
DOCUMENT RESUME

ED 366 642 TM 021 049

AUTHOR Westers, Paul
TITLE The Solution-Error Response-Error Model: A Method for

the Examination of Test Item Bias.
REPORT NO ISBN-90-9006674-8
PUB DATE Dec 93
NOTE 134p.; Doctoral Dissertation, Twente University, The

Netherlands.
PUB TYPE Dissertations/Theses Doctoral Dissertations (041)

EDRS PRICE MF01/PC06 Plus Postage.
DESCRIPTORS Ability; *Estimation (Mathematics); Ethnic Groups;

Foreign Countries; Item Analysis; *Item Bias; Item
Response Theory; Minority Groups; Models; Racial
Differences; Sex Differences; Simulation; *Test
Items; Test Use; Test Validity

IDENTIFIERS Polytomous Items; Pseudo Likelihood Theory; *Rasch
Model; *Solution Error Response Error Model

ABSTRACT
The subject of this dissertation is the examination

of differential item functioning (DIF) through the use of loglinear
Rasch models with latent classes. DIF refers to the probability that
a correct response among equally able test takers is different for
various racial, ethnic, and gender groups. Because usual methods of
detecting DIF give little information about the reason an item is
biased, use of the solution-error response-error (SERE) model of H.
Kelderman is proposed. It is demonstrated that the SERE model can
show whether DIF is caused by the difficulty of the item, the
attractiveness of its alternatives, or both. The large amount of
computer memory space required makes this method impractical for a
large number of items. A new method is proposed based on the division
of the whole item set into several subsets, which is made possible by
the collapsibility of the SERE model. With the use of subsets of
items, the parameters of the entire SERE model can be obtained only
by simultaneous estimation of the parameters of the collapsed SERE
models through use of pseudo-likelihood theory. A simulation study
demonstrates that a distinction can be made between the two types of
DIF using the new approach. A generalization of the SERE model
applicable to polytomously scored latent states, that may be
explained with a multidimensional latent space, is discussed. Five
appendices illustrate applications of these models with reference to
existing tests and the collapsed SERE model. (Contains 167
references.) (SLD)

***********************************************************************

Reproductions supplied by EDRS are the best that can be made
from the original document.

***********************************************************************



S DEPARTMENT OF EDUCATION
Office ot Educationai Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

his document has been reproduced as
received from th person or organization
originating it

0 Minor changes have been made to improve
reproduction Quality

344

o Points& view or opinions statedin thisdocu
ment do not necessarily represent official
OERI position or policy

` .t47,

°*7'
", , 0 - ^S, r

1

4

,

"PERMISSION TO REPRODUCE THIS
MATERIAL. HAS BEEN GRANTED BY

LCSEIL)

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

494',

, 3

- r

44A:71; 'f'c .7 9

441,

:44,14:4,1 ..,=t4f0s,:'

PM ten mu AO1F



THE SOLUTION-ERROR RESPONSE-ERROR MODEL:

A METHOD FOR THE EXAMINATION OF

TEST ITEM BIAS

P. Westers



CIP-GEGEVENS KONINKLUKE BIBLIOTHEEK, DEN HAAG

Westers, Paul

The solution-error response-error model: a method for the

examination of test item bias / Paul Westers. - [S.I. : s.n.J. - Ill.

Proefschrift Enschede. - Met lit. opg. - Met samenvatting in het Nederlands.

ISBN 90-9006674-8

Trefw.: testconstructie.

Druk: FEBODRUK te Enschede

4



THE SOLUTION-ERROR RESPONSE-ERROR MODEL:

A METHOD FOR THE EXAMINATION OF

TEST ITEM BIAS

PROEFSCHRIFT

ter verkrijging van

de gmad van doctor aail de Universiteit Twente,

op gezag van de rector magnificus

prof.dr. Th.J.A. Popma,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op vrijdag 10 december 1993 te 13.15 uur

door

Paul Westers

geboren op 20 augustus 1960 te Groningen



Dit proefschrift is goedgekeurd door de promotor prof.dr. W.J. van der Linden.



Assistent-protnotor:

Promotiecommissie:

Dr. H. Kelderman

prof.dr. J.A.P. Hagenaars

prof.dr. G.J. Mellenbergh

prof.dr. W. Schaafsma

prof dr. N.D. Verhelst

dr. M.P.F. Berger

7



To my parents and sister Simona

Voor mijn ouders en zus Simona

3



PREFACE

In this dissertation the results are discussed of the research project titled 'Item bias detection

using the loglinear Rasch model with latent classes', which, under the auspices of the

Interuniversity Graduate School of Psychometrics and Sociometrics (10PS), was carried out at

the Department of Educational Measurement and Data Analysis (OMD) of the Faculty of

Educational Science and Technology of the University of Twente. Doing the research and

writing this thesis would not have been possible without the support of a large number of people.

Here I would like to thank everyone who has contributed to the realization of the dissertation. I

owe special thanks to:

Wim J. van der Linden for his valuable advice and critical comments; Henk Kelderman for his

expert supervision and the interesting discussions; The TOPS for the courses that enabled me to

widen and/or deepen my knowledge of psychometrics and sociometrics; the OMD department

for the stimulating and heartwarming atmosphere at work; Norman D. Verhelst, Jeroen Vermunt

and Frank J. van der Pol for their valuable advice with respect to Chapter 3; Lorette Bosch-

Padberg for the excellent way in which she designed the final version of the dissertation; Ellen

Timminga, Hi 1de Tobi, Jos J. Adema and Carl P.M. Rijkes for their support and sympathetic ear

in bleak moments; Dick van de Sar for the design of the user interface of the computer

programme required for the research; Hanneke J.M. Lijklema for the excellent way in which she

corrected the English version of the dissertation; the Centre for Biostatistics for providing me

with time and space to complete my dissertation.

Finally I wish to thank my parents, whose support, love and confidence have made an indirect

but important contribution to the realization of this dissertation.

Utrecht, December 1993 Paul Westers

9



CONTENTS

Chapter 1 Introduction and overview

1.1 Introduction 5

1.2 Test item bias 6

1.3 Item bias detection methods 8

1.3.1 Unconitional methods 9
1.3.2 Conditional methods 10

1.3.3 Comparison of the item bias detection methods 12

1.4 Item bias detection based on item response theory and
latent class analysis 13

1.4.1 Item Response Theory 13

1.4.2 Item bias and IRT models 14

1.4.3 Latent class models 16

1.5 Research strategies for the explanation of item bias 17

1.6 Topic of the dissertation 18

1.7 Overview of the following chapters 20

Chapter 2 The examination of differential item functioning due to

item difficulty and alternative attractiveness

2.1 Abstract 23

2.2 Introduction 23

2.3 A model for multiple-choice items that accounts for
the selection of each alternative 25

2.4 The model written as an incomplete LCA model 27

2.5 Testing for DIF by related LCA models 29

2.5.1 DIF in the latent response 30
2.5.2 DIF in the attraction parameters 30

2.6 Parameters estimation and model testing 31

2.7 An empirical example 32

2.8 Discussion 35

1 0



2 Contents

Chapter 3 The estimation of the parameters of the solution-error
response-error model with the use of subsets of items

3.1 Abstract 37
3.2 Introduct ion 37
3.3 The solution-error response-error model 40

3.3.1 Constraints on model parameters 42
3.4 The division-by-item principle in the solution-error

response-error model 43
3.5 The estimation of the parameters of the solution-error

response-error model 46
3.5.1 Traditional estimation method for the

SERE model 47
3.5.2 Restricted parameters 50
3.5.3 Pseudo-likelihood theory 50
3.5.4 The simultaneous estimation method 52
3.5.5 Initial values 55
3.5.6 Testing the SERE model 58

3.6 Applications of the DBI-principle 60
3.7 Discussion 63

Chapter 4 A simulation study of the solution-error response-error model

4.1 Introduction 67
4.2 The solution-error response-error model 67
4.3 Research questions of the simulation study 70
4.4 The simulated data 72
4.5 Results 74

4.5.1 Small-sample behavior of pseudo-likelihood
estimates 74

4.5.2 Small-sample behavior of DIF detection 76
4.5.3 The influence of the test length on DIF

detection and parameter estimates 77
4.5.4 The detection of D1F in the latent response

and DIF in the attraction parameters 78
4.5.5 Small-sample behavior of simultaneous detection

of DIF in the latent response and D1F in the
attraction parameters 79

4.6 Conclusion and discussion 82

1 i



Contents 3

Chapter 5 Generalizations of the solution-error response-error model

5.1 Abstract 85

5.2 Introduction 85

5.3 The generalized solution-error response-error model 87

5.4 Applications of the GSERE model 90

5.5 Identifiability 92

5.6 Estimation method 93

5.6.1 Outer iteration 93
5.6.2 Inner iteration 94

5.7 Goodness-of-fit test 95

5.8 An empirical example 96

5.9 Discussion 102

Chapter 6 Epilogue

6.1 Introduction 105

6.2 Summary 105

6.3 Future research 107

Appendices

A.1 The English version of Item 4 of the Second International
Mathematics S tudy 109

A.2 The collapsed solution-error respOnse-error model 109

A.3 LANPACO 110

A.4 Two items of the American Society of Clinical Pathologist
(ASCP) Microbiology Test 111

A.5 The collapsed generalized solution-error response-error model 112

References 115

Nederlandse samenvatting (dutch summary) 127

Curriculum Vitae 131

12



Chapter 1

INTRODUCTION AND OVERVIEW

1.1 INTRODUCTION

One of the main issues in test theory and the practice of educational testing is differential item

functioning (DIF) or item bias (Lord, 1980). Items in educational or psychological tests show

DIF when the probability of a correct response amongequally able test takers is different for

various racial, ethnic, or gender subgroups (Mellenbergh, 1989). Although researchers have

offered many methods for the detection of biased items, they have seldom offered explanations

why items show DIF. Moreover, most of the methods are focused on the detection of biased

items when models for binary (incorrect/correct) answers are used.

Recently, DIF detection research has addressed the differential functioning of all

response alternatives in an item (e.g. Scheuneman, 1987; Schmitt, 1988). The main question in

these studies is whether bias can be located in a differential selection of response alternatives in

multiple-choice items. As an extension of the terminology of DIF, differential alternative

functioning (DAF) exists when the attractiveness of the response alternatives of the item is

different for equally able test takers. The attractiveness of an item represents the probability that

a subject who does not know the correct answer will choose that alternative.

In this dissertation, the problem of both DIF and DAF detection in multiple-choice items

is addressed. In Section 1.2 the issues of DIF and DAF will be discussed, whereas in Section 1.3

various item bias detection approaches are described. In this study the focus of attention is on

one of these approaches: item bias detection based on item response theory. The approach will

be discussed in Section 1.4. In Section 1.5 research strategies are described to explain why an

item is biased. Section 1.6 deals with the statistical model on which the proposed item bias

detection method will be based. Finally, in Section 1.7 a summary of the contents of the

following chapters is given.
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1.2 TEST ITEM BIAS

One of the most complex and confusing issues in educational and psychological assessments is
test and item bias, where bias means that a subset of the total group of examinees (referred to as
Focal group) responds in a different way to a specific test or item than the remainder of the
population or another subgroup (referred to as Reference group) does. Generally, a test or item is
biased if it functions differently for different groups. Bias can best be understood within the
context of validity and fairness of tests for all persons. A test is biased or unfair if test scores,
and hence the predictions or decisions based upon the scores of the test, are different for equally
able subjects (Cleary, 1968). In other words, a test is unbiased and fair if the same predictions
and decisions are made for equally able persons, regardless of group membership. Analogously
an item is unbiased when subjects with the same ability have the same probability of responding
correctly to the item. The following example will illustrate this.

In Kok (1982) bias in multiplication items was studied through a manipulation of the
subjects' skill on possible bias factor. Of the administered multiplication items some items were
written in the native language (i.e. Dutch), whereas for the other items Roman numerals were
used. Moreover, the subjects were divided into two groups. Subjects from one group were
trained with regard to Roman numerals, whereas the other group got no training. It is not
surprising that the probability of responding correctly to a Roman numeral item for the trained
group on the items is higher than that for the untrained group; this result would lead to the
assumption that the item is biased. Since the difference in these probabilities may also be a result
of a difference in ability, this assumption may be incorrect. If the test was to be used at an end-
of-year examination of the subject's knowledge ofmultiplication techniques, the untrained group
might receive low grades that did not reflect their real knowledge of multiplication techniques.
The use of the test is then unfair and biased. On the other hand, if only the native language items
were used for the examination and if there is no other biasing factor, the test would not be biased
against the untrained group. Low scores would reflect the lack of knowledge of multiplication
techniques.

The above example demonstrates two major points of bias. In the first place, fairness and
bias are functions of the test used and they depend on the population measured and the use of
measurement. Secondly, if a test is biased it does notmean that all the items of the test are
biased. Generally, when a test is biased one or a few of the items are also biased. However, if
there is no evidence that the test is biased, the items in the test can still be biased, because it
might be the case that bias of one item is compensated by bias of another item.

14



Introduction and overview

As already observed, a single test item is biased if subjects with the same ability have a

different probability of answering the item correctly. Since the probability of answering the item

correctly is related to the difficulty of the item, DIF indicates that the difficulty of the item may

be different for various equally able subgroups.

Generally, if significant differences in proportions of correct answers are found for

equally able groups, DIF has been shown. It should be noted that if there is no evidence that the

difficulty of an item is different for various equally able subjects, the item may still be

functioning differently. Multiple-choice items, for instance, are functioning differently if the

attractiveness of the incorrect alternatives (i.e. distractors) are different for various subgroups.

Green, Crone and Folk (1989) stated that "although group differences in distractor choice have

no effect on test scores, because all distractors are wrong, group differences might indicate that

the item was functioning differently for the various subgroups. Items that have different

meanings to different groups would seem to be biased in a very fundamental sense" (p. 148).

Extending the terminology of DIF, an item shows differential alternative functioning (DAF) if

the attractiveness of the alternatives of an item is different for equally able subjects.

Although DAF might have no consequences for the number of correct scores on the test,

it can provide the test constructor with information about content areas that are problematic in

terms of bias, which can then be accounted for in future test constructions. The next example of

Veale and Foreman (1983) illustrates this.

A sample of 98 black and 412 white students from grade six were asked to pick the

correct sentence from the following four sentences: (A) Janies takes her work seriously; (B)

Janies work take too much time; (C) Working with books are my favourite thing; (D) Things

people likes to do is their business. The p-values (i.e. proportion correct) were .45 for the black

students and .73 for the white students. Further, in this item, ten permt of the white students

were strongly attracted to distractor C, which was probably the most difficult distractor to

eliminate, due to the juxtaposition of "books", "are" and "my". On the other hand, the black

students were heavily drawn to distractor D; thirty percent of the blacks students have chosen

that alternative. In the diagnosis of the source of the bias, distractor D seemed to be the source of

the bias, because the construction "Things people likes to do ..." is one which occurs frequently

in everyday "street" language of black children. Based upon this result, test-constructors might

revise distractor D into "People does not like to work too hard" and change the stem of the item

into "Pick out the sentence below that uses correct standard English". These revisions provide

better directions to the student to discriminate between street language and correct standard

English. They also focus the student on the exact putpose of the item. However, the intent of the

original item has been maintained; the critical diagnosis of subject-verb agreement has been

preserved.



8 Chapter 1

Generally, the attractiveness of the alternatives depends on the insight a subject has into

the solution of the item. Some wrong alternatives appeal to subjects who do not know the

solution of the item; other distractors provide reasonable but wrong alternatives that might be

chosen according to partial knowledge of the solution of the item. Since the insight a subject has

into the solution of the item not only depends on the ability level of the subject, but also on the

difficulty of the item, the attractiveness of the alternatives will also depend on the difficulty of

the item. However, the probability of a subject responding correctly to an item not only depends

on the difficulty of the item, but also on the attractiveness of the correct alternative. If the

problem imposed by the item is relatively difficult, whereas at the same time the attractiveness

of the correct alternative is great, a subject with a low ability still has a good chance of

responding correctly to the item.

This means that a difference in functioning of a multiple-choice item may be caused by

the item difficulty, the attractiveness of the alternatives, or both. Therefore, in the decision

whether a multiple-choice item functions differently for equally able subjects, a distinction

should be made between DIF and DAF. In this dissertation the issue of simultaneously detecting

both types of item bias in multiple choice items will be addressed.

Before we discuss this issue in more detail (Section 1.6), we will first discuss methods for

detecting biased items (Sections 1.3 and 1.4) and methods for explaining why an item is biased

(Section 1.5).

1.3 ITEM BIAS DETECTION METHODS

At first sight the determination of DIF may seem to be simply a matter of comparing the

conditional proportion of correct answers or the proportions of incorrect alternatives for the two

groups. If significant differences in the proportion of correct answers are found for equally able

subgroups, DIF has been shown to exist. Analogously, DAF has been shown to exist if

significant differences in the conditional proportions of incorrect alternatives are found for

equally able groups.

Many detection methods have been proposed to find biased items (Baron, 1988; Berk,

1982; Osterlind, 1983; Rudner, Getson & Knight, 1980a, I980b). Generally, these methods can

be divided into a group of unconditional methods and a group of the earlier conditional methods.

The difference between the two groups can be described as follows (Mellenbergh, 1985). In both

detection methods bias is regarded as an interaction between groupmembership and item

difficulty: The differences in item difficulty between groups is not constant for all items, and

items that deviate from the general trend are considered to be biased. Conditional detection

16



Introduction and overview 9

methods consider an item to be biased if the item is functioning differently for subjects with the

same ability. In the unconditional detection methods, however, the condition of equal ability of

the subject is not considered and are therefore based on a incorrect definition of DIF.

In order to give a complete (historical) survey of the item bias detection methods, both

unconditional detection methods and conditional detection methods will be briefly described and

discussed below. For a complete and detailed discussion of these methods, the above mentioned

references and the papers of Shepard, Camilli and Averill (1981) and Shepard, Camilli and

Williams (1984, 1985) are recommended.

1.3.1 Unconditional methods
There are two groups of unconditional bias detection methods: methods based on analysis of

variances (ANOVA) and those based on transformed item difficulties (TID).

In the ANOVA approach it is incorrectly assumed that the interaction effect of groups by

items on the variation in item scores, is a valid indicator of DIF. If the null hypothesis of no

significant interaction effect of groups by items is rejected, The existence of DIF is inferred.

Since for groups of unequal ability, however, item by group interaction will occur in completely

unbiased tests, it cannot be concluded that the item shows DIF merely because the null

hypothesis is rejected. Hunter (1975) illustrated this problem by showing that items of different

overall difficulty will always "...show an item by group interaction in any situation in which the

two groups differ in achievement level" (p. 10). Examples of DIF detection studies with the

ANOVA methodology are those of Cardall and Coffman (1964) or Cleary and Hilton (1968) .

In the delta plot method of Angoff (1972; Angoff & Ford, 1973), also called the

transformed item difficulty (TID) approach, two sets of item p-values are computed, one for the

Focal group and one for the Reference group. Each p-value is transformed to normal deviates.

Then for each item in the test the pair of normal deviates is plotted in a bivariate scattergram and

a baseline is drawn from the lower left to the higher right. This.baseline represents the best fit of

the scattergram and it will be used to gauge the amount of bias. The distance between a

particular item and the baseline will then be used to indicate the magnitude of DIF. Items which,

according to a method of outlier or residual analysis, deviate greatly from this line are regarded

as showing DIF. Sometimes the delta plot method is used as a post-hoc procedure to ANOVA.

One disadvantage of the delta plot method is that it will produce spurious evidence of

DIF unless the items are all equal in discrimination or the groups being compared do not differ in

average performance (Angoff, 1982; Hunter, 1975; Lord, 1977). To correct for these sources of

error, Angoff (1982) proposed to adjust the delta plot method for item-test correlation or to

match the groups on ability befo:ehand. In the latter case, the adjusted deltaplot method would

be a conditional item bias detection method.

17



10 Chapter 1

In the papers of Echtemacht (1974), Jensen (1980), Rudner, Getson and Knight (1980a,

1980b) and Stricker (1981), several variations of the delta plot method can be found.

1.3.2 Conditional methods

Both the delta plot method and ANOVA do not consider the ability level of the subjects directly,

which may lead to questionable decisions about the presence of DIF in items. For instance,

interactions of groups by items on the variations in item scores can occur in any test regardless

of DIF (Hunter, 1975). When a test in English is administered to students from different school

grades, the use of ANOVA would lead to the decision that the items show DIF. However, this

may be not correct, because school grade may be associated with the response to the test. In this

case a latent trait, such as an English language ability, may be used to explain the significant

interaction effect of groups by items.

In the remainder of this chapter, bias detection methods will be discussed that account for

the different ability of the subjects. In these methods the total number of correct scores on a test

is used as a measure of ability, and an item is defined to be functioning differently, if for all

subjects at the same evel of total number correct scores, the proportion of correct responses or

the proportion of inc3rrect alternatives is different for various groups of subjects.

These conditk nal bias detection methods can be divided into four groups: methods based

on chi-square statistics, on factor analysis, on distractor analysis and on item characteristics

curves (ICC).

In Chi-square methods (Marascuillo & Slaughter, 1981; Mellenbergh, 1982;

Scheuneman, 1979) the subjects are divided into a number of score levels according to their

scores on the test under study. To examine whether an item shows DIF, the proportions of

correct responses for the Focal and the Reference group are then compared within each score

level. In this technique for each score level an expected set of proportions of correct responses is

calculated for the two-way group membership by response contingency tables, assuming

independence. Then for each table Pearson chi-square statistics are calculated and summed up

azross score levels. If the calculated chi-square is statistically significant, the item shows DIF.

Otherwise, the item does not show DIF. Essential in this technique is the absence of the use of

the distribution of correct responses across ability levels. Since there is a wide variety available

of statistical DIE detection methods based upon chi-square procedures, only the one that has

received a great deal of attention lately will be discussed: the Mantel-Haenszel (MH) statistic.

The Mantel and Haenszel (1959) statistic, adopted for DIF analysis by Holland and

Thayer (1988), also compares the item performance of a Reference and Focal group, across

different score-levels. The MH procedure is as follows. First the subjects in the Reference and

Focal group are divided into subgroups at different score-levels. Then for each score-level for

18
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both groups the odds ratio of the p-value is computed. Finally, it is tested whether for some of

the score levels, the odds ratio for the Focal and for the Reference group differs by a constant

factor a

qk/(1-qk) = a pk/(1-pk), for all k = I,...,K

in which K denotes the number of score levels and Pk and qk denote the p-values in the Focal

and in the Reference group for each score level k. When a is not significantly different from the

value one, it may be concluded that the item shows no DIF, which means that both groups

perform equally well on the item when their abilities are taken into account.

Let Ak and Ck be defined as the number of subjects in the Reference group and Focal

group at score-level k who answered the item correctly. Finally, let Bk and Dk be similarly

defined for the number of subjects who answered the item incorrectly. The MH odds ratio

estimator is then defined as

amh = E(AkDk/Nk) / E(BkCk/Nk)

where E is the summation over all score-levels k (k=1,...,K) and Nk is the total number of

subjects at scqre level k. To test whether the observed arnh is significantly different from one,

Mantel and Haenszel (1959) proposed the chi-square statistic MH-CHISQ with one degree of

freedom,

MH-CHISQ = (I E Ak - E(Ak)I - 0.5)2 / E var(Ak),

where E(Ak) and var(Ak) denote the expected value and variance of Ak under the null

hypothesis that the factor ccrnh equals one. According to Holland and Thayer (1988) this chi-

square test offers a powerful test of the null hypothesis.

To summarize, the use of the MH statistic for DIF analysis can be viewed as an extension

of the ideas behind the chi-square procedures of Marascuillo and Slaughter (1981), Mellenbergh

(1982), and Scheuneman (1979). It provides not only a more powerful test for examining DIF,

but it also produces a measure of the degree of DW showed by the studied item. Additional

details concerning the MH technique as used in educational testing can be found in Holland and

Thayer (1988), Linacre and Wright (1986), and Raju, Bode and Larsen (1987).

In Bias detection strategies based on factor analysis an attempt is made to explain the test

performance by underlying factors (i.e. dimensions or traits). Different sets of factor loadings forrn

a Focal and a Reference group may indicate that the two groups are not responding to the items

19



12 Chapter 1

in the same manner. If that is the case, a test would be considered biased and the item with the

largest difference in factor loadings shows the most pronounced DIF. Examples of bias detection

methods based on factor analysis can be found in Green (1976), Green and Draper (1972) and

Merz (1973, 1976). The approaches of Green and Draper are attractive in the sense that item

variances are partitioned into culture-specific and culture-common sources, whereas Merz's

approach has the advantage that variances attributable to racial, ethnic or gender factors can be

distinguished.

Despite the fact that the factor analytical techniques deal with the underlying abilities of

the examinees, these techniques are not recommended for the analysis of test bias or DIF. The

main reason is, that the decision problems that beset factor analysis in general are increased

when these techniques are applied to item bias. See Rudner and Convey (1978) and Rudner,

Getson and Knight (1980a) for a discussion of these problems.

The distractor response analysis approach focuses on the differential attractiveness of the

distractors. If a significant test reveals that the equally able Focal and Reference group are

differently attracted to an item distractor, the null hypothesis of no difference in the groups'

relative frequency distribution for distractors may be rejected, and it may be concluded that DAF

exists. Just like the chi-square approach, in the distractor strategy a conditioned difference in

proportions is examined. In the papers of Green, Crone and Folk (1989) and Veale and Forman

(1983) some applications of this approach are given. For instance, Green, Crone and Folk

perform a loglinear analysis of the subgroup by number correct score by distractor contingency

table for each item. They test the null hypothesis that the interaction between subgroup and

distractor is not needed to explain the observed item responses. If the data cannot be explained

without the interaction of subgroup by distractor, they define the item to show DAF. In a similar

approach, Veale and Foreman define an unconditional model that incorporates parameters

representing (a) achievement differences across groups and (b) differences in alternative

difficulty. Their method also provides information about the source of the bias, so the item may

be revised to eliminate the bias, rather than eliminating it.

Finally, the ICC approach for the detection of DIF is derived from the item response

theory (IRT). Since the contents of this dissertation is focused on this approach, it will be

discussed separately in Section 1.4.

1.3.3 Comparison of the item bias detection methods

Comparative studies of the above item bias detection methods (lronson & Subkovak, 1979;

Rudner, Getson & Knight, I980a; Shepard, Camilli & Averill, 1981; Shepard, Camilli &

Williams, 1984, 1985) show that the examination of item bias is improved when methods take

the ability into account. Furthermore, methods based on IRT appear best, the delta plot method is
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Introduction and overview 13

poorest and the chi-square methods are in between (Baron, 1988). The delta plot method is

acceptable, however, when the difference in ability between the Focal group and the Reference

group is small and DIE is more the result of the difficulty of the item rather than of its

discriminating power. Furthermore, on both logical and empirical grounds (Ironson & Craig,

1982; Shepard, Camilli & Averill, 1981), Scheuneman's (1979) earlier chi-square method has to

be replaced by the full chi-square procedure. Finally, the IRT method is preferred theoretically

(Lord, 1977; Petersen, 1977), but in some cases it is not better than the chi-square method. The

Monte Carlo study of Rudner, Getson and Knight (1980b), for example, shows that both the

three-parameter logistic model and the chi-square method with five score-levels produced fairly

accurate results under all investigated conditions. Moreover, comparative studies of the Mantel-

Haenszel procedure and a procedure based on IRT models showed that, under the Rasch model,

the identity of ICCs across groups of subjects implies that the MH null hypothesis is met

(Holland & Thayer, 1988). However, identity of the ICCs does not imply that the MH null

hypothesis is met when the item response functions are monotonic and where local independence

holds (Zwick, 1990). For example, when each item has the same item response function in the

Focal and the Reference group and the ability distributions are ordered, the MII procedure will

show DIF which, moreover, favors the group with higher ability.

