point in the
parameter space for which PL is maximal.

To ensure a solution to the pseudo-loglikelihood, Arnold and Strauss assume that the
regularity conditions as mentioned in Theorem 1.1 of Lehmann (1983, p. 406) are met. If these
regularity conditions hold, then the solution of the pseudo-loglikelihood equation can be
obtained by differentiation of the pseudo-loglikelihood to each element of A and the setting of
the derivatives to zero. Let for each subset s, fgjxy and mgjxy be the estimated observed and
expected numbers of subjects in subgroup i with latent response vector xg and observed response
vector y under the collapsed SERE model. Furthermore, if we define

) =X .
lejyj s msnx_iyj ?

()
"‘_]y_]

Zf. .
S Slijj

for each collapsed SERE model, the pseudo-likelihood equations for the entire SERE model can
be formulated as

(+) = (+) j=1
(3.15) m ixgy; f ixgy; (=1....k),
(3.16) mgj = fsit »
in which mgj, and fgj, are the expected and estimated observed number of subjects in subgroup i
with sum-score t for subset s. Both equations are obtained from the likelihood equations 3.11 and

3.12 for each collapsed SERE model in which interchangability of the operations differentiation
and summation is used.
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Under the regularity conditions of Theorem 1.1 of Lehmann (1983, p. 406) and assuming
that (1) the densities P(y4:A) for different values of A are essentially distinct, (2) the supports of
the densities do not depend on A and (3) the parameter space A contains an open interval @ of
which the true parameter A is the interior point, Arnold and Strauss have shown, with Theorem
2.1, Theorem 2.2 and the arguments in Section 6.4 of Lehmann (1983, p 409-436), that under
their regularity conditions a solution of the pseudo-likelihood equations is consistent and
asymptotically multivariate normal. This result quarantees that the solutions of the pseudo-
likelihoods equations for the SERE model are consistent and asymptotic normal under these
conditions.’

Finally, as Arnold and Strauss have indicated, pseudo-likelihood estimators are not
efficient, but the loss of efficiency may not be large. For the SERE model the lack of efficiency
is obvious, since by dividing the set of items into subsets, information about the dependency
between items from different subsets is neglected. However, with an optimal choice of the
subsets the loss of efficiency may be minimized.

In the next section we will describe how the solutions of the pseudo-likelihood equations
3.15 and 3.16 can be obtained.

3.5.4 The simultaneous estimation method
As discussed in the previous section the maximum pseudo-likelihood estimates can be obtained
by solving the Equations 3.15 and 3.16. This can be done in the following way.

First, initial values for the parameters on the right-hzind side of Equation 3.6 are
determined. How the initial values can be determined will be discussed in Section 3.5.4.
Furthermore, let ng; be the number of subjects in group i who respond to all the items in subset s
and Pg(x,yli) be the conditional distribution of latent response xg and observed response yg for
subset s given subgroup i

Py(x,yli) = d’it ¢ix1 "'d’ixk ‘bixlyl ...d)ixkyk .

in which k is equal to the number of items in subset s. In view of the initial values for the
parameters, mg;yy is computed for each subset s by

3.17) Mgixy = N Ps(x.y1) ,
Then for each subset s the estimated observed frequencies fgjxy are computed by means of

(3.18) fsixy = Msixy Nsiy / Msiy»
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This is the Expectation step (E-step) of the EM-algorithm. Next, in the Maximizaton step (M-
step), the model parameters are obtained by solving the Equations 3.15 and 3.16 for the model
parameters.

Similar to the case of the traditional estimation method, it can be shown that the
attraction parameters and the difficulty parameters can be computed separately. This means that
in the M-step the attraction parameters can be directly computed by

_ B () .
(3.19) (bixj)'j = fixj)’j /f.lxj, (G=1,....k),

and the Rasch parameters are computed from the estimated observed counts fgix = Zy fsixy by
solving the likelihood equations

(3.20) mig_’) = fig’) : (=1 k),
(3.21) mgjy = fsie»

contained in the Equations 3.15 and 3.16. Just as in the traditional estimation method for each
collapsed SERE model, the; Rasch parameters could be computed by means of the IPF
procedure; the Rasch parameters, however, are restricted over subsets. For instance, the
difficulty of item j in one subset, ought to be equal to the difficulty of the same item in another
subset. The Rasch parameters are therefore computed by the following procedure.

Let xlt be the set of all response patiems Xg in subset s with sum-score t, and Xglx; be the

]

set of all response pattems Xg in subset s with Xj=xj. In view of the pseudo-likelihood equations

3.20 and 3.21, the item parameters can be derived when the expected marginal counts are written
in terms of the parameters and they are equated with the observed counts

(3.:22) fMNazn; Z o 0T &,
ixg g s xglxi Sit es Xy

3.23 f.. =nq Z @, I &,

(3.23) sit ~ St xqt sit oo Xy
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in which @;, are the sum-score parameters for sum-score t of group i in subset s. Since the

difficulty parameters of item j do not depend on xglx;, they can be brought before the summation
sign and solved as

3.24 & =fP/zns z 0. N o,
(3:29) i~ ixj (g Sk g Sit jes  Ru
u#j

which gives the recursion formula

1) (+) ® (r)
(3.25) oMLt s, = o® o o,
ixj x5S xgxi sit s Xu

u#j

—a® o (#), ()
"d’ixj fixj /mixj

in which rdenotes the iteration number. In a similar way the recursion formula for the sum-score
parameters is derived as

/ m(r)

(r+1) _ 4 (@)
(3.26) ¢ =¢ f sit

sit sit sit
New estimates of mg;y can then be obtained by

(327 mgix = Ngj Wit l} ‘bixj

This inner iteration process will be continued until convergence has been reached. After the
parameters of the SERE model are estimated, for each subset s, new values for the estimated
observed frequencies fsixy are computed in the E-step, and then in the M-step the model
parameters will be computed. This procedure is continued until the estimates converge.

If we assume that an item shows no DIF in the latent response or DIF in the attraction
parameters, then the algorithm can be adjusted, similar to the one described in Section 3.5.2.

As mentioned before, for the first iteration of the estimation method initial values for the
parameters of the SERE model have to be chosen. In the next section this matter will be
discussed briefly.
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3.5.5 Initial values

Since each collapsed SERE model can be regarded as a latent class model, we can use the
Anderson-Lazarsfeld-Dudman method (Ahderson, 1954; Lazarsfeld & Dudman, 1951) to obtain
initial values for the latent class probabilities (i.e. P(xs)} and the attraction parameters
(Goodman, 1974b). However, to compute initial values for the difficulty parameters and the
sum-score parameters from the initial values for the latent class probabilities, a second method is
needed. In the literature about the EM-algorithm some suggestions are given for initial values in
a number of specific situations (Dempster, Laird & Rubin, 1977; Litde & Rubin, 1991).

Below we will describe an alternative method for the above two-stage procedure, but first
we will discuss why good initial values may be important. '

One reason why good initial values may be important is the rate of convergence of the
EM-algorithm. There are several important properties of the EM-algoritim (Dempster, Laird &
Rubin, 1977; Rubin, 1991; Wu, 1983), where the one that is most important for this section is the
property that the rate of convergence of the EM-algorithm may be painfully slow. In order to
alleviate the problem of a slow convergence initial values for the parameters may be chosen that
are close to the true values.

Another reason why good initial values may be important is the problem of degenerated
solutions (Bartholomew, 1987). Degenerated solutions may occur when the EM-algorithm
converges to a solution which lies in the parameter space, but it is not the maximum likelihood
solution. An example of a situation where degenerated solutions may occur is the situation where
some of the item parameters diverge to infinity. In practice this would mean that the conditional
probability of a correct response to an item, given that the subject is in the “Know" state, is
indefinite. Such degenerated solutions can be avoided when we try to choose initial values that
are close to the true values.

Below we will describe how initial values for the parameters can be determined for the
case where it is assumed that a subject will always choose the right alternative (i.c. Yj=l) if (s)he
is in the "Know" state. Secondly, we assume that the attractiveness of the correct alternative of
item j is equal to l/rj. Thirdly, from Equation 3.1 it follows that the difficulty of an item is equal
to the logit of the probability of being in the "Know" state corrected by a constant c. Since this
constant ¢ is equal for all items, it can be determined by setting one of the item difficulties equal
to zero. In the remainder of this section, the method is only discussed for the pair of items (1,2)
(i.e. s=(1,2)). It may be clear that for other pairs of items the method would be similar.

With respect of the above-mentioned assumptions, the determination of the initial values
for the parameters can be regarded as a four-step process. First, assuming that the attractiveness
of the correct alternative is equal to 1/r;, the initial value for the proportion of subjects who were
in the "Don’t know" state, but answered the item correctly, is set equal to the mean of the
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proportions of incorrect answers. Given this initial value and the proportions of incorrect

answers, the attraction parameters can then be easily computed. For example, the initial value for

the attraction parameter of a distractor is equal to the quotient of the proportion of subjects who
have chosen that distractor and the initial proportion of subjects who were in the "Don’t know"
state.

Secondly, the initial proportion of subjects who were in the "Know" state is then equal to
the difference between the initial proportion of subjects who are in the "Don’t know" state but
answered the item correctly and the observed proportion of correct answers. When we multiply
these new initial values with the number of subjects ng;, we get initial values for the estimated
observed number of subjects in group i who were in the "Know" state. We will denote these
counts by Ksij (j=1,2), where j indicates the number of an item in the pair of items. Thirdly, the
initial value for the difficulty of an item is then set equal to the logit of the initial proportion of
subjects who were in the "Know" state.

For the fourth step, we will assume that the likelihood equation (3.16) holds, which
means that the initial values for the sum-score parameters are restricted by this equation and the
chosen initial values for the attraction parameters and difficulty parameters. When we write the
left-hand side of Equation 3.16 in terms of the model parameters, the initial values for the sum-
score parameters can be obtained by

(3.28) it=fsit / nsi %
where ¥y, is the symmetric function of order t. Given the initial values for the difficulty
parameters, only the counts fgj; are unknown in this equation. However, these counts can be
obtained from Equation 3.23. If the terms of Equation 3.23 are rearranged and y=(yy,y3) and
x=(x1,X9) are equated with (1,1) and (0,0), the marginal counts fg;; are the solutions of the
following linear system of equations
fsi1 + 2 f5i2 = Ksig + Ksip

(3.29) fsio+ fsit + fsi2=ngj

Afsio+B i1 + fsi2 =ngjy

with

1Y] o X2Y2
Asd’fnyl Pxaya
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To illustrate the use of the proposed method a data set conforming the SERE model was
generated for 17 four-choice items. The item difficulty parameters were chosen from the interval
{-2,2]. Latent traits values of 10,000 subjects were drawn from a normal distribution with mean
zero and variance one. The attraction parameters of the alternatives for the first nine items were
equal to 0.1, 0.2, 0.3 and 0.4 respectively. The attraction parameters of the alternatives for the
remaining eight items were equal to 0.4, 0.3, 0.2 and 0.1 respectively. It was assumed that the
first alternative (denoted by A) was the correct alternative and that a subject in the "Know" state
would always choose the correct alternative.

Table 3.2

Initial values of the item difficulties and the attraction parameters for the alternatives of
homogeneous SERE items

Attraction parameters Ttem difficulties
Item A B C D Initial True
1 242 173 249 336 4.8365 2.0
2 250 171 251 328 2.4681 1.5
3 250 165 245 340 1.2274 1.0
4 250 164 248 338 0.4903 0.5
5 250 .16l 248 341 0.0000 0.0
6 250 160 245 345 -0.5470 -0.5
7 250 162 250 338 © -1.0051 -1.0
8 250 157 246 346 -1.4732 -1.5
9 250 (159 248 344 -1.8879 -2.0
10 250  .384 246 .120 -1.9741 -15
11 250 364 254 132 -1.5906 -1.0
12 250 381 244 125 -1.2143 -0.5
13 250 386 .235 .129 -0.8529 0.0
14 250 373 252 125 -0.5556 0.5
15 250 374 258 118 -0.2021 1.0
16 250 370 254 126 0.0526 1.5
17 250 375 249 127 0.2988 2.0
In Table 3.2 the initial values and the real values of the item difficulties and attraction
parameters of the SERE model are given. As can be seen from the table for cases with medium
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to low true item difficulties (i.e. range [-2,.5]) and low attractiveness of the correct alternative
(ie. 0.1) the initial values for the parameters of the SERE model were relatively well
determined. For all other cases with low attractiveness of the correct alternative, the initial

values for the difficulty of the item were too high. On the other hand, if the attractiveness of the
correct alternative was 0.4, for all cases the initial values for the item difficulty were too low.
The reason for these discrepancies is that the attractiveness of the correct alternative is assumed
to be equal to 0.25. For Item 1 we have modified the algorithm, otherwise the initial value of the
number of subjects who were in the "Know" state could be smaller than zero. If the proportion of
correct responses is smaller than 0.25 (i.e. l/rj), the initial proportion of subjects who were in the
"Know" state was set equal to 0.5%.

In the above derivation of the initial values, several assumptions were made. These
assumptions may be wrong. For example, in a similar way as (3.29) was derived, a system of
equations can be derived for subsets of three items. This system, however, consists of four
equations from which one is nonlinear. For the future, robustness analysis may give answers to
the questions whether the proposed method also provides good initial values of the parameters
for other cases or whether slightly different initial values still give the same solutions.

3.5.6 Testing the SERE model _

Generally, the overall goodness-of-fit of an incomplete latent-class model can be tested by the
Pearson statistic (Q) or the likelihood-ratio test statistic (LR) (see Haberman, 1979). Both
statistics are asymptotically distributed as chi-square with degrees of freedom equal to the
difference between the number of cells in the observed contingency table and the number of
parameters estimated. For the selection of the best fitting model one can use the fact that the
difference between two likelihood-ratio test statistics of two nested models is also chi-square
distributed with the degrees of freedom equal to the difference in the degrees of freedom of the
two nested models (Bishop, Fienberg & Holland, 1975).

An alternate approach to model selection, also based on the likelihood principle, was
developed by Akaike (1977, 1987). Akaike’s Information Criterion (AIC) for a model with
likelihood L, is defined as AIC = -2In(L)+2D, where D is the number of independent parameters
estimated in fitting the model. The first term of AIC is a measure of badness of fit, whereas the
second term is a penalty temm correcting for overfitting due to the increasing bias in the first term
as the number of parameters in the model increases. The model with the minimum AIC value is
chosen as the best fitting model.

As can be seen from the definition, AIC is inconsistent in the sense that an increase of the
sample size does not have a direct impact on the criterion. To reflect the sample size in the
penalty term Bozdogan (1987), Raftery (1986a, 1986b) and Schwarz (1978) presented some
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other information criteria. The consistent version of the AIC of Bozdogan has In(n)+1 (where n
is the sample size) as a multiplication factor for the number of independent parameters, whereas
the multiplication factor in the information criteria of Raftery and Schwarz is equal to In(n). For
large sample sizes, the consistent criteria have a larger penalty term than AIC. Consequently, the
consistent criteria tend to lead to simpler models than AIC does.