1.4 ITEM BIAS DETECTION BASED ON ITEM RESPONSE THEORY

AND LATENT CLASS ANALYSIS

As mentioned before, in this section DIF detection will be approached from an item response

theory (IRT) perspective. In Section 1.4.1 the basic ideas underlying IRT will be discussed.

Then, in Section 1.4.2, DIF detection methods based on IRT models will be discussed. Finally,

the latent class model will be discussed.

1.4.1 Item Response Theory
Over the last twenty years DIF detections methods have been proposed that are based on IRT.

An IRT model describes the probability of a correct response to a dichotomous item as a

mathematical function of person and item characteristics. These functions are known as the item

characteristic curves (ICCs). The simplest IRT model is the following Rasch (196W1980) model,

which has only one item parameter (the difficulty parameter):

(1.1) P(Yi=118) = exp(0-8j)/(1 + exp(0-8)) ,

2 1
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in which P(Yj=110) is the probability of a correct answer to item j of a subject with ability 0 and

t8.is he difficulty parameter of item j. The Rasch model is a special case of the following three-
.)

parameter logistic model (Birnbaum, 1968)

(1.2) P(Yj=110) = yi + (l1) exp(aj(0-8j))/[1 + exp(c9(0-3j))1 ,

where cri and yj are the item discrimination and guessing parameter, respectively. The guessing

parameter yi can be seen as tile probability of a cortect response to item j if 0 ) - ee. Examples

of other IRT models ate the two-parameter logistic model (Maxwell, 1959), the partial credit

model (Masters; 1982), the linear-logistic model (Fischer, 1973; Scheiblechner, 1972) and the

normal ogive model ( Lord, 1980; Lord & Novick, 1968). This list is not exhaustive. The only

IRT model addressed in this dissertation is the Rasch model.

One of the common assumptions in IRT is the unidimensionality of the ability space.

Unidimensionality is understood to mean that the number of abilities that accounts for the

subjects' performance on the test equals one.

Another common assumption in IRT is the local independence of items, which means

that for a fixed subject, response on any item is independent of the response on the other items in

the test. Consider, for example, a test consisting of k items, where each has two response

categories: incorrect (0) and correct (1). Further, let Yj denote the observed response on item j

(j=1,...,k) and let the response pattern of a subject on all k items be denoted by Y=(Y1,...,Yk).

Then the probability P(Y=y10) that a subject with ability 0 will have response pattern y on the k

items is equal to

(1.3) P(Y=y10 ) = P(Y1=y110 )

Thus local independence means that the simultaneous probability is the product of the

independent item probabilities.

One of the main features of the Rasch model is that the equations for the estimation of

the item parameters can be obtained independently of the ability parameters, and vice versa

(Fischer, 1974, 1987; Glas, 1989). Finally, Fisher's information can be used as a measure for the

accuracy of a test at ability level 0, because it is inversely proportional to the asymptotic

standard error of the maximum likelihood ability estimates at this ability level (Lord, 1980).

1.4.2 DIF and IRT Models

With 1RT an unbiased item can be defined as follows: An item is unbiased if the ICCs for the

various groups are identical. Conceptually, this definition and the definition of DIF as mentioned

22
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in Section 1.2 are alike. Mathematically, this definition implies that an item shows DIF if the

ICC is different for any subgroup. This means that, in the Rasch model, the probability of a

correct response to item j in subgroup i (i=1,...,g) is equal to

(1.4) P(Y11=110 ) = exp(0 -8 ij)/[1 + exp(0 -8 ij)] ,

in which P(Yki=110) is the probability of a correct answer to item j of a subject with ability 0

from subgroup i, and Ski is the difficulty parameter of item j in subgroup i. If the item is

unbiased then the difficulty parameter 8j is equal over all subgroups, i.e. 8ij = Elj for411

subgroups i.

Since for a chosen IRT model the ICCs are determined by the item parameters, the

statistical question in DIF detection is whether the item parameters for the Reference and Focal

groups differ significantly. An item is said to be biased if the difference between the item

parameter estimates for the Reference and Focal groups is significant under a certain IRT model.

In view of the variety of IRT models and approaches to parameter estimation and hypothesis

testing, there are different approaches for the detection of significant differences between ICCs.

Some of these methods are based on marginal maximum likelihood estimation (Thissen,

Steinberg & Gerhard, 1986; Thissen, Steinberg & Wainer, 1993), others on the loglinear

formulation of the Rasch model (Kelderman, 1989; Kelderman & Macready, 1990) or on

generalized least square estimation (Muthen & Lehmann, 1985). In all three approaches

likelihood ratio tests are used for the evaluation of the significance of the observed differences

between two groups. A fourth detection method is also based on marginal maximum likelihood

estimation, but here the ratios of the parameter estimates to their standard errors are used to test

whether the item parameters differ significantly across groups (Bock, Muraki & Pfeiffenberger,

1988; Muraki & Engelhard, 1989). In Thissen, Steinberg, and Wainer (1993) a good survey of

these detection methods is given. They conclude that each of the four methods implements

estimation and hypothesis testing for distinct subsets of IRT models and that they perform as

expected when the model is appropriate for the data. Therefore, the choice between these four

methods must be made with respect to the assumptions of the model.

In the literature them are also entirely descriptive IRT based bias detection methods

(Hambleton & Swaminathan, 1985; Linn, Levine, Hastings & Wardrop, 1981). In most of these

methods the area between the ICCs of the Focal and Reference group is used to examine the

existence of DIF (Raju, 1988; Rudner, Geston & Knight, 1980a, 1980b; Shepard, Camilli &

Averill, 1981; Shepard, Camilli & Williams, 1984). The paper by Raju offers formulas for

computing the exact area between the two ICCs of the one-, two-, and three-parameter models

under the restriction that the guessing parameters are equal for both ICCs. In the other references
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the area between the ICCs of the two groups is computed by integration over an ability interval.

The use of the area between two ICCs for DIF detection may be worthwhile. However, most of

these methods are not associated with any inferential statistics that can be used for DIF detection.

1.4.3 Latent Class Models

In most cases it is assumed that the ability parameter 0 is a continuous latent variable. However,

there are also response models for which it is assumed that the latent space is discrete. These

models are known as the latent class analysis (LCA) models. Thissen and Mooney (1989) wrote:

"IRT models are developed as tools for measurement, whereas LCA models are presented

primarily as structural models for observed item response data.... The crucial difference between

IRT models and LCA models is that IRT models am based on the relationship of the probability

of a particular item response with a continuous latent variable" (p. 300-301).

Each point in the discrete latent space corresponds to a latent class. The probability of a

positive response of a subject to each of the items is completely specified by these latent classes

and the conditional probabilities of a correct response to the item, given the subject's

membership in the latent space. In contrast to IRT models with continuous latent traits, no

specific functional form is assumed for the conditional probabilities.

Just as in the 1RT case, local independence is assumed in LCA, which means tht'within

a latent class the responses to items are all independent. For example, consider again a test

consisting of k items, where each has two categories: incorrect (0) and correct (1), respectively.

Let Y. denote the observed response on item j (j=1, ,k) and let the response: pattern of a subject

on all the k items be denoted by the vector Y=(Y1 Yk) Further, let T denote the number of

latent classes, X be the random variable associated with the latent classes, P(X=x) be the

probability that a subject will be in the xth latent class (x=1,...,T) and P(YryilX=x) be the

conditional probability that a subject will score response category yj (yj=0,1) given that the

subject is in the xth latent class. Then the probability P(Y=y) that a subject will have response

pattern y on the k items is in a LCA model equal to

(1.5) P(Y=y) = E P(X=x) P(Y j=y1IX=x) P(Yk=yklX=x) .

in which Ex is the summation over all latent classes x (x=1,...,T).

For the detection of bias, Model (1.5) has to be extended to include a variable which

denotes group membership. Let i (i=1,...,g) denote the group membership of a subject, then the

probability that a subject from group i will have response pattern y is equal to
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(1.5) P(Y=y1i) = E P(X=x1i) P(Y1=y1li,X=x) P(Yk=ykli,X=x) ,

in which P(X=x1i) is the probability that a subject from group i will be in the xth latent class and

P(Y i=y1li,X=x) is the conditional probability that a subject will score in response category yj,

given that the subject is in the xth latent class and in group i.

If the marginal distribution of subjects over the latent classes is equal over all groups,

then P(i,x) = P(x) for all groups i. If the association between item j and the latent classes is equal

in all groups, then P(Yryili,X=x) = P(YryilX=x) for all groups i and latent classes x. If this is

the case, then item j shows no DIF (Clogg & Goodman, 1985; Mellenbergh, 1985, 1989).

However, item j shows DIF if the marginal probability P(1)=1,i) is not equal in all groups i.

1.5 RESEARCH STRATEGIES FOR THE EXPLANATION OF ITEM BIAS

Traditionally, most of the previous mentioned item bias detection methods focus on the detection

of biased items. Only a few item bias detection methods also try to examine why an item is

biased. For example, item bias detection methods based on distractor analysis not only yield

information about whether an item is biased, but it also provides information about which

alternative of the item was likely to be responsible for the bias (Green, Crone & Folk, 1989;

Veale & Foreman, 1983). However, these item bias detection methods are not among the best

detection methods. The method of Green, Crone and Folk, for instance, is not based on an IRT

model and the method of Veale and Foreman does not control for ability.

Of course there are several research strategies to explain item bias, but not all of them

have been applied in empirical research. For instance, Ackerman (1992) suggested to explain

item bias from a multidimensional perspective. The idea behind his strategy is that "if two

different groups of subjects have different underlying multidimensional ability distributions and

the test items are capable of discriminating among the levels of abilities on these multiple

dimensions, then any unidimensional scoring scheme has the potential to produce item bias" (p.

67). Ackerman's strategy can be viewed as an extension of the strategies of Kok (1988) and

Shealy and Stout (1991). Kok presented a mathematical model to explain how DIF can occur

because of multidimeivionality, and Shealy and Stout presented a detailed theoretical analysis of

DIF from a similar perspective as Kok.

In Smith and Camilli (1988) the question "What caused the bias?" is replaced by the

question "Who caused the bias?". The idea behind their strategy is that it is not always the group

as a whole that causes the bias, but a recognizable subgroup within the disadvantaged group. For

example, suppose that the correct answer of an item is B, but that a highly plausible distractor is
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C. Impulsive subjects may then be much mote likely to select C and will not look further. If

impulsiveness is more prevalent in one group than in the other, the item may show DIF. So, if

DIF can be explained by certain characteristics of some subjects in the disadvantaged group,

then it should be possible to identify these aberrant subjects and examine how these subjects

differ from the other subjects in the group. Explaining DW from the perspective of the subject is

not usually done. However, it is a strategy which should not be neglected, because DIP involves

not only the test items, but also the test takers (Linn & Harnisch, 1981).

In order to summarize, bias may be explained by either qualitative, correlational, quasi-

experimental or experimental strategies (Mellenbergh & Kok, in press). The differences between

these strategies can be described as follows. In the qualitative strategy a study is made of either

the item content or the subjects' cognitive process when answering the item, whereas in the

correlational strategy the relations between the item responses and variables of interest are

studied. Examples of these variables may be subjects characteristics or item characteristics.

Furthermore, in quasi-experimental studies either the predetermined groups of subjects or the

predetermined groups of items are compared. Finally, in experimental studies the subjects

characteristics or the characteristics of the items are manipulated. Examples of the applications

of these strategies can be found in Lucassen and Evers (1984), Scheuneman (1987), Subkoviak,

Mack, Ironson, Craig (1984) and Van der Flier (1982) respectively.

A problem of the above item bias research strategies is that all of them are follow-up

analyses. One of the item bias detection methods has to be used to detect the biased items, and

only then one of the research strategies can be used to examine "What" or "Who" caused the bias

or to examine the bias from a multidimensional perspective. This makes the examination of item

bias not only difficult and problematic, but also inefficient. Therefore, a development of IMF

detection methods that give more information about the nature of DIF may be appreciated.

1.6 TOPIC OF THE DISSERTATION

In the previous sections several questions were raised. In the first place, bias in multiple-choice

items may be caused by a combination of the difficulty of the item and the attractiveness of the

alternatives. In nearly all of the existing item bias detection methods, however, only one type of

bias at the time is considered.

Secondly, although item bias can be defined and biased items can be detected, only minor

attention has been given to the explanation of the bias factor. In practice, biased items were

removed from the test and the test was claimed to be fair with respect to the groups investigated.

The advantages of knowing why an item is biased, for test construction, has been neglected for a
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long time. However, in the last decade researchers have become aware of the fact that

knowledge about factors causing bias can prevent the occurrence of biased items in new tests.

This consideration has resulted in several research strategies for the examination of item bias.

These research strategies, however, are not only difficult and problematic to apply, they also

consider one type of item bias at the time and are therefore inefficient. In this study we will

propose an item bias detection method thatmakes it possible to test whether an item shows DIF,

DAF, or both.
As far as we know there are only a few IRT models that make it possible to distinguish

between DIF caused by the difficulty of the item and DIF caused by the attractiveness of the

alternatives. A model that may come first to mind is the three-parameter logistic model.

However, the guessing parameter (i.e. y) of this model denotes the attractiveness of the correct

alternative, whereas (1-y) denotes an overall attractiveness of the distractors. So the three-

parameter logistic model does not account for differences between the attractiveness of the

different distractors. Other models which can be used are the multiple-choice model of Thissen

and Steinberg (1984), the model of Lord (1983) or the solution-error response-error model of

Kelderman (1988). All three models not only concentrate on the observed responses, but also on

the process leading to these observed responses. In this way it should not only be possible to test

whether an item is biased, but also to get more information why an item is biased. For example,

before a subject responds to a multiple-choice item, (s)he must first recognize and solve the

problem imposed by the item, and then choose one of the alternatives. At each level of this

process there may be danger of bias. For instance, the probability that a subject can recognize

and solve the problem depends on the difficulty of the item, which may vary across different

subgroups. If this difficulty is not equal for different subgroups, then the item shows DIF.

Furthermore, whether or not the subject has solved the problem, (s)he has to select one of the

alternatives, and this may depend on the attractiveness of the alternatives. If the attractiveness of

the alternatives differs for subjects from different subgroups, then the item shows DAF. In this

study the solution-error response-error model (SERE) of Kelderman (1988) is used to examine

both types of bias. Since the SERE model will be formulated and discussed more extensively in

Chapter 2, only a brief description of the model is given here.

The SERE model is a loglinear Rasch model with latent classes and can be regarded as a

two-process model. The first process determines whether or not a subject will be able to solve

the problem imposed by the item. For this process, in the SERE model a distinction is made

between a "Know" state, in which the subject has complete knowledge of the solution to the

item, and a "Don't know" state. The probability that the subject is in the "Know" state rather than

the "Don't know" state is assumed to be governed by the Rasch model. The responses of the

solving process will be referred to as idealized responses orlatent responses.
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In the second process the answer of the subject on the item is determined. Whether or not
the subject is in the "Know" state, (s)he has to choose one of the alternatives of the item. If the
subject does not know the solution to the item, the choice of an alternative may depend on the
attractiveness of the alternatives, which may be different for different alternatives, including the
correct one. On the other hand, if the subjects is in the "Know" state, it may be expected that the

correct answer will be chosen. However, the subject may choose also one of the distractors
because of a writing error.

The observed responses are the result of the second process. In the SERE model the
relationship between the latent responses and the observed responses'are modelled by
conditional probabilities. Since these conditional probabilities indicate the attractiveness of the
alternatives, we will refer to these conditional probabilities as attraction parameters.

The SERE model can be seen as Macready and Dayton's (1980) extension of Goodman's

(1975) model for scaling response patterns, but in which the deterministic Gunman (1950) model
is replaced by the Rasch model. The SERE model is akin to the latent trait models of Lord
(1983) and Thissen and Steinberg (1984). In these models it is assumed that subjects in the
"Don't know" (Thissen & Steinberg, 1984) or "Undecided" (Lord, 1983) latent state arrive at an
observed response by guessing. However, the SERE model is a more general model (Kelderman,
1988).

Furthermore, the SERE model represents one of the efforts to mlate IRT modelsto LCA
models. Other efforts were made by Bock and Aitkin (1981), Dayton and Macready (1980),

Formann (1985), Kelderman and Macready (1990), Mislevy and Verhelst (1990), Rost (1990,
1991) and Yamamoto (1987, 1988). In all these models an attempt is made to combine the
advantag-s of the IRT and LCA models into one single model so that more information on the
knowledge of the subject can be obtained. For example, with LCA models it is possibleto make
a statement about the subjects' cognitive structure of understanding and misunderstanding a

certain ability, such as arithmetic, foreign language and so on. Furthermore, LCA models have
the advantage that the theory for maximum likelihood estimation and likelihood-ratio testing are
well developed. On the other hand, with IRT models it is possible to attach scale values to

subjects that represent the ability of the subject. The combination of the advantages of the IRT

models and the LCA models into one model is very interesting for the study of DIF.

1.7 OVERVIEW OF THE FOLLOWING CHAPTERS

In Chapter 2 we will show that the SERE model can be used for examining DIF in multiple-

choice items through a combination of the usual notion of DIF for correct/incorrect responses
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and information about DIF contained in each of the alternatives. In the method proposed

incomplete latent class models are used to examine whether DIF is caused by the attractiveness

of the alternatives, the difficulty of the item, or both.

As Kelderman (1988) has shown, parameter estimates can be computed when the

programs LCAG (Hagenaars & Luijkx, 1990) and LOGIMO (Kelderman & Steen, 1988) are

used. The underlying estimation method of these programs, however, becomes unpractical when

the number of items is large. In Chapter 3 a method of parameter estimation is described that is

based on dividing the whole item set in several subsets. We will show that, dependent on the

number of items in each subset, the parameters of the SERE model can be estimated much more

efficiently, both in terms of computer storage and processing time needed. Since information

about the joint relationships among the items may be lost when the set of items is divided into

subsets, the estimators of the parameters will, however, not be efficient.

Chapter 4 contains a simulation study of a DIF detection method based on the SERE

model with an examination of the estimation method introduced in Chapter 3. The main

questions considered are: (1) Can DIF still be detected if the number of items or the number of

subjects is small?; (2) How do the values of the parameter estimators differ from the true

model?; (3) Is this deviation consistent in the sense that the differences tend to decrease when the

number of subjects increases?
The SERE model as described in Kelderman (1988) and Chapter 2 deals with a one-

dimensional continuous latent trait. The production of one alternative response may, however,

require quite another ability from the subject than the production of another answer. Besides,

some responses may require the repeated application of an ability, whereas others may require

only a single application of that same ability. This would mean that, although a multiple-choice

item has one correct alternative, incorrect responses might often be chosen after cognitive

activities similar to those necessary to arrive at the correct response. Therefore, in Chapter 5 the

SERE model is generalized to a multidimensional polytomously scored latent response model.

When this generalized SERE model is used, it is not only possible to de:ect both types of DIF,

but also to explain DIF according to the ideas of Ackerman (1992), Kok (1988) and Shealy and

Stout (1991). However, this point will not be further pursued in this dissertation.

Chapter 6 contains the summary of this dissertation as well as an overview of features of

the on the SERE model based DIF detection methods that need further investigation.



Chapter 2

THE EXAMINATION OF DIFFERENTIAL ITEM
FUNCTIONING DUE TO ITEM DIFFICULTY

AND ALTERNATIVE ATTRACTIVENESS*

2.1 ABSTRACT

A method for analyzing test item responses is proposed to examine differential item functioning

(DIF) in multiple-choice items through a combination of the usual notion of D1F for

correct/incorrect responses and information about DIF contained in each of the alternatives. In

the method proposed incomplete latent class models are used to examine whether DIF is caused

by the attractiveness of the alternatives, difficulty of the item, or both. DIF with respect toeither

known or unknown subgroups can be tested by a likelihood ratio test statistic which is

asymptotically distributed as a chi-square random variable.

2.2 INTRODUCTION

Items in educational or psychological tests may show differential item functioning (DIF). This

means that the probability of a correct response among equallyable test takers is different for

various racial, ethnic, or gender subgroups. An educational or psychological testconsisting of

many items with significant DIP may be unfair for certain subgroups, and it is important to

identify these items, so that they can be improved or deleted from the test. Many DIF detection

methods have been proposed since Binet and Simon (1916) drew attention to thisproblem.

Reviews of previous DIF (also called item bias) detection methods are given byBerk (1982),

Osterlind (1983), and Rudner, Getson and Knight (1980a).

This chapter is a slightly revised version of P. Westers & H. Kelderman (1992). Examining Differential Item

Functioning Due to Item Difficulty and Alternative Attractiveness. Psychometrika, 57, 107-118. Printed by

pennission of the publisher.
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In the last decade, the DIF detection methods have been improved to provide a better

basis for matching on ability. In various methods the number correct score of the test has been

used for this ability matching (Holland & Thayer, 1988; Mellenbergh, 1982; Scheuneman,

1979). Recently, DIF detection methods have been proposed which are based on item response

theory (IRT) (Baker, 1977; Lord, 1980; Mellenbergh, 1989; Muth 6n & Lehmann, 1985; Wright,

Mead, & Draba, 1975). Thissen, Steinberg, and Wainer (1993) give an overview of IRT-based

DIF detection methods and demonstrate their use. They also discuss DIF detection methods

which cm be used with multiple choice items, where the response alternatives are also potential

sources of DIF.

Green, Crone, and Folk (1989) focus on the differential attractiveness of the incorrect

responses (or "distractors"). If a particular distractor is more attractive to subjects from one

subgroup than from another, Green et al. conjecture that "...the item probably means something

different to the different groups" (p. 147). They perform a loglinear analysis of the subgroup x

score group x incorrect response contingency table for each item, to detect distractors that are

more popular in one subgroup than in another. A similar approach of Veale and Foreman (1983)

is based on the notion that examinees' responses to the incorrect alternatives provide more and

better information concerning D1F than their responses to the correct alternative. Their model,

called the overpull probability model, incorporates parameters representing (a) achievement

differences across groups and (b) differences in alternative difficulty. Their proposed method

also indicates the likely source of the bias so that the item may be revised to eliminate the bias

rather than discarding the item. The methods proposed by Green et al. and Veale and Foreman

have certain drawbacks; the Green et al. method, for example, is not based on an IRT model and

the Veale and Foreman method does not control for ability. In the DIF detection method

proposed in this chapter these two problems are avoided.

Another source of DIF in multiple choice items deals with the differential difficulty of

the problem to be solved. An item may show DIF if it is more difficult for some subgroup than

for others, even if they are equally able on the trait of interest (Lord, 1980; Rudner, Getson, &

Knight, I980a). In this chapter a DIF detection method is described that separates both sources

of bias. In the proposed method, a distinction is made between a "Know" state in which the

subject has complete knowledge of the answer and a "Don't know" state. Furthermore, it is

assumed that if the subject is in the "Know" state, (s)he will give the correct answer. Here the

probability that the subject is in the "Know" state is assumed to be governed by the Rasch

(1960/1980) model. If the subject is in the "Don't Know" state, (s)he will choose the most

attractive alternative, where the attractiveness of an alternative may be different for various

alternatives, including the correct one.
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The proposed DIF detection method differs from that of Thissen, Steinberg, and

Fitzpatrick (1989), who distinguish between a "Don't know" state and a state in which the

subject has partial or complete knowledge of the answer. In the "Don't know" state, the subject

guesses the answer as before, but in the "Partial knowledge" state (s)he may select a response

alternative according to response probabilities that are governed by Bock's (1972) nominal

response model.
The proposed method is simpler than that of Thissen, Steinberg, and Fitzpatrick(1989).

This simplicity has two advantages. In the first place, the method proposed herecontains fewer

parameters; for example, for a four-choice item the proposed modelhas five item parameters,

while the model of Thissen et al. has fourteen. Obviously, if the sample is not very large, the

parameters of the model by Thissen et al. cannot be estimated reliably. So, in that case, one may

be inclined to "buy information by assumption" and use the simpler model. Secondly, the

proposed model can be easily formulated as a latent class analysis (LCA) model (Kelderman,

1988). LCA models have been used extensively for measurements in sociology, psychology, ant,

education (Clogg, 1981). There is a well-developed theory for maximum-likelihood estimation

and likelihood-ratio testing of the LCA models (Goodman, 1978; Haberman, 1979; Lazarsfeld &

Henry, 1968). By comparing the rit of different LCA models, D1F in the attraction of the

alternatives and DIF in the parameters of the Basch model can be tested separately (Kelderman,

1989; Kelderman & Macready, 1990). The model can also be extended to latent classes, so that

the subgroups for which an item shows DIF may be latent.

A model for multiple choice items is developed below and formulated within the latent

class framework. Different models for the detection of DIF are formulated, including a provision

for the definition of the subgroup as a latent variable. A computationally efficientestimation

method is described and illustrated with empirical data.

2.3 A MODEL FOR MULTIPLE-CHOICE ITEMS THAT ACCOUNTS

FOR THE SELECTION OF EACH ALTERNATIVE

Let us suppose that each subject, randomly drawn from a population of subjects, responds to k

test items, where the answer to item j may be any one of the r responses, denoted by yj

(yr 1,...,rj). Let xj indicate the latent response of the subject, takingvalues xj=1 if the subject is

in the "Know" state (i.e. the subject has complete knowledge of the answer), orxj=9 if the

subject is in the "Don't know" state. The random variables associated with yj and xi are denoted

by Yi and x.; (j=1,...,k), respectively.
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The relationship between the latent response xi and the observed response yj is described

by the conditional probability

(2.1)
X-Yi

(I) i .1 a P(y-lx.) ,
J Jxjyj

in which the superscripts, in symbolic notation, indicate that the random variables Xj and yi are

involved in the conditional probability. For the sake of simplicity, the notations yj, xi, et cetera in

the probabilities are used for Yryi, Xj=xj, et cetera.

The assumption is that if the subject has complete knowledge of the answer (xj=1), the

correct alternative is chosen; that is, 0:201JJ must equal 1 if yj is the right alternative and 0 if yj
Yj X.Y.is die wren alternative. If the subject is in the "Don'anow" srare(xi=0),00J,Jean take on

1.1
any value from 0 to I as long as the sum of the probabilities for all values of yj (1 through ri) is

1. The latent responses are assumed to be governed by a one-parameter-logistic model (Rasch,

1960/1980), in which the probability of a latent response xi, given that the subject has ability 0,

is

(2.2) P(xj10) = exp(xj(0-8))41 + exp(0-8j)]

and is the difficulty of item j.8J
Assuming that yj only depends on xj and that xi only depends on the latent ability 0, we

have

X.Y. X.Y.(2.3) P(yi10) = [c1:10.1yiJ + 4) p yi1 exp(0-8j)]/[1+exp(0-8j)] .