For pseudo-likelihoods, information criteria can be defined based on the same notion as
on with AIC is based, namely the minimization of the Kullback-Leibler (1951) information
quantity. Let Y be a continuous random vector characterized by a known probability density
Pg(ys:A). In the case of the SERE model, Y denotes the observed response pattern on the kg
(kg<k) items in the subset s, the elements of A are the sum-score parameters, the difficulty
parameters and the attraction parameters for all kitems, and the density Pg(ys:A) is given by
Equation 3.3, but with k equal to the number of items (k) in the subset s. Furthermore, let us
assume that there is a true parameter vector A*. Finally, let us suppose that all the competing
models are generated by simply restricting the parameter vector A

The objective of the estimation procedure and the model selection procedure is then to
select A closest to the true parameter vector 2*. We will measure the closeness or the goodness-
of-fit by means of Kullback-Leibler information quantities

IA*A) = £ EgalLgs-Lg),
S

where, for each subset s, Lg and L+ are the loglikelihoods of the estimated and the true
parameters, and Eg« denotes the expectation with respect to the true distribution Ps(ys;l‘). If we
denote Dy as the number of independent parameters in the collapsed SERE model, then for every
subset s, AIC(s) = -2L+2Dy is a natural estimator of the following quantity -2Eg+[L]
(Bozdogan, 1987). Minimizing I(A*;A) would then be equal to searching for a model that
minimizes the sum over all subsets s of AIC(s) + Eg#[Lgx]. Since Eg#[Lg#] is a constant term for
all competing models, searching for the best fitted model will be equal to searching for a model
that minimizes the sum over all subsets s of AIC(s).

Since we have used the pseudo-likelihood theory for the estimation of the parameters of
the SERE model, the total number of degrees of freedom (D) is not equal to the sum of the
degrees of freedom (Dy) of all collapsed SERE models, but equal to the number of independent
parameters in the entire SERE model. For all collapsed SERE models, [Zg kg] sum-score
parameters, k-1 difficulty parameters and Ej (rj-l) attraction patameters have to be estimated.
Therefore, D must be equal to the sum of these numbers.
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Further, given the definition that the pseudo-loglikelihood (PL) is equal to the sum over
the subsets s of the loglikelihoods (L), we will now be able to define a pseudo Akaike
information criterion (PAIC) as

PAIC = -2PL + 2D

as a measure of the relative distance’ between the true parameter vector A* and the model
parameter vector A. In our future analyses, the model with the minimum PAIC will be chosen to
be the best fitting model.

We can adjust PAIC to make it consistent by changing the multiplication factor 2 in the
penalty term into In(n)+1 (Bozdogan, 1987), In(n) (Raftery, 1986a, 1986b; Schwarz, 1978) or
any other function depending on n (Sclove, 1987).

Since the derivations of the (pseudo) information criteria are based on likelihood ratio
test statistics, objections can be raised to their use since asymptotic results may not hold. Since
some analytical conditions, required for the proper use of the (consistent) pseudo information
criteria, may not be met, more research is required before these information criteria may be
regarded as measures of quality.

3.6 APPLICATIONS OF THE DBI-PRINCIPLE

For the estimation of the parameters of the SERE model when the number of items is large, the
computer program LANPACO (Westers & van der Sar, 1993; Appendix A.3) was written.
LANPACO is a Turbo Pascal program which calculates not only the estimates of the parameters
in the SERE model by using the DBI-principle, but which also has an user-interface which
provides graphical display of the results. Furthermore, LANPACO automatically selects all
possible pairs of items as subsets of items.

To illustrate the use of the proposed estimation method, two test data sets which
conformed with the SERE model and the Rasch model were generated for 17 items. The item
difficulties were chosen from the interval [-2,2]. Latent traits values of 10,000 subjects were
drawn from a normal distribution with mean zero and variance one. All 17 items, which conform
with the SERE model, were four-choice items, where the attraction parameters of the alternatives
for each of the first nine items were equal to 0.1, 0.2, 0.3 and 0.4 respectively. The attraction
parameters of each of the alternatives for the last eight items were equal to 0.4, 0.3, 0.2 and 0.1
respectively. We assumed that the first alternative (denoted by A) was the correct alternative and
that a subject in the "Know" state would always choose the correct alternative. Please note that
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the data which conform with the SERE model were simulated under the same conditions as the
simulated data in Section 3.5.5.

In Table 3.3 the real item difficulties and the estimated item difficulties of all 17 items
for both sets of data, as well as the estimated attraction parameters of the set of data which
conform with the SERE model, are given. The item difficulty estimates and the attraction
parameter estimates were obtained through the LANPACO program, and for both sets of data the
item difficulty of the fifth item was equated with its real value of zero. The iteration process was
continued until the maximum of the absolute difference between the new and the old values of
the parameter estimates was smaller than 0.00001.

Table 3.3
Estimated values of the item difficulties and the attraction parameters for the alternatives of
homogeneous SERE and Rasch items

Attraction parameters Item difficulties
SERE data

Item A B C D SERE Rasch True
1 030 221 319 431 1.3259 1.9658 20
2 035 220 323 422 1.1106 1.5421 1.5
3 046 209 311 .433 0.7373 1.0050 1.0
4 067 203 309 421 0.3384 0.5120 0.5
5 091 195 300 414 0.0000 0.0000 0.0
6 134 184 283 .398 -0.4243  -0.5033 -0.5
7 .198 72 267 362 0.7196  -0.9597 -1.0
8 .288 148 234 330 -1.1121  -1.5019 -1.5
9 379 Jd30 205 286 -1.4170  -1.9786 -20
10 397 310 .198 095 -1.4454  -1.5022 -1.5
11 319 332 231 .119 -1.1745  -0.9506 -1.0
12 .255 380 243 123 -0.8669  -0.4701 0.5
13 .195 416 252 138 -0.6060 0.0175 0.0
14 156 421 .283 .140 -0.3860 0.5126 0.5
15 126 437 301 137 -0.1143 1.0046 1.0
16 Jd10 440 302 .149 0.0679 1.5285 1.5
17 094 453 .301 152 0.2227 2.0543 20

As can be seen from Table 3.3, the range of the difficulties of the 17 items which conform with
the SERE model decreased from [-2;2] to [-1.4454;1.3259]. Furthermore, for the cases with
medium to high true item difficulties [i.e. range [-1,2]) and low true attractiveness of the correct
alternative (i.e. 0.1) the parameters of the SERE model were estimated relatively well. Moreover,
for the cases in which the true item difficulties were low (i.e. S -1 ) and the true attractiveness of
the correct alternative was high (i.e. 0.4) the parameters were estimated relatively well too. In all
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other situations the parameters of the SERE were badly estimated. For instance, for medium or
large values of the item difficulty and a high attractiveness of the correct alternative, the item
was estimated to be easier than was simulated, and the attraction parameter was estimated to be
smaller than was simulated. For low values of the item difficulty and a low attractiveness of the
correct alternatives, the item difficulty was underestimated and the attraction parameter of the
correct alternative was overestimated. These results indicate that a trade-off may have existed
between the item difficulties and the attraction parameters.

If we take a closer look at the SERE model, we can see that the specified model is a
special case of a three-parameter logistic model. It is assumed that a subject will always choose
the correct alternative if the subject is in the "Know" state. Therefore, for the estimation of the
item difficulties and the sum-score parameters the observed responses variable Y; may be
dichotomized into a new response variable Zj, withZ; = 1if Yj=A (i.e. the correct alternative)
and Zj =0 for all other observed responses Yj. The probability of a correct response is then

PZij=D= ¢OJAJ+ (- ¢OJAJ) P(Xj=1)

and this equation is nothing else but a special case of the three-parameter logistic model, in
which the discrimination parameter is being held equal to 1.

Literature about the three-parameter logistic model (Baker, 1987; Hambleton &
Swaminathan, 1985; Lord, 1980) shows that the properties of the item parameter estimators for
the one- or two-parameter logistic models are generally better than those for a three-parameter
logistic model. For instance, the three-parameter logistic model does not have sufficient statistics
for estimating the parameters. Moreover, for obtaining reliable estimates of the guessing
parameter (i.e. the attraction parameter of the correct alternative) many subjects at a low ability
level will be required. Finally, Thissen and Wainer (1982) state that "the use of an unrestricted
maximum likelihood estimation for the three parameter model either yields results too inexact to
be of any practical use, or requires samples of such enormous size so as to make them
prohibitively expensive" (p. 403).

In view of the phenomenon of biased parameter estimates for the three-parameter logistic
model, it may be expected that the parameter estimates for the specified SERE model are also
biased. However, for certain combinations of the item difficulties and attractiveness of the
correct alternative the parameter estimates may be less biased (e.g. Item 10).

If the guessing parameter (i.e. the attractiveness of the correct alternative) is set to zero,
the SERE model can be viewed as a Rasch model. An example of this kind of data are the 17
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items which conformed with the Rasch model. As can be seen from Table 3.3 all item difficulties
are very well estimated.

The use of the proposed estimation meihod needs further study. For instance, with a
simulation study it should be examined if the estimates through the proposed estimation method
differ not only from those through the traditional estimation methods but also differ from the true
parameter values. It should also be examined under which conditions these deviations may be
negligible.

3.7 DISCUSSION

In this chapter a new estimation method for the solution-error response-error (SERE) model for a
large set of items was proposed. The main idea of the new method is that the entire item set is
divided into several subsets. It was shown that the SERE model can then be rewritten into a
related set of smaller SERE models. When pseudo-likelihood theory is used, estimates of the
parameters of the entire SERE model can then be found. A pseudo-loglikelihood can be
expressed as the sum of the loglikelihoods for the smaller models over the subsets. The estimates
of the parameters of the SERE model can then be found by maximizing the sum of the
loglikelihoods of the smaller SERE models. The main advantages of this approach are the
decreased number of latent classes, the decreased numbers of cells in the observed and expected
contingency table, and a more efficient use of the data. A disadvantage is that information about
the joint relationships among the items may be lost when the SERE model is collapsed.

An important issue with respect to the pseudo-likelihoods concems the goodness of fit of
the SERE model. The likelihood-ratio test statistics for each collapsed SERE model is chi-square
distributed with degrees of freedom equal to the difference between the number of cells of the
observed contingency table and the number of estimated parameters of the collapsed SERE
model. However, an important question is if the (weighted) sum of these likelihoods-ratio test
statistics over all subsets is chi-square distributed, or if we can develop other test statistics for the
SERE model, like the Martin-L&f (1973) statistic, the statistics of van den Wollenberg (1972,
1982), or the statistics of Glas (1989). Future research should address this question too.

In this chapter, pseudo information criteria were introduced, which were based on the

- same notion as the one on which the Akaike’s information criterion is based. However, future
research should address the question whether these pseudo information criteria are of any
practical use for the selection of the best fitting model.

Finally, the objective of this chapter was the development of an estimation method that
computes SERE models with a large item set much more efficiently, in terms of both computer
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storage and processing time. In the previous section it was demonstrated that with the proposed
estimation method it is possible to estimate the parameters of a SERE model with an item set of
17 four-choice items. At this stage, however, the computer program LANPACO, in which the
proposed estimation method was implemented, can handle any number of items as long as the
total number of subsets does not exceed 255. Since LANPACO selects all possible pairs of items
as subsets of items, this means that the maximum number of items LANPACO can handle lies
between eight items for SERE models with eight subgroups and 23 items for SERE models with
one subgroup. As indicated by Westers and Kelderman (1992) the traditional estimation method,
as implemented in LCAG, can handle only a maximum of four items for SERE models with two
subgroups.

Since the LCAG version which was been used is a program that runs VAX system
running under VMS and LANPACO is a program that runs under MS-DOS, it is difficult to
compare the traditional estimation method and the proposed estimation method with respect to
the processing time (i.e. CPU time). However, if we compare the number of multiplications and
summations required for estimating the parameters in both estimation methods, some subjective
statements about the processing times can be made.

In the following example a test was subjected to one group of examinees (i.e. g=1). This
test consisted of k items in which each item has r response altemnatives (i.e. fj=r for all j=1,....k).
Furthermore, let h be the number of selected pairs of items. In the case of LANPACO, h is equal
to k(k-1)/2. In view of these choices, for both estimation methods the number of multiplications
and summations needed for the computation of the parameters of the SERE model can be
approximated. In Table 3.4 the number of multiplications and summations in the computation of
the attraction parameters are given for each iteration cycle of both estimation methods.

Table 3.4
Number of multiplications and summations required for each iteration cycle of the traditional

estimation method and the proposed estimation method to calculate the attraction parameters of
the SERE Model

Traditional estimation method

Proposed estimation method

Equation Multiplications Summations

Equation Multiplications Summations

3.13 @0k(2k+1) .
3.9 22r)k .
3.14 2tk k()K+2rk

3.17 20hr2 -
3.18 8hre .
3.19 2tk 2rk(2rh+1)
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Analogously, for both estimation methods the number of multiplications and summations needed
for the computation of the item difficulties can be obtained. When we compare these numbers, it
seems that the proposed estimation method requires a smaller number of multiplications and
summations for the estimation of the attraction parameters and item difficulties than the
traditional estimation method does. This means that we may expect that the processing time of
the proposed estimation method is shorter than the processing time of the traditional estimation
method. Experience obtained by the application of the DBI principle as discussed in Section
3.5.5 and obtained during the simulation study of Chapter 4, indicates that the processing time of
the proposed estimation method is about 1 to 10 minutes, dependent on the number of items, the
number of alternatives, the criterion on which the iteration process will be stopped and, of
course, the data. However, experience obtained during the analyses of Westers and Kelderman
(1992) indicates that the processing time of the traditional estimation method varies from 10to
150 minutes, dependent on the restrictions of the postulated SERE model.

In order to summarize, the estimation method based on the pseudo-likelihood theory
provides not only consistent and asymptotic normal estimators of the parameters, but itis also
much more efficient, in terms of both computer storage and processing time, than the traditional
estimation method. The only drawback is that the estimators cannot be expected to be
asymptotically efficient.




Chapter 4

A SIMULATION STUDY OF THE
SOLUTION-ERROR RESPONSE-ERROR MODEL

4.1 INTRODUCTION

In this chapter the results from a simulation study of the solution-ervor response-error (SERE)
model of Kelderman (1988, see also Westers & Kelderman, 1992) and of the estimation
technique presented in Chapter 3 are reported. The questions considered are: (1) Can differential
item functioning (DIF) still be found if the number of items or the number of subjects is small?;
(2) How do the values of the estimators differ from the true parameters?; (3) Is this deviation
consistent in the sense that the differences tend to decrease when the number of subjects
increases? With simulation we will also examine under which conditions the SERE model can be
used in practice and whether DIF can be detected. However, it must be stressed that this study
does not pretend to be a systematic and comprehensive study of the robustness of the estimation
method or the quality of the SERE model.