In the foregoing, we indicated that an item shows DIF if the probability of a correct response

among equally able test takers is different between subgroups. With respect to (2.3), this means
X

J

.Yyl .
that if item j shows DIF, the attraction parameter all x.1 J and/or the difficulty parameter Si

did not have the same value for all subgroups. So the two sources of DIF (attractiveness of the

alternatives and difficulty of the item) are well-defined by the model.

In order to formulate a complete model, the response pattern of a subject on all the items

in a test is denoted by the vector y=(y1,...,yk). The vector of latent responses of a subject is

denoted by x=(x i,...,xk). The corresponding random variables are denoted by Y and X.

Furthermore, F(0) denotes the continuous distribution function of the latent ability 0,

8=(8 1,...,8k) the vector of item difficulties and t=x!+...+xk the number correct score. With the
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use of (2.1), (2.2), and the assumption of local independence of the yj and xj variables, the

marginal probability of the observed responses y can be written as

00

(2.4) P(y) = P(ylx, 0) P(x10) dF(0)

in which

00

X.Y-
= [ (I) J .1 ]exp(- L x.8.)fexp(tO)C(0,6)-1dF(0) ,

x j=1 Y.1
J J

.1=1 _e,

C(0,6) = U (I + exp(0-6)] ,
.1=1

and Ex is the summation over all possible latent response patterns x=(xj,...,xk).

In order to detect DIF in multiple-choice items, (2.4) must be extended to include

subgroups. In order to keep the main idea of this section in proper perspective, subgroups have

been ignored so far but they will be considered in a later section.

In the next section we will formulate the model as an incomplete latent class model. The

integral in (2.4) will then be absorbed into a latent class parameter that depends only on the

number correct score t, which implies that it is not necessary to specify the distribution function

F(0) any further.

2.4 THE MODEL WRITTEN AS AN INCOMPLETE LCA MODEL

Kelderman (1988) showed that the model in (2.4) is an incomplete latent-class model in the

sense of Haberman (1979, chap. 10):

(2.5)

with

13

dsTXl dCk cbXI Y XkYk
(Y) = Xk MY1 xkyk
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and for j=1,...,k,

oc.

Tdot =fexp(te)C(9,8)-1dF(0) ,

-.0

X.d) J = exp(-xpi) ,x.i

and in which the at t rac t ion parameters are subject to the restrictions

YX.. X.Y.(2.6) (1).1 J+ + =1,(DJ Jx.1 x
J .1

r.
J

(j=1,...,k).

In this model, each value of x represents a latent class. The model in (2.5) is incomplete, because

for certain given values of X only a limited number of combinations (Y j,...,Yk) are possible.
T

Since (tot depends on an underlying latent trait distribution F(0), these parameters are subject to
the following complex inequality constraints (Cressie & Holland, 1983; Kelderman, 1984):

and

in which

da(H (DT 11q1 )> 0r+s r,s=0 '

da(fl 41T 11(12 ) > 0r+s+1 r,s=0

(12 =

1

k/2 if k is even,

(k-1)/2 if k is odd,

1

(k-2)/2 if k is even,

(k-1)/2 if k is odd,

and det.(I - I qr s_o) defines the determinant of a matrix with row index r and column index s,
both running from zero to q.
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Since it is not our objective to fit a model for the data, but only to decide if a certain item

shows DIF, we will follow Cressie and Holland and ignore these inequality constraints. The

resulting model, the so-called generalized Rasch model, provides an easy way to decide whether

or not an item shows DIF. The generalized Rasch model is also equivalent to the "conditional"

Rasch model; that is, a Rasch model in which there is a conditioning on the number correct score

(Kelderman, 1984). The incomplete table methodology can be used to formulate several

hypotheses about DIF by specifying alternative models that contain additional subgroup-

dependent parameters.

2.5 TESTING FOR DIF BY RELATED LCA MODELS

An item can show DIF in two different ways. First, as indicated before, an item shows DIF if

equally able individuals from different subgroups have different probabilities of "Knowing" the

answer. This will be referred to as DIF in the latent response. It was assumed earlier that if

subjects are in the "Know" state, they will choose the correct alternative. But if subjects are in

the "Don't know" state, they may choose any of the alternatives. Therefore, an item also shows

DIF if the attractiveness of the alternatives varies from subgroup to subgroup conditioned on

ability. This will be referred to as DIF in the attraction parameters ordifferential alternative

functioning (DAF).
In order to detect DIF, the model in (2.5) is reformulated as

(2.7)
4)1T it,11X1 cr,IXk IDIX Y1 olXkYk

lxi lxk ixIyl kyk

in which P(yli) is the conditional distribution of observed response y given observed subgroup i

(i=1,...,g) and each term on the right side is equal to the corresponding term on the right side of

(2.5), extended with the subgroup.

In the model in (2.7), all items are considered to show DIF both in the latent response and

the attraction parameters. If some items show DIF neither in the latent response nor in the

attraction parameters, the 0-parameters for these items are restricted. If, for example, in a

certain model Item 1 shows no DIF in the latent response, the cb /X1 parameters are restricted inrx

the following manner

lx1 gx1
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In the next subsections, models are formulated for the study of the two types of DIF.

2.5.1 DIF in the Latent Response

In order to test whether the interaction between subgroup i and the latent response to Item 1 is
zero (i.e. whether Item 1 shows DIF in the latent response), an alternative model is formulatedas

(2.8) AsiTthIX10X2 (DXk OX1Y ttoXkYkKYli) it ixi x2* xk xkYk

The model in (2.8) can be obtained from (2.7) by setting all 4:11.parameters, excluding the
difficulty parameter of Item 1, equal for all subgroups:

and

DC.Y. 1X.Y. X.Y.= = J =4:0 J. J
XjYj gxiyi Xiyi

This alternative model is compared with

(j=2,...,k)

(j=1,...,k)

X 41XkYk(2.9) K cpXk cb1Y1
yli) = it xi xk x1Y1 xkYk

in which all 41parameters are set equally across subgroups. Ifa statistical test of the difference

between the models is significant, we may conclude that the difficulty of Item 1 varies from
subgroup to subgroup. In this case, subjects in one subgroup may find it more difficult to solve
the problem than subjects in another subgroup.

2.5.2 DIF in the Attraction Parameters

In order to test the null hypothesis that the interaction between the subgroup and the observed

response to Item 1 is zero (i.e. whether Item 1 shows DIF in the attraction parameters), (2.9) is
compared with the alternative model

ci)Ck 41IX1Y1 4,X2Y2 iti?CkYk(2.10) Kyli) = it xi xk iX1y1 x2y2 xkyk
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in which, similar to (2.8), all 0-parameters, except for the attraction parameters for Item 1, are

set equal across subgroups. If the statistical test is significant, we may conclude that the

attractiveness of the Item 1 alternatives varies from subgroup to subgroup. In (2.8) and (2.10)

the 0-parameters are specified to test for DIF for only one item. Obviously, similar model ten

can be specified for two or more items if necessary. It is also possible to defme models in whi

one item shows DIF in the latent response and another (or the same) item shows DIF in the

attraction parameters.

2.6 PARAMETER ESTIMATION AND MODEL TESTING

Let nixy be the number of individuals in subgroup i with X=x and Y=y under a certain model

and let mixy be the expected value of nixy Although nixy is not observed, it is possible to

estimate the expected value mixy of nixy, and the 43-parameters from the observed niy (or ny

the subgroup is unobserved) by the method of maximum likelihood. To illustrate this, consid

the model in (2.7). The likelihood equations for (2.7) would be (Haberman,1979):

IT A ITm. =n. ,
it it

LXY A 1X.Y-m. 3 J = n . 3 J ,
J

in which

(2.11) fiiIty= ( m miy )

IT IX.Y.and n it and n . J.. J are the numbers of individuals in subgroup i with T=t, Xi=xi, and Ili=3
ixiyj

IT My. TT 1X.Y.
respectively. Furthermore, m . and m . J are the expected values of nk and n J ,

it IT.,
respectively. If the subgroup i is not observed, niy and miy in (2.11) have to be replaced byi

and my, respectively. The likelihood equations can be solved by the iterative proportional lii

algorithm or the scoring algorithm (Goodman, 1978; Haberman, 1979). The iterative

proportional fitting algorithm is preferred, because it is less sensitive to the choice of startini

values. Similar likelihood equations can be formulated for the restricted models.

The overall goodness-of-fit of an incomplete latent-class model can be tested by the

Pearson statistic (Q) or the likelihood-ratio statistic (LR) (see Haberman, 1979). Both statist

are asymptotically distributed as chi-square with degrees of freedom equal to the difference
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between the number of possible response patterns y (or this number multiplied by g if the

subgroup is observed) minus one and the number of estimable parameters. The number of

estimable parameters of a model should be equal to the rank of the information matrix

(Goodman, 1978; McHugh, 1956).

By the difference in the likelihood-ratio test statistics for two models (LR(a;b)), it can be

tested whether the alternative model b yields a significant improvement in fit over the restricted

model a, which is a special case of model b. Under the assumption of model a, LR(a;b) is

asymptotically chi-square distributed with degrees of freedom equal to the difference in the

numbers of estimable parameters in both models (Bishop, Fienberg, & Holland, 1975).

2.7 AN EMPIRICAL EXAMPLE

As an example, four items froin the Second International Mathematics Study in the Netherlands

were analyzed (Eggen, Pelgrum, & Plomp, 1987). Each item was a five-choice item with only

one correct alternative. A sample of 3002 students was drawn from two types of schools for

lower secondary education in the Netherlands. To illustrate the use of quasi-loglinear models for

the detection of DIF, the students' level of education was chosen as the grouping variable:

subgroup MAVO (intermediate general education) and subgroup HAVO/VWO (higher general

education and pre-university education).

The models in (2.8) and (2.10) were fitted to the data with the computer-program LCAG

(Hagenaars & Luijkx, 1990). LCAG is a program for the estimation of the parameters of

loglinear models with latent variables, and yields, beside the estimated latent conditional

probabilities (i.e. the attraction parameters), the estimated expected frequency distribution of the

latent variables within the model. From this frequency distribution the difficulty parameters were

estimated through LOGIMO (Kelderman & Steen, 1988). LOGIMO is a general computer

program especially written for the analyzation of loglinear IRT models. In both programs the

efficient IPF algorithm is used for the estimation of the parameters.

In the first series of analyses, each item was separately tested for DIF in the latent

response or in the attraction parameters. For example, to test if Item 1 showed DIF in the latent

response, we postulated that the difficulty parameter of Item 1 was the only parameter that varied

between the two groups. The models in (2.8) and (2.10) were compared to (2.9) to test for DIF in

the latent response and for DIF in the attraction parameters, respectively. Table 2.1 shows the

values of the likelihood ratio test and the degrees of freedom for the models in (2.8) and (2.10),

for each item separately. In both tests, group membership (i.e. the level of education) was

assumed to be known.
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Table 2.1
Likelihood-ratio tests statistics for the detection of DIF in the data from the Second International

Mathematics Study

DIF in the DIF in the
latent response attraction parameters

Item Likelihood-ratio df Likelihood-ratio df

1 1.701 1 26.519* 4
2 4.720* 1 21.340* 4
3 1.747 1 6.033 4
4 .018 1 52.595* 4

Note: Tests marked with an asterisk are significant (a = .05).

From Table 2.1 we may conclude that, except for Item 2, the item difficulty parameters do not

vary significantly between the two subgroups (MAVO and HAVO/VWO).Only Item 2 shows

DIF in the latent response. When we take a closer look at the difficulty of Item 2, we can see that

it was substantially smaller for MAVO-students (822 = 1.90) than for HAVO/VWO-students

(812 = 0.82). The difficulty parameters of the other three Items 1, 3, and 4 were -1.52,

-3.54, and 1.32, respectively. Please note that these items showed no DIF in the latent response;

therefore, the difficulty parameters were estimated by setting the item parameters equal in both

subgroups.
The test LR(2.9;2.10) reported in Table 2.1 also indicates that the attractiveness of the

alternatives to Items 1, 2, and 4 were significantly different for both subgroups. Estimates of the

attraction parameters for the alternatives of each item are presented in Table 2.2. These results

indicate that a HAVONWO-student is more likely to choose the correct alternative to Item 1

than a MAVO-student. On the other hand, a MAVO-student is more likely to choose the correct

alternative for Item 2, because the associated attraction parameter of the correct alternative for

Item 2 in this group is twice as large as the associated attraction parameter for a HAVO/VW0-

student. For both subgroups, however, the correct alternative is not the most attractive one.

The attraction parameters for the correct alternative of Item 4 are approximately the same

for both subgroups, but for the alternatives B and C, a curious difference exists between the two

subgroups. A HAVO/VWO-student would choose alternative B with almost the same probability

as a MAVO-student would guess alternative C, and (s)he would choose alternative C with almost

the same probability as a MAVO-student would choose alternative B. Item 3 shows no DIF in

the attraction parameters. However, the attraction parameter for the rightalternative in the

subgroup HAVO/VWO ; more than three times as large as the associated attraction parameter

4i)
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Table 2.2

Attraction parameters for the alternatives of the four items

Alternatives Alternatives
Subgroup HAVONWO Subgroup MAVO

Item A BCD E A B CD E

1 .073 .033 ,685 .174 .035 .211 .024 ,563 .193 .009
2 .743 ,123 .061 .045 .028 .662 .240 .068 .015 .015
3 .106 .296 .146 ,367 .085 .140 .468 .122 MI .159
4 .110 .355 .235 .092 ,208 .068 .241 .341 .084 ,266

Note: The correct alternatives are underlined.

in the subgroup MAVO. Nevertheless, this difference had no significant effect on the test for

DIF in the attraction parameters, because the item was very easy for both subgroups.

A major problem in DIF studies is the explanation of DIF when it is observed. Although

it is beyond the scope of this chapter, a tentative explanation for the observed DTP in the

attraction parameters of Item 4 is the subjects familiarity with the mathematical terms. In Item 4

(see Appendix A.1) the subject is asked to give the definition of a parallelogram. Since the

attraction parameters for the alternatives A, D, and E are approximately the same for the two

subgroups (see Table 2.2), the observed DIF in the attraction parameters is probably caused by

the alternatives B and C. Knowing the formulation of Item 4 we can conclude that a MAVO

student is probably more familiar with the mathematical terms axis of symmetry and diagonal

than a HAVONWO student.

In the foregoing analyses the two types of DIF were studied separately. Moreover, only

one item was evaluated at a time. As indicated earlier, it is possible to analyze models in which

more than one item shows DIF. In order to illustrate this possibility, a model was considered in

which Items 1, 2, and 4 show DIF in the attraction parameters and Item 2 shows DIF in the latent

response. This model shows considerable improvement in fit, compared to the model in (2.9)

(likelihood-ratio is 100.5 with 13 degrees of freedom). From Table 2.1 it also follows that this

model fits the data better than the models previously discussed. The estimated parameters,

however, do not differ much from the estimated parameters of the previous models; therefore,

they are not given.

In summary, the difficulty of the four items can be ordered in the following way:

83 < 81 < 84 < 82. That is, Item 3 is the easiest and Item 2 is the most difficult. The

attractiveness of alternatives of Items 1, 2, and 4 as well as the difficulty of Item 2 are not the
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same for the two subgroups. Item 3 shows no DIF in the latent response or in the attraction

parameters.

2.8 DISCUSSION

In this chapter we proposed an incomplete latent class model for the examination of D1F in

multiple-choice items through a combination of the usual notion of DIF for correct/incorrect

responses and information about DIF incorporated by each of the alternatives. In the method

proposed a distinction is made between a "Know" state in which the subject has a complete

knowledge of the answer and a "Don't know" state. It is assumed that if the subject is in the

"Know" state, (s)he will give the correct answer. The probability that the subject is in the

"Know" state is assumed to be governed by the Rasch model. And, if the subject is in the "Don't

Know" state, the subject will choose the most attractive alternative, in which the attractiveness of

the alternatives may be different for different alternatives, including the correct one. In order to

study DIF the model is extended with variables (observed or latent) which determine subgroup

membership. One of the main advantages of the proposed method is that it is not only possible to

test if a certain item shows DIF, but it is also possible to test whether this DIF is caused by the

difficulty of the item, the attractiveness of the alternatives, or both.

In most applications, the subgroup membership is determined by an observed variable

(e.g. sex). In some situations, however, subgrouping is suspected but the variable determining

subgroup membership cannot be observed (Kelderman & Macready, 1990; Mislevy & Verhelst,

1990). When no subgroup membership can be established, the subgroup variable in the proposed

method is also treated as a latent variable.

In this chapter all tests of DIF are two-sided. This means that it is not possible to test

directional hypotheses about DIF. The estimated difficulty parameters and the estimated

attraction parameters only give an indication of the direction of DIF. However, together with the

knowledge of the item, these estimated parameters may provide the test-constructor a better feel

for the reason why an item does or does not show DIF. Furthermore, if many items in a test show

DIF, it might be that DIF in one of the iterrs in favor of a subgroup is compensated by DIF in

another item in favor of another subgroup. And, although DIP in the attraction parameters may

have no effect on test scores, it could indicate that the item was functioning differently for the

different subgroups.

At the present time the method is not very practical for a large number of polytomous .

items. This problem is due to the computer program LCAG, in which in our case such a large

amount of memory space is required that it is impossible to consider more than four five-choice
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items at a time. A line of future research should be the development of an estimation method

which can handle many items.
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Chapter 3

THE ESTIMATION OF THE PARAMETERS OF
THE SOLUTION-ERROR RESPONSE-ERROR MODEL

WITH THE USE OF SUBSETS OF ITEMS

3.1 ABSTRACT

In Westers and Kelderman (1992) the solution-error response-error model is formulated as a

latent class model for the incomplete subgroup x item response 1 x...x item response k

contingency table. Parameter estimates can be computed with the programs LCAG and

LOGI/v10, but this becomes unpractical if the number of items is large. In that case the tables of

observed and expected counts become too large for computer storage in LCAG.

In this chapter a method of parameter estimation is described that is based on the division

of the entire item set into several subsets. The computational problem boils down to the

estimation of the parameters of a set of smaller solution-error response-errormodels. It is shown

that, depending on the number of items in each subset, the total number ofcells in the tables of

observed and expected counts can be considerably reduced by this method. In this way, models

with a large item set may be computed much more efficiently, in terms ofboth computer storage

and processing time.

3.2 INTRODUCTION

In the solution-error response-error (SERE) model (Kelderman, 1988), a distinction is made

between a "Know" state, in which the subject has complete knowledge of the answer, and a

"Don't know" state. The probability that the subject is in the "Know" state is assumed to be

governed by the Rasch (1960/1980) model. If the subject is in the "Don't know" state, the

subject will guess the most attractive alternative, where the attractiveness of an alternative may
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be dissimilar for different alternatives, including the correct one. The SERE model can easily be

formulated as a latent class analysis model (Kelderman, 1988) in which the structure of the

latent-class probabilities is explained by a loglinear Rasch model. In the SERE model, each

latent class corresponds with an idealized response pattern. The relations between these idealized

responses are explained by the loglinear version of the Rasch model (Kelderman, 1984).

Parameter estimates can be computed with the programs LCAG (Hagenaars & Luijkx, 1990) and

LOGIMO (Kelderman & Steen, 1988), but the software becomes unpractical if the number of

items is large (Westers & Kelderman, 1992). In the first place, in LCAG all cell frequencies,

including empty cells, have to be listed. Secondly, for each latent class both the probability for

the latent class and the conditional probabilities of the observed variables given the latent class,

have to be given in LCAG. By fulfilling these two requirements, LCAG requires such a large

amount of memory space that it is impossible to consider a large item set. Therefore, in this

chapter an alternative estimation method will be proposed for the SERE model that can handle a

larger set of items. In the remainder of this chapter, the proposed estimation method will be

described, but the maximum likelihood estimation methods that are currently in use will be

discussed first.

Latent class analysis (LCA) models have been used extensively for measurements in

sociology, psychology, and education (Clogg, 1981). There is a well-developed theory of

maximum likelihood estimation and likelihood-ratio testing of LCA models. McHugh (1956)

derived the maximum likelihood estimators, but his solution applies only to the unconstrained

model. Great progress was made when Goodman (1974b) described a particularly simple

iterative procedure which also has the virtue of automatically producing estimates of

probabilities that always fall in the unit interval. Furthermore, it is very easy to modify the

procedure tO satisfy a reasonable variety of other constraints on the parameters. This simple

iterative procedure is used in the program MLLSA (Clogg, 1977; Eliason, 1SE8), LCAG

(Hagenaars & Luijkx, 1990), PANMARK (van de Pol, Langeheine, & de Jong, 1989) and MIRA

(Rost & von Davier, 1992). The latter two programs are developed for some extensions of latent

class analysis that violate the basic assumption of local independence: the mixed latent Markov

model of Langeheine and van de Pol (1990; van de Pol & Langeheine, 1990) and the mixed

(polychotomous) Rasch model of Rost (1990, 1991).

Another estimation procedure based on the maximum likelihood principle is the method

of marginal maximum likelihood (MML). In this method the assumption is that the subjects are

drawn at random from a population of abilities. For the IRT model, the method of MML was

first applied by Bock and Aitkin (1981) and Thissen (1982). They used two methods of solving

the marginal likelihood equations: the so-called EM method and Newton-Raphson iterations. In

the paper by Paulson (1986), a review is given of the application of the EM algorithm of
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Dempster, Laird and Rubin (1977) to MML estimation of parameters in the LCA model. Paulson

also shows how the EM-algorithm can be used to obtain marginal maximum likelihood estimates

of the item response functions under the minimal monotone homogeneity assumption. To avoid

the unmanageability of the contingency table as the number of items increases, Paulson's

algorithm deals with each individual response vector, rather than cell counts in a item 1 by item

2 by ... item k contingency table. Therefore, the effect of increasing the number of items has no

effect on the algorithm beyond the increase of running time, which is directly proportional to the

number of items (Paulson, 1986).
Under certain item response models (Rasch, 1960/1980) it is possible, by conditioning on

the number correct-scores (i.e. the sufficient statistics), to get a conditional likelihood that only

depends on the item parameters. Conditional maximum likelihood (CML) estimation proceeds

under such models by maximizing this conditional likelihood. The advantages of CML

esthnation are that the estimators of the item parameters are consistent and that the well-known

theorem on the asymptotic normality of ML estimators holds (Andersen, 1973). The

disadvantages of CML estimation are that this estimation method is only possible for the Rasch

model (Thissen, 1982) and that some information about the item parameters in the data is

disregarded. For a long time, CML estimation has only been possible for a small number of

items (Hambleton & Swaminathan, 1985), but Verhelst, Glas and van der Sluis (1984) and

Verhelst and Veldhuijzen (1991) have shown that as many as a thousand items can now be dealt

with.

Although ML estimation has many appealing statistical properties, other good estimation

procedures are available. The methods based on minimum chi-square (MCS) is one of these

competing estimation methods. In the MCS procedures the data are grouped into mutually

exclusive and exhaustive classes, and distance functions of the observed and expected

frequencies in these classes are defined. Minimalizatiun of these distance functions provide the

parameter estimators of the model. Some well-known examples of MCS procedures are the

Pearson chi-square, the likelihood chi-square and Neyman's reduced chi-square method. Most

minimum chi-square (MCS) estimates are much easier to evaluate than ML estimates (Cramr,

1946; Engelen, 1989), although the simplifications are only slight. For LCA models it can be

shown that MCS procedures fall into the multinomial case (Engelen. 1989); the only difference

with the ordinary Ruch model is that there are now latent classes of examinees instead of

individual examinees.
Furthermore, McHugh (1956, Mooijaart, 1978) showed that the latent class model met

the requirements of the general theorem of Neyman (1949, p. 250), which implies that the

estimators obtained as the solution of the likelihood equations are, in fact, asymptotically

normally distributed, and are the "best" estimators in the sense that they have the smallest
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covariance matrix. Such estimators are called the best asymptotically normal (BAN) estimators.

Both the maximum likelihood estimator and the minimum chi-square estimator are examples of

BAN estimators.

The well-known algorithms of Goodman (1974a, 1974b) and Haberman (1979) for the

estimation of the parameters of loglinear models with latent classes (e.g. the SERE model) can

only be used for a small number of variables. For models with a large number of variables these

algorithms become very complex. For the general loglinear model an algorithm has been

developed which is based on a faster way of calculating the sufficient statistics of the parameters

in the model; the so-called marginalization-by-variable principle (Kelderman, 1992). In this

chapter another principle will be introduced, which has the advantage that for a large number of

items the parameters of the model can still be estimated by the well-known EM algorithm of

Dempster, Laird and Rubin (1977). The main idea of this new principle is to divide the entire

item set into several subsets. By doing this, the SERE model can be rewritten into a set of

smaller SERE models. By estimating the parameters of these smaller SERE models

simultaneously, it is possible to estimate the item parameters of the entire SERE model. A

similar approach has been developed by Mellenbergh and Vijn (1981) for the estimation of the

parameters in the Rasch model. Instead of the full item 1 x...x item k x sum-score table, they

studied the item response x sum-score tables for each item.

One of the main advantages of our approach is the decreased total number of cells in the

marginal contingency tables, especially when there are many items. A second advantage is the

decreased memory space needed to store information about the latent classes. In the third place,

the proposed procedure permits a practical use of (incomplete) response data. A disadvantage is

that some of the statistical efficiency of the estimators may be lost when the SERE model is

collapsed.

Below the solution-error response-error (SERE) model for polytomous.items will be

developed and formulated as an LCA model. A new computationally efficient estimadon method

for the SERE model for large sets of polytomous items is described and its use is illustrated by

means of simulated data.

3.3 THE SOLUTION-ERROR RESPONSE-ERROR MODEL

Suppose that each subject, randomly drawn from a population of subjects, responds to k test

items, where the answer to item j may be any of the rj responses, denoted by yj (yj=1,...,9). Let

xj indicate the latent response of the subject. The assumption is that the latent responses are
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governed by a one-parameter-logistic model (Rasch, 1960/1980), in which the probability of the

latent response xi (xj=0,1), given that the subject has ability 9, is

(3.1) P(xj10) = exp(ci(0-8j))/[1 + exp(0-91

and . is the difficulty of item j.
SJ

The relationship between the latent response xi and the observed response yj is described

by the conditional probability

(3.2)
x.Y.

4 J J P(y-lx.) ,
J Jxjyj

in which the superscripts are symbolic notations that indicate that the random variables Xi and

Y. are involved in the definition of the conditional probability. For the sake of simplicity, the

notation yj, xj, etc. in the probabilities is used for Yryi, Xj=xj, et cetera.

To formulate a complete model, the response pattern of a subject on all k items in a test is

denoted by the vector y=(y1,...,yk). The vector of latent responses of a subject is denoted by

x.(xi,...,xk). The corresponding random variables are denoted by Y and X. Let F(0) be the

continuous distribution function of the latent ability 0, 8=(81,...,8k) and t=x1+...+xk the number

correct score. With the use of (3.1), (3.2) and the assumptions that yj depends only on xj, and xi

depends only on the latent ability level 0, Kelderman (1988) has shown that the marginal

probability of the observed responses y can be written as a latent-class model in the sense of

Haberman (1979, chap. 10). If Ex is the summation over all possible latent response patterns

x=(x ..... xk), then

(3.3)

with

`47 '

=E 42Ck (DX 1 Y 1 oXkYk
t xk yi xk yk

=fexp(tO)C(0,8)-1dF(0) ,

-00

C(9,8) = Ii [1 + e.xp(0-8)] ,
j=I
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and for j=1,...,k,

X.
(110 J = exp(-xj8i)

x-
J

and in which the attraction parameters ((IX") are subject to the restrictions

X.Y. X.Y.(3.4) (I)JJ+ +4).1 J =1 'x. 1 r.J
(j=1,...,k).

In this model, each value of the latent response vector x represents a latent class. If certain

conditional probabilities P(yilxi) are specified to be zero, the model in (3.3) is incomplete,

because in that case, for certain given values of X, not all combinations of Y are possible.

Since the sum-score parameters (e) depend on the underlying distribution of the latent

scores, they are subject to complex inequality restrictions (Cressie & Holland, 1983). There are,

however, no restrictions on the sum-score parameters for the conditional Rasch model; that is, a

Rasch model conditioned on the number correct score (Kelderman, 1984). Throughout this

chapter we either assume that these restrictions hold or we work with the conditional model.

Furthermore, the multiplication of each difficulty parameter (6X) by a constant c and the

division of each sum-score parameter (cg) by ct, does not change the model in (3.3). This

indeterminacy can be removed by setting one of the item difficulties (9 equal to zero.

3.3.1 Restrictions on the model parameters

In the same way as Goodman (1974b) formulated restrictions on the parameters of the LCA

models, restrictions may occur with respect to the parameters of the SERE model. In the first

place, the attraction parameters may be equated with each other or with a prespecified value.

Relevant constraints are, especially, those that set the attraction parameters to the values 0 or 1 to

indicate, for example in the case of multiple choice items, that a subject will choose the right

alternative if the subject is in the "Know" state (Westers & Keldennan, 1992). Secondly, equality

restrictions may be used to make the alternatives equally attractive. Like the attraction

parameters, the difficulty parameters may also be equated with each other or with a constant

(including 0). Finally, equality restrictions on the attraction parameters or difficulty parameters

may be used to examine differential item functioning (DIF) in polytomous or dichotomous items,

as discussed by Westers and Kelderman (1992).

For the general case of equality constraints, Mooijaart and van der Heijden (1992) have

shown that "... the EM-algorithm is not simple to apply because a nonlinear equation has to be
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solved. This problem arrives, mainly, when equality constraints are defmed over probabilities in

different combinations of variables and latent classes" (p. 261). Mooijaart and van der Heijden

have given a simple condition in which, although the restriction remains that the probabilities in

different variable-latent class combinations are equal, the EM-algorithm is still simple to apply.

In words their condition reads: "(1) In cases where each of the equality constraints holds only for

the parameters in one variable-latent class combination, the standard EM algorithm estimation

procedure gives correct results; (2) In cases where the number of elements of an equality set is

equal for different variable-latent class combinations, the standard EM algorithm estimation

procedure is correct, assuming that the fixed elements are zero. When the fixed elements are

non-zero, the condition is more complicated; (3) In all other cases, for each EM step,estimation

of the parameters has to be done by an iterative procedure" (p. 268).

The maximum likelihood estimates of the parameters of the model in (3.3) can then be

obtained by solving the likelihood equations by the iterative proportional fitting (IPF) algorithm.

Computer programs by Hagenaars and Luijkx (LCAG, 1990) and Kelderman and Steen

(LOGIMO, 1988) can be used to fit the model. The overall goodness-of-fit of a model can be

tested by the Pearson statistic or the likelihood-ratio test statistic (see Haberman, 1979). In the

next sections, we shall introduce a new method for obtaining the maximum likelihood estimates

of the parameters in the SERE model.

3.4 THE DIVISION-BY-ITEMS PRINCIPLE IN THE SOLUTION-ERROR

RESPONSE-ERROR MODEL

As already noted by Westers and Kelderman (1992), the model in (3.3) is only usable in practice

when the responses to few items are studied. One of the solutions to this problem could be not to

consider all items simultaneously. In this section a new estimation method is proposed which is

based on the division of the entire item set into several subsets. We will refer to thisoperation as

an application of the division-by-items (DBI) principle. In this section the new estimation

method is explained for pairs of items. It may be clear that the results in this section would not

change if we consider subsets of three or more items or subsets with unequal numbers of items.

Let P(y1,y2) be the probability that the observed response on item 1 is y and the

observed response on item 2 is y2. If we let z=x1+x2 and use conditional probabilitycalculus

and elementary calculus, it can be shown that the model in (3.5) is also a latent classmodel (see

Appendix A.2)
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(3.5) Ky1,y2) = E E = E E P(y)
Y3 Yk Y3 Yk

in which

z 4,T12 4:,X2 4)X1Y1 4> X2Y2
z x1 x2 x1 yl x2 Y2

0T12 = fexp(ze) {[ 1+exp(0-81)][1+exp(O-82)]}-1 dF(0),

which is similar to (3.3), except that here we consider two items and in (3.3) k items. This means

that, given the assumption of local independence, the SERE model is collapsible in the sense that

taking the marginal probability for two items from the entire SERE model yields the SERE

model for two items. We will refer to these smaller SERE models as the collapsed SERE models.

The way in which consistent and asymptotic normal estimators for the parameters of the SERE

model can be obtained from the maximum likelihood estimators of the collapsed SERE models

will be discussed in Section 3.5. However, since information about the joint relationships among

items may be lost when the SERE model is collapsed, these estimators will not be efficient.

Maximum likelihood estimates of the parameters of each collapsed SERE model can be obtained

by solving the likelihood equations by the iterative proportional fitting (IPF) algorithm.

In order to obtain the same measurements from different subsets of items, the subsets

must measure the same ability and the scores must be measured on the same scale. In that case

the subsets are said to be equated. Generally, subsets of items can be equated on the same scale if

each subset is directly or indirectly connected to all other subsets by common items (Wright,

1977). Fischer (1974, 1981) has shown that unique (conditional) maximum likelihood estimates

exist in the Rasch model, if and only if in every possible partition of the items into two

(nonempty) subsets, some subject has responded correctly to some item from the first subset and

responsed incorrectly to some item from the second subset. He has even generalized this

conditional for the case of the polytomous multidimensional Rasch model.

With respect to the condition of Wright, the division of the set of k items into a set of

non-overlapping subsets of items would not give the same (conditional) maximum likelihood

estimator in each subset. However, dividing the set of k items into the subsets (1,2), (2,3),...,(k-

1,k) would meet this condition. On the other hand, the division of the set of items in all possible

pairs of items would also meet this condition. There are many more ways of dividing the set of k

items into appropriate subsets. An important question is: what is the best selection of appropriate

subsets? To answer this question, criteria for an optimum division have yet to be constructed.
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Therefore, selecting the optimum division of the set of itemsinto subsets should be a line of

future research. In this chapter we will use all possible pairs of items as subsets of items.

Since the subsets of items must not be distinct, the parameters of the collapsed SERE

models have to be estimated simultaneously. For example, the parameters (i.e. the attractiveness

of the alternatives and the difficulty) of an item in one subset have to be equal to the parameters

of the same item in other subsets. With pseudo-likelihood estimates this requirement can be met.

For the present model, a pseudo-loglikelihood can be expressed as the sum of the

loglikelihoods for subsets of items. A statistic maximizing a pseudo-likelihood will be termed a

pseudo-likelihood estimator. To prove the consistency and asymptotic normality of the

maximum pseudo-likelihood estimator, modified classical methods can be used (Arnold &

Strauss, 1988). In the next section the pseudo-likelihood theory will be discussed in more detail.

One of the main advantages of the proposed estimation method is the decrease of the

total number of cells in the marginal contingency tables, especially when there are many items.

Most of the currently available algorithms require the storage of the full observed and expected

Table 3.1

Total number of cells in the observed contingency tables

Number of
items

Number of
alternatives

Number oi items in each
subset of items

2 3 4 5 all

6 2 60 160 240 192 64

3 135 540 1215 1458 729

4 240 1280 3840 6144 4096

7 2 84 280 560 672 128

3 189 945 2835 5103 2187

4 336 2240 8960 21504 16384

8 2 112 448 1120 1792 256

3 252 1512 5670 13608 6561

4 448 3584 17920 57344 65536

9 2 144 672 2016 4032 512

3 324 2268 10206 30618 19683

4 576 5376 32256 129024 262144

10 2 180 960 3360 8064 1024

3 405 3240 17010 61236 59049

4 720 7680 53760 258048 1048576

frequency tables. For example, if there are ten five-response items, each table will consist of

about 10 million cells, whereas, if the DB1 principle is used, the number of cells equals to the

sum of the number of cells in the marginal frequency tables over all subsets. In Table 3.1 the
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total numbers of cells of the observed contingency tables are given for six to ten polytomous

items and for different numbers of items in each subset It can be seen that for the proposed

estimation method these numbers remain within reasonable limits, especially for small subset

items, whereas for the currently available algorithms these numbers increasevery rapidly.

Another advantage is associated with the storage of the latent class probabilities P(x)

the conditional probabilities P(yilx). Most of the currently available algorithms require the

storage of all these probabilities. This means that for the SERE model we have to store the

probabilities P(x) and P(yilx) for all 2k latent classes. Calculations dealing with all these laten

classes become impractical very quickly as the number of items increases.

Finally, the proposed procedure permits a practical use of response data. Apart from

designs with complete data, designs with incomplete data can also be used. Data from any

subject, even when they respond to only two items of the test, can be used in the estimation 01

the attraction parameters and the difficulty parameters. Of course, the data for these subjects

only be used if the two items form one of the subsets in the proposed estimation method.

A disadvantage of the DBI principle is that information about the joint relationships

among the items may be lost when the SERE model is collapsed.

3.5 THE ESTIMATION OF THE PARAMETERS OF THE SOLUTION-ERROR
RESPONSE-ERROR MODEL

The SERE model can be seen as an LCA model with a non-saturated loglinear model (i.e. the

Rasch model) imposed upon the distribution of the latent classes. Therefore, the maximum

likelihood estimates of the parameters of the (collapsed) SERE model can be obtained by sob
the likelihood equations by a two-step algorithm. Let us first assume that the latent response

vector x was observed in addition to the observed response y. Then the solution would be at

hand; if the responses x and y are known, the maximum likelihood estimates of theparametet

the SERE model can be found by the usual maximum likelihood methods for the estimation c

the parameters of a model (Haberman, 1979; Hagenaars, 1988; Kelderman, 1988). However,

latent responses x are not observed, but they can be estimated from the estimated values of th

parameters of the SERE model. In the literature this method is known as the EM-algorithm

(Dempster, Laird & Rubin, 1977). By the E-step the expectation of the estimated observed

number of subjects with latent response x and observed response y given the number of subje

with observed response y can be found, and by the M-step the (to-parameters can be estimated

with complete data maximum likelihood techniques (Rubin, I .9l).
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In the following sections we will describe the traditional estimation method for the SERE

model as discussed in Kelderman (1988) and Westers and Kelderman (1992), discuss the use of

the pseudo-likelihood theory in the case of the SERE model, and describe an estimation method

based on the pseudo-likelihood theory. Finally, the issue of the initial values and some indices

for testing whether an item shows DIF will be discussed.

3.5.1 Traditional estimation method for the SERE model

In the following treatment of the traditional estimation method, we will omit the superscripts in

the notation of the parameters.

Let m. = n. P(x,yli) be the expected number of subjects in subgroup i (i=1,...,g) with

latent response vector x and observed response vector y under the SERE model (3.3)

(3.6) P(x'yli) = 41 it (Dixi fbixk 41 ix yi eiixkyk '

in which P(x,y1i) is the conditional distribution of latent response x and observed response y

given observed subgroup i (i=1,...,g), ni is the number of subjects in group i and each factor on

the right-hand side corresponds with a factor on the right-hand side of (3.3) extended with a

variable i for group membership. If we assume that for a particular item j the conditional

probability (3.2) is zero for a certain combination of the latent response Xi and observed

response Yi, then the probability (3.6) equals zero.

Let . denote the unobserved number of subjects in subgroup i 0=1,...,g) with latentnuty
response vector x and observed response vector y. If the latent response vector x were observed,

the likelihood equations for the model in (3.6) would then be (Haberman, 1979; Hagenaars,

1990)

(3.7) m. = n. ,

9Y.i Lin

(3.8) mit =

in which mit and nh are the expected and observed number of subjects in subgroup i with sum-

score t.

However, the response vector x is latent and its scores cannot be directly observed.

Consequently, nu and nixy are not observed. Haberman (1979) has indicated that for LCA

models "the same likelihood equations apply as in the ordinary case in which all frequency

counts are directly observed, except that the unobserved counts are replaced by their estimated

5 4
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conditional expected values given the observed marginal tables" (p. 543). Let fixy be the

estimated observed number of subjects in subgroup i with latent response x and observed

response y given the observed marginal counts niy=lx nixy given by

(3.9) f. =m. n. /m. ,

in which miy=lx mixy, and let fit be the estimated observed number of subjects in subgroup i

with sum-score t defined as

(3.10) = E ffit xlt y 5

=
xlt y 1xY IY 131

in which Exit is the summation over all pinsible latent response patterns x with sum-score t. The

likelihood equations 3.7 and 3.8 can then be replaced by (Haberman, 1979)

(3.11)

(3.12)

m. =

Since the SERE model can be transformed into a latent class model, we can use Clogg and

Goodman's (1985) extension of Goodman's (1974a, I974b) variant of the EM-algorithm for

solving the likelihood equations. The algorithm works as follows.

First initial values for the parameters on the right-hand side of equation 3.6 are

determined. How the initial values can be determined will be discussed in Section 3.5.4. In view

of the chosen initial values for the parameter, min is computed from (3.6) by

(3.13) mixy = n. P(x yli)

in which ni is the number of subjects in group i. The estimated observed frequencies fin are

then computed by means of Equation 3.9. This is the Expectation step (E-step) of the EM-

algorithm. Next, in the Maximization step (M-step), the model parameters are obtained by

solving the Equations 3.11 and 3.12 for the model parameters.
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Since we assumed that the observed responses y only depend on the latent responses x

and the latent responses x only depend on the ability level 0, the attraction parameters and the

difficulty parameters can be computed separately. This can be seen when the joint distribution of

the latent responses given subgroup i is written in terms of the model parameters as follows

P(xli) = P(x,y1i)

= (1). (1). (1). .
it 1x1 txk

This expression does not contain the attraction parameters. Furthermore, if xlj is the set of all

latent responses x with Xj=xj and if yij is the set of all observed responses y with Yryi, then the

attraction parameters for item j in subgroup i are equal to

(1). = P(yilxj,i) = { E P(x,y1i)}/( E P(x,y1i)}.
ix. ylj xlj y xlj

Now the expression does not contain the Rasch model parameters.

In the M-step, the attraction parameters can be directly computed from Equations 3.11

and 3.13 by

(3.14) D. = f. / f. ,
iXjYj ixiyi ixj

and the Rasch model prameters are computed from the estimated observed counts fix=Ey fixy

as a solution to the likelihood equations

m. =
ixj lx.

=it a

contained in Equations 3.9 and 3.10. This can be done in the usual manner by means of the

iterative proportion fitting procedure (Goodman, 1974a, 1974b; Haberman, 1979; Kelderman,

1984). After the parameters of the SERE model are estimated new values for the estimated

observed frequencies fixy are computed in the E-step (3.10), and again in the M-step the model

parameters will be computed. This procedure is continued until the estimates converge.
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3.5.2 Restricted parameters

In the above algorithm the assumption was that the attraction parameters and the item difficulties

are different for various groups of subjects. Westers and Kelderman (1992) assumed that items

may show DIE both in the attraction parameters and in the latent response, where an item shows

DIF in the latent response if equally able subjects from various subgroups have different

probabilities of "Knowing" the answer, and an item shows DIF in the attraction parameters if the

attractiveness of the alternatives varies from subgroup to subgroup, conditional on their ability.

If we assume that an item, say item 1, shows no DIF in the attraction parameters, then for j=1

equation 3.14 is replaced by the equation (Clogg & Goodman, 1985)

/ f= ftxlyl xiyi x1

Furthermore, if it can be assumed that an item, again say item 1, shows no DIF in the latent

response, then across groups the expected frequencies mix are equated to the corresponding

marginal frequencies.

3.5.3 Pseudo-likelihood theory

As already noted, the traditional estimation method can not be used in practice when the number

of items is small. The division of the entire item set into several subsets, could lead to a solution

of this problem. This means, however, that the parameters of an item in one subset ought to be

equal to the parameters of the same item in the other subsets. Therefore, the parameters of the

collapsed SERE models have to be estimated simultaneously. By using pseudo-likelihood

estimators (Arnold & Strauss, 1988) this requirement can be met.

In this section, the theory of pseudo-likelihood estimation as described in Arnold and

Strauss will be discussed and applied to the SERE model. Whenever possible the same notation

will be used as in the previous sections.

Let, following Arnold and Strauss, the k-dimensional vector Yiv denote the observed

response pattern of the vth subject in group i v=1,...,ni) on the k items, and let denote

a coordinate of the p-dimensional parameter space A. For the SERE model, the coordinates of A

are the ability parameters, the difficulty parameters and the attraction parameters for all g groups

and all k items. Furthermore, let S denote the class of selected subsets of items and let ysiv be

the random vector with the coordinates yijv of yiv for which item j is in the subset s. Finally,

denote, still following Arnold and Strauss, the joint density of yiv by P(y;X,i) and the joint

density of ysiv by Ps(ys;)i). For the SERE model, both densities are given by Equation 3.3, but

for the second density k is equal to the number of items in the subset s.

5"
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According to Arnold and Strauss the pseudo-loglikelihood of the data is then defined as

the sum over the subset s of the sum over all observations of the logarithm of the joint densities

Ps(ys.,X). A pseudo-likelihood estimator of will be a statistic maximizing the pseudo-

loglikelihood with respect to X. This means that if for each subset s, Ls denotes the loglikelihood

of the collapsed SERE model, the pseudo-loglikelihood (PL) of the entire SERE model is

PL = E Ls .

A pseudo-likelihood estimate of the parameters of the SERE model will be a point in the

parameter space for which PL is maximal.

To ensure a solution to the pseudo-loglikelihood, Arnold and Strauss assume that the

regularity conditions as mentioned in Theorem 1.1 of Lehmann (1983, p. 406) are met. If these

regularity conditions hold, then the solution of the pseudo-loglikelihood equation can be

obtained by diffetentiation of the pseudo-loglikelihood to each element of A and the setting of

the derivatives to zero. Let for each subset s, fsixy and msixy be the estimated observed and

expected numbers of subjects in subgroup i with latent response vector xs and observed response

vector ys under the collapsed SERE model. Furthermore, if we define

m (.4.) E m . ,
yj s stxjyj

f(+) L=.:E f
ixjyj s sixjyj

for each collapsed SERE model, the pseudo-likelihood equations for the entire SERE model can

be formulated as

(3.15) f
ixiyi ixiyi '

(3.16) msit fsit

in which msit and fsit are the expected and estimated observed number of subjects insubgroup i

with sum-score t for subset s. Both equations are obtained from the likelihood equations 3.11 and

3.12 for each collapsed SERE model in which interchangability of the operations differentiation

and summation is used.
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Under the regularity conditions of Theorem 1.1 of Lehmann (1983, p. 406) and assuming

that (1) the densities Ps(ys;X) for different values of X. are essentially distinct, (2) the supports of

the densities do not depend on A. and (3) the parameter space A contains an open interval co of

which the true parameter 14,0 is the interior point, Arnold and Strauss have shown, with Theorem

2.1, Theorem 2.2 and the arguments in Section 6.4 of Lehmann (1983, p 409-436), that under

their regularity conditions a solution of the pseudo-likelihood equations is consistent and

asymptotically multivariate normal. This result guarantees that the solutions of the pseudo-

likelihoods equations for the SERE model are consistent and asymptotic normal under these

conditions.

Finally, as Arnold and Strauss have indicated, pseudo-likelihood estimators are not

efficient, but the loss of efficiency may not be large. For the SERE model the lack of efficiency

is obvious, since by dividing the set of items into subsets, information about the dependency

between items from different subsets is neglected. However, with an optimal choice of the

subsets the loss of efficiency may be minimized.

In the next section we will describe how the solutions of the pseudo-likelihood equations

3.15 and 3.16 can be obtained.

3.5.4 The simultaneous estimation method

As discussed in the previous section the maximum pseudo-likelihood estimates can be obtained

by solving the Equations 3.15 and 3.16. This can be done in the following way.

First, initial values for the parameters on the right-ha.nd side of Equation 3.6 are

determined. How the initial values can be determined will be discussed in Section 3.5.4.

Furthermore, let nsi be the number of subjects in group i who respond to all the items in subset s

and P5(x,y1i) be the conditional distribution of latent response xs and observed response ys for

subset s given subgroup i

Ps(xtyli) = 4) it 4) ix iXk iX1)'j ixkyk '

in which k is equal to the number of items in subset s. In view of the initial values for the

parameters, msixy is computed for each subset s by

(3.17) msixy = nsi Ps(x,yli)

Then for each subset s the estimated observed frequencies fsixy are computed by means of

(3.18) fsixy = msixy flsiyl msiy,

5 9
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This is the Expectation step (E-step) of the EM-algorithm. Next, in the Maximizaton step (M-

step), the model parameters are obtained by solving the Equations 3.15 and 3.16 forthe model

parameters.
Similar to the case of the traditional estimation method, it can be shown that the

attraction parameters and the difficulty parameters can be computed separately. This means that

in the M-step the attraction parameters can be directly computed by

(3.19)
(+) (+)

iXjYj

and the Rasch parameters are computed from the estimated observed counts fsix = Ey fsixy by

solving the likelihood equations

(3.20)

(3.21)

m.(+) (+)
lx Ix.

J J

msit fsit

(j=1,...,k),

contained in the Equations 3.15 and 3.16. Just as in the traditional estimation method for each

collapsed SERE model, the Rasch parameters could be computed by means of the IPF

procedure; the Rasch parameters, however, are restricted over subsets. For instance, the

difficulty of item j in one subset, ought to be equal to the difficulty of the same item in another

subset. The Rasch parameters are therefore computed by the following procedure.

Let qt be the set of all response patterns xs in subset s with sum-score t, and xsIxi be the

set of all response patterns xs in subset s with Xj=xj. In view ofthe pseudo-likelihood equations

3.20 and 3.21, the item parameters can be derived when the expected marginal counts are written

in terms of the parameters and they are equated with the observed counts

(3.22) f = E n E n cb.
IXj

,st sitx ix.s j UES
IX U

(3.23) f . = n . H
si

E
(1)1Xu'

Xsit UES
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in which 4lit are the sum-score parameters for sum-score t of group i in subset s. Since the

difficulty parameters of item j do not depend on xsixi, they can be brought before the summation

sign and solved as

(3.24) (11. = fC1") nsi E c) n ,
SI

J s x ix. 116$ IX U
S J UJ

which gives the recursion formula

(3.25) cb(r-i. 1 L f.(+) E cb() n o(r)
IX IX' s si x lx. sit ties'

J S J

4)(r) f .(+)/ ik)(r)
IX' IX' IX'

J J J

UOJ

in which r denotes the iteration number. In a similar way the recursion formula for the sum-score

parameters is derived as

(3.26) rh(r+1) e,(r) ,(r)
sit sit 'sit ' sit

New estimates of msix can then be obtained by

(3.27) m = n 41.t n (1).istx x.
J J

This inner iteration process will be continued until convergence has been reached. After the

parameters of the SERE model are estimated, for each subset s, new values for the estimated

observed frequencies fsixy are computed in the E-step, and then in the M-step the model

parameters will be computed. This procedure is continued until the estimates converge.

If we assume that an item shows no DIF in the latent response or DIF in the attraction

parameters, then the algorithm can be adjusted, similar to the one described in Section 3.5.2.

As mentioned before, for the first iteration of the estimation method initial values for the

parameters of the SERE model have to be chosen. In the next section this matter will be

discussed briefly.
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3.5.5 Initial values
Since each collapsed SERE model can be regarded as a latent class model, we can use the

Anderson-Lazarsfeld-Dudman method (Anderson, 1954; Lazarsfeld & Dudman, 1951) to obtain

initial values for the latent class probabilities (i.e. P(x5)) and the attraction parameters

(Goodman, 1974b). However, to compute initial values for the difficulty parameters and the

sum-score parameters from the initial values for the latent class probabilities, asecond method is

needed. In the literature about the EM-algorithm some suggestions are given for initial values in

a number of specific situations (Dempster, Laird & Rubin, 1977; Little & Rubin, 1991).

Below we will describe an alternative method for the above two-stage procedure, but rust

we will discuss why good initial values may be important.

One reaszin why good initial values may be important is the rate of convergence of the

EM-algorithm. There are several important properties of the EM-algorithm (Dempster,Laird &

Rubin, 1977; Rubin, 1991; Wu, 1983), where the one that is most important for this section is the

property that the rate of convergence of the EM-algorithm may be painfully slow. In order to

alleviate the problem of a slow convergence initial values for the parameters may be chosen that

are close to the true values.
Another reason why good initial values may be important is the problem of degenerated

solutions (Bartholomew, 1987). Degenerated solutions may occur when the EM-algorithm

converges to a solution which lies in the parameter space, but it is not the maximum likelihood

solution. An example of a situation where degenerated solutions may occur is the situationwhere

some of the item parameters diverge to infinity. In practice this would mean that the conditional

probability of a correct response to an item, given that the subject is in the "Know" state, is

indefinite. Such degenerated solutions can be avoided when we try to choose initial values that

are close to the true values.

Below we will describe how initial values for the parameters can be determined for the

case where it is assumed that a subject will always choose the right alternative (i.e. Y.1=1) if (s)he

is in the "Know" state. Secondly, we assume that the attractiveness of the correct alternative of

item j is equal to 1/9. Thirdly, from Equation 3.1 it follows that the difficulty of an item is equal

to the logit of the probability of being in the "Know" state correctedby a constant c. Since this

constant c is equal for all items, it can be determined by setting one of the item difficulties equal

to zero. In the remainder of this section, the method is only discussed for the pair of items (1,2)

(i.e. s=(1,2)). It may be clear that for other pairs of items the method would be similar.

With respect of the above-mentioned assumptions, the determination of the initial values

for the parameters can be regarded as a four-step process. First, assuming that the attractiveness

of the correct alternative is equal to 1/9, the initial value for the proportion of subjects who were

in the "Don't know" state, but answered the item correctly, is set equal to the mean of the
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proportions of incorrect answers. Given this initial value and the proportions of incorrect

answers, the attraction parameters can then be easily computed. For example, the initial value for

the attraction parameter of a distractor is equal to the quotient of the proportion of subjects who

have chosen that distractor and the initial proportion of subjects who were in the "Don't know"

state.