Section 4.2 is devoted to a brief description of the SERE model and the estimation
method from Chapter 3. In Section 4.3 the research questions of the simulation study are
discussed, whereas in Section 4.4 a complete description of the simulated data is given. Finally,
in Section 4.5 the results of the simulation study will be discussed.

42 THE SOLUTION-ERROR RESPONSE-ERROR MODEL

In the solution-ervor response-error (SERE) model (Kelderman, 1988), a distinction is made
between two states: a "Know" state and a "Don’t know" state. The states determine whether the
subject can or cannot solve the problem imposed by an item. The probability that the subject isin
the "Know" state is assumed to be governed by the Rasch (1960/1980) model. Furthermore, the
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assumption is that if the subject is in the "Don’t know" state, (s)he will choose the most
attractive altemativé, where the attractiveness of an altemative may be dissimilar for different
alternatives, including the correct one.

Let xpj (xpj = 0,1) and Ynj Onj = Lot indicate the latent response and observed
response of subject n (n = 1,...,N) to item j (j = 1,....k), respectively. The random variables
associated with Xnj and Ynj are denoted by an and Ynjv respectively. Assuming that the latent
response is governed by the Rasch model, the probability of Xnj» given that the subject n has

“ability 0, is

@.1) P(xpj lo) = exp(xqj(8-8))V(1 + exp(8-8;)) .

Furthermore, the assumption is that the relationship between the latent response Xnj and the
observed response Ynj is the same for each subject n and described by the conditional probability

XiY;
4.2) &1 = P(ypjlxyp).
XY

in which the superscripts, in symbolic notation, indicate that the random variables Xj and Yj are
involved in the conditional probability. This conditional probability will be referred to as the
attraction parameter of item j.

Finally, assuming that Ynj only depends on Xpj and that Xnj only depends on the latent
ability 0, we have

(4.3) P(yp;0) = [¢§j;{jj + ¢’l‘j;;j exp(9-5;))/[1+exp(®-5))] .

One of the main advantages of the SERE model is that it can be easily formulated as a latent
class analysis model (Kelderman, 1988), namely as a latent class model in which the structure of
the latent-class probabilities is explained by a loglinear Rasch model. Each latent class
corresponds with an idealized response pattern. Another advantage of the SERE model is that, by
extending the SERE model with variables defining subgroups, it is not only possible to test
whether a certain item shows DIF, but also to test whether this DIF is caused by the difficulty of
the item, the attractiveness of the alternatives, or both (Westers & Kelderman, 1992). Generally,
an item shows DIF if the probability of a correct response among equally able test takers is
different for various racial, ethnic, or gender subgroups. However, an item can show DIF in two
different ways. In the first place, an item shows DIF if equally able subjects from different
subgroups have different probabilities of "Knowing" the answer to the problem imposed by the
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item. Secondly, an item also shows DIF if the attractiveness of the alternatives of the item varies
from subgroup to subgroup conditioned on ability. Westers and Kelderman (1992) refers to these
two types of DIF as DIF in the latent response and DIF in the attraction parameters. They also
show that both types can be examined with the SERE model.

As discussed in Kelderman (1988, Westers & Kelderman, 1992), the parameter estimates
can be computed with the methods LCAG (Hagenaars, 1988; Hagenaars & Luijkx, 1990) and
LOGIMO (Keldermar & Steen, 1988). LCAG is a computer program for the estimation of the
parameters of loglinear models with latent variables. Apart from the estimated attraction of the
alternatives, it also gives the estimated expected frequency distribution of the latent classes under
the SERE model. LOGIMO is a general computer program for analyzing loglinear IRT models.
We use it here to compute the difficulty of the items from the frequency distribution of the latent
classes in the SERE model.

The use of these two methods, however, becomes unpractical for a large number of
polytomous items. In the first place, in LCAG all cell frequencies, including empty cells with
frequency zero, have to be stored. Secondly, in LCAG the values for the probability of the latent
classes followed by the values for the conditional probabilities of the observed variables given
each latent class, have to be stored. Doing this for the case of the SERE model, LCAG uses such
a large amount of memory space that it is impossible to consider a large item set. For example,
Westers and Kelderman (1992) could only consider four five-choice items at a time.

Therefore, in Chapter 3 a maximum likelihood estimation method for the SERE model
was proposed, which is based on the division of the entire item set into several subsets of items.
It was shown that the SERE model can then be rewritten into a set of smaller SERE models. We
will refer to these smaller SERE models as the collapsed SERE models. With the use of pseudo-
likelihoods, estimates of the parameters of the entire SERE model can be found. A pseudo-
loglikelihood could be expressed as the sum of the true loglikelihoods for subsets of items. Tie
estimates of the parameters of the SERE model could then be found through the maximization ¢f
the sum of the loglikelihoods of the collapsed SERE models (Chapter 3). The advantages of this
approach are the decreased number of latent clasces, the decreased number of cells in the
observed and expected contingency t-ble, and a more efficient use of the data. More efficient use
of the data because, apart from designs with complete data, designs with incomplete data can
also be used. Data trom any subject, even when responding to only two items of the test, can be
studied. Of course the data for these subjects can only be used if the two items form one of the
subsets of items. A disadvantage of the approach of Chapter 3 is that some of the statistical
efficiency of the estimators may be lost.

The overall goodness of it of the collapsed SERE model can be tested by the Pearson
statistic or the likelihood-ratio test statistic. With the difference of the likelihood-ratio test
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statistics for two nested models the best fitted inodel can be selected (Bishop, Fienberg, &
Holland, 1975; Rao, 1973). In Chapter 3 an alternate approach to model selection is described
which uses the pseudo-likelihood estimates and some modified versions of the information
criteria of Akaike (1977, 1987), Bozdogan (1987) or Raftery (1986a, 1986b). With these so-
called pseudo Akaike’s information criteria, it can be checked whether a model gives a
significant improvement in fit over another model.

43 RESEARCH QUESTIONS OF THE SIMULATION STUDY

itis well-known that the Pearson statistic and likelihood-ratio test statistic for testing the overall
goodness-of-fit of a model are both asymptotically distributed as chi-square with degrees of
freedom equal to the difference between the number of cells in the observed contingency table
and the number of estimable parameters. However, by using the pseudo-likelihood theory for the
estimation of the parameters of the SERE model, the use of the Pearson or likelihood-ratio
goodness-of-fit statistics is not allowed.

On the other hand, there are other indices which can be used for the selection of the best
fitted model. The information criteria of Akaike (1977, 1987), Bozdogan (1987) or Raftery
(1986a, 1986b) for example. Akaike’s information criterion (AIC) for a model with likelihood L
is defined as AIC = -2In(L)+2D, in which D is the number of independent parameters which are
estimated in fitting the model. The model with the minimum AIC value is chosen to be the best
fitting model. Since AIC is inconsistent in the sense that an increasing sample size does not have
a direct impact on the criterion, modifications of the criterion are proposed in the literature. For
example, the consistent AIC criterion (CAIC) of Bozdogan has In(n+1) (i.e. n is the sample size)
as a multiplication factor for the number of independent parameters, whereas the multiplication
factor in the Raftery’s Bayesian information criterion (BIC) equals In(n). Generally, the CAIC
and BIC criteria tend to lead to simpler models than AIC does. With the use of pseudo-
likelihoods, pseudo information criteria can be defined, based on the same notion as those on
which the AIC, CAIC and BIC are based, but in which the loglikelihood In(L) is replaced by the
pseudo-loglikelihood PL and D is equal to the number of independent parameters in the entire
SERE model (Chapter 3). The model with the minimum pseudo Akaike information criterion
(PAIC) value will be chosen as the best fitting model.

Since the derivations of the (pseudo) information criteria are based on likelihood ratio
test statistics, an objection can be raised to their use, because asymptotic results may not be
valid. There is, nevertheless, considerable value in studying the behavior of the (consistent)
pseudo Akaike information criteria, since their performance in real-life situations may be of
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practical use. In this simulation study we will therefore examine whether the (consistent) pseudo
information criteria of Chapter 3 can be used for the examination of DIF. Since a consistent
PAIC tends to lead to simpler models than AIC does, only the following consistent pseudo
Akaike’s information criterion will be calculated in this chapter

PAIC =-2PL + In(n)D

If the pseudo-likelihood-ratio test statistic PLR is equal to the sum over ail subsets of the
likelihood-ratio test statistics of the collapsed SERE models, -2 PL is equal to PLR + C, in which
C only depends on the observed data. Since in the simulation study we only compare models
with each other for the same data, the PAIC-C values will be reported in the tables.

Another issue in the field of the examination of DIF is the number of items of the test.
Generally, DIF is not necessarily some inherently "bad" characteristic of an item; it is also
dependent on the pool of items with which the particular item is being compared (Berk, 1982).
For instance, biased items can be identified as those that are relatively more difficult for
members of a particular group. Since the DIF detection methods all rely on the total test as a
measure of the ability, bias will go unnoticed by these methods when all the items have the same
type and degree of invalidity. Furthermore, with a small sample of items, it may be difficult to
distinguish between systematic differences between groups due to DIF and systematic
differences between groups due to ability. Since the biased items contribute to the estimation of
the subjects’ ability, the DIF detection methods based on IRT models is sensitive for many
biased items; too many biased items would ordinarily harm the stability of findings (Shepard,
Camilli, & Williams, 1984). However, as Rudner, Getson and Knight (1980b) showed in their
paper, the correlations between detected bias and true bias increase only slightly with increasing
test length. Two remarks have to be made with respect to this conclusion. In the first place, in
their study, data were generated which conform with the three parameter logistic model in which
the degree and the type of DIF were specified in advance. Secondly, allmost all considered DIF
detection methods, including the method based on the three parameter logistic model, showed a
slight general increase in the average correlation with increasing test length. In the simulation
study we will examine whether these conclusions are also valid for the SERE model and the
pseudo-likelihood estimation method from Chapter 3.

Finally, in the simulation study the attention will be focused on the combination of the
two types of DIF: DIF in the latent response and DIF in the attraction parameters. Westers and
Kelderman (1992) argued that it is possible to define these two types of DIF by using the SERE
mudel. But is it really possible to detect DIF in the latent response, if DIF already exists in the
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attraction parameters? Or to detect DIF in the attraction parameters, if the item already shows
DIF in the latent response?

The above research questions can be summarized as follows: (1) How do the values of
the estimators differ from the true parameters?; (2) Is this deviation consistent in the sense that
the differences tend to decrcase when the number of subjects increases?; (3) Can DIF still be
found if the number of subjects is small?; (4) Can DIF still be found if the number of items is
small?; (5) Is it possible to detect an item which shows DIF in the latent response, but shows DIF
in the attraction parameters as well?

44 THE SIMULATED DATA

The usefulness of the SERE model and the maximum likelihood estimation method from
Chapter 3 will be studied with the use of simulated data. It should be noticed in advance that
there are several possible combinations of sample sizes, test lengths, number of alternatives,
choice of parameter (e.g. difficulty parameter or attraction parameter) values, choice of subsets,
choice of items which show DIF (e.g. DIF in the latent response or DIF in the attraction
parameter). The simulation study will concentrate only on some interesting combinations of
these variables, relevant for each research question. In the next section these combinations will
be described in more detail.

In order to generate data which conform with the SERE model, the following algorithm
was used.

Input: the sample size N, test length k, number of alternatives vector r,
the difficulty parameter vector 8, and the attraction parameter
mairix ©

Step 1: forn = 1,...,N, draw 6, (i.. the ability of subject n) from the
standard normal N(0,1) distribution. '

Step 2: forn=1,..Nandj= 1.k, draw lp; from the uniform
distribution on [0,1].

Step 3: forn = 1,..,Nand j = 1,... k, generate latent responses using
if iy < P(Xpj =118y, 8) then Xy = 1 else Xy = 0.

Step 4: forn=1,..,.Nandj= 1,...k, draw Hnj from the uniform

distribution on [0,1].
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Step 5: forn=1,..N,j=1l..kandi= 2,...,rj, generate observed
responses
i-1 i
: Y . X:Y; s
ir 1¢¥3th< Hnj < 2 O3] then Ypj=i.

With this algorithm, different data sets were generated for two groups. By specifying unequal
vatues of the difficulty parameter for both groups it is possible to generate items which show
DIF in the latent response. Items with DIF in the attraction parameters can be generated by
specifying unequal attraction parameters for both groups.

For convenience during the entire simulation study the same item characteristics will be
used. Furthermore, we assumed that if the subject is in the "Know" state, the subject will choose
the correct alternative (denoted by A). In Table 4.1 the manifest difficulty parameters and the
attractiveness of the altematives for the "Don’t know" state are given. Please note that the
number of response categories is taken to be the same for all items, i.e. rj = 4, forj=1,..9.
Table 4.1 shows that Items 4 and 8 show DIF in the latent response, whereas Items 2 and 4 show
DIF in the attraction parameters.

For the estimation of the parameters of the SERE model the computer program
LANPACO was used (Westers & van der Sar, 1993). A description of the program will be given
in Appendix C.

Table 4.1
Item parameters of the simulated data

Group | Group 2

Attraction parameters Attraction parameters

Iem Item
Item difficulty A B C D difficulty A B C D

1 20 25 .25 2525 20 25 25 25 .25
2 1.5 25 25 25 .25 L5 0 20 30 40
3 1.0 25 25 25 .25 1.0 25 25 25 .25
4 0.5 25 25 25 .25 1.0 d0 20 30 40
5 0.0 25 25 25 .25 0.0 25 25 .25 25
6 -0.5 25 25 2525 -0.5 25 25 .25 25
7 -1.0 25 25 25 .25 -1.0 25 25 .25 25
8 -1.5 25 25 25 .25 2.0 25 25 25 .25
9 2.0 25 25 25 .25 20 25 25 25 .25
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4.5 RESULTS

In this section the results of the simulation study will be presented. In Sections 4.5.1 and 4.5.2
the small-sample behavior of the estimation method and the SERE model will be discussed. The
issue of the influence of the test length on the examination of DIF will be discussed in Section
4.5.3. Finally, in Sections 4.5.4 and 4.5.5 we will discuss whether it is really possible to examine
items that show DIF in the latent response and DIF in the attraction parameters.

4.5.1 Small-sample behavior of pseudo-likelihood estimates

The purpose of the first part of the simulation study was to get some idea of the small-sample
behavior of the estimation method and the SERE model. In order to produce an example of the
small-sample behavior, the first group and Items 2, 5, 6 and 8 as described in % able 4.1 were
chosen. The choice of these four items was based on the following consideration. Generally, a
test may have items that show DIF in the latent response (e.g. Item 8), but also items which show
DIF in the attraction parameters (e.g. Item 2). Item 5 is chosen as a reference item, because it has
a zero difficulty parameter. We set its parameter to zero to fix the scale. Finally, Item 6 is chosen
because of its low true difficulty parameter. Sample sizes of 1000, 2000 and 5000 respondents
were used and for every sample size 25 replications were made. The estimated values of the
parameters of the items are shown in Table 4.2.