Secondly, the initial proportion of subjects who were in the "Know" state is then equal to

the difference between the initial proportion of subjects who are in the "Don't know" state but

answered the item correctly and the observed proportion of correct answers. When we multiply

these new initial values with the number of subjects nsi, we get initial values for the estimated

observed number of subjects in group i who were in the "Know" state. We will denote these

counts by Kski (j=1,2), where j indicates the number of an item in the pair of items. Thirdly, the

initial value for the difficulty of an item is then set equal to the logit of the initial proportion of

subjects who were in the "Know" state.

For the fourth step, we will assume that the likelihood equation (3.16) holds, which

means that the initial values for the sum-score parameters are restricted by this equation and the

chosen initial values for the attraction parameters and difficulty parameters. When we write the

left-hand side of Equation 3.16 in terms of the model parameters, the initial values for the sum-

score parameters can be obtained by

(3.28) = fsit Iri si

where yt is the symmetric function of order t. Given the initial values for the difficulty

parameters, only the counts fsit are unknown in this equation. However, these counts can be

obtained from Equation 3.23. If the terms of Equation 3.23 are rearranged and y=(y1,y2) and

x=(xi,x2) are equated with (1,1) and (0,0), the marginal counts fsit are the solutions of the

following linear system of equations

(3.29)

with

fsil 2 fsi2 = Ksil Ksi2

fsi0 fsil fsi2 = nsi

A fsio B fsil fsi2 = nsiy

A B 42C1Y1 41X2Y2
x1y1 x2y2
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and

"--24141C 4. 1 xiyi 1 1x2y2
oX2Y2 0X2 0)(11'1 y(4X1 43X2

To illustrate the use of the proposed method a data set conforming the SERE model was

generated for 17 four-choice items. The item difficulty parameters were chosen from the interval

[-2,2]. Latent traits values of 10,000 subjects were drawn from a normal distribution with mean

zero and variance one. The attraction parameters of the alternatives for the first nine items were

equal to 0.1, 0.2, 0.3 and 0.4 respectively. The attraction parameters of the alternatives for the

remaining eight items were equal to 0.4, 0.3, 0.2 and 0.1 respectively. It was assumed that the

first alternative (denoted by A) was the correct alternative and that a subject in the "Know" state

would always choose the correct alternative.

Table 3.2
Initial values of the item difficulties and the attraction parameters for the alternatives of

homogeneous SERE items

Item

Attraction parameters Item difficulties

A BCD Initial True

1 .242 .173 .249 .336 4.8365 2.0
2 .250 .171 .251 .328 2.4681 1.5
3 .250 .165 .245 .340 1.2274 1.0
4 .250 .164 .248 .338 0.4903 0.5
5 .250 .161 .248 .341 0.0000 0.0
6 .250 .160 .245 .345 -0.5470 -0.5
7 .250 .162 .250 .338 -1.0051 -1.0
8 .250 .157 .246 .346 -1.4732 -1.5
9 .250 .159 .248 .344 -1.8879 -2.0
10 .250 .384 .246 .120 -1.9741 -1.5
11 .250 .364 .254 .132 -1.5906 -1.0
12 .250 .381 .244 .125 -1.2143 -0.5
13 .250 .386 .235 .129 -0.8529 0.0
14 .250 .373 .252 .125 -0.5556 0.5
15 .250 .374 .258 .118 -0.2021 1.0

16 .250 .370 .254 .126 0.0526 1.5

17 .250 .375 .249 .127 0.2988 2.0

In Table 3.2 the initial values and the real values of the item difficulties andattraction

parameters of the SERE model are given. As can be seen from the table for cases with medium
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to low true item difficulties (i.e. range [-2,.5]) and low attractiveness of the correct alternative

(i.e. 0.1) the initial values for the parameters of the SERE model were relatively well

determined. For all other cases with low attractiveness of the correct alternative, the initial

values for the difficulty of the item were too high. On the other hand, if the attractiveness of the

correct alternative was 0.4, for all cases the initial values for the item difficulty were too low.

The reason for these discrepancies is that the attractiveness of the correct alternative is assumed

to be equal to 0.25. For Item 1 we have modified the algorithm, otherwise the initial value of the

number of subjects who were in the "Know" state could be smaller than zero. If the proportion of

correct responses is smaller than 0.25 (i.e. 119), the initial proportion of subjects who were in the

"Know" state was set equal to 0.5%.

In the above derivation of the initial values, several assumptions were made. These

assumptions may be wrong. For example, in a similar way as (3.29) was derived, a system of

equations can be derived for subsets of three items. This system, however, consists of four

equations from which one is nonlinear. For the future, robustness analysis may give answers to

the questions whether the proposed method also provides good initial values of the parameters

for other cases or whether slightly different initial values still give the same solutions.

3.5.6 Testing the SERE model

Generally, the overall goodness-of-fit of an incomplete latent-class model can be tested by the

Pearson statistic (Q) or the likelihood-ratio test statistic (LR) (see Haberman, 1979). Both

statistics are asymptotically distributed as chi-square with degrees of freedom equal to the

difference between the number of cells in the observed contingency table and the number of

parameters estimated. For the selection of the best fitting model one can use the fact that the

difference between two likelihood-ratio test statistics of two nested models is also chi-square

distributed with the degrees of freedom equal to the difference in the degrees of freedom of the

two nested models (Bishop, Fienberg & Holland, 1975).

An alternate approach to model selection, also based on the likelihood principle, was

developed by Akaike (1977, 1987). Akaike's Information Criterion (AIC) for a model with

likelihood L, is defmed as AIC = -21n(L)+2D, where D is the number of independent parameters

estimated in fitting the model. The first term of AIC is a measure of badness of fit, whereas the

second term is a penalty term correcting for overfitting due to the increasing bias in the first term

as the number of parameters in the model increases. The model with the minimum AIC value is

chosen as the best fitting model.

As can be seen from the definition, AIC is inconsistent in the sense that an increase of the

sample size does not have a direct impact on the criterion. To reflect the sample size in the

penalty term Bozdogan (1987), Raftery (1986a, 1986b) and Schwarz (1978) presented some
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other information criteria. The consistent version of the AIC of Bozdogan has In(n)1 (where n

is the sample size) as a multiplication factor for the number of independent parameters, whereas

the multiplication factor in the information criteriaof Raftery and Schwarz is equal to In(n). For

large sample sizes, the consistent criteria have a largerpenalty term than AIC. Consequently, the

consistent criteria tend to lead to simpler models than AIC does.

For pseudo-likelihoods, information criteria can be defmed based on the same notion as

on with A1C is based, namely the minimization of the Kullback-Leibler (1951) information

quantity. Let Ys be a continuous random vector characterized by a known probability density

Ps(ys.,X). In the case of the SERE model, Ys denotes the observed response pattern on the ks

(ks<k) items in the subset s, the elements of X are the sum-score parameters, the difficulty

parameters and the attraction parameters for all k items, and the density 135(y5;A.) is given by

Equation 3.3, but with k equal to the number of items (ks) in the subset s. Furthermore, let us

assume that there is a true parameter vector X*. Finally, let us suppose that all the competing

models are generated by simply restricting the parameter vector X.

The objective of the estimation procedure and the model selection procedure is then to

select X closest to the true parameter vector e. We will measure the closeness or the goodness-

of-fit by means of Kullback-Leibler information quantities

E Ess[Ls*-Ls],

where, for each subset s, Ls and Ls* are the loglikelihoodsof the estimated and the true

parameters, and Es* denotes the expectation with respect to the true distribution Ps(ys;X*). If we

denote Ds as the number of independent parameters in the collapsed SERE model, then for every

subset s, AIC(s) = -21,84-2D5 is a natural estimatorof the following quantity -2E5s[Ls]

(Bozdogan, 1987). Minimizing I(X*;X) would then be equal to searching for a model that

minimizes the sum over all subsets s of AIC(s) Es*[Ls*]. Since Ess[Lss] is a constant term for

all competing models, searching for the best fitted model will be equal to searching for a model

that minimizes the sum over all subsets s of AIC(s).

Since we have used the pseudo-likelihood theory for the estimation of the parameters of

the SERE model, the total number of degrees offreedom (D) is not equal to the sum of the

degrees of freedom (Ds) of all collapsed SERE models, but equal to the number of independent

parameters in the entire SERE model. For all collapsed SERE models, [Es ks] sum-score

parameters, k-1 difficulty parameters and Ei (9-1) attraction parameters have to be estimated.

Therefore, D must be equal to the sum of these numbers.
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Further, given the definition that the pseudo-loglikelihood (PL) is equal to the sum over
the subsets s of the loglikelihoods (Ls), we will now be able to define a pseudo Akaike
information criterion (PAIC) as

PAIC -2PL + 2D

as a measure of the relative 'distance' between the true parameter vector Xs and the model

parameter vector X. In our future analyses, the model with the minimum PAIC will be chosen to
be the best fitting model.

We can adjust PA1C to make it consistent by changing the multiplication factor 2 in the

penalty term into In(n)+1 (Bozdogan, 1987), ln(n) (Raftery, 1986a, 1986b; Schwarz, 1978) or
any other function depending on n (Sc love, 1987).

Since the derivations of the (pseudo) information criteria are based on likelihood ratio
test statistics, objections can be raised to their use since asymptotic results may not hold. Since

some analytical conditions, required for the proper use of the (consistent) pseudo information

criteria, may not be met, more research is required before these information criteria may be
regarded as measures of quality.

3.6 APPLICATIONS OF THE DBI-PRINCIPLE

For the estimation of the parameters of the SERE model when the number of items is large, the

computer program LANPACO (Westers & van der Sar, 1993; Appendix A.3) was written.

LANPACO is a Turbo Pascal program which calculates not only the estimates of theparameters
in the SERE model by using the DBI-principle, but which also has an user-interface which
provides graphical display of the results. Furthermore, LANPACO automatically selectsall
possible pairs of items as subsets of items.

To illustrate the use of the proposed estimation method, two test data sets which

conformed with the SERE model and the Rasch model were generated for 17 items. The item

difficulties were chosen from the interval [-2,21. Latent traits values of 10,000 subjects were
drawn from a normal distribution with mean zero and variance one. All 17 items, which conform

with the SERE model, were four-choice items, where the attraction parameters of the alternatives

for each of the first nine items were equal to 0.1, 0.2, 0.3 and 0.4 respectively. The attraction

parameters of each of the alternatives for the last eight items were equal to 0.4, 0.3, 0.2 and 0.1

respectively. We assumed that the first alternative (denoted by A) was the correct alternative and
that a subject in the "ICnow" state would always choose the correct alternative. Please note that
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the data which conform with the SERE model were simulated under the same conditions as the

simulated data in Section 3.5.5.
In Table 3.3 the real item difficulties and the estimated item difficulties of all 17 items

for both sets of data, as well as the estimated attraction parameters of the setof data which

conform with the SERE model, are given. The item difficulty estimates and the attraction

parameter estimates were obtained through the LANPACO program, and for both sets of data the

item difficulty of the fifth item was equated with its real value of zero. The iteration process was

continued until the maximum of the absolute difference between the new and the old values of

the parameter estimates was smaller than 0.00001.

Table 3.3
Estimated values of the item difficulties and the attraction parameters forthe alternatives of

homogeneous SERE and Rasch items

Item

Attraction parameters
SERE data

Item difficulties

A BCD SERE Rasch True

1 .030 .221 .319 .431 1.3259 1.9658 2.0
2 .035 .220 .323 .422 1.1106 1.5421 1.5

3 .046 .209 .311 .433 0.7373 1.0050 1.0

4 .067 .203 .309 .421 0.3384 0.5120 0.5

5 .091 .195 .300 .414 0.0000 0.0000 0.0
6 .134 .184 .283 .398 -0.4243 -0.5033 -0.5
7 .198 .172 .267 .362 -0.7796 -0.9597 -1.0
8 .288 .148 .234 .330 -1.1121 -1.5019 -1.5

9 .379 .130 .205 .286 -1.4170 -1.9786 -2.0
10 .397 .310 .198 .095 -1.4454 -1.5022 -1.5

11 .319 .332 .231 .119 -1.1745 -0.9506 -1.0
12 .255 .380 .243 .123 -0.8669 -0.4701 -0.5

13 .195 .416 .252 .138 -0.6060 0.0175 0.0
14 .156 .421 .283 .140 -0.3860 0.5126 0.5

15 .126 .437 .301 .137 -0.1143 1.0046 1.0

16 .110 .440 .302 .149 0.0679 1.5285 1.5

17 .094 .453 .301 .152 0.2227 2.0543 2.0

As can be seen from Table 3.3, the range of the difficulties of the 17 items which conform with

the SERE model decreased from [-2;2] to [-1.4454;1.3259]. Furthermore, for the cases with

medium to high true item difficulties [i.e. range (-1,21) and low true attractiveness of the correct

alternative (i.e. 0.1) the parameters of the SERE model were estimated relatively well. Moreover,

for the cases in which the true item difficulties were low (i.e. -1 ) and the true attractiveness of

the correct alternative was high (i.e. 0.4) the parameters were estimated relatively well too. In all
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other situations the parameters of the SERE were badly estimated. For instance, for medium or
large values of the item difficulty and a high attractiveness of the correct alternative, the item

was estimated to be easier than was simulated, and the attraction parameter was estimated to be

smaller than was simulated. For low values of the item difficulty and a low attractiveness of the

correct alternatives, the item difficulty was underestimated and the attraction parameter of the

correct alternative was overestimated. These results indicate that a trade-off may have existed

between the item difficulties and the attraction parameters.

If we take a closer look at the SERE model, we can see that the specified model is a

special case of a three-parameter logistic modeL It is assumed that a subject will always choose

the correct alternative if the subject is in the "Know" state. Therefore, for the estimation of the

item difficulties and the sum-score parameters the observed responses variable Y may be

dichotomized into a new response variable Z, with Z = 1 if Yi = A (i.e. the correct alternative)

and Zj = 0 for all other observed responses Yi. The probability of a correct response is then

X.Y.
-1

X..= 1)=0 + (1
Y

- (It J)P(X. = 1)
0 A 0 A

and this equation is nothing else but a special case of the three-parameter logistic model, in

which the discrimination parameter is being held equal to 1.

Literature about the three-parameter logistic model (Baker, 1987; Hambleton &

Swaminathan, 1985; Lord, 1980) shows that the properties of the item parameter estimators for

the one- or two-parameter logistic models are generally better than those for a three-parameter

logistic model. For instance, the three-parameter logistic model does not have sufficient statistics

for estimating the parameters. Moreover, for obtaining reliable estimates of the guessing

parameter (i.e. the attraction parameter of the correct alternative) many subjects at a low ability

level will be required. Finally, Thissen and Wainer (1982) state that "the use of an unrestricted

maximum likelihood estimation for the three parameter model either yields results too inexact to

be of any practical use, or requires samples of such enormous size so as to make them

prohibitively expensive" (p. 403).

In view of the phenomenon of biased parameter estimates for the three-parameter logistic

model, it may be expected that the parameter estimates for the specified SERE model are also

biased. However, for certain combinations of the item difficulties and attractiveness of the

correct alternative the parameter estimates may be less biased (e.g. Item 10).

If the guessing parameter (i.e. the attractiveness of the correct alternative) is set to zero,

the SERE model can be viewed as a Rasch model. An example of this kind of data are the 17
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items which conformed with the Rasch model. As can be seen from Table 3.3 all item difficulties

are very well estimated.
The use of the proposed estimation method needs further study. For instance, with a

simulation study it should be examined if the estimates through the proposed estimation method

differ not only from those through the traditional estimation methods but also differ from the true

parameter values. It should also be examined under which conditions these deviations may be

negligible.

3.7 DISCUSSION

In this chapter a new estimation method for the solution-error response-error (SERE) model for a

large set of items was proposed. The main idea of the new method is that the entire item set is

divided into several subsets. It was shown that the SERE model can then be rewritten into a

related set of smaller SERE models. When pseudo-likelihood theory is used, estimates of the

parameters of the entire SERE model can then be found. A pseudo-loglikelihood can be

expressed as the sum of the loglikelihoods for the smaller models over the subsets. The estimates

of the parameters of the SERE model can then be found by maximizing the sum of the

loglikelihoods of the smaller SERE models. The main advantages of this approach are the

decreased number of latent classes, the decreased numbers of cells in the observed and expected

contingency table, and a more efficient use of the data. A disadvantage is that information about

the joint relationships among the items may be lost when the SERE model is collapsed.

An important issue with respect to the pseudo-likelihoods concerns the goodness of fit of

the SERE model. The lilcelihood-ratio test statistics for each collapsed SERE model is chi-square

distributed with degrees of freedom equal to the difference between the number of cells of the

observed contingency table and the number of estimated parameters of the collapsed SERE

model. However, an important question is if the (weighted) sum of these likelihoods-ratio test

statistics over all subsets is chi-square distributed, or if we can develop other test statistics for the

SERE model, like the Martin-Löf (1973) statistic, the statistics of van den Wollenberg (1972,

1982), or the statistics of Glas (1989). Future research should address this question too.

In this chapter, pseudo information criteria were introduced, which were based on the

same notion as the one on which the Akaike's information criterion is based. However, future

research should address the question whether these pseudo information criteria are of any

practical use for the selection of the best fitting model.

Finally, the objective of this chapter was the development of an estimation method that

computes SERE models with a large item set much more efficiently, in terms of both computer
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storage and processing time. In the previous section it was demonstrated that with the proposed

estimation method it is possible to estimate the parameters of a SERE model with an item set of
17 four-choice items. At this stage, however, the computer program LANPACO, in which the

proposed estimation method was implemented, can handle any number of itemsas long as the

total number of subsets does not exceed 255. Since LANPACO selects all possible pairs of items

as subsets of items, this means that the maximum number of items LANPACO can handle lies

between eight items for SERE models with eight subgroups and 23 items for SERE models with

one subgroup. As indicated by Westers and Kelderman (1992) the traditional estimation method,

as implemented in LCAG, can handle only a maximum of four items for SERE models with two
subgroups.

Since the LCAG version which was been used is a program that runs VAX system

running under VMS and LANPACO is a program that runs under MS-DOS, it is difficult to

compare the traditional estimation method and the proposed estimation method with respect to

the processing time (i.e. CPU time). However, if we compare the number of multiplications and

summations required for estimating the parameters in both estimation methods,some subjective
statements about the processing times can be made.

In the following example a test was subjected to one group of examinees (i.e. g=1). This

test consisted of k items in which each item has r response alternatives (i.e. rj=r for all j=1,...,k).

Furthermore, let h be the number of selected pairs of items. In the case of LANPACO, h is equal

to k(k-1)12. In view of these choices, for both estimation methods the number of multiplications

and summations needed for the computation of the parameters of the SERE modelcan be
approximated. In Table 3.4 the number of multiplications and summations in the computation of

the attraction parameters are given for each iteration cycle of both estimation methods.

Table 3.4

Number of multiplications and summations required for each iteration cycle of the traditional

estimation method and the proposed estimation method to calculate the attraction parameters of
the SERE Model

Traditional estimation method

Equation Multiplications Summations

Proposed estimation method

Equation Multiplications Summations

3.13 (2r)k(2k+1)

3.9 2(2r)k

3.14 2rk k(2r)k+2rk

3.17 20hr2

3.18 8hr2

3.19 2rk 2rk(2rh+1)
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Analogously, for both estimation methods the number of multiplications and summations needed

for the computation of the item difficulties can be obtained. When we compare these numbers, it

seems that the proposed estimation method requires a smaller number of multiplications and

summations for the estimation of the attraction parameters and item difficulties than the

traditional estimation method does. This means that we may expect that the processing time of

the proposed estimation method is shorter than the processing time of the traditional estimation

method. Experience obtained by the application of the DBI principle as discussed in Section

3.5.5 and obtained during the simulation study of Chapter 4, indicates that the processing time of

the proposed estimation method is about 1 to 10 minutes, dependent on the number of items, the

number of alternatives, the criterion on which the iteration process will be stopped and, of

course, the data. However, experience obtained during the analyses of Westers and Keldennan

(1992) indicates that the processing time of the traditional estimation method varies from 10 to

150 minutes, dependent on the restrictions of the postulated SERE model.

In order to summarize, the estimation method based on the pseudo-likelihood theory

provides not only consistent and asymptotic normal estimators of the parameters, but it is also

much more efficient, in terms of both computer storage and processing time, than the traditional

estimation method. The only drawback is that the estimators cannot be expected to be

asymptotically efficient.

7 14.
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Chapter 4

A SIMULATION STUDY OF THE
SOLUTION-ERROR RESPONSE-ERROR MODEL

4.1 INTRODUCTION

In this chapter the results from a simulation study of the solution-error response-error (SERE)

model of Kelderman (1988, see also Westers & Kelderman, 1992) and of the estimation

technique presented in Chapter 3 are reported. The questions considered are: (1) Can differential

item functioning (DIF) still be found if the number of items or the number of subjects is small?;

(2) How do the values of the estimators differ from the true parameters?; (3) Is this deviation

consistent in the sense that the differences tend to decrease when the number of subjects

increases? With simulation we will also examine under which conditions the SERE model can be

used in practice and whether DIF can be detected. However, it must be stressed that this study

does not pretend to be a systematic and comprehensive study of the robustness of the estimation

method or the quality of the SERE model.

Section 4.2 is devoted to a brief description of the SERE model and the estimation

method from Chapter 3. In Section 4.3 the research questions of the simulation study are

discussed, whereas in Section 4.4 a complete description of the simulated data is given. Finally,

in Section 4.5 the results of the simulation study will be discussed.

4.2 THE SOLUTION-ERROR RESPONSE-ERROR MODEL

In the solution-error response-error (SERE) model (Kelderman, 1988), a distinction is made

between two states: a "Know" state and a "Don't know" state. The states determine whether the

subject can or cannot solve the problem imposed by an item. The probability that the subject is in

the "Know" state is assumed to be governed by the Rasch (1960/1980) model. Furthermore,the
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assumption is that if.the subject is in the "Don't know" state, (s)he will choose the most

attractive alternative, where the attractiveness of an alternative may be dissimilar for different

alternatives, including the correct one.

Let xnj (xnj = 0,1) and ynj (ynj = 1,...,rj) indicate the latent response and observed

response of subject n (n = 1,...,N) to item j (j = 1,...,k), respectively. The random variables

associated with xnj and ynj are denoted by Xnj and Yni, respectively. Assuming that the latent

response is governed by the Rasch model, the probability of xnj, given that the subject n has

'ability 0, is

(4.1) P(xnj10) = exp(xnj(0-8j))/[1 + exp(0-8)1 .

Furthermore, the assumption is that the relationship between the latent response xnj and the

observed response ynj is the same for each subject n and described by the conditional probability

(4.2)
X.Y.

Kynj xnj)xjyj

in which the superscripts, in symbolic notation, indicate that the random variables Xj and Yj are

involved in the conditional probability. This conditional probability will be referred to as the

attraction parameter of item j.

Finally, assuming that ynj only depends on xnj and that xnj only depends on the latent

ability 0, we have

X.Y.(4.3) P(yn.10) = [(1) J + (1) J J ex p(O -8 .)]/[1-1-exp(0 -8 )].0 yj 1 yj

One of the main advantages of the SERE model is that it can be easily formulated as a latent

class analysis model (Kelderman, 1988), namely as a latent class model in which the structure of

the latent-class probabilities is explained by a loglinear Rasch model. Each latent class

corresponds with an idealized response pattern. Another advantage of the SERE model is that, by

extending the SERE model with variables defining subgroups, it is not only possible to test

whether a certain item shows DIF, but also to test whether this DIF is caused by the difficulty of

the item, the attractiveness of the alternatives, or both (Westers & Kelderman, 1992). Generally,

an item shows DIF if the probability of a correct response among equally able test takers is

different for various racial, ethnic, or gender subgroups. However, an item can show DIF in two

different ways. In the first place, an item shows DIF if equally able subjects from different

subgroups have different probabilities of "Knowing" the answer to the problem imposed by the
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item. Secondly, an item also shows DIF if the attractiveness of the alternatives of the item varies

from subgroup to subgroup conditioned on ability. Westers and Kelderman (1992) refers to these

two types of DIF as DIF in the latent response and DIF in the attraction parameters. They also

show that both types can be examined with the SERE model.

As discussed in Kelderman (1988, Westers & Kelderman, 1992), the parameter estimates

can be computed with the methods LCAG (Hagenaars, 1988; Hagenaars & Luijkx, 1990) and

LOGIMO (Kelderman & Steen, 1988). LCAG is a computer program for the estimation of the

parameters of loglinear models with latent variables. Apart from the estimated attraction of the

alternatives, it also gives the estimated expected frequency distribution of the latent classes under

the SERE model. LOGIMO is a general computer program for analyzing loglinear IRT models.

We use it here to compute the difficulty of the items from the frequency distribution of the latent

classes in the SERE model.

The use of these two methods, however, becomes unpractical for a large number of

polytomous items. In the first place, in LCAG all cell frequencies, including empty cells with

frequency zero, have to be stored. Secondly, in LCAG the values for the probability of the latent

classes followed by the values for the conditional probabilities of the observed variables given

each latent class, have to be stored. Doing this for the case of the SERE model, LCAG uses such

a large amount of memory space that it is impossible to consider a large item set. For example,

Westers and Kelderman (1992) could only consider four five-choice items at a time.

Therefore, in Chapter 3 a maximum likelihood estimation method for the SERE model

was proposed, which is based on the division of the entire item set into several subsets of items.

It was shown that the SERE model can then be rewritten into a set of smaller SEREmodels. We

will refer to these smaller SERE models as the collapsed SERE models. With the use of pseudo-

likelihoods, estimates of the parameters of the entire SERE model can be found. A pseudo-

loglikelihood could be expressed as the sum of the true loglikelihoods for subsets of items. Tlie

estimates of the parameters of the SERE model could then be found through the maximization uf

the sum of the loglikelihoods of the collapsed SERE models (Chapter 3). The advantages of this

approach are the decreased number of latent classes, the decreased number of cells in the

observed and expected contingency tf ble, and a more efficient use of the data. More efficient use

of the data because, apart from designs with complete data, designs with incomplete data can

also be used. Data from any subject, even when responding to only two items of the test, can be

studied. Of course the data for these subjects can only be used if the two items form one of the

subsets of items. A disadvantage of the approach of Chapter 3 is that some of the statistical

efficiency of the estimators may be lost.

The overall goodness of fit of the collapsed SERE model can be tested by the Pearson

statistic or the likelihood-ratio test statistic. With the difference of the likelihood-ratio test
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statistics for two nested models the best fitted model can be selected (Bishop, Fienberg, &

Holland, 1975; Rao, 1973). In Chapter 3 an alternate approach to model selection is described

which uses the pseudo-likelihood estimates and some modified versions of the information

criteria of Akaike (1977, 1987), Bozdogan (1987) or Raftery (1986a, 1986b). With these so-

called pseudo Akaike's information criteria, it can be checked whether a model gives a

significant improvement in fit over another model.

4.3 RESEARCH QUESTIONS OF THE SIMULATION STUDY

It is well-known that the Pearson statistic and likelihood-ratio test statistic for testing the overall

goodness-of-fit of a model are both asymptotically distributed as chi-square with degrees of

freedom equal to the difference between the number of cells in the observed contingency table

and the number of estimable parameters. However, by using the pseudo-likelihood theory for the

estimation of the parameters of the SERE model, the use of the Pearson or likelihood-ratio

goodness-of-fit statistics is not allowed.