Table 4.2

Mean and their standard deviations (SDV) of the attractiveness of the correct alternative and the
item difficulties of SERE-homogeneous data for different sample sizes.

N = 1000 N = 2000 N = 5000
Item True Estimated  SDV Estimated SDV Estimated  SDV
Attraction parameters
2 25 .0649 .0038 0640 0032 0637 0014
5 25 .1458 0093 .1400 0066 1356 0048
6 25 1990 0131 1916 0084 .1852 0073
8 25 3652 0222 3547 0168 3403 0123
Item difficulties

2 1.5 0.776 .0853 0.809 .0592 0.829 0316
5 0.0 0.000 - 0.000 - 0.000 -
6 -05 -0.291 0631 -0.317 .0587 -0.325 0300
8 -15 -0.844 .0842 -0.916 0549 -0.943 0511
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In Table 4.2 the true and the mean of the estimated attraction parameters of the right alternatives
and the estimated difficulty parameters are given for each sample size. Furthermore, the column
labelled "SDV" gives the values of the standard deviation of the estimated attraction parameters
and the estimated difficulty parameters, respectively.

Generally, the test score of a subject is determined by the number of correct choices of
the right alternative. Therefore, in Table 4.2 only the estimated attraction parameters of
alternative A (i.e. the right alternative) will be compared for different sample sizes. For the other
alternatives similar tables can be made.

As can be seen from this table the standard deviations of the estimates of the attraction
parameters' decrease with increasing sample size. The simulation study also shows that except for
easy items (e.g. item 8) the difference between the true and the estimated attractiveness of the
correct alternative increases with increasing sample size. Table 4.2 shows that the standard
deviations of the estimated difficulties, as well as the difference between the true and the
estimated difficulties, decreases with increasing sample size.

As discussed in Chapter 3, it was to be expected that the maximum pseudo-likelihood
estimates would be less efficient, but consistent. The results of Table 4.2 suggest, however, that
the estimates are inconsistent and efficient. High efficiency is not surprising, because
LANPACO selects all possible pairs of items as subsets of items, which means that the
covariances between the items are not neglected. Neglecting the dependencies between the items
would generally decrease the efficiency of the maximum pseudo-likelihood estimates.

If we take a closer look at the results, we will see that for all sample sizes a trade-off
exists between the attractiveness of the correct alternative and the difficulties of the items: if the
attractiveness of the correct alternative is estimated too low this is compensated by estimating
the item difficulties too low, and vice versa. Since the SERE model as defined in this simulation
study can be regarded as a special case of a three-parameter logistic model, this trade-off was to
be expected (Chapter 3). The literature about the three-parameter logistic model also shows that
there is only empirical evidence that consistency of the item parameters may comply with the
theoretical expectations (Swaminathan & Gilford, 1983; Wingersky & Lord, 1984). In view of
the phenomena of biased estimates for the three-parameter logistic model (Baker, 1987; Hulin,
Lissak & Drasgow, 1982; Lord, 1975; Thissen & Wainer, 1982), the item parameter estimates
for the SERE model may be expected to be biased as well. And, in particular, the estimation of
the difficulties may be affected as an error in the attractiveness of the correct alternative results
in a shift in the estimate of the item difficulties. The inconsistency of the results is therefore
caused by the structure of the postulated SERE model.




76 Chaprer 4

4.5.2 Small-sample behavior of DIF detection

This section deals with the question of the way in which the examination of DIF is influenced by
the number of subjects. In order to answer this question, data were generated according to the
algorithm of Section 4.2. Just as in the case of the previous part of the simulation study Items 2,
5, 6 and 8 from Table 4.1 were chosen. However, this time the data were generated for two
groups. Furthermore, samples sizes of 1000, 2000 and 5000 were chosen and for every sample
size 25 replications were made. Finzliy, the parameters of four models were estimated: (a) a
model in which none of the items shows DIF, (b) a mcdel in which Item 8 shows DIF in the
latent response, (c) a model in which Item 2 shows DIF in the attraction parameters, and (d) a
model in which Item 8 shows DIF in the latent response and Item 2 shows DIF in the attraction
parameters. Please note that Model d is the same as to the model under which the data were
simulated. In Table 4.3 the values of the consistent pseudo Akaike’s information criterion
(PAIC) of Model a through d are given for each of three different sample sizes: 1000, 2000, and
5000 subjects, respectively. Furthermore, the columns labelled "SDV" give the values of the
standard deviation of these PAIC values, whereas the columns denoted with "Best Model" give

the number of analyses in which the particular model has the lowest PAIC value of the four
models.

Table 4.3

Mean of the consistent pseudo Akaike’s information criteria (PAIC) with their standard
deviation (SDV), the number of independent parameters (D) and the number of best selected
models of SERE-homogeneous data for different sample sizes.

N = 1000 N = 2000 N = 5000
Best Best Best
Model D PAIC SDV model PAIC SDV model PAIC SDV model
a 51 574 28 0 678 53 0 1014 56 0
b 52 564 29 0 657 Sl 0 957 59 0
c 54 491 13 11 493 16 3 536 16 0
d 55 487 11 14 484 12 22 505 8 25

As already mentioned in Section 4.3, even with small sample sizes the decision whether an item
shows DIF or not can be made almost as well as with large sample sizes. With a sample size of
1000 subjects for 14 out of 25 replications the true model (d) was selected as the best. However,
the lowest chance of making a wrong decision is found in the sample size of 5000 subjects: ail
25 replications selected model d as the best.
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4.53 The influence of the test length on DIF detection and parameter estimates

In this section we will examine whether DIF can still be found if the test length decreases. For
this examination three data sets were generated: one consisted of eight items (i.. the nine items
of Table 4.1, except Item 4), the second consisted of six items (Items 2,3,5,6,7,8) and the third
consisted of the Items 2, 5, 6 and 8. Please remember that Item 8 shows DIF in the latent
response, whereas Item 2 shows DIF in the attraction parameters. Furthermore, the sample sizes
were equal to 1000 and 25 replications were made. Finally, the parameters of the models
mentioned in Section 4.5.1 (i.e. Model a through d) were estimated. To compare the three data
sets, the consistent pseudo Akaike’s information criterion values (PAIC) and the number of
independent parameters (D) for each o the four models are presented in Table 4.4. And just as in
Table 4.3 the number of occasions it: which the particular model had the lowest PAIC value are
also given.

Table 4.4
Mean of the consistent pseudo Akaike’s information criteria (PAIC), the number of independent

parameters (D) and the number of lowest PAIC values of SERE-homogeneous data for different
numbers of items.

4 items 6 items 8 items
Best Best Best
Model D PAIC model D PAIC model D PAIC model
a 51 574 0 68 1492 O 115 1586 O
b 52 564 0 69 1397 0 116 1560 O
c 54 491 11 71 667 3 118 1370 2
d 55 487 14 72 598 22 119 1350 23

From the results of Table 4.4 we may conclude that DIF detection is better when there are more
unbiased items in the test. The comment by Shepard, Camilli and Williams (1985) that too many
biased items in the test would harm the stability of detecting DIF might therefore be valid for the
SERE model. In the first set of data fifty percent of the items were biased, but with a sample size
of 1000 subjects all biased items were detected in only 14 of the 25 replications, whereas for the
second and third set of data all biased items were detected in almost all 25 replications.

In order to answer the question whether the deviations between the parameter values of
the estimated parameters and the true parameters decrease when the number of items in the test
increases, in Table 4.5 the mean of the estimated attraction parameters of the right alternatives
and the estimated difficulty parameters for the three sets of data of the first group are depicted.
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Table 4.5

Mean and standard deviations (SDV) of the attractiveness of the correct alternative and the item

difficulties for the first group of SERE-homogeneous data in model d for different numbers of
items. (N = 1000)

4 items 6 items 8items
Item True Estimated SDV Estimated  SDV Estimated  SDV
Attraction parameters
2 25 1195 0221 1215 0207 1224 0196
5 25 .1474 0070 .1466 0070 .1470 0071
6 25 2022 0098 .2002 0098 2014 0100
8 25 4172 0186 4179 0190 4228 0189
Item difficulties

2 1.5 1.084 0703 1.091 0721 1.080 0688
5 0.0 0.000 - 0.000 - 0.000 -
6 -05 -0.290 0608 -0.291 0599 -0.283 0569
8 -15 -0.701 .0922 -0.712 0885 -0.705 0832

This table shows that in the three sets of data the differences between the estimated values of the
parameters were not very large. When we compare the three sets of data, the standard deviations
of the estimates of the item difficulties, except for Item 2, seem to have decreased with
increasing test length. This trend is not very clear for the attraction parameters. For some items
the standard deviations of the estimates of the attractiveness of the right altevnative decreased
and for other items the standard deviations increased.

For the second group the conclusions are not different from those about the first group.
Therefore they are not given.

4.5.4 Thesimultaneous detection of DIF in the latent response and DIF in the attraction
parameters
In the fourth part of the simulation study the attention was focused on the combination of the two
types of DIF: Is it possible to detect an item which shows DIF in the latent response, but shows
also DIF in the attraction parameters? In order to answer this question, a data set was generated
forItems 1, 3, 4, 5,6, 7, and 9 of Table 4.1. Please note that Item 4 is the only item which shows
DIF both in the latent response and in the attraction parameters. Again the data set was generated
for two groups of 1000 subjects, and 25 replications were made. This time, the pseudo-likelihood
statistics were calculated for the models in which Item 4 shows (e) no DIF, (f) DIF in the latent
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response, (g) DIF in the attraction parameters, or (h) DIF in the latent response and DIF in the
attraction parameters. The results are presented in the Table 4.6, whereby the contents of the
columns are similar to those of Tables 4.3 and 4.4.

Table 4.6

Mean of the consistent pseudo Akaike’s information criteria
(PAIC) with their standard deviation (SDV), the number of
independent parameters (D) and the number of lowest PAIC values
of SERE-homogeneous data.

Best

Model D PAIC Shv model
e 153 1685 59 0
f 154 1549 45 0
g 156 1456 29 0
h 157 1447 30 25

Table 4.6 indicates that it is really possible to detect items which show DIF in the latent response
as well as DIF in the attraction parameters. For all replications the model in which item 4 was
the only item that showed both types of DIF (i.e. the true model) was selected as the best model
in comparison with models in which item 4 shows no DIF or only one type of DIF. However,
when the sample size was 5000, in only 3 replications the true model was selected as the best. In
the other 23 replications the model in which item 4 only shows DIF in the attraction parameters
(i.e. model g) was selected as the best. In view of the mean of the PAIC values for the two
models g and h (1488 and 1491, respectively), the reason for the discrepancy between the two
sample sizes might be the choice of the pseudo Akaike's information criterion. Generally, the
consistent pseudo Akaike’s information criterion tends to lead to simpler models than the pseudo
Akaike’s information criterion does, which happened for the sample size of S000. When the
pseudo Akaike’s information criterion model selection method was used, then for both sample
sizes model h (i.e. the true model) had always been selected as the best model.

4.5.5 Small-sample behavior of simultaneous detection of DIF in the latent response

and DIF in the attraction parameters
In the preceding sections, the research questions were all restricted to (1) situations in which the
sample size was relatively small or large, (2) situations in which only one item in the item set
shows DIF in the latent response and only one other item shows DIF in the attraction parameters,
and (3) situations in which only one item in the item set shows both types of DIF. In real-life
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situations, however, extremely small sample size of 100 or 250 subjects are commonly used.
Moreover, in real-life situations more than one item may show one of the two types of DIF or
may show both types of DIF. _

We have seen that in a situation where in a set of data one item shows one type of DIF
and another item shows the other type of DIF, it is possible to detect both biased items. We have
also seen that it is even possible to detect items that show both types of DIF. Would we have find
the same results if there were more biased items in the test? And can we still found the items
which shows DIF if the sample size is extremely small?

Table 4.7

Mean of the consistent pseudo Akaike’s information criteria (PAIC) with their standard
deviation (SDV), the number of independent parameters (D) and the number of lowest PAIC
values of SERE-homogeneous data for different sample sizes.

N=100 N =250 N =500

Best Best Best
Model D PAIC SDV model PAIC SDV model PAIC SDV model
0000 143 2668 113 0 2611 95 0 2285 89 0
0001 144 2660 111 0 2588 91 0 2264 90 0
0010 144 2655 108 0 2571 90 0 2211 95 0
0011 145 2651 107 0 2556 85 0 2198 95 0
0100 146 2619 102 0 2536 71 0 2155 71 0
N101 147 2612 100 0 2515 64 0 2140 73 0
0110 147 2615 98 1 2519 70 0 2135 73 0
0111 148 2611 96 0 2503 63 0 2122 74 0
1000 146 2646 111 0 2541 79 0 2172 72 0
1001 147 2639 111 1 2519 72 0 2153 74 0
1010 147 2633 107 1 2499 75 0 2000 76 0
1011 148 2628 106 1 2484 66 0 2080 77 1
1100 149 2597 98 0 2464 63 0 2037 47 0
1101 150 2591 97 5 2445 51 2 2025 49 0
1110 150 2593 94 2 2446 63 6 2014 47 2
1111 151 2589 92 10 2432 50 17 2004 48 22

Note. For the sample size of 100 four replications of the generated set of data were omitted from
the simulation study because of problems during the estimation process.

In order to answer these two questions two sets of data were generated, one for each subgroup.
Each set of data consists of all nine items as defined in Table 4.1. Furthermore, sample sizes of
100, 250 and 500 were chosen, and for every sample size 25 replications were made. Please note
that the Items 2 and 4 showed DIF in the attraction parameters and Items 4 and 8 showed DIF in
o the latent response. The parameters of 16 models were estimated. In each model it was !
ERIC
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postulated whether or not Items 2 and 4 show DIF in the attraction parameters and whether or
not Items 4 and 8 show DIF in the latent response. In the Tables 4.7 and 4.8 the results are
presented.

In these tables the models will be denoted by a chain of four digits: zero or one. The first
digit in the chain defines whether it was postulated that Item 2 shows DIF in the attraction
parameters, where a zero means "No" and a one means "Yes". In the same way, the second, third
and fourth digit declares whether Item 4 shows DIF in the attraction parameters, Item 4 shows
DIF in the latent response or Item 8 shows DIF in the latent response. The chain 1010, for
example, defines a model in which item 2 shows DIF in the attraction parameters and item 4
shows DIF in the latent response, whereas the chain 1101 defines a model in which items 2 and 4
show DIF in the attraction parameters and item 8 shows DIF in the latent response.

In Table 4.7 the values of the consistent pseudo Akaike’s information criterion (PAIC) of
the 16 models are given for the three different sample sizes. Furthermore, the standard deviation
of these PAIC values and the number of occasions in which the particular model had the lowest
PAIC value, are given.

From the results of Table 4.7 we may conclude that even for situations in which the
sample size is extremely small and there is more than one item that showed DIF, it is possible to
detect all these items. With the smallest sample size (i.e. 100) in 10 of the 21 replications the true
model was selected as the best, whereas with a sample of 250 or 500 subjects the number of

Table 4.8

Mean and standard deviations of the attractiveness of the correct altemative and item difficulties
of SERE-homogeneous data in the true postulated model (1111) for different sample sizes

N=100 N =250 N =500
Item True Estimated ShV Estimated SDV Estimated SDV
Attraction parameters
2 25 1137 0351 0928 0146 1078 0176
5 25 2742 .0401 1934 0231 .1637 0110
6 25 3671 0614 2749 0173 2265 0184
8 25 6940 0680 .5682 0475 4832 0276
Item difficulties

2 1.5 0.711 1120 0.876 .1108 0.978 0858
5 0.0 0.000 - 0.000 - 0.000 -
6 -05 -0.175 1170 -0.255 0999 -0.262 0836
8 -5 -0.411 .1042 -0.498 .1461 -0.618 0882
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replications in which the true model was selected as the best was equal to 17 and 22,
respectively. '

In order to examine the deviations between the values of the parameters of the estimated
model 1111 and those of the true model, in Table 4.8, for each sample size, the true and the
mean of the estimated attractiveness of the right altematives and the estimated difficulties are
given for the Items 2, 5, 6 and 8 and for the first group. Furthermore, in the column labelled
"SDV" the values of the standard deviates of the estimates are given.

Just as in the case of the relatively large sample sizes (i.e. 1000, 2000 and 5000), this part
of the simulation study shows that the estimated attractiveness of the correct alternative was
biased, but that the difference between the true and the estimated difficulties decreased with
increasing sample size. The inconsistency of the estimators of the attractiveness of the correct
alternative was again due to the instability of the parameter estimates of three-parameter logistics
models.

Here, too, the conclusions about the second group were no different from those about the
first group. Therefore they are also not given.

46 CONCLUSIONS AND DISCUSSION

This chapter dealt with the question whether DIF can be found with the SERE model and how
the values of the parameters of the estimated SERE model differ from those of the original
model.

In the first place, from the results of this simulation study we may conclude that despite
the trade-off between the difficulty parameters and the attraction parameters, the difference
between the true and the estimated difficulty decreased with increasing sample sizes or
increasing test lengths. For the attractiveness of the correct alternative this relation between the
sample size or test length with the deviation between the values of the parameters of the
estimated model and the original model could not be found.

Secondly, the simulation study showed that with (extremely) small sample sizes DIF
could still be detected, but that the chance of the detection of DIF increased when the sample
size increased. Evidence that the test length has an effect on DIF detection could be found: there
were indications that too many biased items harmed the stability of detecting DIF.

Finally, one of the main reasons why the SERE model was developed was for the
examination of items not only for DIF due to item difficulty but also due to alternative
attractiveness. From the last two parts of the simulation study we may conciude that with the
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SERE model a distinction can be made between both types of DIF and that items can be detected
which show both types of DIF.
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Chapter 5

GENERALIZATIONS OF THE
SOLUTION-ERROR RESPONSE-ERROR MODEL*

51 ABSTRACT

In the last decade, several efforts have been made to relate item response theory (IRT) models to
latent class analysis (LCA) models. One of these efforts is the solution-error response-error
(SERE) model; a LCA model in which the structure of the latent class probabilities is explained
with a one-dimensional loglinear Rasch model.

In this chapter the SERE model will be generalized to models for polytomously scored
latent states that may be explained by a multidimensional latent space.

52 INTRODUCTION

For the measurement of individual differences, a distinction can be made between measurements
on a discrete qualitative latent trait and measurements on a continuous quantitative scale. The
latent class analysis (LCA) model, in which the assumption is that subjects belong to different
latent classes, is an example of the former (Bartholomew, 1987; Lazarsfeld & Henry, 1968;
Mooijaart, 1978). Whereas the item response models (IRT) is an example of the latter. Some
well-known examples of IRT models are the Rasch (1960/1980) model and the two- and three-
parameter-logistic or normal ogive models (Lord, 1980; Lord & Novick, 1968). In the last
decade several efforts have been made to relate IRT models to LCA models (Bock & Aitkin,
1981; Dayton & Macready, 1980; Formann, 1985; Kelderman, 1988, 1989; Kelderman &
Macready, 1990; Mislevy & Verhelst, 1990; Yamamoto, 1987, 1988). In this chapter one of

. The authors P. Westers and H. Kelderman would like to thank Mary E.Lunz and Barbara M. Castleberry of
the American Society of Clinical Pathologist (ASCP) for providing empirical data used in the example in
this chapter.
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these efforts will be discussed: the solution-error response-error (SERE) model of Kelderman
(1988).

In the SERE model a distinction is made between a "Know" state in which the subject
has a complete knowledge of the answer, and a "Don’t know" state. The probability that the
subject is in the "Know" state is assumed to be governed by the Rasch mode:. Furthermore, the
assumption is that whether or not the subject is in the "Know" state, (s)he will choose the most
attractive alternative, in which the attractiveness may be dissimilar for different altematives,
including the correct one. The SERE model can be formulated as an (incomplete) LCA model, in
which each latent class corresponds with an idealized response pattern. The relations between
these idealized responses are explained by the loglinear version of the Rasch model (Cressie &
Holland, 1983; Duncan, 1984; Kelderman, 1984; Tjur, 1982).

All SERE models considered in Kelderman (1988) deal with a one-dimensional
continuous latent trait. In many testing situations, however, we may have to deal with a two - or
more - dimensional latent space. Consider, for example, a version of the American Society of
Clinical Pathologist (ASCP) Microbiology Test. In Appendix A.4 some items of this test are
presented. Content experts have hypothesized that although each item of this ASCP test has one
correct alternative, incorrect responses might often be chosen after cognitive activities similar to
those necessary to arrive at the correct response. They further presumed that "Applying
Knowledge", "Selecting Action", "Calculating”, "Correlating Data” and "Evaluating Problem"
are the cognitive processes involved in answering the items. For instance, they assumed that for
item 11 of Appendix A.4 the correct answer (d) involved two applications of knowledge,
whereas answer ¢ involved only one. In order to give the correct answer ¢ on item 20 they
assumed ihat the subject had to use the cognitive process "Evaluating Problem" twice and the
cognitive processes "Applying Knowledge" and "Selecting Action" once.

So, in general, the production of one answer may require quitc another ability from the
examinee than the production of another. Or some responses may require the repeated
application of an ability, whereas others may require only a single application of the same
ability. In this chapter the SERE model will be generalized to models for polytomously scored
latent states that may be explained by a multidimensional latent space. Maximum likelihood
estimates of the parameters of this generalized SERE (GSERE) model can be obtained by
solving the likelihood equations by the iterative proportional fitting (IPF) algorithm of Goodman
(1974b).

The GSERE model will be formulated below. The estimation method and goodness-of-fit
tests are described, and the question of identifiability is discussed.
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§3 THE GENERALIZED SOLUTION-ERROR RESPONSE-ERROR MODEL

Let us suppose that each subject, randomly drawn from a population of subjects, responds to k
test items, in which the answer to item j may be any of the Tj responses, denoted by ¥j
(yj=l,...,rj). Let X (xj=0,...,sj) indicate the latent state of the subject. For example, all the items
of the ASCP Microbiology Test have four possible responses (i.e., rj=4) and may have three
latent states: "Don’t know", "Partial knowledge" and "Complete knowledge”. We will assume
that when the subject is in the "Don’t know" state (xj=0), (s)he will choose one of the
alternatives. If the subject is in the "Partial knowledge" state (xj=l), (s)he will choose one of the .
alternatives that might be correct in view of the subject’s partial knowledge of the answer. If the
subject is in the "Complete knowledge" state (Xj=2), (s)he will choose the correct alternative.
The random variables with values ¥j and x; are denoted by Yj and Xj (j=1.....k). The relationship
between the latent state x; and the observed response y; is described by the conditional
probability

XiYi _ pev.v X =x:
(5.1 <bxjjyjj = P(Yj=yjlXjex)) .

This conditional probability will be referred to as the attraction parameter of item J-

In the generalized solution-error response-error (GSERE) model we assume that the
latent states are not governed by the Rasch (1960/1980) model, but by the more general
multidimensional polytomous latent trait model (MPLT) by Kelderman and Rijkes (in press). In
the MPLT model the assumption is that the subject must perform certain cognitive operations to
produce a latent score x; on item j. See for instance the example in the previous section. Each
operation depends on a certain proficiency on a latent trait. Let qu(x) be a non-negative weight
associated with the dependence of response x on item j on the latent trait q. Furthermore, let
) jq(x) be the difficulty parameter of the response x on item j related to latent trait q (g=1....,v),
Bq be a value of the subject on the latent ability continuum and 8 = (0 1.....8y) be the vector of
ability values. The probability that the subject has a response x; on item j can then be written as
(Kelderman & Rijkes, in press)

exp{Z (9q -9 jq(Xj))qu(Xj)}
(5.2) P(Xj|9) = d

Zexp{Z (8q - 8jq(2))Bjq(@))
z q
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Assuming local independence of Xjand Y; given the latent trait vector 8 and X, respectively,
the probability of choosing response ¥j is equal to

(5.3) P(yji0) = §j P(yjix;, 6) P({i6)

XiY;
= 1°) -8 (:))B: - (X: -1
’}‘:j { d>xj yi } exp{ 213 (Oq qu(xj))qu(xj)} C(O,SJ)

in which Sj = (Sjl,...,Sjv) and

C(8.8)) =Zexp { T (8- 8jq(2))Bjq(2)} -
z q

As Kelderman and Rijkes (in press) have shown with the specification of the scoring weights
qu(.), different models can be chosen for the dependence of the latent states on the latent traits.
To illustrate the main idea of this chapter, ore specific MPLT model will be considered below:
the multidimensional partial credit (MPCM) model. It may, however, be clear that the contents
of this chapter is also valid for other kinds of MPLT models.

The scoring weights for a MPCM model, in which each step depends on a different latent
trait, are depicted in Figure 5.1(a).

q q
1 2 1
0 0 0 0 0
x 1 1 0 x 1 1
2 1 1 2 2
@ )
Figure 5.1

Scoring weights for the one- and two-dimensional partial credit model.

The "Complete knowledge" state (x=2) has scoring weight Bj|(2) = 1 on the first trait and
scoring weight Bj2(2) = 1 on the second. The "Partial knowledge" state (x=1) has scoring weight
le(l) =1 on the first trait, whereas the "Don’t know" state (x=0) has scoring weights zero. With
the use of (5.2) and the scoring weights qu(.) of Figure 5.1(a), the probability that the subject

has a latent state Xj on item j can be written as
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"
exp{ T (8- jq(xj))
(5.4) P(x;10) = ¥

z
Texp{ T (0, -8;4(2))}
zoxel = %%

Adding a constant ¢ to & jq(l) and subtracting it from & jq(l’) (l$1¢l’$x]-) does not change the
model in (5.4). By setting the difficulty parameters of the same response equal to each other (i.e.
) jq(Xj) =8 iq for Xj = 0,1,2 and all g), this indeterminacy can be removed (Kelderman & Rijkes,
in press). From (5.4) and the assumption of local independence of the Xj’s given the latent trait
vector 9, it follows that the simultaneous distribution of X given 0 is

(5.5) P(xi8) =exp{ £ (8g tq - £ Bjg(x)djq)} 11C(0.3;)1
q j j
in which
0.5 > 8
C@O3)=Zexp{ X (8g-8;jq)}
PEZORE S e

and

tq = f qu(Xj) g=l....v.

Just like all other MPLT models the MPCM model is an exponential family model and
t=(t].....ty) is a sufficient statistic for the latent trait vector ® (Kelderman & Rijkes, in press).

Let £, mean the summation over all possible latent state patterns X=(X],....Xk). With the
use of (5.1), (5.5) and the assumption of local independence of the observed responses Yj the
marginal probability of y given 0 can be written as

(5.6) P(yl8) = 5 P(ylx, 9).P(xl9)

X;Y;
= ¢ ‘l ‘l - H 1)04 9.8' -1-
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If the terms of (5.4) are arranged and if F(8) is the distribution function of the latent ability
vector 0, the marginal probability of the observed responses y can be written as an incomplete
LCA model in the sense of Haberman (1979)

T X X1Y X1 Y
6.7 Py) =X & & 1. ok g1Vl gk’
X t xj Xk XiYi XkYk
with
T_ 31
¢t -f exp(}(:l eq tq) I'JI C(G,SJ) dF(e)
and

X; -
o) =exp(-Z qu). (i=1....k).
q=1

In this model each value of the latent state vector x represents a latent class. Maximum
likelihood estimates of the parameters of the GSERE model can be obtained by solving the
likelihood equations with the iterative proportional fitting (IPF) algorithm (Bartholomew, 1987;
Goodman, 1974b; Haberman, 1979; Hagenaars, 1990). The overall goodness-of-fit of a model
can be tested by the Pearson statistic or the likelihood-ratio statistic (see Haberman, 1979).
Together with the question of identifiability, these two issues will be discussed in the next
sections. But some applications of the GSERE model will be discussed first.

54  APPLICATIONS OF THE GSERE MODEL

In the previous section a GSERE model was formulated in which the parameters of the model
were unrestricted, except for the usual restrictions pertaining to probabilities and conditional
probabilities. In this section, we will discuss how the GSERE model can be modified in order to
make it suitable for special applications.

Generally, for each specific GSERE model we may define the weights qu(.) and certain
constraints on the attraction parameters for each item j. The choices of the weights may depend
on the required latent trait abilities for the correct response. For example, the item “20-5-6=7"
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requires two subtraction operations for the correct response, so that we can choose the one-
dimensional partial credit model as depicted in Figure 5.1(b). But for the item *\(169-25)=?", in
which the two abilities are subtraction and taking the square root, we can choose the two-
dimensional partial credit model as depicted in Figure 5.1(a). In Kelderman and Rijkes (i press)
other possible choices of the scoring weights for the dependence of the latent states on latent
traits are discussed.

y y
i 2 i 2 3 4
0 0 1 0 oy 5] 03 oy
X x
1 1 0 1 1 0 0 0
(@ ®)
y y
i 2 3 4 i 2
0 (3] (15) o3 (+ 7} 0 0 1
X X
1 B1 0 B2 0 1 18 .
(c) )
y
1 2 3 4
0 (o1 5] o3 oy
x 1 Bi 0 B2 0
2 1 0 0 0
O]

Figure 5.2
Examples of specifications of the attraction parameters

By specifying the attraction parameters (5.1) as free, equal to each other or fixed to a certain
value, a particular GSERE model is specified (Kelderman, 1988; Westers & Kelderman, 1992).
In Figure 5.2 some examples of the attraction parameters for the GSERE model are depicted.
Figure 5.2(a) describes the situation of a perfect response process; the subject answers the item
correctly (y=1) if (s)he can solve the problem (x=1) and gives a wrong answer (yj=2) if (s)he
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cannot solve the problem (x=0). A case in which the items are not necessarily answered
incorrectly if the subject cannot solve the problem is when there are multiple-choice items. If the
subject doesn’t know the answer, (s)he will guess the most attractive alternative. The attraction
parameters for this situation are depicted in Figure 5.2(b). In Figure 5.2(c) the situation is
depicted for the case in which more than one alternative is correct. The general assumption is
that if the subject can solve the problem formulated by the item, (s)he will give the correct
answer. But a subject may fail to produce a correct answer, even if (s)he was able to solve the
problem. On the other hand, if (s)he is not able to solve the problem it is impossible to produce
the correct answer. Such a situation is depicted in Figure 5.2(d), in which B is the so-called
omission error. In the case of the MPCM model we may assume that the attraction parameters
are specified as depicted in Figure 5.2(e).