On the other hand, there are other indices which can be used for the selection of the best

fitted model. The information criteria of Akaike (1977, 1987), Bozdogan (1987) or Raftery

(1986a, 1986b) for example. Akaike's information criterion (AIC) for a model with likelihood L

is defined as AIC = -21n(L)+2D, in which D is the number of independent parameters which ate

estimated in fitting the model. The model with the minimum AIC value is chosen to be the best

fitting model. Since AIC is inconsistent in the sense that an increasing sample size does not have

a direct impact on the criterion, modifications of the criterion are proposed in the literature. For

example, the consistent AIC criterion (CAIC) of Bozdogan has ln(n+1) (i.e. n is the sample size)

as a multiplication factor for the number of independent parameters, whereas the multiplication

factor in the Raftery's Bayesian information criterion (BIC) equals ln(n). Generally, the CAIC

and BIC criteria tend to lead to simpler models than AIC does. With the use of pseudo-

likelihoods, pseudo information criteria can be defmed, based on the same notion as those on

which the AIC, CAIC and BIC are based, but in which the loglikelihood ln(L) is replaced by the

pseudo-loglikelihood PL and D is equal to the number of independent parameters in the entire

SERE model (Chapter 3). The model with the minimum pseudo Akaike information criterion

(PAIC) value will be chosen as the best fitting model.

Since the derivations of the (pseudo) information criteria are based on likelihood ratio

test statistics, an objection can be raised to their use, because asymptotic results may not be

valid. There is, nevertheless, considerable value in studying the behavior of the (consistent)

pseudo Akaike information criteria, since their performance in real-life situations may be of
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practical use. In this simulation study we will therefore examine whether the (consistent) pseudo

information criteria of Chapter 3 can be uset1 for the examination of DIF. Since a consistent

PAIC tends to lead to simpler models than AIC does, only the following consistent pseudo

Akaike's information criterion will be calculated in this chapter

PAIC = -2 PL + ln(n)D

If the pseudo-likelihood-ratio test statistic PLR is equal to the sum over all subsets of the

likelihood-ratio test statistics of the collapsed SERE models, -2 PL is equal to PLR + C, in which

C only depends on the observed data. Since in the simulation study we only compare models

with each other for the same data, the PAIC-C values will be reported in the tables.

Another issue in the field of the examination of DIF is the number of items of the test.

Generally, DIF is not necessarily some inherently "bad" characteristic of an item; it is also

dependent on the pool of items with which the particular item is being compared (Berk, 1982).

For instance, biased items can be identified as those that are relatively more difficult for

members of a particular group. Since the DIF detection methods all rely on the total test as a

measure of the ability, bias will go unnoticed by these methods when all the items have the same

type and degree of invalidity. Furthermore, with a small sample of items, it may bedifficult to

distinguish between systematic differences between groups due to DIF and systematic

differences between groups due to ability. Since the biased items contribute to the estimation of

the subjects' ability, the DIF detection methods based on IRT models is sensitive for many

biased items; too many biased items would ordinarily harm the stability of fmdings (Shepard,

Camilli, & Williams, 1984). However, as Rudner, Getson and Knight (1980b) showed in their

paper, the correlations between detected bias and true bias increase only slightlywith increasing

test length. Two remarks have to be made with respect to this conclusion. In the first place, in

their study, data were generated which conform with the three parameter logistic model in which

the degree and the type of DIF were specified in advance. Secondly, allmost all considered DIF

detection methods, including the method based on the three parameter logistic model, showed a

slight general increase in the average correlation with increasing test length. In the simulation

study we will examine whether these conclusions are also valid for the SERE model and the

pseudo-likelihood estimation method from Chapter 3.

Finally, in the simulation study the attention will be focused on the combination of the

two types of DIF: DIF in the latent response and DIF in the attraction parameters. Westers and

Kelderman (1992) argued that it is possible to define these two types of DIF by using theSERE

mJclel. But is it really possible to detect DIF in the latent response, if DIF already exists in the
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attraction parameters? Or to detect DIF in the attraction parameters, if the item already shows

DIF in the latent response?

The above research questions can be summarized as follows: (1) How do the values of

the estimators differ from the true parameters?; (2) Is this deviation consistent in the sense that

the differences tend to decrease when the number of subjects increases?; (3) Can DIF still be

found if the number of subjects is small?: (4) Can DIF still be found if the number of items is

small?: (5) Is it possible to detect an item which shows DIF in the latent response, but shows DIF

in the attraction parameters as well?

4.4 THE SIMULATED DATA

The usefulness of the SERE model and the maximum likelihood estimation method from

Chapter 3 will be studied with the use of simulated data. It should be noticed in advance that

there are several possible combinations of sample sizes, test lengths, number of alternatives,

choice of parameter (e.g. difficulty parameter or attraction parameter) values, choice of subsets,

choice of items which show DIF (e.g. DIF in the latent response or DIF in the attraction

parameter). The simulation study will concentrate only on some interesting combinations of

these variables, relevant for each research question. In the next section these combinations will

be described in more detail.

In order to generate data which conform with the SERE model, the following algorithm

was used.

Input: the sample size N, test length k, number of alternatives vector r,

the difficulty parameter vector 8, and the attraction parameter

matrix ft

Step 1: for n = 1,...,N, draw On (i.e. the ability of subject n) from the

standard normal N(0,1) distribution.

Step 2: for n = 1,...,N and j = 1,...,k, draw gnj from the uniform

distribution on [0,1].

Step 3: for n = 1,...,N and j = 1,...,k, generate latent responses using

if gni < P(Xnj = 1 I On, 89 then Xnj = 1 else Xnj = 0.

Step 4: for n = 1,...,N and j = 1,...,k, draw gni from the uniform

distribution on [0,1].
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Step 5: for n = 1,...,N, j = 1,...,k and i = 2,...,ri, generate observed

responses

i-1if E wll<g E J J then Yni = i.
h=1 Xnjh h=1 xlkih

With this algorithm, different data sets were generated for two groups. By specifyingunequal

values of the difficulty parameter for both groups it is possible to generate itemswhich show

DIF in the latent response. Items with DIF in the attraction parameters can be generated by

specifying unequal attraction parameters for both groups.

For convenience during the entire simulation study the same item characteristicswill be

used. Furthermore, we assumed that if the subject is in the "Know" state, the subject will choose

the correct alternative (denoted by A). In Table 4.1 the manifest difficulty parameters and the

attractiveness of the alternatives for the "Don't know" state are given. Please note that the

number of response categories is taken to be the same for all items, i.e. rj = 4, forj = 1,...,9.

Table 4.1 shows that Items 4 and 8 show DIF in the latent response, whereas Items 2 and 4 show

D IF in the attraction parameters.
For the estimation of the parameters of the SERE model the computer program

LANPACO was used (Westers & van der Sar, 1993). A description of the program will be given

in Appendix C.

Table 4.1

Item parameters of the simulated data

Item

Group 1 Group 2

Item
difficulty

Attraction parameters
Iterti

difficulty

Attraction parameters

AB CD A BCD
1 2.0 .25 .25 .25 .25 2.0 .25 .25 .25 .25

2 1.5 .25 .25 .25 .25 1.5 .10 .20 .30 .40

3 1.0 .25 .25 .25 .25 1.0 .25 .25 .25 .25

4 0.5 .25 .25 .25 .25 1.0 .10 .20 .30 .40

5 0.0 .25 .25 .25 .25 0.0 .25 .25 .25 .25

6 -0.5 .25 .25 .25 .25 -0.5 .25 .25 .25 .25

7 -1.0 .25 .25 .25 .25 -1.0 .25 .25 .25 .25

8 -1.5 .25 .25 .25 .25 -2.0 .25 .25 .25 .25

9 -2.0 .25 .25 .25 .25 -2.0 .25 .25 .25 .25
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4.5 RESULTS

In this section the results of the simulation study will be presented. In Sections 4.5.1 and 4.5.2

the small-sample behavior of the estimation method and the SERE model will be discussed. The

issue of the influence of the test length on the examination of DIF will be discussed in Section

4.5.3. Finally, in Sections 4.5.4 and 4.5.5 we will discuss whether it is really possible to examine

items that show DIF in the latent response and DIF in the attraction parameters.

4.5.1 Small-sample behavior of pseudo-likelihood estimates

The purpose of the first part of the simulation study was to get some idea of the small-sample

behavior of the estimation method and the SERE model. In order to produce an example of the

small-sample behavior, the first group and Items 2, 5, 6 and 8 as described in able 4.1 were

chosen. The choice of these four items was based on the following consideration. Generally, a

test may have items that show DIF in the latent response (e.g. Item 8), but also items which show

DIF in the attraction parameters (e.g. Item 2). Item 5 is chosen as a reference item, because it has

a zero difficulty parameter. We set its parameter to zero to fix the scale. Finally, Item 6 is chosen

because of its low true difficulty parameter. Sample sizes of 1000, 2000 and 5000 respondents

were used and for evety sample size 25 replications were made. The estimated values of the

parameters of the items are shown in Table 4.2.

Table 4.2

Mean and their standard deviations (SDV) of the attractiveness of the correct alternative and the

item difficulties of SERE-homogeneous data for different sample sizes.

Item True

N = 1000 N = 2000 N = 5000

Estimated SDV Estimated SDV Estimated SDV

Attraction parameters

2 .25 .0649 .0038 .0640 .0032 .0637 .0014
5 .25 .1458 .0093 .1400 .0066 .1356 .0048
6 .25 .1990 .0131 .1916 .0084 .1852 .0073
8 .25 .3652 .0222 .3547 .0168 .3403 .0123

Item difficulties

2 1.5 0.776 .0853 0.809 .0592 0.829 .0316
5 0.0 0.000 0.000 - 0.000 -
6 -0.5 -0.291 .0631 -0.317 .0587 -0.325 .0300
8 -1.5 -0.844 .0842 -0.916 .0549 -0.943 .0511
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In Table 4.2 the true and the mean of the estimated attraction parameters of the right alternatives

and the estimated difficulty parameters are given for each samplesize. Furthermore, the column

labelled "SDV" gives the values of the standard deviation of the estimatedattraction parameters

and the estimated difficulty parameters, respectively.
Generally, the test score of a subject is determined by the number of correct choices of

the right alternative. Therefore, in Table 4.2 only the estimated attraction parameters of

alternative A (i.e. the right alternative) will be compared for different sample sizes. For the other

alternatives similar tables can be made.

As can be seen from this table the standard deviations of the estimates of the attraction

parameters decrease with increasing sample size. The simulation study also shows that except for

easy items (e.g. item 8) the difference between the true and the estimated attractiveness of the

correct alternative increases with increasing sample size. Table 4.2 shows that the standard

deviations of the estimated difficulties, as well as the difference between the true and the

estimated difficulties, decreases with increasing sample size.

As discussed in Chapter 3, it was to be expected that the maximum pseudo-likelihood

estimates would be less efficient, but consistent. The results of Table 4.2 suggest,however, that

the estimates are inconsistent and efficient. High efficiency is not surprising, because

LANPACO selects all possible pairs of items as subsets of items, which meansthat the

covariances between the items are not neglected. Neglecting the dependencies between the items

would generally decrease the efficiency of the maximum pseudo-likelihood estimates.

If we take a closer look at the results, we will see that for all sample sizes a trade-off

exists between the attractiveness of the correct alternative and the difficulties of the items: if the

attractiveness of the correct alternathe is estimated too low this iscompensated by estimating

the item difficulties too low, and vice versa. Since the SERE model asdefined in this simulation

study can be regarded as a special case of a three-parameter logistic model, this trade-off was to

be expected (Chapter 3). The literature about the three-parameterlogistic model also shows that

there is only empirical evidence that consistency of the item parameters maycomply with the

theoretical expectations (Swaminathan & Gilford, 1983; Wingersky & Lord, 1984). In view of

the phenomena of biased estimates for the three-parameter logistic model (Baker, 1987; Hulin,

Lissak & Drasgow, 1982; Lord, 1975; Thissen & Wainer, 1982), the item parameterestimates

for the SERE model may be expected to be biased as well. And, in particular, the estimation of

the difficulties may be affected as an error in the attractiveness of the correct alternative results

in a shift in the estimate of the item difficulties. The inconsistency of the results is therefore

caused by the structure of the postulated SERE model.
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4.5.2 Small-sample behavior of DIF detection

This section deals with the question of the way in which the examination of DIF is influenced by

the number of subjects. In order to answer this question, data were generated according to the

algorithm of Section 4.2. Just as in the case of the previous part of the simulation study Items 2,

5, 6 and 8 from Table 4.1 were chosen. However, this time the data were generated for two

groups. Furthermore, samples sizes of 1000, 2000 and 5000 were chosen and for every sample

size 25 replications were made. Finally, the parameters of four models were estimated: (a) a

model in which none of the items shows DIF, (b) a mudel in which Item 8 shows DIF in the

latent response, (c) a model in which Item 2 shows DIF in the attraction parameters, and (d) a

model in which Item 8 shows DIF in the latent response and Item 2 shows D1F in the attraction

parameters. Please note that Model d is the same as to the model under which the data were

simulated. In Table 4.3 the values of the consistent pseudo Akaike's information criterion

(PAIC) of Model a through d are given for each of three different sample sizes: 1000, 2000, and

5000 subjects, respectively. Furthermore, the columns labelled "SDV" give the values of the

standard deviation of these PAIC values, whereas the columns denoted with "Best Model" give

the number of analyses in which the particular model has the lowest PAIC value of the four
models.

Table 4.3

Mean of the consistent pseudo Akaike's information criteria (PAIC) with their standard

deviation (SDV), the number of independent parameters (D) and the number of best selected

models of SERE-homogeneous data for different sample sizes.

N = 1000 N = 2000 N = 5000

Best Best Best
Model D PAIC SDV model PAIC SDV model PAIC SDV model

a 51 574 28 0 678 53 0 1014 56 0
b 52 564 29 0 657 51 0 957 59 0
c 54 491 13 11 493 16 3 536 16 0
d 55 487 11 14 484 12 22 505 8 25

As already mentioned in Section 4.3, even with small sample sizes the decision whether an item

shows DIF or not can be made almost as well as with large sample sizes. With a sample size of

1000 subjects for 14 out of 25 replications the true model (d) was selected as the best. However,

the lowest chance of making a wrong decision is found in the sample size of 5000 subjects: all

25 replications selected model d as the best.
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4.5.3 The influence of the test length on DIF detection and parameter estimates

In this section we will examine whether DIE can still be found if the testlength decreases. For

this examination three data sets were generated: one consisted of eight items (i.e. the nine items

of Table 4.1, except Item 4), the second consisted of six items (Items 2,3,5,6,7,8) and the third

consisted of the Items 2, 5, 6 and 8. Please remember that Item 8 shows DIF in the latent

response, whereas Item 2 shows DIF in the attraction parameters. Furthermore, the sample sizes

were equal to 1000 and 25 replications were made. Finally, the parameters of the models

mentioned in Section 4.5.1 (i.e. Model a through d) were estimated. To compare the three data

sets, the consistent pseudo Akaike's information criterion values (PAIC) and the number of

independent parameters (D) for each of the four models are presented in Table 4.4. And just as in

Table 4.3 the number of occasions it: which the particular model had the lowest PAIC value are

also given.

Table 4.4

Mean of the consistent pseudo Akaike's information criteria (PAIC), the number of independent

parameters (D) and the number of lowest PAIC values of SERE-homogeneous data for different

numbers of items.

4 items

Best

6 items 8 items

Best Best
Model D PAIC model D PAIC model D PAIC model

a 51 574 0 68 1492 0 115 1586 0

b 52 564 0 69 1397 0 116 1560 0
c 54 491 11 71 667 3 118 1370 2

d 55 487 14 72 598 22 119 1350 23

From the results of Table 4.4 we may conclude that DIF detection is better when there are more

unbiased items in the test. The comment by Shepard, Camilli and Williams (1985) that too many

biased items in the test would harm the stability of detectingDIF might therefore be valid for the

SERE model. In the first set of data fifty percent of the items were biased, but with a sample size

of 1000 subjects all biased items were detected in only 14 of the 25 replications, whereas for the

second and third set of data all biased items were detectedin almost all 25 replications.

In order to answer the question whether the deviations between the parameter values of

the estimated parameters and the true parameters decrease when the number of items in the test

increases, in Table 4.5 the mean of the estimatedattraction parameters of the right alternatives

and the estimated difficulty parameters for the three setsof data of the lust group are depicted.
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Table 4.5

Mean and standard deviations (SDV) of the attractiveness of the correct alternative and the item

difficulties for the first group of SERE-homogeneous data in model d for different numbers of
items. (N = 1000)

hem True

4 items 6 items 8 items

Estimated SDV Estimated SDV Estimated SDV

Attraction parameters

2 .25 .1195 .0221 .1215 .0207 .1224 .0196
5 .25 .1474 .0070 .1466 .0070 .1470 .0071
6 .25 .2022 .0098 .2002 .0098 .2014 .0100
8 .25 .4172 .0186 .4179 .0190 .4228 .0189

Item difficulties

2 1.5 1.084 .0703 1.091 .0721 1.080 .0688
5 0.0 0.000 - 0.000 - 0.000 -
6 -0.5 -0.290 .0608 -0.291 .0599 -0.283 .0569
8 -1.5 -0.701 .0922 -0.712 .0885 -0.705 .0832

This table shows that in the three sets of data the differences between the estimated values of the

parameters were not very large. When we compare the three sets of data, the standard deviations

of the estimates of the item difficulties, except for Item 2, seem to have decreased with

increasing test length. This trend is not very clear for the attraction parameters. For some items

the standard deviations of the estimates of the attractiveness of the right alternative decreased

and for other items the standard deviations increased.

For the second group the conclusions are not different from those about the first group.

Therefore they are not given.

4.5.4 The simultaneous detection of DIF in the latent response and DIF in the attraction
parameters

In the fourth part of the simulation study the attention was focused on the combination of the two

types of DIF: Is it possible to detect an item which shows DIF in the latent response, but shows

also DIF in the attraction parameters? In order to answer this question, a data set was generated

for Items 1, 3, 4, 5, 6, 7, and 9 of Table 4.1. Please note that Item 4 is the only item which shows

DIF both in the latent response and in the attraction parameters. Again the data set was generated

for two groups of 1000 subjects, and 25 replications were made. This time, the pseudo-likelihood

statistics were calculated for the models in which Item 4 shows (e) no DIF, (f) DIF in the latent
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response, (g) DrF in the attraction parameters, or (h) DIF in the latent response and DIF in the

attraction parameters. The results are presented in the Table 4.6, whereby the contents of the

columns are similar to those of Tables 4.3 and 4.4.

Table 4.6

Mean of the consistent pseudo Akaike's information criteria

(PAIC) with their standard deviation (SDV), the number of

independent parameters (D) and the number of lowest PAIC values

of SERE-homogeneous data.

Best
Model D PAIC SDV model

e 153 1685 59 0
f 154 1549 45 0
g 156 1456 29 0
h 157 1447 30 25

Table 4.6 indicates that it is really possible to detect items which show DIF in the latent response

as well as DIF in the attraction parameters. For all replications the model in which item 4 was

the only item that showed both types of DIF (i.e. the true model) was selected as the best model

in comparison with models in which item 4 shows no DIF or only one type of DIF. However,

when the sample size was 5000, in only 3 replications the true model was selected as the best. In

the other 23 replications the model in which item 4 only shows DIF in the attraction parameters

(i.e. model g) was selected as the best. In view of the mean of the PAIC values for the two

models g and h (1488 and 1491, respectively), the reason for the discrepancy between the two

sample sizes might be the choice of the pseudo Akaike's information criterion. Generally, the

consistent pseudo Akaike's information criterion tends to lead to simpler models than the pseudo

Akaike's information criterion does, which happened for the sample size of 5000. When the

pseudo Akaike's information criterion model selection method was used, then for both sample

sizes model h (i.e. the true model) had always been selected as the best model.

4.5.5 Small-sample behavior of simultaneous detection of DIF in the latent response

and DIF in the attraction parameters
In the preceding sections, the research questions were all restricted to (1) situations in which the

sample size was relatively small or large, (2) situations in which only one item in the item set

shows DIF in the latent response and only one other item shows DIF in the attraction parameters,

and (3) situations in which only one item in the item set shows both types of DIF. In real-life
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situations, however, extremely small sample size of 100 or 250 subjects are commonly used.

Moreover, in real-life situations more than one item may show one of the two types of DIF or

may show both types of DIF.

We have seen that in a situation where in a set of data one item shows one type of DIF

and another item shows the other type of DIF, it is possible to detect both biased items. We have

also seen that it is even possible to detect items that show both types of D1F. Would we have fmd

the same results if there were more biased items in the test? And can we still found the items

which shows DIF if the sample size is extremely small?

Table 4.7

Mean of the consistent pseudo Alcaike's information criteria (PAIC) with their standard

deviation (SDV), the number of independent parameters (D) and the number of lowest PAIC

values of SERE-homogeneous data for different sample sizes.

Model D

N = 100 N = 250 N = 500

PAIC
Best

SDV model PAIC
Best

SDV model PAIC
Best

SDV model

0000 143 2668 113 0 2611 95 0 2285 89 0
0001 144 2660 111 0 2588 91 0 2264 90 0
0010 144 2655 108 0 2571 90 0 2211 95 0
0011 145 2651 107 0 2556 85 0 2198 95 0
0100 146 2619 102 0 2536 71 0 2155 71 0
0101 147 2612 100 0 2515 64 0 2140 73 0
0110 147 2615 98 1 2519 70 0 2135 73 0
0111 148 2611 96 0 2503 63 0 2122 74 0
1000 146 2646 111 0 2541 79 0 2172 72 0
1001 147 2639 111 1 2519 72 0 2153 74 0
1010 147 2633 107 1 2499 75 0 2090 76 0
1011 148 2628 106 1 2484 66 0 2080 77 1

i 100 149 2597 98 0 2464 63 0 2037 47 0
1101 150 2591 97 5 2445 51 2 2025 49 0
1110 150 2593 94 2 2446 63 6 2014 47 2
1111 151 2589 92 10 2432 50 17 2004 48 22

&lc. For the sample size of 100 four replications of the generated set of data were omitted from

the simulation study because of problems during the estimation process.

In order to answer these two questions two sets of data were generated, one for each subgroup.

Each set of data consists of all nine items as defined in Table 4.1. Furthermore, sample sizes of

100, 250 and 500 were chosen, and for every sample size 25 replications were made. Please note

that the Items 2 and 4 showed DIF in the attraction parameters and Items 4 and 8 showed DIP in

the latent response. The parameters of 16 models were estimated. In each model it was
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postulated whether or not Items 2 and 4 show DIF in the attraction parameters and whether or

not Items 4 and 8 show DIF in the latent response. In the Tables 4.7 and 4.8 the results are

presented.
In these tables the models will be denoted by a chain of four digits: zero or one. The first

digit in the chain defines whether it was postulated that Item 2 shows DIF in the attraction

parameters, where a zero means "No" and a one means "Yes". In the same way, the second, third

and fourth digit declares whether Item 4 shows D1F in the attraction parameters, Item 4 shows

DIF in the latent response or Item 8 shows DIF in the latent response. The chain 1010, for

example, defines a model in which item 2 shows DIF in the attraction parameters and item 4

shows DIF in the latent response, whereas the chain 1101 defines a model in which items 2 and4

show DIF in the attraction parameters and item 8 shows DIF in the latent response.

In Table 4.7 the values of the consistent pseudo Akaike's information criterion (PAIC) of

the 16 models are given for the three different sample sizes. Furthermore, the standard deviation

of these PAIC values and the number of occasions in which the particular model had the lowest

PAIC value, are given.
From the results of Table 4.7 we may conclude that even for situations in which the

sample size is extremely small and there is more than one item that showed DIF, it is possible to

detect all these items. With the smallest sample size (i.e. 100) in 10 of the 21 replications the true

model was selected as the best, whereas with a sample of 250 or 500 subjects the number of

Table 4.8
Mean and standard deviations of the attractiveness of the correct alternative and item difficulties

of SERE-homogeneous data in the true postulated model (1111) for different sample sizes

Item True

N = 100 N = 250 N = 500

Estimated SDV Estimated SDV Estimated SDV

Attraction parameters

2 .25 .1137 .0351 .0928 .0146 .1078 .0176
5 .25 .2742 .0401 .1934 .0231 .1637 .0110
6 .25 .3671 .0614 .2749 .0173 .2265 .0184
8 .25 .6940 .0680 .5682 .0475 .4832 .0276

Item difficulties

2 1.5 0.711 .1120 0.876 .1108 0.978 .0858
5 0.0 0.000 - 0.000 0.000 -

6 -0.5 -0.175 .1170 -0.255 .0999 -0.262 .0836
8 -1.5 -0.411 .1042 -0.498 .1461 -0.618 .0882

8 7
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replications in which the true model was selected as the best was equal to 17 and 22,

respectively.

In order to examine the deviations between the values of the parameters of the estimated

model 1111 and those of the true model, in Table 4.8, for each sample size, the true and the

mean of the estimated attractiveness of the right alternatives and the estimated difficulties are

given for the Items 2, 5, 6 and 8 and for the first group. Furthermore, in the column labelled

"SDV" the values of the standard deviates of the estimates are given.

Just as in the case of the relatively large sample sizes (i.e. 1000, 2000 and 5000), this part

of the simulation study shows that the estimated attractiveness of the correct alternative was

biased, but that the difference between the true and the estimated difficulties decreased with

increasing sample size. The inconsistency of the estimators of the attractiveness of the correct

alternative was again due to the instability of the parameter estimates of three-parameter logistics

models.

Here, too, the conclusions about the second group were no different from those about the

first group. Therefore they are also not given.

4.6 CONCLUSIONS AND DISCUSSION

This chapter dealt with the question whether DIF can be found with the SERE model and how

the values of the parameters of the estimated SERE model differ from those of the original

model.

In the first place, from the results of this simulation study we may conclude that despite

the trade-off between the difficulty parameters and the attraction parameters, the difference

between the true and the estimated difficulty decreased with increasing sample sizes or

increasing test lengths. For the attractiveness of the correct alternative this relation between the

sample size or test length with the deviation between the values of the parameters of the

estimated model and the original model could not be found.

Secondly, the simulation study showed that with (extremely) small sample sizes DIF

could still be detected, but that the chance of the detection of DIF increased when the sample

size increased. Evidence that the test length has an effect on DIF detection could be found: there

were indications that too many biased items harmed the stability of detecting DIF.

Finally, one of the main reasons why the SERE model was developed was for the

examination of items not only for DIF due to item difficulty but also due to alternative

attractiveness. From the last two parts of the simulation study we may conciude that with the
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SERE model a distinction can be made between both types of DIF and that items can be detected

which show both types of DIF.
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Chapter 5

GENERALIZATIONS OF THE
SOLUTION-ERROR RESPONSE-ERROR MODEL*

5.1 ABSTRACT

In the last decade, several efforts have been made to relate item response theory (IRT) models to

latent class analysis (LCA) models. One of these efforts is the solution-error response-error

(SERE) model; a LCA model in which the structure of the latent class probabilities is explained

with a one-dimensional loglinear Rasch model.

In this chapter the SERE model will be generalized to models for polytomously scored

latent states that may be explained by a multidimensional latent space.