5.5 IDENTIFIABILITY

Whether the maximum likelihood estimates of the parameteis of the GSERE model are unique
depends on the identifiability of the model. A necessary condition for identifiability is, of course,
that the number of independent parameters to be estimated does not exceed the number of cell
frequencies minus one (i.e. (I1 rj)-l). Furthermore, if the MPLT model is not (locally)
identifiable, the GSERE model is not (locally) identifiable either.

Generally, the parameters in a MPLT model ought to be restricted in order to obtain an
identifiable model. Therefore, in the paper of Kelderman and Rijkes (in press) conditions are
formulated which ensures that the difficulty parameters of the MPLT model are not linearly
dependent upon each other and upon the proportionality constants.

Since the (G)SERE model can be formulated as an (incomplete) LCA model, Goodman’s
(1974a) sufficient condition for identifiability can be used for the identifiability of the GSERE
model. Let M be the matrix consisting of the derivatives of the function (5.7) with respect to the
parameters of the GSERE model. The number of rows of the matrix M is equal to (I rj)-l and
the number of columns is equal to the number of parameters of the GSERE model. By direct
extensions of a standard result about Jacobians, the GSERE model will be locally identifiable if
the rank of the matrix M is equal to the number of columns. The rank of the matrix M can be
evaluated by numerical methods.

When the parameters of the GSERE model are not identifiable, various kinds of
restrictions can be imposed upon the attraction parameters and/or the item parameters in order to
make the GSERE model identifiable. The attraction parameters, for instance, may be equated
with each other or with a constant.
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Unidentifiability can be discovered by estimating the parameters a second time, this time
with the use of different initial estimates. In the case of unidentifiability both runs will give
different parameter estimates.

56 ESTIMATION METHOD

Let Myyt be the expected number of subjects with latent state x, observed response y and sum-
score t. As Kelderman (1988), and Westers and Kelderman (1992) have shown, the parameters
of the SERE model can be estimated by applying the iterative proportional fitting (IPF)
algorithm. For the GSERE the IPF algorithm can also be used. One of the differences in the
SERE model is that, depending on the number of the latent state categories, the number of latent
classes may be quite large. Since the number of attraction parameters depends on the number of
latent states categories and the number of item response categories, this number may also be
quite large.

The maximum likelihood estimates of the parameters of the GSERE model can be
obtained by solving the likelihood equations by a two-step algorithm. In the first step of each
iteration (i.e. the outer iteration), the attractiveness of the alternatives and the expected frequency
distribution of the latent classes will be estimated. For the GSERE model the first step is similar
to the first step of the estimation method for the parameters in the LCA model {Goodman,
1974b). In the second step of each iteration (i.e. the inner iteration) the estimated expected
distribution of the latent classes is fitted to the postulated loglinear model. From this distribution
the difficulty parameters can be estimated.

5.6.1 Outer Iteration
As indicated before, the GSERE model can be formulated as a LCA model, in which each latent
class represents a latent state vector x. Let

(5.8) Py) =2 P() P(y1ix) . Py

in which P(x) is the probability of getting latent state vector x and P(yjlx) is the conditional
probability of choosing response y; given the latent state vector x. The model in (5.8)isaLCA
model in the sense of Goodman (1974b), which means that the IPF algorithm for the general
latent structure model, in which the parameters of the model are unrestricted, can be used for the
estimation of the expected frequency distribution of the latent classes and the attractiveness of
the alternatives.

QR
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As mentioned before, in the GSERE model we assumed that the observed response ¥j
depends only on the latent state x;; therefore the conditional probabilities P(yjlx) are restricted in
the following manner

P(yjix) = P(y;ix") = ¢i‘jj;{jj

for all latent state vectors x and x’ with components x*. = Xj. The ®-parameters can be obtained
from a weighted average of the estimates P(yjlx) obtained from the IPF algorithm, with weights
proportional to P(x) (Goodman, 1974b)7 So

oXjYj = { 5, Poo) Py / { Z, PO}
_] y_] xv xv

in which Z+ is the summation over all latent state vectors X=x with Xj=x;.

5.6.2 Inner Iteration

As assumed in Section 5.3, the latent probabilities P(x) are restricted in such a way that they
comply with a MPCM model. Knowing that the MPCM model is an exponential family model
and that the sum-score t is a sufficient statistic for the latent ability parameter 8 (Kelderman &
Rijkes, in press), the conditional distribution of X given t is

P(xit) =exp { I 9j(x;) } / g(t.9),
J
with

8(t9) = X exp{ £ ¢j(x;)},
xit

in which Zy¢ is the summation over those values of the latent state vector x for which
($)) le(x),...,z ij(x)) is equal to t, and the vector @ = (91(x1).....Qk(xk)) denotes the weighted
sums over latent traits of the difficulty parameters

v
¢J(xj) =- ):Iqu(Xj) qu(xj)
q:
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If myq is the estimated expected number of subjects with latent state x and sum-score t, we have

(5.9) log my¢ =G¢+ ).'3 (pj(xj)

in which o¢ = - log( g(t,¢)/ng) is a fixed normalizing constant, n¢ is the number of subjects with
sum-score t. For the MPCM model the parameters (pj(xj) are specified by (pj(l) =8 il and
9= -5 il - ) j2» respectively.

The model in (5.9) is a quasi-loglinear model for an incomplete item response 1 x...x
item response k x score 1 x...x score v contingency table. The table is incomplete since for
certain given values of X only one t is possible. Maximum likelihood estimates can be obtained
by solving the likelihood equations of the MPCM model. These equations can be solved by IPF
(Kelderman & Rijkes, in press). The latent probabilities P(x) are then adjusted to these maximum
likelihood estimates. In this way new latent probabilities P(x) are obtained that comply with the
postulated MPLT model and are used again in the next outer iteration.

57 GOODNESS-OF-FIT TEST

The overall goodness of fit of the GSERE model can be tested by the Pearson statistic or the
likelihood-ratio test statistic. Both statistics are asymptotically distributed as chi square with
degrees of frecdom equal to the difference between the number of cells in the observed
contingency table minus one and the number of estimable parameters. If the expected counts,
however, become too small, the approximation of the distribution of the goodness-of-fit statistics
by a chi-square distribution will be bad (Haberman, 1988; Koehler, 1977, 1986; Lancaster, 1961,
Larnz, 1978).

With the use of the difference in the likelihood-ratio test statistics for two models
(Bishop, Fienberg, & Holland, 1975; Rao, 1973), it can be tested whether an alternative model
gives a significant improvement in fit over a special case of this alternative model.

If the two GSERE models are not proper subsets of each other, then Akaike’s (1977,
1987) information criterion (AIC) or Raftery’s (1986a, 1986b) Bayesian information criterion
(BIC) can be used. AIC is defined as

AIC=G2-24d

in which G2 is the likelihood-ratio test statistic and d is the number of independent parameters in
the GSERE model. The BIC index has In n (i.e. n is the sample size) instead of 2, but is
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otherwise identical. For both indices, the first term is a measure of badness of fit, whereas the
second term is a correction for overfitting due to the increasing bias in G2 as the number of
parameters in the SERE model increases. The GSERE modél with the minimum AIC or BIC
value will be chosen as the best fitting model. Computer programs by Hagenaars and Luijkx
(LCAG, 1990) and Kelderman and Steen (LOGIMO, 1988) can be used to fit the model.

58 ANEMPIRICAL EXAMPLE

For numerical reasons the GSERE model is still difficult to apply routinely in large testing
programs. Not the number of parameters of the model causes the problems, but the number of
latent classes and the tables of observed and expected counts become too large for computer
storage. One solution to this problem may be the use of the division-by-item (DBI) principle
from Chapter 3. In this chapter a maximum likelihood estimation method for the one-
dimensional SERE model for a large set of items was described. This method was based on the
division of the whole item set in several subsets. The computational problem boils down to the
simultaneous estimation of the parameters of a set of smaller SERE models. This could be done
because one of the properties of the SERE model was that the model could be collapsed. Since
this property is also valid for the GSERE model (Appendix A.S5), we can use the DBI-principle
for the estimation of the parametess of the GSERE model. Before the model can be widely
applied, however, further research is required to reduce the amount of computer storage. But if
the generalization for the multidimensional latent space is ignored, the parameters of the GSERE
model can still be estimated for a small number of items, with the combined use of the programs
LCAG and LOGIMO. In this section this will be demonstrated with an example.

Table 5.1
Hypothesized weights of the ASCP Medical Laboratory Test
Items for the cognitive process "Applying Knowledge".

Item Scoring weights Correct answer
A B C D
1

—
—— NN

HWNO—
nN
>>00
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The authors were allowed to analyse four one-dimensional four-choice items from a protected
data base of the ASCP Medical Laboratory Test. ASCP produces tests for certification of
paramedical personnel. With the items in the Medical Laboratory Test the ability to perform
medical laboratory tests will be measured. The test score is obtained by adding the number of
correct items.

Content experts from ASCP have hypothesized that the cognitive process “Applying
Knowledge" was involved in answering these four items. According to the assumptions of the

A B d Cc D A B d C D
0| o o o3 oy 0| o o o oy
x1 | 0 0 B1 | B2 x1 | By 0 B, 0
2 0 0 1 0 2 0 0 1 0
(Item 1) (Item 2)
A B ¢ Cc D A B ¢ C D
0| o K | o3 | ooy 0| o 0 | a3 |
x 1 | By B2 B3 0 x 1 | By B2 B3 0
2 l 1 0 0 0 2 1 0 0 0
(Item 3) (Item 4)
Figure 5.3

Specifications of the attraction parameters of the four items from the ASCP Medical Laboratory
Test for the hypothesized model H.

content experts, we postulated that there are three latent states: "Don’t know", "Partial
knowledge" and "Complete knowledge", with scoring weights equal to zero, one and two,
respectively. This means that the latent states are assumed to be governed by the one-
dimensional partial credit model (OPCM) as depicted in Figure 5.1(b). Table 5.1 shows the
hypothesized weights that content experts gave for each of the item responses on the cognitive
process "Applying Knowledge". These hypothesized scoring weights are translated into
specifications of the attraction parameters, which are depicted in Figure 5.3, in which x=0
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indicates the "Don’t know" state, x=1 the "Partial knowledge" state and x=3 the "Complete
knowledge" state.

A B C D A B C D
0| o v5) o3 01 o o o3
x1 | B | B | B3 | By x1 | B | B2 | B3 | B4
2imn Y2 13 Y4 210 0 1 0
(Ap (A2)
A B ' c D
0o o |o3 | oy
x 1 o (53 o oy
2] 0 0 1 0
(A3)
Figure 5.4

Specifications of the attraction parameters of one item from the ASCP Medical Laboratory Test
for the alternative models A1, Aj, and A3.

In this example the hypothesized model (H) will be compared with three alternative models. The
specifications of the attraction parameters of these models are depicted in Figure 5.4 for the first
item. For the other items similar figures can be depicted. The first model (A}) is a GSERE
model, in which for each item all the attraction parameters are unequal to zero. Model A is the
same as Model A1, but with the additional assumption that the correct alternative (i.e. alternative
C) will be chosen if the subject is in the "Complete knowledge" state. Model A3 has not only the
same assumptions as Model A, but that of o=p; (i=1,....4) as well.

In Table 5.2 the likelihood-ratio test statistics, the Akaike’s information criteria and
Raftery’s Bayesian information criterion for the four models are given. From the G2 and AIC
values we can conclude that the hypothesized model fits the data better then the altemative
models. Furthermore, Model A fits the data better than Model A3, which means that there may
be a significant difference between the attraction of the alternatives for a subject in the "Don’t
know" state and a subject in the "Partial knowledge" state. The better fit of Model A; in relation
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to Model A| may indicate that a subject in the "Complete knowledge" state would make no
mistake in choosing the correct alternative.

Table 5.2
Likelihood-ratio test statistics, Akaike’s information criteria and Raftery’s Bayesian information
criteria for four items from the ASCP Medical Laboratory Test

Model Number of G? AIC BIC
parameters value value value
H 35 197.557 173.297 -86.736
Ay 53 328.733 291.996 -101.768
Ay 41 190.259 161.840 -142.770
Aj 29 235.102 215.001 -0.455
Ay 32 200.283 178.102 -59.642

In Table 5.3 the estimates of the attraction parameters for the alternatives of each item are
presented for the hypothesized model. These results indicate that a subject in the “Partial
knowledge" state is more likely to choose the correct alternatives to Items 1 and 4 than a subject
in the "Don’t know" state. In all probability a test constructor would never expect that a subject
in the "Don’t know" state is more likely to choose the correct alternative than a subject in the

"Partial knowledge" state, as was the case for Item 2. The attraction parameter of the correct

Table 5.3
Attraction parameters for the alternatives of four items from the ASCP Medical Laboratory Test
in the case of Model H
Alternatives Alternatives
"Don’t know" state "Partial knowledge” state

Ttem A B C D A B C D

1 204 135 180 481 000 000 616 324

2 027 2716 064 .633 988 .000 Q12 .000

3 £H22 163 000 .215 502 .158 340 000

4 55 .120 .086  .238 828 110 063 .000

Note 1.: The correct alternatives are underlined.
Note 2.: Attraction parameters written in italics are prespecified.
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alternative of Item 2 in the first state is five times larger than the associated parameter in the
second state. However, in both states the probability of choosing the right alternative is very low.
In the "Partial Knowledge" state alternative A is almost always chosen, whereas in the "Don’t
know" state alternative D is often chosen. In Item 2, therefore, we have the advantage that we
can make a distinction between subjects who exactly knew the solution to the problem imposed
by Item 2 and those who did not. The attraction parameters for the correct alternatives of Item 3
are approximately the same for both states.

Table 5.3 shows that some of the attraction parameters are smaller than .05. An
interesting question for these cases is whether these attraction parameters are really unequal to
zero or happen to have estimates unequal to zero by chance. Although it is bad practice to
formulate an alternative model post hoc after looking at parameter estimates and test it on the
same sample, we have tried to find an answer to the above question through the formulation of a
fourth alternative model (A4), which had the same assumptions as the hypothesized model (H).
Another assumption was that all attraction parameters with estimated value smaller than .05 in
the hypothesized model were equal to zero.

Table 5.4
Attraction parameters for the alternatives of four items from the ASCP Medical Laboratory Test
in the case of Model A4
Alternatives Alternatives
"Don’t know" state "Partial knowledge" state
Item A B C D A B C D

1 275 JA82 187 355 000 000 581 419

2 000 286 058  .656 1.00C .000 000 .000

3 023 164 000 208 S597 124 279 .00

4 477 130 112 281 919 .08l 000 .000

Note 1,: The correct alternatives are underlined.
Note 2.: Attraction parameters written in italics are praspecified.

This alternative model showed a slightly improved fit compared to the hypothesized model (see
Table 5.2). From Table 5.3 we can also see that the alternative model fits the data better than all
the other alternative models. In Table 5.4 the estimated attraction parameters for Model A4 are
given. Itis clear that the estimated attraction parameters in the case of Model A4 do not differ
much from the estimated attraction parameters of the hypothesized model.
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Generalized SERE Model

At this point we considered only the attraction parameters of the four items from the
ASCP Medical Laboratory Test. In the remaining part of this section we will take a closer look at
the difficulty parameters of the items. In this example the assumption was that the latent states
were governed by the one-dimensional partial credit model. If the scoring weights for this model
as depicted in Figure 5.1(b) are used and the latent trait index q is omitted, the one-dimensional
version of Model (5.2) becomes

exp (8 - 8;0))x)
Zexp (8 - 8;(2))2)
z

(5.10) P(x10) =

X
exp( T (6-y;,))
p ol \ng

z
Texp( T (0-y;5))
z pg=1 w"g

in which yjx = x S i) - (x-1) Sj(x-l) describes the difficulty of step x in item j, because each
latent state may be seen as the result of a series of subsequent steps, each of which has to be
taken. In Table 5.5 the values of the Vijx parameters for the four items of the ASCP Medical
Laboratory Test in the case of the hypothesized model H are given.

Table 5.5
Estimated difficulty parameters of four items
from the ASCP Medical Laboratory Test for the case

of the hypothesized model H
Item Step 1 Step 2
1 -2.15232 -0.64080
2 0.18140 -4.02920
3 -1.87987 -0.51876

-2.04992 1.20943

Table 5.5 shows that the difficulty of the steps changes positively for the items’1, 3 and 4, which
means that it is more difficult to take the last step than the first step. On the other hand, for item
2 it is difficult to take the first step, but if the first step is reached the second step is very easy.
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According to Verhelst and Verstralen (1991), two remarks have to be made. In the first place, as
Molenaar (1983) showed, the parameter value of a particular step will depend on the parameter
values for the other steps in the item. Therefore, the parameter value of a step cannot be -
interpreted as a measure of its difficulty. Secondly, it cannot be known in advance that the items
allow for a sequential solution as assumed in the partial credit model.

Finally, some surprising results which are found during the analyses will be discussed. In
the sample of the 3370 subjects no one had given a completely wrong answer to the four items.
In the case of the hypothesized model, however, it was estimated that 68 subjects had no
knowledge of the solution to the problems imposed by all four items. On the other hand, nearly
32% of the subjects gave a completely correct answer to all four items, whereas it was estimated
that 2% really knew all the solutions to the problems.

5.9 DISCUSSION

In this chapter a loglinear item response theory (IRT) model with latent classes was proposed
that related polytomously scored item responses to a multidimensional latent space. The
proposed model is a generalization of the solution-error response-error (SERE) model
(Kelderman 1988; Westers & Kelderman, 1992) to situations of polytomously scored latent
states that may be explained by a multidimensional latent space. In this generalized SERE model
(GSERE) a distinction was made between some well-defined latent states in which the subject
has a certain amount of knowledge of the answer. The probability that the subject is in a certain
state is assumed to be governed by the multi-dimensional polytomous latent trait model (MPLT).
The relationship between the latent states and the observed answers is described through
conditional probabilities. '

Maximum likelihood estimates of the parameters of the GSERE model can be obtained
by the IPF algorithm. The results by Westers and Kelderman (1992), however, indicate that the
(G)SERE model is usable in practice only when the responses to a few items are studied.
However, since the property of collapsibility is also valid for the GSERE model, the DBI-
principle of Chapter 3 can be used for the estimation of larger sets of parameters in the GSERE
model.

As pointed out in Westers and Kelderman (1992), an item can show DIF in two different
ways. In the first place, an item shows DIF if equally able individuals from different subgroups
have different probabilities of knowing the answer. Secondly, an item also shows DIF if the
attractiveness of the alternatives varies from subgroup to subgroup. Just as in the case of the
SERE model, the GSERE model can be extended with variables defining subgroups in order to
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study these two types of DIF. The GSERE model is, therefore, suitable for the examination of
DIF in polytomous items through a combination of DIF for correct/incorrect responses and DIF
in the alternatives.
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EPILOGUE

6.1 INTRODUCTION

The objective of this chapter is not only the summarization of the contents of the previous
chapters, but also to make an inventory of those features of the differential item functioning
(DIF) detection method based on the solution-error response-error (SERE) model that need
further investigation.

Furthermore, we will indicate how the SERE model might be extended to increase its
applicability for the examination of DIF.

6.2 SUMMARY

The subject of this dissertation is the examination of DIF with the use of loglinear Rasch models
with latent classes. DIF is understood to describe the phenomenon that the probability of a
correct response among equally able test takers is different for various racial, ethnic, or gender
groups.

In Chapter 1 an overview was given of the DIF detection methods based on analysis of
variance, on transformed item difficulties, on chi-square statistics, on item characteristic curves,
on factor analysis, or on distractor response analysis. Although any of these methods can be used
to detect biased items, they give little information about the reason why an item is biased. A
reason for this omission is that existing DIF detection methods focus more or less on the
observed responses and not on the process leading to the observed response. It was proposed,

therefore, to use the SERE model of Kelderman (1988) for a more informative examination of
DIF.
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In Chapter 2 the SERE model was formulated and extended with variables for group
membership. It was shown that with the SERE model we cannot only test whether an item shows
DIF, but also whether DIF is caused by the difficulty of the item, the attractiveness of the
alternatives, or both. However, the proposed method is not very practical for a large number of
polytomous items, due to the fact that existing computer programs use a large amount of
memory space, even for small sets of items.

In Chapter 3 a new estimation method was proposed. This new method of parameter
estimation is based on the division of the whole item set into several subsets. This is possible
because of the collapsability of the SERE model. It was shown that, depending on the number of
items in each subset, the parameters of the SERE model can be estimated much more efficiently,
both in terms of memory storage and processing time. However, some of the statistical efficiency
of the estimators may be lost when the SERE model is collapsed. With the use of subsets of
items, the parameters of the entire SERE model can only be obtained by simultaneous estimation
of the parameters of the collapsed SERE models. It was shown that this can be achieved with the
use of the pseudo-likelihood theory.

Chapter 4 dealt with the question whether DIF can be found with the proposed DIF
detection method of this dissertation. This chapter also dealt with an examination of the new
estimation method as introduced in Chapter 3. Therefore, in a simulation study, we examined
how the values of the estimators differ from the true values. We also investigated whether this
deviation is consistent in the sense that the differences tend to decrease when the number of
items increases. Furthermore, we examined whether it is possible to detect an item which shows
one type of DIF, but also shows the other type of DIF. Finally, we examined whether DIF can
still be found if the number of items or the number of subjects is small. From this simulation
study we concluded that with the SERE model a distinction can be made between both types of
DIF and that it is possible to detect items which show both types of DIF.

In Chapter 5 a generalization of the SERE model applicable to polytomously scored
latent states, thit may be explained with a multidimensional latent space, was discussed. The
critical difference between this model and the one-dimensional SERE model in Chapter 2 is that
in the one-dimensional SERE model the probability that the subject is in a certain state is
governed by the Rasch model, while in the generalized version of the SERE model this
probability is governed by the multidimensional polytomous latent trait model of Kelderman and
Rijkes (in press). The generalized SERE model can also be used for the examination of DIF and
the parameters of this model can be estimated in a similar way as the parameters of the one-
dimensional SERE model.
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6.3 FUTURE RESEARCH

In this dissertation we showed how the SERE model can be used for the examination of DIF and
how it can provide the test constructor or test user with more information about the nature of the
bias factor. However, for the use of the SERE model in practice a new method for the estimation
of the parameters of the SERE model needed to be developed. This new estimation method was
based on the division of the entire item set into several subsets of items. By developing this new
estimation method only one type of subsets of items was considered, namely a pair of items. One
line of future research should be the construction of criteria for an optimum division of the entire
item set into subsets of items. For instance, is a division into all possible pairs of items necessary
or is a selection of these pairs sufficient? Moreover, will the estimation method be improved
when the number of items in the subsets of items is three or more?

For the estimation of the parameters of the entire SERE model the pseudo-likelihood
theory was used, in which we assumed that the loglikelihood of the entire SERE model is equal
to the sum of the loglikelihoods of the collapsed SERE models over all subsets of items. The
interesting question then arises whether the estimation method will be improved if, instead of the
simple sum, a weighted sum of the loglikelihoods of the collapsed SERE models is used. Each
weight in this summation may express, for example, the relative importance of the particular
subset of items compared to the other subsets of items. A second question is whether possible
optimum weights depend on the size of the subsets of items. Another line of future research
should address this question.

Another issue with respect to the pseudo-likelihoods concerns the goodness of fit of the
entire SERE model. The likelihood-ratio test statistics for each collapsed SERE model is chi-
square distributed with degrees of freedom equal to the difference between the number of cells
of the observed contingency table and the number of estimable parameters of the collapsed
SERE model. However, is the (weighted) sum of these likelihoods-ratio test statistics over all
subsets of items still chi-square distributed? Or can we develop other test statistics for the SERE
model, like the Martin-Lf (1973) statistic, the statistics of van den Wollenberg (1979, 1982), or
the statistics of Glas (1989)? Future research should also address the question whether the
pseudo information criteria discussed in Chapter 3 have any practical or theoretical use for
model selection.

Two further questions that should be considered in future research are the question of the
applicability of the (generalized) SERE model and the question on which criteria a computerized
DIF detection system should define an item as being biased. For instance, can the (generalized)
SERE model be extended to models such as that of Mislevy and Verhelst (1990), in which
different subjects are assumed to employ different strategies when responding to an item?
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Should the computerized DIF detection system base his decision whether an item ‘shows DIF on
pseudo-likelihood or on another criterion? And what is the best strategy for detecting the biased
items?

In Mislevy and Verhelst (1990) a model is presented for item responses when different
subjects use different strategies, but only the responses and not the choice of strategy can be

. observed. In this model the assumption is that each subject belongs to one of a number of
exhaustive and mutually exclusive classes, each with a unique item-solving strategy.
Furthermore, the responses from all subjects in a given class are assumed to fit an IRT model.
Finally, the assumption is that for each item its parameters under the IRT model for each strategy
class can be related to known features of the item through psychological or substantive theory.
As Mislevy and Verhelst stated, the main advantages of these multiple-strategy IRT models are
thas they provide a framework for testing alternative thecries about cognitive processing, and the
estimation of how subjects solve problems, in contrast to how many they solve. Such models
could be used for diagnosis, remediation, and curriculum revision. With respect to this model,
one line of future research could be an extension of the SERE model where the ’standard’ IRT
model is replaced by a multiple-strategy IRT model. In this way, more information can be
obtained to solve the question why a subject is in a certain state.

The last line of future research which will be discussed in this chapter is the question on
which criteria a computerized DIF detection system should define an item as biased and what the
best strategy for the detection of the biased items is. Many authors, including Aitkin (1980) and
Bishop, Fienberg and Holland (1975), have given guidelines for the selection of the best fitting
models. These methods are mixed forms of forward and backward selection. For the selection of
the biased items a similar approach can be used.

In the case of forward selection, the examination starts with a very restricted model, that
is, a model in which no items show DIF. With successive defining items as being biased, we
search for a model that has as few biased items as possible, but still has a good fit of the data. In
the search for biased items, both the (consistent) pseudo Akaike’s information criteria and the
estimated values of the parameters of the model can be used. Backward selection procedures
work the other way around: The examination starts with a model in which all the items show
DIF in the latent response and DIF in the attraction parameters. With defining items as being
unbiased, we search for a more economic model that still fits the data. For both procedures a
careful study of the estimated values of the parameters of the model can indicate which items
may or may not be assumed to show DIF. However, future research is needed to find the best
selection procedure and the criteria on which a computerized DIF detection system should be
based for each step in the procedure.
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A.1 THE ENGLISH VERSION OF ITEM 4 OF THE SECOND
INTERNATIONAL MATHEMATICS STUDY

A quadrilateral MUST be a parallelogram if it has

one pair of adjacent sides equal
one pair of parallel sides

a diagonal as axis of symmetry
two adjacent angles equal

two pairs of parallel sides

mo oWy

A2 THE COLLAPSED SOLUTION-ERROR RESPONSE-ERROR MODEL

In this appendix an instructional proof will be given that the SERE model is collapsible. Further,
the same notation of Chapter 3 will be used. From elementary probability theory, it follows for
the SERE model that

Py1y2)=Z .. L P(ypuy =2 ... T P(y)
3 Y% y3 ¥k

=2%..Z P(x)P(ylx)= ZPX) X .. £ P(ylx)
Xy3 Yk X ¥y3 Yk

=Z P(x) P(yyxy) P(yaixg) X ... P(y3ixa) ... P(ykixyp)
X Y3 Yk

in which P(x) is the marginal probability of the latent response vector x. From conditional
probability calculus it follows that
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P(y1.y2) = Z P(x) P(yplxq) P(yalxo)
X

= X I P(yilxp P(yalx)Z ... T P(x).
X] X2 X3 X

With the use of the assumption of local independence in the Rasch model and elementary
calculus it follows that

Z.LIPX)=Z .. Z fP(xIO)dF(O)
X3 Xk X3 Xk

fE > l'I P(x; 18) dF(8)
X3 Xk j=1

=fP(x 118) P(x518) dF(8).
The marginal probability of the observed responses y| and y; can then be written as

Pyy) =% X P(yllxl)P(yzlxz)f P(x}10) P(x410) dF(8)
X] X

X1Y1 X2Y2 6 X1 X2 &l
_z£¢ll¢22¢l¢2¢12
X| Xp X1yy x2¥2 X] z

with z=x+x5 and

QT;IZ =fexp(z6) {(1+exp(©-5 1)) (l+exp(9-82))}‘l dF(0).

A3 LANPACO

LANPACQO is a program for estimating the parameters of the loglinear Rasch model with latent
classes. It uses the solution-error response-error (SERE) mode! of Kelderman (1988) and
Westers and Kelderman (1992), and the estimation algorithm described in Chapter 3. The SERE
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model has been proven to be useful in the solution of practical psychometrics problems such as
the examination of differential item functioning (DIF) or item bias (Westers & Kelderman, 1992)
and the analysis of polytomously scored test items (Kelderman, 1988).