5.2 INTRODUCTION

For the measurement of individual differences, a distinction can be made between measurements

on a discrete qualitative latent trait and measurements on a continuous quantitative scale. The

latent class analysis (LCA) model, in which the assumption is that subjects belong to different

latent classes, is an example of the former (Bartholomew, 1987; Lazarsfeld & Henry, 1968;

Mooijaart, 1978). Whereas the item response models (IRT) is an example of the latter. Some

well-known examples of MT models are the Rasch (1960/1980) model and the two- and three-

parameter-logistic or normal ogive models (Lord, 1980; Lord & Novick, 1968). In the last

decade several efforts have been made to relate IRT models to LCA models (Bock & Aitldn,

1981; Dayton & Macready, 1980; Formann, 1985; Kelderman, 1988, 1989; Kelderman &

Macready, 1990; Mislevy & Verhelst, 1990; Yamamoto, 1987, 1988). In this clrpter one of

The authors P. Westers and H. Kelderman would like to thank Mary E.Lunz and Barbara M. CAMleberry of

the American Society of Clinical Pathologist (ASCP) for providing empirical data used in the example in

this chapter.
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these efforts will be discussed: the solution-error response-error (SERE) model of Kelderman

(1988).

In the SERE model a distinction is made between a "Know" state in which the subject

has a complete knowledge of the answer, and a "Don't know" state. The probability that the

subject is in the "Know" state is assumed to be governed by the Rasch mode,. Furthermore, the

assumption is that whether or not the subject is in the "Know" state, (s)he will choose the most

attractive alternative, in which the attractiveness may be dissimilar for different alternatives,

including the correct one. The SERE model can be formulated as an (incomplete) LCA model, in

which each latent class corresponds with an idealized response pattern. The relations between

these idealized responses are explained by the loglinear version of the Rasch model (Cressie &

Holland, 1983; Duncan, 1984; Kelderman, 1984; Tjur, 1982).

All SERE models considered in Kelderman (1988) deal with a one-dimensional

continuous latent trait. In many testing situations, however, we may have to deal with a two - or

more - dimensional latent space. Consider, for example, a version of the American Society of

Clinical Pathologist (ASCP) Microbiology Test. In Appendix A.4 some items of this test are

presented. Content experts have hypothesized that although each item of this ASCP test has one

correct alternative, incorrect responses might often be chosen after cognitive activities similar to

those necessary to arrive at the correct response. They further presumed that "Applying

Knowledge", "Selecting Action", "Calculating", "Correlating Data" and "Evaluating Problem"

are the cognitive processes involved in answering the items. For instance, they assumed that for

item 11 of Appendix A.4 the correct answer (d) involved two applications of knowledge,

whereas answer c involved only one. In order to give the correct answer c on item 20 they

assumed that the subject had to use the cognitive process "Evaluating Problem" twice and the

cognitive processes "Applying Knowledge" and "Selecting Action" once.

So, in general, the production of one answer may require quite another ability from the

examinee than the production of another. Or some responses may require the repeated

application of an ability, whereas others may require only a single application of the same

ability. In this chapter the SERE model will be generalized to models for polytomously scored

latent states that may be explained by a multidimensional latent space. Maximum likelihood

estimates of the parameters of this generalized SERE (GSERE) model can be obtained by

solving the likelihood equations by the iterative proportional fitting (IPF) algorithm of Goodman

(1974b).

The GSERE model will be formulated below. The estimation method and goodness-of-fit

tests are described, and the question of identifiability is discussed.
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5.3 THE GENERALIZED SOLUTION-ERROR RESPONSE-ERROR MODEL

Let us suppose that each subject, randomly drawn from a population of subjects, responds tok

test items, in which the answer to item j may be any of the ri responses, denoted by yj

Let xj (xj4J,...,9) indicate the latent state of the subject. For example, all the items

of the ASCP Microbiology Test have four possible responses (i.e., rj=4) and may have three

latent states: "Don't know", "Partial knowledge" and "Complete knowledge". We will assume

that when the subject is in the "Don't know" state (xj=0), (s)he will choose one of the

alternatives. If the subject is in the "Partial knowledge" state (xj=1), (s)he will choose one of the

alternatives that might be correct in view of the subject's partial knowledge of the answer. If the

subject is in the "Complete knowledge" state (xj=2), (s)he will choose the correctalternative.

The random variables with values yj and xi are denoted by Yj and Xj (j=1,...,k). The relationship

between the latent state xi and the observed response yj is described by the conditional

probability

X.Y-(5.1) (I) _I J a P(YryilXi=xj) ,xj yi

This conditional probability will be referred to as the attraction parameter of itemj.

In the generalized solution-error response-error (GSERE) model we assume that the

latent states are not governed by the Rasch (1960/1980) model, but by the more general

multidimensional polytomous latent trait model (MPLT) by Kelderman and Rijkes(in press). In

the MPLT model the assumption is that the subject must perform certain cognitive operations to

produce a latent score xi on item j. See for instance the example in the previoussection. Each

operation depends on a certain proficiency on a latent trait. Let Bjq(x) be a non-negative weight

associated with the dependence of response x on item j on the latent trait q. Furthermore, let

8.1c1(x)
rebe the difficulty parameter of the sponse x on item j related to latent trait q (q=1,...,v),

Oq be a value of the subject on the latent ability continuum and 13 = (0 I ..,fiv) be the vector of

ability values. The probability that the subject has a response xi on item j can then be written as

(Kelderman & Rijkes, in press)

(5.2)

exp(E (eq - 8 jci(9)Bjq(xj) )
9

I exp( E ( On - 8A(z))Bjq(z))
z q '
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Assuming local independence of Xi and Yi given the latent trait vector 0 and Xj, respectively,

the probability of choosing response yi is equal to

(5.3) P(y;l0) = E P(y.;Ixi, 0) P(9I0)

;.=I ( X, Y
(t. i} exp( mg (eq - sjpjDBAN) co3,69-19 9 yj

in which 8. = and

co,80 = E exp ( I (0g - Sig(z))Big(z)} .

As Kelderman and Rijkes (in press) have shown with the specification of the scoring weights

Bjci ( ) different models can be chosen for the dependence of the latent states on the latent traits.,

To illustrate the main idea of this chapter, one specific MPLT model will be considered below:

the multidimensional partial credit (MPCM) model. It may, however, be clear that the contents

of this chapter is also valid for other kinds of MPLT models.

The scoring weights for a MPCM model, in which each step depends on a different latent

trait, are depicted in Figure 5.1(a).

9 9

1 2 1

0 0 0 0 0

x 1 1 0 x 1 1

2 1 1 2 2

(a) (b)

Figure 5.1

Scoring weights for the one- and two-dimensional partial credit model.

The "Complete knowledge" state (x=2) has scoring weight Bi1(2) = 1 on the first trait and

scoring weight Bj2(2) = 1 on the second. The "Partial knowledge" state (x=1) has scoring weight

Bii(1) = 1 on the first trait, whereas the "Don't know" state (x=0) has scoring weights zero. With

the use of (5.2) and the scoring weights Big(.) of Figure 5.1(a), the probability that the subject

has a latent state r
J

on item j can be written as
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(5.4) P(910) =

exp( (On - 8jg(xj)))

exp( E (0g - 8jg(z)))
z q=1

Adding a constant c to 8jg(1) and subtracting it from 8 jg(1') (15.11'..5xj) does not change the

model in (5.4). By setting the difficulty parameters of the same response equal to each other (i.e.

8.
Jc1 J J

(x.) = 8.
(1

for x. = 0,1,2 and all q), this indeterminacy can be removed (Kelderman & Rijkes,
J

in press). From (5.4) and the assumption of local independence of the Xj's given the latent trait

vector 0, it follows that the simultaneous distribution of X given 0 is

(5.5) P(x10) = exp( ( 0, tn - Bia(xj)8jg)) II C(0,8)4

in which

and

C(0,8) =E exp { (On - 8jg)}
z q= I

t =E B.
.19

(x.) q=1,...,v.

Just like all other MPLT models the MPCM model is an exponential family model and

t=(ti,...,tv) is a sufficient statistic for the latent trait vector (Kelderman & Rijkes, in press).

Let Ex mean the summation over all possible latent state patterns x=(x1,...,xk). With the

use of (5.1), (5.5) and the assumption of local independence of the observed responses yj, the

marginal probability of y given 0 can be written as

(5.6) P(yI0) = E P(ylx, e) P(x)

X.Y.
-I= ( (1) .1) exp( (0

q "q
- B19

J
(x.)8.

EI
)) Iji c(0,8j)-1.

x J xjyj

a
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If the terms of (5.4) are arranged and if F(0) is the distribution function of the latent ability

vector 0, the marginal probability of the observed responses y can be written as an incomplete

LCA model in the sense of Haberman (1979)

(5.7)

with

and

P(y)
TX1 jk 0X1Y1 oXkYk

t x1 xk X 1 y 1 Xkyk

cbt =f exp(E 9q t,,) U c(e,6.)-1dF(0 )
J

X.
cbx J = I Sig),

(4=1
(j=1,...,k).

In this model each value of the latent state vector x represents a latent class. Maximum

likelihood estimates of the parameters of the GSERE model can be obtained by solving the

likelihood equations with the iterative proportional fitting (IPF) algorithm (Bartholomew, 1987;

Goodman, 1974b; Haberman, 1979; Hagenaars, 1990). The overall goodness-of-fit of a model

can be tested by the Pearson statistic or the likelihood-ratio statistic (see Haberman, 1979).

Together with the question of identifiability, these two issues will be discussed in the next

sections. But some applications of the GSERE model will be discussed first.

5.4 APPLICATIONS OF THE GSERE MODEL

In the previous section a GSERE model was formulated in which the parameters of the model

were unrestricted, except for the usual restrictions pertaining to probabilities and conditional

probabilities. In this section, we will discuss how the GSERE model can be modified in order to

make it suitable for special applications.

Generally, for each specific GSERE model we may define the weights NO and certain

constraints on the attraction parameters for each item j. The choices of the weights may depend

on the required latent trait abilities for the correct response. For example, the item "20-5-6=?"
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requires two subtraction operations for the correct response, so that we can choose the one-

dimensional partial credit model as depicted in Figure 5.1(b). But for the item "4(169-25?", in

which the two abilities are subtraction and taking the square root, we can choose the two-

dimensional partial credit model as depicted in Figure 5.1(a). In Kelderman and Rijkes (in press)

other possible choices of the scoring weights for the dependence of the latent states on latent

traits are discussed.

0
x

1

0

x 1

2

y
1 2

0 1

x
0

1 0 1

(a)

Y
1 2 3 4

al a2 a3 a4

0 1 0 02 0

1 2

(c)

Y
3 4

al a2 a3 a4

131 0 02 0

1 0 0 0

(e)

Figure 5.2

Examples of specifications of the attraction parameters

1 2
y

3 4
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1 0 0 0

0
x

1
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2

0 1

1-0 ,
.-

(d)

By specifying the attraction parameters (5.1) as free, equal to each other or fixed to acertain

value, a particular GSERE model is specified (Kelderman, 1988; Westers & Kelderman, 1992).

In Figure 5.2 some examples of the attraction parameters for the GSERE model are depicted.

Figure 5.2(a) describes the situation of a perfect response process; the subject answersthe item

correctly (y=1) if (s)he can solve the problem (x--xl) and gives a wrong answer (yr2) if (s)he
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cannot solve the problem (x1)). A case in which the items are not necessarily answered

incorrectly if the subject cannot solve the problem is when there are multiple-choice items. If the

subject doesn't know the answer, (s)he will guess the most attractive alternative. The attraction

parameters for this situation are depicted in Figure 5.2(b). In Figure 5.2(c) the situation is

depicted for the case in which more than one alternative is correct. The general assumption is

that if the subject can solve the problem formulated by the item, (s)he will give the correct

answer. But a subject may fail to produce a correct answer, even if (s)he was able to solve the

problem. On the other hand, if (s)he is not able to solve the problem it is impossible to produce

the correct answer. Such a situation is depicted in Figure 5.2(d), in which [I is the so-called

omission error. In the case of the MPCM model we may assume that the attraction parameters

are specified as depicted in Figure 5.2(e).

5.5 IDENTIFIABILITY

Whether the maximum likelihood estimates of the parameters of the GSERE model are unique

depends on the identifiability of the model. A necessary condition for identifiability is, of course,

that the number of independent parameters to be estimated does not exceed the number of cell

frequencies minus one (i.e. (II rj)-1). Furthermore, if the MPLT model is not (locally)

identifiable, the GSERE model is not (locally) identifiable either.

Generally, the parameters in a MPLT model ought to be restricted in order to obtain an

identifiable model. Therefore, in the paper of Kelderman and Rijkes (in press) conditions are

formulated which ensures that the difficulty parameters of the MPLT model are not linearly

dependent upon each other and upon the proportionality constants.

Since the (G)SERE model can be formulated as an (incomplete) LCA model, Goodman's

(1974a) sufficient condition for identifiability can be used for the identifiability of the GSERE

model. Let M be the matrix consisting of the derivatives of the function (5.7) with respect to the

parameters of the GSERE model. The number of rows of the matrix M is equal to (11 9)-1 and

the number of columns is equal to the number of parameters of the GSERE modeL By direct

extensions of a standard result about Jacobians, the GSERE model will be locally identifiable if

the rank of the matrix M is equal to the number of columns. The rank of the matrix M can be

evaluated by numerical methods.

When the parameters of the GSERE model are not identifiable, various kinds of

restrictions can be imposed upon the attraction parameters and/or the item parameters in order to

make the GSERE model identifiable. The attraction parameters, for instance, may be equated

with each other or with a constant.

9 7
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Unidentifiability can be discovered by estimating the parameters a second time, this time

with the use of different initial estimates. In the case of unidentifiability both runs will give

different parameter estimates.

5.6 ESTIMATION METHOD

Let mxyt be the expected number of subjects with latent state x, observed response yand sum-

score t. As Kelderman (1988), and Westers and Kelderman (1992) have shown, the parameters

of the SERE model can be estimated by applying the iterative proportional fitting (IPF)

algorithm. For the GSERE the IPF algorithm can also be used. One of thedifferences in the

SERE model is that, depending on the number of the latent state categories, the number of latent

classes may be quite large. Since the number of attraction parameters depends on the number of

latent states categories and the number of item response categories, this number may also be

quite large.
The maximum likelihood estimates of the parameters of the GSERE model can be

obtained by solving the likelihood equations by a two-step algorithm. In the first step of each

iteration (i.e. the outer iteration), the attractiveness of the alternatives and theexpected frequency

distribution of the latent classes will be estimated. For the GSERE model the first step is similar

to the first step of the estimation method for the parameters in the LCA model (Goodman,

1974b). In the second step of each iteration (i.e. the inner iteration) the estimated expected

distribution of the latent classes is fitted to the postulated loglinear model. From this distribution

the difficulty parameters can be estimated.

5.6.1 Outer Iteration
As indicated before, the GSERE model can be formulated as a LCAmodel, in which each latent

class represents a latent state vector x. Let

(5.8) = L P(x) Kyklx)

in which P(x) is the probability of getting latent state vector x and P(yilx) is the conditional

probability of choosing response yj givn the latent state vector x. The model in (5.8) is a LCA

model in the sense of Goodman (1974b), which means that the IPF algorithm for the general

latent structure model, in which the parameters of the model are unrestricted, can be used for the

estimation of the expected frequency distribution of the latent classes and the attractiveness of

the alternatives.

9R
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As mentioned before, in the GSERE model we assumed that the observed response yj

depends only on the latent state xj; therefore the conditional probabilities P(yjlx) are restricted in

the following manner

P(yilx) = P(yjix') = 4:13cXj.i), Y j

for all latent state vectors x and x' with components x'-= X.. The 0-parameters can be obtained
J

from a weighted average of the estimates P(yilx) obtained from the IPF algorithm, with weights

proportional to P(x) (Goodman, 1974b). So

0 J { P(x) P(yix)}. / P(x)} ,
Jxj yj x'

in which Ex, is the summation over all latent state vectors X=x with Xj=xj.

5.6.2 Inner Iteration

As assumed in Section 5.3, the latent probabilities P(x) are restricted in such a way that they

comply with a MPCM model. Knowing that the MPCM model is an exponential family model

and that the sum-score t is a sufficient statistic for the latent ability parameter 0 (Kelderman &

Rijkes, in press), the conditional distribution of X given t is

with

P(xit) = exp 9(xj) } / g(t,9),

g(t,9) = exp{ 9(9),
xlt

in which Exit is the summation over those values of the latent state vector x for which

(E Bil(x),...,E Biv(x)) is equal to t, and the vector = (91(x ..... ck(xk)) denotes the weighted

sums over latent traits of the difficulty parameters

(pi(xi) = - "in(xi) Bici(xj)." q=1
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If mxt is the estimated expected number of subjects with latent state x and sum-score t, we have

(5.9) log mxt = at + L 9j(X)

in which at = - log( g(4)/nt) is a fixed normalizing constant, nt is the number of subjectswith

sum-score t. For the MPCM model the parameters 9(xj) are specified by toj(1) = 8ii and

9(2) = - 8 i2, respectively.

The model in (5.9) is a quasi-loglinear model for an incomplete item response 1 x...x

item response k x score 1 x...x score v contingency table. The table is incomplete since for

certain given values of X only one t is possible. Maximum likelihood estimates can beobtained

by solving the likelihood equations of the MPCM model. These equations can besolved by IPF

(Kelderman & Rijkes, in press). The latent probabilities P(x) are then adjusted to thesemaximum

likelihood estimates. In this way new latent probabilities P(x) are obtained that comply with the

postulated MPLT model and are used again in the next outer iteration.

5.7 GOODNESS-OF-FIT TEST

The overall goodness of fit of the GSERE model can be tested by the Pearson statistic or the

likelihood-ratio test statistic. Both statistics are asymptotically distributed as chi square with

degrees of freedom equal to the difference between the number of cells in the observed

contingency table minus one and the number of estimable parameters. If the expected counts,

however, become too small, the approximation of the distribution of the goodness-of-fit statistics

by a chi-square distribution will be bad (Haberman, 1988; Koehler, 1977, 1986; Lancaster, 1961;

Larnz, 1978).
With the use of the difference in the likelihood-ratio test statistics for two models

(Bishop, Fienberg, & Holland, 1975; Rao, 1973), it can be tested whether an alternative model

gives a significant improvement in fit over a special case of this alternative model.

If the two GSERE models are not proper subsets of each other, then kkaike's (1977,

1987) information criterion (AIC) or Raftery's (1986a, 1986b) Bayesian information criterion

(BIC) can be used. AIC is defined as

AIC = G2 - 2 d

in which G2 is the likelihood-ratio test statistic and d is the number of independent parameters in

the GSERE model. The BIC index has In n (i.e. n is the sample size) instead of 2, but is

Li 0
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otherwise identical. For both indices, the first term is a measure of badness of fit, whereas the

second term is a correction for overfitting due to the increasing bias in G2 as the number of

parameters in the SERE model increases. The GSERE model with the minimum AIC or BIC

value will be chosen as the best fitting model. Computer programs by Hagenaars and Luijkx

(LCAG, 1990) and Kelderman and Steen (LOGIMO, 1988) can be used to fit the model.

5.8 AN EMPIRICAL EXAMPLE

For numerical reasons the GSERE model is still difficult to apply routinely in large testing

programs. Not the number of parameters of the model causes the problems, but the number of

latent classes and the tables of observed and expected counts become too large for computer

storage. One solution to this problem may be the use of the division-by-item (DBI) principle

from Chapter 3. In this chapter a maximum likelihood estimation method for the one-

dimensional SERE model for a large set of items was described. This method was based on the

division of the whole item set in several subsets. The computational problem boils down to the

simultaneous estimation of the parameters of a set of smaller SERE models. This could be done

because one of the properties of the SERE model was that the model could be collapsed. Since

this property is also valid for the GSERE model (Appendix A.5), we can use the DBI-principle

for the estimation of the parameteis of the GSERE model. Before the model can be widely

applied, however, further research is required to reduce the amount of computer storage. But if

the generalization for the multidimensional latent space is ignored, the parameters of the GSERE

model can still be estimated for a small number of items, with the combined use of the programs

LCAG and LOGIMO. In this section this will be demonstrated with an example.

Table 5.1

Hypothesized weights of the ASCP Medical Laboratory Test

Items for the cognitive process "Applying Knowledge".

Item Scoring weights Correct answer

A B CD
1 2 1

2 1 2
3 2 1 1 A
4 2 1 1 A

101.
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The authors were allowed to analyse four one-dimensional four-choice items from a protected

data base of the ASCP Medical Laboratory Test. ASCP produces tests for certification of

paramedical personnel. With the items in the Medical Laboratory Test the ability toperform

medical laboratory tests will be measured. The test score is obtained by adding the number of

correct items.
Content experts from ASCP have hypothesized that the cognitive process "Applying

Knowledge" was involved in answering these four items. According to the assumptions of the
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Figure 5.3
Specifications of the attraction parameters of the four items from the ASCP Medical Laboratory

Test for the hypothesized model H.

content experts, we postulated that there are three latent states: "Don't know", "Partial

knowledge" and "Complete knowledge", with scoring weights equal to zero, one and two,

respectively. This means that the latent states are assumed to be governed by the one-

dimensional partial credit model (OPCM) as depicted in Figure 5.1(b). Table 5.1 shows the

hypothesized weights that content experts gave for each of the item responses on the cognitive

process "Applying Knowledge". These hypothesized scoringweights are translated into

specifications of the attraction parameters, which are depicted in Figure 5.3, in which x=0

02
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indicates the "Don't know" state, x=1 the "Partial knowledge" state and x=3 the "Complete

knowledge" state.

0
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Figure 5.4

Specifications of the attraction parameters of one item from the ASCP Medical Laboratory Test

for the alternative models A1, A2, and A3.

In this example the hypothesized model (H) will be compared with three alternative models. The

specifications of the attraction parameters of these models are depicted in Figure 5.4 for the first

item. For the other items similar figures can be depicted. The first model (A1) is a GSERE

model, in which for each item all the attraction parameters are unequal to zero. Model A2 is the

same as Model A1, but with the additional assumption that the correct alternative (i.e. alternative

C) will be chosen if the subject is in the "Complete knowledge" state. Model A3 has not only the

same assumptions as Model A2, but that of ai=fli (i=1,...,4) as well.

In Table 5.2 the likelihood-ratio test statistics, the Akaike's information criteria and

Raftery's Bayesian information criterion for the four models are given. From the 02 and AIC

values we can conclude that the hypothesized model fits the data better then the alternative

models. Furthermore, Model A2 fits the data better than Model A3, which means that there may

be a significant difference between the attraction of the alternatives for a subject in the "Don't

know" state and a subject in the "Partial knowledge" state. The better fit of Model A2 in relation

1 0 3
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to Model A I may indicate that a subject in the "Complete knowledge" state would make no

mistake in choosing the correct alternative.

Table 5.2
Likelihood-ratio test statistics, Alcaike's information criteria and Raftery's Bayesian information

criteria for four items from the ASCP Medical Laboratory Test

Model Number of G2 AIC BIC
parameters value value value

H 35 197.557 173.297 -86.736
A1 53 328.733 291.996 -101.768
A2 41 190.259 161.840 -142.770
A3 29 235.102 215.001 -0.455
A4 32 200.283 178.102 -59.642

In Table 5.3 the estimates of the attraction parameters for the alternatives of each item are

presented for the hypothesized model. These results indicate that a subject in the "Partial

knowledge" state is more likely to choose the correct alternatives to Items 1 and 4 than a subject

in the "Don't know" state. In all probability a test constructor would never expect that a subject

in the "Don't know" state is more likely to choose the correct alternative than a subject in the

"Partial knowledge" state, as was the case for Item 2. The attraction parameter of the correct

Table 5.3
Attraction parameters for the alternatives of four items from the ASCP Medical Laboratory Test

in the case of Model H

Alternatives
"Don't know" state

Alternatives
"Partial knowledge" state

Item A BCD A B C D

1 .204 .135 ,180 .481 .000 .000 ,676 .324
2 .027 .276 ,064 .633 .988 .000 ,012 .000
3 _622 .163 .000 .215 .502 .158 .340 .000
4 .5.1fi .120 .086 .238 ,828 .110 .063 .000

Note 1,: The correct alternatives are underlined.

Note Attraction parameters written in italics are prespecified.

1 0 4
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alternative of Item 2 in the first state is five times larger than the associated parameter in the

second state. However, in both states the probability of choosing the right alternative is very low.

In the "Partial Knowledge" state alternative A is almost always chosen, whereas in the "Don't

know" state alternative D is often chosen. In Item 2, therefore, we have the advantage that we

can make a distinction between subjects who exactly knew the solution to the problem imposed

by Item 2 and those who did not. The attraction parameters for the correct alternatives of Item 3

are approximately the same for both states.

Table 5.3 shows that some of the attraction parameters are smaller than .05. An

interesting question for these cases is whether these attraction parameters are really unequal to

zero or happen to have estimates unequal to zero by chance. Although it is bad practice to

formulate an alternative model post hoc after looking at parameter estimates and test it on the

same sample, we have tried to find an answer to the above question through the formulation of a

fourth alternative model (A4), which had the same assumptions as the hypothesized model (H).

Another assumption was that all attraction parameters with estimated value smaller than .05 in

the hypothesized model were equal to zero.

Table 5.4

Attraction parameters for the alternatives of four items from the ASCP Medical Laboratory Test

in the case of Model A4

Alternatives Alternatives
"Don't know" state "Partial knowledge" state

ItemA BCD A B

1 .275 .182 ,187 .355 .000 .000 ,581 .419
2 .000 .286 ,058 .656 1.000 .000 SO .000
3 ,623 .164 .000 .208 ,597 .124 .279 .000
4 4421 .130 .112 .281 ,919 .081 .000 .000

Note ls: The correct alternatives are underlined.

Note 2,: Attraction parameters written in italics are prIspecified.

This alternative model showed a slightly improved fit compared to the hypothesized model (see

Table 5.2). From Table 5.3 we can also see that the alternative model fits the data better than all

the other alternative models. In Table 5.4 the estimated attraction parameters for Model A4 are

given. It is clear that the estimated attraction parameters in the case of Model A4 do not differ

much from the estimated attraction parameters of the hypothesized model.
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At this point we considered only the attraction parameters of the four items from the

ASCP Medical Laboratory Test. In the remaining part of this section we will take a closer look at

the difficulty parameters of the items. In this example the assumption was that the latent states

were governed by the one-dimensional partial credit model. If the scoring weightsfor this model

as depicted in Figure 5.1(b) are used and the latent trait index q is omitted, theone-dimensional

version of Model (5.2) becomes

(5.10)
exp (( -

P(xl0)
E exp (( - 6j(z))z)

exp( E (04vjg))
g=1

E exp( (9-4,0)
z g=1

in which wix = x 8j(x) - (x-1) 8j(x-1) describes the difficulty of step x in item j, because each

latent state may be seen as the result of a series of subsequent steps, each of which has to be

taken. In Table 5.5 the values of the wix parameters for the four items of the ASCP Medical

Laboratory Test in the case of the hypothesized model H are given.

Table 5.5

Estimated difficulty parameters of four items

from the ASCP Medical Laboratory Test for the case

of the hypothesized model H

Item Step I Step 2

1 -2.15232 -0.64080
2 0.18140 -4.02920
3 -1.87987 -0.51876
4 -2.04992 1.20943

Table 5.5 shows that the difficulty of the steps changes positively for the items-1, 3 and 4, which

means that it is more difficult to take the last step than the first step. On the other hand, for item

2 it is difficult to take the first step, but if the first step is reached the second step is very easy.

1 ) G
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According to Verhelst and Verstralen (1991), two remarks have to be made. In the first place, as

Molenaar (1983) showed, the parameter value of a particular step will depend on the parameter

values for the other steps in the item. Therefore, the parameter value of a step cannot be

interpreted as a measure of its difficulty. Secondly, it cannot be known in advance that the items

allow for a sequential solution as assumed in the partial credit model.

Finally, some surprising results which are found during the analyses will be discussed. In

the sample of the 3370 subjects no one had given a completely wrong answer to the four items.

In the case of the hypothesized model, however, it was estimated that 68 subjects had no

knowledge of the solution to the problems imposed by all four items. On the other hand, nearly

32% of the subjects gave a completely correct answer to all four items, whereas it was estimated

that 2% really knew all the solutions to the problems.

5.9 DISCUSSION

In this chapter a loglinear item response theory (IRT) model with latent classes was proposed

that related polytomously scored item responses to a multidimensional latent space. The

proposed model is a generalization of the solution-error response-error (SERE) model

(Kelderman 1988; Westers & Kelderman, 1992) to situations of polytomously scored latent

states that may be explained by a multidimensional latent space. In this generalized SERE model

(GSERE) a distinction was made between some well-defined latent states in which the subject

has a certain amount of knowledge of the answer. The probability that the subject is in a certain

state is assumed to be governed by the multi-dimensional polytomous latent trait model (MPLT).

The relationship between the latent states and the observed answers is described through

conditional probabilities.

Maximum likelihood estimates of the parameters of the GSERE model can be obtained

by the IPF algorithm. The results by Westers and Kelderman (1992), however, indicate that the

(G)SERE model is usable in practice only when the responses to a few items are studied.

However, since the property of collapsibility is also valid for the GSERE model, the DBI-

principle of Chapter 3 can be used for the estimation of larger sets of parameters in the GSERE

model.

As pointed out in Westers and Kelderman (1992), an item can show DIF in two different

ways. In the first place, an item shows DIF if equally able individuals from different subgroups

have different probabilities of knowing the answer. Secondly, an item also shows DIF if the

attractiveness of the alternatives varies from subgroup to subgroup. Just as in the case of the

SERE model, the GSERE model can be extended with variables defining subgroups in order to

1 '7
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study these two types of DIF. The GSERE model is, therefore, suitable for the examination of

DIF in polytomous items through a combination of DIF for correct/incorrect responsesand DIF

in the alternatives.

1 0 3
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Chapter 6

EPILOGUE

6.1 INTRODUCTION

The objective of this chapter is not only the summarization of the contents of the previous

chapters, but also to make an inventory of those features of the differential item functioning

(DIF) detection method based on the solution-error response-error (SERE) model that need

further investigation.

Furthermore, we will indicate how the SERE model might be extended to increase its

applicability for the examination of DIF.

6.2 SUMMARY

The subject of this dissertation is the examination of DIF with the use of loglinear Rasch models

with latent classes. DIF is understood to describe the phenomenon that the probability of a

correct response among equally able test takers is different for Various racial, ethnic, or gender

groups.

In Chapter 1 an overview was given of the DIF detection methods based on analysis of

variance, on transformed item difficulties, on chi-square statistics, on item characteristic curves,

on factor analysis, or on distractor response analysis. Although any of these methods can be used

to detect biased items, they give little information about the reason why an item is biased. A

reason for this omission is that existing'DIF detection methods focus more or less on the

observed responses and not on the process leading to the observed response. It was proposed,

therefore, to use the SERE model of Kelderman (1988) for a more informative examination of

DIF.

1 t
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In Chapter 2 the SERE model was formulated and extended with variables for group

membership. It was shown that with the SERE model we cannot only test whether an item shows

DIF, but also whether DIF is caused by the difficulty of the item, the attractiveness of the

alternatives, or both. However, the proposed method is not very practical for a large number of

polytomous items, due to the fact that existing computer programs use a large amount of

memory space, even for small sets of items.

In Chapter 3 a new estimation method was proposed. This new method of parameter

estimation is based on the'division of the whole item set into several subsets. This is possible

because of the collapsability of the SERE model. It was shown that, depending on the number of

items in each subset, the parameters of the SERE model can be estimated much more efficiently,

both in terms of memory storage and processing time. However, some of the statistical efficiency

of the estimators may be lost when the SERE model is collapsed. With the use of subsets of

items, the parameters of the entire SERE model can only be obtained by simultaneous estimation

of the parameters of the collapsed SERE models. It was shown that this can be achieved with the

use of the pseudo-likelihood theory.

Chapter 4 dealt with the question whether DIF can be found with the proposed DIF

detection method of this dissertation. This chapter also dealt with an examination of the new

estimation method as introduced in Chapter 3. Therefore, in a simulation study, we examined

how the values of the estimators differ from the true values. We also investigated whether this

deviation is consistent in the sense that the differences tend to decrease when the number of

items increases. Furthermore, we examined whether it is possible to detect an item which shows

one type of DIF, but also shows the other type of DIF. Finally, we examined whether DIF can

still be found if the number of items or the number of subjects is small. From this simulation

study we concluded that with the SERE model a distinction can be made between both types of

DIF and that it is possible to detect items which show both types of DIF.

In Chapter 5 a generalization of the SERE model applicable to polytomously scored

latent states, that may be explained with a multidimensional latent space, was discussed. The

critical difference between this model and the one-dimensional SERE model in Chapter 2 is that

in the one-dimensional SERE model the probability that the subject is in a certain state is

governed by the Rasch model, while in the generalized version of the SERE model this

probability is governed by the multidimensional polytomous latent trait model of Kelderman and

Rijkes (in press). The generalized SERE model can also be used for the examination of DIF and

the parameters of this model can be estimated in a similar way as the parameters of the one-

dimensional SERE model.
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6.3 FUTURE RESEARCH

In this dissertation we showed how the SERE model can be used for the examinationof DIF and

how it can provide the test constructor or test user with more information about the nature of the

bias factor. However, for the use of the SERE model in practice a new method for the estimation

of the parameters of the SERE model needed to be developed. This new estimation method was

based on the division of the entire item set into several subsets of items. By developingthis new

estimation method only one type of subsets of items was considered, namely apair of items. One

line of future research should be the construction of criteria for an optimum division of the entire

item set into subsets of items. For instance, is a division into all possible pairs ofitems necessary

or is a selection of these pairs sufficient? Moreover, will the estimation method be improved

when the number of items in the subsets of items is three or more?

For the estimation of the parameters of the entire SERE model the pseudo-likelihood

theory was used, in which we assumed that the loglikelihood of the entire SERE model is equal

to the sum of the loglikelihoods of the collapsed SERE models overall subsets of items. The

interesting question then arises whether the estimation method will be improved if, instead of the

simple sum, a weighted sum of the loglikelihoods of the collapsed SERE models is used. Each

weight in this summation may express, for example, the relative importance of the particular

subset of items compared to the other subsets of items. A second question iswhether possible

optimum weights depend on the size of the subsets of items. Another line of future research

should address this question.

Another issue with respect to the pseudo-likelihoods concerns the goodness offit of the

entire SERE model The likelihood-ratio test statistics for each collapsed SERE model is chi-

square distributed with degrees of freedom equal to the difference between the number of cells

of the observed contingency table and the number of estimable parameters of the collapsed

SERE model. However, is the (weighted) sum of these likelihoods-ratio test statistics overall

subsets of items still chi-square distributed? Or can we develop other test statistics for the SERE

model, like the Maitin-Löf (1973) statistic, the statistics of van den Wollenberg (1979, 1982), or

the statistics of Glas (1989)? Future research should also address the questionwhether the

pseudo information criteria discussed in Chapter 3 have any practical ortheoretical use for

model selection.
Two further questions that should be considered in future research are the question of the

applicability of the (generalized) SERE model and the question on which criteria a computerized

DIF detection system should define an item as being biased. For instance, can the (generalized)

SERE model be extended to models such as that of Mislevy and Verhelst (1990), in which

different subjects are assumed to employ different strategies when responding to an item?

1.1 i
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Should the computerized DIF detection system base his decision whether an item 'shows DIF on

pseudo-likelihood or on another criterion? And what is the best strategy for detecting the biased
items?

In Mislevy and Verhelst (1990) a model is presented for item responses when different

subjects use different strategies, but only the responses and not the choice of strategy can be
observed. In this model the assumption is that each subject belongs to one of a number of
exhaustive and mutually exclusive classes, each with a unique item-solving strategy.

Furthermore, the responses from all subjects in a given class are assumed to fit an IRT model.

Finally, the assumption is that for each item its parameters under the MT model for each strategy
class can be related to known features of the item through psychological or substantive theory.

As Mislevy and Verhelst stated, the main advantages of these multiple-strategy IRT modelsare
th 4. they provide a framework for testing alternative theories about cognitive processing, and the

estimation of how subjects solve problems, in contrast to how many they solve. Such models

could be used for diagnosis, remediation, and curriculum revision. With respect to this model,

one line of future research could be an extension of the SERE model where the 'standard' IRT

model is replaced by a multiple-strategy IRT model. In this way, more information can be
obtained to solve the question why a subject is in a certain state.

The last line of future research which will be discussed in this chapter is the question on
which criteria a computerized DIF detection system should define an item as biased and what the
best strategy for the detection of the biased items is. Many authors, including Aitkin (1980) and

Bishop, Fienberg and Holland (1975), have given guidelines for the selection of the best fitting

models. These methods are mixed forms of forward and backward selection. For the selection of
the biased items a similar approach can be used.

In the case of forward selection, the examination starts with a very restricted model, that

is, a model in which no items show DIF. With successive defining items as being biased, we
search for a model that has as few biased items as possible, but still has a good fit of the data. In

the search for biased items, both the (consistent) pseudo Akaike's information criteria and the

estimated values of the parameters of the model can be used. Backward selection procedures

work the other way around: The examination starts with a model in which all the items show
DIF in the latent response and DIF in the attraction parameters. With defining items as being

unbiased, we search for a more economic model that still fits the data. For both proceduresa

careful study of the estimated values of the parameters of the model can indicate which items

may or may not be assumed to show DIF. However, future research is needed to find the best

selection procedure and the criteria on which a computerized DIF detection system should be

based for each step in the procedure.
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APPENDICES

A.1 THE ENGLISH VERSION OF ITEM 4 OF THE SECOND

INTERNATIONAL MATHEMATICS STUDY

A quadrilateral MUST be a parallelogram if it has

A. one pair of adjacent sides equal

B. one pair of parallel sides

C. a diagonal as axis of symmetry

D. two adjacent angles equal

E. two pairs of parallel sides

A.2 THE COLLAPSED SOLUTION-ERROR RESPONSE-ERROR MODEL

In this appendix an instructional proof will be given that the SERE model is collapsible. Further,

the same notation of Chapter 3 will be used. From elementary probability theory, it follows for

the SERE model that

KY 0'2) = E E E P(y)

Y3 Yk Y3 Yk

= E E P(x) P(y1x) = E P(x) P(y1x)
x y3 yk 11 Y3 Yk

= P(x) P(y 11x 1) P(y21x2) P(y31x3) P(yklxk)

Y3 Yk

in which P(x) is the marginal probability of the latent response vector x. From conditional

probability calculus it follows that

1 3
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(YlY2) = Z P(x) P(y 1) Ky21x2)

= P(y11x1) P(y21x2)E P(x).
x1 x2 X3 Xk

With the use of the assumption of local independence in the Rasch model and elementary

calculus it follows that

... I P(x) = ... P(x10) dF(0)
x3 xk x3 xk

II P(xj10) dF(0)
x3 xk j=1

=5P(x Ile) P(x210) dF(0).

The marginal probability of the observed responses yi and y2 can then be written as

P(y 1 ,y2) = L P(y 11x 1) P(y21x2)f P(x 110) P(x210) dF(0 )
x1 x2

E E 4.X Y X2Y2 4,x2 4712
)(2

xl yl x2 y2 xl x2 z

with z=x1+x2 and

4T12 = fexp(z0) ((l+exp(0-8 (1+exp(0-82)))4 dF(0).

A.3 LANPACO

LANPACO is a program for estimating the parameters of the loglinear Rasch model with latent

classes. It uses the solution-error response-error (SERE) model of Kelderman (1988) and

Westers and Kelderman (1992), and the estimation algorithm described in Chapter 3. The SERE

1 4
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model has been proven to be useful in the solution of practical psychometrics problems such as

the examination of differential item functioning (DIF) or item bias (Westers & Kelderman, 1992)

and the analysis of polytomously scored test items (Kelderman, 1988).
LANPACO includes procedures for testing whether an item exhibits DIF, estimating and

testing the parameters of the SERE model, and graphical displaying of the results. For handling

larger set of items, the estimation method and the goodness of fit test introduced in Chapter 3 is

implemented in LANPACO. Finally, a simple and quick user interface has been added to the

program.
The design of LANPACO allows interactive use of the program. If a model is

disapproved, it is possible to change the model specifications and to reestimate the parameters of

the model. This process can be repeated until the model is considered appropriate.

Since LANPACO is only a prototype, not all features of the SERE model or the

estimation method are implemented in LANPACO. For instance, LANPACO will automatically

select all possible pairs of items as subsets of items, but other selections of subsets of items are

not possible. Further, in the program one can only specify an attraction parameter to be zero or

not; other restrictions are not possible. All other features of the estimation method and the SERE

model are implemented in LANPACO.
Finally, some technical notes are given. LANPACO was written in TURBO-PASCAL

6.0 under MS-DOS. The minimal configuration required is an AT compatible computer (80286

processor), but a 80386 or 80486 based machine is recommended. For the graphic user interface,

LANPACO requires a video monitor with EGA or VGA graphics. However, VGA graphics will

give better and clearer functions and tables. A coprocessor, if available, will increase the

computing speed. At last, LANPACO has been developed at the Faculty of Educational Science

and Technology of the University of Twente, the Netherlands.

A.4 TWO ITEMS OF THE AMERICAN SOCIETY OF CLINICAL

PATHOLOGIST (ASCP) MICROBIOLOGY TEST

Item 11 Of the following bacteria, the most frequent cause of prosthetic heart valve

infections occurring two to three months after surgery is:

a. Streptococcus pneumoniae

b. Streptococcus pyogenes

c. Staphylococcus aureus

d. Staphylococcus epidermidis
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Item 20 A beta-hemolytic gram-positiv coccus was isolated from the cerebrospinal fluid

of a 2-day-old infant with signs of meningtis. The isoltae grew on sheep blood

agar under aerobic conditions and was resistant to a bacitracin disc. Which of the

following should be performed for the presumptive identification of the

organism?

a. oxidase production

b. catalase formation

c. CAMP test

d. esculin hydrolysis

A.5 THE COLLAPSED GENERALIZED SOLUTION-ERROR

RESPONSE-ERROR MODEL

In this appendix an instructional proof will be given that Model 5.7 of Chapter 5 is collapsible.

The same notation of Chapter 5 will be used. From elementary probability theory, it folloWs for

the GSERE model that

Kyl,y2) = KY I E P(y)
Y3 Yk Y3 Yk

= E E P(x) P(y1x) = P(x) E E P(y1x)
74 Y3 Yk I Y3 Yk

= P(x) P(y11x1) P(y21x2) E E P(y31x3) P(yklxk)
Y3 Yk

in which P(x) is the marginal probability of the latent state vector x. From conditional probability

calculus it follows that

p(x) p(y11x1) P(y213(2)

= P(y11x1) P(y21x2) P(x)
xi x2 x3 xk



Appendices 113

and with the use of the assumption of local independence of the latent states xj in the MPCM model

and elementary calculus it follows that

i

E ... E P(x) = E ... E f P(x18) dF(8)
x3 xk x3 xk

k
=SE ... E 11 P(xj18) dF(0)

x3 xk j=1

4P(x118) P(x21O) dF(8).

The marginal probability of the observed responses yi and y2 can then be written as

in which

P(y1,y2) = E E P(y11x1) P(y21x2)f P(x 110) P(x210) dF(8)
x1 x2

E E 4X1Y1 0X2Y2 0 X1 0X2 01'12
xl yl x2 y2 x1 x2 zxi x2

TI(I) 2
z =fexp(E 4.,'' 8,) {C(8,61) C(8,62)}-1 dF(8),

cl .1

z
C(0,8) = E exp { E

j Z q=1 '
and z=(zi,...,zy) with zq = B ig(x 0 + B2q(x2). Finally P(y1,y2) is similar to Equation 5.7 of

Chapter 5 except that here we consider two items and in Equation 5.7 k items. It may be clear that

the collapsibility of the GSERE model is also valid, if the general MPLT model is used for the

description of the dependence of the latent states on the latent traits.
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NEDERLANDSE SAMENVATTING
(DUTCH SUMMARY)

Op het terrein van het onderwijskundig en/of psychologisch meten is de formulering van de

vragen in een test een van de facetten die beschouwd kunnen worden. Naast een paar algemene

zaken als vormgeving, volgorde van de vragen en het taalgebruik, moet ervoor worden gezorgd

dat bij het opstellen van de vragen allerlei bronnen van misleiding worden vermeden. Een

belangrijk punt hierbij is, dat de (formulering van de) vraag aanleiding kan geven tot

systematisch verschillende antwoorden van respondenten met gelijke vaardigheid. Onder

vaardigheid wordt hier verstaan de vaardigheid om de kennis omtrent het te toetsen onderwerp

toe te passen. Binnen de testtheorie wordt het geven van systematisch verschillende antwoorden

door respondenten met dezelfde vaardigheid ook wel aangegeven met het begrip

vraagpartijdigheid. In het voorliggende pmefschrift zal er op dit begrip verder worden ingegaan

en zal er een methode worden gepresenteerd om te toetsen of een bepaalde vraag partijdig is ten

opzichte van bepaalde categoriedn van respondenten. Daarbij worden alleen de uit

meerkeuzevragen bestaande vragenlijsten beschouwd.

Het begrip vraagpartijdigheid, dat ook wel wordt aangeduid met de Engelse begrippen

"item bias" of "differential item functioning", kan men op verschillende manieren definieren. In

het proefschrift zal de term "differential item functioning" (D1F) worden gebruikt. Een item

(vraag) vertoont DIF als respondenten met gelijke vaardigheid een ongelijke kans hebben om het

item correct te beantwoorden. Met andere woorden een item vertoont DIF als respondenten uit

de ene groep (de "Focal" groep) niet dezelfde kans heeft om het item correct te beantwoorden als

respondenten met dezelfde vaardigheid uit een andere groep (de "Reference" grnep). De defmitie

van DIF houdt in dat verschillen tussen de scores op de toets (testscores) niet zonder meer als

verschil in vaardigheid kunnen worden geinterpreteerd.

Om te bepalen of een item DIF vertoont zijn er in de afgelopen jaren vele methoden

ontwikkeld, waarvan in hoofdstuk 1 de belangrijkste worden besproken. Ruwweg kunnen deze

DIF detectie methoden worden onderverdeeld in twee groepen, namelijk methoden die

rekenschap houden met de vaardigheid van de respondent en de (vroegere) methoden die dat niet

doen. Binnen de tweede groep vallen methoden die gebaseerd zijn op de variantie analyse of

getransformeerde item moeilijkheden. Methoden die gebaseerd zijn op chi-kwadraat statistieken,
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factor analyse, analyse van de onjuiste antwoorden (alternatieven) of een item karakteristieke

kromme behoren tot de eerste groep. Over het algemeen hebben methoden uit de eerste groep de

voorkeur, omdat zij beter in staat zijn DIF te onderscheiden van verschillen in vaardigheden van

de groepen respondenten.

Alhoewel elk van de tnethoden uit de eerste groep gebruikt kunnen worden voor de

detectie van DIF, geven ze weinig informatie over de aard van de factoren die DIF hebben

veroorzaakt. Een reden hiervoor is dat bestaande DIF detectie methoden over het algemeen

gericht zijn op de geobserveerde antwoorden en niet op het proces dat heeft geleid tot de

geobserveerde antwoorden. Bij meerkeuzevragen zal voordat een antwoord gegeven kan worden,

eerst het probleem van de vraag onderkend en opgelost moeten worden. Op ieder niveau van dit

proces kan er DIF optreden. De kans dat een probleem met succes onderkend en opgelost wordt

hangt af van de moeilijkheidsgraad van het probleem. Deze moeilijkheidsgraad kan verschillend

zijn voor verschillende groepen respondenten met dezelfde vaardigheid, hetgeen zou betekenen

dat het item DIF vertoont.

Afhankelijk van de vraag of het probleem opgelost kon worden of niet, zal de respondent

den van de antwoordcategorian moeten kiezen. De keuze van een antwoord hangt daarbij af van

de aantrekkelijkheid van het antwoord. Als nu de aantrekkelijkheid van de antwoordcategorieen

voor verschillende groepen respondenten met dezelfde vaardigheid verschillen, dan vertoont het

item ook DIF. In het proefschrift wordt een model bestudeerd dat het mogelijk maakt om beide

typen van DIF gecombineerd en tegelijkertijd te bekijken, namelijk het solution-error response-

error (SERE) model.

Zoals de naam van het model al suggereert bestaat het SERE model uit twee delen.

Binnen het SERE model wordt ten eerste onderscheid gemaakt tussen twee toestanden waarin

een respondent zich kan bevinden; de respondent weet de volledige oplossing van het probleem

of de respondent kent die oplossing niet. Er wordt vervolgens aangenomen dat de kans dat een

respondent de oplossing volledig weet, dus dat de respondent zich in de eerste toestand bevindt,

beschreven wordt door het dichotome Rasch model. Dit model wordt bepaald door een

logistische functie van het verschil tussen de moeilijkheidsgraad van het item en de vaardigheid

van de respondent.

Het tweede deel van het SERE model beschrijft de uiteindelijke keuze van de respondent

voor een bepaald antwoordcategorie. Aangenomen wordt, dat als de respondent de oplossing niet

weet, de respondent het voor hem/haar dan meest aantrekkelijke antwoordcategorie als mogelijk

juiste antwoord kiest. De relatie tussen de latente response van een respondent en zijn/haar

uiteindelijke keuze van een antwoordcategorie, wordt in het SERE model gedefineerd als een

conditionele kans. Relatief hoge waarden van deze conditionele kans geven aan dat de

bijbehorende antwoordcategorie relatief zeer aantrekkelijk is, gegeven de toestand waarin de
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respondent zich bevindt. In het voorliggende proefschrift wordt verder aangenomen dat indien de

respondent de oplossing wel weet, de respondent altijd de juiste antwoordcategorie kiest.

In hoofdstuk 2 wordt het SERE model verder besproken. Tevens wordt in dit hoofdstuk

aangegeven dat met het SERE model het niet alleen mogelijk is om te onderzoeken of een item

DIF vertoont, maar ook of DIF veroorzaakt wordt door de moeilijkheidsgraad van het item en/of

door de aantrekkelijkheid van de antwoordcategorieen. Ook wordt aangegeven hoe met behulp

van bestaande programmatuur de parameters van het model, dat wil zeggen de moeilijkheids-

graad van de items, de vaardigheden van de respondenten en de aantrekkelijkheden van de

antwoordcategorieen, geschat kunnen worden.

Als het aantal items in een test te groot wordt, dan is het in de praktijk onmogelijk om

met de bestaande programmatuur de parameters te schatten. Om dit probleem op te lossen wordt

in hoofdstuk 3 een alternatieve schattingsmethode aangedragen.Hierin wordt de verzameling

items verdeeld in een aantal deels overlappende deelverzamelingen. Door nu de parameters van

iedere deelverzameling simultaan te schatten, kan men de parameters van de gehele test efficient

schatten. Een bijkomend voorde,t1 is dat de antwoorden van respondenten die alleen een gedeelte

van de test hebben ingevuld, toch gebruikt kunnen worden bij het schatten van de moeilijkheden

van de items en de aantrekkelijkheden van de antwoordcategorieen.

Om te bekijken of deze nieuwe schauingsmethode en de op het SERE model gebaseerde

DIF detectie methode betrouwbare resultaten opleveren, wordt in hoofdstuk 4 een simulatie

studie uitgevoerd. Vragen die bij deze studie centraal staan zijn: (1) kan DIF nog steeds worden

aangetoond als het aantal items of het aantal respondenten klein is?; (2) in hoeverre verschillen

de geschatte waarden van de parameters van de oorspronkelijke waarden van de parameters in de

gesimuleerde data?; (3) is dit verschil consistent in de zin van dat de verschillen de neiging

hebben om kleiner te worden als het aantal respondenten toeneemt? Tenslotte worden in dit

hoofdstuk de minimum condities bestudeerd waaronder het SERE model en de daarop

gebaseerde D1F detectie methode nog praktisch bruikbaar zijn.

Tot zover is ervan uitgegaan dat er maar én vaardigheid wordt getoetst (bijvoorbeeld

rekenen of de Engelse taal) en dat er maar twee toestanden zijn: de respondent weet het

antwoord of de respondent weet het niet. In de praktijk zijn er echter vele situaties waarbij van

de respondenten meerdere vaardigheden worden verwacht. Zo worden bij de vraag "Wat is de

wortel van zestien plus negen?" drie operaties verwacht. Ten eerste zal de respondent de vraag

moeten vertalen in een wiskundige formule, om vervolgens de wortel van 16 uit te rekenen en

als laatste de optelling uit te voeren. Daarnaast zijn er situaties waarbij de respondent een

gedeelte van de oplossing van het probleem weet, maar niet in staat is om het probleem in zijn

geheel op te lossen. Het is mogelijk dat een respondent het bovenstaande item wel kan vertalen

in een wiskundige formule en ook nog de optelling uit kan voeren, maar niet weet hoe hij/zij de
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wortel uit een getal moet berekenen. Deze situatie is dus een voorbeeld waarbij een respondent

zich in drie toestanden kan bevinden: de respondent weet de oplossing niet, de respondentweet
een gedeelte van de oplossing of de respondent weet de volledige oplossing. In hoofdstuk 5

worth het SERE model gegeneraliseerd tot dergelijke situaties. Analoog aan het SERE model,

kan ook de gegeneraliseerde versie van het SERE model gebruikt worden als DIF detectie

methode. De parameters van het gegeneraliseerde SERE model kunnen eveneens geschat worden

met de methode die in hoofdstuk 3 eintroduceerd is.

Het proefschrift eindigt in hoofdstuk 6 met een overzicht van nog nader te bestuderen

kenmerken en/of eigenschappen van de op het (gegeneraliseerde) SERE model gebaseerde DIF

detectie methode en de daarbij ontwikkelde nieuwe schattingsmethode. Te denken valt hierbij

onder meer aan de optimale opdeling van de verzameling items in deelverzamelingen of aan de

optimale methode om de items die DIF vertonen te selecteren. Verder wordt aangegeven hoe het

(gegeneraliseerde) SERE model nog verder uitgebreid zou kunnen worden zodat de

bruikbaarheid voor het bestuderen van DIF vergroot wordt.
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