LANPACO includes procedures for testing whether an item exhibits DIF, estimating and
testing the parameters of the SERE model, and graphical displaying of the results. For handlir.g
larger set of items, the estimation method and the goodness of it test introduced in Chapter 3 is
implemented in LANPACO. Finally, a simple and quick user interface has been added to the
program.

The design of LANPACO allows interactive use of the program. If a model is
disapproved, it is possible to change the model specifications and to reestimate the parameters of
the model. This process can be repeated until the model is considered appropriate.

Since LANPACO is only a prototype, not all features of the SERE model or the
estimation method are implemented in LANPACO. For instance, LANPACO will automatically
select all possible pairs of items as subsets of items, but other selections of subsets of items are
not possible. Further, in the program one can only specify an attraction parameter to be zero or
not; other restrictions are not possible. All other features of the estimation method and the SERE
model are implemented in LANPACO.

Finally, some technical notes are given. LANPACO was written in TURBO-PASCAL
6.0 under MS-DOS. The minimal configuration required is an AT compatible computer (80286
processor), but a 80386 or 80486 based machine is recommended. For the graphic user interface,
LANPACO requires a video monitor with EGA or VGA graphics. However, VGA graphics will
give better and clearer functions and tables. A coprocessor, if available, will increase the
computing specd. At last, LANPACO has been developed at the Faculty of Educational Science
and Technology of the University of Twente, the Netherlands.

A.4 TWO ITEMS OF THE AMERICAN SOCIETY OF CLINICAL
PATHOLOGIST (ASCP) MICROBIOLOGY TEST

Ttem 11 Of the following bacteria, the most frequent cause of prosthetic heart valve
infections occurring two to three months after surgery is:

a. Streptococcus pneumoniae
b. Streptococcus pyogenes
c. Staphylococcus aureus
d. Staphylococcus epidermidis
S B~
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Item 20 A beta-hemolytic gram-positiv coccus was isolated from the cerebrospinal fluid
of a 2-day-old infant with signs of meningtis. The isoltae grew on sheep blood
agar under aerobic conditions and was resistant to a bacitracin disc. Which of the
following should be performed for the presumptive identification of the

organism?

a. oxidase production
b. catalase formation

c. CAMP test

d. esculin hydrolysis

A5 THE COLLAPSED GENERALIZED SOLUTION-ERROR
RESPONSE-ERROR MODEL

In this appendix an instructional proof will be given that Model 5.7 of Chapter 5 is collapsible.
The same notation of Chapter 5 will be used. From elementary probability theory, it follows for
the GSERE model that

P(y1.y2)=Z ... L P(y1,.y)=Z ... Z P(y)
y3 Yk y3 Yk

=ZZ..Z PX)P(yix)= ZP(x)Z ... T P(ylx)
Xy3 Yk X y3 Yk

=Z P(x) P(y}ix}) P(y2lx2) Z ...  P(y3ix3) ... P(yyixy)
X y3 Yk

in which P(x) is the marginal probability of the latent state vector x. From conditional probability
calculus it follows that

P(y1.y2) = I P(x) P(y;lx}) P(yalx9)
X

= I I P(yjlxp)P(yalx) Z ... £ P(x)
X1 x2 X3 Xk
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and with the use of the assumption of local independence of the latent states x; in the MPCM model
and elementary calculus it follows that

L..LP(x)=Z..Z fP(xlB) dF(9)
X3 Xk X3 Xk

i

k
=f2...2 I P(lee)dF(e)
x3 Xk j=I

=IP(x 118) P(x210) dF(0).
The marginal probability of the observed responses y| and y; can then be written as

P(ypy2)=Z X P@llxl)P(yzlxz)f P(x118) P(x210) dF(8)
X] X2

X1Y1 6, X2Y2 4, X Xy 4T
=¥ ¥ o 11 p212p41 972 P 12
X] X2 X1yl x2y2 X} X2 2

in which

oT12 =fexp(>(:l 20q) (CO51) COI) 1 dF@),

z
CO5)=XZexp{ I (0g-8ig)}),
pryeet 2 Palin

and 2=(2],...,zy) with zg= qu("l) + qu(xz). Finally P(y}.y7) is similar to Equation 5.7 of
Chapter 5 except that here we consider two items and in Equation 5.7 k items. It may be clear that
the collapsibility of the GSERE model is also valid, if the general MPLT model is used for the
description of the dependence of the latent states on the latent traits.
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NEDERLANDSE SAMENVA"I'I‘ING
(DUTCH SUMMARY)

Op het terrein van het onderwijskundig en/of psychologisch meten is de formulering van de
vragen in een test een van de facetten die beschouwd kunnen worden. Naast een paar algemene
zaken als vormgeving, volgorde van de vragen en het taalgebruik, moet ervoor worden gezorgd
dat bij het opstellen van de vragen allerlei bronnen van misleiding worden vermeden. Een
belangrijk punt hierbij is, dat de (formulering van de) vraag aanleiding kan geven tot
systematisch verschillende antwoorden van respondenten met gelijke vaardigheid. Onder
vaardigheid wordt hier verstaan de vaardigheid om de kennis omtrent het te toetsen onderwerp
toe te passen. Binnen de testtheorie wordt het geven van systematisch verschillende antwoorden
door respondenten met dezelfde vaardigheid ook wel aangegeven met het begrip
vraagpartijdigheid. In het voorliggende proefschrift zal er op dit begrip verder worden ingegaan
en zal er een methode worden gepresenteerd om te toetsen of een bepaalde vraag partijdig is ten
opzichte van bepaalde categorieén van respondenten. Daarbij worden alleen de uit
meerkeuzevragen bestaande vragenlijsten beschouwd.

Het begrip vraagpartijdigheid, dat ook wel wordt aangeduid met de Engelse begrippen
"item bias” of "differential item functioning”, kan men op verschillende manieren definiéren. In
het proefschrift zal de term "differential item functioning” (DIF) worden gebruikt. Een item
(vraag) vertoont DIF als respondenten met gelijke vaardigheid een ongelijke kans hebben om het
item correct te beantwoorden. Met andere woorden een item vertoont DIF als respondenten uit
de ene groep (de "Focal" groep) niet dezelfde kans heeft om het item correct te beantwoorden als
respondenten met dezelfde vaardigheid uit een andere groep (de "Reference” groep). De definitie
van DIF houdt in dat verschillen tussen de scores op de toets (testscores) niet zonder meer als
verschil in vaardigheid kunnen worden geinterpreteerd.

Om te bepalen of een item DIF vertoont zijn er in de afgelopen jaren vele methoden
ontwikkeld, waarvan in hoofdstuk 1 de belangrijkste worden besproken. Ruwweg kunnen deze
DIF detectie methoden worden onderverdeeld in twee groepen, namelijk methoden die
rekenschap houden met de vaardigheid van de respondent en de (vroegere) methoden die dat niet
doen. Binnen de tweede groep vallen methoden die gebaseerd zijn op de variantie analyse of
getransformeerde item moeilijkheden. Methoden die gebaseerd zijn op chi-kwadraat statisticken,
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factor analyse, analyse van de onjuiste antwoorden (alternatieven) of een item karakteristieke
kromme behoren tot de eerste groep. Over het algemeen hebben methoden uit de eerste groep de
voorkeur, omdat zij beter in staat zijn DIF te onderscheiden van verschillen in vaardigheden van
de groepen respondenten.

Alhoewel elk van de methoden uit de eerste groep gebruikt kunnen worden voor de
detectie van DIF, geven ze weinig informatie over de aard van de factoren die DIF hebben
veroorzaakt. Een reden hiervoor is dat bestaande DIF detectie methoden over het algemeen
gericht zijn op de geobserveerde antwoorden en niet op het proces dat heeft geleid tot de
geobserveerde antwoorden. Bij meerkeuzevragen zal voordat een antwoord gegeven kan worden,
eerst het probleem van de vraag onderkend en opgelost moeten worden. Op ieder niveau van dit
proces kan er DIF optreden. De kans dat een probleem met succes onderkend en opgelost wordt
hangt af van de moeilijkheidsgraad van het probleem. Deze moeilijkheidsgraad kan verschillend
zijn voor verschillende groepen respondenten met dezelfde vaardigheid, hetgeen zou betekenen
dat het item DIF vertoont.

Afhankelijk van de vraag of het probleem opgelost kon worden of niet, zal de respondent
¢¢n van de antwoordcategoricén moeten kiezen. De keuze van een antwoord hangt daarbij af van
de aantrekkelijkheid van het antwoord. Als nu de aantrekkelijkheid van de antwoordcategorieén
voor verschillende groepen respondenten met dezelfde vaardigheid verschillen, dan vertoont het
item ook DIF. In het proefschrift wordt een model bestudeerd dat het mogelijk maakt om beide
typen van DIF gecombineerd en tegelijkertijd te bekijken, namelijk het solution-error response-
error (SERE) model.

Zoals de naam van het model al suggereert bestaat het SERE model uit twee delen.
Binnen het SERE model wordt ten eerste onderscheid gemaakt tussen twee toestanden waarin
een respondent zich kan bevinden; de respondent weet de volledige oplossing van het probleem
of de respondent kent die oplossing niet. Er wordt vervolgens aangenomen dat de kans dat een
respondent de oplossing volledig weet, dus dat de respondent zich in de eerste toestand bevindt,
beschreven wordt door het dichotome Rasch model. Dit model wordt bepaald door een
logistische functie van het verschil tussen de moeilijkheidsgraad van het item en de vaardigheid
van de respondent.

Het tweede deel van het SERE model beschrijft de uiteindelijke keuze van de respondent
voor een bepaald antwoordcategorie. Aangenomen wordt, dat als de respondent de oplossing niet
weet, de respondent het voor hem/haar dan meest aantrekkelijke antwoordcategorie als mogelijk
juiste antwoord kiest. De relatie tussen de latente response van een respondent en zijn/haar
uiteindelijke keuze van een antwoordcategorie, wordt in het SERE model gedefineerd als een
conditionele kans. Relatief hoge waarden van deze conditionele kans geven aan dat de
bijbehorende antwoordcategorie relatief zeer aantrekkelijk is, gegeven de toestand waarin de
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respondent zich bevindt. In het voorliggende proefschrift wordt verder aangenomen dat indien de
respondent de oplossing wel weet, de respondent altijd‘ de juiste antwoordcategorie kiest.

In hoofdstuk 2 wordt het SERE model verder besproken. Tevens wordt in dit hoofdstuk
aangegeven dat met het SERE model het niet alleen mogelijk is om te onderzoeken of een item
DIF vertoont, maar ook of DIF veroorzaakt wordt door de moeilijkheidsgraad van het item en/of
door de aantrekkelijkheid van de antwoordcategoriegn. Ook wordt aangegeven hoe met behulp
van bestaande programmatuur de parameters van het model, dat wil zeggen de moeilijkheids-
graad van de items, de vaardigheden van de respondenten en de aantrekkelijkheden van de
antwoordcategorieén, geschat kunnen worden.

Als het aantal items in een test te groot wordt, dan is het in de praktijk onmogelijk om
met de bestaande programmatuur de parameters te schatten. Om dit probleem op te lossen wordt
in hoofdstuk 3 een alternatieve schattingsmethode aangedragen. Hierin wordt de verzameling
items verdeeld in een aantal deels overlappende deelverzamelingen. Door nu de parameters van
iedere deelverzameling simultaan te schatten, kan men de parameters van de gehele test efficiént
schatten. Een bijkomend voordeel is dat de antwoorden van respondenten die alleen een gedeelte
van de test hebben ingevuld, toch gebruikt kunnen worden bij het schatten van de moeilijkheden
van de items en de aantrekkelijkheden van de antwoordcategorie#n.

Om te bekijken of deze nicuwe schattingsmethode en de op het SERE model gebaseerde
DIF detectie methode betrouwbare resultaten opleveren, wordt in hoofdstuk 4 een simulatie
studie uitgevoerd. Vragen die bij deze studie centraal staan zijn: (1) kan DIF nog steeds worden
aangetoond als het aantal items of het aantal respondenten klein is?; (2) in hoeverre verschillen
de geschatte waarden van de parameters van de oorspronkelijke waarden van de parameters in de
gesimuleerde data?; (3) is dit verschil consistent in de zin van dat de verschillen de neiging
hebben om kleiner te worden als het aantal respondenten toeneemt? Tenslotte worden in dit
hoofdstuk de minimum condities bestudeerd waaronder het SERE model en de daarop
gebaseerde DIF detectie methode nog praktisch bruikbaar zijn.

Tot zover is ervan uitgegaan dat er maar &n vaardigheid wordt getoetst (bijvoorbeeld
rekenen of de Engelse taal) en dat er maar twee toestanden zijn: de respondent weet het
antwoord of de respondent weet het niet. In de praktijk zijn er echter vele situaties waarbij van
de respondenten meerdere vaardigheden worden verwacht. Zo worden bij de vraag "Wat is de
wortel van zestien plus negen?" drie operaties verwacht. Ten eerste zal de respondent de vraag
moeten vertalen in een wiskundige formule, om vervolgens de wortel van 16 uit te rekenen en
als laatste de optelling uit te voeren. Daamaast zijn er situaties waarbij de respondent een
gedeelte van de oplossing van het probleem weet, maar niet in staat is om het probleem in zijn
geheel op te lossen. Het is mogelijk dat een respondent het bovenstaande item wel kan vertalen
in een wiskundige formule en ook nog de optelling vit kan voeren, maar niet weet hoe hij/zij de
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wortel uit een getal moet berekenen. Deze situatie is dus een voorbeeld waarbij een respondent
zich in drie toestanden kan bevinden: de respondent weet de oplossing niet, de respondent weet
een gedeelte van de oplossing of de respondent weet de volledige oplossing. In hoofdstuk 5
wordt het SERE model gegeneraliseerd tot dergelijke situaties. Analoog aan het SERE model,
kan ook de gegeneraliseerde versie van het SERE model gebruikt worden als DIF detectie
methode. De parameters van het gegeneraliseerde SERE model kunnen eveneens geschat worden
met de methode die in hoofdstuk 3 geintroduceerd is.

Het proefschrift eindigt in hoofdstuk 6 met een overzicht van nog nader te bestuderen
kenmerken en/of eigenschappen van de op het (gegeneraliseerde) SERE model gebaseerde DIF
detectie methode en de daarbij ontwikkelde nieuwe schattingsmethode. Te denken valt hierbij
onder meer aan de optimale opdeling van de verzameling items in deelverzamelingen of aan de
optimale methode om de items die DIF vertonen te selecteren. Verder wordt aangegeven hoe het
(gegeneraliseerde) SERE model nog verder uitgebreid zou kunnen worden zodat de
bruikbaarheid voor het bestuderen van DIF vergroot wordt.
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